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chapter 9

Analysing Multi-person Timing in Music and 
Movement: Event Based Methods

Mark T. Elliott, Dominic Ward, Ryan Stables, Dagmar Fraser,  
Nori Jacoby and Alan M. Wing

1	 Introduction

Accurate timing of movement in the hundreds of milliseconds range is a hall-
mark of human activities such as music and dance. Its study requires accu-
rate measurement of the times of events (often called responses) based on the 
movement or acoustic record. This chapter provides a comprehensive over-
view of methods developed to capture, process, analyse, and model individual 
and group timing.

In a classic paper on sensorimotor timing, Stevens (1886) used a combina-
tion of paced and unpaced tapping over a range of tempos to describe what 
we would now recognise as characteristic attributes of movement timing. Par-
ticipants tapped with a metronome set to various tempo values for a number 
of repetitions and then tapped on their own to reproduce the metronome 
tempo as accurately as possible. Stevens presented his results graphically as 
time series of intervals between successive responses. He showed that timing 
is highly adjustable but is subject to variability in produced intervals, which 
increases as the target interval lengthens. Moreover, he observed that the vari-
ability is not purely random but has a characteristic patterning. This includes 
distinct tendencies to short-term alternation between shorter and longer in-
tervals (at faster tempos) and longer term drift around the target interval (at 
slower tempos).

Many papers (e.g., see Repp & Su (2013), for review) subsequent to Stevens 
(1886) have examined paced and unpaced finger tapping. The goals of the re-
search include characterising influences on timing accuracy in terms of mean 
and variability and also understanding the nature of patterns in the variation. 
Although the majority of these studies has focused on individual performance, 
recently there has been growing interest in the relation between the timing 
of multiple individuals attempting to synchronise their joint performance, 
with the goal of achieving coherent ensemble timing (see Elliott, Chua, &  
Wing, 2016, for a review of this emerging area in the context of mathematical 
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models). Where previously the theoretical interest focused on understanding 
component sources of variance in the individual (i.e., timer, memory, atten-
tion, input, and output delays), the new paradigms raise questions about forms 
of timing linkage, including feedback correction and anticipatory adjustments, 
that keep participants moving together.

Stevens (1886) collected data using Morse code signal set transmission key 
presses (see next section for further detail). More recently movement timing 
study methods have ranged from switching devices such as computer keyboard 
keys, push button switches, resistive and capacitive contact switches to sen-
sors such as force transducers and motion tracking cameras capable of char-
acterising the dynamics as well as the timing of the movements. A subset of 
sensorimotor timing studies often involves research around timing in musical 
production. This research can also involve a variety of input devices, each with 
a unique set of methodological constraints. When using acoustic instruments, 
for example, additional data capture devices need to be considered, along with 
methods of extracting onset locations from the musical signal. Similarly, when 
using Musical Instrument Digital Interface (midi; a universal interface to a 
wide range of electronic musical instruments) devices, variability and latency 
in the system can cause issues when relaying the device’s output to the partici-
pant in real-time.

Studies of timing in western music have largely focussed on the use of a pia-
no (Repp 1995; Shafer, 1984), largely due to the simple relation between move-
ment, note sounded, and the possibility of mechanical measurement. Similarly, 
these experiments are confluent with finger-tapping studies given that expert 
pianists tend to exhibit particularly strong timing capabilities (Keele et al., 1985; 
Loehr & Palmer, 2007). The piano also supports research into a range of syn-
chronisation types such as two players following each other (Goebl & Palmer, 
2009), a single player following an external stimulus (Goebl & Palmer, 2008), 
and a single player using both hands (Goebl et al., 2010). With both upright 
and grand pianos, sensors or microphones can be placed inside the instrument 
(Palmer & Brown 1991; Shafer, 1984) in order to record the moments at which the 
hammer strikes the string. More recently, electric pianos tend to be more widely 
used (Goebl & Palmer, 2008; Henning, 2014) due to their ability to output midi 
messages and to modify musical parameters such as playback time and timbre.

Other research has considered a broad spectrum of instrument types, each 
bringing challenges in terms of capturing the acoustics and defining move-
ment timing events. De Poli et al. (1998) analysed expressivity in solo violin 
performances, whereas Rasch (1979), Wing et al. (2014), and Stables et al. (2014) 
present models for interpersonal synchronisation in small string ensembles, 
namely trios and quartets. Similarly, Ellis (1991) and Friberg and Sundström 
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(2002) investigate swing ratios in solo saxophone and percussion performanc-
es respectively.

This chapter is structured in five main sections, as follows. We start with 
a review of data capture methods, working, in turn, through a low cost sys-
tem to research simple tapping, complex movements, use of video, inertial 
measurement units, and dedicated sensorimotor synchronisation software. 
This is followed by a section on music performance, which includes topics 
on the selection of music materials, sound recording, and system latency. The 
identification of events in the data stream can be challenging and this topic 
is treated in the next section, first for movement then for music. Finally, we 
cover methods of analysis, including alignment of the channels, computation 
of between channel asynchrony errors and modelling of the data set.

2	 Data Capture

2.1	 Capturing Movement
Early studies into sensorimotor synchronisation focused on a very simple mo-
tor action in the form of a finger tap (Repp, 2005). Not only is this a simple ac-
tion for most participants to perform, it is also an easy event to record. When 
people produce a finger tap action, there is an asymmetry in the flexion and ex-
tension segments of the movement (Balasubramaniam, Wing, & Daffertshofer, 
2004). This results in a short impact time of the finger onto the surface, gener-
ating strong tactile feedback (Balasubramaniam et al., 2004; Elliott, Welchman, 
& Wing, 2009a) that participants align with the external beat. By recording 
the impact time of the finger, researchers subsequently have an accurate event 
onset time of each finger tap. This is how one of the earliest known sensorimo-
tor synchronisation experiment was implemented (Stevens, 1886). Participants 
tapped their finger on a Morse code key with the electrical contact recorded 
on a smoked drum kymograph. On a kymograph the timing is measured from 
distances between pulse marks on the surface of a drum rotating at constant 
velocity.

The modern equivalent of Stevens’ (1886) approach is to use some form of 
touch sensor connected to a computer. The times between movements are de-
termined by reference to distinct events registered by the sensor. Force sensi-
tive resistor (fsr) materials are particularly useful for registering finger taps 
(e.g., Elliott, Wing, & Welchman, 2010; Schultz & Vugt, 2015). In addition to be-
ing very low cost, the sensors come in the form of a thin membrane, meaning 
that there is no ‘travel’ when the finger hits the surface (as might be the case if 
one used a button press or keyboard to record events).
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Similar devices include piezo-electric sensors and the more recent capaci-
tive sensing technology (as used on modern touch-screens). While low cost 
and practical for recording the impulse response of the tap, the aforemen-
tioned sensors tend not to be sufficiently linear for measuring the amplitude 
or shape of the signal. In scenarios where these parameters are of interest, a 
force sensor (e.g., ati Industrial Automation; http://www.ati-ia.com/) can be 
used (Elliott et al., 2009a).

Interfacing these sensors to a pc for recording responses usually requires a 
data acquisition card (daq). These devices capture the analogue signal from 
the sensor and convert them into a digital value for import into Matlab or simi-
lar software. daqs, such as those from National Instruments, Measurement 
Computing and Labjack have a wide price range, depending on number of 
channels, maximum sampling rate and the number of functions the device 
has. A key advantage is that the devices can be used to output the external cues 
and also trigger any other external devices, so all data is both output and re-
corded with a common time base, i.e., synchronised. Time resolution depends 
on the sampling rate, but it is possible to achieve very reliable and consistent 
event timings from these devices.

The close relationship of sensorimotor synchronisation research to musi-
cal contexts has meant that often midi equipment has been used to record 
participant responses. In particular, drum-pads have been used as an effective 
tapping sensor (Manning & Schutz, 2013; Pecenka & Keller, 2011), providing a 
large surface area and no movement in the surface itself. Keyboards have also 
been used (Goebl & Palmer, 2008; Keller, Knoblich, & Repp, 2007), however 
the time difference between the finger hitting the key and the key travelling 
down to hit the sensor adds an uncertainty as to when the event onset actually 
occurred. There is also a level of time lag and variability in midi communica-
tions between devices and the computer software. This has been identified as 
a small but not insignificant amount of delay (Repp & Keller, 2008; Schultz & 
Vugt, 2015) and, hence, should be characterised and accounted for when using 
this interface for timing experiments.

2.2	 Example of a Simple, Low Cost System for Recording Finger Taps 
to Auditory Cues

Both the sensors and hardware for collecting data from tapping studies can 
range from very high-cost (e.g., force sensors with a high specification data 
acquisition card) to low-cost (simple impulse detecting sensor, with sound 
card input). Figure 9.1 provides an example of a simple solution that can be 
applied in fieldwork to record one or more participants performing a tapping 
experiment.

http://www.ati-ia.com/
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One or more sensors are connected to a sound card. Sensors can be as simple 
as a wooden box or a soft pad in which earbuds are installed. These may be 
used as very cheap but low-sensitivity microphones that are well suited to  
record a direct touch on the surface to which they are attached, and are insen-
sitive to external noises. This setup is able to detect even a light touch, if the 
soundcard is set to a high gain.

An external sound card is connected to a computer via usb. The computer 
sends an auditory stimulus (such as a metronome) through Digital Audio Work-
station (daw) software such as Cubase or through designated software such as 
MatTAP (Elliott, Welchman, & Wing, 2009b; see Section 2.6). A loopback cable 
is installed so that stimulus and output are recorded with zero latency, and 
the responses and loopback stimulus are recorded on two or more separate 
channels. One or more high-quality headsets are connected to an audio splitter 
so that participants can hear the stimulus. If participants synchronise only to 
one another, the headsets can be removed and sensors can be made of hard 
resonating material such as a wooden box.

2.3	 Complex Movements
It is clear why finger tapping became the de facto task for early sensorimo-
tor synchronisation experiments: simple equipment setups can be used 

Figure 9.1	 Example of a simple, low-cost experimental setup for capturing finger tap  
responses from group timing experiments.
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to accurately measure the event onsets for timing analysis. More recently, 
researchers have been interested in increasingly complex movements. For 
larger groups performing more complex movement interactions, data involv-
ing temporal and spatial dimensions must be recorded. This could be upper 
limb movements such as choreographed ballet movements (Honisch, Roach, & 
Wing, 2009), or lower limb movements such as walking or bouncing (Georgiou, 
Racic, Brownjohn, & Elliot, 2015). There are two ways of typically capturing 
these movements. The first is using marker-based motion capture and the  
second is using inertial measurement units (imu). Here, we provide some rec-
ommendations in their use in the context of movement timing experiments.

2.4	 Video Motion Capture
3D motion capture systems such as Vicon (Vicon Motion Systems Ltd, uk) and 
Qualisys (Qualisys ab, Sweden) are considered to provide the gold standard 
in terms of accuracy. Movements can typically be captured with an error of 
<0.5mm at hundreds of samples per second. On the negative side, systems 
tend to require calibration over a specified capture volume at the beginning 
of each session and reflective markers must be accurately placed on the bony 
landmarks of the participant’s body. Furthermore, post-processing can be a 
tedious task in terms of labelling markers for each trial, such that trajectories 
can be identified for analysis. While most software packages associated with 
these systems have an ‘auto-label’ feature to identify markers, this is liable to 
fail. Labelling can be become particularly complex for multi-person studies. At 
the start of an analysis, the researcher is presented with a cloud of unlabelled 
markers in 3D space. Markers in successive frames must be linked to define 
trajectories, which can be identified with body segments of each participant. 
To help identify individual participants in a group it is often advantageous to 
add extra markers (not used for tracking) somewhere on the body that is a 
unique formation for each group member. For example, marking out the cor-
ners of a small square on the back of Participant A, versus the corners of a 
triangle on Participant B can help identify which person is which during label-
ling. There are ‘active marker’ systems, where the marker itself is electronic 
and hence can be pre-assigned a label or id. An example of this type of system 
is the Polhemus Liberty (Polhemus, usa), which uses active markers in a mag-
netic field to track motion.

For event based timing analysis, one is often only interested in the temporal 
aspects, even for complex movements. Therefore, a small number of markers 
can be used, rather than a full body marker set (the Vicon Plug-In-Gait marker 
set is in the region of 40 markers per person). It is important to choose a mark-
er location that will provide the primary trajectory for analysis. This might be 
a marker on the finger for upper limb movements, or the heel for lower limb 
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movements. However, the marker must always be in good view of the cam-
eras, minimising the chances of occlusions. Additional markers can be applied 
to other areas of the same limb or body segment, both to aid identification 
and also as a secondary trajectory source in case there are problems with the 
primary trajectory data (a consistent trajectory location across participants 
should be maintained however).

Trajectories for each marker can usually be output from the software as 
a text file, with each marker having an individual X, Y, and Z coordinate at 
each time sample. We provide example code for parsing these text files, using 
a representative output from Vicon Nexus software (see this book’s GitHub 
repository).

2.5	 Inertial Measurement Units
imus consist of two or three sensing devices. Two-sensor devices consist of 
an accelerometer, that measures acceleration (in units of m/s2 or g) and a 
gyroscope that measures rate of angular rotation (in units of radians/second 
or degrees/second). Three sensor devices have an additional magnetometer in-
cluded (units of Tesla or Gauss). Recent devices output values from each sensor 
in 3 axes. imus use a local coordinate system, so it is not easily possible to infer 
the location of a device in global coordinates. That is, if there were two devices 
attached to a person, it would not be possible to directly calculate the relative 
distance between those devices (unless the starting positions were known). 
Additional data fusion algorithms allow the advantages of three sensors to be 
combined such that accurate motion analysis can be achieved. Without these 
algorithms, trying to infer the positional trajectory of movement from acceler-
ometer data alone (by integrating the data twice) will result in drift and inac-
curacy from the true position. However, for measuring timing of movements 
(rather than position) the associated drift is not such a big issue as the timing 
in the data remains intact. With some initial alignment of the data with video, 
it is possible to identify the peaks and troughs in the acceleration data that re-
late to key parts of the movement cycle (e.g., walking). Alternatively, integrat-
ing to velocity can produce a clean, and easier to interpret signal, by applying 
both low and high-pass filters to the data.

An imu’s main advantage is that the participant is free to move around 
without restriction. There is no capture volume as with video motion capture 
and occlusions are not an issue due to the sensors being within the device. 
Participants ‘wear’ one or more of the devices on the body and are then free to 
move naturally. This is particularly useful for gait analysis: in a video motion 
capture gait lab, only a small number of gait cycles can be recorded within the 
capture volume. With imus, the participant can complete a long walk or even 
be recorded over a full day, dependent only on the on-board memory of the 
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device. A number of imu companies have seen the potential for this and devel-
oped software alongside their devices that includes the algorithms to do a full 
or partial gait analysis. Current examples include apdm (apdm Inc., us; www 
.apdm.com), XSens (XSens Technologies B.V., nl; www.xsens.com), GaitSmart 
(etb Ltd; www.gaitsmart.com), Shimmer3 (Shimmer Sensing, www.shimmer 
sensing.com), and bts (bts S.p.A, it; www.btsbioengineering.com). All but 
bts use multiple devices worn on the body. The actual gait parameters pro-
vided vary amongst the software packages and many still struggle to provide 
accurate step length measures due to the drift issues mentioned above.

A particularly useful feature of the apdm and Shimmer devices is that they 
are wireless, time-synchronised devices. They come as a set of imus to be fit-
ted on different body segments of a single individual. However, the software 
also allows raw data access such that each device could instead be fitted to 
separate individuals, with their activity recorded wirelessly. Given the result-
ing data is time-synchronised, this is ideal for group timing studies (Georgiou 
et al., 2015).

2.6	 Dedicated Sensorimotor Synchronisation Software
The main challenge with setting up the data acquisition and cue presentation 
for both single- and multi-person sensorimotor synchronisation experiments 
is in minimising timing uncertainty. Multi-tasking operating systems, such 
as Microsoft Windows, imply that executing commands is an asynchronous 
process. That is, you might run a segment of code which outputs a cue stimu-
lus every 500 ms, but the operating system will not necessarily execute that 
command immediately if it is busy dealing with another application in the 
background. This can create jitter in the cue generation, so that a stimulus that 
should occur exactly every 500 ms might instead execute on average every 500 
ms, with actual intervals produced varying around that value (e.g., 490, 515, 
516, 502 ms etc.). If the standard deviation of these intervals becomes relatively 
large then the impact on the analysed movement timing results will be signifi-
cant (Repp, 1999). Interval variance will increase as participants correct their 
movements to remain in time with the varying beat. Asynchrony variance will 
also be artificially inflated as both the variance in the movement and the cue 
sum together. On the other hand, controlled manipulation of cue jitter can be 
effective for investigating cue reliability effects (Elliott et al., 2010; Elliott, Wing, 
& Welchman, 2014).

Similar issues occur with capturing responses. If a participant is required 
to tap a key on a standard pc keyboard in time with the beat, it is difficult to 
reliably record the onset time due to lags in the operating system servicing the 
event. Therefore, when designing an experimental setup, minimising lag time 

http://www.apdm.com
http://www.apdm.com
http://www.xsens.com
http://www.gaitsmart.com
http://www.shimmersensing.com
http://www.shimmersensing.com
http://www.btsbioengineering.com
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and jitter in the cue and response signals are a key consideration. Because of 
this, a number of software toolboxes have been developed to assist with data 
capture in sensorimotor synchronisation (sms) experiments. These include, 
ftap (Finney, 2001), one of the earlier toolboxes written for Linux. This tool-
box interfaced directly with midi instruments and allowed accurate control of 
cue timing and recorded finger tap responses. Max/msp (Cycling ’74, usa) is 
a commercial software package that provides a visual programming interface 
with full midi support. This has often been used in timing experiments with 
the visual programming interface allowing relatively simple onset detection 
and analysis to be set up with minimal coding skills. As previously mentioned, 
midi suffers from lag and some jitter. These are substantially smaller and less 
significant than trying to use traditional programming approaches and pc 
hardware interfaces, which must still be characterised. A recent study (Schultz 
& Vugt, 2015) has characterised both Max/msp and ftap experimental setups 
for a sensorimotor synchronisation experiment, finding the mean lag (with re-
spect to an fsr sensor response) to be 15.8 ms and 14.6 ms, respectively. The 
standard deviation (jitter) of the lags was 3.4 ms and 2.8 ms, respectively. The 
study contrasted the two midi setups to a novel hardware setup using a low 
cost embedded controller (Arduino, www.arduino.cc). By using the Arduino 
device (taking the signal processing away from the pc), the lag was reduced to 
0.6 ms with a jitter of 0.3 ms.

It is clear, therefore, that moving the signal processing away from the pc to 
dedicated hardware such as an embedded controller or a data acquisition card 
(e.g., National Instruments, Measurement Computing) is a good way to get an 
accurate cue presentation and corresponding response times. This philosophy 
was used to develop another sensorimotor synchronisation toolbox. MatTAP 
(Elliott et al., 2009b) uses data acquisition hardware interfaced to the matlab 
programming environment to provide a comprehensive toolbox that offers 
virtually no lag or jitter in the signal output and response capture. By using a 
loop-back method (see Figure 9.2), both the output signal and response can 
be sampled under a common clock at very high sampling rates (e.g., 10kS/s) al-
lowing highly accurate measures of asynchrony (see Section 5.2). The toolbox 
further uses a graphical user interface that allows the user to accurately control 
cue presentation, store data and run analyses. We have successfully interfaced 
the toolbox with both accelerometer devices (apdm Opal) and video motion 
capture (Qualisys) to allow accurate measures of group movements to an au-
ditory metronome or visual cue. The downside to this high level of accuracy 
is increased expense, with both the hardware (data acquisition) and Matlab 
(with appropriate toolboxes) adding up to a relatively high cost compared to 
other solutions. Regardless, much of the code we provide with this chapter has 

http://www.arduino.cc
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evolved from MatTAP, generated from the requirements of new experiments 
within our labs.

3	 Audio Capture

In musical timing research, both single and multi-agent studies generally 
adopt a similar methodology. Based on the study’s objectives, selections are 
made for instruments, number of players and source material. Environmen-
tal constraints such as visual and auditory occlusion are then set and trials 
are implemented to acquire data. The performance data can be captured in a 
number of formats ranging from acoustic waveforms, midi messages, sensor-
data taken from imus (see Section 2.5), movement data from a video motion 
capture device (see Section 2.4), or a combination of these systems. In this sec-
tion we concentrate on the capture of the audio signals, rather than the move-
ments of the agents producing the music. This involves recording the acoustic 
waveform and configuring the system to effectively derive the relevant events.

Workstation running
MatTAP

Data Acquisition

Digital Output
(Cue trigger pulse)

Sensors
(response capture)

Analogue Output
(typically to audio speaker)

Synchronisation Pulse

OutputsInputs

Figure 9.2	 A typical hardware configuration for cue generation and response capture using 
MatTAP (reproduced from Elliott et al., 2009b). The toolbox uses data acquisition 
hardware to achieve a high level of timing accuracy. (1) Two outputs are generated to 
drive stimuli. One is an analogue waveform, typically used to drive an audio speaker, 
but can also be applied to haptic or visual devices. The second output is a digital 
square pulse, which can be used to trigger bespoke stimuli equipment. To increase 
accuracy further, this pulse is fed back into the system to compensate for processing 
delays in the hardware. (2) Up to two sensors can be utilised to capture responses. 
Any sensor that produces an analogue or digital voltage, typically in the range ±5 V 
can be used to record events. (3) The output signals and corresponding responses  
are captured and stored automatically in individual, sequentially numbered .mat 
format files.
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3.1	 Material Selection
The selection of performance material is generally based on the extent to 
which the piece enforces performance characteristics. In synchronisation ex-
periments, long passages of concurrent isochronous events (equally spaced 
notes performed at the same time) are desirable, often limiting the pool of rec-
ognised works. For this reason, Moore and Chen (2010) opted to use an excerpt 
from Shostakovich’s String Quartet Op. 108, No. 7, which included 260 events 
performed in quick succession by two members of a string quartet. Further-
more, all notes are generated by individual bow-strokes, and are rhythmically 
partitioned into groups of four. Similarly, both Wing et al. (2014) and Stables 
et al. (2014) used an excerpt from Haydn’s String Quartet Op. 74 no. 1, which 
consists of 48 x 8th notes performed continuously by almost all members of 
the ensemble. For studies investigating phase relationships such as Shaffer 
(1984), multiple voices with independent subdivisions are desirable, leading 
to the selection of an excerpt from Chopin’s Trois Nouvelles Etudes. Specially 
composed pieces are also commonly used in timing studies, typically when 
there is a requirement for tractable context and specific musical conditions. 
This is the case in Goebl & Palmer (2009), where the content is easy to perform 
and subdivisions vary between players. This allows trained musicians to easily 
perform the experiment with no pre-requisite knowledge of the content.

3.2	 Sound Recording
In some cases, it can be impractical to capture event-based performance data 
such as midi due to the acoustic properties of the instrument, or the physical 
restrictions that controllers impose on a participant. An acoustic violin, for ex-
ample, produces notes with legato (i.e., in a smooth continuous manner, with-
out breaks between notes) and has a small area of sound propagation. This 
means it is difficult to incorporate a midi device into the instrument without 
restricting the movement of the musician. This often introduces a requirement 
for audio recording, followed by post-processing to perform onset detection in 
order to derive a symbolic representation from the captured acoustic data. For 
music listening, instruments are typically recorded by placing microphones 
at acoustically relevant locations around the source and surrounding environ-
ment, with the intention of achieving a desired aesthetic. This can differ from 
analytical recordings where the aim is to isolate signals and derive an accurate 
representation of the performer’s onset locations via further signal decom-
position. For well recorded monophonic signals (e.g., solo instruments) com-
prising homogeneous fragments of sound, timing data can be extracted more  
easily when compared to polyphonic signals (e.g., multiple instruments played 
by a group) or those contaminated by noise. For this reason, close-miking 
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techniques in which the microphones are placed near the sound source (e.g., 
the strings) are generally preferred to room or ambient miking in order to ob-
tain a higher signal-to-noise ratio; in the case of multi-person performance, at 
least one microphone is used per source, thereby minimising acoustic bleed. 
The multi-microphone setup is also advantageous in that further separation of 
the sources can be achieved through cross-analyses. Here, the sound pressure 
level of each source will vary across microphones, allowing for the attenuation 
of other instruments in the recording. In the case of polyphony, it may be nec-
essary to first employ source separation algorithms such as those proposed by 
Vincent (2006), and then perform onset detection on the resulting streams. In 
the latter case, noise-reduction can be used as a pre-processing step.

For close-miking, clip-on condenser microphones such as the akg C519 
range (similar to those used in Polak & London, 2014), provide high sensitiv-
ity and greater frequency and transient responses than dynamic microphones. 
Whilst omnidirectional microphones can be used for this task (sound from all 
directions is captured with equal sensitivity), localised polar patterns such as 
cardioid and hypercardioid (sound in front of the microphone is recorded with 
higher sensitivity) are preferable as they mitigate sound capture from external 
sources. During this process, careful miking techniques are necessary to gain 
proximity to the instrument and therefore achieve a high signal-to-noise ratio. 
When using the close-miking technique, the microphones tend to be placed 
on the areas of the instrument that don’t dampen the sound or prevent any 
free-flowing movement. In string instruments such as violins, violas and cellos, 
the clips are often located on the bridge of the instrument. For percussive in-
struments such as drums and cymbals, the microphones are clipped to the rim 
or to stands, so as not to interfere with the skin or plate. For brass instruments 
it is difficult to avoid the resonant surface of the instrument, so microphones 
tend to be clipped to the bell, with the microphone located inside or near to 
the opening.

An alternative to close-miking instruments is to use a vibrational pickup, in 
which a transducer reacts to vibrations of the instrument’s surface material. 
These tend to be less common as they have poorer transient responses, but can 
be used when close-miking is not plausible or susceptible to noise, such as in 
large ensembles.

For field recordings such as those in Polak and London (2014), portable re-
cording devices such as the Roland R-4 or the Tascam DP006 can be interfaced 
with microphones to capture the signal. These generally record data to an on-
board hard disk or portable storage device, which can later be transferred to 
another machine for analysis in an uncompressed format. The main benefit 
of these devices is that they can record multiple channels (usually up to 6) 
without the need for additional computational hardware, however they have 



189Event Based Methods

<UN>

limited auditory feedback options and recording length is often dependent 
on battery life. More commonly, an external soundcard with a desktop or lap-
top computer is used, in which the soundcard connects to a host machine via 
usb or Firewire. Soundcards support varying numbers of inputs and outputs 
and generally have assignable sampling frequencies (often set by default to 
44.1kHz) for use during analogue to digital conversion. In this case, a software 
interface is also required to record the inputs to disk, which can be done us-
ing a daw such as Logic Pro, Ableton Live, Audacity, Reaper or Cubase, all of 
which share a similar multi-track interface, with varying levels of control over 
the audio signal.

3.3	 System Latency
Due to the computational overhead involved in reading, writing and process-
ing a large number of samples each second, audio processing systems incur 
a time lag, known as latency, at numerous points throughout the processing 
chain. Furthermore, this latency is shown to exhibit high variability and in-
formation loss (Wang et al., 2010) when systems are subject to high processing 
loads (e.g., when multiple channels are being used to record a large ensemble), 
thus leading to unreliable playback. For this reason, it is generally not recom-
mended to feed the system output back to participants via headphones when 
musical timing is being measured, as latency will create negative recurrent ef-
fects on the performer. In isochronous rhythmic sequences, the threshold for 
perception of delay is observed by Friberg and Sundberg (1995) to be around 6 
ms for tones with relatively short intervals, and periodic timing correction to 
the delayed stimuli is observed to occur at time lags of as little as 10 ms (Thaut 
et al., 1998). Further to this, the standard deviation of inter-onset intervals (ioi, 
time between consecutive onsets) in performed rhythmic sequences is widely 
accepted to increase with auditory delay time (Pfordresher & Palmer, 2002). 
This suggests that even minimal system latency (observed by Wang et al., 2010 
to be around 19 ms for Audacity with Mac os X 10.6, when running under low 
computational load) is likely to impact the validity of results. If no other op-
tions are available, the signal path can often be configured to route the ana-
logue signal directly to the headphone output, bypassing the processing chain 
and minimising latency caused by play-through.

If processed auditory feedback is unavoidable, such as in experiments 
where participants will be played manipulated versions of their input signals, 
the buffer size of the host software should be reduced in order to reduce the 
latency time in the system. This limits the time allocated to the system to pro-
cess the audio samples, thus allowing the signal to reach the playback device 
in a shorter time period. The buffer size can often be controlled via the daw, 
and can be set experimentally between 32–1024 samples. Whilst lowering the 
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buffer size reduces latency, it also puts strain on the computer’s cpu as the 
processor is then required to complete more operations in a shorter period of 
time. Negative effects of excessively lowering the buffer size include the ad-
dition of audible noise to the signal path caused by loss of information. The 
input/output latency of the system also has implications for the use of external 
stimuli during experiments. Given the time delay incurred during playback, it 
is recommended to record audio signals generated by the computer back into 
the system whilst recording performers. This means any pre-recorded accom-
paniment or metronome tracks should be captured using headphones and a 
microphone in order to limit computational asynchronies caused by the varia-
tion in system delay at multiple points in the processing chain.

4	 Onset Detection and Analysis

A bold onset is half the battle.
giuseppe garibaldi

One of the key challenges in post-processing for event-based analysis (both for 
movement and audio signals) is accurate onset detection. This step needs to be 
applied to both the cue signal and the participant’s responses. In this section, 
we cover the key approaches used to achieve accurate onset detection. The 
three main stages of onset detection are shown in Figure 9.3 and are common 
in both movement and music data analysis. However, completion of each stage 
often requires a specific approach, based on the origin of the signals.

4.1	 Extracting Movement Onsets
In movement, onsets correspond with physical events, (e.g., the peak pressure 
applied to a point, a finger tap on a surface, or a sudden change in motion 
as measured by position, velocity or acceleration). Reliable onset detection is 
vital for analysing sensorimotor responses (Elliott et al., 2009b) by allowing 
accurate measurement of the asynchrony between the cue and the corre-
sponding motor response.

Pre-processingSignal Onset detection
function

Feature
identif ication

Onset times

Figure 9.3	 Key stages involved in onset detection.
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In the example shown (Figure 9.4), a finger tap onto a surface is captured by a 
force sensor, converting the force into a voltage output. This shows the baseline, 
which represents the signal prior to the finger making contact with the sensor. 
A rise in the signal from baseline identifies the onset of attack. The attack rep-
resents the rise of energy in the system from the prior state, i.e., the initial im-
pact of the finger onto the sensor. Peak attack occurs when the finger reaches 
maximum force onto the sensor. The onset of decay indicates the beginning of 
evanescence, i.e., the return to baseline as the finger begins to lift again, off the 
sensor surface. For movement onset detection, it is usually the onset of attack 
or the peak attack that is identified as the onset time of the signal.

4.1.1	 Movement Data Pre-processing
Pre-processing is the transformation of raw data to facilitate processing by the 
onset detection function (odf). The first step in pre-processing is experimen-
tal design; facilitating the optimal capture of data and encoding the move-
ment. The experimental hardware must have a sampling rate of sufficient 
magnitude to capture the movement without aliasing. The sensor’s rise time 
and evanescent should be an order of magnitude faster than the movement. 
The magnitude of the onset sought should be readily distinguishable from that 
of the noise of the recording system, and distinguishable from common arte-
facts. The experiment should ideally offer a dedicated input channel for each 
element of participant response of interest, i.e., one touch sensor per finger, or 
a marker for each limb.

Algorithmic pre-processing addresses practical flaws in movement al-
ready captured. Low frequency human motion (below 10–50Hz) is generally 

Transduced f inger tap voltage envelope.

time

vo
lt

ag
e

onset of decay

peak attack

evanescence

onset of attack
baseline voltage baseline voltage

Figure 9.4	 Example sensor output signal resulting from a single tap.
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contaminated with higher frequency noise. This noise comes from such  
sources as non-ideal sensors, the environment (e.g. 50/60Hz mains hum, 
participant’s heartbeat) and the harmonics of movement itself. The frequency 
components of interest are commonly emphasised via low-pass filtering which 
attenuates all frequency components of a given signal above a cut off value, op-
timally without adding delays or distortion. Classically, a low-pass filter known 
as a zero lag 4th order Butterworth practically implements these requirements 
(Winter, 2009). These filters can be implemented algorithmically in software 
such as Matlab, rather than requiring a hardware implementation to be used. 
Following the application of the filter, signal peaks of interest should remain 
prominent whilst noise peaks should be reduced. For onset detection, a heu-
ristic cut off frequency can be determined by visual inspection and iteration. 
Note that by filtering, relevant information in the signal can be altered or lost. 
For temporal studies in particular, it is important to use a zero-phase filter. This 
is a special case of a linear-phase filter which avoids any frequency-dependent 
lag. The filtfilt command in matlab applies a filter both forwards and back-
wards, cancelling out any phase effects of the filtered signal.

To facilitate filtering, data recovered from non-ideal sensors must be sani-
tised. Such data should be continuous, machine-readable and exhibit values 
that readily allow for computation (e.g., numeric values within the maximal 
and minimal machine accuracy limits). Numerical sensor artefacts such as 
those arising from sensor dropouts, misconfigured apparatus etc. may return 
numerical error codes, missing values (e.g., empty set [] or NaN) or default 
values (e.g., zero). These values have no useful relation to the effect being mea-
sured and must be excluded to maintain the integrity of any analysis. Hence, 
data exploration and visualisation, i.e., a check upon the sanity of the data, 
should always be a first step.

For systems such as the Qualisys and Vicon motion tracking software, there 
are explicit functions that allow data for missing markers to be approximated. 
For less integrated systems, matlab functions such as isnan, isempty, isnumer-
ic can be used to find invalid, non-numeric values in time-series data.

Numerical sensor aberrations include sensor saturation (where the recorded 
movements exceed the capacity of the sensor to report), sensor drift, warmup 
trends and battery exhaustion, power bounce, and other artefacts of the record-
ing. The values may have some relation to the effect being measured, but have 
been transformed in a fashion not shared by the rest of the data, and hence 
may decrease the integrity of any analysis. These effects can be ameliorated 
by initialising each experimental session with a brief test run with real time 
sensor feedback. This will reveal aberrant values, allowing action (replacing 



193Event Based Methods

<UN>

batteries, adjusting sensor gain). As noted previously, thoughtful experimental 
design is the most essential pre-processing step.

The experimental artefacts, listed above, are distinct from participant arte-
facts, in which the participant offers responses outside of those anticipated but 
still within the scope of measurement; ambiguous touches, mistaken taps and 
involuntary movements etc. These should not be removed in pre-processing, 
which attempts to faithfully relay participant action to the odf. Participant 
outlier artefacts are treated with rigour in Section 5.3.

4.1.2	 Onset Detection Functions (odfs)
The odf renders clearly the presence of attacks within the original signal. In 
musical onset detection this is often called the Reduction step, where the sound 
signal is traditionally downsampled to a ‘low’ sample rate (e.g., hundreds of 
hertz (Dixon, 2006)). However movement odfs typically eschew downsampled.

There are many varieties of odf: time and frequency domain, probabilistic 
and machine learning (Bello et al., 2005; Dixon, 2006; Eyben et al., 2010). In the 
context of movement, we focus on the time domain methods. In many senso-
rimotor studies the end of the attack, i.e. the peak of expressed force, can be 
considered the intentional onset of response. In sensorimotor timing, onsets 
might include peak velocity (Pelton, Wing, Fraser, & van Vliet, 2015), accelera-
tion (Honisch, Elliott, Jacoby, & Wing, 2016), or even higher derivatives such as 
jerk (Balasubramaniam et al., 2004; Elliott et al., 2009a).

For attacks that are obvious to an annotator, i.e., large increase in voltage 
amplitude, such as transduced force in tapping experiments (see Figure 9.3 
above) a simple envelope follower can be used to algorithmically extract the 
peaks of attacks (Eq. 1).
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in which w(m) is an N-point smoothing kernel centred at m = 0. This can be 
extended to use of the derivative which marks abrupt rises in energy with nar-
rowed peaks (Bello et al., 2005; Eq. 2):
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A direct method of detecting onsets arises from the derivative of the signal 
(1st or higher), which illuminate periods of change in the movement. The 
onset of attack would be the beginning of the periods where the 1st derivative 
is positive. The onset of decay corresponds with the end of the attack, in this 
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example, marked by the beginning of the period where the 1st derivative is 
negative. However, this naïve approach is still susceptible to the presence of 
noise (non-ideal sensors), overlapping participant responses (i.e., no return to 
baseline) or competing sources of spurious onsets (e.g., movement artefacts, 
movement harmonics).

4.1.3	 Event Detection
Peak Picking involves a decision about candidate onsets (which are normally 
local maxima), resulting from the previous stage(s). If the odf has been suf-
ficiently well constructed, or the pre-processed data itself is suitable due to 
experimental design, this final stage is often simple thresholding. That is, can-
didate onsets that have a peak value above a certain threshold are considered 
to be movement onsets. This can be readily hand tuned in well-formed move-
ment experiments. Other domain specific knowledge can be added, such as 
the expected recurrence of onsets within specific durations, a minimal/maxi-
mal duration etc.

We provide in the accompanying code, peakdet, one of the more robust 
peak detection algorithms written by Eli Billauer.1 However, even the best algo-
rithms are likely to have false or missed detections, again due to noise on the 
signal from imperfections in the sensor or due to human artefacts such as false 
movements. Therefore, onset detection methods are typically complemented 
with manual visual checks to ensure any errors are removed. We have further 
written a Matlab based graphical user interface to visually check the peak on-
sets extracted using the peakdet code, which accompanies this chapter.

To measure the effectiveness with each change made in the process, we 
need measures of performance. If we consider that merely capturing all of the 
movement onsets is not sufficient, we must also reject non-movement onsets, 
which gives rise to two measures: Sensitivity and Specificity. We define Sensi-
tivity, also known as the true positive rate, as:

Sensitivity (Recall) = �Correct Movement Onset Detections / Total True 
Movement Onset Detections

In which Total True Movement Onset Detections are the total number of true 
movement onsets detected + the number of missed onsets. We define the Posi-
tive Predictive Value (PPV), as:

PPV = �Correct Movement Onset Detections / Total Movement Onset 
Detections

1	 http://www.billauer.co.il/peakdet.html

http://www.billauer.co.il/peakdet.html
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In which Total Movement Onset Detections are the total number of true move-
ment onsets + false onsets detected.

Trivially, we could have a Sensitivity 1, by setting the threshold below the 
lowest peak. All true movement onsets would be captured by this threshold. 
This would unfortunately minimise PPV, i.e., permit a maximal number of 
non-movement onsets to pass the threshold and be labelled falsely as move-
ment onsets. There is thus a trade-off between the two values.

4.1.4	 Dimensionality Reduction, Clustering and  
Machine Learning

The algorithms presented perform similarly to expert annotators’ subjective 
agreement of the incidence of onsets in single channel data. Multiple marker 
systems can result in onset complexes, in one or more channels, coincident 
with a true movement onset. Onset complexes in isolation would corre-
spond with an onset in a single channel system. These onset complexes re-
quire a further stage to evaluate when they become multi-channel features. 
Simple stages include considering one channel of data as representative of 
the whole (identical to prior mono channel approaches), or a sum of coin-
cident onset complexes across channels compared to a threshold. Such a 
threshold may not capture the expert appraisal of multichannel cues that 
give rise to effective subjective onset labelling (e.g., in electromyography 
(EMG) contiguous channel onset complexes may result from electrodes as-
sociated with one muscle vs. multi-channel artefacts such as heartbeat con-
tamination). Consistent labelling of multichannel onset complexes can be 
facilitated by: dimensionality reduction strategies (such as principal com-
ponent analysis) and/or machine learning (clustering with an additional  
classification stage).

Principal component analysis (pca) is a linear method of data re-expression  
which returns a set of n components, where n is equal (or less) to the dimen-
sion of the original data. These components are ordered by their explicative 
power of the variance, of the original signal. If the underlying movement is 
the greatest source of variance, then the principal component will be a single 
channel representative of the underlying movement. By focusing on that prin-
cipal component, mono-channel strategies can be re-employed. Other meth-
ods of dimensionality reduction include independent component analysis 
(ICA) and multidimensional scaling. When lower dimensional expressions 
do not collapse to one obvious channel, i.e., suggesting multiple and/or non-
linear underlying generators, machine learning methods can be applied (e.g., 
self-organising maps, generative topographic mapping).

Whilst Matlab has a Neural Network Toolbox at an extra cost, these ap-
proaches can be implemented in Matlab using the excellent netlab toolbox 
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(Nabney, 2002; http://www.aston.ac.uk/eas/research/groups/ncrg/resources/
netlab/). netlab is also largely compatible with Octave.

4.2	 Extracting Onsets from Audio Recordings
An audio signal contains distinct events pertaining to one or multiple acoustic 
sources. Examples include a sequence of musical notes, a chain of percussive 
hits, and consonant and vowel segments comprising continuous speech. Event 
timing information is conveyed through variation in some physical property 
of the source. These changes are detected by the listener and registered as dis-
tinct events that are often inter-connected at a higher contextual level. The 
task of extracting timing information about events embedded within an audio 
signal involves estimating perceptually important points of change. In particu-
lar, we are interested in detecting the presence of new acoustic events and an-
notating associated temporal information, (e.g., start time, end time and event 
duration). Most research in the field of audio signal processing targets the 
automatic detection of event onsets. Onset detection is highly relevant when 
studying the synchronisation in music performance where accurate measure-
ment of response time is imperative.

As with movement (Section 4.1), the term onset is generally used to denote 
the earliest time at which a signal evolves quickly (Bello et al., 2005). This defi-
nition relates to the physical properties of the source and thus does not neces-
sarily correlate with the perceived start of an event (Von & Rasch, 1981) or the 
perceived attack time which refers to the moment of rhythmic emphasis for a 
musical tone (Gordon, 1987; see Collins, 2006, for a review of modelling percep-
tual attack time and associated problems therein). Nevertheless, most recent 
work on music onset detection takes a pragmatic approach by tuning and as-
sessing detection algorithms using hand-labelled datasets. Such ground-truth 
data is typically generated by experienced individuals who combine critical 
listening with spectro-temporal analysis using state-of-the-art software to best 
identify the beginning of acoustic events that satisfy the requirements of many 
practical applications.

Most onset detection algorithms deal with a monophonic signal corre-
sponding to a single acoustic stream. The onset detection process follows the 
same principle as that described for movement onset detection (Section 4.1): 
Pre-processing, ODF transformation and finally event/feature extraction.

4.2.1	 Signal Feature Based Detection Functions
The success of the system is fundamentally dependent on the reduction stage 
and so most effort has been on developing and evaluating different detection 
functions (Bello et al., 2005; Böck et al., 2012b; Collins, 2005a, Dixon, 2006). 
Perhaps the simplest of approaches to onset detection are those based on the 

http://www.aston.ac.uk/eas/research/groups/ncrg/resources/netlab
http://www.aston.ac.uk/eas/research/groups/ncrg/resources/netlab
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amplitude envelope (Masri, 1997; Schloss, 1985). The general idea is that the 
onset of a new sound leads to a sharp rise in the envelope of the waveform. The 
local energy of the signal can also be followed rather than the amplitude (Bello 
et al., 2004), for example by applying a running sum low-pass filter to the square 
of the signal. It is common to use the time derivative of the envelope such that 
significant changes in amplitude (or energy) are transformed to sharp peaks 
that are easily detected by thresholding the resulting detection function.

odfs based on temporal features are generally adequate for percussive 
sounds and provide good temporal resolution and have low computational 
demand. Klapuri (1999) suggested taking the logarithm of the envelope prior 
to differencing to minimise spurious local maxima after the physical onset of 
the sound and emphasise lower intensity onsets. A further refinement is to 
incorporate spectral information since transients tend to introduce energy at 
high frequencies. The short-time Fourier transform (stft) is commonly used 
for this purpose, although auditory filter banks have also been employed (Kla-
puri, 1999). Masri (1997) used the stft to focus the local energy measurement 
towards high frequencies, a technique useful for emphasising the percussive-
ness of a sound. This high frequency content (hfc) detector can, however, 
be problematic for low-pitched and non-percussive instruments (Bello et al., 
2005). In order to incorporate changes in the distribution of spectral energy 
over time, Masri (1997) proposed the spectral flux detector. Rather than sum-
ming the weighted magnitudes prior to differencing, the algorithm first sums 
over all positive changes in magnitude in each frequency bin between con-
secutive analysis frames generated by the stft. Because changes in magnitude 
are measured across different frequency bands, the detection function is more 
reliable compared to one based solely on the temporal envelope.

Additional spectral methods make use of the phase spectra to enhance 
subtle tonal variations in the signal, and are less dependent on changes in 
energy (Bello et al., 2004). The idea is that during the steady-state portion of 
the signal, differences between the (unwrapped) phase of consecutive spec-
tral frames will be constant. The phase deviation, defined as the second dif-
ference of the phase, i.e. the change in instantaneous frequency, can then be 
used to signify changes in the stationarity of the signal; large deviations are 
more probable during the attack region of a transient. Although methods in-
corporating phase information are better suited for sounds with soft onsets, 
one of the shortcomings of the phase deviation detector is its susceptibility 
to phase distortion and noise in low-energy components. Refined techniques 
include the weighted phase deviation and variations of the complex domain 
method, the latter combining both phase and magnitude information (Dix-
on, 2006; Duxbury et  al.,  2003). Finally, Collins (2005b) used the constant-Q 
pitch estimator (Brown & Puckette, 1993) as the primary feature driving an 
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onset detection algorithm targeting pitched non-percussive instruments. The 
algorithm incorporates vibrato suppression to better emphasise note transi-
tions, outperforming the phase deviation algorithm of Bello et al. (2004)

Böck and Widmer (2013a) also proposed an onset detector with vibrato 
suppression, based on the common spectral flux method. The detector, called 
SuperFlux, uses a maximum filter applied to a logarithmic-frequency scaled 
spectrogram to better track spectral trajectories. The performance of Super-
Flux outperformed the pitch-based detector of Collins (2005b) and another 
specialised detector targeting pitched non-percussive sounds (Schleusing 
et al., 2008). A second algorithm, the ComplexFlux, also based on differences 
in magnitude spectra was later developed (Böck & Widmer, 2013b) to suppress 
both vibrato and tremolo in solo pitched instruments. Figure 9.5 shows the 
temporal waveform and spectrogram of a recording of a violinist, playing with 
a détaché bowing style, from which four odfs have been extracted. The signal 
was pre-processed by applying a 3rd order Butterworth high-pass filter to re-
move low-frequency noise picked up by the clip-on microphone. The simplest 
of detectors, which we have found to work well on signals with well-defined 
disconnected notes, is the Log hfc, obtained by applying the first-order differ-
ence to the logarithm of the frequency-weighted energy.

4.2.2	 Classification Based Onset Detection
In recent years, machine learning techniques have been employed to over-
come the issue of source-dependent onset detectors (Zhu et al., 2014) as well as 
establishing more sophisticated detection functions by learning directly from 
the human annotated datasets traditionally used to evaluate the aforemen-
tioned heuristic approaches (Davy & Godsill, 2002; Eyben et al., 2010; Lacoste &  
Eck, 2007; Marchi et al., 2014; Marolt et al., 2002; Toh et al., 2008). In general, the 
task is treated as a classification problem where spectral frames extracted from 
the audio signal are classified as being onsets or non-onsets. Supervised ma-
chine learning techniques such as Support Vector Machines (svm) and Gauss-
ian Mixture Models (gmm) have been employed (Kapanci & Pfeffer, 2004; Toh 
et al. 2008) to handle pitched non-percussive instruments such as the singing 
voice where “soft” onsets often occur between smooth pitch transitions and 
tend to be accompanied by complex modulations in pitch and amplitude.

Neural networks have proven successful in automatically locating onsets in 
a range of musical signals and define the current state-of-art (Böck et al., 2012a; 
Eyben et al., 2010; Marchi et al., 2014; Schluter & Böck, 2014). These methods 
use features such as cent-scaled magnitude spectrograms and linear predic-
tion errors derived from multi-resolution spectra as inputs to a neural network 
which has been trained using binary labelled features to discriminate between  
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Figure 9.5	 Temporal waveform, log magnitude spectrogram and four onset 
detection functions (odf) extracted from a violin recording. The odfs 
have been standardised by setting their means to zero and standard 
deviations to one.
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onsets and non-onsets. Eyben et al. (2010) and Marchi et al. (2014) used long 
short-term memory (lstm) models, a form of recurrent neural network (rnn) 
that provides complete access to past and future information over long time 
periods. These systems are therefore able to model the context in which on-
sets occur. Both systems were evaluated against traditional detection methods, 
(e.g., those presented by Bello et al. (2005) and Dixon (2006)), and showed su-
perior performance with respect to F-measure (see Section 4.2.3), regardless 
of onset type and are therefore considered to be robust. Böck et al. (2012a) 
developed a real-time online version of the offline rnn method (Eyben et al., 
2010), which although not as accurate, outperformed existing non-ML onset 
detectors (see also Böck et al., 2012b). Schluter and Böck (2013, 2014) enhanced 
their offline algorithm by replacing the rnn with a convolutional neural net-
work (cnn), which requires less manual pre-processing and yields superior 
performance.

4.2.3	 Performance and Considerations
Today’s music onset detection methods are typically evaluated using human-
annotated datasets of real-world acoustic sounds subdivided into classes based 
on instrument type. Although the manual annotation process is thorough and 
involves multiple assessment procedures performed by 3–5 experienced in-
dividuals, it is nonetheless subjective, thus blurring the distinction between 
physical onset and perceptual onset. Because of this uncertainty, detected on-
sets are deemed valid if within 50 ms of the subjective position (Bello et al., 
2005), although a lower tolerance of 25 ms has been used by some authors 
(Böck et al., 2012b), especially for percussive sounds where physical onsets are 
well-defined (Collins, 2005a). Similar to those described in section 4.1.3, stan-
dard evaluation metrics include precision (P), recall (R) and F-measure (F), 
defined respectively in Eq. 3–5.
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Here, cO  is the number correctly detected onsets, fpO  is the number of false 
positives and fnO  is the number of false negatives. In offline settings one might 
favour high recall over precision, since there is greater chance that the detector 
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is simply reacting to noise or modulations in the signal unrelated to onsets. In 
this respect, it is less subjective to manually remove data points than to add 
them.

Table 9.1 gives the average F-measures by instrument category for four of 
the best onset detectors submitted the 2015 onset detection contest run by the 
Music Information Retrieval Evaluation eXchange2 (mirex). Both Universal 
(Böck et al., 2015; Eyben et al., 2010) and Fusion (Chen, 2015) algorithms use 
probabilistic methods, whereas SuperFlux (Böck & Widmer, 2013a) and Com-
plexFlux (Böck & Widmer, 2013b) are refined versions of two classic spectral-
based algorithms. As with the mirex results, The detectors are ranked by the 
average of their class means, though we have omitted the third best ranking al-
gorithm as it is an online version of the Universal detector (Böck et al., 2012a). 
For this dataset, the four techniques perform similarly over all classes (around 
80%) but there are clear differences between the algorithms within each cat-
egory. For example, the probabilistic methods outperform the simpler flux 
algorithms in the majority of classes with a few exceptions (e.g., solo singing 
voice). This may be attributable to a lack of training data and/or because the 
flux detectors – especially ComplexFlux – were designed to better handle 
instruments with strong vibrato and tremolo. For all algorithms, performance 
appears to deteriorate for the voice, sustained strings and wind instruments,  

2	 http://www.music-ir.org/mirex/wiki/2015:Main_Page

Table 9.1	 Summary of average F-measures for four state-of-the-art onset detectors submitted  
to 2015 mirex audio onset detection contest.

Class Universal Fusion Complex-
Flux

Super-
Flux

Mean 
(sd)

Complex 79.4 79.5 75.7 77.5 78.0 (1.8)
Poly pitched 94.1 93.9 91.7 91.6 92.8 (1.4)
Solo bars & bells 100.0 100.0 96.5 96.7 98.3 (2.0)
Solo brass 82.1 77.0 75.3 76.6 77.8 (3.0)
Solo drum 93.1 93.1 93.1 92.4 92.9 (0.3)
Solo plucked strings 90.9 91.5 89.7 89.8 90.5 (0.8)
Solo singing voice 52.1 55.3 60.4 60.6 57.1 (4.1)
Solo sustained strings 72.9 66.9 57.5 58.8 64.0 (7.2)
Solo winds 74.0 72.2 74.6 68.6 72.3 (2.7)
Mean 
(sd)

82.1  
(13.8)

81.0 
(13.9)

79.4 
(13.4)

79.2
(13.5)

http://www.music-ir.org/mirex/wiki/2015:Main_Page
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which might be explained by difficulties in detecting softer onsets and/or that 
the human annotations were more in line with perceptual attack time rather 
than the physical onsets picked up by the algorithms. The average recall (and 
precision) across all test stimuli for the four algorithms was: Universal – 87.9% 
(86.2%); Fusion – 86.2% (87.0%); ComplexFlux – 84.3% (86.8%); Spectral-
Flux – 85.6% (85.4%).

The choice of algorithm for detecting sonic events is evidently dependent 
on the both source type of the technical requirements of a given application. 
When studying synchronisation in musical performance, the measurement of 
player timing must be sufficiently accurate to reflect the tempo of the piece 
and capture salient asynchronies between the note onsets of each player and 
those of an external auditory stimulus such as a metronome and/or the note 
played by respective partners. For example, capturing small asynchronies in 
timing is imperative when studying how performers correct for deviations 
from an external beat (Vorberg & Wing, 1996) or from fellow musicians (Rasch, 
1979, Wing et al., 2014), or how players utilise asynchrony for expressive pur-
poses (Palmer, 1996). In general, methods based on amplitude envelope follow-
ing provide the highest temporal resolution and are computationally efficient 
compared to frequency-domain and especially ml approaches. The latter are 
more suitable for acoustic sources with soft attacks and complex modulations 
following the onset, such as those produced by bowed string instruments, flute 
or the singing voice. When using frequency-domain methods, it is important to 
consider the parameters used to configure the time-frequency decomposition, 
such as window length and window hop size in the case of the stft. For ex-
ample, reducing the window hop size improves temporal precision at the cost 
of increasing the workload and smoothing variations in the resulting detection 
function. The choice of window size, which defines the temporal resolution, is 
signal-dependent and therefore multi-resolution analysis is more favourable 
in the case of complex signals.

In short, it is preferable to employ an offline onset detector, which, along 
with the peak-picker, can be tuned for maximum accuracy. With sufficient 
training data, probabilistic multi-resolution methods are robust, but one 
should be cautious of the quality of the subjective data used to train the classi-
fication. For more objective measures of onset, the flux methods can be chosen 
and combined with other detectors to increase the likelihood of capturing new 
events based on changes across multiple signal features. Most state-of-the-art 
onset detectors output onset times to text files which, along with the audio 
signal, can be imported to audio analysis software such as Sonic Visualiser 
(Cannam et al., 2010) for cross-validation using displays of spectrograms and 
other signal features, and vari-speed playback.
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5	 Analysis and Modelling

5.1	 Alignment
Once the challenge of accurate onset or event detection has been achieved, 
the standard measures of analysis are relatively simple. However, to analyse 
synchrony between the events of two or more independent sources (e.g., the 
heel strikes of a group of people walking or the auditory onsets of a string en-
semble) the onsets need to be aligned to understand which event from one 
source is temporally related to an event from the other source(s). Here we de-
scribe an approach to pairwise-align response onsets to the cue onsets (Elliott 
et al., 2009b). Note, that typically for multi-person alignment, there is ideally 
a common vector of ‘cue’ onsets to which all the response onsets from each 
group member can be aligned to. This may be an external metronome stimulus 
or the movements of the lead person in the group, for example.

In this approach we use a dynamic programming method to find the short-
est distance between response and cue onsets (Figure 9.6). Starting with two 
vectors, one containing the ‘cue’ onsets, m (this could be another person’s 
movement onsets, or a fixed stimulus such as a metronome); the other con-
taining the response onsets, t. The length of m and t do not need to be equal. 
We subsequently make a matrix of squared distances, d, between each cue on-
set and each response onset. Alignment occurs by matching up each response 
onset to the closest (i.e., shortest squared distance) cue onset. If a cue onset 

Calculate Asynchrony
= Aligned response onset time - metronome onset time

For each metronome onset: Check how many
responses are aligned to it (from min. distances)

Find minimum distance in each row

Calculate squared distance of each element

One response aligned,
no further action

No responses aligned,
missed tap?, Insert NaN

Multiple responses aligned,
double tap?, f ind closest, discard the rest

No. Aligned

Figure 9.6	 Flowchart of the algorithm used to align onsets between two sources  
(taken from Elliott et al., 2009b).
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has no matching response, then a NaN is inserted. If a cue onset has multi-
ple matching responses, we first check to see if the previous onset is empty 
(NaN). If so, we assign the earlier response to the previous cue onset. Of the 
remainder we assign the response, which has the shortest distance to that cue  
onset.

5.2	 Calculating Asynchrony and ioi/isi
Once the onsets of the participant(s) have been aligned to either an external 
cue or other participant onsets, calculating the time difference or asynchrony 
(A; Eq. 6) between related onsets and the IOIs (also labelled as inter-stimulus 
intervals, isi for cue onset intervals; Eq. 7) is relatively trivial.

	 = −k k kA t m � (6) 

	 1+= −k k kIOI t t � (7)

where kt is the k th response onset and km is the k th cue onset.

5.3	 Participant Outliers
Sensorimotor synchronisation analysis can be very sensitive to outliers. Outli-
ers will generally emerge in the latter stages of analysis, where the ioi or the 
asynchronies have been calculated. For example, a missed movement onset to 
a cue stimulus with an interval of 500ms, will suddenly introduce an ioi of 1000 
ms. Another common issue, occurs when someone’s movement onset occurs 
very late, or very early, relative to the comparative cue onset. This will result in 
a phase wrapped asynchrony (e.g., one that is assigned, via alignment, as a late 
response to the preceding cue onset rather than an early response to the cur-
rent cue, or vice-versa). Both these occurrences will result in large within-trial 
standard deviations (sd) emerging for the ioi and asynchronies, respectively. 
In fact, it is useful to become familiar with the range of ioi and/or asynchrony 
sd you would expect from a ‘good’ trial. This helps to spot potentially errone-
ous trials during analysis. As an example, for a simple finger tapping task to an 
auditory metronome with an isi of 500 ms, one would expect the both the ioi 
and asynchrony sd to be in the range of 15–30 ms. Values far exceeding this 
range suggest the trial should be examined in more detail.

Outlier removal must be dealt with methodologically and consistently. Us-
ing the iois to find outliers is often the simplest and most robust method. 
Working with asynchronies is much more challenging. A robust approach for 
detecting ioi outliers is the inter-quartile range method. In Matlab, using the 
median command to find the median ioi of the trial data and then the iqr 
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command to find the inter-quartile range, the threshold for upper and lower 
outlier values is:

( ) ( )
( ) ( )

threshUpper median IOI N iqr IOI ;

threshLower median IOI – N iqr IOI ;

∗

∗

= +

=

Where ioi is a vector of iois calculated from a trial. N defines how ‘strong’ 
the outlier detection function is. N=3 should be the minimum and will heavily 
cleanse the data, while N=6 will be more conservative and only remove ex-
treme outliers.

Matlab’s find command can subsequently be used to locate values exceeding 
either the upper or lower threshold and can be removed from the ioi vec-
tor. Removal will usually consist of replacing the value with NaN and hence-
forth using nanmean, nanstd is required to calculate the mean and sd of the 
cleansed iois. However, if cross-correlation or other calculations relying on a 
continuous series are to be applied, then an alternative replacement method 
should be used (e.g. replacing with the average (median) value or similar).

The removal/replacement of iois should be reflected in the corresponding 
Asynchrony vector. Assuming ioi and A are calculated as defined in Eq. 6–7, 
then removal of IOIk should result in removal of Ak+1.

Identifying outliers from asynchrony data is more challenging. Recall, the 
alignment process will allocate a response onset to a cue onset within the 
range −ISI/2 to ISI/2, where isi is the inter-stimulus interval of the cue. There-
fore, given all asynchronies will be bound within this range, there are no out-
liers as such. However, if phase wrapping occurs there will be sign changes 
where the onsets go from being large and negative to large and positive, or vice 
versa. This corresponds to drift (see Figure 9.7) where the participant is not 
synchronising with the cue and therefore asynchronies become increasingly 
negative until they hit the lower bound and subsequently the next response is 
closer to previous cue onset but with a positive asynchrony.

There is little that can be done with linear analyses in these scenarios. 
The sd becomes very large when these discontinuities occur. And given 
that typically the presence of drift suggests the participant isn’t synchronis-
ing to the cue, it is often a case of discarding trials where this occurs. There 
are occasions where phase-wrapping is likely and of interest (e.g., analys-
ing data where the response and cue have differing tempos). In these cases, 
it is recommended that circular statistics be used to analyse the data. Cir-
cular mean and sd can be used as an alternative without being susceptible 
to the phase wrapping discontinuities. Further details of circular statistics 
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are beyond the scope of this chapter but an excellent free toolbox for Mat-
lab is available (Berens, 2009; http://www.mathworks.com/matlabcentral/
fileexchange/10676-circular-statistics-toolbox--directional-statistics-).

5.4	 Cross- and Auto-Covariance and Event Based  
Synchronisation Models

It is often useful to measure the auto-covariance of the iois and asynchro-
nies, or the cross-covariance between two ioi / asynchrony time series. The 
auto-covariance shows the dependency between current and past time-series 
values. Wing and Kristofferson (1973) proposed a model for tapping without 
an external stimulus that predicts that finger tapping intervals have a lag -1 
dependence (resulting in a short-long-short-long pattern). The model follows 
the hypothesis that tapping is based on two internal processes: time keeping 
(that maintain a temporal interval) and a motor action (that is a result of the 
execution of a given motor command). The model can be written as: 

	 1+= + −k k k kIOI T M M � (8)

Where, kIOI  is the kth ioi (see Eq. 7) and kT  and kM  are the timekeeper interval 
and motor delay respectively.

1

isi/2

–isi/2

As
yn

ch
ro

ny

3 5 7 9

Event No.

11 13 15 17 19 21

Figure 9.7	 Typical pattern of asynchronies when participant is exhibiting drift – i.e. not 
synchronising with the cue. Note the phase wrapping occurs around +/− ISI/2  
and can result in highly inflated asynchrony variance.

http://www.mathworks.com/matlabcentral/fileexchange/10676-circular-statistics-toolbox--directional-statistics-
http://www.mathworks.com/matlabcentral/fileexchange/10676-circular-statistics-toolbox--directional-statistics-
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The model predicts that:

	 ( )g s= −I
2

IO 1 T � (9)

	 ( )g s s= +I
2

O
2

I 0 2T M � (10)

Where ( )I kg is the lag k auto-covariance, 2
Ts is the timekeeper variance, 2

Ms
is motor variance.

The model has become a highly efficient tool to characterise tapping 
(Wing, 2002). Empirical results indicate several intriguing relations between 
timekeeper variance, motor variance, and tempo. Namely: (a) Motor noise re-
mains constant when the base tapping tempo is changed, but timekeeper vari-
ance increases with tempo; (b) Motor noise is smaller than timekeeper noise  
( )2 2<s sM T

The success of the model led to its generalisation to the case of tapping to 
an external metronome. Vorberg and Wing (1996) proposed a revised model 
which included a correction gain parameter to describe the process of syn-
chronising to an external cue. The correction gain, α (often also referred to as 
phase correction), explains how much of the previous error (asynchrony) is 
corrected for in the next movement. 

	 1+= + + −k k k k kIOI A T M Ma � (11)

The gain is stable in the range, 0 2≤ ≤a , where a = 1 is full correction, a > 1 
is overcorrection, and a < 1 is undercorrection. In most cases, empirical esti-
mates of a  are usually in the range of 0.5 to 1.

In the case of a relatively stable metronome (no significant tempo changes), 
the correction gain can be deduced simply by calculating the cross-covariance 
between the cue and response intervals, if the cue intervals do not have zero 
variance (i.e., an isochronous metronome has zero interval variance). The rela-
tionship between the covariance and the correction gain is as follows:

	 ( ) ( ) ( )g a s− = −α − ≥1 ^ j 1 _ ^ jC 2, 0I jC � (12)

where, γCI( j) is the cross-covariance function between the stimulus response 
intervals of lag j and σc2 is the variance of the stimulus intervals. The model of 
Eq. 11 can be generalised to ensemble synchronisation: 

	 , 1+= + + −∑k i k i k k ki
IOI A T M Ma � (13)
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Where ,k iA are the asynchronies between the studied player all other players, 
and ia  is the phase correction parameter associated with adapting to a specific 
player i .

Note that this model is a generalisation of an ensemble synchronisation 
model proposed by (Wing, Endo, Bradbury, & Vorberg, 2014) that has been 
used to study synchronisation within string quartets. Their model is identical 
to Eq. 13, but with the assumption that the parameter 2 0,=Ms  and therefore 

1+ −k kM M  in equation Eq. 13 does not play a role.
It is possible to generalise the model of equation Eq. 11 to the case where 

there are substantial tempo changes (Schulze, Cordes, & Vorberg, 2005). Here it 
is often assumed that an additional period correction process occurs (Repp & 
Keller, 2008): 

	 1−= −k k kAt t b � (14)

Where ( )=k kmean Tt  and b represents the period correction constant.
The model can be cast as a standard Autoregressive Moving Average (arma) 

model (Diedrichsen, Ivry, & Pressing, 2003) 

	 ( )1 1 1 1 12− − − + −− = − + + + − + − +k k k k k k k k kIOI IOI A A T T M M Ma b a �(15)

Here kT  and kM  are two independent random variables with a fixed mean.

5.5	 Bounded General Least Squares (bGLS) Method for  
Parameter Estimation

While the cross- and auto-correlation approaches to parameter estimation of 
the linear phase correction model are relatively simple to compute, their ap-
plication is limited to one participant with small tempo variations. In the case 
of ensemble synchronisation, the estimation procedure based on the auto-
covariance function requires a slow iterative model fitting approach.

Moreover, recent work (Jacoby, Keller, Repp, Ahissar, & Tishby, 2015) showed 
that the structure of the models described above generates an inherited de-
pendency in the accuracy of estimating the parameters a  ,  2

Ms and 2
Ts .  

Since the parameters are inherently interdependent, they cannot be jointly 
estimated by the autocovariance method or by any other method without 
using further assumptions. Therefore, directly applying the autocovariance 
method or standard linear estimation techniques such as the Matlab armax 
command on data will often lead to unreliable estimations. While the prob-
lem exists also for single participant synchronisation with a metronome with 
small tempo changes, it becomes much more notable in the case of ensemble 
synchronisation or when there are large tempo changes. Fortunately, there is 
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a simple solution to this problem. As mentioned above it has been empirically 
observed that the motor noise is smaller than timekeeper variance. If this ad-
ditional simple constraint is taken into account in the estimation process the 
interdependency problem is practically resolved (Jacoby et al., 2015). More-
over, the group further proposed an algorithm, the bounded general least 
squares (bGLS) method that can estimate the parameters in case of a single 
person and ensemble synchronisation as well as tempo changing sequences 
(Jacoby, Tishby, Repp, Ahissar, & Keller, 2015).

The method has been applied in music related studies, re-analysing the ear-
lier quartet study by Wing et al., (Jacoby et al., 2015) and investigating metrical 
structure in Malian jembe drumming (Polak, Jacoby, & London, 2015). In addi-
tion, it has been applied to a group sensorimotor synchronisation task in order 
to estimate changes in correction along a chain of individuals moving in time 
with each other (Honisch et al., 2016).

The mathematical derivations of the method are fully explained in the two 
aforementioned publications (Jacoby et al., 2015) and, hence, won’t be reiter-
ated here (for a short overview of the method see Elliott, Chua & Wing, 2016). 
However, the bGLS Toolbox for Matlab is provided with example code for this 
chapter (see book’s GitHub repository).

6	 Conclusion

We have presented methods for collecting, conditioning and analysing the 
timing of movements, ranging from simple finger tapping where response 
events can be captured by switches, force transducers or motion capture sys-
tems to the complexities of music performance where the data commonly 
requires acoustic recording, or in some cases, motion capture data. Regard-
less of the particular technology for capturing timing data, our goal has been 
to maximise the measurement accuracy in order to better characterise, not 
only the accuracy of timing in terms of mean and variability, but also the 
form of variability, in order to reveal the underlying mechanisms that are so 
often key to the skilled performance of complex sequential activities such as 
music and dance.
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