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Abstract

This thesis reports on research undertaken to explore the viability of using nanodi-

amonds containing nitrogen vacancy (NV) centres in optical dipole traps.

The impact of illuminating single NV centres with 1550 nm, a common dipole

trap wavelength, is investigated. A reduction of 7% in the fluorescence intensity is

observed using 20-30 mW of illumination, whilst the NV centre’s optically detected

magnetic resonance (ODMR) signal contrast and electron spin T2 time remain un-

a↵ected. These results are better than those of similar experiments with 1064 nm.

A method for creating and characterising pure type IIa nanodiamonds con-

taining NV centres is presented. Bulk chemical vapour deposition (CVD) diamonds

are electron irradiated and annealed, before being ball milled into nanodiamonds.

The bulk purity is determined by quantitative electron paramagnetic resonance.

The nanodiamonds are characterised by Raman spectroscopy, electron microscopy

and energy dispersive X-ray spectroscopy (EDX). Small quantities of contamination

by the silicon nitride milling material could be found using EDX. A confocal micro-

scope was constructed and single NV centres inside the nanodiamonds were found

to be photostable and ODMR shows an average ODMR contrast of 9%.

An optical dipole trap was constructed and CVD derived nanodiamonds were

levitated. Measurements of the centre-of-mass motion show that unlike commercial

type 1b nanodiamonds, they mostly remain at or close to thermal equilibrium in

moderate vacuum where commercial material was previously reported to burn and/

or graphitise, even when the optical intensity is raised above 700 GW/m2. Nanodi-

amonds are observed to be suddenly ejected from the trap at ⇠1 mbar.
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Chapter 1

Introduction

1.1 There’s plenty of room in the middle

In 1959, Richard Feynman delivered a lecture entitled “There’s plenty of room at

the bottom” [1], for which he is, somewhat unfairly, given credit for spawning the

field of nanotechnology. In truth, by 1959 the electron microscope had already long

been invented [2], but through the purview of our time, Feynman’s lecture is seen

as the beginning of a golden age in fundamental and applied nanoscale science.

The ability to construct devices and make observations at the nanoscale,

whilst confirming much of what quantum theory predicted, conflicted with our lived

experience. From the outset this apparent conflict can be naively dismissed in a

binary manner: small things obey the laws of quantum mechanics, and big things

behave classically. Yet quantum theory, despite being the most accurate scientific

theory we have, sets no limits on size, mass, or the number of particles. Never-

theless, to stay with the example of nanotechnology, Wojciech Zurek [3] points out

that Josephson junctions are proof that macroscopic numbers of electrons can over-

come a non-conducting barrier via quantum tunneling [4]. Another example are the

quantum interference e↵ects like the Aharonov-Bohm e↵ect [5] that are observed for

electrons passing through mesoscopic metallic rings [6]. Some of the most exciting
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results over the last two decades in mesoscopic physics has been the demonstration

that macromolecules exhibit wave-particle duality [7–10]. This was first discovered

by Arndt et al. in 1999 with a setup similar to Young’s double-slit interferometer

[7]. A collimated molecular beam of neutral C60 fullerenes was passed through a

di↵raction grating and detected 1.25 m behind the grating by a photoionisation pro-

cess. Scanning the detection away from the centre of the molecular beam revealed

clear first-order di↵raction peaks that disappeared when the di↵raction grating was

removed.

These works have provided a motivation for physicists to not just look at ever

smaller dimensions, but to probe the mesoscopic world at the boundary between

quantum (microscopic) and classical (macroscopic) systems.

1.2 Motivation for study

Coherent sensing of a mechanical oscillator using a coupled single electron spin was

proposed in 2009 [11] and demonstrated experimentally in 2012 [12]. The motion of a

magnetised cantilever tip was detected using a defect centre electron spin in diamond

known as the nitrogen vacancy (NV) centre [13]. In these experiments, the classical

motion of the oscillator due to driving and Brownian motion was detected, although

coupling to an electron spin, that is quantum by definition, makes for an interesting

proposition. For example, the authors proposed that if the cantilever is cooled, zero

point fluctuations could be observed. The purpose of this PhD project was to begin

the construction of an experiment that would eventually test whether a ⇡100 nm

sized diamond (approximately 109 atoms) could be placed into a spatial quantum

superposition, and detected with an NV centre spin. This question is the subject

of a number of theoretical proposals [14–17]. They propose to exploit a coupling

of a quantum superposition state of the NV electron spin inside a nanodiamond to

its centre-of-mass motion. To prevent decoherence of this coupled spin-mechanical

2



Figure 1.1: Photograph of a levitated nanodiamond.

oscillator system through contact to the environment, the nanodiamond is levitated

by an optical tweezer in high vacuum. A readout mechanism of the electron spin

evidences whether or not a superposition took place.

Proposals [14–17] are a form of matter-wave interferometry. One of the

purposes of these, and other matter-wave interferometry proposals summarised in

[18, 19], is to build upon the experiments involving macromolecules [7–10] and test

the superposition principle with nanoparticles [20, 21]. A mesoscopic nanoparticle in

a quantum state could be an ideal system for testing various models of wavefunction

collapse, which are discussed in [21–23].

Another potential route to the quantum regime with nanoparticles is cool-

ing the centre-of-mass motion of glass spheres levitated in high vacuum to their

quantum ground state [24–29]. Millikelvin cooling of the centre-of-mass motion of a

nanoparticle was first demonstrated in 2011 by Li et al. [24] by using the radiation

pressure of a laser for each spatial degree of freedom to oppose the detected veloc-

ity of the nanoparticle. In 2012, Gieseler et al. [25] developed a new scheme that

only required the use of a single laser to reach millikelvin temperatures. This was

achieved by active modulation of the depth of the optical potential well trapping

the spheres, such that the trap depth increased when the nanoparticle was moving

away from the trap centre, and reduced as it was moving towards it. However, ⇡ 1

3



1.2.1 Matter-wave interferometry

Proposals [12–15] amount to a form of matter-wave interferometry. One of the pur-

poses of these, other matter-wave interferometry proposals [17, 18], is to to build

upon the experiments involving macromolecules [7–9] and test the superposition

principle with nanoparticles [19]. Another potential route to the quantum regime

with nanoparticles is cooling the centre-of-mass motion of levitated silica spheres to

their quantum ground state [20–23]. A potential benefit of using a levitated nan-

odiamond containing a nitrogen vacancy centre spin is the possibility to circumvent

the ground state cooling required to observe mesoscopic quantum mechanical e↵ects
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Figure 1.2: Time-evolution of centre-of-mass states in reference [14]. A nanodia-
mond is levitated in a harmonic potential in the presence of a magnetic field gradi-
ent and oscillates with a frequency !. At t = t0 the electron spin is prepared in a
superposition state  (0) = |�i(|+1i+ |� 1i)/

p
2. The states are allowed to evolve,

and spatially separate due to the magnetic field gradient. After one oscillation pe-
riod 2⇡/! the spatially separated states return and interfere. Spin measurements
evidence the superposition.

mK still corresponds to a macroscopic state, far from the quantum groundstate.

A benefit of using a levitated nanodiamond containing a nitrogen vacancy centre

spin is the possibility to circumvent the ground state cooling required to observe

mesoscopic quantum mechanical e↵ects [14, 16], which had proven to be di�cult,

although progress in the last year appears incredibly promising [27, 28].

A nanoparticle levitated in high vacuum o↵ers the added benefit of being iso-

lated from its room temperature environment, unlike the optomechanical and elec-

tromechanical systems such as mirrors, cantilevers, and SQUIDs used in analogous

experiments that require cryogenic cooling in order to achieve quantum groundstate

cooling [30–36]. Nanoparticles also o↵er the greatest level of macroscopicity [20, 21].

A schematic of the first nanodiamond matter-wave proposal [14] can be sum-

marised as follows:

1. A nanodiamond containing a single nitrogen vacancy centre S = 1 spin is

levitated in a harmonic potential, in the presence of a strong magnetic field

gradient.

2. The electron spin is initially prepared in a pure |�i|mS = 0i spin state, where

|�i is the centre-of-mass state of the nanodiamond.
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3. A resonant pulse excites the spin into a superposition state with equal prob-

abilities of | + 1i and | � 1i,  (0) = |�i(| + 1i + | � 1i)/
p

2. The magnetic

field gradient couples the centre-of-mass and electron spin degrees of freedom

as the | + 1i and |� 1i states feel opposing forces from the magnetic field.

4. As the states evolve, the centre-of-mass states spatially separate into two har-

monic wells corresponding to the | + 1i and | � 1i states. The mechanical

oscillation of the two results in a periodic interference as the centre-of-mass

states spatially re-combine.

5. A slight tilt in the experiment ensures the centre-of-mass states evolve into

di↵erent gravitational potentials, which impart a phase di↵erence between the

arms of the interferometer, which is detected by spin readout at the end of the

experiment.

The controllable relative phase from tilting the experiment can only arise if the

centre-of-mass states were in two spatially separated gravitational potentials, and

therefore evidences the superposition. This scheme has been superseded. By turning

o↵ the trapping potential after the spin is prepared into a quantum superposition,

the centre-of-mass states can spatially separate by distances comparable to the size

of the nanoparticle [17], as opposed to⇡0.2 pm in the scheme outlined above. Rather

than relying on the harmonic potential re-combine the spatially separated states, the

spin states can be flipped mid-way through the evolution to reverse the trajectories.

In order to test proposals [14–17], it is therefore necessary to:

• Levitate a nanodiamond in high vacuum.

• Control the nitrogen vacancy electron spin inside it.

• Readout the spin state of the electron.

Some progress has been made toward the implementation of these proposals. Read-

out of the spin state of NV centres is based on the intensity of the emitted fluores-
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cence. NV centre fluorescence from levitated nanodiamonds was detected initially

in ensembles of NV centres in 2013 [37] and single NV centres were later detected in

2015 [38]. That same experiment had demonstrated magnetic resonance of the elec-

tron spins, along with another study [39]. Coherent control of a nitrogen vacancy

spin in a levitated nanodiamond has also been demonstrated [40].

However a number of problems have been reported. Neukirch et al. [38] re-

ported that the majority of the nanodiamonds they levitated using a 1064 nm laser

did not show any fluorescence whatsoever. One study had shown that a 1064 nm

laser could be used to rapidly quench the fluorescence from an NV centre and use

it as an ‘optical transistor’ [41]. All of the experiments had to be conducted at at-

mospheric pressure or in low vacuum, due to burning or graphitisation at pressures

of approximately 1 mbar. Our study [42] had determined that the commercially

available nanodiamonds that were being used were absorbing too much of the trap-

ping light due to defects and impurities, and subsequently could not dissipate their

excess heat in vacuum.

Attempts to negate these issues in optical traps have included the use of ion

traps. Ensembles of NV centres were detected in an ion trapped cluster of nanodi-

amonds [43]. Magnetic resonance of NV centres in ion trapped nanodiamonds has

also been achieved [44]. However the geometry of ion traps can make the inclusion of

high numerical aperture detection optics di�cult. Sub-Kelvin cooling of the centre-

of-mass motion of a nanodiamond was implemented in a magneto-gravitational trap

in high vacuum [45]. However heating is still an issue in ion traps and magneto-

gravitational traps because of the light required to induce NV fluorescence [46].

This thesis addresses these issues that have so far been impeding further

progress towards the implementation of matter-wave interferometry proposals with

levitated nanodiamonds.
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1.3 Thesis structure

Chapters 2, 3, and 4 outline the theory required to interpret the results presented in

the thesis. Chapter 2 provides a grounding in the theory of optical dipole trapping

sub-wavelength nanoparticles and their dynamics in vacuum. An overview of elec-

tron paramagnetic resonance (also referred to as electron spin resonance) is given

in chapter 3, which serves as a prerequisite to chapter 4. Chapter 4 begins with a

brief discussion of synthetic diamonds, and the point defects in diamond relevant to

this project, before the nitrogen vacancy centre is introduced.

Experimental results are given in chapters 5, 6, and 7. Results are presented

in chapter 5 on the impact of 1550 nm illumination, a common wavelength used

to form optical dipole traps, on the nitrogen vacancy centre’s optical and electron

spin properties. Chapter 6 reports on the characterisation of nanodiamonds con-

taining nitrogen vacancy centres derived from chemical vapour deposition (CVD)

diamonds, using a variety of spectroscopic techniques. The results of levitating CVD

derived nanodiamonds in vacuum are presented in chapter 7, and contrasted with

commercially available nanodiamonds. Finally, the thesis is concluded in chapter 8.
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Chapter 2

Theory of optical dipole traps

2.1 Introduction

The idea that light can exert forces on matter goes as far back to Kepler, who in 1619

had speculated that radiation pressure was the reason for comet tails pointing away

from the Sun. However, it was not until the 1860s that a fully fledged theory of the

momentum of light was developed by Maxwell, born out of his treaties on electricity

and magnetism [47]. It was then proven experimentally by Lebedev [48] in Russia,

and Nichols & Hull [49] in the USA, both in 1901 using a torsion balance where the

masses had been replaced by mirrors - now known as the Nichols radiometer.

The radiation pressure on a reflective surface is given by the Maxwell-Bartoli

expression Pr = (1 + R)I0/c, where R is the magnitude of the reflectivity, I0 is the

intensity of the light and c is the speed of light in vacuum [50]. It was not until

1970 that the first trap based on radiation pressure was realised by Arthur Ashkin

at Bell labs, who had conceived of the idea having calculated that the radiation

pressure from a focussed 1 W laser on a wavelength sized glass sphere (⇡ 10�8 N)

could greatly exceed the force of gravity (⇡ 10�11 N) [51, 52]. However this type

of trap was limited in a number of ways: it relied on gravity or the use of counter-

propagating beams, making it incredibly sensitive to alignment; the trapping force
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approached mg for smaller sub-wavelength particles (Rayleigh particles) and so it

was limited to larger particles; it also became very weak for non-spherical particles.

A breakthrough was made in 1986 when Ashkin, along with eventual Nobel laureate

Steven Chu, invented the so called single-beam gradient force optical trap, now more

commonly known as optical tweezers or the optical dipole trap - an all optical trap

produced by a single tightly focussed laser beam with a trapping force thousands

of times larger than mg, that could trap dielectric particles as small as 25 nm and

as large as 10 µm [53]. Chu won the Nobel prize for extending the technique to the

trapping and manipulation of neutral atoms [54].

Whilst much of the work with optical traps has been conducted in fluids,

many physicists have focussed on optical trapping in vacuum in order to study lev-

itated particles as mechanical oscillators decoupled from their environment. After

Ashkin demonstrated levitation in high vacuum [55], optically levitated particles

have been proposed as candidates for quantum groundstate cooling of their me-

chanical motion for the purpose of observing quantum mechanical phenomena in

mesoscopic systems [56, 57].

So far, the centre-of-mass motion of optically levitated silica spheres have

been cooled below room-temperature by active feedback modulation of either the

force due to radiation pressure [24] or the dipole trapping force [25–29], with the

latter technique producing centre-of-mass temperatures as low as 450 µK [28]. These

cooling techniques have facilitated force detection sensitivities of up to zN/
p

Hz,

which could pave the way for the detection of exotic new forces [58, 59]. Silica

spheres have also been cooled in high vacuum in hybrid electro-optical traps [60, 61].

Optical tweezers have also been used to measure instantaneous velocities

of Brownian particles [62], to observe non-equilibrium thermodynamics [63], and

thermal squeezed states have been achieved with mesoscopic silica spheres [64].

Laser induced rotation rates of 5 MHz were observed in highly birefringent

materials trapped with circularly polarised light, the fastest rotation rates observed
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yet [65]. Rotational vibration about the polarisation axis of the trapping laser was

later observed in non-spherical nanodiamonds, which may provide another more

suitable degree of freedom for quantum groundstate cooling owing to the higher

frequencies compared to translational motion [66].

This chapter shall give an overview of the theory of optomechanics in relation

to optical dipole trapping of Rayleigh particles, focussing on the dipole trapping

mechanism in section 2.2, the dynamics of optically levitated Rayleigh particles

as described by fluctuation-dissipation theorem in section 2.3, and the notion of a

centre-of-mass temperature in section 2.4.

2.2 Optical forces

In this section, the derivations of the optical forces experienced by a sub-wavelength

dielectric particle in a monochromatic field will be summarised. It is assumed that

the electric fields are time-harmonic and that the complex amplitude of the electric

field can be written in terms of the real amplitude and phase E0 and �, i.e. E =

E0(r)ei�(r)nE , where nE is the direction of polarisation.

The condition for Rayleigh scattering is satisfied for su�ciently small par-

ticles (normally defined as a < �/10, where a is the radius), such that the phase

of the scattered light does not vary over the particles surface, so that it can be

approximated as a point dipole. A dielectric Rayleigh particle in the presence of a

monochromatic electric field will have an induced dipole moment given by [67]

p = ↵0(!)E(r), (2.1)

where E(r) is the electric field at the particles position r, and ↵(!) = ↵0(!)+ i↵00(!)

is the complex polarisability given by the Lorentz-Lorenz equation,

↵(!) = 4⇡"0a
3 "(!)� "m(!)

"(!) + 2"m(!)
, (2.2)
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where "0 is the vacuum permittivity, and "(!) and "m(!) are the complex dielectric

constants of the particle and surrounding medium respectively. "m(!) = 1 will

be assumed for the remainder of this thesis as air/ vacuum is the only medium of

interest. The polarisability can also be expressed in terms of the refractive index,

n, by recalling that n =
p
". The Lorentz force on a point dipole is [68]

F = ↵0

(E ·r)E +

dE

dt
⇥B

�
. (2.3)

Using the identities

(E ·r)E = r

✓
1

2
|E|

2

◆
�E⇥ (r⇥E),

and

r⇥E = �
@B

@t
,

Eq. 2.3 becomes

F = ↵0

1

2
r|E|

2 +
d

dt
(E⇥B)

�
, (2.4)

where the second term is the time-derivative of the Poynting vector, S = E ⇥ B.

Often, as in this case, we are only concerned with the time-averaged Poynting vector,

hSi, and the second term averages to zero [67, 68]. Eq. 2.4 simplifies to what shall

now be referred to as the gradient force,

hFgradi =
↵0

2
rh|E|

2
i. (2.5)

This force is related to the real part of the polarisability, and the intensity gradient

of the electric field and therefore seeks to act in the direction pointing towards the re-

gion of highest electric field intensity. It is worth noting that since the polarisability

scales with volume, the gradient force scales as a3.

The imaginary dissipative part of the polarisability gives rise to scattering
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z

Fgrad Fscatt

Figure 2.1: The gradient force acts to restore the particle to the point of highest
intensity in the electric field, whereas the scattering force acts in the direction of
propagation of the light. The result is an equilibrium position slightly o↵set from
the center of the focal point as discussed in section 2.2.3.

and absorption. For a Rayleigh particle, this is

↵00 =
k3

6⇡"0
↵02, (2.6)

where k = 2⇡/� . ↵00 can be related to the scattering cross-section by �s = ↵00k/"0,

which is given by [69]

�s =
128

3

⇡5a6

�4

����
n2
� 1

n2 + 2

����
2

. (2.7)

Now the scattering force can be related to the scattering cross-section via [70]

Fscatt =
�s
c

I(r, z)ẑ. (2.8)

The scattering force therefore scales as a6, unlike the gradient force which scales as

a3. This sets an upper-bound to the size of particles that can be trapped with single

beam optical dipole traps.

2.2.1 Trap sti↵ness

By knowing the nature of the electric field, the trap spring constants and potential

depths can be calculated. The focal field of a Gaussian beam, with the direction of
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propagation taken to be z and a direction of polarisation of nE , may be written as

[67]

E(⇢, z) =
E0p

1 + z/z0
e
�
✓

x2

w2
x(z)

+ y2

w2
y(z)

◆
+i�(⇢,z)

nE , (2.9)

where E0 is the amplitude, wx(z) and wy(z) are the x and y beam waists, respec-

tively, and z0 = kw2
0/2 is the Rayleigh range. Then from the paraxial approximation

w =
�

⇡(N.A.)
, (2.10)

where N.A. is the numerical aperture. The phase is

�(⇢) = kz � ⌘(z) +
k⇢2

2R2
, (2.11)

where k = 2⇡/�, ⇢ =
p

x2 + y2 is the radial position,

⌘(z) = tan�1(z/z0) (2.12)

is an acquired phase shift as the beam propagates through the focus known as the

Guoy phase, and

R(z) = z

✓
1 +

z20
z2

◆
(2.13)

is the wavefront radius. Equation 2.9 is slightly modified in order to account for the

slight beam asymmetry caused by elongation of the electric field along the direction

of polarisation.

Assuming small displacements (|r| ⌧ �), the gradient force is proportional

to the displacement from the centre of the focal spot and can be approximated as

harmonic i.e.

Fgrad(r) = ktrapr. (2.14)

The trap sti↵ness is then @F/@r|r=0, and relating the electric field to the incident

power by P = (⇡/4)E2
0w

2
x,y,z"0c [25], then to lowest order the trap sti↵ness can be
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expressed as

kx,y
trap = 4⇡3

↵(!)P

c"0

(N.A.)4

�4
, (2.15)

and

kz
trap = 2⇡3

↵(!)P

c"0

(N.A.)6

�4
. (2.16)

2.2.2 Optical potential

For Rayleigh particles, then in general Fscatt ⌧ Fgrad. By neglecting the scattering

force such that the optical force is considered to be purely conservative, a potential

depth can be defined as U = �p · E [57],

U =
3I0V

c
Re

⇢
"� 1

"+ 2

�
, (2.17)

where I0 is the intensity. Typically a potential depth of at least ⇡ 10kBT is required

for stable trapping to avoid thermal excitations ejecting the particle out of the trap

[53]. Figure 2.2 shows that it is di�cult to trap nanodiamonds with radii of less than

⇡ 20 nm without the use of higher optical intensities, which may lead to unwanted

heating e↵ects.

2.2.3 Equilibrium trapping position

The axial equilibrium position of a trapped nanoparticle is not centred on the in-

tensity maximum of the laser, rather the forward scattering force displaces the equi-

librium position further along from the focus. This position is given by the point

where the gradient and scattering forces are equal.

The electric field can be expressed in terms of the intensity as E2 = 2I/"0c.

In this scenario only the axial position is considered i.e. x = y = 0, and the intensity
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Figure 2.2: Simulation of trap depth as a function of nanoparticle radius and incident
laser power for a nanodiamond with refractive index of n = 2.4+i2.39⇥10�7 trapped
with light of � = 1 µm focussed with a numerical aperture of 0.95.

of a focussed Gaussian beam becomes [70]

I(z) =
2P

⇡w2
0

1

1 + (2z/kw2
0)

2
(2.18)

which is the intensity as a function of axial displacement, z. To find an expression

for the equilibrium z position, zeq, then the equation Fgrad + Fscatt = 0 must be

solved for z. Substituting the gradient and scattering forces in Eqs. 2.5 and 2.8 into

this equation gives

↵0

2"0c
rI(z) +

�s
c

I(z) = 0 (2.19)

Inserting Eq. 2.18 into Eq. 2.19 and using the chain to solve rI(z) yields

�
2z(2/kw2

0)
2

⇥
1 + (2/kw2

0)
2z2

⇤2 +
(2"0�s/↵0)

1 + (2/kw2
0)

2z2
= 0. (2.20)

Rearranging Eq. 2.20 gives a quadratic expression in z with the solutions

zeq =
(2/kw2

0)
2 +

p
(2/kw2

0)
4 � (2"0�s/↵0)2(2/kw2

0)
2

(2"0�s/↵0)(2/kw2
0)

2
, (2.21)
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and

zeq =
(2/kw2

0)
2
�

p
(2/kw2

0)
4 � (2"0�s/↵0)2(2/kw2

0)
2

(2"0�s/↵0)(2/kw2
0)

2
. (2.22)

There are two solutions because I(z) is symmetric about z = 0. The first solution

corresponds to the point where the gradient and scattering forces are equal behind

the focus (z < 0). Therefore the expression of interest is the second solution because

the scattering force acts in the forward direction. To the best of my knowledge, this

is the first analytic expression for the equilibrium trapping position for a Rayleigh

particle in an optical dipole trap. Recalling that �s = ↵00k/"0, the square root term

of equation 2.22 gives rise to the condition

↵0

↵00 > k2w2
0, (2.23)

which for a 1550 nm laser focussed by a numerical aperture of 0.85 means that

the ratio of the real polarisability to the complex polarisability must exceed ⇡

5.5. The equality can also be expressed in terms of the nanoparticle radius. For

a nanodiamond with refractive index n = 2.4, then it is revealed that the radius

cannot be greater than a ⇡ 185 nm. The intensity will drop even further when

considering o↵-axis displacements, so the actual maximum radius is likely to be

lower than this.

2.3 Dynamics: Fluctuation-dissipation theorem

The motion of a trapped dielectric nanoparticle is not only harmonic, but also

stochastic. Collisions with gas molecules drive the nanoparticle, causing its position

to randomly fluctuate, whilst the motion through the gas creates drag (dissipation).

This idea that the stochastic component of the motion arises from the same source

as the damping/ drag is now known as the fluctuation-dissipation theorem, and was

first conceptualised by Einstein in 1905 in his explanation of Brownian motion [71],
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and later by Nyquist to explain Johnson noise in electrical circuits [72], before the

theory was generalised in 1951 [73]. The Brownian dynamics present in levitated

nanoparticles necessitates the inclusion of damping and driving terms in the equation

of motion,

ẍ(t) + �ẋ(t) + !2
0x(t) =

fth(t)

m
, (2.24)

where x(t) is the time dependent position along the x axis (transverse to the optical

axis), m is the mass, � is the damping rate, fth(t) is the stochastic driving force,

and !0 =
p

ktrap/m. Similar equations may be written for the y (transverse) and z

(axial) directions.

It is often instructive to study the dynamics of trapped nanoparticles in the

frequency domain. Using F {dnx(t)/dtn} = (i!)nX(!), the Fourier transform of

the time-dependent displacement is

X(!) =
Fth(!)

m(!2
0 � !

2 + i�!)
, (2.25)

where X(!) = F {x(t)}, and Fth(!) = F {fth(t)}. The driving term is a stationary

process. As such, no Fourier transform exists. However the Weiner-Kinchin theorem

states that the two-sided (integrating from �1!1) power spectral density (PSD,

Sxx(!)) of a stationary process and the associated autocorrelation function (ACF,

Rxx(!)) of a system are a Fourier transform pair i.e. Sxx(!) = F {Rxx(!)} [74].

The ACF, which correlates the value of the signal at a time t to the signal

at a later time t + t0, is defined by

Rxx(t
0) = lim

tm!1

1

tm

Z 1

�1
x(t)x(t + t0)dt, (2.26)

where tm is the total measurement time. Experimentally, the limit of large tm is

achieved by measuring for a period greater than any oscillations present in the signal.
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If we look at the ACF at zero time delay (t0 = 0), we have

Rxx(0) = lim
tm!1

1

tm

Z 1

�1
x2(t)dt, (2.27)

which is the mean-square displacement, hx2(t)i. Parseval’s theorem states that the

integral of the square of a function is equal to the integral of the square of the Fourier

transform. Combining Parseval’s theorem with Eq. 2.27 and the Wiener-Kinchin

theorem, we may write [75]

Sxx(!) = lim
tm!1

1

tm
|X(!)|2, (2.28)

as an extension of Parseval’s theorem, which gives us a relation between the PSD

and the mean-square displacement. Similarly we can recover the ACF with the

inverse Fourier transform,

Rxx(t
0) =

1

2⇡

Z 1

�1
Sxx(!)e�i!t0d!, (2.29)

and recalling that the ACF at zero time delay (t0 = 0) is the mean-square displace-

ment, we have

hx2(t)i =
1

2⇡

Z 1

�1
Sxx(!)d!. (2.30)

From Eq. 2.25, the mean-square displacement in the frequency domain is

|X(!)|2 =
|Fth(!)|2

m2
⇥
(!2

0 � !
2)2 + �2!2

⇤ , (2.31)

and using Eq. 2.28, the PSD is

Sxx(!) = lim
tm!1

1

tm

|Fth(!)|2

m2
⇥
(!2

0 � !
2)2 + �2!2

⇤ . (2.32)

However, the stochastic driving force arises from the random thermal processes of
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the gas, and is therefore a white noise on the signal, with a PSD described by a

constant Sth
FF [76, 77]. Inserting Eq. 2.32 into Eq. 2.30 allows us to write

hx2(t)i =
Sth
FF

2⇡m2

Z 1

�1

d!

(!2 � !2
0)

2 + �2!2
=

Sth
FF

2m2!2
0�

2
, (2.33)

where Sth
FF is the power spectral density of the white driving force. This integral

can be found in Ref. [78], Appendix F. From the equipartition of energy,

hx2(t)i =
kBTcm

m!2
0

, (2.34)

and equating this with Eq. 2.33 gives us Sth
FF = 2m�kBTcm, leaving us with

Sxx(!) =
2kBTcm

m

�

(!2 � !2
0)

2 + �2!2
, (2.35)

which is the form of the PSD to be used throughout the remainder of this thesis.

An expression for � is given by Epstein [57, 79],

� =
16P

⇡v̄a⇢
, (2.36)

where P is the gas pressure, v̄ =
p

8kBT/⇡m is the mean gas velocity (N.B. not

to be confused with the r.m.s. velocity), a is the nanoparticle radius, and ⇢ is

the nanoparticle density. Fig. 2.3 shows the simulated power spectral densities of

a nanoparticle as the damping rate (�) is lowered, equivalent to lowering the gas

pressure from atmospheric pressure to 10�6 mbar. Lowering the damping rate cor-

responds to reducing the noise floor of the PSD, revealing the oscillation frequency

of the nanoparticle peaked at
p
!2
0 � �

2/2 (Appendix A).
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Figure 2.3: Simulated power spectral densities at di↵erent pressures using Eqs.
2.35 and 2.36. The nanoparticle radius and density are 50 nm and 3515 kg/m3,
respectively, and !0/2⇡ = 100 kHz. (a) Atmospheric pressure (dotted line), 100
mbar (dashed line) and 10 mbar (solid line). (b) 1 mbar (dotted line), 10�3 mbar
(dashed line), and 10�6 mbar (solid line).

2.4 Temperature

The centre of mass temperature, Tcm, was introduced in section 2.3. More formally,

we can define Tcm from the equipartition of energy as

kBTcm = m!0hx
2(t)i. (2.37)

From quantum theory, the energy in a bound system is quantised and the mean

thermal occupancy is therefore expressed as

hni =
kBTcm

~!0
. (2.38)

For a levitated particle with Tcm = 300 K and a typical !0 = 100 kHz, the mean

thermal occupancy is approximately 108, far from the quantum groundstate of the

potential. One route to reaching the groundstate could be to increase the power

of the trapping laser and therefore the trap frequency, recalling from equation 2.15

that the spring constant of the trap scales linearly with power. However, this would

require a laser over 1014 times more powerful than the one that gave us a trap
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frequency of 100 kHz!

The only viable option is to cool the center of mass temperature. This has

been achieved by modulating the power of the trapping laser to damp the motion

of the particle [24, 25, 27, 28]. One method, known as parametric feedback cooling,

modulates the amplitude of the trapping laser at twice the frequency of the particles

trap frequency with an appropriate phase shift such that the trap sti↵ness increases

when the particle moves away from the trap center, and lowers as it moves towards

it. Activation of the feedback leads to a modification of the equation of motion

(equation 2.24) [25]

ẍ(t) + �ẋ(t) + !2
0x(t) =

1

m
[fth(t) + ffb(t)] , (2.39)

where ffb(t) is the force introduced by the parametric feedback modulation of the

trap sti↵ness with frequency 2!0. This also leads to a small frequency shift of

!0 ! !0 + �! and an increase in the damping rate �! �0 + ��. The resulting PSD

with the feedback turned on is

Sfb
xx(!) =

2kBTcm

m

�0
[!2 � (!0 + �!)2]2 + !2(�0 + ��)2

. (2.40)

Assuming �! ⌧ !0, Tcm is given by [25]

Tcm = T
�0

�0 + ��
, (2.41)

where T is the equilibrium temperature in the absence of feedback, taken to be

300 K. It is worth noting that depending on the phase of the feedback modulation,

it is also possible to parametrically drive the particle and thus heat the centre of

mass motion as well as cool it. Figure 2.4 shows the e↵ect of cooling and heating

the centre of mass on the PSD.
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Figure 2.4: Simulated power spectral densities of a nanoparticle at 10�6 mbar. The
PSD is shown for centre-of-mass temperatures of 1000 K (heating), 1 K and 1 mK
(cooling).

2.4.1 Non-equilibrium thermodynamics and internal temperature

Through cooling or heating of the centre-of-mass, a levitated nanoparticle can be in

thermodynamic non-equilibrium. Parametric driving and damping has been used to

generate these non-equilibrium states, from which the centre-of-mass was observed

to relax back to an equilibrium after the parametric modulation is turned o↵ [80, 81].

However, internal heating of a nanoparticle also leads to non-equilibrium,

and non-equilibrium thermodynamic models can be used to determine the internal

temperature of the nanoparticle if it’s centre-of-mass temperature exceeds that of

the surrounding medium [42, 63, 82]. Collisions between the nanoparticle and gas

molecules are in general highly inelastic due to large thermal accommodation coef-

ficients (a phenomenological parameter that describes the degree of energy transfer

between two systems). In such a case, the nanoparticle’s interactions with the sur-

rounding gas can be divided into two independent baths: the impinging gas at

room temperature, and the emerging gas that has partially thermalised with the

nanoparticle. The centre-of-mass temperature and internal temperature are related

by

Tcm =
T imp�imp + T em�em

�imp + �em
, (2.42)

where ‘imp’ and ‘em’ denote the damping rates and temperatures of impinging and
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emerging gas molecules, respectively, and �imp + �em = �. The internal temper-

ature of the nanoparticle is then ↵gT em, where ↵g is the thermal accommodation

coe�cient.
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Chapter 3

Electron paramagnetic

resonance

Before introducing the nitrogen vacancy centre and other defects in diamond in

chapter 4, it is important to introduce the basic concepts of electron paramagnetic

resonance (EPR). The basis for this understanding will begin with an outline of

the magnetic interactions relevant to this thesis in section 3.1. An overview of

continuous wave and pulsed EPR experiments is given in 3.2. Finally, practical

aspects of EPR spectroscopy are discussed in section 3.3.

3.1 Magnetic interactions

In 1922 Walther Gerlach and Otto Stern observed in their seminal experiment that

a beam of silver atoms passed through a magnetic field gradient split up into two

spatially distinct beams [83]. The implication was that electrons possess a quan-

tised intrinsic angular momentum and magnetic moment, di↵erent from the orbital

angular momentum. Following from the early nuclear magnetic resonance (NMR)

experiments by Isidor Rabi in 1938 [84], Yevegeny Zavoiski performed the first elec-

tron paramagnetic resonance experiment in 1944 during his PhD [85] (after he likely
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observed the first proton magnetic resonance in 1941, a result he dismissed at the

time, long before it was observed by Bloch and Purcell [86]).

3.1.1 The electronic Zeeman interaction

The quantised angular momentum and magnetic moment discovered in the Stern-

Gerlach experiment is referred to as spin. For an electron of mass me and charge

�qe. The quantised magnetic moment is [87]

µe = �
qe

2me
~Ŝ, (3.1)

where Ŝ = (~/2)� is the electron spin operator, � is the Pauli spin matrix, and ~ is

the reduced Planck constant. Defining the Bohr magneton as

µB =
qe

2me
~, (3.2)

the magnetic moment of the electron is then canonically expressed as

µe = �geµBŜ, (3.3)

where ge is the free electron g-factor. The Zeeman e↵ect arises from the interaction

of a spin with an external magnetic field, B0. Because the magnetic moment of an

electron is quantised, the energy levels split into discrete states. The number of these

energy levels is determined by the spin of the system, and the spin multiplicity is

2S+1, where S = n/2 is the intrinsic electron spin for n electrons. The z components

of the spin angular momentum are then Sz = ±~/2, leading to a definition of the

spin quantum number mS = Sz/~ corresponding to each of the spin manifolds, and

is the eigenvalue of the spin operator Ŝz. The z direction is taken to be parallel to
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B0. The energy level splitting between these discrete states is

�E = gµBB0�mS . (3.4)

The Hamiltonian for the electron Zeeman interaction is

HEZ =
1

~gµBB0Ŝ. (3.5)

Measured deviations of g from ge, or anisotropy of g with respect to the external

field B0, help to identify di↵erent types of samples. Shifts (also referred to as g-

strain) and g-anisotropy are analogous to the “chemical shift” observed in nuclear

magnetic resonance (NMR). Strictly speaking, g should therefore be expressed as a

tensor, g, rather than a scalar.

3.1.2 The nuclear Zeeman interaction

The spin of a nucleus is denoted by I, and like the electron, I = 1/2, 1, 3/2..., with

spin manifolds of mI = ±1/2 for an I = 1/2 system, or mI = 0, ±1 for an I = 1

system etc. The Hamiltonian for the nuclear Zeeman interaction is

HNZ = �
1

~gnµNB0Î, (3.6)

where gn is the nuclear g-factor and µN is the nuclear magneton.

3.1.3 The hyperfine interaction

The hyperfine interaction is the energy level splitting caused by the Fermi contact

and dipolar coupling between an electron spin and a nuclear spin. Using equation

3.1, the larger mass of the proton results in a magnetic moment that is almost

three orders of magnitude smaller than that of the electron, and so the energy level

splittings due to the hyperfine interaction are smaller than the electron Zeeman
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splittings at the ⇡ 0.3 T magnetic fields used in commercial EPR spectrometers.

The Hamiltonian of the isotropic hyperfine interaction is [87]

Hiso = A0Ŝz Îz, (3.7)

where Îz is the nuclear spin operator, and the hyperfine coupling constant A0 is

A0 =
2µ0

3
gegnµBµN | (0)|2, (3.8)

where µ0 is the vacuum permeability and | (0)|2 is the electronic wavefunction

density at the nucleus.

Equations 3.7 and 3.8 assume the interaction is isotropic. However, the

dipolar coupling of an electron and nuclear spin expanded in x, y, and z, is [87]

Hdipolar = �
µ0

4⇡
gegnµBµN

hr2 � 3x2

r5
ŜxÎx +

r2 � 3y2

r5
Ŝy Îy +

r2 � 3z2

r5
Ŝz Îz (3.9)

�
3xy

r5
(ŜxÎy + Ŝy Îx)�

3xz

r5
(ŜxÎz + Ŝz Îx)�

3yz

r5
(Ŝy Îz + Ŝz Îy)

i
,

where r is the separation of the spins, and the origin of the x, y, z coordinates

is placed at the location of the nucleus. Averaging over the electron distribution,

equation 3.9 becomes

Hdipolar = �
µ0

4⇡
gegnµBµN


Ŝx Ŝy Ŝz

�
·

2

66664

h
r2�3x2

r5 i h�
3xy
r5 i h�

3xz
r5 i

0 h
r2�3y2

r5 i h�
3yz
r5 i

0 0 h
r2�3z2

r5 i

3

77775
·

2

66664

Îx

Îy

Îz

3

77775

= ŜTA1Î.

A spin Hamiltonian taking into account both the isotropic and anisotropic contri-
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butions to the hyperfine interaction is then

Hh.f. = ŜTAÎ, (3.10)

where the superscript T denotes the transpose, and A is the hyperfine coupling

tensor given by

A = A013 + A1. (3.11)

Hyperfine couplings help determine the composition of samples containing

unpaired electrons as the spectrum contains information about the atomic make-up

of the sample, the wavefunction density at the nucleus, and of course the nuclear

spin, I.

3.1.4 Zero-field splitting

Even without hyperfine coupling, energy levels can be non-degenerate without an

applied magnetic field in systems with Stotal > 1/2 and non-cubic symmetry. Spin-

orbit coupling, the exchange interaction between the electrons, and the dipolar cou-

pling of the electrons lift the ground-state degeneracy to provide a field-independent

term [88]

HZFS = ŜTDŜ, (3.12)

where D is the zero-field splitting tensor. Commonly D is written in terms of its

axial and transverse components, D and E. Equation 3.12 can then be re-written

as

HZFS = D


S2
z �

1

3
S(S + 1)

�
+ E(S2

x � S2
y), (3.13)

where D = 3Dz/2 and E = (Dx � Dy)/2. In systems with cubic symmetry, D =

E = 0, whilst for axially symmetric systems such as the NV� centre in diamond,

D 6= 0, E = 0. Both terms are non-zero in systems with lower symmetry.

Considering a system with total spin S = 1 formed by two spin-12 electron
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spins ŝ1 and ŝ2 (i.e. Ŝ = ŝ1 + ŝ2) separated by r12 with g-factors g1 and g2, the

dipolar contribution to the zero-field splitting is expressed by

HDD = ŝT1 Dŝ2 =
1

r312

µ0

4⇡~g1g2µ
2
B


ŝT1 ŝ2 �

3

r212
(̂sT1 r12)(̂s

T
2 r12)

�
. (3.14)

This term usually dominates the zero-field splitting interaction.

If the interaction between the electrons in such a paramagnetic system with

two unpaired spins is significant, as is the case for the spin systems discussed in this

thesis, the system splits into a singlet state (S = 0) and a triplet state (S = 1). The

separation in energy of the singlet and triplet states depends on the overlap of the

electron wavefunctions, and is given by the electron exchange interaction,

Hexch = ŝT1 Jŝ2, (3.15)

where J is the exchange coupling tensor. Assuming the interaction is isotropic, the

isotropic exchange coupling constant is [87]

J0 = �2h a(1) b(2)|
q2e

4⇡"0r
| a(2) b(1)i, (3.16)

where  a and  b are di↵erent electron orbital wavefunctions. The sign of J0 de-

termines whether the singlet or triplet is lower in energy, although in general the

triplet state will have lower energy due to a smaller Coulombic repulsion between

the electrons.

Spin-orbit coupling is significant to first-order for systems like the nitrogen

vacancy centre in diamond [89]. It is given by an addition of the orbital angular

momentum L to the Zeeman interaction term

HEZ + HSO = µBB
T
0 (L + geS)/~ + �LTS, (3.17)
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where HEZ is modified to include the orbital angular momentum, and HSO is the

spin-orbit coupling, described by a coupling constant � [88].

3.1.5 The nuclear quadrupole interaction

Nuclei with spin I � 1 have a non-spherical charge distribution. The charge dis-

tribution interacts with the electric field gradients caused by the nearby nuclei and

electrons, and is described by the Hamiltonian

HNZ = ÎTPÎ (3.18)

where P is the nuclear quadrupole tensor. The e↵ect of the quadrupole interaction

is to shift EPR resonances and the appearance of forbidden transitions (transitions

that break selection rules), however both are small second-order e↵ects [88].

3.2 Resonant excitation by electromagnetic fields

3.2.1 Resonance

At thermal equilibrium, the populations of the spins in the spin up and spin down

states obey the Maxwell-Boltzmann distribution,

n"
n#

= e
� h⌫

kBT , (3.19)

where ⌫ is the frequency of the transition, i.e. �E = h⌫ = geµBB0. For a g ⇡ 2

system, the resonance at 3380 mT corresponds to an energy level separation of

approximately 9.75 GHz (otherwise referred to as X-band), where the relative pop-

ulations of n"/n# is approximately 0.998. This small population di↵erence causes a

net absorption of resonant microwave (m.w.) radiation and it is this net absorption

that is the source of an EPR signal, as shall be explored in more detail in section

3.3. At the level of an individual spin, a photon of frequency h⌫ is absorbed by
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Figure 3.1: (left) In the laboratory frame, the magnetisation vector (green arrow)
precesses on a cone about the external magnetic field B0 at the Larmor frequency
!L. In the rotating frame (right), the x and y axes rotate about the z axis at a
frequency !m.w., which greatly simplifies the dynamics when the resonance condition
⌦ = !L � !m.w. = 0 is fulfilled.

the electron, which causes a re-orientation of its magnetic moment. The magnetic

moment is quantised and so this corresponds to a transition between two discrete

spin states that satisfy the selection rule �mS +�mI = 1.

In the laboratory frame, an external magnetic field exerts a torque on the

magnetic moment of an electron, and the electron precesses on a cone about B0 at

a frequency known as the Larmor frequency,

!L =
1

~geµBB0. (3.20)

Resonance is achieved when ⌦ = !L � !m.w. = 0, where !m.w. = 2⇡⌫ is the fre-

quency of the electromagnetic excitation. Typically in EPR, this radiation is in the

microwave frequency range owing to the larger resonant frequencies involved in ex-

citing electrons compared to nuclei, whose resonances occur in the radio-frequency

(r.f.) part of the spectrum.
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3.2.2 The rotating frame

From this point forward an ensemble of spins will be treated the same as time-

averaging a single spin. This will allow us to follow the theoretical formulation of

pulsed EPR by Schweiger & Jeschke [88]. When discussing ensembles of spins, it is

more useful to speak in terms of the net magnetisation due to the small population

di↵erences (equation 3.19). Any nuances will be stated where necessary. Results are

reported in this thesis on both ensembles and single spins, however all single spin

results are time-averaged.

To simplify the dynamics of the magnetisation during microwave irradiation,

a new frame of reference is introduced. The rotating frame (figure 3.1) rotates

about the z-axis at a frequency !m.w., where ẑ||B0. The resonant microwave field is

represented by a magnetic field vector B1. When the resonance condition is fulfilled

(⌦ = 0) the magnetisation in this frame of reference precess about B1. It can

be shown that changing the phase of the oscillating field by � rotates its rotating

frame direction in the xy plane by an angle � [88]. Therefore the direction of the

oscillating field need only be controlled by the phase. For example, a circularly

polarised field with � = 0 has a direction that defines the rotating frame x-axis and

causes rotations in the yz plane, and � = 90� is along the rotating frame y-axis and

causes rotations in the xz plane.

For a single spin, the rotating frame is the Bloch sphere. The poles of the

Bloch sphere represent the pure states of the two level spin system, and the equator

represents superpositions of | "i and | #i.

3.2.3 Pulsed EPR

The e↵ect of a microwave pulse applied for a time tp is to rotate the magnetisation.

For example, applying a pulse along the y-axis (� = 90�) tips the magnetisation

vector by a tip angle ✓ in the xz plane. Two types of pulses form the basis for most

EPR experiments: the ⇡ pulse which rotates the magnetisation by ✓ = ⇡, and the
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⇡/2 pulse which rotates the magnetisation by ✓ = ⇡/2. The ⇡ pulse therefore inverts

the magnetisation. For a single spin initially in a pure state, the ⇡ pulse flips the

spin e.g. | "i ! | #i and a ⇡/2 pulse creates a superposition state. The pulses of

course work for any initial state.

There are then two forms of relaxation that lead to a loss of coherence:

longitudinal relaxation, also referred to as spin-lattice relaxation, and transverse re-

laxation, also referred to as spin-spin relaxation. Spin-lattice relaxation is caused by

the z component of the magnetisation returning to its thermal equilibrium position,

on a time-scale known as T1.

Spin-spin relaxation corresponds to a loss of coherence in the x-y plane, as

the x and y components of the magnetisation vector relax to their equilibrium value.

The time-scale for this type of relaxation is T2. From a quantum mechanical point

of view, it is the time within which quantum information can be stored.

3.2.4 Common EPR experiments and pulse sequences

Rabi

A Rabi pulse sequence is based on a single variable length pulse. As the length

of the pulse is increased, the rotation angle of the magnetisation vector increases

until it is completely inverted. Longer pulse then rotate the magnetisation beyond

⇡ until it reaches its original position, corresponding to a 2⇡ pulse. Rabi oscillations

are observed between the | "i and | #i states as a function of pulse length. The

amplitude of the oscillations have a decay envelope due to relaxation during the

pulse.

Hahn Echo Decay

⇡

2
 � ⌧ �! ⇡  � ⌧ �! Echo

A Hahn echo is observed for the above sequence as a result of re-focussing
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Figure 3.2: Evolution of the magnetisation during a Hahn echo sequence. Green
arrows are the magnetisation vectors, red arrows show the evolution after the mi-
crowave pulse during the free-evolution period.

the spins. The first (⇡/2) pulse rotates the spins onto the x-axis. However, the mag-

netisation will begin to dephase during the evolution time ⌧ . As the magnetisation

vectors of various spin-packets fan-out, a second ⇡ pulse is applied which inverts the

spins. The spins remain coherent whilst the pulses are within the T2 time. Since

they are still coherent, the spins re-phase, causing a spin echo, otherwise referred to

as a Hahn echo. Varying the length of the delay between the pulses and measuring

the decay of the spin echo intensity is used as a measure of the T2 time.

Rapid passage EPR

Continuous wave (c.w.) EPR is adiabatic. Rapid passage EPR (RP-EPR) is

achieved when the EPR resonance is swept through (either with a magnetic field

sweep or frequency sweep) on a time scale that is short compared to the relaxation

times. The result is a larger tip angle of the net magnetisation vector. The higher

scan rate and tip angle reduce the time taken for EPR experiments compared to

c.w. experiments, and have a higher signal-to-noise ratio. Rapid passage EPR has

been shown to also be a quantitative technique in diamond [90].
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Figure 3.3: Schematic of an EPR spectrometer, adapted from reference [91].

3.3 Experimental EPR

A typical EPR spectrometer, a schematic of which is shown in figure 3.3, consists

of a microwave bridge connected to a microwave cavity in between the poles of an

electromagnet. The sample is mounted inside the cavity. The microwave source

delivers the microwave excitation to the cavity, and is impedance matched to it

such that it is “critically coupled”. The power of the excitation is controlled with

a variable attenuator. When on resonance, the sample exhibits a net absorption

of the microwaves, which changes the Q of the cavity resulting in a reflection from

the cavity. A circulator separates microwaves being sent to the sample from those

being reflected, which are detected by a biased detector. Part of the source signal

is tapped o↵ into a reference arm in order to bias the detector into a regime where

the response is linear. The power and phase of the reference are controlled. In

essence, the microwave bridge detects reflections from a cavity as the sample inside

it absorbs microwaves on resonance and changes the impedance of the cavity [91].

Phase sensitive detection is employed to further increase the sensitivity of

EPR spectroscopy. In addition to the main magnet, field-modulation is introduced
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by extra coils at 100 kHz, which serves as the lock-in reference. At the resonance, the

reflected microwaves are modulated at the same frequency and the lock-in amplifier

detects signals with the same frequency and phase as the lock-in reference, whilst

suppressing all other signals.

Quantitative EPR

EPR is a quantitative technique. The signal intensity depends on a number of

parameters in an unsaturated regime, including the concentration of spins [87, 91].

EPR detection limits in diamond have been demonstrated to be approximately 20

ppb [90]. Quantification of spin concentrations in diamond is achieved by comparing

the integrated signal intensity of the sample of interest to that of a reference sample

with a known concentration.
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Chapter 4

Defects in diamond and the

nitrogen-vacancy centre

4.1 Introduction

This chapter will provide an introduction to the types of diamond used throughout

this thesis by initially briefly describing the two predominant methods of synthe-

sising diamond: high-pressure high-temperature synthesis (HPHT), and chemical

vapour deposition (CVD), in section 4.2. Point defects in diamond, their creation,

and modification is introduced in section 4.3. An extensive overview of defects in

diamond is beyond the scope of this thesis, however the nitrogen vacancy centre is

discussed in section 4.4, before the basic theory of absorption by defects in diamond

is given in section 4.5.
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Table 4.1: Survey of the mechanical and optical properties of single crystal diamond.
Adapted from the Element Six Diamond Handbook [92].

Mechanical Properties
Density 3515 kg/m3

Lattice constant 3.567 Å
Young’s modulus 1050 GPa
Hardness 70 - 120 GPa
Fracture toughness 5 MPam1/2

Optical Properties
Refractive index 2.392 (@ 1064 nm)
Absorption coe�cient (IIa) < 0.1 cm�1 (@ 1064 nm)
Bandgap 5.47 eV (227 nm)
Raman shift 1332 cm�1

4.2 Synthesis of diamond
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Figure 4.1: The carbon phase diagram, adapted from references [93, 94]. The CVD
synthesis region is enlarged for clarity.

Diamonds are classified by type. The two types of diamond discussed in this thesis

are of type Ib and type IIa. Both represent only a very small percentage of nat-

ural diamonds (approximately 0.1% and 2%, respectively), however they do form

a significant proportion of diamonds produced by synthesis in a laboratory. The

properties of type 1b and type IIa diamonds are summarised in table 4.2. Whilst

both types of diamond can be produced using either HPHT synthesis (section 4.2.1)
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Table 4.2: Properties of synthetic type 1b and IIa diamonds. Adapted from reference
[94].

Property Type 1b HPHT Type IIa CVD
Nitrogen content (ppm) 150-200 <1
Dominant nitrogen form Single substitutional Single substitutional
Colour Yellow Colourless
Thermal conductivity 800-1200 1800-2200
(Wm�1K�1)

or CVD (section 4.2.2), most diamonds produced by HPHT are of type 1b, whilst

type IIa diamonds are mainly produced by CVD.

4.2.1 HPHT synthesis

High-pressure high-temperature (HPHT) synthesis is a method of growing diamond

that seeks to mimic the thermodynamic conditions that leads to the natural genesis

of diamonds. As shown in figure 4.1, diamond is only metastable under normal

atmospheric conditions. Diamond is thought to be formed approximately 200 km

inside the Earth’s mantle, where pressures and temperatures are ⇡ 8 GPa and ⇡

1500�C. The first reproducible synthesis of diamond was achieved by Tracy Hall in

1954 at the General Electric Company using a press capable of applying pressures

exceeding 10 GPa and temperatures above 2000�C [95]. HPHT synthesis uses a

carbon source placed in a high-pressure high-temperature press, providing the ther-

modynamic conditions where diamond is the stable allotrope of carbon. A metal

solvent catalyst is used to dissolve the carbon and diamond is formed as the carbon

precipitates onto diamond seeds.

The most common impurity in diamond is nitrogen. Addition of a getter

to the capsule containing the carbon source and solvent helps to capture nitrogen

during the growth process, facilitating the growth of high-purity type IIa diamond.

However, the vast majority of diamonds produced by HPHT synthesis are small type

1b grains for use as abrasives. This material also serves as the parent material for
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nanodiamonds containing nitrogen-vacancy centres for many commercial suppliers

[96].

4.2.2 Chemical vapour deposition

Chemical vapour deposition occurs under thermodynamic conditions where diamond

is only metastable. Instead, growth conditions are finely tuned under vacuum to

ensure the chemical kinetics favour sp3 bonding over sp2 (e.g. graphitic carbon).

This is achieved by epitaxial growth on a suitable substrate (commonly diamond)

by inducing dissociation of a hydrocarbon gas, either through hot-filament heating

at around 2000�C, or the use of a microwave plasma at lower temperatures around

800-1000�C [97]. The disassociated gas molecules then react with the substrate to

grow diamond. The availability of high purity source gasses has allowed the growth

of very pure type IIa diamond [98], and single crystal diamond plates grown by CVD

containing less than 5 ppb of single substitutional nitrogen are now a commercially

available product [92].

4.3 Defects in diamond

Diamond is a covalent crystal. Every carbon atom is bonded to each of its four

nearest neighbours with a single bond, except at the surface and at defect sites [99].

Defects in diamond can be introduced during growth (even with preferential orienta-

tion [100]), with radiation damage [101], or implantation [102]. The type of defects

can be further altered with annealing. The most common defect in synthetic type

1b and type IIa diamonds is single substitutional nitrogen [94], which is unsurpris-

ing given that nitrogen makes up 70% of the air around us. Electron irradiation of

diamond with su�ciently high energies can remove carbon atoms from their lattice

site, creating vacancies, interstitials, and other extended defects, depending on the

specifics of the treatment.
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Figure 4.2: Schematic representation of di↵erent types of lattice point defects. The
blue circles represent the atoms of the pure material and the black lines are the
bonds. The dashed empty circle is a lattice vacancy. The red circle is a single
substitutional defect. The green circle is an interstitial defect.

When a single carbon atom has been ejected from its site, a vacancy centre is

left behind with four sp3 orbitals pointing towards it (‘dangling bonds’). Depending

on the local environment, the vacancy can exist in a neutral charge state, V0, or

a negative charge state, V�, and whilst other charge states are possible, these are

considered to be the most stable [99, 103]. Annealing can cause defects to migrate.

The Arrhenius equation

⌧ = ⌧0e
EA
kBT , (4.1)

describes the rate of a process that requires an activation energy, EA. As the

temperature is raised, the probability that a defect migrates is increased. Interstitial

defects caused by irradiation damage begin to migrate and anneal out of diamond

at ⇡ 500�C [101]. The neutral vacancy was shown to migrate at a temperature of

600�C [104], however if the activation energy is higher for sites next to defects sites

such as the single substitutional nitrogen, then these defects can act as traps for

other defects. It was this process that lead du Preez to make the first observation

of the nitrogen vacancy centre in diamond after electron irradiating and annealing

high nitrogen type 1b diamond, reported in his PhD thesis in 1965 [105].
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4.3.1 Single substitutional nitrogen

The neutral single substitutional (N0
S) centre, also referred to as the P1 centre in

EPR, is the most common impurity in synthetic diamond and most characterised

along with the NV� centre. It has been extensively characterised with EPR, first by

Smith et al. in 1959 [106], and a later study had determined the symmetry of the

defect was trigonal rather than having the tetrahedral symmetry of pure diamond.

The nitrogen atom acts as a donor and occupies the position of a carbon atom,

having a single unpaired electron (S = 1/2, and I = 1 when 14N, 99.6% natural

abundance) in the most common neutral charge state, forming an anti-bonding

orbital with one of the four nearest neighbour carbon atoms. This C-N bond is

elongated by 28% [107], reducing the symmetry of the defect from tetrahedral to

trigonal [108]. As the electron is generally bound to the defect at room temperature,

this type of doping is not useful for n-type doping diamond.

In the absence of strain, any of the h111i directions can form the C-N anti-

bonding orbital and the defect is generally found to populate all four sites equiva-

lently. The centre is observed to re-orientate between sites, either through thermal

processes or tunneling [109]. This process limits the T2 times of proximal NV� cen-

tres. The rate of re-orientation has been shown to increase with optical excitation.

Rapid re-orientation with the use of higher optical intensities amounts to a motional

averaging of the e↵ect [110].

Optical absorption due to substitutional nitrogen is not well understood [111].

The ionisation energy is 1.7 eV, and there is little absorption below 2.2 eV (564 nm),

then increasing gradually with higher energies.
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4.4 The nitrogen-vacancy centre

4.4.1 Discovery and identification

Diamond is a wide indirect bandgap semiconductor that can accommodate many

optically active defects within its bandgap [112]. The nitrogen vacancy (NV) centre

is one such optically active defect in diamond. After du Preez had observed the

optical transition at 637 nm and proposed a structure of a single substitutional

nitrogen with an adjacent vacancy, aligned along the [111] direction, based on the

treatment his sample had undergone, work began to confirm his findings. Davies

and Hamer established the C3v symmetry (trigonal symmetry about the principal

axis) of the defect by applying uniaxial stress, which supported du Preez’s proposal

[113]. EPR studies by Loubser and van Wyk showed that one of the states was a spin

triplet, and inferred that in the negative charge state of the defect, five electrons

originated from the dangling carbon and nitrogen bonds, and one from a nearby

donor, such as a neutral single substitutional nitrogen, N0
S [114]. This state was

later found to be the ground state [115]. The ground state spin Hamiltonian is

[13, 89]

Hg.s. =

ZFSz }| {
Dg.s.

h
Ŝ2
z + S(S + 1)/3

i
+

Hyperfinez }| {
A||

g.s.Ŝz Îz + A?
g.s.

h
ŜxÎx + Ŝy Îy

i
(4.2)

+ Pg.s.

h
Î2z � I(I + 1)/3

i

| {z }
Quadrupole

,

where Dg.s. ⇡ 2.88 GHz is the zero-field splitting, A||
g.s. and A?

g.s. are the axial

and transverse hyperfine coupling strengths, and Pg.s. is the nuclear quadrupole

parameter. 15N (natural abundance of 0.4%) has I = 1/2 and therefore has no

quadrupole moment. The e↵ect of static magnetic (B), electric (E), and strain (�)
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fields are described by an additional potential to the spin Hamiltonian,

Vg.s. =

Electronic Zeemanz }| {
µBg||g.s.ŜzBz + µBg?g.s.(ŜxBx + ŜyBy) +

Nuclear Zeemanz }| {
µNgN Î · B (4.3)

+ d||g.s.(Ez + �z)
h
Ŝ2
z � S(S + 1)/3

i

+ d?g.s.(Ex + �x)
h
Ŝ2
y � Ŝ2

x

i
+ d?g.s.(Ey + �y)

h
ŜxŜy + ŜyŜx

i

| {z }
Strain

,

where d||g.s. and d?g.s. are the parallel and perpendicular components of the ground

state electric dipole moment. The strain terms are treated as an e↵ective electric

field as the displacement of the atoms creates an electric dipole.

Equation 4.4 shows us that the NV� centre spin Hamiltonian is altered by

the magnitude and relative orientation of magnetic, electric, and strain fields, and

indeed the NV� has been employed as a magnetic field sensor [116–121] and as

an electric field sensor [122]. Changes in temperature cause strain in the diamond

lattice, allowing it to be used as thermometer [123, 124]. Part of the reason the

NV� centre is an excellent sensor is its long room temperature spin coherence times,

owing to the low electron spin density (in type IIa diamond), nuclear spin density,

and spin-orbit coupling. Advances in material purity lead to room temperature T2

times of isotopically purified diamond of 0.65 ms [125]. This can be extended to 600

ms at low temperatures with dynamic decoupling of the spin from environmental

magnetic field noise [126]. Coupled nuclear spins can have T2 times exceeding one

second [110, 127] and can be used to store quantum information. Photons emitted

from the NV centre can be entangled with the spin state. This lead to the distant

entanglement of NV� centres separated initially by 3 m [128, 129], and then 1.3 km

[130], which was the first demonstration of ‘loophole free’ Bell inequality violation.

These experiments are made somewhat di�cult by the fact that only 4% of the

photons are coherent, with the remaining information lost to phonons due to the

large phonon sideband. Defects such as the negatively charged silicon vacancy centre
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Figure 4.3: NV� energy level diagram, adapted from [13, 137]. Numbers to the left
of the energy levels indicate the spin quantum number. The mS = ±1 states are
drawn as degenerate, as is the case at zero applied magnetic field. The greyscale
area represents vibronic levels. Solid arrows are spin conserving transitions, dashed
arrows are non-spin conserving transitions. Darker lines represent higher transition
probabilities.

o↵er improvements in this regard, with most of the light emitted in the zero phonon

line [131, 132], although it su↵ers from very short T2 times. However a recent study

showed the defect has far longer spin coherence times in the neutral charge state,

and can be optically spin polarised over a large range of wavelengths [133].

4.4.2 Optical and spin dynamics

In all of the NV� experiments mentioned above, the spin state is not detected with

traditional EPR techniques introduced in chapter 3. EPR spectrometers have a de-

tection limit of approximately 1010 spins, however in 1993, two groups independently

reported on optical detection of magnetic resonance of a single spin in a pentacene

molecule [134, 135]. In 1997, the group of Jörg Wrachtrup, the author of one of the

1993 studies, went on to observe a single NV� centre spin using the same technique

[136]. This shall be explored in due course, but necessary to its understanding is

the interplay of the optical and spin dynamics of the NV� centre.

The NV� centre 637 nm zero phonon line corresponds to the direct radiative
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transition from its spin triplet excited state to the spin triplet ground state. A

smaller zero-field splitting of De.s. ⇡ 1.42GHz is observed in the optically excited

state due to a larger electron-electron separation. The ground and excited states

are labeled 3A and 3E, respectively, according to the irreducible representations of

the C3v point group. The superscripts denote the spin multiplicity of the states. An

A state is symmetric about the principle axis, and an E state is doubly degenerate

[138]. Radiative decay from the 3E state to the 3A state results in the emission of a

photon, which can have a wavelength ranging from that of the ZPL, corresponding

to a direct decay, to approximately 800 nm, corresponding to the phonon sidebands.

Optical excitation is most e�cient in the 510-540 nm range, or with direct

excitation of the ZPL at 637 nm. Optical excitation can lead to photo-induced

ionisation of NV� to the neutral charge state NV0 (ZPL ⇡ 575 nm), however the

ionisation rate of NV0
! NV� when resonantly exciting at 637 nm is much slower

than the NV�
! NV0 rate, causing the NV to become trapped in the neutral

charge state, requiring a secondary shorter wavelength to re-pump to the more useful

negative charge state. Therefore non-resonant 532 nm excitation is most commonly

used, where the NV is in the neutral charge state approximately 30% of the time it

is under illumination, or higher when the intensity is far above saturation [139].

When in the mS = 0 spin manifold of the ground state, optical excitation

to the 3E state nearly always results in a spin conserving and radiative decay back

to the ground state. However, in addition to the ground and excited states, two

intersystem crossing states exist: 1A and 1E. Due to the overlap integral of the

electronic wavefunction between these states and the spin sub-levels of the ground

and excited states, the transition probability for the electron to decay via the non-

radiative intersystem crossing states when in the mS = ±1 manifold of the excited

state is higher than in the mS = 0 state. The electron then decays from the 1A

to the 1E state, which, for the same reason, preferentially populates the mS = 0

spin manifold of the ground state. In other words, optical excitation of the NV�
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centre optically pumps the electron spin into the mS = 0 state, an e↵ect known

as optical spin polarisation. Decay via the intersystem crossing is non-radiative1,

therefore the fluorescence intensity is spin dependent. The NV� is more likely to

emit a photon upon optical excitation when in the zero spin manifold of the ground

state, than when in the non-zero spin manifolds. This is the basis for optically

detected magnetic resonance (ODMR).

4.4.3 Optical readout

Figure 4.4: Time-resolved fluorescence intensity of the NV� centre, from reference
[140]. The time-resolved fluorescence intensities from top to bottom are for the
ms = 0, ±1, and the di↵erence.

Optical readout of a spin state is possible at the single spin level because silicon single

photon detectors with quantum e�ciencies of up to 70% in the NV� centre emission

range are readily available instruments. Experimental techniques are discussed in

more detail in section 5.2.1.

In a continuous wave experiment, the NV� centre’s fluorescence intensity is

monitored as a function of microwave frequency, and a  30% reduction is observed

when the microwave frequency is resonant with one of the splittings in equations

4.3 and 4.4. However optical excitation is generally excluded during coherent pulsed

1
In fact, the

1A ! 1E transition results in emission at ⇡ 1042 nm, however this light is not

normally detected as it is far from the main emission band (637-800 nm) of the
3E ! 3A transition,

and where the quantum e�ciency of silicon photodetectors is low.
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Figure 4.5: Configuration diagram for a ground state and excited state, adapted
from [141]. n = 0! m = 0 is the ZPL transition.

manipulation of an NV� centre spin as the light resets the spin into the pure mS =

0 sub-level, thereby destroying any coherent state. Instead, an optical pulse is

delivered to the spin after coherent microwave manipulations to readout the spin.

The time-dependent characteristics of the fluorescence of the first ⇡500 ns of an

optical pulse are spin state dependent [110], as shown in figure 4.4. It is therefore

the integrated intensity of the first few moments of emission that constitutes the

spin state readout in pulsed experiments.

4.5 Optical absorption

The lattice symmetry of intrinsic diamond has no associated electric dipole, and

cannot absorb light in the one-phonon region that is less energetic than the bandgap

of 5.47 eV (227 nm) [142]. Intrinsic absorption due to multi-phonon processes occurs

at 2-6 µm. However, a source of intra-band absorption in the one-phonon region

are defects and impurities [143, 144]. Absorption in diamond is known to correlate

with the concentration of N0
S [145]. Electric dipole transitions are one such source of

absorption, an example of which is the A! E transition of NV discussed in section
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4.4, however electrons also couple to vibrational modes. The absorption coe�cient

for a given defect is [144]

↵(!) =
2⇡2D

3nc
p2(!)S(!), (4.4)

where D is the concentration of the defect, p(!) is the defect’s dipole moment, and

S(!) is the density of unperturbed lattice modes. These processes can be understood

from configuration diagrams, like the one shown in figure 4.5. If the ground and

excited states are separated by Ee.s. � Eg.s. = E0, then vibronic transitions have

energy E = E0+n~!. The ground and excited states have a minima for a particular

value of Q, the configuration coordinate, in this case Q0 and Q1. The di↵erence

between the two is related to a dimensionless parameter known as the Huang-Rhys

parameter [141],

S =
(Q1 �Q0)2

2~/µ⌦
, (4.5)

where µ is the mass of the vibrational oscillator and ⌦ is its angular frequency. The

factor ~/µ⌦ is the mean square amplitude of the zero-point motion of the oscillator.

S is a quantity that describes the degree to which a system couples to vibrational

modes. It is also related to the Stokes shift - the di↵erence in the maxima of the

absorption and emission spectra [146],

�EStokes = (2S � 1)~!. (4.6)

This model of a vibronic system helps us to understand the profile of absorption

and emission spectra, which contain more than just the ZPL but also the phonon

sidebands. In general, the absorption and emission spectra will mirror one another

about the ZPL.
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Chapter 5

Nitrogen vacancy centres under

1550 nm illumination

5.1 Introduction

Optical tweezers are commonly built with 1064 nm Nd:YAG lasers. The benefits of

these lasers are clear: they are readily available with high output powers, narrow

linewidths, they are stable, and unlike visible lasers, they are not associated with

any strong optical absorption in biological systems that form a significant portion of

the samples of interest in the optical trapping community. However this wavelength

has been demonstrated to suppress NV� centre fluorescence and ODMR contrast

[41, 147]. Whilst the majority of the work conducted with optical traps in this thesis

was carried out using a 1064 nm laser, we realised that longer term there could be

benefits to moving to a 1550 nm fibre laser based system. Encouraging work by

Hoang et al. [39] had suggested that the impact of 1550 nm illumination on NV�

centre fluorescence was not as strong as that of 1064 nm.

This chapter reports on the impact of 1550 nm illumination on NV� centre

fluorescence intensity, ODMR contrast, and electron spin T2 times.
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Figure 5.1: The original confocal microscope design by Minsky [148]. Light from a
light source (10) is passed through a pinhole (14) and focussed onto a sample (22)
by a lens (11). The lens collects reflected light and a beamsplitter (17) diverts some
of this light to a detector (28), having passed through a pinhole (24) which provides
the spatial filtering of the image.

5.2 Methods

5.2.1 Confocal microscopy

The confocal microscope, shown in figure 5.1, was invented by Marvin Minsky in

1957. It employed a pinhole in the conjugate focal plane of a microscope to provide

optical sectioning; i.e. the use of a spatial filter to reject light that does not emanate

from the focus of the microscope, thereby enhancing the (mainly axial) resolution.

What is left is then a single pixel microscope, where either the sample or light

source must be scanned in order to form the image. The cost of the resolution and

signal-to-noise enhancement (noise being out of focus light), in comparison to the

more quotidian widefield microscope, is image acquisition speed. Nevertheless, this

invention is vital in the study of single photon emitters such as the NV� centre. A

di↵raction limited system can focus the 532 nm excitation light to a near quarter

micron spot in the transverse plane, however axially the defocused light will still

excite NV� centres throughout the sample. The pinhole rejects this out of focus

light, facilitating the study of single NV� centres.

A schematic of our confocal microscope can be found in figure 5.2. The

design borrows heavily from those of the Universität Ulm Institute for Quantum
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Figure 5.2: Schematic of the confocal microscope.

Optics, having spent a one month period of my PhD there. A 532 nm 100 mW

variable output laser (Gem, Laser Quantum) is focussed through an acousto-optic

modulator (AOM, Isomet). The zeroth order beam is dumped whilst the first order

beam is transmitted. A variable voltage source controls the di↵raction e�ciency

into the first-order, and therefore the power of the excitation beam. A pair of lenses

magnify the beam, and a 30 µm pinhole at the overlap of the foci of the lenses

cleans up the spatial mode of the beam after it is distorted by the AOM. The 532

nm beam can be combined with the beam from a 1550 nm fibre coupled laser with

a dichroic flip mirror (DFM, 950 nm shortpass). A half-wave plate (�/2) controls

the polarisation of the 532 nm excitation light. A dichroic mirror (DM, 552 nm

longpass) reflects the beam into either an oil immersion (Zeiss Plan Apochromat

100x N.A. 1.4) or air (Nikon Plan Apochromat 100x N.A. 0.95) objective, which

focus the light onto the sample. The fluorescence is collected through the same

objective, passing through the dichroic mirror (DM) into the detection arm. The

fluorescence is first filtered by a 633 nm longpass filter to reject the majority of any

NV0 emission, and a 532 nm notch filter to further suppress leakage of the laser

light. An f = 100 mm achromatic doublet focusses the fluorescence through the
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Figure 5.3: Confocal micrograph of ion implanted NV� centres in bulk diamond
(sample 4505-03).

30 µm confocal pinhole. The light is then focussed with another achromatic doublet

into two fibre-coupled avalanche photodetectors (FC-APDs, Excelitas SPCM-NIR

single photon detectors) via a 50:50 beamsplitter to form a Hanbury-Brown & Twiss

arrangement. A flip mirror is used to optionally divert the light into a spectrometer

(Andor Shamrock spectrograph and iDUS CCD).

Imaging in this system is achieved by scanning the sample with a 3-axis

piezo translation stage (Physik Instrumente P-563), which has a range of 300 µm

in each direction. Light from each point of the scan is collected by two avalanche

photodiodes (APD), which produce an electrical pulse for each photon detected,

with a dead-time of approximately 20 ns and quantum e�ciency ranging from 50-

70% over the nitrogen vacancy centre’s spectrum. These pulses are counted within

an integration window to produce an intensity with units of counts per second, or are

individually time-tagged with sub-nanosecond precision by a time correlated single

photon counting card (TCSPCC, Swabian Instruments Time Tagger) for photon

correlation measurements. The precision of the time tagging is limited by the timing

jitter of the APDs, which is approximately 500 ps - an acceptable timing resolution

for studying the NV� centre, which has an excited state lifetime of typically 12 ns

[149].
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1550 nm alignment

For experiments including 1550 nm illumination, a dichroic mirror mounted on a

flip mount (DFM, figure 5.2) was inserted into the excitation path to combine the

1550 nm with the 532 nm beam. Two checks were made to ensure the two beams

overlapped at the focus of the objective: Firstly, a fluorescent near-infrared detector

card was placed at the focus of the microscope and imaged with a camera. The 1550

nm beam was adjusted with steering mirrors to remove any displacements observed

between the 532 nm focus and the 1550 nm focus, until they were overlapping;

secondly, when imaging diamond it is possible to position the sample so that the

532 nm laser is focussed onto the diamond surface. Using the InGaAs CCD camera

of the spectrometer, it was then possible to check that the 1550 nm beam was

reflecting from the same spot. Because the Spectrometer detects light behind the

confocal pinhole, if 1550 nm can be seen on the spectrometer then both beams are

aligned to the same confocal volume. By steering the beam, the 1550 nm line on

the spectrometer was maximised to optimise the 532 nm/ 1550 nm overlap.

When initially unleashing 1550 nm onto an NV� centre, a drop in count rates

may be observed. However this should not be considered to be entirely a quenching

e↵ect, and is at least partly due to a probable thermal drift as a result of the extra

laser power. By refocussing the sample to a single NV� centre, a recovery of the

count rates will be observed, however they may not recover to their full initial count

rate when there was no 1550 nm illumination. If this is the case, then a quenching

e↵ect is present. Therefore the microscope was refocussed for every measurement

involving either the addition of 1550 nm, or a change in the power of the illumination.

Determining the amount of 1550 nm power reaching the diamond was not

trivial. Using a calibrated power meter was not possible due to the geometries

involved with such a high numerical aperture, and in any case would not constitute

an accurate reading without immersion oil between the objective and the sensor.

A transmission curve provided by the manufacturer only extends up to 1150 nm,
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Figure 5.4: Schematic of the confocal microwave bridge for single spin control. A
signal generator (Keysight N5172B) generates microwaves at 0-6 GHz. The signal
is split by a 90� hybrid coupler (MiniCircuits ZAPDQ-4-S), creating two arms with
a relative phase shift of 90�. The arms are independently switched (MiniCircuits
ZASW-2-50-DR+, x2), triggered by a pulse generator (Swabian Instruments Pulse
Streamer, not shown). The signals are then combined by a zero degree combiner
(MiniCircuits ZN2PD2-50-S+) and amplified by a 43 dB gain amplifier (MiniCir-
cuits ZHL-16W-43+). The microwaves are then passed through a 3-port circulator
(AT11B-E212-AF) to prevent reflections manipulating spins, before being connected
to the PCB sample mount (dashed area), described in figure 5.5. All input/ output
impedances and terminations are 50 ⌦.

where the transmission is quoted as 30% and the curve begins to flatten o↵1. The

manufacturer would not provide the transmission at 1550 nm, however it would be

reasonable to expect it to be between 20 and 30%. The losses before the objective

are 30%. Therefore the power at the focus is estimated to be between between 10

and 20% of the source power. Throughout this chapter, 1550 nm powers will be

quoted as powers output from the laser head.

5.2.2 Optically detected magnetic resonance

The sample was mounted on a coplanar waveguide (CPW) transmission line. The

ratio of the width of the centre strip to the width of the gaps between the centre

and ground strips is chosen to provide a characteristic impedance of approximately

50⌦ for the given substrate (FR-4 grade PCB). The CPW has a discontinuity where

the sample is placed, and is bridged over with a 20 µm diameter copper wire placed

1
Zeiss Plan Apochromat transmission curve (hyperlink).
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Figure 5.5: Photograph of the sample mounted on a coplanar waveguide. The centre
track of the coplanar waveguide is discontinued at the location of the sample. A
20 µm diameter wire bridges either side of the centre track over the diamond, and
act as an antenna for near-field microwave excitation of NV� centres within ⇡ 50 µm
of it.

over the sample. This wire acts as an antenna for near-field microwave excitation

of the NV� centres.

An external magnetic field was provided by a combination of permanent

NdFeB magnets (figure 5.6). Two circular arrays were placed around the sample

stage providing a field parallel to the optical table. The arrays were rotated whilst

monitoring the ODMR spectrum of a single NV� centre, until maximal splitting of

the ODMR lines was achieved - corresponding the field being aligned to the [100]

direction. A single z-magnet was then placed above the sample and adjusted using

a 3-axis linear translation stage mounted on a manual rotation stage. This magnet

was used to have the total magnetic field aligned to the desired [111] direction.

The alignment was verified by measuring the ODMR spectra of 20-30 NV� centres

and checking that two sets of ODMR resonance frequencies were observed: ⇡ 25%

corresponding to one of the [111] directions, and ⇡ 75% belonging to the other three

equivalent [111] directions.

Resonance frequencies were found with the continuous wave ODMR spectrum

by recording the fluorescence intensity as a function of microwave frequency. Rabi
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Figure 5.6: Photograph of the external magnets and stage area.

pulse sequences were then used to determine ⇡ pulse lengths of the NV� centres. All

experiments were conducted on the low-field (mS = 0 ! �1) transition. A Hahn

echo decay sequence was then used to measure the T2 times of the NV� centres.

Pulse sequences

All ODMR pulse sequences began with a laser initialisation pulse, and ended with

another laser read-out pulse. In practise, these are not two discrete pulses, but one

continuous pulse where the first ⇡ 300 ns is integrated for the spin state readout,

and the remainder re-initialises the spin to the mS = 0 state. The fluorescence

from the last part of the pulse is used to normalise the signal to account for laser

fluctuations over the course of an experiment.

The Rabi pulse sequence for determining ⇡ pulse lengths consists of a single

microwave pulse immediately followed by a laser readout pulse. The fluorescence is

readout as a function of pulse length, allowing the ⇡-pulse length to be determined.

The Hahn echo decay sequence for measuring T2 times was

⇡

2
 ⌧ ! ⇡  ⌧ !

⇡

2
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alternated with

⇡

2
 ⌧ ! ⇡  ⌧ !

3⇡

2

to cancel out phase errors. ⌧ was the independent variable. The final ⇡/2 pulse

di↵erentiates the ODMR Hahn echo decay sequence from the traditional sequence.

ODMR detects the projection of the spin state onto the z-axis of the Bloch sphere,

whereas normal EPR detects in the x-y plane. Therefore, ODMR requires the final

microwave readout pulse to project the spin back onto the z-axis.

5.2.3 Sample preparation

A bulk diamond was used for the work discussed in this chapter, rather than nanodi-

amond, because of the relative ease of magnetic field alignment with a single crystal

compared to randomly oriented nanocrystals. The sample used was an electronic

grade CVD plate from Element Six (internal sample name 4505-03). The sample

was implanted with 50 keV 15N, and annealed according to the recipe outlined in

reference [150], resulting in a layer of NV� centres approximately 50 nm from the

surface of the nanodiamond. The sample was cleaned in sulphuric and nitric acids

at 250 �C for 3 hours. Fluorescent impurities remaining on the sample after cleaning

were removed by a combination of acetone rinsing followed by laser bleaching2.

5.3 Results

5.3.1 Optical e↵ects of 1550 nm illumination

Figure 5.7 shows 532 nm power saturation curves with and without 1550 nm il-

lumination on a single NV� centre as confirmed by second order autocorrelation

measurements (g(2)(⌧)) shown in figure 5.8. At 250 mW output, it is found that

2
Bleaching the surface is achieved by repeatedly scanning the laser over the surface of the sample

at relatively high power. Although the user should be aware that at very high powers when using

the oil immersion objective and not scanning, the laser begins to optically trap dirt floating in the

oil and subsequently deposit it on the surface of the diamond, evidenced by very bright spots in

confocal scans at the location where the laser was previously focussed.
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Figure 5.7: Power saturation curves with 1550 nm o↵ (blue) and on (red). Solid
lines are fits of F = Fsat [P/(P + Psat)] to the data, where F is the fluorescence
intensity, P is the 532 nm power, Fsat is the saturated fluorescence intensity and
Psat is the saturation power [139]. The 1550 nm power for the on measurement was
250 mW (laser head output).

the 1550 nm light quenches the fluorescence of the NV by 7 ± 2%. The g(2)(⌧)

measurements in figure 5.8 were fit as a 3-level system with the equation [132]

g(2)(⌧) = 1� (1 + a)e�|⌧ |/⌧1 + ae�|⌧ |/⌧2 , (5.1)

where ⌧ is the time delay between the two detectors of the Hanbury-Brown & Twiss

setup (figure 5.2), and a, ⌧1, and ⌧2 are fitting parameters. ⌧1 and ⌧2 are the

lifetimes of the bright (antibunching) and dark (bunching) states, respectively. a is

the amplitude of the bunching. No e↵ect was observed on the optical lifetimes of

the NV�.

Figure 5.9 shows the fluorescence intensity as a function of 1550 nm power.

A linear relationship between the two suggests it was not possible to deliver enough

intensity of 1550 nm to the NV to saturate the quenching e↵ect, owing to the low

transmission of the microscope objective lens and probable small displacements of

the 532 nm and 1550 nm beams at the focus due to misalignments and chromatic

aberration.
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Figure 5.8: Photon autocorrelation measurements showing photon antibunching at
zero time delay. A g(2)(0) < 0.5 confirms the point of study is a single photon
emitter. g(2)(0) does not reach 0 due to background light. The lifetimes without
1550 nm illumination are 11.8±0.6 ns for the excited state lifetime, and 253±21 ns
for the dark state. With 1550 nm illumination, the lifetimes are 11.7 ± 0.7 ns and
243 ± 24 ns.
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Figure 5.9: Fluorescence intensity as a function of 1550 nm power.
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Spectroscopic investigations of the impact of 1550 nm on the NV were un-

successful due to prominent fluorescence peaks from the immersion oil close to the

zero-phonon line (ZPL) of the NV� at 630 nm, and the overlap of the Raman signal

with the NV0 ZPL (both at 575 nm).

Optical spectra of bright nanodiamonds containing approximately 500 NV

centres per 100 nm diameter nanodiamond (Adamas Nanotechnologies) were also

acquired. The nanodiamonds were dispersed on a glass coverslip using a nebuliser.

The sample was aligned to the focus of the optical dipole trap described in fig-

ure 7.1, which in this case was used as an epi-fluoresence microscope. The benefit

here is that the Raman signal is significantly smaller (in fact it was undetectable

in this system), and the brightness of the nanodiamonds meant a basic air objec-

tive would su�ce, eliminating any background from immersion oil. The significant

variability from nanodiamond to nanodiamond meant that results were not always

reproducible. Some exhibited strong suppression of the NV0 side of the spectrum

under increasing 1550 nm illumination (figure 5.10), whilst in others, the whole

spectrum was quenched. Fitting the NV0 ZPL (after baseline subtraction) of the

nanodiamond that showed strong NV0 suppression showed no dependence of the

linewidth on the 1550 nm intensity, suggesting the e↵ect was not a temperature

related broadening of the ZPL. The NV0 ZPL intensity was reduced by 70% at 540

mW at the focus.

5.3.2 Impact of 1550 nm illumination on the electron spin

1550 nm illumination had no detectable e↵ect on the continuous wave ODMR spec-

trum of the NV� centres (figure 5.11), unlike 1064 nm which has been shown to

suppress the ODMR contrast [41]. The asymmetry of the spectra in figure 5.11

could be a result of bandwidth limitations of the microwave bridge outlined in fig-

ure 5.4, especially the PCB coplanar waveguide and wire.

Rabi oscillations of the mS = 0 to mS = �1 transition at 2.68 GHz were
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Figure 5.10: Impact of 1550 nm illumination on nanodiamonds containing high
concentrations of NV centres. Strong NV0 suppression is observed as the power is
increased to 540 mW at the focus.
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Figure 5.11: Continuous wave ODMR spectra without (blue) and with (red) 250
mW 1550 nm illumination. Solid lines are fits to the data (dots). The yellow line is
the subtraction of the two sets of data, where an o↵set of 0.6 is applied for clarity.
The contrasts of the mS = 0 ! �1 transitions are 27% and 27.1% for o↵ and on,
respectively.
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Figure 5.12: Rabi oscillations between the mS = 0 and mS = �1 spin manifolds,
without (a) and with (b) 1550 nm illumination. Orange lines are fits of equation
5.2 to the data (blue).

measured with and without 1550 nm illumination (figure 5.12), and fit with

I(tp) = y0 + y1e
�(tp/TRabi

2 )sin(!tp + �), (5.2)

where tp is the pulse length, and y0 (o↵set), y1 (amplitude/ Rabi contrast), TRabi
2

(decay constant), ! (the Rabi frequency) and � (phase) are fitting parameters. The

Rabi periods are given in table 5.1. .

To investigate the impact on electron spin coherence, spin echo decay mea-

surements were acquired with and without 1550 nm illumination (figure 5.13). The

echo decay is modulated by the Larmor precession of the 13C nuclear spin bath

about the applied 7 mT magnetic field. The 13C Larmor precession frequency at 7

mT is approximately 75 kHz, which gives rise to the so called “Carbon-13 revivals”

in the echo decay every 26 µs (not every 13 µs - note that the x-axis of figure 5.13

is 2⌧ , not ⌧ , due to the two free evolution periods). The decay envelope of the data

were fit with [151]

I(⌧) = y0 + y1e
�(⌧/T2)n , (5.3)

where y0, y1, T2, and n are fitting parameters. Once again, no impact was observed

at the optical intensities that could be delivered to the sample. It may be possible
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Figure 5.13: Electron spin echo decays of NV1 (a) and NV2 (b). Blue and red data
are without and with 250 mW 1550 nm illumination. Microwaves were in resonance
with the mS = 0 ! �1 transition at fm.w. = 2.667 GHz and an external magnetic
field of 7 mT was applied. The decay envelopes are fits of equation 5.3 to the data.
T2 times are displayed in table 5.1.

that at higher intensities, an e↵ect would be observed. Table 5.1 shows the measured

T2 times of two NV� centres in the sample, with (TNIR
2 ) and without (T2) 1550 nm

illumination.

5.4 Conclusion

The impact of 1550 nm illumination on NV� centre fluorescence intensity, spectral

profile, ODMR, and electron spin T2 times was studied to test the viability of pro-

posals seeking to exploit coherent phenomena of NV� centres in optical dipole traps

[14–17, 152–154]. With the caveat that these properties could only be investigated

under a relatively low power regime - approximately an order of magnitude less than

the optical intensity an NV� centre would experience in a dipole trap - the results

Table 5.1: NV� centre T2 times with and without 250 mW 1550 nm illumination.

NV B (mT) Pm.w. (dBm) TRabi (ns) T2(µs) TNIR
2 (µs)

1 7 43 134 22 ± 5.8 20 ± 3.5
2 7 43 143 65 ± 8.4 69 ± 18

64



bode well for the proposals.

The fluorescence intensity was quenched by 7% (250 mW at laser head), and

the e↵ect had not saturated out, suggesting it would continue to diminish with in-

creasing 1550 nm power. However, a similar study using 1064 nm illumination had

found that the fluorescence intensity dropped by ⇡ 50% with 20 mW of illumination

[41]. This study has shown that the quenching at similar intensities of 1550 nm was

approximately 7%. That same study had shown a shortening of the NV� centre

optical lifetime to 2 ns, whereas no e↵ect was observed with 1550 nm. Unfortu-

nately, identification of a mechanism of the 1550 nm quenching was not possible

with analysis of the optical spectra due to background e↵ects. Optical spectra of

bright nanodiamonds occasionally showed quenching of predominantly the NV0 side

of the spectrum, without an observed temperature broadening of the ZPL. However,

the variability of results from nanodiamond to nanodiamond suggests that some of

the mechanisms are material dependent and may not be the same for the high purity

material used in this study.

1064 nm has also been observed to reduce NV� centre ODMR contrast by

approximately 7% at 20 mW of illumination. In this study, no impact was observed

at similar intensities of 1550 nm on the ODMR contrast, or on the electron spin T2

time. Provided the same applies in a higher intensity regime, 1550 nm presents a

far better wavelength relative to 1064 nm for optical dipole trapping nanodiamonds.

The T2 time is crucially important for proposals [14–17, 152–154] because it deter-

mines the amount of time spatially separated centre-of-mass states may evolve, and

therefore separate.

Wavelengths shorter than 1000 nm are generally excluded for optical trap-

ping of diamond because of either interactions with the NV� centre, or increased ab-

sorption at shorter wavelengths approaching diamond’s 5.47 eV (227 nm) bandgap.

Wavelengths longer than 1550 nm would be di�cult to integrate into existing setups,

especially ones optimised for the NV� centre emitting fluorescence at 637-800 nm.
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Given that the best lasers available in the near-infrared are Nd:YAG lasers at 1064

nm and fibre lasers at 1550 nm, the results in this chapter show that 1550 nm is the

better wavelength to proceed with for these experiments.
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Chapter 6

Fabrication and characterisation

of CVD derived nanodiamonds

containing nitrogen vacancy

centres

6.1 Introduction

Commercial nanodiamonds containing nitrogen-vacancy centres, predominantly sup-

plied by Adamas Nanotechnologies, Van Moppes, NaBond, and MicroDiamant, are

derived from high nitrogen (typically 30-150 ppm N0
S) type 1b HPHT diamond.

Nanodiamonds of this purity have been shown to burn and/ or graphitise in opti-

cal dipole traps at low vacuum due to absorption of the trapping light [42]. After

concluding that study, we decided it would be necessary to produce our own nan-

odiamonds in order to levitate nanodiamonds in higher levels of vacuum.

The three predominant ways of producing nanodiamonds are by detonation

[155], reactive ion etching (RIE) of bulk diamond [156–161], and ball milling bulk

67



diamond [162, 163]. The best method to choose is entirely dependent on the required

application. For this project, the ideal nanodiamonds would have the following

properties, in order of importance:

i. Low optical absorption. Nanodiamonds will be levitated by high optical in-
tensities in high vacuum, where cooling by gas collisions is negligible.

ii. Long T2 times. The achievable spatial separation of the superposition states
is limited by the NV� centre T2 times.

iii. A single NV� centre in every nanodiamond.

iv. Average diameter of approximately 40-100 nm. This is the size of nan-
odiamond that is straightforward to levitate in a dipole trap.

Items (i)-(iii) are not mutually exclusive. Reducing the concentration of nitrogen

in diamond has been shown to correlate with a reduction in the optical absorption

[164, 165], and the subsequent reduction in the concentration of electron spins results

in longer T2 times [160, 163]. It follows from these that less nitrogen will result in less

NV� centres in a given volume, although diamonds that are too pure will result in

a scenario where most of the nanodiamonds contain no NV� centres at all. Whilst

items (i)-(iii) are mostly, though not entirely, dependent on the parent material,

item (iv) depends on the fabrication process. For example, reactive ion etching

of diamond surfaces is capable of producing highly monodisperse diamond nano-

pillars of arbitrary size. However, the process only converts an almost negligible

part of the diamond into useful nano-pillars. This is incompatible with many of

the nanoparticle injection methods used in optomechanics, where most commonly a

solvent containing nanoparticles is sprayed into a vacuum chamber using a nebuliser

- a very simple but wasteful technique requiring large quantities of nanoparticles.

This would rule out RIE. We are then left with detonation nanodiamonds or ball

milling bulk diamond. The properties of detonation nanodiamonds are anathema

to our requirements. Only a short period of the explosion produces the pressures

and temperatures necessary for diamond formation, resulting in large quantities of

carbon in its various non-diamond forms. The diamonds that are produced are
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coated with large sp2 bonded shells and tend to be very small (. 10 nm), both of

which critically limit T2 times [155].

We are then left with ball milling. Unlike the detonation process, ball milling

can produce large quantities of nanodiamonds with a purity determined by the bulk

parent material. This chapter will outline the process of creating and characterising

nanodiamonds that, to the best of my knowledge, are the purest nanodiamonds

formed by milling, and therefore the purest nanodiamonds produced in a high yield

manner. Section 6.2 describes the process of characterising the purity of the starting

material with electron paramagnetic resonance. Section 6.3 outlines the process of

treating the bulk material and then milling it into nanodiamond. Sections 6.4, 6.5,

and 6.6 describe the characterisation of the resulting nanodiamonds with Raman

spectroscopy, electron microscopy, energy dispersive X-ray spectroscopy, and the

single NV� centres inside the nanodiamonds using confocal microscopy and ODMR.

6.2 Quantitative electron paramagnetic resonance

Twenty 7 mg CVD plates (Element Six, 145-500-0274-01) were used as the par-

ent material to form the high purity nanodiamonds. These diamonds are specified

to contain less than 1 ppm of single substitutional nitrogen (the concentration of

nitrogen is typically used as measure of diamond purity). Electron paramagnetic

resonance can be used to deduce the concentration of spins in diamond when the

spectrum of a sample is compared to the spectrum of a sample with a known con-

centration.

A Bruker EMX X-band (⇡ 9.75 GHz) spectrometer was used. The samples

were oriented with a three-axis goniometer so that the magnetic field was along

the [001] direction of the samples, such that the magnetic field was equivalent for

all four [111] directions of the N0
S defect. The microwave frequency was measured

independently with a frequency counter for the purpose of fitting data. The field
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Figure 6.1: Rapid passage EPR spectra. Blue lines are data and purple and orange
lines are fits of the reference sample and parent sample, respectively. (a) Reference
sample with a known N0

S concentration of 41 ppb. (b) One of the twenty parent
samples later milled to make nanodiamonds.

was swept over 20 mT at a centre field of 348 mT, with a sweep time of 10s to satisfy

the rapid passage condition. A modulation amplitude of 0.002 mT was used. The

microwave power was 27 dB. Data were fit using EPRsimulator [166].

The average N0
S concentration of the diamonds was 121 ppb (table 6.1). This

would result in approximately 1 single substitutional nitrogen atom in a 50 nm di-

ameter nanodiamond, or 9 in a 100 nm diameter nanodiamond. Converting up to

⇡ 50% of the nitrogens to nitrogen vacancy centres would give the desired concen-

tration to fulfil criterion (iii) in section 6.1. Of course, this assumes an isotropic

distribution of defects, which is unlikely at the nano-micrometer scale. Indeed,

step-flow growth in CVD diamonds results in so-called “terraces and risers”, with

defects such as nitrogen found in higher concentrations within the risers [167]. An

example of this e↵ect is shown in figure 6.2. It would therefore be expected that

some nanodiamonds will contain more nitrogen (and subsequently NV) than others.

Additional resonances could be observed near the central line of the N0
S spec-

trum. The signal intensity suggests this defect is fairly prevalent amongst this ma-

terial. A defect believed to be WAR2, a defect first identified at Warwick by Cann

[168], was present in low concentrations, typically with a signal intensity of up to
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Table 6.1: N0
s concentrations determined by EPR

Sample Concentration (ppb) Sample Concentration (ppb)
01 102 ± 10 11 127 ± 13
02 121 ± 12 12 103 ± 10
03 111 ± 11 13 131 ± 13
04 114 ± 11 14 101 ± 10
05 95 ± 10 15 131 ± 13
06 142 ± 14 16 108 ± 11
07 142 ± 14 17 126 ± 13
08 117 ± 12 18 122 ± 12
09 112 ± 11 19 115 ± 12
10 129 ± 13 20 162 ± 16

5% of the N0
S lines. WAR2 has a (V-CH-V)0 structure and an electron spin S = 1/2.

However a good fit could not be obtained, possibly due to the concentration of the

defect not being suitable for rapid-passage EPR, or incorrect identification.

6.3 Fabrication process

Prior to milling, the bulk diamonds were irradiated for 1 minute for a target vacancy

concentration of approximately 10 ppb1.

The diamonds were then buried in a sacrificial diamond grit and annealed

in a nitrogen atmosphere for 4 hours at 400�C, 2 hours at 800�C, and 2 hours at

1200�C. The ramp rate between the annealing stages was 3�C per minute2.

The diamonds were converted into nanodiamonds using silicon nitride ball

milling and then purified with phosphoric acid at 180�C and sodium hydroxide at

150�C to remove the milling material, followed by a 250�C acid clean in sulphuric

and nitric acids to oxygen terminate the nanodiamonds [150], followed by a 5 hour

600�C anneal in air. This work was carried out by our collaborators at Cardi↵

University.

1
The electron facility used was at Synergy Health in Swindon. Unfortunately this electron beam

is not well characterised, and so the irradiation exposure time was chosen based on conversations

with collaborators with experience of irradiating diamonds at this facility.
2
Multi-stage annealing process adapted from Chu et al. [150].
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Figure 6.2: Confocal micrograph of a CVD diamond showing the e↵ect of step-flow
growth. The surface of the diamond is at z = 20 µm. The presence of NV� centres
is indicated by brighter, yellower regions. More nitrogen is incorporated within the
risers, resulting in higher concentrations of NV� centres (bright yellow spots) within
the risers compared to the terraces. The sample is a CVD “optical grade” diamond
with an N0

S concentration of 26 ppb as measured by EPR. The diamond was not
one of the parent samples used to make the nanodiamonds discussed in this chapter,
but chosen for this figure to better illustrate the e↵ect of step-flow growth on defect
distributions.

6.4 Raman spectroscopy

0 500 1000 1500 2000

Raman Shift (cm
-1

)

0

15

30

45

60

75

C
o
u
n
ts

 (
 1

0
3
)

Figure 6.3: Representative 532 nm Raman spectrum of the nanodiamonds, with a
diamond peak at 1332 cm�1, sp2 bonded (amorphous) carbon at ⇡ 1400 cm�1. The
baseline is due to the substrate. No silicon nitride peak was found.
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The Raman sample was prepared by placing the nanodiamonds in powder form onto

an alumina substrate. Various spectra were taken from di↵erent locations around

the sample to look for any possible contaminations. No detectable silicon nitride

contamination of the sample was found, as shown in figure 6.3.

6.5 Energy dispersive X-ray spectroscopy

Figure 6.4: Scanning electron micrograph of CVD derived nanodiamonds.
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Figure 6.5: STEM image (top left) and energy dispersive X-ray spectra. Aluminium
and small carbon and silicon peaks are detector background. The copper peaks
emanate from the copper TEM grid. Silicon peaks coinciding with nitrogen peaks
are due to silicon nitride. Large carbon peaks are from diamond.

A Zeiss Gemini scanning electron microscope (SEM)/ scanning transmission elec-

tron microscope (STEM) was used to study the nanodiamonds. The nanodiamonds

were ultrasonicated and dispersed onto a copper TEM grid using a nebuliser, or

a conductive Si:P wafer in the case of the micrograph in figure 6.4. The milled

nanodiamonds were found to be highly polydisperse, with no discernible di↵erence

found under an SEM between samples that had been centrifuged, and those that

had not. Figure 6.4 also demonstrates the e�cacy of using nebulisers to disperse

nanodiamonds onto a substrate. A common technique of dispersing nanodiamonds

is to spin coat the sample onto a substrate. Not only is this technique more labori-

ous, but it also employs the use of resist, which can often contain electron spins and

charges that would adversely alter the optical stability and electron spin properties

of NV� centres inside them.

Elemental analysis of the nanodiamonds using energy dispersive X-ray spec-
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troscopy (EDX) revealed that whilst there was no SiN contamination on the nan-

odiamonds themselves, it was possible to find SiN nanoparticles within the sample.

The silicon nitride particles exhibited a more platelet like structure and in general

were smaller in size than the nanodiamonds. This is to be expected if the silicon

nitride mills faster than diamond during the ball milling process.

Silicon nitride was generally di�cult to find, however it could be identified by

its shape and lower brightness in the electron microscope. Isolated SiN nanoparticles

were not found, and were always found in large clusters or patches.

6.6 Confocal microscopy

The nanodiamonds were dispersed on a Si:P wafer using a nebuliser after ultrason-

ication. Si:P was chosen as the substrate because it exhibits a dark background,

unlike many glass substrates that showed strong background fluorescence. This is

important when studying nanodiamonds as they are in the same confocal volume

as the surface of the substrate. The confocal microscope and ODMR setup used

for this investigation are described in sections 5.2.1 and 5.2.2, respectively. An

Olympus 0.95 N.A. air immersion objective was used to avoid contamination of the

Zeiss oil immersion objective via the immersion oil. Imaging the nanodiamonds

through coverglass was attempted however the glass emitted too much background

fluorescence.
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Figure 6.6: Photon autocorrelation function of a single NV� centre inside a CVD
derived nanodiamond. Single photon emission is proven by g2(0) < 0.5.

Nanodiamonds with varying levels of brightness were found, as expected

given the polydispersity of nanoparticles made by ball milling (number of emitters

will roughly scale with the cube of the radius). Fortunately this is not too critical

for use in a dipole trap, which preferentially traps nanoparticles within a relatively

narrow range of sizes (table 7.1). Measurements were focussed on nanodiamonds

with single photon emission, as confirmed by g2(⌧) measurements (figure 6.6).

2.8 2.85 2.9 2.95

Frequency (GHz)

1

1.5

2

2.5

3

3.5

C
o

u
n

ts

10
4

Figure 6.7: Continuous-wave ODMR spectra of single NV centres in CVD derived
nanodiamonds.

For nanodiamonds ND1-ND3, the sample was positioned with the focal point

too far away from the wire. Repositioning the sample so that nanodiamonds could

be found within ⇡50 µm of the wire made ODMR possible. The average continuous
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Table 6.2: Optical lifetimes of single NV� centres in CVD derived nanodiamonds.
Lifetimes are determined from fits of the photon autocorrelation function using
equation 5.1.

ND ⌧1 (ns) ⌧2 (ns)
1 14 ± 1.2 100±9.2
2 21 ± 3.5 65±11.2
3 13 ± 1.4 57±8.2
4 22 ± 4.8 96±36
5 18 ± 2.4 143±39
6 13 ± 1.4 57±8.2
7 28 ± 4.3 108±30

wave ODMR contrast was 9%, and the average linewidth was 7 MHz. These values

are taken with no applied external field and are therefore in the Earth’s background

magnetic field. The contrast would most likely improve with a magnetic field aligned

along the [111] axis of the NV� centres. The bulk centres studied in chapter 5 had

typical ODMR contrasts of 11-15% in the Earth’s background, which improved to

24-27% with an applied magnetic field along the [111] direction.

6.7 Conclusion

Bulk CVD diamond plates were electron irradiated, annealed, and milled into nan-

odiamonds using SiN ball milling. Quantitative EPR of the samples in bulk form

revealed that the single substitutional nitrogen concentration was, on average, 121

ppb - approximately three orders of magnitude purer than the material used to make

the purest commercially available nanodiamonds.

Raman spectroscopy of the nanodiamonds did not detect any contamination

from the milling material, however SiN was found under a scanning electron trans-

mission microscope, verified with energy dispersive X-ray spectroscopy. Electron

microscopy also revealed that the sample was highly polydisperse. It was found

that the nanodiamonds containing single NV� centres were photostable, and the

centres exhibited reasonable ODMR contrast.
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Chapter 7

Optical trapping of CVD

derived nanodiamonds in

vacuum

7.1 Introduction

Optically levitated nanodiamonds containing nitrogen vacancy (NV�) center spin

defects have been proposed as probes of quantum gravity [152, 153], mesoscopic

wavefunction collapse [14–17], phonon mediated spin coupling [154], and the direct

detection of dark matter [169, 170]. Progress with nanodiamonds levitated in opti-

cal dipole traps includes the detection of NV� fluorescence [37], optically detected

magnetic resonance [38–40], and the observation of rotational vibration exceeding 1

MHz [66]. Nanodiamonds containing NV� centers have been trapped using ion traps

at atmospheric pressure [43, 44] and in vacuum [44], and a magneto-gravitational

trap has allowed nanodiamond clusters to be held below 10�2 mbar [45]. However,

the latter design requires permanent magnets for the levitation, which is incompat-

ible with the trap-and-release experiments [17, 152, 153] that reach large distance

spatial superpositions of the centre-of-mass as desired for all of the fundamental
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physics experiments mentioned above.

A key requirement of the aforementioned proposals is that the nanodiamonds

are levitated in high vacuum to prevent motional decoherence arising from gas col-

lisions. However, nanodiamond has been reported to heat up to destruction below

⇡20 mbar due to absorption of the trapping light [38, 39, 42]. Even in experiments

where the trapping potential is formed by something other than an optical field,

substantial laser induced heating has been reported at moderate pressures because

of the laser light required to excite NV� centres [46]. Our study [42] had shown that

the nanodiamonds were reaching temperatures as high as 800 K at 20 mbar, enough

to burn the nanodiamonds. Purging the vacuum chamber with dry nitrogen gas

could prevent burning, however the nanodiamonds graphitised instead. In bulk dia-

mond, the source of infrared absorption is known to be extrinsic [165, 171, 172]. The

heating in dipole traps was attributed to absorption of the trapping light by defects

and surface impurities that were prevalent in the type Ib commercial nanodiamonds

that were being used.

Heating not only eventually destroys the nanodiamond, but has been shown

to be detrimental to the fluorescence intensity of the NV� centre, which is necessary

for the optical read out of the spin state [173]. With non-levitated nanodiamonds,

reducing the electron spin concentration has been shown to drastically improve spin

coherence times of NV� centres [160, 163]. Heating is also a problem more generally

in optical trapping and not unique to nanodiamond [63, 174].

This chapter reports on levitated nanodiamonds milled from pure low ni-

trogen chemical vapour deposition (CVD) grown bulk diamond produced in the

same way as described in chapter 6 without the additional electron irradiation and

annealing step1.

1
The nanodiamonds in chapter 6 were produced later on as we realised the first batch, used in

this chapter, did not contain enough NV
�

centres, and that we would need to convert some of the

native nitrogen content into nitrogen-vacancies. We did not notice any di↵erences between the two

samples in terms of behaviour in the optical dipole trap.
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7.2 Methods

Building the optical dipole trap constituted a large part of this PhD. Anyone seeking

to replicate parts of this work must take into account certain design considerations

imposed by the need to also control and detect NV� centres:

• The trapping lens must be compatible with multiple wavelengths over a large

range: 532 nm NV excitation, fluorescence collection at ⇡600-800 nm, and

trapping, typically at 1064 nm or 1550 nm. The lens should then ideally

be apochromatic, although it should be possible to correct for the chromatic

aberration with detection arm optics and the collimation of the 532 nm light

(since the trapping laser defines the object plane). This would normally be

prohibitive in a microscope, however imaging is not necessary in this system,

and the maximum collection of the fluorescence should be prioritised instead.

• E�cient spin control of the NV� requires a wire to placed within 100 µm,

and ideally within 50 µm. For an N.A. of 0.95, the closest a 20 µm wire can

be placed to the nanoparticle without clipping the trapping beam is approxi-

mately 65 µm. This would unfortunately preclude the use of a parabolic mirror,

which is e↵ectively aberration free [27].

Further practical details and considerations are given throughout this section.
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7.2.1 Optical dipole trap

DM1

Vacuum chamber

CameraBalanced detector

1064 nm
laser PBS2

λ

Figure 7.1: Schematic of the optical dipole trap.

The optical dipole trap is shown in figure 7.1. A 1064 nm 700 mW Nd:YAG laser

(Elforlight I4-700) forms the trap, with power controlled by a half-wave plate and

polarising beam splitter that transmits horizontally polarised light. The beam is

expanded with a pair of plano-convex lenses to approximately 12 mm to slightly

overfill the back aperture of the trapping objective (Nikon CFI Plan Apochromat,

0.95 N.A., 40x magnification) housed inside a vacuum chamber. A CMOS camera

outside the vacuum chamber is focussed to the focal point of the objective to im-

age trapped nanoparticles. Unscattered light and scattered light from the trapped

nanoparticle is collimated by an aspheric lens. This beam is then split into two

by a D-shaped half-mirror, with each arm of the beam then aligned to each of the

two InGaAs photodiodes forming a balanced detector (Thorlabs PDB210C). The

fluorescence detection optics are described in section 7.2.5.

Monitoring the trap frequency below ⇡20 mbar using the interferometric

position detection described in section 7.2.2 allows the trap sti↵ness to be optimised.

Objective lenses are not generally designed for use above 800 nm, and we have
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found that perfectly collimated beams do not always produce the most stable traps.

To optimise the trap sti↵ness, the second lens of the telescope used for the beam

expansion is moved back and forth to maximise the trap frequency. We generally see

that the trap frequency increases when focussing the beam slightly, thereby reducing

the overfill resulting in more power at the focus. However, we find that the trap

frequency increases by more than the square root of the power we would expect

from ! =
p

k/m, (recalling that ktrap / P ), which would suggest it is not just a

result of the increase in power at the focus.

Vacuum is provided by a diaphragm pump and a turbo-molecular pump

(Pfei↵er HiPace 80). The pressure is monitored with a Pirani gauge (Pfei↵er PKR-

251) connected directly to the chamber. The vacuum chamber (Kimball Physics

Spherical Octagon) is CF flanged. The base pressure of the diaphragm pump is

quoted as 2.5 mbar, and the minimum fore-vacuum pressure for the turbo molecular

pump to work is 20 mbar.

A groove-grabber connects a 30 mm cage system to the walls of the vacuum

chamber. The objective lens and collection lens are mounted to this cage system.

Alignment of the trapping beam is achieved by removing the optics and checking

the centrality of the beam along the length of the cage system with an IR viewing

target. Once the objective is re-installed, the collection lens is put back in place is

and loosened enough so that it can freely move along the cage. An IR viewing card

can then be used to collimate the trapping beam exiting the trapping objective by

carefully sliding the collection lens up and down the cage. The vacuum flanges at

either end of the cage system are UHV compatible glass viewports. The entrance

viewport is anti-reflection (AR) coated for 650-1050 nm (the 1064 nm reflectance is

. 0.3%) and the exit viewport is AR coated specifically for 1064 nm. A broadband

coating is chosen for the entrance viewport to improve NV� fluorescence detection

e�ciency at 650-800 nm.

82



Figure 7.2: Photograph of the vacuum chamber.

7.2.2 Interferometric position detection

The InGaAs balanced detector in figure 7.1 monitors the x motion in an interfero-

metric scheme described in [25]. Analysis of the noise floor of the acquisition system

results in a position sensitivity of 10 pm/
p

Hz (see section 7.2.4) that allows us to

see the harmonic and Brownian dynamics of nanoparticles.

The position of the particle in an optical trap is encoded in the phase of the

scattered light. Interference of the scattered and un-scattered trapping light (or the

light of a probe beam), which serves as a reference in a homodyne detection scheme,

can be used for interferometric measurement of the particles instantaneous position,

x(t), with sensitivities of ⇡ 1 pm/
p

Hz or less [25, 27].

The scattering cross-section of a Rayleigh particle in air or vacuum (such

that the relative refractive index is equal to the absolute refractive index of the

material) is [69]

�scatt =
8

3
⇡a2s4

����
n2
� 1

n2 + 2

����
2

, (7.1)

where s = 2⇡a/� is the size parameter. Taking the properties from table 4.1, the

scattering cross section of a 50 nm radius nanodiamond is approximately 10�17 m2.

Therefore the scattered intensity is only a small proportion of the total signal at
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Figure 7.3: (a) Time trace of the position of a levitated nanodiamond at 4 mbar.
(b) A Fourier transform of the position data in (a) retrieves the spectral density
of the nanodiamond. Details of the calibration of the data from volts to meters is
provided in section 7.2.4.

the detector. Balanced detection is employed to cancel out the o↵set in the sig-

nal and any common mode noise in the laser, typically achieving a common mode

rejection ratio (CMRR) of > 20 dB. A balanced detector consists of two matched

photodiodes that outputs the amplified di↵erence of the signals from the two detec-

tors. In the case of an optical dipole trap, the di↵erence in signal amplitudes arises

from the nanoparticle motion. As the particle traverses, for example, the x-axis, a

path di↵erence from the particle to two photodiodes mounted to observe along this

direction of propagation will arise (except when the particle is located at the trap

centre). The di↵ering phases of the scattered light between these two detectors leads

to interference with the un-scattered light and therefore a di↵erence in amplitude

of the optical signal on each of the photodiodes.

An example of the signal from a balanced detector is given in figure 7.3.

The balanced detector was aligned to monitor the x displacement, however spurious

peaks appear due to small misalignments of the detection optics [175]. These peaks

are from the motion in y (!y/2⇡ ⇡ 140 kHz), and z (!z/2⇡ ⇡ 50 kHz), as well as

the harmonic of z at ⇡ 100 kHz).
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Figure 7.4: Repeated measurements of a single data point to determine experimental
error. A is determined from fitting 19 separate measurements of the PSD of a
single levitated nanodiamond at fixed pressure and trapping power. The errorbars
are the standard deviation of the fit to the data. The standard deviation of this
measurement is then added (proportionately) to all of the following measurements
of A.

7.2.3 Sample preparation and loading

The nanodiamonds were suspended in pure methanol and ultrasonicated prior to

trapping (figure 6.4). Nanoparticles are injected through a pipe connected to one of

the flanges of the vacuum chamber. A tap opens the pipe and the nanodiamonds

are sprayed in using a nebuliser, whilst slightly opening the vacuum valve to draw

the nanodiamonds through. The pipe leads to approximately 2 cm below the trap

focus.

Constancy of mass is a requirement of the power spectral density analysis,

therefore nanodiamonds were first taken to ⇡2-4 mbar using the maximum available

trapping power to remove surface contaminants [42], and then brought back to

atmospheric pressure after a minimum of one hour at vacuum. Scattered light from

the nanodiamond was monitored with a CMOS camera above the vacuum chamber

to ensure the size remained constant across all centre-of-mass measurements.
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7.2.4 Data acquisition and trap calibration

The live position signal from the balanced detector was recorded with a high reso-

lution PC oscilloscope (PicoScope 4424). The time-domain data was recorded at a

sample rate of 2 MS/s. The data was first normalised by the average voltage level of

the photodiode monitor outputs of the balanced detector, which are directly propor-

tional to the power incident on the photodiodes when operated in a regime where

the response of the detector is linear. This normalisation eliminates the e↵ects of

changing the trapping power on the signal amplitude, so that changes in the signal

amplitude are due to real physical e↵ects only. Experimental data are fitted with

the equation

Exx(!) = A
�

(!2 � !2
0)

2 + �2!2
, (7.2)

where A = 2C2kBTcm/m, �, and !0 are fitting parameters, and C is a calibration

constant with units of V/m. Once A is extracted from the fit then

C =

r
mA

2kBTcm
. (7.3)

This leaves the mass, m, as the last unknown in determining the calibration constant.

This can be assumed for some materials such as silica which is readily purchased

with exceptional monodispersity. However, nanodiamonds formed by milling are

highly polydisperse, and so the size cannot be assumed. Instead, the size can be

found from the damping rate, �, given in Eq. 2.36, which is the linewidth of the

peak in the PSD. Once the mass is known, the spectral density is calibrated from

units of V2/Hz to m2/Hz. The amplitude of the noise floor of the power spectrum

without a nanoparticle loaded therefore determines the position sensitivity.

The error on A is the sum of the standard deviation of the fit to the data,

and the standard deviation of repeated measurements on A, shown in figure 7.4.
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Figure 7.5: Image of a trapped nanoparticle scattering 532 nm light in the conjugate
focal plane.

7.2.5 Fluorescence detection

Fluorescence excitation and detection is similar to that of the confocal microscope,

with the main di↵erence being the there is no need to scan or image as the trap

bring the object into focus. A dichroic mirror (DM2, figure 7.1) in the trapping

beam path combines the 1064 nm trapping beam with a 532 nm excitation beam.

This light is provided by a 40 mW DPSS laser (Thorlabs DJ532-40). The power

is controlled by a variable neutral density filter. The beam is expanded by a pair

of plano-convex lenses. Fluorescence collected by the trapping objective is reflected

by DM2 and transmitted by DM1. The light is filtered by a 600 nm long-pass filter

and 750 nm short-pass filter and detected by a fibre-coupled spectrometer (Andor

Shamrock).

The 532 nm excitation beam is aligned by removing the optics from the

vacuum chamber and steering the beam so that they overlap over a long distance

(as long as the laboratory permits). Under-filling the objective with the green laser

helps to achieve overlap at the trap focus because the 532 nm focusses to a larger

spot. This also helps to minimise any artefacts from the beads motion by enhancing

the spatial uniformity of the 532 nm spot.

Alignment of the detection arm is achieved by illuminating a trapped nanopar-

ticle with 532 nm light and removing any filters in the detection arm. The leakage

through the dichroic is su�cient for imaging. A camera is then used to image the
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trapped nanoparticle in the conjugate focal plane to ensure the image has minimal

aberration (figure 7.5). Occasionally it is useful to use a pair of lenses here, with a

spatial filter in between (like the confocal microscope, figure 5.2) in order to reject

background light, although strict confocality is not required here as the object plane

consists of only a single sub-wavelength nanoparticle. The scattered green light can

then be used to position the fibre of the detector, whether it be a fibre coupled APD

or spectrometer.

1064 nm has been reported to completely quench NV� fluorescence in the

majority of nanodiamonds in dipole traps [38], an e↵ect also observed in our lab. The

vast majority of nanodiamonds from Adamas nanotechnologies did not fluoresce in

the trap, however a few with large scattering intensities did show fluorescence (figure

7.6). The CVD derived material was too pure to show fluorescence as the majority

of the nanodiamonds would not have contained an NV.
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Figure 7.6: NV fluorescence from a levitated nanodiamond (Adamas nanotechnolo-
gies).
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7.3 Results

7.3.1 Centre-of-mass measurements
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Figure 7.7: Scattering intensity of a trapped nanodiamond as the pressure is lowered
to 4 mbar (red triangles). The chamber is then vented to near atmospheric pressure
and evacuated again to 4 mbar (blue circles).

Figure 7.7 shows that the scattering intensity falls by 10-20% after the initial evacu-

ation due to the removal of surface contaminants, and then remains constant on the

second evacuation when measurements were made [42]. Equation 2.7 shows us that

the scattering cross-section goes as a6, and so this reduction in size only corresponds

to the removal of a few nanometers of material.

Once it is verified that the size has remained constant throughout the mea-

surements, then the only variable in the fitting parameter A = 2C2kBTcm/m is the

centre of mass temperature, Tcm. It is possible to then infer whether a trapped

nanoparticle is or is not in thermal equilibrium with its surroundings as a param-

eter such as laser power is varied [27, 63]. This parameter was measured for eight

nanodiamonds as shown in figure 7.8.

A was measured as a function of power rather than pressure in order to

take advantage of the increased peak visibility at lower pressure, reducing fitting

uncertainties. These measurements are shown in figure 7.9.
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Figure 7.8: A = 2C2kBTcm/m as the optical power is varied from approximately
130 mW to 300 mW. Solid lines are linear fits to the data, with the exception of
ND3 which was found to be heating. All of the nanodiamonds were measured at 2-4
mbar.
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Figure 7.9: Power spectral densities of ND4 at 4 mbar, measured at 135 mW, 167
mW, 200 mW, 228 mW, 263 mW, and 287 mW. The power is measured at the
entrance of the objective and multiplied by the known transmission of the objective
at 1064 nm. Data are dots and solid lines are fits. The trap frequency increases
with the square root of the power as expected (figure 7.10).
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Figure 7.10: !0 as a function of the square root of the trapping power. The red line
is a linear fit to the data (blue circles). !0 is extracted from the data in figure 7.9.
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Figure 7.11: Centre-of-mass temperatures of ND4 obtained from Tcm =
T (A4 mbar/A20 mbar). The heating rate is 24 ± 230 K/W.

A repetition of the measurements shown in figure 7.9 at a higher pressure, e.g.

20 mbar, and then the division of the values of the amplitudes i.e. A4 mbar/A20 mbar

gives the relative change in the centre-of-mass temperature. Taking Tcm at 20 mbar

to be room temperature, confirmed by measuring the power dependence of A20 mbar,

we can then retrieve the centre-of-mass temperature at 4 mbar. However, this

increases the noise in the measurement due to the introduction of the 20 mbar

measurement. The centre-of-mass temperatures for ND4 as a function of power is

given in figure 7.11.

A linear fit of the data in figure 7.11 gives a heating rate of 24 ± 230 K/W.
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Table 7.1: Nanodiamond heating rates with 95% confidence bounds.

ND Heating rate Lower bound Upper bound Radius
(K/W) (K/W) (K/W) (nm)

1 62 -320 444 19 ± 1.3
2 -12 -327 303 33 ± 8.2
4 -26 -186 134 32 ± 6.4
5 78 -187 134 18 ± 1.5
6 128 -55 311 22 ± 2.5
7 172 189 325 16 ± 1.6
8 72 -83 226 16 ± 1.8

Therefore, within the error of the measurement, at 4 mbar the centre-of-mass tem-

perature of the nanodiamond does not depend on power and the nanodiamond is

in thermal equilibrium with its surroundings. Heating rates can be deduced for

the remaining nanodiamonds shown in figure 7.8 by assuming the gradient in A is

proportional to the gradient in Tcm, and at zero optical power the nanodiamonds

are at room temperature. The rates are displayed in table 7.1 with 95% confidence

bounds. From this, the average heating rate is 68 ± 207 K/W, with all but one of

the nanodiamonds in table 7.1 having a positive lower bound heating rate.

ND3 was not included because it was found to be excessively heating. In cases

where the centre-of-mass temperature is above thermal equilibrium, it is possible

to calculate the internal temperature using equation 2.42 [63], as shown in figure

7.12. Possible explanations for the heating could include excessive surface amor-

phous carbon, highly absorptive amorphous carbon in a grain boundary between

two nanodiamonds, or other surface contaminants. The nanodiamond could have

also contained a larger quantity of absorptive defects due to spatial inhomogeneity

of defects in the bulk parent material.
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Figure 7.12: Internal temperature of ND3 as a function of trapping power, where
the internal temperature was determined from the centre-of-mass temperature by
the relation in equation 2.42.

7.3.2 Loss pressures

All of the measurements previously discussed in this chapter were made between 2

and 4 mbar because nanodiamonds were observed to be suddenly ejected from the

trap below these pressures, as observed in other studies [39, 58]. To investigate the

impact of the gas on this nanoparticle loss pressure, nanodiamonds were levitated in

vacuum after purging the chamber with helium. The nanodiamonds were trapped in

an air atmosphere, taken to a few mbar of pressure, and then brought back to higher

pressure in a helium atmosphere. This was repeated 2-3 times for each nanodiamond

trapped in helium to remove air contamination.

Figure 7.13 shows us that in general, the helium ambient did not have a

noticeable e↵ect on the loss pressure. Although, rather curiously, one nanodiamond

was trapped all the way down to 5.4 ⇥ 10�3 mbar in a helium ambient. Since this

could not be reproduced, it is possible that this 2-3 order of magnitude improvement

in the loss pressure had nothing to do with the helium and more to do with the

nanoparticle itself. It could also be possible that it was not a nanodiamond and

some other contaminant that was more stably trapped.
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Figure 7.13: Histogram of pressures at which nanodiamonds were lost in helium and
air ambients. Pressures are lower bounds of the bins.

7.3.3 Simulation of temperatures in high vacuum

Section 7.3.2 describes why it was not possible to find the minimum attainable

pressure the CVD derived nanodiamonds could reach, however the upper-bound

the absorption coe�cient of the parent material has been measured using laser

calorimetry [165, 172]. The complex index of refraction is related to the absorption

coe�cient by [69]

n00 =
�↵

4⇡
. (7.4)

It is possible to predict an attainable pressure by modelling the heating due to

the absorption of trapping light, and cooling due to gas collisions and blackbody

radiation. Equation 7.5 models these mechanisms for a sub-wavelength sphere with

a known complex index of refraction. The rate of heating of the sphere can be
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expressed as [57, 69, 176]
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where q is the heat, cv is the volumetric heat capacity of the sphere, V is the sphere

volume, I is the trapping laser intensity, k = 2⇡/�, ✏ = ✏0 + i✏00 is the complex

permittivity, where ✏0 is equal to 5.8 for diamond and 2 for silica, and ✏00 = (�↵/4⇡)2

where ↵ is the absorption coe�cient with units of m�1. ↵g is a phenomenological

thermal accommodation coe�cient (taken as 1 for diamond, and 0.777 for silica [63]),

a is the nanoparticle radius, v̄ =
p

8kBT0/⇡mgas ⇡ 500 ms�1 is the mean gas speed,

T0 = 298 K is the gas temperature, mgas ⇡ 4⇥10�26 kg is the mass of a gas molecule,

p is the gas pressure, � = 7/5 is the gas specific heat ratio, ⇣(5) = 1.04 is the Riemann

zeta function, and ~ is the reduced Planck’s constant. Im ✏bb�1
✏bb+2 ⇡ 0.1 is assumed for

silica [57, 177], and ⇡ 10�3 for diamond [144, 178], approximately corresponding to

the average permittivities around blackbody wavelengths at T ⇡ 1000 K.

Equation 7.5 was numerically solved to find the steady state temperatures as

a function of pressure for 25 nm radius nanodiamonds (the average size of the nan-

odiamonds used in this study) and silica using the upper-bounds of the absorption

coe�cients measured in [165, 172] by laser calorimetry. Assuming a linear rela-

tionship between defect concentration and absorption coe�cient [179], we may also

model diamonds for which the absorption coe�cient is below the detection limit

of laser calorimetry (0.001 cm�1 for a 1 mm thick sample [165]) can also be mod-

elled. Figure 7.14 shows the predicted temperature as a function of pressure for
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Figure 7.14: Simulated upper-bounds of temperature as a function of pressure for
a = 25 nm nanoparticles and trapping laser intensity of 60 GW/m2. The absorption
coe�cient of the Adamas Nanotechnologies nanodiamonds (dash-dot) used in [37–
39, 42, 43, 45, 66] has been set to 30 cm�1 based on 150 ppm N0

S. Standard grade
(solid) corresponds to the bulk diamond grade used to make the nanodiamonds used
in this study, with an upper-bound absorption coe�cient 0.03 cm�1. Low absorption
grade (dashed) has 0.003 cm�1 [165, 172]. Electronic grade (dots) has a predicted
absorption coe�cient of 4.5⇥10�5 cm�1. The red line is a simulation of high purity
silica with an absorption coe�cient of 0.11 cm�1 [177].

nanodiamonds of various absorption coe�cients.

With the exception of the commercial nanodiamonds used in [37–40, 42–

46, 66], no significant heating is expected above 1 mbar, as confirmed by our ex-

perimental results [42]. Above approximately 0.1 mbar, the number of gas molecule

collisions is large enough to dissipate the excess heat generated by absorption of the

trapping laser. At approximately 10�2 to 10�3 mbar, blackbody radiation becomes

the dominant heat dissipation mechanism and the temperature stabilises at 1400 K,

where cooling due to gas molecules is negligible. Therefore, the final temperature

becomes independent of the size of the nanoparticle. At atmospheric pressure, nan-

odiamond graphitises between 940 K and 1070 K [180, 181]. Using this restraint,

low absorption grade (850 K) or electronic grade (400 K) material might be required

to reach the pressures required for proposals [14–17, 152–154, 169].

However, in reality the final temperatures are likely to be lower than those

predicted by equation 7.5, as the upper-bounds of the absorption coe�cients were
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used. It is also likely that the absorption will di↵er at the nanoscale compared to

the bulk. For a particle radius of 25 nm and N0
s concentration of 100-160 ppb, there

are likely to only be one or two N0
s defects per nanodiamond. In this regime, the

surface is likely to become a more significant source of absorption than the bulk pu-

rity, unlike in commercial HPHT nanodiamonds where the heating is dominated by

defect induced absorption. High vacuum is commonly used in high-temperature an-

nealing of diamond to prevent the onset of graphitisation, which may further extend

the level of attainable vacuum [150]. Nanodiamonds are also non-spherical - they

have a higher surface area-to-volume ratio relative to a sphere which would assist

gas cooling. It should also be noted that a previous study has shown that the spin

coherence lifetime of the NV� centre (T ⇤
2 ) can be over 1 µs even for temperatures

above 600 K [173]. Furthermore, the gas cooling term in 7.5 is known to underes-

timate heat dissipation when the nanoparticle is far from thermal equilibrium with

the surrounding medium [176].

Alternative calculations for the dissipation of heat through blackbody radi-

ation do predict lower final temperatures. The blackbody cooling term in equation

7.5 is replaced with [19]

�qbb
�t

=
4

⇡
ka3e

� ~⌫
kBT

✓
Im

✏bb � 1

✏bb + 2

◆
, (7.6)

where ⌫ = 2⇡c/�. Figure 7.14 is reproduced in figure 7.15 using this alternative

expression, which predicts the final upper-bound temperature to be 900 K.

Although we were unable to measure the temperature at the loss pressure, the

simulation shows that heating would be limited to < 10 K above room temperature

at 1 mbar (using the highest intensities and particle radius), which would suggest

a di↵erent loss mechanism to the one proposed in [58] involving radiometric forces

arising from temperature gradients across 3 µm silica spheres. The large thermal

conductivity of diamond also would likely preclude the presence of temperature
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Figure 7.15: Simulated upper-bound temperatures using an alternative model for
blackbody radiation. The blackbody cooling term in equation 7.5 is replaced with
7.6, and all other parameters are unchanged from figure 7.14.

gradients. Rather, the smaller damping coe�cient at lower pressure, combined with

nonconservative scattering forces [182, 183], also proposed in [58], and shot-noise

from the gas, are the more likely causes in this trapping regime. Another issue

could be the non-sphericity of the nanoparticle. Additional motional degrees of

freedom appear for non-spherical particles in optical dipole traps [66], which may

cause trapping instability leading pressure dependent particle loss if these degrees

of freedom are not cooled.

7.3.4 Degradation

Approximately 1 year after receiving the milled diamonds, we found that the nanodi-

amonds began to shrink significantly below 1 mbar, when previously they did not.

The nanodiamonds were observed to shrink fairly rapidly before being suddenly

ejected. It was not clear if it was the diamond itself that was burning or graphi-

tising, or whether the nanoparticles accumulate surface contaminants over time. A

large shell of surface contaminants would likely burn o↵ in the trap as we see in

figure 7.7, however if the remaining nanoparticle is too small after the contaminants

have been removed, the trap depth will be too shallow and the nanoparticle will be
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ejected (figure 2.2).

Re-annealing the nanodiamonds in air at 500�C for 3 hours did not stop

the problem, nor did another acid clean, although tests are underway to determine

if any improvement can be seen between those that have and have not been re-

acid cleaned. It is worth mentioning that commercial nanodiamonds from Adamas

Nanotechnologies always displayed this behaviour even when newly supplied. A

newly milled sample of carbon-12 enriched ⇡1 ppm N0
S polycrystalline material did

sometimes survive higher vacuum even though it is expected that the absorption

would be higher for these nanodiamonds compared to the sample outlined in this

chapter. This would all point to a surface degradation over time, however this is a

subject of on-going investigation.

7.4 Conclusion

Nanodiamonds derived from pure CVD starting material were levitated in an optical

trap using trapping intensities exceeding 750 GW/m2. By measuring the centre-of-

mass temperature (or a fitting parameter consisting of the centre-of-mass temper-

ature as the only variable, confirmed by measuring scattering intensities), it was

found that the majority of the nanodiamonds reported on in this chapter showed

no heating within the error of the measurement. This is in contrast to previous

work in levitated optomechanics using commercially available nanodiamonds where

substantial heating and even burning and graphitisation has been observed in mod-

erate vacuum [37–39, 42, 43, 45, 66]. This work has shown that the dominant source

of absorption in commercially available nanodiamonds was the bulk purity, rather

than the surface. However, these purer nanodiamonds are only likely to contain

approximately 1-5 single substitutional nitrogen atoms per nanodiamond. The sur-

face absorption could be the most significant source of heating at higher levels of

vacuum, which would be consistent with the degradation e↵ects discussed in section
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7.3.4. Preventing or un-doing the nanodiamond degradation will be key to increas-

ing the utility of the nanodiamonds not only in optical levitation experiments, but

also in other applications such as sensing, where the surface has a significant e↵ect

on the properties of NV� centres inside them. Preventative methods could include

storing the nanodiamonds under vacuum or dry ambients. Regular acid and/ or

heat treatments could also be necessary.

Trapping instabilities at moderate vacuum are now the limiting factor in the

attainable pressure nanodiamonds can reach in optical dipole traps, rather than

temperature as previously observed with commercial material [42].

7.4.1 Future outlook

Feedback cooling of the centre-of-mass motion should negate these trapping insta-

bilities and allow nanodiamond to be trapped in higher levels of vacuum [25, 26, 58].

Towards this, a new dipole trap has been constructed based on a 1550 nm fibre laser

and erbium doped fibre amplifier (EDFA). The current state of this system is out-

lined in figure 7.16. The old 1064 nm laser is used as a probe beam in this system

for position detection. Therefore the main beam can be modulated for feedback

cooling, without introducing a modulation onto the detected position signal.

We decided to replace the objective lens previously used throughout this

chapter with an aspheric lens, which o↵ers far higher transmission at 1550 nm. The

simplicity of a single lens also eases the alignment, and we have achieved more stable

trapping with this lens compared to objectives. Co-alignment of the 532 nm and 1064

nm beams to the 1550 nm beams is made easier by slightly under-filling the trapping

lens, which creates larger focal spots which enhances the probability of overlap,

and also lessens the intensity gradient the trapped nanodiamond experiences. The

scattered 532 nm and 1064 nm light can be maximised by monitoring the scattered

light with a camera. Good alignment is evidenced when the probe beam is turned

up to high power and can hold a nanoparticle when blocking the main beam and
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vice versa.
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Figure 7.16: Current status of the 1550 nm based trap, with a 1064 nm probe
beam. The main trap is formed with a 1550 nm fibre laser (Rio Orion, 10 mW),
and amplified by a 3 W EDFA (BkTel). Amplitude modulation is implemented
with an AOM, with the zeroth order beam used for trapping. A pinhole at the
focus of a telescope cleans up the spatial mode of the beam. The main trapping
beam is combined with a 1064 nm probe beam with a dichroic mirror (DM1). The
trapping lens is an 0.77 N.A. aspheric lens (Edmunds Optics). After both 1064
nm and 1550 nm scattered light is collected by the collection lens in the vacuum
chamber, a di↵raction grating (DG) separates the two beams to detect the probe
beam only, which o↵ers greater rejection than a filter. The reference for the Z
balanced detector is generated by pinching o↵ part of the 1064 nm beam using a
half-wave plate and polarising beamsplitter before it enters the trap. Fluorescence
excitation of NV� centres is achieved by combining the light of a 532 nm beam
with the other two beams with another dichroic mirror (DM2). DM3 separates the
excitation beam with the collected fluorescence, for detection with a fibre-coupled
single photon detector (FC-APD, Excelitas).
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Chapter 8

Conclusion

The research presented in this thesis was undertaken to explore the experimental

viability of theoretical proposals to use nanodiamonds containing nitrogen vacancy

centres in matter-wave interferometry experiments [14–17]. Major impediments have

been reported: 1064 nm, a common choice for dipole traps, heavily quenches NV�

fluorescence and reduces ODMR contrast [41]. Commercially available nanodia-

monds were reported to burn and/ or graphitise in moderate vacuum (1-10 mbar)

[42], when a pressure of approximately 10�6 mbar is required to test fundamental

phenomena in quantum physics.

8.1 Summary of research findings

A confocal microscope was constructed to study single NV� centres (section 5.2.1).

Illumination with 1550 nm was found to quench the fluorescence by 7% using an

estimated 20-40 mW at the NV�. This level of quenching is far more favourable

compared to similar levels of illumination using 1064 nm reported in a previous study

[41]. No e↵ect was found on the electron spin. Continuous wave measurements were

made with and without 1550 nm illumination without any impact on the ODMR

contrast, and spin echo decay measurements revealed no increase or reduction in
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the NV� centre T2 times.

The ability to readout the electron spin is of course a necessity for future

experiments. 1550 nm o↵ers a clear benefit here over 1064 nm. Whilst T2 times

have not been reported for NV� centres under 1064 nm illumination, the fact that

1550 nm preserves the T2 at moderate illumination powers of approximately one

order of magnitude less than what would be used in a dipole trap is encouraging.

One area for further investigation would be to compare the e↵ects of 1550

nm illumination with that of other wavelengths in the near infra-red spectrum.

Practical considerations generally preclude the use of lasers with wavelengths longer

than 1550 nm. As already mentioned, the impact of 1064 nm on T2 times has not yet

been measured. Another commonly available telecommunications wavelength that

has not been investigated is 1310 nm. Unlike 1064 nm, this wavelength is further

away from the NV� 1A!1 E transition.

To prevent excessive heating in dipole traps, high purity nanodiamonds de-

rived from type IIa CVD diamonds were developed. The characterisation of these

is reported in chapter 6, and their characterisation in dipole traps in chapter 7.

The bulk starting material was first characterised with quantitative EPR.

The concentration of single substitutional nitrogen was found to be 121 ppb, ap-

proximately three orders of magnitude purer than the type 1b material used to

make commercial nanodiamonds. The bulk diamonds were electron irradiated and

annealed to convert some of the N0
S into NV�. The nanodiamonds were created

using silicon nitride ball milling and purified with acids by our collaborators at

Cardi↵ University. Contamination by the milling material could not be detected

with Raman spectroscopy, however energy dispersive X-ray spectroscopy did reveal

some silicon nitride content. Using a confocal microscope, single NV� centres in the

nanodiamonds were found to be photostable and had an average ODMR contrast of

9% with no applied magnetic field - only a few percent below the bulk NV� centres

discussed in chapter 5.
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These initial results open the possibility to use these nanodiamonds in other

applications such as quantum sensing. Bulk centres will in general perform better

than those in nanodiamonds. However, nanodiamonds are desired for some sensing

applications in order to achieve close proximity. In order to to determine the utility

of the nanodiamonds in these types of experiments, T2 times should be measured.

Finally, CVD derived nanodiamonds were levitated in our optical dipole trap.

The nanodiamonds did not show any significant heating at pressures of 2-4 mbar,

where commercial nanodiamonds were found to burn [42]. Below 2 mbar, nanodia-

monds were suddenly ejected from the trap. Feedback cooling of the centre-of-mass

motion is reported to solve the issue of pumping through intermediate vacuum and

could solve this problem [58]. Whilst the ability of the nanodiamonds to withstand

high vacuum could not be verified for this very reason, reducing the impurity con-

tent of nanodiamonds has been shown to drastically reduce heating, and should

the current nanodiamonds described in this thesis not survive high vacuum, purer

diamonds are readily available [92]. Nanodiamonds were found to degrade approx-

imately one year after milling, suggesting an accumulation of surface contaminants

over time. Determining the form of degradation and preventing it is a topic of

on-going research.

8.2 Concluding remarks

Early studies of levitated nanodiamonds alluded to severe issues concerning burning

[42] and fluorescence quenching [41]. The issue of heating threatened to prevent

any optical trapping of diamond in high vacuum. The results presented in this

thesis on CVD derived nanodiamonds suggest this will be possible, either using the

fabrication recipe outlined in chapter 6, or using even purer starting material.

1550 nm is demonstrated to be a more suitable wavelength than 1064 nm

for optical trapping of nanodiamonds, which has been the wavelength of choice for
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many of the studies published so far [37, 38]. The absorption coe�cient at 1550

nm of the CVD starting material is approximately half that of that at 1064 nm and

should also help with heating [165].

The findings reported in this thesis therefore demonstrate that proposals for

levitated nanodiamonds in high vacuum are feasible, by providing two important

solutions: a high-yield method to produce high purity nanodiamonds, and a rec-

ommendation to move away from optical dipole trapping with 1064 nm lasers to

1550 nm. Further research is required to verify that NV� centre spins still remain

una↵ected at high 1550 nm optical intensities, and nanodiamonds must be levitated

in high vacuum in order to determine the the standard of purity required of the

starting material.
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Appendix A

Derivation of !1

The position of the peak in the power spectral density can be found by maximising
Eq. 2.35 and re-arranging for !.

dSxx(!)

d!
= �

4kBTcm

m

�!(�2!2
0 + �2 + 2!2)

(!4 � 2!2!2
0 + �2!2 + !4)2

= 0, (A.1)

which simplifies to
�!(�2!2

0 + �2 + 2!2) = 0, (A.2)

2!2 = 2!2
0 � �

2, (A.3)

therefore Sxx(!) is maximised when

! = !1 =

r
!2
0 �

�2

2
. (A.4)
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