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Abstract 

This thesis investigates the degradation and release of a fluorescent dye from biodegradable 

microparticles. Particular attention is given to determining the effect of polymeric properties 

on the subsequent microparticle degradation and release rate. Chapter 1 reviews the current 

polymerisation techniques for the synthesis of polyesters and introduces the synthetic 

procedures and degradability currently attainable for biodegradable microparticles. The 

concept of ‘smart’ release technology is introduced and the potential for using biodegradable 

‘smart’ particles for enhanced agricultural formulations is explored. 

In Chapter 2, the ring-opening polymerisation (ROP) of a variety of polyesters is 

demonstrated, including an investigative study on the ROP of poly(3-hydroxybutyrate) (PHB) 

using magnesium 2,6-di-tert-butyl-4-methylphenoxide (Mg(BHT)2(THF)2). The polyesters 

are used to prepare microparticles via a single oil-in-water solvent evaporation technique, a 

range of formulation parameters are studied to enable optimisation of the subsequent particle 

size and stability. 

Chapter 3 investigates the encapsulation of a model fluorescent dye into poly(L-lactide) 

(PLLA) microparticles and the subsequent PLLA particle degradation and dye release under 

simulated environmental conditions is reported. 

Chapter 4 describes the degradation and release of 3-bromo-4-(butylamino)-2,5-dihydro-1H-

pyrrole-2,5-dione (ABM) from a range of polyester microparticles, investigating the effect of 

polymer properties (e.g., molecular weight, crystallinity, etc.) on the particle degradation and 

release rate. 

In Chapter 5, the incorporation of a stimulus responsive polymer using optimised particle 

synthesis and degradation conditions (detailed in Chapter 2 and 3) is investigated. The 

successful tuneable microparticle degradation and release is described by incorporation of a 

light-responsive poly(nitrobenzyl malic acid) (PNO2BnMA) into homopolymer blends of 

PLLA microparticles. 
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Chapter 6 explores the synthesis of degradable poly(vinyl acetate) (PVAc) microparticles by 

the incorporation of 2-methylene-1,3-dioxepane (MDO) degradable ester linkages into the 

polymer backbone via free radical ring-opening polymerisation (rROP) and post-

polymerisation microparticle synthesis (using the optimised solvent evaporation technique 

detailed in Chapter 2). The successful encapsulation of ABM into P(MDO-co-VAc) 

microparticles is reported and compared to encapsulation into PVAc microparticles.  

In Chapter 7, the synthesis of poly(ω-pentadecalactone) (PPDL) microparticles using the 

optimised single oil-in-water emulsion technique (Chapter 2) is reported. Investigation into 

the synthesis and degradation of films prepared from random copolymers of PPDL and poly(ɛ-

caprolactone) (PCL) is described. An attempt at polymerisation-induced self-assembly (PISA) 

using block copolymers of PPDL and poly(ɛ-decalactone) (PeDL) is demonstrated. 

In chapter 8, a general summary of Chapters 2-7 is presented and key findings and conclusions 

highlighted. Chapter 9 provides the experimental methods used throughout this thesis and 

Chapter 10 provides supporting degradation studies for Chapter 3 and 4. 
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1.1 Polymers in Agriculture 

 Current Challenges Facing Agriculture 

Agriculture provides the backbone to successful international health and economic 

development. The term agrochemical applies to a chemical that aims to protect, 

manage or enhance an agricultural environment and thus encompasses a wide range 

of materials (such as pesticides, fungicides, herbicides, etc.). Since the first reported 

use of an insecticide over 4,500 years ago, the application of agrochemicals has 

become essential to the provision of efficient crop production observed today.1 

Consequently, there is currently a broad array of available agrochemicals, each with 

distinct desired abilities, such as, fertiliser, pest management and disease prevention 

and control.2 In particular, the 1940’s-1960’s were termed the ‘Green Revolution’, 

resulting from extensive research and development which has led to major advances 

in the fields of fertilisers, water quality, pesticides, new crop strains and other 

technologies (Figure 1.1).3 The human population is expected to grow by 80 million 

people per annum, with a projected total reaching 9.2 billion by 2050.4 Therefore, 

there is a rapidly growing demand for increased plant and crop production.  

 

Figure 1.1: Graphical representation of the world population’s growth from 10,000 BC to the 

predicted population in 2150 by Popp et al.4 
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Agrochemicals are generally applied through spraying, broad casting and other 

techniques.4,5 However, depending on the distribution method and climatic conditions, 

the agrochemicals can easily be lost as a consequence of leaching, volatilization and 

degradation. In the worst case, up to 90% of the applied agrochemicals never reach 

their intended target (Figure 1.2).5 Consequently, to achieve the desired agrochemical 

concentration for optimum plant protection, an excess of agrochemical is required to 

be applied at regular intervals. A large proportion of agrochemicals are known to be 

toxic, therefore, a high concentration of loss can lead to detrimental ecological side 

effects on plant life, animals, public health and the surrounding environment.6 

Undoubtedly, the beneficial outcomes observed through the application of 

agrochemicals will continue to be a pivotal tool in the ever-advancing diverse 

agricultural technologies that help to maintain and improve living standards 

worldwide. Nevertheless, with the increasing population, there is a continued need to 

reduce the amount of agrochemical required to achieve safe and efficient crop growth.6  

Controlled release technology using polymeric materials has emerged as a promising 

pathway to successfully reduce the predicted strain on the agricultural industry.7 This 

Chapter highlights the advancements observed within conventional polymerisation 

techniques. The concept of controlled release using biodegradable microparticles is 

introduced, with specific focus on the current and future progress for microparticle 

synthesis via a solvent-evaporation technique and the subsequent microparticle 

degradation and controlled release. The innovative advancements observed using 

stimuli-responsive drug delivery vehicles are discussed and the potential benefits 

afforded by utilising these devices within agriculture assessed and reviewed. 
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Figure 1.2: Graphical representation of desired pesticide concentration vs. actual pesticide 

concentration as a function of time from conventional and controlled release systems by Roy et al.5 

 

 Polymer Synthesis 

To date, a vast library of synthetic polymers are available. Currently, polymers have 

found use and are indispensable within almost all aspects of modern day life, (e.g., 

packaging, drug delivery, paint, protective coatings etc.). In general, polymer 

synthesis can be grouped into two classifications; chain-growth and step-growth 

polymerisation. The type of reaction can be determined according to the dependence 

on the degree of polymerisation (DP) or molecular weight on the monomer conversion 

(Figure 1.3).8 Chain growth polymerisation usually requires an initial reaction between 

the monomer and an initiator to start the growth of the chain. The polymerisation can 

then proceed through direct reaction of the monomer with the reactive end-group of 

the growing polymer chain. Consequently, for a chain-growth polymerisation, it is 

characteristic to observe an initial rapid consumption of monomer followed by slower 

growth of all the initiated chains. On the other hand, step-growth polymerisation 

proceeds via only one process, the reaction between two reactive functionalities (a 

dicarboxylic acid and a diol, a dicarboxylic acid and a diamine, etc.). The reaction has 
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been shown to occur via the reaction of two functionalities within one monomer, (e.g., 

amino acids), or between two separate molecules (e.g., diisocyanates and diols to form 

polyurethanes). As a consequence of the single step-reaction mechanism, the resultant 

polymer chain builds up slowly e.g., reaction of two functionalities to create a dimer, 

dimer reacts with dimer to form a tetramer etc. However, typically, the polymerisation 

pathway is less defined e.g., a tetramer can react with a dimer or trimer, etc., hence, 

the polymerisation is uncontrolled and as such, the technique is limited to the 

formation of simple architectures.  

 

Figure 1.3: Graphical representation of the difference in molecular weight evolution against 

conversion for chain-growth, step-growth and living polymerisation procedures by Darling et al.8 

 

Living polymerisation is a modified form of chain-growth, where again rapid initiation 

is proceeded by chain propagation. In an ideal living polymerisation, termination 

reactions are supressed.9 Therefore, all of the polymer chains grow linearly and can 

retain their end group functionality, thus enabling the production of higher ordered 

structures, (e.g., di-, tri- and multi-block copolymers).10 
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1.1.2.1 Free Radical Polymerisation 

Free radical polymerisation (FRP) contributes an integral role in commercial 

polymerisation processes.11 Since the first report of radical polymerisation by Simon 

et al. in 1839, who observed light-induced polymerisation of styrene, interest in radical 

polymerisation has escalated rapidly.12 In fact, approximately 50% of all commercially 

available synthetic polymers are prepared by this fundamental synthetic technique.13 

Furthermore, the mild reaction conditions have enabled a pivotal pathway to the 

successful polymerisation of an extensive range of monomers, including acrylates, 

methacrylates, styreneic monomers and vinyl acetates. FRP has been shown to be 

tolerant to a wide range of functional groups (for example, OH, COOH, NR2, CONR2 

etc.), as well as being compatible with protic solvents, such as water. 

FRP proceeds via a chain-growth polymerisation procedure and can generally be 

divided into three sections; initiation, propagation and termination.14 The technique 

has been shown to be successfully applied to a range of reaction conditions (e.g., bulk, 

suspension, emulsion, etc.). These attractive properties make FRP simple to 

implement and inexpensive in relation to competitive technologies, thus enabling its 

successful incorporation into industrial procedures. Nevertheless, the high reactivity 

of the radicals present during polymerisation often results in a high proportion of chain 

termination and side reactions. Hence, polymers prepared via conventional FRP 

characteristically have broad dispersities and uncontrolled molecular weights.  

1.1.2.2 Controlled Polymerisation 

The discovery of controlled polymerisation techniques (such as reversible addition-

fragmentation chain-transfer (RAFT), ring-opening polymerisation (ROP), nitroxide-

mediated polymerisation (NMP) and atom-transfer radical-polymerisation (ATRP)) 

have the potential to revolutionize polymer science. Controlled polymerisations aim 
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to achieve quantitative initiation and supress termination reactions occurring during 

polymerisation, thus yielding well-defined polymers with narrow molecular weight 

distributions (ÐM). Indeed, controlled polymerisation techniques enable good control 

over the chain-end fidelity, thus enabling the synthesis of complex architectures, such 

as multiblock copolymers and hyperbranched materials, which have found use in a 

broad array of applications, (including pharmaceutical, agrochemical, packaging 

etc.).15, 16  

 Ring-Opening Polymerisation of Polyesters 

Since the pioneering discovery of the first synthetic polyester in 1930 by Carothers et 

al., a diverse range of polyesters have been synthesised and applied for a broad array 

of applications.15 As a consequence of the ever-growing demand for sustainable 

resources, biodegradable polyesters such as poly(lactic acid) (PLA), poly(δ-

valerolactone) (PVL) and poly(ɛ-caprolactone) (PCL) have received particular 

attention.17-19 Polyesters have been synthesised by several methods, including; step 

growth polymerisation, ring-opening polymerisation (ROP) and free radical 

polymerisation.20-22 ROP has received specific interest as a consequence of the high 

control afforded throughout polymerisation. Therefore, this allows the accurate 

targeting and tuneable control over the molecular weight, thus enabling the production 

of more refined macromolecular architectures (e.g., block copolymers, star-shaped 

polymers, hyperbranched materials etc.).23-25 In general, polymerisation of a cyclic 

monomer proceeds via a chain-growth mechanism and as such, ROP can allow the 

production of high molecular weight polymers. 
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Scheme 1.1: Schematic representation of ROP of a cyclic lactone 

 

For small ring lactones (4-, 6- and 7- membered rings), the relief of bond-angle strain 

and steric repulsions between atoms of the ring acts as the driving force for ROP.26 

However, the structure of the monomer has a large impact on the polymerisation 

behaviour, in fact not all rings are susceptible to being ring-opened.27 The availability 

for a cyclic monomer to be ring-opened and the optimum polymerisation conditions 

can be determined using the change in Gibbs free energy upon transformation 

(Equation 1), e.g., if ΔG < 0, the reaction is favoured, whereas if ΔG > 0, the reaction 

will not proceed. For instance, the 5-membered γ-butyrolactone experiences very little 

ring-strain and as such displays a positive enthalpy and Gibbs free energy, hence 

polymerisation is not favoured.27 On the other hand, for the majority of lactones the 

relief of ring strain results in an exothermic release that subsequently generates a 

highly negative enthalpy, thus permitting polymerisation to occur.26 

∆𝐺0 =  ∆𝐻0 − 𝑇∆𝑆0 

Equation 1: Gibbs free energy equation 

 

In general, for 6- and 7-membered rings, ring strain is less prominent than for smaller 

rings, hence, if reliant on ring strain alone the polymerisation would proceed at a 

relatively slow rate. The polymerisation rate would be dependent upon factors 

including the monomer type, monomer concentration and reaction temperature. 

Therefore, to enhance the polymerisation rate, a catalyst is usually applied to the 

system. A wide range of catalysts have been investigated for ROP of cyclic lactones 
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(Figure 1.4).28-32 Typically, the type of catalyst can be broadly categorised into 

organic, inorganic or enzymatic catalysts.33 Most inorganic catalysts consist of a metal 

centre with surrounding ligands, thus enabling tuneable catalytic properties depending 

on the metal and ligands used. However, removal of the inorganic catalyst after 

polymerisation is expensive and often leads to toxic catalytic residues within the final 

polymer. Conversely, organocatalysts are usually either acidic or basic, so can easily 

be removed through simple washing.34 Moreover, organocatalysts can display good 

stability during storage and polymerisation, which has been observed to be 

problematic when using an enzymatic catalyst.35, 36  

 

Figure 1.4: Selection of representative catalysts applied for the ROP of cyclic lactones, M = metal 

centre, Ln = Ligand34, 37-41 

 

 

 

 

Inorganic:

Organic:

NHC’s: Acidic: Basic:
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Macrolactones (14-, 15- and 16-membered lactones) are a particularly interesting class 

of monomers as a consequence of their potential to provide an efficient synthetic 

pathway to the production of high molecular weight polymers.42-44 Unlike 

conventional lactone rings, the large structure observed with macrolactones increases 

the flexibility within the monomer and consequently decreases the observed ring 

strain.45 Nevertheless, even with the decreased ring strain, ROP can be achieved 

through the introduction of an entropic gain. This is usually achieved via the use of 

more strenuous reaction conditions (e.g. high temperature) and as such macrolactones 

have been less widely studied. 
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1.2 Controlled Release Using Polymeric Materials 

The inspirational work accomplished in materials science encouraged the innovative 

production and development of controlled release technology. Indeed, since the first 

reports of controlled release from silicone rubber and polyethylene in the 1960’s, 

substantial research has been focussed on designing novel drug delivery vehicles, 

methodologies and equipment.46-48 To this date, a multitude of delivery devices have 

successfully achieved controlled release, such as thin films, hydrogels, self-assembled 

structures, nano- and micro-particles.49-52 Furthermore, the extremely adaptable 

properties attainable with polymeric devices have enabled their wide spread 

application for a multitude of diverse applications, e.g., agricultural, medicinal, 

cosmetics, food products, perfume, printing, etc.19, 53, 54 

 Controlled Release from Microparticles 

The term microparticle is typically defined as a spherical particle with the size varying 

between 1-1000 μm.55 In the 1960’s, Chang et al. reported the first encapsulation of a 

macromolecular therapeutic protein into a polymeric microcapsule.56 The particles 

were semi-permeable, thus enabling diffusion of the encapsulated enzyme to the 

specific target substrate both in-vivo and in-vitro. The attractive advantages offered by 

encapsulation, (such as lower drug doses, protection of the encapsulated substance, 

decreased toxicity of the encapsulated material, etc.) sparked a surge in research into 

controlled release formulations utilising microparticles.57 Following from the 

pioneering work by Chang et al., in 1976 Mason et al. introduced the concept of 

degradability by coating a narcotic antagonist, cyclazocine, with degradable poly(D,L-

lactic acid) (PDLLA).58 Since these revolutionary studies, a wide range of materials 

have been employed for microparticle synthesis, e.g., polyamides, polyesters, 
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poly(amino acids), polyorthoesters, ceramics and glass.59-61 In general, the types of 

particles synthesised can be split into two categories (Figure 1.5):62 

1. Reservoir Microcapsules: The desired encapsulated material is encased within 

a typically water-insoluble material. Reservoir particles can either consist of a 

main central reservoir containing the encapsulated AI, or the AI can be 

dispersed in smaller reservoirs within the polymer membrane. 

2. Matrix Microparticles: The chemically active substance is combined within a 

desired matrix material. 

 

Figure 1.5: Diagrammatic representation of the two main types of microparticles 

 

The type of particle synthesised is highly dependent on the technique applied for 

particle synthesis, the desired encapsulated active ingredient (AI) and the required 

release mechanism.63 Since the initial reports of diffusion controlled release, a variety 

of release mechanisms have been investigated, which include direct dissolution, 

erosion, osmotic pump systems and ion-exchange resins.63-65 Direct dissolution 

involves either coating or encapsulating the AI within a particle that is partially soluble 

within the required release medium, thus enabling AI release as the particle 
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coating/particle matrix dissolves. Application of an osmotic pump system involves the 

build-up of pressure within the device which acts to push out the AI via an orifice, this 

is usually applied to a reservoir microcapsule. Particle systems using an ion-exchange 

resin are used commercially, where a drug is bound to the resin and released by 

exchanging the appropriately charged ions, in contact with the ion exchange groups.  

1.2.1.1 Microparticle Synthesis 

There are many techniques known, both physical and chemical, that are capable of 

manufacturing microparticles (e.g., phase separation, precipitation, pan-coating, 

spray-drying, etc.).59, 66-69 However, the most widely used methods are based on simple 

emulsion techniques. Solvent evaporation has received particular interest as a 

consequence of its simple methodology and easily tuneable nature. Furthermore, 

particle synthesis via solvent evaporation is a post-polymerisation technique, 

therefore, it can be easily adapted and applied using a wide range of materials.62 

Several procedures exist for solvent evaporation, the methodology chosen depends on 

the selected materials and the desired application. 

1.2.1.2 Single Oil-in-Water Solvent Evaporation 

Preparation of polymeric particles using a single oil-in-water solvent evaporation 

technique has been successfully achieved for the encapsulation of an extensive variety 

of drugs (e.g., anti-cancer drugs, steroids, narcotic agents, etc.).70-72 The technique can 

be split into two stages; the first step is emulsification, this requires the mixing of an 

organic phase (usually consisting of the polymer and AI dissolved in a volatile organic 

solvent) and an aqueous phase (containing a surfactant).73 The second stage is known 

as particle hardening and involves evaporation of the volatile organic solvent (Figure 

1.6).74 
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To generate the emulsion, the organic and aqueous phases are mixed before physically 

applying a force to make the organic phase disperse as droplets within the aqueous 

phase. This is usually achieved through high shear mixing, e.g., using a Silverson 

mixer or by sonication. Hence, varying the emulsification length and intensity can be 

used to control the particle size and particle size distribution.75 After emulsification, 

the solution is slowly stirred enabling the successful removal of the organic solvent. 

The high volatility of the solvent enables diffusion of the organic solvent into the 

continuous water phase and its evaporation at the water-air interface.73 This in turn 

results in polymer precipitation and subsequent particle hardening. 

1.2.1.2.1 Factors Affecting Particle Composition 

Numerous variables are known to affect the particle formation and AI encapsulation 

and release when using a single oil-in-water emulsion technique, both within 

emulsification and particle hardening. During emulsification, process parameters, 

such as emulsification time and intensity are well known to affect the resultant 

microparticle size.75 The type of material used for particle synthesis is a key factor in 

predicting the AI release rate. A diverse range of materials have been applied as the 

 

Figure 1.6: Schematic representation of microparticle synthesis via single oil-in-water solvent 

evaporation 

1) Emulsification 2) Particle Hardening

Aqueous 
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particle matrix. However, as a consequence of the good biocompatibility and 

biodegradability observed with biodegradable polymers, polyesters, such as PLA, 

PCL and poly(lactic-co-glycolic acid) (PLGA) continue to be the pivotal materials 

selected for the design and synthesis of innovative microparticle delivery vehicles.76-

78 Several reports have distinguished a clear influence of the polymer molecular weight 

on the AI release rate, for instance, Makino et al., investigated the release of the 

steroid, estradiol, from PLGA particles at three different PLGA molecular weights.79 

Characterisation of the drug release by fluorescence spectroscopy revealed that as the 

molecular weight increased, the release rate decreased as a consequence of the 

decreased surface area: volume ratio (Figure 1.7).79 Furthermore, the release of 

estradiol was considered to be a consequence of diffusion between the device interior 

and the bulk solution, polymer degradation and change in water content within the 

particle. Further investigations into emulsification parameters have shown that the 

polymer concentration, microparticle size and the encapsulated AI can all have a 

significant effect on the particle release rate.80-82 Therefore, overall, it can be surmised 

that the rate of AI release from particles synthesised via a single oil-in-water technique 

is foremostly governed by the properties of the polymer and the encased AI. 

 



Chapter 1. Introduction 
 

 

16 

 

 

Figure 1.7: Graph displaying the difference in release rate obtained from PLGA microparticles with 

varying PLGA molecular weight79 

 

To achieve the optimum conditions for successful particle hardening, the organic 

droplets are required to remain dispersed and stable to coalescence, within the 

continuous aqueous phase. Moreover, the particles must remain stable long enough 

for evaporation of the organic solvent to occur, thus permitting the formation of stable, 

solidified microparticles. Therefore, to prevent droplet coalescence, the aqueous phase 

typically contains a surfactant that can stabilise the dispersed phase droplets.75 Indeed, 

the surfactant aligns at the droplet surface, thus acting to lower the free energy at the 

water-oil droplet interface and subsequently increasing the particle stability.83 

Multiple surfactants have been applied, however, as a consequence of its good 

biocompatibility, the non-ionic poly(vinyl alcohol) (PVA) has been the most widely 

investigated.84, 85 Furthermore, investigations by Sansdrap et al., have reported that an 

increase in surfactant concentration can decrease the particle size.86 The decreased 

particle size can result in an increased rate of AI release as a consequence of the 
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decreased total volume of the particle. Hence, the applied stabiliser and stabiliser 

concentration can significantly influence the AI release profile. 

The organic solvent has an integral role in both emulsification and particle 

hardening.87 In general, the organic solvent should be able to easily solubilise the 

polymer and drug, be immiscible with the continuous phase and have a relatively low 

boiling point. Several solvents have been applied for the synthesis of microparticles 

via solvent evaporation emulsion technique, however, as a consequence of its high 

volatility, low boiling point and high immiscibility in water, most reports have 

focussed on dichloromethane.84 The rate of solvent removal is a key factor in 

controlling the particle morphology and AI encapsulation and release rate. Many 

factors are known to affect the time required for solvent extraction, for example, the 

ratio of the continuous phase to the organic phase, temperature, organic solvent 

volatility, etc.72, 88 Indeed, Jeyanthi et al. investigated the effect of increasing the 

organic solvent extraction rate by transferring the prepared emulsion into a larger 

continuous phase.89 However, they discovered the decreased extraction time (less than 

30 min) resulted in increased porosity within the particle. Additional reports have 

noted the increased extraction of the solvent resulted in increased loss of encapsulated 

AI during particle synthesis and consequently a decreased encapsulation efficiency.90 

In a different approach to enhance the solvent extraction rate, several studies have 

investigated the effect of the addition of a co-solvent (e.g., methanol) into the aqueous 

phase.91 However, even though an initial increase in solvent removal rate was 

observed, the overall time required for particle solidification did not significantly 

change.  

Solvents used in microencapsulation may be retained in the microsphere as a residual 

volatile organic impurity.72 Bitz et al. determined the total amount of residual 
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dichloromethane in a microsphere via multiple headspace gas chromatography (GC).92 

A rotary evaporator was used to remove the dichloromethane from the microsphere 

before storing the particles under vacuum for three days. The researchers found that 

the level of residual dichloromethane was below the recommended 600 ppm (as 

outlined by the European Medicines Agency).93 However, dichloromethane is known 

to be non-biocompatible, therefore, several reports have focussed on finding and 

utilising ‘greener’ solvents.94-96 As a consequence of its decreased toxicity, in 

comparison to dichloromethane, and its good volatility, ethyl acetate appeared to be a 

promising alternative. However, the partial miscibility of ethyl acetate with water (a 

factor of 4.5 times higher than dichloromethane), resulted in the formation of fibre-

like agglomerates as a consequence of the fast precipitation of the polymer which is 

associated with rapid extraction of the dispersed phase.95 Several modifications were 

considered, including pre-saturation of the continuous phase with ethyl acetate and 

decreasing the polymer concentration. However, the resultant particles appeared to be 

partly collapsed and displayed low E of the respective encapsulated AIs.96 

Typically, hydrophilic AIs diffuse out of the particle matrix as the organic solvent 

evaporates, this can result in a very low E and a large initial burst release. With the 

aim to increase the E of a hydrophilic AI, several investigations into the formation of 

a single oil-in-oil emulsion have been reported.97, 98 To achieve a single oil-in-oil 

emulsion, the AI and polymer are dissolved in a water miscible oil phase (such as 

acetonitrile), before being suspended and emulsified with a second immiscible oil 

continuous phase. The water miscible oil-phase can then be either evaporated or 

extracted into water, resulting in particle hardening. Investigations into the 

development of water-in-oil emulsions and double oil-in-water emulsions have also 

reported increased E of encapsulated hydrophilic AI’s.99, 100 
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1.2.1.3 Double Oil-in-Water Solvent Evaporation 

The double oil-in-water emulsion technique has attracted particular attention as a 

consequence of its simple methodology and ability to successfully encapsulate 

hydrophilic AI’s with increased E compared to the single oil-in-water emulsion. To 

create a double emulsion, initially a water-in-oil emulsion is prepared (Figure 1.8); the 

drug is dissolved within an aqueous phase before emulsifying with an excess of 

organic solvent. The emulsion is then added to an excess of a second aqueous phase, 

thus resulting in the formation of a water-in-oil-in-water emulsion. The second 

aqueous phase typically contains an oil soluble surfactant, which is usually a fatty acid 

ester e.g., polyoxyethylene or sorbitan to stabilise the particles. 

 

Figure 1.8: Schematic representation of microparticle synthesis via double oil-in-water solvent 

evaporation technique 

 

Similar to a single oil-in-water technique, a wide array of parameters are known to 

influence the particle formation and subsequent AI release when using a double 

emulsion technique.100 Specifically, Siepmann et al., investigated the effect of the size 
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of biodegradable microparticles on the release rate of the encapsulated drug.81 To 

achieve this, Siepmann et al. prepared microparticles of PLGA loaded with the drug 

5-Fluorouracil (5-FU) via the double emulsion technique. Analysis of the degradation 

behaviour of the polymer and morphological changes of the microparticles upon 

exposure to the release medium via DSC, SEM and SEC revealed that the release rate 

of the drug increased as the microparticle size increased.81 

The double emulsion technique has proven to be a great alternative for the 

encapsulation of drugs that are insoluble in organic solvents. However, similarly to a 

single oil-in-water emulsion system, the particle size and morphology obtained using 

a double emulsion is highly dependent on the emulsification parameters.101, 102 

Furthermore, as a consequence of the uncontrolled particle synthesis attained with 

emulsification of an organic and aqueous phase, both the single and double oil-in-

water emulsion procedures display broad particle size distributions, with standard 

deviations of the distribution equal to 25%-50% of the average size.67 Even though 

these characteristic broad particle size distributions are usually reproducible, the lack 

of control observed with a conventional emulsion technique prevents the controlled 

synthesis of advanced, hierarchical particle morphologies (e.g., Janus particles), which 

have been shown to be highly desirable for enhanced drug delivery.103 

1.2.1.4 Microfluidic Devices 

The microparticle size can significantly affect the AI release rate, hence, the large 

particle size distribution observed with conventional emulsion techniques has been a 

large limitation in the production of accurate, reproducible controlled release.104 

Consequently, with the ever-advancing research into controlled release technology, 

increasing attention has been focussed into the synthesis of mono-disperse, custom 

designed, multi-functional microspheres. In particular, the synthesis of microfluidic 
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devices has received considerable attention as a consequence of their ability to yield 

particles with a high E and a low particle size distribution, with a standard deviation 

compared to mean less than 3%.105 In general, a microfluidic device utilises a modified 

emulsion technique, where controlled flow technology is applied to introduce a 

dispersed phase (containing polymer and AI) into a larger continuous phase (usually 

an aqueous solution containing a surfactant). The dispersed phase is injected through 

a flow-focussing microchannel (typically tens of micrometers in dimension), hence 

the diameter of the microchannel can be used to control the particle size (Figure 

1.9).106 The flow of the continuous phase is also controlled as the fluid dynamics at 

the microchannel controls droplet break up, hence the dispersed phase forms particles 

as a consequence of the shear force and interfacial tension at the fluid-fluid interface. 

 

Figure 1.9: Schematic representation of microparticle synthesis using a microfluidic device a) and b) 

PLA/ nanoclay in dichloromethane organic phase with varied nozzle diameter105 

 

As a consequence of its easy synthesis and good bio-compatibility, most research has 

focussed on using poly(dimethylsiloxane) (PDMS) as the microfluidic droplet 

generator. However, PDMS does have limitations in this application, as it is well 

known to swell and deform when in contact with organic solvents.107 Hence, 

increasing attention is being directed to the synthesis of novel microfluidic droplet 

generators. Indeed, Utada et al. investigated the use of a glass capillary device, which 
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offered to minimize wetting, is cheap to fabricate and is more mechanically robust and 

inert than polymeric devices.108 Following from this work, Ekanem et al., synthesised 

PLGA microparticles utilising a glass capillary microfluidic device.105 Utilising their 

novel counter-current flow focussing glass capillary devices, Ekanem et al., revealed 

they could tune the PLA and PLGA particle size, shape, internal structure and surface 

roughness morphology (Figure 1.10). 

 

Figure 1.10: Diagrammatic illustration of structures synthesised by Ekanem et al. using a glass 

capillary microfluidic device a) conventional PLA or PCL particle, b) nanoclay embedded polymer 

particle, c) golf-ball like particle and d) janus and hemispherical particle105 
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Within a microfluidic particle synthesis, the particle size is highly dependent on the 

size of the microfluidic droplet generating nozzle. As the nozzle size is decreased, the 

increased shear forces are present at the orifice, therefore, there is high potential for 

the generation of blockages within the nozzle.109 Furthermore, the difficulties in 

operation of the instrumentation along with problematic cleaning makes this process 

less favourable than conventional processing techniques. However, the ability to 

obtain control over the particle size along with the promise of the controlled synthesis 

of advanced morphologies suggests the high future potential for the application of 

microfluidic devices within multiple disciplines of industrial applications. 

 Controlled Release Using Degradable Microparticles 

1.2.2.1 Biodegradable Polymers 

In general, the degradation of polymeric materials can be split into four categories; 

hydrolytic, enzymatic, oxidative and physical degradation.110 As a consequence of the 

heteroatom linkages present within common polymer backbones, hydrolytic and 

enzymatic degradation are the most frequently observed degradation pathways for 

polymers. A wide range of enzyme-catalysed degradation reactions are available, 

however, the only known mechanism of enzyme-mediated degradation of a synthetic 

polymer is hydrolysis.111 Moreover, the degradable polymers with hydrolysable bonds 

can react with water to form two or more lower molecular weight degradation species 

(Scheme 1.2). 
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Scheme 1.2: Schematic illustration of the hydrolysis of a) carbonate, b) ester and c) disulfide bonds 

 

1.2.2.2 Biodegradable Microparticles 

The increasing legislation regarding the resistance of polymeric waste to degradation 

and its disposability have resulted in an increased interest for the use of biodegradable 

polymers for microparticle synthesis. A wide range of both natural and synthetic 

degradable polymers have been used for microparticle synthesis (Table 1.1). As the 

polymers decompose, they ideally form non-toxic, low molecular weight species 

which can be easily metabolised or adsorbed by organisms both within the body and 

in the environment.19, 112, 113 Upon degradation, several degradable polymers are 

known to form toxic species, hence the chemical nature of the degradation products is 

a key factor of determining the polymer biocompatibility.114 Polymer biocompatibility 

is typically characterised by performing cell studies during degradation. 
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Table 1.1: Table summarising the different types of polyesters, their preferred degradation route and 

their use when applied as a microparticle 

Polymer Degradable Bond Degradation 

Pathway 

Polymeric Microparticle Application 

Polyanhydride 

 

Hydrolysis 

Poly(sebaic anhydride-co-

1,6-bis(p-

carboxyphenoxy)hexane115 

Delivery of 

ovalbumin 

for 

enhanced 

antibody 

response 

Polyorthoester 

 

Hydrolysis 

Poly(cyclohexane-1,4-diyl 

acetone dimethylene 

ketal)116 

Delivery of 

superoxide 

dismutase 

for the 

treatment of 

inflammator

y diseases 

Polyurethane 

 

Hydrolysis, 

enzymatic 

Copolymer of toluene-2,4-

diisocyanate, bis(4-

hydroxybutyl)8,8’-(5,6-

dihexylcyclohex-3-ene-

1,2-diyl)dioctanoate and 

1,4-butanediol117 

Delivery of 

isosorbide 

for 

anticorrosio

n/ self-

healing 

coatings 

Polyester 

 

Hydrolysis, 

enzymatic 
PLGA118 

Controlled 

release of 

insulin 

Polycarbonate 

 

Hydrolysis, 

enzymatic 
Polycarbonate119 

Release of 

aspirin, 

griseofulvin 

and p-

nitroaniline 

to the 

intestine 

Polyamide 

 

Hydrolysis, 

enzymatic 

Poly(hexamethylene 

terephthalimide)120 

Controlled 

release of 

ascorbic 

acid for 

improved 

skin 

treatments 

 

The use of biodegradable polymers for the synthesis of matrix type microparticles has 

been intensively studied as a consequence of the attractive potential to control the 

encapsulated AI release rate solely by the polymer degradation rate.121 In general, 

microparticles can undergo homogenous (bulk) degradation or heterogeneous 
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(surface) erosion (Figure 1.11).122 However, it is not uncommon to observe both 

degradation profiles within the same microparticle degradation system. In more detail, 

bulk degradation involves the random hydrolytic scission of hydrolysable bonds 

throughout the particle matrix.111 During homogeneous degradation, both the particle 

mass and density decrease, whereas the total volume of the particle remains constant 

throughout. Furthermore, as a consequence of the reduced diffusivity observed within 

a particle matrix, acidic degradation products can be trapped and accumulate within 

pockets or pores within the particle.123 Consequently, the observed change in pH 

within the system can in turn result in autocatalytic degradation of the polymeric 

matrix.124, 125 This is usually coupled with a loss of structural integrity and mechanical 

stability which typically results in the break down and collapse of the particle.  

On the other hand, heterogeneous degradation necessitates that hydrolysis at the 

particle surface is faster than water penetration into the particle matrix.110 This in turn 

results in an observable degradation of the particle from the outside towards the core. 

Surface erosion is typically characterised by a linear decrease in particle volume with 

mass, which results in the density remaining constant throughout. Unlike bulk 

degradation, the generated degradation products can rapidly diffuse away from the 

system.126 Therefore, no auto-catalytic effects within the particle matrix are observed, 

hence, degradation is solely based on the polymer degradation rate at the particle 

surface. 
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Figure 1.11: Schematic representation of surface and bulk degradation occurring within a matrix 

microparticle and the corresponding drug release rate 

 

1.2.2.2.1 Polyesters for Biodegradable Microparticles 

In this demanding area, as a consequence of their synthetic versatility, good 

mechanical and thermal properties and their easy degradability under a variety of 

conditions, polyesters have become the most intensively studied and investigated 

degradable particles.64, 127 Indeed, investigations into the synthesis of PLA, PVL, PCL 

and PLGA microparticles are well known in the literature. Research has shown 

depending on the polyester used and the degradation conditions, the AI, which can be 

encased or dispersed within a polyester particle, can be slowly and continuously 

released over a period of days to years. In particular, Gonzalez et al., investigated the 

degradation of PLA microparticles incubated at 37 °C in a buffer solution over 8 

months (Figure 1.12).128 SEM characterisation displayed signs of particle degradation 
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after 9 days. Further characterisation of the PLA particles revealed the formation of 

large pores within the particle after 143 days in the buffer solution, thus implying that 

bulk degradation had occurred. Interestingly, characterisation of the particles by X-

ray diffraction, Gonzalez et al., discovered that the PLA particles displayed an increase 

in crystallinity during degradation, which fit well with previous PLA characterisation 

by Migliaresi et al., who termed the behaviour as “degradation-induced 

crystallisation”.129 Further elucidation of the X-ray diffraction spectrum by Gonzalez 

et al. revealed the formation of a crystalline oligomeric structure formed during 

particle degradation. Crystallisation is a highly interesting phenomenon and has been 

shown to influence the resultant polymer degradation rate.130 Moreover, as a 

consequence of the increased interactions enabled by tightly packed crystalline 

polymer chains, an amorphous polymeric matrix will display increased diffusivity 

within the particle matrix. Therefore, the increased diffusivity enables an increased 

influx of water and consequently an increased rate of hydrolysis. Therefore, the 

observed crystallisation of low molecular weight species within PLA particles could 

act to decrease the particle degradation and subsequent AI release rate. 

 

Figure 1.12: SEM characterisation of PLA microparticle degradation in Titrisol buffer solution (pH 

7, merck reagent) after a) 0 days, b) 9 days and c) 143 days as observed by Gonzalez et al.128 
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The degradability of a particle is primarily determined by the degradation rate 

associated with the applied polymer.121 Therefore, with the aim to incorporate tuneable 

degradability within a microparticle system, particle synthesis using a wide selection 

of polyester copolymers has been investigated.71, 131 The use of copolymers for particle 

synthesis has also been shown to be an ideal pathway for the incorporation of 

functionality within the system. A second approach to incorporate tuneable 

degradation profiles has been to create particles from homopolymer blends, thus 

enabling the combining of the desired polymeric properties without the complexity 

and time required for copolymerisation.132, 133 

1.2.2.3 Typical Release Profiles 

The overall aim with encapsulation into microparticles is to achieve controlled or 

sustained release of the encapsulated AI, therefore, significant attention has been 

focussed on elucidation of the drug release profile. The most desirable drug release 

behaviour would follow a zero-order profile, showing a constant AI release with time 

until all of the encapsulated substance has been released.134 However, it is well 

acknowledged that the AI can be released via diffusion through water filled pores 

within the particle. The diffusion of the AI through the particle matrix is determined 

by random movements of the drug and further driven by chemical potential gradients 

and convection produced by osmotic pressure. Therefore, in most cases, release 

profiles are more complex and often multiphasic.100 Simplistically, drug release from 

a polyester matrix microparticle can be separated into two main expulsion processes; 

an initial burst release followed by a constant release (Figure 1.13). 
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Figure 1.13: Graphical representation of an idealistic zero-order AI release profile vs. a conventional 

biphasic AI release profile 

 

The initial burst observed within a matrix microparticle has been attributed to dye 

diffusion to the particle surface during the encapsulation process.87 Typically, the 

initial burst release can result in the expulsion of 10-50% of the original drug load.109 

In a conventional single oil-in-water emulsion technique, a large quantity of the 

encapsulated AI will diffuse to the particle surface as the dichloromethane evaporates, 

hence an initial burst release using a standard solvent evaporation set-up is usually 

unavoidable. Whilst the initial burst release is not always high, a large release of AI 

could be toxic to the surroundings and also be irregular between batches. Therefore, 

several reports have investigated a variety of methodologies which aim to reduce or 

alleviate the burst release (e.g., addition of excipients to the polymer phase, synthesis 

of novel polymers and encapsulating a drug in particulate form).135 Further research 

into the initial burst release revealed that in general, the concentration of dye released 
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during the initial burst is thought to be dependent on the compatibility of the particle 

matrix and AI, the solubility of AI in the processing solvent and the availability of 

diffusion within the particle matrix.64 Therefore, the initial burst release can be 

minimised by carefully optimising and tuning the emulsion conditions before particle 

synthesis. 

After the initial burst, the AI typically follows a constant release rate until complete 

release has been achieved.136 During this second stage, the AI release rate is highly 

dependent on both diffusion of the AI through the polymer matrix and the polymer 

degradation rate. Hence, the AI release rate during constant release can be controlled 

by the degradation rate of the polymeric material used for the particle matrix.137 Bulk 

degradation of the particle matrix increases the porosity of the particle, which in turn 

increases the availability for dye diffusion and release. Nevertheless, the autocatalytic 

degradation observed within polyester particle systems can act to enhance the AI 

release rate. Therefore, degradation observed within a particle system is typically 

faster compared to degradation of the free polymer in solution. Consequently, in 

practice, enhanced drug release after erosion effects is often observed after an initial 

diffusion controlled lag.138 On the other hand, some particles are more susceptible to 

surface degradation, which requires that hydrolysis at the particle surface is faster than 

water penetration into the matrix. Subsequently, the particle degradation rate can be 

controlled by varying the particle thickness, rather than by changing the total volume 

of the particle system. Therefore, for some particle systems, where the predominant 

erosion mechanism follows surface degradation, (such as polyanhydrides or 

polyorthoesters) zero-order AI release can be achieved. 
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1.3 Smart Release Technology 

When selecting the optimal degradable release system for a specific application, the 

most significant criteria is for the material to decompose within a suitable and tuneable 

time period that is compatible with the desired drug release rate. Within nature, the 

most important, fundamental substances are macromolecules that can adapt their 

structure or behaviour depending on their surrounding environment.139 Inspired by the 

dynamic versatility and efficiency observed within living systems, research into the 

synthesis and development of stimuli-responsive (also known as ‘smart’ or 

‘intelligent’) polymers has been intensively researched.140-142 Synthetic smart 

polymers have been designed to undergo either chemical or physical changes within 

response to small environmental variations.142 A wide variety of stimuli parameters 

have previously been investigated, such as, pH, temperature, light and carbon 

dioxide.143-149 Furthermore, as a consequence of the high efficiency offered by stimuli-

responsive polymers, they have been applied for a broad array of applications with a 

multitude of controlled release devices (e.g., hydrogels, nano/micro-particles, films, 

etc.).50, 150-152 

 Stimulus-Responsive Particles 

Incorporating a stimulus-responsive polymer within a particle system enables 

modulated control over the site-specific AI release. Furthermore, this can be 

advantageous in both controlling the concentration of AI released and for tailoring the 

AI release rate. For this reason, multiple approaches have been investigated to develop 

stimulus-responsive particles; development of novel responsive polymers, 

copolymerisation of one or more smart polymers with a conventional polymer, 

blending smart polymers with conventional polymers, etc.153-155 
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In general, pH-responsive polymers consist of an ionisable acidic or basic residue, 

whose ionisation depends on the pH of the surrounding solution.156 pH-Responsive 

particles have received a lot of attention especially for drug delivery applications.60, 

157, 158 Indeed, within the medical field, numerous particle systems have been 

developed specifically targeting delivery to the low pH of the stomach (pH 1.5-3.5) or 

higher pH observed within the intestine (pH 6.0-7.4).159, 160 Lin et al., discovered that 

particles synthesised from differing ratios of chitosan and heparin could encapsulate 

antibiotics for the prevention and treatment of peptic ulcers.161 In more detail, the 

degradable particles controlled the localised release of the encapsulated drug whilst 

acting to protect the incorporated AI from destructive gastric acids. On a similar note, 

numerous pH-sensitive drug-delivery systems have also taken advantage of the 

difference in pH observed with healthy tissues (7.4) and the extracellular environment 

of solid tumours (6.5-7.2), thus enabling site-specific release of anti-cancer drugs to 

cancerous cells.162, 163  

Stimuli parameters can often require forcing conditions to trigger an environmental 

change. However, the excellent exogeneous and non-invasive control attainable using 

a photo-responsive system has enabled the engineering of light-responsive polymers 

whose structural modification can be induced under mild conditions for a variety of 

wavelengths (ultraviolet, visible or near-infrared regions).164 Consequently, a wide 

range of photo-responsive systems have been designed and investigated for a broad 

array of applications.51, 139 Azobenzene derived materials have received particular 

attention as a consequence of their easily irradiation-induced switchable 

isomerisation.165 Moreover, cis-azobenzene is relatively polar with a dipole moment, 

conversely, trans-azobenzene is a stable macromolecule with no dipole moment. The 
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observed change from cis-trans azobenzene can result in a complete change in 

electronic structure, geometric shape and polarity.139  

In recent years, to further improve the versatility of drug delivery systems, increasing 

research into the synthesis and design of multi-responsive polymers has been 

observed.155, 166, 167 In certain pathological systems, pH-gradients and oxidative 

environments co-exist, therefore, the combination of pH and redox responsive 

particles has been shown to be highly advantageous for the design of drug delivery 

vehicles.168 Indeed, Sokolovskaya et al. synthesised novel dual responsive Janus 

microparticles based on a novel poly(ethylene glycol) based polymer.169 The polymer 

contained both a redox responsive thioether and a light sensitive nitrobenzyl group, 

thus enabling selective degradation via the application of either oxidative stress or UV 

light, thus demonstrating their high potential for controlled release. 

 Smart Release in Agriculture 

With the increasing population and imminent strain on the agricultural industry, 

controlled release technology has emerged as a promising alternative to conventional 

agrochemical delivery with the promise to solve the problems accompanying the use 

of some agrochemicals, while avoiding possible side effects with others. The 

agrochemical can be contained within a material, which allows for the controlled 

release of the AI to the desired target. Therefore, the substance can be slowly and 

continuously released for up to several years. This can be highly advantageous, leading 

to fewer repeat applications, reduced agrochemical toxicity levels and increased 

efficiency of the agrochemical. This can be demonstrated by the recent work by Meyer 

et al., who investigated the controlled release of the pesticide imidacloprid from PLGA 

microparticles.170 On its own, imidacloprid is known to cause undesirable toxicity 

towards and has been found to be especially detrimental to colonies of honey bees. 
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However, Meyer et al., discovered by encapsulating the imidacloprid into PLGA 

microparticles using a solvent evaporation technique, approximately 200 times less 

pesticide was required to achieve the same mortality of psyllids as the pesticide on its 

own.  

Currently, several micro-encapsulated products are commercially available that aim 

to achieve slow release effects within the crop market, in particular Stomp Aqua 

(BASF), Samurai II CS Insecticide (J. Oliver Products) and Force (Syngenta).171-174 

Syngenta owns a patent that uses base-triggered microparticles which are designed to 

open in the alkaline environment of insect guts.174 As a consequence of the high levels 

of localised control offered by ‘smart’ release systems, increasing research is being 

performed to enable stimulus-responsive release of agrochemicals. Indeed, Hill et al. 

investigated the synthesis of biodegradable pH-responsive nanoparticles for site-

specific agrochemical delivery.175 Moreover, the synthesised amphiphilic 

functionalised polysuccinimide particles displayed controlled release under alkaline 

conditions, thus enabling the localised release of an AI to the plant phloem (pH 7.3-

8.5). Similar work by Chen et al., also detailed the localised release of an encapsulated 

AI to the plant phloem through the novel synthesis and encapsulation into pH-

responsive amphiphilic polysuccinimide star copolymers.176 The next fifty years are 

predicted to be the most challenging yet with regards to the strain applied on the 

agricultural industry. Therefore, the exciting opportunities attainable through the 

application of innovative ‘smart’ release technologies have the potential to shape and 

define the successful future for more efficient, enhanced agricultural practices. 
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1.4 Conclusions 

In this Chapter, the diverse array of available polymerisation techniques are 

introduced, with specific attention given to the advancements observed within the 

ROP of polyesters. The significant developments within the synthesis of 

biodegradable particles has revolutionised controlled release technology. In particular 

the application of biodegradable release systems promises to increase drug efficiency 

whilst reducing any associated toxicity of the encapsulated AI. The current synthetic 

procedures for microparticle synthesis using a solvent-evaporation technique are 

reviewed, including the innovative advancements set to define the future practices 

within this field for the development of controlled, precision microparticle synthesis. 

Specific attention is focussed on particle synthesis using a single oil-in-water 

technique and the effect of process parameters on the subsequent microparticle size, 

degradation and release rate.  The microparticle biodegradation pathways and the 

proceeding release profiles are discussed and the concept of ‘smart’ release technology 

is introduced, with specific focus given to the potential advantages for more efficient 

agricultural procedures.  
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2.1 Introduction 

The ever-increasing demand for sustainability, means that there has been a surge of 

interest in research into biodegradable materials.1-3 In general, biodegradable 

polymers can be defined as those who break down into low-molecular weight 

compounds in the presence of microorganisms.4-8 Therefore, they have been shown to 

be ideal materials for use as the polymer matrix to encapsulate a wide range of active 

ingredients (AI’s).9-11 Furthermore, the low molecular weight species formed during 

polymer degradation are typically non-toxic and can be easily metabolised or absorbed 

by organisms within the soil.12-16 Therefore, this still enables controlled release of an 

AI, but without causing further harm to the environment. In particular, polyesters such 

as poly(lactic acid) (PLA), poly(ɛ-caprolactone) (PCL) and poly(3-hydroxybutyrate) 

(PHB) have received a lot of attention as a consequence of their ability to undergo 

degradation under environmental conditions.17-19 

Polyesters are typically synthesised via two processes: polycondensation of a diol and 

dicarboxylic acid or by ring-opening polymerisation (ROP) of a cyclic monomer. ROP 

of cyclic monomers has been widely studied as a consequence of the good control 

attainable over the growth of polymer chains during polymerisation (Scheme 2.1).20 

Hence, ROP offers an efficient pathway to the specific and detailed design over 

polymer composition, molecular weight and microstructure.21-23 A vast library of 

catalysts have been studied for the controlled ROP of polyesters, including enzymes, 

inorganic catalysts and organocatalysts.24-30  
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Scheme 2.1: Schematic representation of ring-opening polymerisation of a polyester.20 

 

Investigations into the synthesis of PLA, PCL and poly(lactic acid-co-glycolic acid) 

(PLGA) microparticles have been well reported in the literature.31, 32 Several synthetic 

techniques have been shown to successfully prepare the biodegradable microparticles, 

such as single and double oil-in-water emulsions, phase separation or precipitation and 

spraying methods.33-37 Particle synthesis using an oil-in-water single emulsion is 

highly desirable for industrial applications as a consequence of its simple and easily 

tuneable methodology. However, the production of stable particles using a solvent-

evaporation technique is highly dependent on the emulsion set-up and therefore, even 

small changes in the organic phase evaporation rate can alter the particle morphology 

and encapsulation efficiency.38 Additionally, various other factors are known to affect 

the particle morphology, encapsulation and release rate, such as the particle size, 

stabiliser concentration, the polymer type and polymeric molecular weight.39-42  

The vast majority of crops require the protection and beneficial influence of 

agrochemicals to enable increased crop efficiency.43 Nevertheless, an excess of 

agrochemical is currently required to be applied to the crop to achieve the essential 

quantity for optimum plant protection.44 A large proportion of agrochemicals are toxic 

above specific concentrations, therefore, the increased quantity can result in 

undesirable environmental side effects.45 Consequently, controlled release technology 

using biodegradable particles promises an efficient alternative to conventional 

n = 1 β-Propiolactone
n = 3 δ-Valerolactone
n = 4 ɛ-Caprolactone
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agrochemical delivery, providing a route to increased yields with reduced active 

ingredient (AI) toxicity. 

As a consequence of the increased efficacy promised by agrochemical encapsulation, 

the aim of this thesis was to provide a simple approach to prepare stable and 

degradable microparticles for controlled AI release. To successfully control the release 

of an AI, a reproducible methodology of creating stable microparticles with tuneable 

degradation properties was required. Therefore, this Chapter details the controlled 

polymerisation of a range of cyclic monomers with different properties and their 

subsequent use to create biodegradable microparticles. In order to accurately target 

different molecular weights whilst maintaining a narrow size distribution, the 

polyesters were prepared via ROP. Using the resultant polyesters, a single oil-in-water 

emulsion technique was used to prepare biodegradable microparticles. The size and 

stability of the particles was optimised by monitoring the effect of a range of variables 

during particle synthesis. 
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2.2 Results and Discussion 

2.2.1 Ring-Opening Polymerisation of Cyclic Monomers 

2.2.1.1 L-Lactide 

The ROP of L-LA was carried out using a benzyl alcohol (BA) initiator and 1,8-

diazabicycloundec-7-ene (DBU) as catalyst, analogous to the procedure by Lohmeijer 

et al. (Scheme 2.2).46 Four molecular weights were targeted by varying the initial 

monomer to initiator ratio (Table 2.1). The concentration of monomer (0.7 M in 

dichloromethane) and DBU (1 mol%) were kept constant for each targeted DP. 

 

Scheme 2.2: Schematic representation of ROP of L-LA at RT with DBU as a catalyst 

 

Table 2.1: ROP of 0.7 M L-Lactide in CH2Cl2 with varying [L-LA]: [BA] using DBU at RT 

 

Polymer 
Target 

[M]/[I] 

Time 

(h) 

Mn theory 

(g mol-1)a,b 

Mn NMR 

(g mol-1)a 

Mn SEC 

(g mol-1)c 

ÐM 

SECc 
DP 

PLLA 25 25 0.25 3,700 4,200 4,900 1.18 28 
PLLA 75 75 0.75 10,800 11,100 19,000 1.06 77 
PLLA 100 100 1 14,400 14,900 17,600 1.07 103 
PLLA 250 250 2.5 35,700 35,200 41,000 1.05 244 
aDetermined by 1H NMR spectroscopy, bCalculated from ([L-LA]0/[BA] x conv. x (Molecular weight 
of L-LA) + (molecular weight of BA), cDetermined by SEC analysis in CHCl3 against polystyrene 
standards 

 

Characterisation of PLLA 25 by 1H NMR spectroscopy revealed the typical polymer 

profile expected for PLLA as seen in the literature by Csihony et al., (Figure 2.1).47 

The multiplet peak at δ = 7.33 ppm corresponds to the phenyl group on the chain end, 

thus confirming the successful polymerisation initiation from benzyl alcohol. The 

actual DP was calculated by comparison of the integration of the peak at δ = 7.33 ppm 
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with the integration of the shift for the methine proton next to the carbonyl on the 

polymer backbone at δ = 5.18 ppm. Varying the monomer: initiator ratio enabled the 

production of polymers with tuneable molecular weights (Table 2.1) and narrow ÐM, 

approaching 1, as observed by SEC analysis (Figure 2.2).  

Figure 2.1: 1H NMR spectrum of PLLA 25 (CDCl3, 300 MHz) 

 

Figure 2.2: Normalised SEC traces for PLLA DP 25, 75, 100 and 250 (CHCl3, polystyrene (PS) 
standards) 
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2.2.1.2 D, L-Lactide 

The properties of PLA have been shown to be highly dependent on the polymer 

tacticity.48 Consequently, it was interesting to investigate the effect of chirality on the 

resultant microparticle properties. Hence, PDLLA was synthesised using the same 

ROP conditions as PLLA (Section 2.2.1.1), including using a benzyl alcohol initiator 

and DBU (1 mol%) as catalyst (Scheme 2.3). As expected, similar polymerisation 

results were obtained as compared to PLLA (Table 2.2). 

 

Scheme 2.3: Schematic representation of of ROP of D, L-LA at RT with DBU as a catalyst 

Table 2.2: Characterisation data for polymerisation of PDLLA with varying [PDLLA]: [BA] ratio  
 

Polymer 
Target 
[M]/[I] 

Time 
(h) 

a,bMn 

theory
 

(g/mol)  

aMn NMR 
(g/mol)  

cMn SEC 

(g/mol)  

cÐM 

SEC 
DP 

PDLLA 25 25 0.25 3,500 3,000 5,600 1.10 21 

PDLLA 75 75 0.75 7,700 11,100 13,200 1.06 77 

PDLLA 100 100 1 13,800 13,800 21,400 1.08 95 

PDLLA 250 250 2.5 35,400 35,700 36,000 1.14 247 
aDetermined by 1H NMR spectroscopy, bCalculated from ([D, L-LA]0/[BA] x conv. x (Molecular 
weight of D, L-LA) + (molecular weight of BA), cDetermined by SEC analysis in CHCl3 against PS 
standards 

 

Analysis by 1H NMR spectroscopy detailed the successful synthesis of PDLLA 25 

(Figure 2.3), confirmed by the presence of the characteristic peaks for PDLLA as seen 

in literature.49 The varying chirality observed with PDLLA results in the presence of 

both syndiotactic and isotactic proton environments, thus leading to an observed 

overlapping of the 1H NMR resonances. Hence, the increased breadth of the methine 

resonance on the polymer backbone (δ = 5.18 ppm (Figure 2.3)), compared to the 

symmetric splitting pattern observed with PLLA (δ = 5.18 ppm (Figure 2.1)) confirms 
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the production of racemic PLA. Characterisation of the varying DP PDLLA polymers 

revealed the presence of monomodal traces with narrow ÐM (Figure 2.4).  

Figure 2.3: 1H NMR spectrum of PDLLA 25 (CDCl3, 300 MHz) 

 

 

Figure 2.4: Normalised SEC traces for PDLLA DP 25, 75, 150 and 250 (CHCl3, PS standard) 
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2.2.1.3 ɛ-Caprolactone 

The ROP of ε-CL was performed in line with the procedure by Makiguchi et al. using 

a benzyl alcohol initiator and diphenylphosphate as a catalyst (DPP) in 1 M toluene 

(Scheme 2.4).50 In order to fairly compare the effect of different monomers on polymer 

microparticle degradation and release rate, the same four DPs were targeted as for 

PLLA and PDLLA (DP 25, 75, 100 and 250) (Table 2.3). 

 

Scheme 2.4: Schematic representation of ROP of ε-CL with a BA initiator and DPP catalyst in 1 M 
toluene at RT 

 

Table 2.3: Characterisation data for the polymerisation of ɛ-CL with a varying Monomer: BA 
initiator ratio in 1 M toluene at RT 
 

Polymer 
Target
[M]/[I] 

Time 
(h) 

Mn theory
 

(g mol-1)a,b 

Mn NMR 
(g mol-1)a 

Mn SEC 

(g mol-1)c 

ÐM 

SECc 
DP 

PCL 25 25 4 3,000 3,000 4,700 1.06 25 
PCL 75 75 12 8,700 8,100 12,800 1.05 70 
PCL 100 100 16 11,000 16,000 17,900 1.10 98 
PCL 250 250 24 26,000 27,700 27,000 1.08 242 

aDetermined by 1H NMR spectroscopy, bCalculated from ([ɛ-CL]0/[BA] x conv. x (molecular weight 
of ɛ-CL) + (molecular weight of BA), cDetermined by SEC analysis in CHCl3 against PS standards 

 

All of the polymerisations produced polymers with narrow ÐM and Mn NMR close to 

the expected Mn theory thus proving that good control over the polymerisation can be 

achieved for a range of molecular weights yielding polymers with high chain end 

fidelity. Signals corresponding to the methylene on the PCL polymer backbone were 

observed at δ = 4.06 ppm in the 1H NMR spectrum, as demonstrated for PCL 25 

(Figure 2.5), suggesting the successful polymerisation of the monomer. The singlet at 

δ = 5.11 ppm, representing the methylene on the chain end, could be easily 

distinguished and integrated, thus enabling calculation of the polymer DP. Further 
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characterisation of the polymer by SEC revealed that the polymers all have 

monomodal traces with narrow ÐM (Figure 2.6). 

Figure 2.5: 1H NMR spectrum of PCL 25 (CDCl3, 300 MHz) 

  

 

Figure 2.6: Normalised SEC traces for PCL DP 25, 75, 150 and 250 (CDCl3, 300 MHz) 
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2.2.1.4 β-Butyrolactone 

Mg(BHT)2(THF)2 has previously been studied for the polymerisation of ɛCL and more 

recently as a catalyst for the polymerisation of the cyclic macrolactone, ω-

pentadecalactone (PDL).24, 51 Hence, it was interesting to investigate the catalytic 

ability of Mg(BHT)2(THF)2 on a smaller, 4-membered ring lactone. The ROP of β-BL 

was performed in a 1 M solution of toluene at 80 ̊ C using benzyl alcohol as an initiator 

and left to react overnight (Scheme 2.5). The polymer was purified by precipitation 

into excess methanol.  

 

Scheme 2.5: Schematic representation of ROP of β-BL with Mg(BHT)2(THF)2 as a catalyst 

 

The successful polymerisation of PHB was confirmed by 1H NMR spectroscopy 

(Figure 2.7), thus allowing for the calculation of the DP through the ratio of the benzyl 

methylene resonance at δ = 5.11 ppm to the methylene resonance of the PHB at δ = 

5.26 ppm (Figure 2.7). SEC characterisation of the polymer (Figure 2.8) confirmed 

the successful controlled polymerisation of PHB using Mg(BHT)2(THF)2. The 

dispersity measured by SEC was determined to be 1.15, which fits well with the 

observed narrow, monodisperse trace (Figure 2.8). Therefore, the catalytic activity of 

Mg(BHT)2(THF)2 for polymerisation of β-BL was investigated further. 
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Figure 2.7: 1H NMR spectrum of PHB 75 (CDCl3, 300 MHz) 
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Figure 2.8: SEC characterisation of PHB 75 (CHCl3, PS standards) 
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2.2.1.4.1 Catalytic Activity of Mg(BHT)2(THF)2 in the ROP of β-BL 

Based on the polymerisation time of poly(ω-pentadecalactone) (PDL) reported by 

Wilson et al., the polymerisation kinetics were observed over a 15 h period.51 

Monomer conversion was monitored during the polymerisation using 1H NMR 

spectroscopy via the disappearance of the methine monomer signal at δ = 4.7 ppm and 

the occurrence of the methine polymer signal at δ = 5.26 ppm, in good agreement with 

previous literature.52  

Whilst monitoring the kinetics of the polymerisation of PHB using Mg(BHT)2(THF)2, 

it was observed that after 3 h the polymerisation had reached 40% conversion. 

However, the conversion did not increase further even after 8 h. The decreased 

reaction time compared to that observed for PDL was hypothesised to be a 

consequence of the smaller cyclic structure of β-BL compared to PDL. The smaller 

size of the ring means that β-BL has decreased flexibility and therefore, increased ring 

strain. Consequently, the polymerisation of β-BL is driven by the entropic gain of 

rotation from ring-opening rather than ring strain enthalpy, resulting in shorter reaction 

times. Therefore, the kinetic run was repeated over a shorter time period of 30 minutes 

and characterised by 1H NMR spectroscopy and SEC (Table 2.4 and Figure 2.9). 
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Table 2.4: Kinetic analysis of polymerisation of PHB 100 with Mg(BHT)2(THF)2 with a 1:1 
monomer:initiator ratio, at 1M in toluene over 30 min 

Polymer 
Time 

(min) 

Mn theory
a,b 

(g/mol) 

Mn SEC
c 

(g/mol) 
ÐM

c 
Conversiona 

(%) 

1 6 2,300 3,600 1.17 26 

2 12 2,800 4,500 1.16 31 

3 18 3,000 4,400 1.17 34 

4 24 3,400 4,900 1.15 38 

5 30 3,600 5,600 1.14 40 
 

aDetermined by 1H NMR spectroscopy, bCalculated from ([β-BL]0/[BA] x conv. x (molecular weight 

of β-BL) + (molecular weight of BA), cDetermined by SEC analysis in CHCl3 against PS standards 

 

 
Figure 2.9: SEC of 2 M β-BL over 30 min at 80 ºC (CHCl3, PS standards) 

 

1H NMR spectroscopy and SEC analysis revealed that the polymerisation had stopped 

within 30 minutes. The resultant SEC traces showed monodisperse traces, with no 

evidence of unwanted transesterification reactions. However, it was observed that the 

polymerisation only proceeded to a low monomer conversion of 40%. Therefore, with 

the aim to increase the total monomer conversion, the polymerisation conditions, such 

as temperature and the initial concentration of monomer and catalyst were varied 

systematically (Table 2.5).  
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Table 2.5: Characterisation data of PHB 100 after 30 min with varied polymerisation conditions 

PHB [M] [M]:[I]:[Cat] 
Temperature 

(°C) 

Conversiona 

(%) 

Mn 

(g/mol)b 
ÐM

b 

1 2 M 100:1:1 80 40 4,800 1.15 
2 4 M 100:1:1 80 58 5,600 1.22 
3 Bulk 100:1:1 80 48 2,800 1.45 
4 2 M 100:0:1 80 2 - - 
5 2 M 100:1:5 80 40 1,800 1.37 
6 2 M 100:1:1 RT 29 2,100 1.81 
7 2 M 100:1:1 60 31 2,800 1.14 
8 2 M 100:1:1 70 59 6,400 1.27 
9 2 M 100:1:1 85 59 5,700 1.27 

 

aDetermined by 1H NMR spectroscopy, bDetermined by SEC analysis in CHCl3 against PS standards 

 

1H NMR spectroscopy and SEC analysis of PHB with a range of polymerisation 

conditions revealed that even with increased monomer concentration and temperature, 

the conversion still only reached 40-60%. It was hypothesised that the catalyst could 

be competing with the benzyl alcohol to act as initiator, thus hindering its catalytic 

capabilities. However, 1H NMR spectroscopy determined that only minimal 

conversion was evident after 30 minutes. Furthermore, even with an increased initial 

catalyst loading, (in the presence of benzyl alcohol initiator) a monomer conversion 

of 40% was attained with a broader dispersity of 1.37. Therefore, it was postulated 

that the catalyst was quenched during the polymerisation. To confirm this hypothesis, 

an extra aliquot of catalyst was added to PHB 1 (Table 2.5) after polymerisation for 

30 min at 80°C. Subsequent 1H NMR spectroscopy and SEC analysis revealed that the 

monomer conversion increased by 20%, whilst still maintaining the monodisperse 

SEC trace. Further investigation of the subsequent 1H NMR spectrum revealed the 

characteristic shift for the alkenyl group of a crotonate at δ = 5.7 ppm (Figure 2.10).53 

The crotonate occurs via α-deprotonation of the monomer during initiation, thus 

releasing water as a side product. It was hypothesised that the water released during 
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crotonate formation interacts with the Mg catalyst, thus diminishing its catalytic 

ability. 

Figure 2.10: 1H NMR spectrum showing crotonate formation during PHB 100 polymerisation with 
Mg(BHT)2(THF)2 

 

2.2.1.4.2 Elucidation of the Mechanism of ROP of β-BL using Mg(BHT)2(THF)2 

Ring opening of β-BL can occur via either acyl cleavage or alkyl cleavage (Scheme 

2.6). Acyl cleavage results in the formation of an alkoxide chain end and is 

characteristic of a coordination-insertion mechanism. Conversely, alkyl cleavage is 

typical of an anionic mechanism and produces a carboxylate. Penczek et al. and Brulé 

et al. reported that diphenyl phosphoryl chloride (DPPCl) can be reacted with the ring 

opened polymer to yield a tetraphenoxydiphosphate with a carboxylate chain end or a 

phosphate in the presence of an alkoxide chain end. Subsequently, characterisation via 

31P NMR spectroscopy enables elucidation of the polymerisation mechanism. 

h
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Scheme 2.6: Schematic representation of the two possible pathways for ring opening of β-BL 

 

The polymerisation was performed at 2 M β-BL and was left at 80 °C for 30 minutes 

before adding an excess of DPPCl. 31P NMR analysis revealed a shift at δ = -13 ppm, 

thus suggesting that the DPPCl had reacted with an alkoxide chain end to produce a 

phosphate (Figure 2.11). Therefore, it was postulated that the polymerisation proceeds 

via acyl cleavage, thus implying a coordination insertion mechanism. 

 

Figure 2.11: 31P NMR spectrum of PHB after polymerisation with Mg(BHT)2(THF)2 for 30 minutes 
at 80 °C obtained after addition of excess DPPCl (δ = -5.94) 

  

a a

b

b
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2.3 Microparticle Formation 

The microparticles were synthesised using a simple solvent evaporation technique that 

requires the formation of a single oil in water emulsion. The creation of the emulsion 

was achieved via homogenisation of an organic phase, consisting of the polymer and 

active ingredient (AI) dissolved in dichloromethane and an aqueous phase containing 

Mowiol 488 (80% hydrolysed polyvinyl alcohol (PVA)) and water. In order to 

produce a high enough shear rate to create a stable emulsion, a Silverson high shear 

mixer was used. Many factors can affect the formation of the particles, therefore, 

before choosing the best polymer and molecular weight, the optimum parameters for 

particle preparation were investigated. 

2.3.1 Varying Shear Time vs Particle Size 

The application of a high shear mixer allows for the production of a fine emulsion. In 

order to do this, the active workhead contains rotor blades, which can undergo high 

speed rotation. The high speed rotation results in a powerful suction, which aims to 

pull solution from the base of the beaker into the centre of the workhead. The material 

is then forced to the periphery of the workhead by centrifugal force, where the solution 

is milled between rotor blades and the stator. This in turn forces the solution radially 

out of the workhead at high velocity, resulting in intense hydraulic shear. The radial 

motion allows for suction of fresh material, creating a circulating mixing cycle, thus 

minimising aeration by reducing the amount of turbulence felt by the surface of the 

liquid.  

The shearing action produced by the mixer controls the particle size. Therefore, the 

particle size is highly dependent on solution viscosity, the concentration of polymer, 

the shear speed and the shear time. Consequently, the concentration of the polymer, 

the shear speed (7000 rpm) and the ratio of organic to aqueous phase were kept 
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constant, which enabled the investigation of shear time on particle size for PCL 25 

microparticles with 1% PVA stabilizer. 

a) b) 

 

Shear 
time 
(s) 

Particle 
size 
(μm) 

Dispersity 

10 27 0.3 
20 41 0.6 

30 23 0.2 
60 21 0.3 

120 17 0.3 
 

Figure 2.12: Light scattering characterisation of particle size versus shear time a) Plot of volume 
against particle size and b) Table showing resultant volume weighted mean particle size and 
dispersity 

 

In order to investigate the effect of shear time on particle size, several batches of 

particles were prepared with varying shear times from 10 to 120 seconds. 

Dichloromethane was evaporated from the suspensions before characterising the 

particle size using a Malvern Mastersizer (Figure 2.12). As expected, the particle size 

decreases with increasing shear time. It was also observed that the lower shear times 

did not produce stable emulsions and furthermore, the particles formed after 10 

seconds of shear seemed to settle and aggregate. This was postulated to be a 

consequence of the increased pull of gravity felt by the increased weight of the larger 

particles, at which point they are too heavy/ insufficiently stabilised by the 

concentration of PVA, that they either aggregate or break apart. Consequently, 30 

seconds of shear was found to be the ideal conditions to create a stable emulsion, 

without over-shearing the particles. 
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2.3.2 Shear Speed Versus Time 

Shear speed heavily influences the particle size and emulsion stability, therefore, four 

different shear speeds were investigated and the resultant microparticle suspensions 

were analysed via light scattering and optical microscopy. Each set of particles were 

prepared using 1 wt% PVA as stabiliser and were subjected to 30 s of shear before 

analysis. 

a) b) 

 

Shear 

speed 

(rpm) 

Particle 

size 

(μm) 

Dispersity 

3000 65 1.58 
5000 20 0.3 

7000 11 0.4 
9000 7.4 0.4 

 

Figure 2.13: Mastersizer analysis showing the size distribution of PCL 25 microparticles at varying 
shear speeds 
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Figure 2.14: Optical microscopy images for PCL 25 microparticles after 30 s at a) 3000 rpm, b) 5000 
rpm, c) 7000 rpm and d) 9000 rpm 

 

As expected, Mastersizer analysis confirms that the particle size decreases with 

increasing shear speed (Figure 2.13). It was found that at 3000 rpm, the solid particles 

were unstable and started to aggregate. This was thought to be a result of the low shear 

speed, which was not high enough to emulsify the whole solution, consequently, an 

unstable emulsion was formed. Conversely, the optical microscopy image (Figure 

2.14) displays particles below 10 μm. It is postulated that this is because the aggregates 

were larger, thus they had started to settle at the bottom of the vial, therefore, only the 

smaller particles were taken up in solution and analysed via microscopy. The particles 

formed at and above 5000 rpm form stable emulsions, however, in order to be 

comparable with previous microparticle projects performed by the industrial partner, 

Syngenta, the particles were aimed to be 10 μm in size. Therefore, at 5000 rpm the 

a) b) 

c) d) 
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particles were slightly too large and 9000 rpm too small, therefore, all of the particle 

formations were performed at 7000 rpm. 

2.3.3 Particle Size Versus Stabiliser Concentration 

After synthesis, the microparticles had a tendency to quickly settle whilst at 1% 

stabiliser. In fact, after just 15 minutes, the particles were highly unstable and had 

aggregated, resulting in the formation of large particles (˃ 1000 μm), as observed by 

light scattering analysis (Figure 2.15). Large clusters of particles were also observed 

via optical microscopy analysis, thus confirming particle aggregation (Figure 2.16). 

Figure 2.15: Mastersizer analysis showing change in size after 15 min Initial size: D[4, 3] = 10.5 μm, 
size after 15 min: D[4, 3] = 173 μm 

 

Figure 2.16: Optical microscopy images for microparticles after shear at 7000 rpm for 45 s left for 
15 min 
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In order to accurately observe particle degradation and release, the particles are 

required to remain dispersed in solution, without aggregation. Therefore, to prevent 

the microparticles aggregating, varying stabiliser concentrations were investigated to 

try and stabilise the microparticle suspensions (Figure 2.17).  

a) b) 

[Stabiliser] 

(%) 

Particle 

size 

(μm) 

Dispersity 

1 10 0.4 

1.5 11 0.4 

2 11 0.4 

2.5 10 1.19 
 

Figure 2.17: Mastersizer characterisation a) graphical analysis showing the change in particle size 
with varying [PVA] b) the change in volume weighted mean and particle size distribution with 
varying [PVA] 

 

As expected, as the stabiliser concentration increased, the observed particle size 

distribution decreased. It was also found that at 1.5% PVA, the particles are less stable 

and have formed aggregates, evidenced by their larger dispersity within particle size. 

At a PVA concentration of 2%, the particles seemed to form microparticles with an 

average volume weighted mean of 11 μm and after subsequent analysis, it can be found 

that the particles are still stable and can be easily re-dispersed even after 36 h (Figure 

2.18). Therefore, all subsequent analysis was performed using 2% PVA. 
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Figure 2.18: Mastersizer analysis showing PCL 25 microparticles initially and 36 h after 
emulsification at 7000 rpm for 30 s at 2% PVA 

 

2.3.4 Temperature Effect on Particle Formation 

After obtaining a stable emulsion, the solution was then transferred to a second flask 

with slow stirring to allow for complete evaporation of the organic solvent. As the 

solvent evaporates, the polymer starts to precipitate resulting in particle hardening. 

Therefore, the particle morphology and encapsulation behaviour is highly dependent 

on the volatility of the organic solvent and the rate of polymer precipitation.  

The effect of temperature on particle size was investigated by varying the temperature 

during particle hardening. In order to do this, an emulsion using PCL 25 as the polymer 

was prepared and split into two separate batches. One batch was heated at 30 ̊ C, whilst 

the other was kept at room temperature. Both solutions were left to stir overnight 

before characterising the particle size and morphology by light scattering and optical 

microscopy (Figure 2.19 and Figure 2.20 respectively). 
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a) b) 

Sample 

Particle 

size 

(μm) 

Dispersity 

Initial 10 0.5 

Heated 
24 h 

8 0.6 

Unheated 
24 h 

59 9.0 
 

Figure 2.19: Mastersizer characterisation a) graphical analysis showing the change in size 
distribution of particles whilst heated at 30 °C and unheated particles during particle hardening after 
24 h a and b) table showing the change in volume weighted mean and particle size distribution 

 

It was hypothesised that heating the particle solution would result in the 

dichloromethane evaporating at a quicker rate compared to the unheated particles, 

leading to decreased particle hardening time and thus larger particles. Light scattering 

analysis detailed that the heated microparticles shrink over time from 10 μm to 8 μm 

and increase in dispersity from 0.5 to 0.6 (Figure 2.19). This trend is as expected; the 

rapid solvent evaporation results in an increase in the rate of particle hardening, thus 

resulting in a broader particle size distribution. On the other hand, the unheated 

microparticles display an increase in volume weighted mean from 10 μm to 59 μm 

after 24 h. This is coupled with an increase in dispersity. Similarly to the heated 

particles, the unheated particles should also display a decrease in particle size during 

particle hardening, however, it was determined that the observed increase was a 

consequence of particle aggregation and broken particles. The broken particles can 

also be seen when characterising the suspension by optical microscopy (Figure 2.20) 

and confocal microscopy (Figure 2.21). 
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Figure 2.20: Optical microscopy images displaying the particle morphology of PCL 25 
microparticles during particle hardening when heated for a) 2 h 30 and b) 24 h and unheated for c) 2 
h 30 and d) 24 h 
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Figure 2.21: a) Confocal microscopy images for the heated PCL 25 after 24 h b) Confocal microscopy 
images for the unheated PCL 25 after 24 h 

 

Before solvent evaporation, the particles are still soft and can be easily misshapen or 

broken. Whilst monitoring the effect of temperature on particle size, the solutions were 

stirred in round bottom flasks containing magnetic stirrer bars, however, it was 

postulated that the stirrer bars were causing the unhardened particles to break and fall 

apart before they could solidify, thus resulting in the formation of broken fragments 
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which could disrupt and affect the light scattering analysis. Therefore, for all 

subsequent particle hardening experiments, an overhead stirrer set on a low speed was 

used. 

2.3.5 Molecular Weight Versus Particle Size 

As the molecular weight and subsequently the length of the polymer chains increases, 

the molecules do not flow as easily in solution and therefore, the viscosity of the 

organic phase also increases. This increase in viscosity will therefore change the shear 

time required to achieve the desired 10 μm sized microparticles. Therefore, four 

emulsions of PCL particles were prepared using different molecular weight PCL. The 

subsequent particles were characterised by light scattering and optical microscopy 

(Figure 2.22 and Figure 2.23). 

a) b) 

 

PCL 

DP 

Particle 

size (μm) 
Dispersity 

25 10 0.4 
75 14 0.5 
150 16 0.4 
250 19 0.4 

 

Figure 2.22: Mastersizer analysis of particles prepared by single oil-in-water emulsion using varying 
molecular weight PCL 

 

As predicted, light scattering analysis revealed that as the molecular weight of the 

polymer increased, the particle size increased. The change in particle size with 

molecular weight was not as drastic as compared to when varying the shear time. 
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Furthermore, the change in particle size is not as evident via optical microscopy 

(Figure 2.23). However, for all molecular weights, no broken particles or aggregates 

were observed, thus suggesting that the emulsions were stable and had not been over-

sheared. 

 

 
Figure 2.23: Optical microscopy images of a) PCL 25 b) PCL 75 c) PCL 100 and d) PCL 250 

 

2.3.6 Varying Polymer 

After the successful synthesis of varying molecular weight PCL microparticles, the 

same optimised emulsion conditions were investigated using PLLA, PDLLA and 

PHB. To accurately compare the resultant particle properties using the different 

polymeric systems, the emulsions were all prepared at the same concentration and 

conditions as for the optimised PCL 25 particles.  
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Table 2.6: Particle size of different polymeric emulsions determined by the volume weighted mean 
recorded via light scattering on the Mastersizer 

Polymer 
DPa 

Polymer Particle Size (μm)b  
PLLA PDLLA PCL PHB 

25 12 ± 0.5 10 ± 0.3 10 ± 0.2 9 ± 0.2 
75 15 ± 1.6 14 ± 0.6 14 ± 0.5 12 ± 1.2 
100 15 ± 0.8 15 ± 0.5 16 ± 0.8 16 ± 0.6 
250 19 ± 0.4 17 ± 0.7 19 ± 0.3 20 ± 1.6 

 

aDetermined by 1H NMR spectroscopy, bDetermined by volume weighted mean from light scattering 
analysis 

 

All polymers display similar trends as previously seen with PCL, where the particle 

size increases as the molecular weight increases (Table 2.6). However, minimal 

change can be seen when varying between polymers. The particle morphology was 

determined via Scanning Electron Microscopy (SEM) (Figure 2.24). 

 

Figure 2.24: SEM analysis for a) PLLA 100 b) PDLLA 100, c) PCL 100 and d) PHB 100 polymeric 
particles 
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2.4 Conclusions 

This chapter detailed the successful synthesis of biodegradable particles from 

polymers with a wide range of properties and molecular weights. Characterisation by 

1H NMR and SEC confirmed the successful ring opening polymerisation of PLLA, 

PDLLA and PCL using organocatalysts. The resulting polymers were proven to be 

well defined and exhibited low dispersity values and monomodal molecular weight 

distributions. Furthermore, the successful controlled polymerisation of PHB was 

reported for the first time using Mg(BHT)2(THF)2 as a catalyst. Investigation by 1H 

NMR spectroscopy and SEC revealed that the molecular weight can be easily tuned 

whilst maintaining a monodisperse SEC trace, however, only a low conversion (ca. 

40%) could be attained. This was postulated to be a consequence of crotonate 

formation during polymerisation. Therefore, it was hypothesised that the water 

released during crotonate formation reacted with the Mg catalyst thus reducing its 

catalytic capability. Reaction of the chain end with DPPCl allowed elucidation of the 

polymerisation mechanism via 31P NMR spectroscopy. The DPPCl was found to react 

with an alkoxide chain end group producing a phosphate, which is characteristic of a 

coordination-insertion mechanism. 

The well-defined polymers were utilised to synthesise 10 μm sized particles, prepared 

via a solvent evaporation technique. Characterisation by light scattering, optical 

microscopy and SEM detailed how the particle size was drastically altered by the shear 

time, shear speed and stabiliser concentration. Therefore, the particle size and stability 

were optimised by tuning the different variables, thus enabling the creation of a 

repeatable procedure for particle synthesis that can easily be applied to a wide variety 

of polymers and molecular weights. 
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These results illustrate the promising potential for degradable microparticles to be 

prepared from well-defined polymers with narrow molecular weight distributions, thus 

enabling further research into the tuneable time specific controlled degradation and 

release of agrochemicals.   
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3.1 Introduction 

Since the first reported use of an insecticide over 4,500 years ago, agrochemicals have 

revolutionised the agricultural industry.1 Encapsulation of the agrochemical can serve 

to protect the active ingredient (AI) from harsh environmental conditions, reduce its 

loss through volatilisation and leaching and also act to reduce any associated toxicity 

of the encapsulated material.2-4 By encapsulating the AI into the matrix of a 

biodegradable microparticle, this enables the controlled release of the agrochemical to 

the desired target as the particle degrades.5 Therefore, the substance can be slowly and 

continuously released for up to several years. 

There are four key mechanisms of biomaterial degradation; hydrolytic degradation, 

enzymatic degradation, oxidative degradation and physical degradation.6 Polyesters 

are well known to be susceptible to hydrolytic degradation (Scheme 3.1).7-10 

Moreover, Untereker et al. have shown that the hydrolytic degradation of polyesters 

occurs via random scission of the hydrolysable ester bonds.11  This in turn results in 

the formation of low molecular weight non-toxic species, which can be absorbed by 

microorganisms in the soil.12-16 In particular, PLA has received a lot of attention as a 

consequence of its excellent biocompatibility and biodegradability.16 Polymerisation 

of stereopure L-lactide enables the production of highly crystalline isotactic 

polymers.17 Hydrolysis of the isotactic poly(L-lactide) results in the formation of lactic 

acid, which can be found naturally in the soil as a consequence of the presence of lactic 

acid producing bacteria.18 The presence of lactic acid producing bacteria within soil 

has been shown to be highly advantageous as they can act to preserve vegetable 

products, to inhibit microorganisms responsible for spoilage and to treat cattle 

manures and sewage for odour abatement.19  
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Scheme 3.1: Schematic representation of the hydrolysis of an ester bond.6 

 

As a consequence of their biodegradable nature, polyesters have been shown to be the 

ideal materials for use as a microparticle matrix.20, 21 PLGA particles prepared by oil-

in-water solvent evaporation have been shown to display bulk degradation properties 

characteristic of degradation of the PLA polymer.22 Furthermore, during particle 

degradation, diffusion of the degradation products is limited throughout the particle 

matrix.23 Therefore, the increased quantity of degradation products creates pockets of 

decreased pH within the particle, thus leading to autocatalyzed degradation of the 

microparticle enabling a controlled release of the encapsulated substance.24, 25 Ideally, 

the optimum release profile would display a constant release over time.26 However, it 

is well reported that release profiles are more complex and often contain two main 

expulsion processes.27  

1) Initial Burst: Where the contained AI is expelled from the particle surface. 

2) Constant Release: This stage is dependent on both diffusion and degradation. 

Particle synthesis via solvent evaporation requires the removal of a volatile organic 

solvent from an oil in water emulsion to form solid polymer particles. Consequently, 

as the solvent evaporates, the encapsulated AI diffuses to the particle edge, therefore, 

an initial burst release is particularly prominent in reports of particles prepared by 

solvent evaporation.28 Currently, there are commercially available micro-encapsulated 

products that aim to achieve slow release effects used within the crop protection 

market, in particular Stomp Aqua (BASF), Samurai II CS Insecticide (J. Oliver 

Products) and Force (Syngenta).29-32 However, only limited research has been done 

δ+

δ-
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into biodegradable particle degradation and release of an AI in environmental 

conditions. 

In order to achieve a tuneable agrochemical release rate, a method for monitoring the 

the particle degradation and subsequent release was required. Consequently, to 

quantitatively monitor AI release, a model fluorescent dye was encapsulated. 

Furthermore, encapsulation of a hydrophobic dye allowed the change in fluorescence 

intensity to be monitored as the particles degraded and the fluorophore was released. 

To simulate a representative model for environmental degradation, specific focus in 

this Chapter is based on degradation and release from poly(L-lactide) (PLLA) in a 

variety of degradation media. 
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3.2 Encapsulation 

Before encapsulation and release of an AI, it is crucial to determine information about 

the microparticle dye loading, degradation and release rate. Therefore, in order to 

quantify these parameters, a study was undertaken looking into the encapsulation of a 

fluorescent dye. Microparticles were synthesised according to the optimised single oil-

in-water solvent evaporation technique detailed in Chapter 2, directly dissolving the 

dye with the polymer in dichloromethane. 

3.2.1 Encapsulation of Rhodamine B 

Rhodamine B (5 wt%) was easily dissolved with poly(L-lactide) DP 100 (PLLA 100) 

into the dichloromethane organic phase, before shearing for 30 s at 7000 rpm with an 

aqueous phase (containing Mowiol 488 (PVA) as a stabiliser). A sample of the 

Rhodamine B containing microparticle solution was taken and compared to a known 

concentration of Rhodamine B in water and the absorbance difference determined 

using UV/Vis spectroscopy, (Figure 3.1). 

 
Figure 3.1: UV/Vis spectrum showing absorbance for free Rhodamine B and a sample of the solution 
after encapsulation into PLLA 100 microparticles 
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The initial encapsulation of Rhodamine B based on UV-Vis absorbance was 

determined to be 89.5%. After the promising initial results, a second experiment was 

performed to elucidate a direct calculation of the quantity of fluorescent proxy 

encapsulated in the particles. In order to do this, the microparticles were washed three 

times with deionised water to remove any excess dye before being fully dissolved in 

dichloromethane. However, subsequent UV-Vis spectroscopy characterisation 

revealed that the hydrophilic dye diffused out of the microparticles into the aqueous 

phase during particle washing. Therefore, it was proposed that the microparticles were 

unable to contain hydrophilic agrochemicals using the single oil-in-water emulsion 

technique.  

3.2.2 Encapsulation of Nile Red 

Nile red is a highly fluorescent hydrophobic dye that can be used as a lipophilic stain 

(Figure 3.2).33 Therefore, it was predicted that the Nile red would either encapsulate 

in the particles or precipitate into the surrounding water, thus enabling its use as a 

suitable dye for a long-term stability study. The microparticles were prepared using 

the same single oil-in-water emulsion technique as previous, but with incorporation of 

Nile red (1 wt%) with PLLA 100 in the organic phase. The suspensions were stirred 

with overhead stirring overnight to enable evaporation of dichloromethane. The 

particle suspensions appeared pink and were characterised by optical microscopy 

(Figure 3.3). 
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Figure 3.2: Chemical structure of Nile red 

 

 

Figure 3.3: Optical microscope image of PLLA DP 100 microparticles with 1 wt% encapsulated Nile 
red 

 

The particle size was characterised via light scattering analysis using a Malvern 

Mastersizer (Figure 3.4). Light scattering characterisation revealed that the particle 

size was not affected by the addition of Nile red in the organic phase, which suggested 

that the small molecular structure of the dye did not drastically affect the viscosity of 

the emulsion. However, a shoulder could be seen at increased particle size, suggesting 

the presence of larger particles in the solution. This was postulated to be a consequence 

of large crystals or clusters of free dye present in solution. 
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Figure 3.4: Light Scattering analysis of PLLA 100 microparticles containing Nile red (1 wt%) 

 

In order to quantify the concentration of free dye in solution, the dye loading of Nile 

red within the PLLA microparticles was characterised using a fluorescence plate 

reader (Figure 3.5). The PLLA 100 particles were washed three times in DI water 

before being dissolved in dichloromethane. The subsequent fluorescence intensity was 

compared to the fluorescence intensity of a calibration of six known concentrations of 

Nile red in dichloromethane. Analysis of the fluorescence intensity determined a very 

high loading efficiency of 99% (Figure 3.5).  

 
Figure 3.5: Fluorescence intensity of encapsulated Nile red compared to known standards of varying 
[Nile red] 
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3.2.2.1 Controlled Release of Nile Red 

To determine the agrochemical release rate during particle degradation, a method for 

monitoring the agrochemical release was required. The hydrophobic nature of the dye 

prevented direct sampling of the fluorescence intensity of the aqueous solution over 

time. Therefore, an aliquot of the microparticle suspension was added to a 50:50 

ethanol: water solution and the subsequent dye release monitored via fluorometry. 

This allowed for the extraction of the dye from the particles via diffusion of the dye 

into the ethanolic solution. It was hypothesised that a high fluorescence intensity 

would signify a fast, uncontrolled release from the particles, whereas successful 

encapsulation would provide a slow release over a longer period. As a reference, the 

change in fluorescence intensity of a sample of free dye was monitored over a period 

of five hours using a plate reader with filters at excitation 390 nm and emission 520 

nm (Figure 3.6). Fluorescence characterisation revealed the free dye dissolved 

instantly into the ethanolic solution. To quantify the release of Nile red from PLLA 

100 particles, an aliquot of particle solution was placed into a 50:50 water: ethanol 

solution.  The subsequent release was monitored over 5 hours using a plate reader 

(Figure 3.6). Whilst monitoring the change in fluorescence intensity, it was observed 

that the particles displayed a very high burst release in respect to their calculated 99% 

dye loading efficiency (Figure 3.6). In fact, after just one day, 91% of the dye was 

released after 1 min in the 50:50 water: ethanol solution. 



Chapter 3. Model Encapsulation and Release of a Fluorophore Using Biodegradable Microparticles 

94 
 

 
Figure 3.6: Release rate of Nile red from PLLA 100 particles into a 50% Water: EtOH solvent 

 

Investigation into the particle morphology by TEM and SEM (Figure 3.7), revealed 

that crystals of the dye were visible on the particle surface. It was postulated that the 

large planar structure of Nile red induced phase separation of the dye from the bulk 

polymer, thus resulting in dye crystallisation.34 Consequently, as the dye crystallised, 

the needle-like crystals perforated the particle wall, hence reducing the dye loading of 

the PLLA particle. After observing the phase separation between PLLA and Nile red, 

it could be deduced that the large crystals observed on the particle surface could also 

be the cause of the increased particle size observed via light scattering (Figure 3.4). 
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Figure 3.7: a) TEM and b) SEM analysis of particles without dye c) TEM and d) SEM analysis of 
particles with 1 wt% dye loading of Nile red 

 

3.2.3 Encapsulation of Aminobromomaleimide 

3-Bromo-4-(butylamino)-2,5-dihydro-1H-pyrrole-2,5-dione (ABM) is a highly 

fluorescent small molecule with a less planar structure compared to the structure of 

Nilered.35 Therefore, it was reasoned that the smaller dye would be able to mix better 

within the microparticles without disrupting the particle morphology. The ABM was 

prepared using a method analogous to Awuah et al.36 In brief, 2,3-dibromomaleimide, 

n-butylamine and sodium carbonate were stirred in tetrahydrofuran (THF) for 2.5 h, 

before removing the solvent in vacuo. The resultant yellow solid was purified via 

column chromatography with a 5:1 petroleum ether: ethyl acetate eluent. 
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Figure 3.8: Chemical structure of Aminobromomaleimide 

 

The particles were prepared using the optimised solvent evaporation technique as 

detailed for rhodamine B and Nile red encapsulation (Section 3.2.1 and 3.2.2 

respectively), dissolving ABM (1 wt%) with PLLA 100 in the organic phase. The 

particles were left to harden overnight before washing with DI water and 

characterising via SEM (Figure 3.9). SEM characterisation revealed that in the 

presence of ABM (1 wt%), the microparticles still maintain their smooth surface and 

display no signs of dye crystallisation on the particle surface (Figure 3.9). 

 

Figure 3.9: SEM images of PLLA microparticles containing 1 wt% aminobromomaleimide 

 

3.2.3.1 Release of ABM from PLLA 100 Microparticles 

Before monitoring the dye release into an ethanolic solution, the optimum excitation 

and emission wavelengths were determined using a 2D excitation-emission spectra. In 

more detail, the fluorescence intensity of ABM in 50% water/ ethanol was monitored 

between an emission range of 250 nm – 700 nm with the excitation wavelength 
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increasing from 205 nm to 450 nm in increments of 10 nm (Figure 3.10). The parallel 

diagonal lines across the contour plot (Figure 3.10) represent scattered light. The 

optimum excitation and emission wavelengths for the ABM in the 50% aqueous/ 

ethanol solvent system were determined to be around 375 nm and 520 nm respectively. 

 
Figure 3.10: 2D excitation-emission spectra (with a 10 nm step) of the ABM in a 50% ethanol: water 
solution at 10 µM 

 

3.2.3.2 Particle Swelling 

Particle swelling has previously been observed during release systems, such as by 

Gasmi et al., when investigating the release of Ketoprofen from PLGA 

microparticles.37 The microparticles prepared using a single oil-in-water emulsion 

technique have been reported to consist of a dense matrix structure.38 Therefore, if the 

microparticles were to swell, the increased size of the particles would result in an 

increased permeability of the particle matrix. Consequently, the diffusion coefficient 

of the AI to the surrounding media would also increase, hence this could affect the AI 

release profile. Therefore, the change in particle size was monitored by light scattering 

(Figure 3.11) and optical microscopy (Figure 3.12) over 24 hours to determine the 

effect of the ethanolic solution on the particle size. 
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Figure 3.11: Light scattering analysis for swelling study of PLLA microparticles in a) a 50:50 water: 
ethanol solution and b) water 

 

 

 

 

 

 

 

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100 120 140 160 180 200 220 240

Vo
lu

m
e 

(%
)

Microparticle Size (µm)

Initial

1 h

6 h

12 h

24 h

a) b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180 200 220 240

Vo
lu

m
e 

(%
)

Microparticle Size (µm)

Initial

1 h

6 h

12 h

24 h



Chapter 3. Model Encapsulation and Release of a Fluorophore Using Biodegradable Microparticles 

99 
 

 

 
Figure 3.12: Optical microscopy characterisation of PLLA particles in a) water, b) A 50:50 water 
and ethanol solution i) Initial solution, ii) 6 h, iii) 12 h and iv) 24 h 
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Even after 24 hours, no change was observed with the particle size in water. 

Conversely, light scattering analysis of the particles in a 50% water: ethanol solution 

showed an increase in particle size over time (Figure 3.11). However, whilst observing 

the particles by optical microscopy, an increase in particle aggregation was observed, 

this was assumed to be the reason for the increase in particle size. PVA is slightly 

soluble in ethanol. Therefore, it was postulated that the addition of ethanol partially 

dissolved the stabilising PVA around the particles, thus resulting in particle 

destabilisation and aggregation. 

3.2.3.3 ABM Dye Loading 

To determine the ABM dye loading, PLLA 100 particles were prepared containing 1 

wt% ABM. The subsequent particles were left to harden overnight and washed with 

DI water before being fully dissolved in dichloromethane. The fluorescence intensity 

of the particles was monitored between 5 washes and compared to a calibration of five 

known concentrations of ABM in dichloromethane using a fluorometer (Figure 3.13).  

Figure 3.13: a) Plot showing the change in fluorescence intensity at each calibration concentration 
and b) Plot detailing how the fluorescence intensity changes between washes with deionised water 

 

Fluorescence analysis revealed that initially the dye loading was 68%, however, after 
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consequence of removal of excess unencapsulated dye collected on the particle 

surface. The variation in dye loading after three plus washes was only minimal, 

therefore, any further loss was postulated to be a consequence of sample loss between 

washes, thus deeming the actual dye loading as 28%.  
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3.3 Microparticle Degradation and Release 

In order to be applicable within agriculture, microparticles ideally should be stable 

enough to be stored for up two years, but show signs of release under environmental 

conditions (i.e., soil, pH, enzymes, etc.). Multiple emulsion batches were prepared, 

washed and dried individually before combining the solid powder and re-immersing 

the particles into the desired solution. To prevent the particles from settling, the 

solutions were continuously rotated throughout the duration of the experiment. 

Aggregation during particle degradation could alter the particle release profile. 

Therefore, to prevent aggregation, a PVA stabiliser (Mowiol 488) was added to the 

system. However, before adding the stabiliser, an initial study was commenced to 

determine the effect of the stabiliser concentration on the particle degradation and 

release behaviour. No change was observed via SEM, SEC or dye release over a two-

month period, therefore, the particles were prepared containing PVA (1 wt%) as 

stabiliser. 

3.3.1 Varying Degradation Media 

As a result of the diverse climate experienced around the world, soil composition can 

change considerably depending on the country and the time of year. Therefore, to 

obtain an accurate representation of particle degradation in a range of soil 

environments, the degradation and release of PLLA 100 microparticles was 

investigated in a variety of degradation media. 

3.3.1.1 Aqueous Medium 

Water is one of the key components in most soil compositions and often the chosen 

medium for storing the microparticle suspensions. Polyesters are known to degrade 

under hydrolytic conditions, consequently, an investigation was performed looking at 

the particles’ stability in an aqueous environment. PLLA 100 microparticles 
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containing ABM (0.1 wt%) were synthesised, washed to remove excess dye and then 

re-suspended in deionised water (containing 1 wt% PVA stabiliser). Samples were 

taken once a week for the first 6 months and then fortnightly for the succeeding 6 

months to monitor particle degradation via SEM and SEC (Figure 3.14 and Figure 

3.15 respectively). No visual change of the particle morphology was observed via 

SEM throughout the 12-month period (Figure 3.14).  

 

Figure 3.14: SEM characterisation of PLLA 100 microparticles after a) 0 months, b) 4 months, c) 8 
months and d) 12 months in water 

 

Characterisation of the particle degradation via SEC revealed the formation of lower 

molecular weight peaks after 7 months in an aqueous solution (Figure 3.15). During 

polyester hydrolysis, water can react with the carbonyl group of the ester, causing the 

polymer chain to fragment, thus resulting in the formation of lower molecular weight 

species. Therefore, the presence of low molecular weight peaks via SEC, suggests the 

onset of PLLA degradation. Conversely, the minimal variation in intensity of the main 
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polyester molecular weight SEC peak implied only negligible amounts of bulk 

degradation had occurred. The intensity of the observed low molecular weight peaks 

appeared to decrease and vary in molecular weight as time progressed. Previous 

investigation into the degradation of PLA and poly(glycolic acid) (PGA) by 

Hakkarainen et al., revealed that the amorphous regions within the semi-crystalline 

polymer degrade preferentially and is usually followed by a decrease in the observed 

degradation rate, which can be observed by the minimal presence of low molecular 

weight SEC peaks after 12 months (Figure 3.15).39 Furthermore, research by Wang et 

al., demonstrated the high water solubility of the low molecular weight species 

generated during degradation.40 To enable accurate SEC analysis of the microparticles, 

the PVA stabiliser was required to be removed, this was achieved by washing the 

particles three times with DI water. Therefore, it was hypothesised that the low 

molecular weight species were removed between washes, thus reducing observed 

intensity of the peaks. 

 

Figure 3.15: SEC characterisation of PLLA 100 particle degradation after 12 months in water 
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To elucidate the concentration of dye released throughout the 12-month degradation 

period, regular aliquots of the particle suspension were taken and added to a 50% 

ethanol/water solution, thus enabling the change in fluorescence intensity to be 

monitored using a plate reader. To calibrate the plate reader, six known concentrations 

of ABM were prepared that can be related to 120%, 100% 80%, 60%, 40% and 20% 

of the encapsulated ABM (0.1 wt%) in a 50% EtOH: H2O solvent ratio. The 

fluorescence intensity was recorded using filters at excitation 390 nm and emission 

520 nm. To test the efficiency of the 50% ethanol solution to fully dissolve the dye, a 

control experiment was performed comparing the time taken for free dye in solution 

to dissolve versus dye encapsulated into a PLLA 100 microparticle (Figure 3.16). The 

control experiment demonstrated that all of the free dye is quickly taken into solution 

(Figure 3.16).  

Samples of the particle solution were taken regularly and the release into water/ethanol 

monitored over 12 months (Figure 3.16). The release of ABM into an ethanolic 

solution correlated well with the obtained degradation profile, where only a minimal 

change in fluorescence intensity (4%) was observed throughout the 12-month period 

(Figure 3.16). The minimal change in release observed throughout the 12 months 

displayed the high resistance of PLLA 100 to hydrolytic degradation under neutral 

aqueous conditions. 
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Figure 3.16: Plate reader characterisation detailing the observed change in fluorescence intensity 
over 5 h for free dye and dye encapsulated into PLLA 100 particles over 12 months 

 

3.3.1.2 Enzymatic Medium 

Microbes producing protease, lipase and esterase are abundant in the soil. However, 

microbe concentration fluctuates based on nutrient diffusion gradients, the soil 

composition and the immediate surroundings. To simulate a representative soil 

environment, the washed and dried particles were suspended in 1 mg/mL enzyme 

digestant (Cleanzyme). Cleanzyme contains a cocktail of enzymes similar to the 

enzymes found in soil, thus allowing a representative study of how the particles will 

degrade and release an encapsulated agrochemical in the soil.41 The particle 

degradation was monitored via SEM and SEC (Figure 3.17 and Figure 3.19 

respectively). After 4 months in Cleanzyme, several particles were observed to have a 

pitted appearance via SEM analysis, which intensified over the 12 months (Figure 

3.17). The number of particles with visual pitting increased throughout the degradation 

study, however, even after 12 months in Cleanzyme, over 70% of the particles had 

maintained their original smooth particle morphology observed within the initial 

sample. 
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Figure 3.17: SEM characterisation of PLLA 100 microparticles after a) 0 months, b) 4 months, c) 8 
months and d) 12 months in Cleanzyme 

 

Interestingly, after 6 months degrading in Cleanzyme, clusters of smaller nanosized 

particles were evident via SEM (Figure 3.18). Hence, it was postulated that the 

presence of the smaller nanoparticles and the pitting observed on several particles 

throughout the sample, was a consequence of enzymatic hydrolysis of the PLLA 

polyester at the particle surface. 
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Figure 3.18: SEM characterisation of PLLA 100 microparticles after 6 months degrading in 
Cleanzyme with varied magnification a) 10 μm, b) 2 μm, c) 1 μm and d) 200 nm 

 

Further characterisation of the particle degradation by SEC revealed the formation of 

low molecular weight peaks after 4 months of degradation in Cleanzyme (Figure 3.19). 

Formation of the lower molecular weight peaks was coupled with slight broadening 

and decrease in peak intensity of the main PLLA molecular weight SEC peak as the 

degradation time elapsed. Therefore, it was theorised that a combination of surface 

and bulk degradation was occurring. 
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Figure 3.19: SEC characterisation of PLLA 100 particles after degradation in Cleanzyme for 12 
months 

 

Characterisation of the dye release into an ethanolic solution showed minimal release 

over the first 6 months, followed by a steady increase in both the burst and total [ABM] 

released (Figure 3.20). The minimal change in fluorescence intensity over the 5 hours 

further confirmed the occurrence of surface degradation. Moreover, dye released from 

near the particle surface will be instantly taken into the water/ ethanol solvent, whereas 

release of dye situated towards the particle centre would be limited by diffusion 

through the particle matrix, hence the observed slow release suggested the particle 

matrix was only partially degraded. 
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Figure 3.20: Plate reader characterisation detailing the observed change in fluorescence intensity 
over 5 h for PLLA 100 particles after degradation in Cleanzyme for 12 months 

 

3.3.1.3 Varying pH 

The pH of soil again can vary widely depending on the country and surrounding 

climatic conditions. Therefore, the degradation and release of PLLA 100 

microparticles was investigated in acidic (pH 5), neutral (PBS) and basic (pH 10) 

media. Similarly to PLLA 100 degradation in water, only minimal change in particle 

degradation was observed with PLLA 100 particles under neutral degradation 

conditions (PBS pH 7.4), therefore only degradation in acidic and basic environments 

are discussed below, (for full characterisation of PLLA 100 particle degradation in 

PBS see Appendix (Chapter 10, Section 10.1.1)). 

3.3.1.3.1 Acidic Media 

The washed particles containing ABM (0.1 wt%) were suspended in a pre-prepared 

buffer solution of acetic acid and sodium acetate (pH 5). Characterisation of 

microparticle degradation via SEM over 12 months revealed that signs of degradation 

were visible after 6-8 months within an acidic environment (Figure 3.21). Moreover, 
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several particles appeared to have a wrinkled morphology after 6 months, with 

increasing evidence of degradation visible via SEM analysis after 12 months. 

However, similar to enzymatic degradation, over 70% of the particles maintained their 

original smooth particle morphology, thus suggesting only slight degradation was 

occurring throughout the sample. 

 

Figure 3.21: SEM characterisation of PLLA 100 microparticles after a) 0 months, b) 4 months, c) 8 
months and d) 12 months at pH 5 

 

Characterisation of the particle degradation by SEC confirmed the presence of bulk 

degradation by the appearance of lower molecular weight species after 6 months of 

degradation in an acidic environment (Figure 3.22). The formation of the lower 

molecular weight peaks was coupled with a decrease in intensity of the main PLLA 

SEC peak, thus confirming degradation of the main polyester chains. However, 

similarly to degradation in water, the small decrease in PLLA intensity implied that 

only slight degradation was occurring within the PLLA microparticles (Figure 3.22). 



Chapter 3. Model Encapsulation and Release of a Fluorophore Using Biodegradable Microparticles 

112 
 

 

Figure 3.22: SEC characterisation of PLLA 100 particles after degradation for 12 months at pH 5 

 

Characterisation of the release of ABM into a 50% water/ethanol solution and 

monitoring the change throughout the 12-month degradation period at pH 5 revealed 

a low release of only 10% after 12 months (Figure 3.23). The low release observed 

agreed with the slow particle degradation observed by SEM, SEC and mass loss. 

Indeed, the high resilience observed with PLLA particles in an acidic environment 

showcased the high potential for controlled agrochemical release from PLLA particles 

under environmental conditions. 
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Figure 3.23: Plate reader characterisation detailing the observed change in fluorescence intensity for 
PLLA 100 particles after degradation at pH 5 for 12 months 

 

3.3.1.3.2 Basic Media 

To determine the degradation profile of PLLA 100 particles in a basic environment, a 

sample of the washed particles containing ABM (0.1 wt%) were suspended in a pre-

prepared buffer solution of sodium carbonate and sodium hydrogen carbonate (pH 10). 

After one week in the degradation medium, samples were taken for characterisation 

of the particle degradation and release via SEC, SEM, mass loss and fluorometry. 

Whilst sampling, a clear visual colour change was evident, the degradation solution 

appeared colourless instead of the original expected yellow colour, characteristic of 

the encapsulated ABM. Furthermore, a clear decrease in fluorescence intensity was 

observed whilst monitoring the loss of E over time. Consequently, it was postulated 

that the dye was susceptible to hydrolysis in a basic environment. Subsequent 

characterisation of the fluorescence intensity of the dye in both aqueous and basic 

solutions confirmed dye hydrolysis by the observation of a dramatic reduction in 

fluorescence intensity after just one week (Figure 3.24). PLLA particles are known to 

undergo degradation under basic conditions, however, optimisation of encapsulation 
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and release of a different dye into PLLA 100 particles would be required to monitor 

the particle degradation and release in basic solution. Hence, no further 

experimentation into the particle degradation and release in a basic environment was 

undertaken. 

Figure 3.24: Fluorescence intensity of ABM after 1 month in a) water (pH 7) and b) basic solution 
(pH 10) 

 

Several drugs and dyes have been reported to affect the particle degradation and 

release. Therefore, in order to determine if encapsulation of ABM does affect the 

particle degradation and release, a control degradation was performed by monitoring 

the degradation of PLLA 100 microparticles without dye in both an aqueous and 

enzymatic environment. The particles were monitored by SEM and SEC (Chapter 10, 

Section 10.1.2). Particles synthesised without ABM behaved similarly to PLLA 100 

with encapsulated dye, therefore, further analysis over an extended time period would 

be required to determine the effect of ABM encapsulation on particle degradation. 
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3.4 Conclusions 

In conclusion, the encapsulation and subsequent release of a model fluorescent dye 

via microparticle degradation was investigated. It was found that the optimised single 

oil-in-water emulsion technique detailed in Chapter 2 could be tailored to encapsulate 

hydrophobic dyes into a range of polyester microparticles. However, characterisation 

of the particle morphology and E via SEM and fluorometry revealed that the structure 

of the dye and dye loading can drastically affect the particle encapsulation and release. 

Indeed, the large, planar structure of Nile red resulted in the formation of crystals of 

the dye on the particle surface. On the other hand, the smaller, less planar ABM was 

found to encapsulate well into PLLA 100 with no observable dye crystallization 

evident via SEM analysis. Characterisation of PLLA 100 particle degradation and 

release via SEC, SEM, mass loss, ABM release and loss of E revealed the low 

susceptibility of PLLA 100 to hydrolysis within a variety of degradation media. The 

high resistance to hydrolysis observed by PLLA 100 particles demonstrates the great 

potential for the use of PLLA microparticles for controlled release of agrochemicals 

under environmental conditions. 
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4.1 Introduction 

Since the pioneering work by Staudinger and Carothers, polymers have become an 

extremely important class of materials. Biodegradable polyesters have attracted a lot 

of attention as a consequence of their ability to undergo degradation under 

physiological and environmental conditions.1 Polyesters, such as Poly(lactide) (PLA), 

poly(ɛ-caprolactone) (PCL) and Poly(3-hydroxybutryate) (PHB) are well known to be 

susceptible to hydrolytic degradation.2-5 Untereker et al. have shown that the 

hydrolytic degradation of polyesters occurs via random scission of the hydrolysable 

ester bonds.6  This in turn results in the formation of low molecular weight non-toxic 

species, which can be absorbed by microorganisms in the soil.7-11 

In particular, PLA has received a lot of attention as a consequence of its tuneable 

stereochemistry.11 The monomer of PLA, lactide, has two chiral centres, therefore, 

this can give rise to the production of three possible stereoisomers, LL (L-lactide), DL 

(meso-lactide) and DD (D-lactide) (Figure 4.1). Stereopure L-lactide and D-lactide 

produce isotactic polymers with highly crystalline structures.12 Conversely, a 50:50 

mixture of L-lactide and D-lactide produces a racemic mixture (rac-lactide) with an 

amorphous structure. Therefore, the isotactic and amorphous polymers display very 

different polymeric properties depending on their degree of crystallinity.13 Indeed, 

poly(rac-lactide) has been shown to display a higher susceptibility to hydrolytic 

degradation as a consequence of its enhanced structural permeability.14 Then again, 

both PLLA and PDLLA stereoisomers hydrolyse to produce the biocompatible non-

toxic lactic acid. Lactic acid is commonly found in the soil. Furthermore, the presence 

of lactic acid within soil has been shown to be highly beneficial (e.g., for the 

preservation of vegetable products etc.).15, 16  
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Figure 4.1: Stereoisomers arising from the two chiral centres of Lactide 

 

As a consequence of their biodegradable nature, polyesters have been shown to be the 

ideal materials for use as a microparticle matrix.17, 18 As the particle breaks down, the 

encapsulated AI is released into the surrounding environment. Therefore, the rate of 

AI release is highly dependent on the polymer composition, the polymer molecular 

weight and the polymer crystallinity.19-21 Each applied agrochemical has a specific 

application within plant health and protection. Therefore, the desired release period 

can vary widely depending on the type of response required from the agrochemical. 

Consequently, this Chapter investigates the degradation and release of a model 

fluorescent dye from a range of polyesters, with the aim to target the synthesis of a 

library of degradable microparticles with a range of polyester degradation profiles.  
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4.2 Results and Discussion 

4.2.1 Microparticle Degradation and Release 

4.2.1.1 Varying Molecular Weight 

Polymer molecular weight is well-known to affect the particle degradation rate. After 

the promising stability observed with PLLA 100 in a variety of degradation media 

(Chapter 3, Section 3.3), it was interesting to observe the extent of control over the 

particle degradation offered by varying the polymer molecular weight. To achieve this, 

two separate particle studies were investigated, using PLLA with differing molecular 

weights; degree of polymerisation (DP) of 25 (PLLA 25) and DP 250 (PLLA 250). 

The particles were individually prepared with ABM (0.1 wt%) encapsulated using the 

optimised single oil-in-water solvent evaporation technique before being washed, 

dried and re-suspended into an enzymatic medium (1 mg/mL Cleanzyme) as detailed 

in Chapter 3 (Section 3.3.1.2). Cleanzyme consists of a cocktail of enzymes commonly 

found in the soil, thus enabling a comparable degradation study to particle degradation 

within a typical horticultural environment.22 Microparticle degradation was monitored 

by scanning electron microscopy (SEM), size exclusion chromatography (SEC) and 

mass loss weekly for the first 6 months and then fortnightly for the succeeding months. 

Similarly to degradation of PLLA 100, no visible degradation was observed via SEM 

whilst monitoring PLLA 25 over 6 months and PLLA 250 over 8 months in 

Cleanzyme solution (Figure 4.2 and Figure 4.3 respectively). As a control, PLLA 25 

and PLLA 250 particles were synthesised and their degradation and release monitored 

in water, however, minimal degradation and release was observed. For full 

characterisation of PLLA 25 and PLLA 250 particle degradation and release in water 

see Appendix (PLLA 25 (Chapter 10, Section 10.2.1), PLLA 250 (Chapter 10, Section 

10.2.2)). 
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Figure 4.2: Characterisation of the change in particle morphology observed via SEM with PLLA 25 
after a) 0 months, b) 2 months, c) 4 months and d) 6 months in Cleanzyme solution  

 

Figure 4.3: Characterisation of the change in particle morphology observed with PLLA 250 after a) 
0 months, b) 3 months, c) 6 months and d) 8 months 
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Interestingly, SEC characterisation of both PLLA 25 and PLLA 250 displayed 

minimal signs of degradation after 6 months (Figure 4.4). In fact, only noticeable 

degradation of PLLA 250 was observed after 7 months in Cleanzyme, where a 

decrease in intensity was observed coupled with the formation of a lower molecular 

weight shoulder on the SEC chromatogram. The broad low molecular weight shoulder 

implied that a combination of both surface and bulk degradation was occurring, which 

is characteristic of enzymatic degradation. 

Figure 4.4: Characterisation of PLLA microparticle degradation in Cleanzyme solution via SEC a) 
PLLA 25, b) PLLA 250 
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To monitor the release of ABM during particle degradation, aliquots of the particle 

degradation were taken regularly, placed into a 50:50 water: ethanol solution and the 

subsequent change in fluorescence intensity monitored over 5 h using a fluorescence 

plate reader with excitation and emission filters of 390 nm and 520 nm respectively 

(Chapter 3, Section 3.2.3.1). The ABM release profile from PLLA 25 and PLLA 250 

particles correlated well with the obtained degradation data, where only minimal 

change in fluorescence intensity was observed (Figure 4.5). Interestingly, after 4 

months, PLLA 25 particles displayed a slight increase in total release after 5 h, which 

suggested the onset of particle degradation. However, continued monitoring of the 

particle degradation and release over a longer time-period would be required to 

confirm this.  

Secondary to the release, the loss of dye loading (E) was also monitored during particle 

degradation. A sample of the particle solution was taken at regular intervals, washed 

and freeze-dried before completely solubilising in dichloromethane. Characterisation 

of the subsequent fluorescence intensity using a fluorometer enabled direct calculation 

of the [ABM] within the particle throughout degradation (Chapter 3, Section 3.2.3.3). 

Following from an initial loss of E observed with both degradation sets (Figure 4.4), 

only minimal change in E was observed with PLLA 250 particles throughout the 8 

months. After 4 months PLLA 25 particles displayed a clear decrease in E. The 

reduced E implied that the particles have enhanced permeability, thus enabling 

increased dye loss between washings. The minimal signs of degradation and release 

observed with PLLA 25 and PLLA 250 particles implies the good resistance of PLLA 

to degradation under environmental conditions. However, future work is required to 

determine the full effect of molecular weight on particle degradation and release. 
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Figure 4.5: Release into water/ethanol observed with a) PLLA 250 and b) PLLA 25 and c) change 
in E with both PLLA 25 and PLLA 250 in Cleanzyme solution 
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4.2.1.2 Varying Polymer 

The chirality, crystallinity and nature of the polymer can all drastically influence the 

particle degradation profile. Consequently, it was interesting to investigate the 

different particle degradation profiles observed with PDLLA, PCL and PHB under 

simulated environmental conditions. In order to be comparable, each polymer was 

synthesised with a DP of 100. Hence, even though the polymers have a different 

molecular weight, each chain would have 100 repeat units, hence the same number of 

degradable ester linkages on the polymer backbone. 

4.2.1.2.1 Encapsulation of ABM into Varying Polymeric Microparticles 

To determine the versatility of the ABM encapsulation, the dye loading into a different 

polymeric particle was investigated. PCL 100 particles containing ABM (1 wt%) were 

prepared using the optimised particle procedure. The particles were dried overnight 

before being washed three times with DI water and then fully dissolved in 

dichloromethane. The resultant fluorescence intensity was recorded using a 

fluorometer (Table 4.1). 

 

Table 4.1: Table showing decrease in dye loading into PCL particles and the resultant dye content 
within the particles. 

PCL 

Sample 

no. 

[ABM] 

(wt%)a 
Dye Loading (%) 

1 1 15 ± 2.2 
2 0.25 25 ± 0.7 
3 0.1 73 ± 1.6 
4 0.075 64 ± 0.9 
5 0.05 75 ± 1.4 
6 0.025 70 ± 2.0 

 

aCalculated with respect to [PCL] in organic phase during particle synthesis, bDetermined 
experimentally by comparing the fluorescence intensity of the dye inside the particles to a calibration 
of six known [ABM] in CH2Cl2 
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Analysis of the fluorescence intensity revealed that the PCL particles only had a very 

low dye loading of 15%. PCL has a high hydrophobicity and as a consequence of its 

linear backbone, the chains can tightly pack into extensive crystallites. As a 

consequence of the high crystallinity of the polymer, it was postulated that addition of 

the ABM can disrupt the crystallinity of the chains during particle synthesis, leading 

to the formation of large pores within the particle matrix. Furthermore, increased 

porosity of the particles would result in an increased particle permeability, and 

consequently a reduced dye loading. Therefore, it was hypothesised that a lower dye 

concentration would decrease the pore size within the particle, thus increasing the dye 

loading. Consequently, PCL 100 particles were prepared with decreasing 

concentrations of ABM. Characterisation via fluorometry revealed that the dye 

loading increased as the dye loading decreased. The change in particle crystallinity 

observed with decreasing dye concentration could also be observed via SEM (Figure 

4.6). 
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Figure 4.6: SEM analysis of PCL microparticles with a) 1 wt% ABM, b) 0.5 wt% ABM, c) 0.1 wt% 
ABM and d) No dye 

 

SEM characterisation revealed that as the concentration of dye decreased, the particle 

morphology displayed an increase in homogeneity, with less evidence of particle 

disfigurement or surface roughness. Again, this was postulated to be a consequence of 

decreased disruption of the crystallinity of the PCL chains during particle synthesis.23 

The versatility of the ABM encapsulation with a decreased dye loading (0.1 wt%) was 

investigated further by monitoring the fluorescence intensity observed in particles with 

a range of polymeric matrices (PLLA, PDLLA and PHB) (Table 4.2). 
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Characterisation via fluorometry showed that each set of polymeric particles displayed 

a high dye loading, thus demonstrating the promising applicability of ABM 

encapsulation into a variety of different particles. As a consequence of the high dye 

loading observed with a lower dye loading and to maximise the change in fluorescence 

intensity observed during particle release, a dye loading of 0.1 wt% was applied for 

all subsequent particle characterisation. 

4.2.1.2.2 Poly(D,L-Lactic Acid) 

The symmetric nature of L-LA allows for the PLLA polymer chains to assemble into 

a highly ordered, densely packed structure. The close proximity of the polymer chains 

acts to increase the strength of the intermolecular bonds between chains, thus 

producing a highly crystalline polymer. On the other hand, PDLLA chains have 

varying chirality around the carbons containing the methyl side chain. Therefore, the 

polymer cannot pack as tightly, which reduces the strength of the intermolecular bonds 

between the polymer chains. Hence, PDLLA displays decreased crystallinity 

compared to PLLA. Consequently, the difference in chirality between the polymers 

will produce microparticles with distinctly different degradation and release profiles. 

PDLLA 100 was polymerised according to the method detailed in Chapter 2 and used 

in microparticle synthesis to encapsulate ABM (0.1 wt%) using the optimised single 

Table 4.2: Encapsulation of dye loading of 0.1 wt% ABM into varying polymeric particles 

Sample Polymer 
[ABM] 

(wt%)a 

Dye Loading 

(%)b 

1 PLLA 100 0.1 68 ± 1.4 
2 PCL 100 0.1 73 ± 1.8 
3 PDLLA 100 0.1 64 ± 1.6 
4 PHB 100 0.1 54 ± 2.9 

 

 aCalculated with respect to [PCL] in organic phase during particle synthesis, bDetermined 
experimentally by comparing the fluorescence intensity of the dye inside the particles to a calibration 
of six known [ABM] in CH2Cl2 
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oil-in-water technique (Chapter 3, Section 3.2.3). Multiple PDLLA 100 particle 

batches were synthesised and combined before being washed with water and freeze-

dried. The subsequent dried particles were re-suspended in both Cleanzyme and water 

and the degradation monitored for 8 months, (for full characterisation of PDLLA 100 

particle degradation in water, see Appendix (Chapter 10, Section 10.2.3)). 

Characterisation of the change in particle morphology via SEM over 8 months in 

Cleanzyme revealed no visible signs of degradation (Figure 4.7). Further 

characterisation of PDLLA 100 particle degradation in Cleanzyme by SEC revealed 

the formation of lower molecular weight peaks after 8 months (Figure 4.8). However, 

similarly to PLLA 100, only minimal degradation was observed over the 8-month 

period.  

 

Figure 4.7: Characterisation of the change in particle morphology observed with PDLLA 100 in 
Cleanzyme solution via SEM after a) 0 months, b) 3 months, c) 6 months and d) 8 months 
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Figure 4.8: Characterisation of PDLLA 100 microparticle degradation in Cleanzyme solution via 
SEC over 8 months 

 

PDLLA 100 particles displayed minimal signs of ABM release into the 50% water and 

ethanol solution throughout the 8 months degrading in Cleanzyme (Figure 4.9). Even 

with decreased crystallinity, PDLLA particles displayed similar degradation and 

release profiles to PLLA 100. Therefore, further monitoring of the particle degradation 

and release is required to elucidate the effect of polymer crystallinity on the particle 

degradation and release rate. 
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Figure 4.9: [ABM] released from PDLLA 100 particles observed by release study into water/ethanol 
over 8 months 

 

4.2.1.2.3 Poly(ɛ-Caprolactone) 

PCL has been widely studied as a consequence of its interesting mechanical properties 

and good biodegradability. The long aliphatic chain of PCL enables the production of 

strong intermolecular bonds between chains, thus resulting in the formation of a highly 

crystalline polymer with high hydrophobicity. Therefore, it was hypothesised that PCL 

would display increased stability towards microparticle degradation and release. PCL 

was polymerised using the method detailed in Chapter 2 (Section 2.2.1.3) and used as 

the particle matrix to encapsulate ABM (0.1 wt%) using an optimised single oil-in-

water technique (Chapter 3, Section 3.2.3). The particles were washed and dried before 

being re-suspended in Cleanzyme and water, (for full characterisation of PCL 100 

particle degradation in water, see Appendix (Chapter 10, Section 10.2.4)). SEM 

characterisation of PCL particles revealed an increased pitting formation on the 

particles during the 9-month degradation period (Figure 4.10). 
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Figure 4.10: SEM characterisation of the change in particle morphology observed with PCL 100 in 
Cleanzyme solution after a) 0 months, b) 3 months, c) 6 months and d) 9 months 

 

Further characterisation of the particle degradation by SEC showed signs of surface 

degradation after 6-months, signified by the distinctive broadening of the polymer 

SEC trace (Figure 4.11). Lower molecular weight peaks were observed after 7 months, 

which further confirmed the particle degradation. The presence of low molecular 

weight peaks implied that a combination of both bulk and surface degradation was 

occurring within the system. Furthermore, the difference between the SEC 

chromatograms between samples indicated that significant amounts of low molecular 

weight water-soluble oligomers were present and as such had been removed from the 

sample between particle washings. PCL 100 particles displayed minimal signs of 

ABM release into water and ethanol (Figure 4.12). 
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Figure 4.11: Characterisation of PCL 100 microparticle degradation in Cleanzyme solution via SEC 
over 9 months 

 

 

Figure 4.12: Particle release observed by release study into water/ethanol observed over 9 months 

 

4.2.1.2.4 Poly(3-Hydroxybutyrate) 

Poly(3-hydroxybutyrate) (PHB) is one of the most widely studied 

polyhydroxyalkanoates as a consequence of its good biodegradability and bio-

derivation. PHB consists of a smaller length repeat unit compared to PLLA and PCL, 

hence the degradable ester linkages are closer together on the polymer backbone. It 

was hypothesised that the decreased chain length would enhance the pH change within 
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the particle matrix, thus enabling an increased degradation rate. PHB was polymerised 

to DP 100 (PHB 100) (Chapter 2, Section 2.2.1.4), before preparing multiple batches 

of PHB 100 particles with ABM (0.1 wt%) encapsulated. The particles were washed 

and dried before being re-suspended in water and enzymatic solution. Interestingly, 

after 5 months within aqueous solution, no visible degradation was evident via SEM 

analysis (Figure 4.13). Conversely, after 1 month in enzymatic solution, multiple 

broken particles were evident throughout the sample (Figure 4.14). Increasing particle 

degradation was observed throughout the 3 months, with nearly all particles appearing 

broken or degraded after 3 months.  

 

Figure 4.13: SEM analysis of PHB after a) 0 months, b) 2 months, c) 4 months and d) 5 months in 
water 
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Figure 4.14: SEM analysis of PHB after a) Initial sample, b) 1 month, c) 2 months and d) 3 months 
in enzymatic solution 

 

SEC Characterisation of PHB particle degradation in Cleanzyme and water correlated 

well with the degradation profiles observed by SEM analysis, where the onset of 

particle degradation was evident after 4 weeks in enzymatic solution (Figure 4.15). 

Indeed, broadening of the SEC peak as well as the formation of lower molecular 

weight peaks observed via SEC characterisation of PHB 100 in Cleanzyme implied 

that a combination of both surface and bulk degradation was acting to hydrolyse the 

PHB polyester chains. Conversely, only lower molecular weight peaks were evident 

via SEC characterisation of PHB 100 particles in water after 12 weeks, thus implying 

only bulk degradation had occurred. 
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Figure 4.15: SEC characterisation of PHB in a) water and b) enzymatic solution 

 

PHB 100 particles displayed only a low release of ABM into water and ethanol 

throughout the 20 weeks’ aqueous degradation study (Figure 4.16 a). Conversely, PHB 

100 particles in Cleanzyme displayed a large increase in burst release after 4 weeks, 

with full release of the encapsulated ABM after 12 weeks (Figure 4.16 b). The 

observed release agreed with the particle degradation profile determined via SEM and 

SEC, hence, the PHB 100 particles displayed a good control over ABM release as the 

particles degraded. Characterisation of the loss of E by fluorometry correlated well 

with the observed release for PHB 100 degradation in water (Figure 4.17). However, 

a full loss of E was observed after 10 weeks of PHB 100 particle degradation in 

Cleanzyme (Figure 4.17). This was postulated to be a consequence of the partially 
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degraded particles breaking during particle washing, thus resulting in full release from 

the broken particles. 

Figure 4.16: [ABM] released from PHB 100 particles observed by release study into water/ethanol 
in a) Water and b) Cleanzyme 
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Figure 4.17: Change in E observed with ABM encapsulated into PHB 100 particles in water and 
Cleanzyme 
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4.3 Conclusions 

In conclusion, the degradation of polyester microparticles in a simulated soil 

environment was investigated. Monitoring the particle degradation by SEC, SEM and 

mass loss revealed that PLLA, PDLLA and PCL display good stability towards 

hydrolysis in both an aqueous and enzymatic environment.  Similarly, the release rate 

of ABM confirmed only minimal particle degradation had occurred. PHB was 

discovered to be less stable to enzymatic degradation under soil-like conditions, 

displaying full release of ABM and particle degradation after 12 weeks in Cleanzyme. 

Conversely, only minimal release was observed in aqueous solution. Further 

information regarding the particle degradation would be required to enable the 

production of a microparticle degradation library. However, the good control observed 

with PHB 100 displays the potential for polyester microparticles to be employed in a 

variety of controlled release applications within agriculture. 
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5. Stimulus-Controlled Release of a 

Fluorescent Dye 
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5.1 Introduction 

There is a continued need to reduce the amount of pesticide required to achieve safe 

and efficient crop growth.1 One of the key areas that can help drive this is the use of 

more efficient pesticide formulations and ‘smart’/responsive agrochemical delivery 

systems.2-4 Encapsulating agrochemicals into biodegradable microparticles can allow 

for increased efficiency of the active ingredient (AI).5-8 Moreover, Meyer et al., 

investigated the encapsulation of the insecticide imidacloprid into poly(lactic-co-

glycolic acid) (PLGA) microparticles.9 By encapsulating the pesticide, it was 

discovered that approximately 200 times less imidacloprid was required to achieve the 

same mortality of psyllids as the pesticide on its own without encapsulation. Hence, 

encapsulation can enable decreased toxicity of an active ingredient whilst still 

maintaining the required AI concentration necessary to achieve the desired drug 

efficiency. 

Poly(malic acid) (PMA) is well known to be a hydrophilic, biodegradable and 

bioabsorbable polyester.10, 11 PMA can be derived synthetically or by fermentation of 

specific microorganisms observed in natural or bacterial sources.12 Synthetically, 

PMA is typically prepared via either polycondensation or ring-opening polymerisation 

(ROP) of the naturally occurring, non-toxic malic acid (MA).13-17 MA consists of two 

carboxylic acids and an alcohol moiety, therefore, polycondensation can proceed via 

the formation of both α- and β-linkages (Scheme 5.1).  
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Scheme 5.1: Schematic representation of condensation of PMA via α-type and β-type repeat unit13 

 

The properties and functionality of PMLA can be easily tailored via functionalisation 

of the pendent carboxyl group present in the malic acid monomer.18-20 Moreover, 

functionalisation of the unreacted carboxyl group enables modulation of the polymer 

hydrophobicity, the stimuli sensitivity and also allows the introduction of bioactive 

ligands or drugs. Polyester microparticle degradation occurs via random hydrolytic 

scission of the cleavable ester bonds within the polymer backbone (Scheme 3.1).21 

During particle degradation, the encapsulated AI is released to the surrounding 

environment. Therefore, the rate of release is highly dependent on the type of polymer 

used, the polymer molecular weight and the polymer crystallinity.22-24 Hence, the 

particle degradation and AI release can be tuned by variation of the material used for 

the particle matrix. Microparticles synthesised from blends of two biodegradable 

homopolymers present a promising alternative to controlling the particle degradability 

and the rate of drug release.25-28 Blending at least two homopolymers enables 

combining the desirable properties of two or more polymers without the complexity 

and time required for copolymerisation.29 

Stimuli-controlled release offers the advantages of the controlled release observed 

with degradable materials with the added benefit of control of the degradation onset 

via application of an external trigger. Stimuli-responsive polymers have been 

intensively studied as a consequence of their ability to change their chemical and/ or 
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physical properties upon exposure to an external stimulus.30 Numerous stimuli have 

been explored (e.g. pH, thermoresponsive, CO2 responsive etc.) and have found use 

within a wide range of applications such as medicinal, agricultural and architectural.31-

33 Recently, Summerlin et al., reported site-specific agrochemical delivery using pH-

responsive poly(succinimide)-based nanoparticles.34 The pH-responsive nanoparticles 

enabled the internal release of an AI as a consequence of the pH change observed 

within the phloem of the plant. Hence stimuli-controlled release enables excellent 

control over the AI release and thus offers great potential for use within agriculture.  

In order to achieve the desired tuneable agrochemical release for a range of agricultural 

applications, biodegradable microparticles from blends of poly(L-lactide) (PLLA) and 

PMA were prepared and investigated in this Chapter. It was hypothesised that as the 

responsive PMA degraded, the acidic degradation products would accumulate within 

the particle matrix. This in turn would create pockets of lower internal pH within the 

particle matrix, thus resulting in the autocatalysed degradation of PLLA. Therefore, 

the AI release would be controlled by the initial concentration of the responsive 

polymer within the particle. Consequently, this Chapter presents the synthesis and 

characterisation of particle blends of PLLA with an acidic-responsive poly(ethyl malic 

acid) and a light-responsive poly(nitrobenzyl malic acid). 
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5.2 Results and Discussion 

 Synthesis of pH-Responsive Polymer 

The pH of soil varies worldwide depending on the country, time of year and the 

surrounding conditions. It was hypothesised that particles prepared using blends of 

PMA and PLLA would show an enhanced degradation rate in an acidic environment. 

In order to maintain a controlled release and to allow for sufficient alteration of the 

pH within the particle matrix, diffusion through the particle ideally must be restricted. 

Therefore, the ‘responsive’ polymeric unit was desired to preferably be hydrophobic. 

PMA is well known to be a hydrophilic polymer, however, the hydrophobicity of PMA 

has been shown to be easily modified simply by the addition of a methyl unit to the 

malic acid chain end.35 

5.2.1.1 Step-Growth Polymerisation of Methyl Malic acid 

Methyl malic acid was synthesised according to the procedure by Miller et al., using 

a two-step one pot procedure (Scheme 5.2).36 The successful methylation of MA was 

confirmed by the presence of the methyl resonance (δ = 3.8 ppm) by 1H NMR 

spectroscopic analysis. 

 

Scheme 5.2: Schematic representation of the synthesis of methyl malic acid 

 

Polymerisation of methyl malic acid was performed via step-growth polymerisation. 

The monomer was stirred in bulk at 110 °C for three days under nitrogen. The 

successful polymerisation of methyl malic acid was confirmed by 1H NMR 

spectroscopy (Figure 5.1), where a clear shift in the methine proton of the monomer 

(δ = 4.6 ppm) was observed with the formation of the characteristic peak of the 
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methine on the polymer backbone (δ = 5.6 ppm).35 Integration of the aforementioned 

shifts enabled calculation of the monomer conversion (54%). 

 

Scheme 5.3: Schematic representation of the synthesis of PMeMA 

 

Figure 5.1: Crude 1H NMR spectrum of PMeMA synthesised via step-growth polymerisation, * = 
olefinic hydrogen of fumaric acid, (CDCl3, 300 MHz) 

 

Initial investigations in the field of PMA polycondensation by Kajiyama et al., have 

highlighted the potential side reactions that can occur during polymerisation.14 The 

polymerisation proceeds through the intermolecular dehydration of malic acid, 

however, it is a competitive reaction with the intramolecular dehydration of MA and 

depolymerisation. Consequently, this can lead to the undesirable formation of fumaric 

acid. The existence of fumaric acid within the synthesised PMeMA was confirmed by 
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the presence of an olefinic proton resonance in the 1H NMR spectrum (δ = 6.8 ppm) 

(Figure 5.1). Additionally, the bimodal SEC chromatogram observed also implied the 

formation of the fumarate present as the low molecular weight peak (Figure 5.2). 

 

Figure 5.2: SEC characterisation of PMeMA synthesised via step growth polymerisation (CHCl3, PS 
standard) 

 

As the polymerisation progressed, an increasing quantity of translucent crystals were 

observed at the top of the reaction flask. Subsequent 1H NMR spectroscopic analysis 

identified the crystals as unreacted MeMA monomer (Figure 5.3). Crystal formation 

was thought to be a consequence of the high reaction temperature and high volatility 

of MeMA, thus resulting in monomer sublimation. Furthermore, loss of monomer 

during polymerisation would act to shift the polymerisation equilibrium to favour side 

reactions, thus resulting in an increased concentration of fumaric acid in the final 

product. The high concentration of fumaric acid in the final polymer was confirmed 

by the high intensity of the low molecular weight peak observed via SEC 

characterisation (Figure 5.2).
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Figure 5.3: 1H NMR spectrum of crystals formed during polymerisation of methyl malic acid (CDCl3, 
300 MHz) 

 

5.2.1.2 Step growth Polymerisation of Ethyl Malic acid 

As a consequence of the high fumarate formation and high volatility observed with 

MeMA, the polymerisation of a hydrophobic malic acid with increased stability was 

investigated. EtMA is less volatile than MeMA, consequently, it was hypothesised that 

EtMA would show increased resilience to side reactions, thus decreasing the 

concentration of fumaric acid in the final product. Ethyl malic acid was synthesised 

according to the procedure by Miller et al., using the same two-step one pot procedure 

as for methyl malic acid (Scheme 5.4).36 

 

Scheme 5.4: Schematic representation of the synthesis of ethyl malic acid 
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Polymerisation of ethyl malic acid was performed via step-growth polymerisation in 

bulk at 110 °C (Scheme 5.5). The reaction was heated for three days under nitrogen. 

The successful polymerisation of ethyl malic acid was confirmed by 1H NMR 

spectroscopy, where a clear shift and intensity decrease in the monomer methine 

proton (δ = 4.6 ppm) was observed with the formation of the characteristic shift for 

the methine on the polymer backbone (δ = 5.6 ppm).37  

 

Scheme 5.5: Schematic representation of step-growth polymerisation of ethyl malic acid in bulk 

Figure 5.4: 1H NMR spectrum of PEtMA synthesised via step growth polymerisation, * = olefinic 
hydrogen of fumaric acid, (CDCl3, 300 MHz) 
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Evidence of fumaric acid was confirmed by the presence of the shift representative of 

the olefinic proton of the fumarate (δ = 6.8 ppm) in the 1H NMR spectrum (Figure 

5.4). Nevertheless, unlike MeMA polycondensation, crystal formation was not 

observed during polymerisation of EtMA. The final polymer was precipitated into 

petroleum ether before drying in vacuo and characterising by 1H NMR spectroscopy 

and SEC (Figure 5.5). Furthermore, SEC analysis confirmed the predicted reduction 

in unwanted side reactions by the decreased intensity of the lower molecular weight 

fumarate peak present in the chromatogram (Figure 5.5). 

 
Figure 5.5: SEC characterisation of PEtMA synthesised via step-growth polymerisation, (CHCl3, PS 
standard) 

 

 Synthesis of pH-Responsive Particles 

5.2.2.1 Poly(Ethyl Malic acid) Particle Synthesis 

To determine the suitability and stability of PEtMA for use as the matrix of a 

microparticle, a reference batch of particles was prepared using optimised single oil-

in-water solvent evaporation conditions (Chapter 2), using PEtMA as the particle 

matrix. As a general procedure, PEtMA was dissolved in dichloromethane before 

homogenising at 7000 rpm for 30 s with an aqueous solution (containing Mowiol 488 

as a stabiliser (2 wt%)). The organic solvent was evaporated overnight before 

characterising the particle suspension via light scattering and scanning electron 
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microscopy (SEM) (Figure 5.6). Interestingly, even though the suspension appeared 

slightly cloudy, no particles could be detected by dynamic light scattering on a 

Malvern Mastersizer. Furthermore, only a low concentration of small particles (≤ 10 

μm) were observed by microscopy. During particle synthesis, PEtMA was found to be 

only sparingly soluble in dichloromethane. Consequently, it was postulated that the 

low concentration of particles observed and the small particle size was a result of the 

low solubility of PEtMA in dichloromethane. 

 

Figure 5.6: SEM analysis of PEtMA particles prepared via single oil-in-water solvent evaporation 
technique 

 

With the aim of increasing the particle yield, the solubility of PEtMA was investigated 

in acetone. PEtMA was found to fully dissolve in acetone, therefore, the particle 

synthesis was repeated using acetone as the organic phase solvent. The solution was 

slowly stirred overnight to allow for evaporation of the acetone before characterising 

via light scattering and SEM (Figure 5.7). 
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Figure 5.7: SEM characterisation of PEtMA particles using acetone as organic solvent 

 

Again, SEM characterisation of the suspension revealed the formation of a low 

concentration of small particles (≤ 10 μm) (Figure 5.7). PEtMA fully dissolved in 

acetone, therefore, it was hypothesised that the observation of a decreased particle 

concentration and size was a consequence of the lower molecular weight of PEtMA 

compared to PLLA 100 (Table 2.1). Moreover, the lower polymer molecular weight 

would decrease the total viscosity of the system, which in turn would have the effect 

of reducing the particle size. 

Particle size has been shown to affect the microparticle degradation and release 

profile.38 Therefore, to ensure a comparable study between PEtMA and PLLA 100 

particles, it was necessary to maintain a constant particle size between samples. 

Consequently, to increase the PEtMA particle size to 10 μm, multiple suspensions 

were prepared by systematically varying the initial concentration of PEtMA and the 

shear speed and time. However, even with an increased concentration of PEtMA and 

decreased shear speed and time, micron sized particles could not be detected via light 

scattering on the Mastersizer. Consequently, a sample of a particle suspension 

prepared with 15 s of shear at 5000 rpm, was characterised via dynamic light scattering 

on a Malvern Zetasizer Nano ZS instrument (DLS) (Figure 5.8). 
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Figure 5.8: DLS characterisation of PEtMA (30 wt %) after 15 s of shear on a Silverson high shear 
mixer at 5000 rpm 

 

Therefore, even at lower shear speed and time and increased concentration, DLS 

characterisation revealed the formation of nanoparticles. Therefore, it was 

hypothesised that PEtMA prepared by polycondensation would not be able to produce 

the required 10 μm sized particles via the optimised single oil-in-water conditions 

desired for use in this application.  

5.2.2.2 Synthesis of Poly(Ethyl Malic Acid)/ Poly(L-Lactide) Particles 

Even though microparticles with a PEtMA matrix were unattainable by solvent 

evaporation, it was hypothesised that PEtMA could still be used as an additive to 

enhance the microparticle degradation rate. Subsequently, PEtMA (25 wt%) was 

dissolved alongside PLLA 100 in dichloromethane. The resultant organic solution was 

homogenised with an aqueous solution for 30 s at 7000 rpm, before leaving the organic 

solvent to evaporate overnight. The resultant particle suspension was characterised via 

SEM (Figure 5.9). 
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a) 

 

b) 

 

Figure 5.9: SEM images of a) PLLA 100 microparticles and b) PLLA 100 microparticles with 
PEtMA (25 wt%) 

 

SEM analysis highlighted a drastic difference between the morphology of PLLA 100 

microparticles compared to a particle blend of PLLA 100 with PEtMA (25 wt%) 

(Figure 5.9). The particles prepared from the homopolymer blend appeared to show 

decreased structural stability, displaying a mixture of dimpled, collapsed and broken 

particles (Figure 5.9 b). During particle synthesis, it was found that PEtMA was only 

sparingly soluble in dichloromethane. Therefore, it was postulated that during particle 

hardening, the PEtMA precipitated at a higher rate compared to PLLA, thus resulting 

in the deformation and collapse of the particles.  

In order to investigate the miscibility of PEtMA and PLLA 100 further, a particle blend 

was prepared with a lower concentration of PEtMA (5 wt%). Again, PEtMA was 

observed to be only sparingly soluble in dichloromethane, however, after sonication 

and intense stirring, PEtMA fully dissolved alongside PLLA 100. The resultant 

organic solution was added to the aqueous phase and homogenised, before leaving the 
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solution to stir enabling evaporation of the organic solvent overnight. The resultant 

particle suspension was characterised via SEM (Figure 5.10). 

 

Figure 5.10: SEM characterisation of PLLA 100 microparticles with PEtMA (5 wt%) prepared via 
single oil-in-water solvent evaporation 

 

Even with the decreased concentration of PEtMA, SEM characterisation showed that 

the particles still maintained a broken and collapsed structure when dichloromethane 

was used as organic solvent. Therefore, the solubility of PEtMA and PLLA was 

investigated in chloroform, acetone and tetrahydrofuran (THF). The most promising 

solvent appeared to be chloroform as at 5 wt% PEtMA, both polymers were soluble. 

Therefore, an emulsion was prepared with chloroform as the organic solvent. 

However, subsequent SEM analysis of the particle solution revealed again the 

formation of deformed, collapsed and broken particles (Figure 5.11). 
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Figure 5.11: SEM characterisation of PLLA 100 microparticles with 5 wt% PEtMA prepared using 
single oil-in-water emulsion with CHCl3 as organic solvent 

 

The rough and broken particle morphology observed with the PLLA/PEtMA particle 

blends was postulated to be a consequence of phase separation between the two 

polymers. To further investigate the interaction between the two polymers, differential 

scanning calorimetry (DSC) was performed, thus enabling elucidation of the change 

in behaviour of the polymers physical mixture when subjected to heating scans (Figure 

5.12). The DSC scans consisted of three heating and cooling cycles performed over a 

temperature range of -80 °C to 160 °C with a heating rate of 2 °C/ min. The first 

heating cycle has been shown to be affected by the thermal history of the polymer, 

therefore, the second heating cycle is reported as it provides a more reliable indication 

of the original polymeric properties.39 
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Figure 5.12: DSC thermograms of a) PLLA 100 polymer b) PLLA 100 particles c) PEtMA particles 
and d) Microparticle blend of PLLA 100 with PEtMA (25 wt%) 

 

The DSC thermogram of the PLLA 100 homopolymer displayed an endothermic event 

at 55 °C, which corresponds to the glass transition temperature (Tg) of the polymer, in 

agreement with previous literature (Figure 5.12 a).40 Whilst heating a polymer, the Tg 

denotes the temperature at which the polymer is converted from a rigid or glassy state 
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to a softer rubbery state, indicative of an increase in free volume. Additionally, the 

DSC thermogram of PLLA 100 microparticles displayed the equivalent Tg as for the 

homopolymer of PLLA 100 (55 °C), thus implying that the particle synthesis does not 

affect the mechanical properties of the polymer (Figure 5.12 b). Interestingly, the DSC 

thermogram of the PLLA 100 particles displayed a bimodal melt peak (150 °C). The 

bimodal melt peak was postulated to be a consequence of the particles collapsing under 

the increased heat, followed by the resultant polymer melting.  

DSC characterisation of the homopolymer of PEtMA revealed a change in sample heat 

capacity, representative of a Tg at -25 °C (Figure 5.12 c). The PEtMA DSC 

thermogram also displayed an endothermic melt peak at 122 °C. Furthermore, 

evidence for the melt peak and the Tg
’s of both PLLA and PEtMA are present in the 

DSC thermogram of the particle blend of PLLA with PEtMA (25 wt%) (Figure 5.12 

d). Jeong et al. have shown that if two polymers are fully miscible, then only one Tg 

will be evident in the resultant DSC thermogram.41 Moreover, the Tg has been shown 

to be tuneable depending on the ratio of the two miscible polymers within the sample. 

The presence of two distinct Tg’s within the particle blend confirmed that the polymers 

are phase separating. Therefore, it was assumed that homopolymer blends of PLLA 

and PEtMA would not be able to achieve the required miscibility desired to create 

stable microparticles capable of controlled release of an AI.
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 Synthesis of Light Responsive Particles 

Light has been shown to be an excellent stimulus for triggering release of an 

encapsulated AI.42, 43 In particular, o-nitrobenzyl esters are of specific interest as a 

consequence of the fast photolysis of the nitrobenzyl ester observed under UV light 

irradiation, thus breaking the ester linkage between the polymer and phototrigger.44, 45 

Following this concept, it was hypothesised that addition of poly(nitrobenzyl malic 

acid) (PNO2BnMA) within a PLLA particle would enable degradation and release by 

exposure to UV light. Furthermore, the increased hydrophobicity provided by the 

addition of the benzyl ring to the malic acid moiety would increase the solubility of 

PNO2BnMA in dichloromethane. Therefore, it was postulated that particle blends of 

PNO2BnMA and PLLA would have an increased capability of forming stable 

microparticle suspensions. 

5.2.3.1 Step-Growth Polymerisation of Poly(Nitrobenzyl Malic acid) 

Nitrobenzyl malic acid was prepared with an analogous methodology to methyl malic 

acid and ethyl malic acid by ring opening from the trifluoroacetate of maleic anhydride 

with 2-nitrobenzyl alcohol before step-growth polymerisation in bulk at 110 °C. The 

mixture was heated for three days under nitrogen, before characterising the monomer 

conversion by 1H NMR spectroscopy. The final polymer was precipitated three times 

into petroleum ether before drying in vacuo in order to be able to remove the excess 

of unreacted monomer. The successful polymerisation of PNO2BnMA was confirmed 

by the presence of the methine resonance on the polymer backbone (δ = 5.5 ppm) and 

the α-methine resonance of the chain end (δ = 4.64 ppm) (Figure 5.13). 
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Figure 5.13: 1H NMR spectrum of PNO2BnMA synthesised via step growth polymerisation (CDCl3, 
300 MHz) 

 

5.2.3.2 DIC Coupling of Poly(Nitrobenzyl Malic acid) 

Step-growth polymerisation enabled a simple one pot approach to the synthesis of 

poly(nitrobenzyl malic acid). However, the high temperature associated with the bulk 

polymerisation is undesirable for large-scale industrial synthesis. Therefore, the 

polymerisation of NO2BnMA was performed by N, N’-diisopropylcarbodiimide (DIC) 

coupling according to the method developed by Moore et al. at room temperature.46 

Nitrobenzyl malic acid was reacted with DIC and left to stir for 12 h at room 

temperature.
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The polymer was characterised by 1H NMR spectroscopy and SEC (Figure 5.14 and 

Figure 5.15 respectively). The successful polymerisation of PNO2BnMA was 

confirmed by the presence of the methine resonance on the polymer backbone (δ = 5.5 

ppm) (Figure 5.14). 

 

Figure 5.14: 1H NMR spectrum of PNO2BnMA synthesised via DIC coupling 

 

 

Figure 5.15: SEC chromatogram of PNO2BnMA prepared via DIC coupling (CHCl3, PS standards, 
300 MHz) 

 

c

a

b + d

e

h + i

gf

THF

(CD3)2CO

HO
O

O
O

O

O

O

O

O2N

NO2

O

O

na
b

c

e

e

NO2

d

f
g

h

i

CH2Cl2

THF

0

0.2

0.4

0.6

0.8

1

100 1000 10000 100000

N
or

m
al

is
ed

 d
w

_d
lo

gM

MW (g/mol)



Chapter 5. Stimulus-Controlled Release of a Fluorescent Dye 

165 
 

5.2.3.3 Particle Synthesis Using Blends of Poly(L-Lactide) and Poly(Nitrobenzyl 

Malic Acid) 

Particle blends of PNO2BnMA (synthesised via polycondensation) and PLLA 100 

were prepared analogous to blends of PEtMA and PLLA 100 (described in section 

5.3.2.1), using optimised solvent evaporation conditions (Chapter 2). PNO2BnMA 

dissolved easily alongside PLLA 100 in the dichloromethane organic phase. The 

organic solvent was evaporated from the emulsion overnight before characterising the 

particle size distribution via light scattering on the Mastersizer (Figure 5.16). 

 

Figure 5.16: Light scattering analysis on a Malvern Mastersizer of a particle blend of PLLA 100 and 
PNO2BnMA (50 wt%) 

 

Mastersizer characterisation revealed the formation of a single particle size 

distribution with average particle size of 5 μm. The decreased particle size compared 

to 10 μm observed with PLLA 100 (Chapter 2) was postulated to be a consequence of 

the lower molecular weight of the PNO2BnMA, which would act to decrease the 

viscosity of the emulsion. Further characterisation of the particles via SEM revealed 

that the PNO2BnMA/PLLA particles have a spherical morphology with more defined 

shape and structure compared to particle blends of PEtMA/PLLA 100 (Figure 5.17). 

This was postulated to be a consequence of the increased solubility of PNO2BnMA in 

dichloromethane and increased miscibility between PNO2BnMA and PLLA 100. 
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Nevertheless, some of the particles displayed an uneven surface, thus implying phase 

separation between PNO2BnMA and PLLA 100 (Figure 5.17).  

 

Figure 5.17: SEM characterisation of a particle blend of PLLA 100 and PNO2BnMA (50 wt%) 

 

To determine if the polymerisation procedure of PNO2BnMA influenced the resultant 

particle morphology, particles of homopolymer blends of PLLA 100 and PNO2BnMA 

synthesised at RT using DIC coupling (Section 5.2.3.2) were prepared and 

characterised via SEM. SEM characterisation revealed the formation of Janus and 

raspberry particle morphologies (Figure 5.18), thus confirming that the polymerisation 

method of PNO2BnMA does not affect the resultant particle morphology. To 

investigate the effect of varying the ratio of PNO2BnMA within the PLLA particles, 

particle blends were prepared at a lower incorporation of PNO2BnMA (5 wt%). 

Characterisation of the resultant PLLA/PNO2BnMA particle blend via SEM again 

revealed the presence of phase separation between PLLA and PNO2BnMA (Figure 

5.19). 
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Figure 5.18: SEM characterisation of particle blends of PNO2BnMA and PLLA 100 with 50 wt% 
PNO2BnMA 

 

 

Figure 5.19: SEM characterisation of particle blends of PNO2BnMA and PLLA 100 with 5 wt% 
PNO2BnMA 

 

In order to further explore the phase separation occurring between blends of 

PNO2BnMA and PLLA, the homopolymers and blends were characterised by DSC 

(Figure 5.20). The separate DSC thermograms of the two homopolymers displayed 

single endothermic heat changes representative of the Tg of the respective polymers 

(PLLA (Tg = 55 °C), PNO2BnMA (Tg = 14 °C)). 
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Figure 5.20: DSC thermograms displaying the second heating cycle of a) PLLA polymer b) 
PNO2BnMA polymer c) a particle blend of PLLA 100 with 50 wt% PNO2BnMA 

 

Surprisingly, the DSC thermogram of a 50 wt% PNO2BnMA/ PLLA polymer blend 

revealed the appearance of only one Tg (22 °C). Moreover, the Tg had shifted to a 

temperature in between the Tg of the respective homopolymers (PLLA 100 (Tg = 55 

°C) and PNO2BnMA (Tg = 14 °C)), thus implying that the two polymers are miscible. 

It was postulated that the PNO2BnMA is susceptible to thermal history. Consequently, 

the three heat cycles were performed again on a fresh 50 wt% particle blend (Figure 

5.21). 
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Figure 5.21: DSC thermograms displaying the three heat cycles for a particle blend of PLLA 100 
and 50 wt% PNO2BnMA 

 

Interestingly, the first heating cycle observed in the DSC thermogram for the 

PLLA/PNO2BnMA particle blend displayed a different profile compared to the second 

and third heating cycles (Figure 5.21). Moreover, the first heating cycle of the particle 

blend displayed a double melt peak at 60 °C, which was postulated to be a consequence 

of the particles collapsing under the increased heat followed by the resultant polymer 

melting. Moreover, the Tg observed in the second and third cycle of the particle blend 

was observed to be in between the characteristic homopolymer Tg’s (Tg = 22 °C), 

which suggested that the polymers are miscible after being heated and cooled.  

As a consequence of the interesting thermal properties observed with the particle 

blend, the particle formation was investigated further by subjecting a polymer blend 

(50 wt%) to 20 min of heat at 110 °C before using the blend for microparticle 

synthesis. The resultant particles were left to harden overnight before washing with 

DI water and characterising the particle morphology via SEM (Figure 5.22). SEM 

characterisation of the resultant particles revealed the formation of anisotropic 
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particles as previously observed with the unheated polymer blend, thus confirming 

that the phase separation still occurred after re-processing the polymers into 

microparticles. 

 

Figure 5.22: SEM characterisation of a 50 wt% particle blend using a preheated and cooled blend of 
PNO2BnMA and PLLA 100 

 

5.2.3.4 Degradation and Release from Particle Blends of Poly(L-Lactide) and 

Poly(Nitrobenzyl Malic acid) Synthesised via Polycondensation 

Particle blends of PNO2BnMA and PLLA 100 were investigated further by 

encapsulating 3-bromo-4-(butylamino)-2,5-dihydro-1H-pyrrole-2,5-dione (ABM). 

The particles were prepared using optimised single oil-in-water conditions, dissolving 

ABM (0.1 wt%) alongside PNO2BnMA and PLLA 100 in the organic phase. 

Dichloromethane was evaporated overnight before washing the particles with 

deionised water to remove excess dye. Characterisation of the particles by 

fluorescence microscopy confirmed the successful encapsulation of the ABM into the 

PNO2BnMA/ PLLA particles (Figure 5.23 b). Interestingly, further analysis of the 

subsequent particle morphology via SEM analysis revealed that in the presence of the 

ABM, the particles of PNO2BnMA/ PLLA (50 wt%) blend do not display the 
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anisotropic morphology as observed without dye (Figure 5.23 and Figure 5.17 

respectively). It was postulated that the small and mobile molecular structure of the 

dye enabled the ABM to act as a compatibiliser, exhibiting interfacial activities in the 

heterogeneous polymer blend.47, 48 More specifically, the dye can interact with the two 

polymers via dispersive adhesion, thus reducing the surface tension, and improving 

the interfacial adhesion.  

 

Figure 5.23: a) SEM characterisation and b) fluorescence microscopy of 50 wt% particle blend of 
PNO2BnMA and PLLA 100 with encapsulated ABM (0.1 wt%) 

 

The resultant particles were re-suspended in an aqueous solution (containing Mowiol 

488 as stabiliser (1 wt%)), before exposing the particle solution to UV light (365 nm). 

Aliquots were taken every ten minutes and washed with DI water before 

characterisation by SEM and SEC. Excitingly, SEM analysis of the particles displayed 

distinct signs of particle degradation (Figure 5.24). Indeed, after just 10 minutes of 

exposure to UV light, an increased number of pores were evident in the particle 

morphology. Furthermore, as the UV exposure time increased, the particle porosity 

increased further, thus stimulating the collapse of the particles, illustrated by the 

increased number of broken particles and polymer strands evident by microscopy.  
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Figure 5.24: SEM characterisation of 50 wt% PNO2BnMA/ PLLA particle blend after exposure to 
UV light for a) 0 min, b) 10 min, c) 20 min, d) 40 min, e) 50 min and f) 60 min 

 

Particle degradation was also observed by SEC analysis, where a clear decrease in 

intensity of the PNO2BnMA peak was observed over time in both the RI and UV 

(monitoring the loss of NO2 group at λ = 265 nm) chromatograms (Figure 5.25). 

Interestingly, after 50 min of UV degradation, the intensity of the SEC response for 

PLLA decreased. This was postulated to be a consequence of the formation of acidic 

degradation products of PNO2BnMA within the particle matrix, thus autocatalyzing 

the degradation of PLLA. This in turn would result in the formation of lower molecular 

weight PLLA species which could have been easily removed during particle washing, 

thus reducing the intensity of the SEC response. 
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Figure 5.25: a) RI and b) UV (λ = 265 nm) SEC chromatograms displaying the degradation of a 50 
wt% PNO2BnMA/ PLLA particle blend during degradation under UV light (265 nm) (CHCl3, PS 
standards). 

 

Alongside particle degradation, the subsequent dye release was observed every ten 

minutes by monitoring the change in fluorescence intensity of the particles over a 5 h 

period into an ethanolic medium (optimised conditions detailed in Chapter 2) (Figure 

5.26).  A high initial burst release of 49% was observed followed by slower release, 

which is characteristic of dye diffusion through the particle. As the degradation time 

progressed, both the initial burst release (74%) and the total dye concentration released 

after 5 h (93%) increased, thus confirming that the dye is released as the particle 

degraded.  

Alongside the particle release, the change in dye loading (E) was also monitored over 

time by comparing the fluorescence intensity of the encapsulated dye to the intensity 

of known concentrations of unencapsulated ABM using a fluorometer (Figure 5.26 b). 

In order to quantify the dye loading (E) of the particle blend, aliquots were again taken 

every ten minutes, washed to remove excess dye and freeze-dried before fully 

dissolving in dichloromethane. Similarly to the burst release observed by dye 

extraction into water/ethanol, a decrease in E was observed after ten minutes of 

particle exposure to UV light (28%). As the UV exposure time increased, the particles 
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showed a steady decrease in E with a sharp release after 60 min of UV exposure with 

only 4% remaining encapsulated within the particles.  

 

Figure 5.26: a) Release of ABM into water and ethanol and b) Change in E during UV degradation 
(λ = 265 nm), (control = sample after 1 h without UV-exposure) 

 

The determined particle release and decrease in E correlated well with the obtained 

SEC and SEM degradation characterisation, revealing that ten minutes of exposure to 

UV light can trigger the onset of degradation. Moreover, near-complete dye release is 

attainable after 1 h exposure to UV light, thus confirming the promising potential for 

blends of PLLA and a responsive poly(malic acid) for controlled AI release. 
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5.3 Conclusions 

In conclusion, the synthesis of novel particles from homopolymer blends of PLLA and 

PMA is reported and resulted in the enhanced degradation and release of a model 

fluorescent dye. Polycondensation of hydrophobic PMeMA resulted in crystal 

formation as a consequence of monomer sublimation at the high reaction temperature 

(110 °C). Therefore, side reactions, such as fumarate formation were favoured during 

polymerisation leading to a low yield of PMeMA. On the other hand, 

polycondensation of the less volatile EtMA resulted in a decreased concentration of 

fumarate in the final polymer compared to PMeMA, as confirmed by 1H NMR 

spectroscopy and SEC.  

Synthesis of PEtMA microparticles using an optimised single oil in water solvent 

evaporation technique revealed the formation of a low concentration of particles with 

a smaller particle size than expected compared to PLLA 100. Furthermore, even at a 

decreased shear speed, time and polymer concentration, only nanoparticles were 

attainable via optimised solvent evaporation conditions. Additionally, the 

incorporation of PEtMA within a PLLA particle was shown to yield broken and 

collapsed particles via SEM analysis. The irregular appearance of the PLLA particles 

with PEtMA (25 wt%) was postulated to be a consequence of the low solubility of 

PEtMA in dichloromethane and phase separation between PLLA and PEtMA. 

Incorporation of a light-responsive malic acid moiety, in the form of PNO2BnMA 

enabled the successful triggered degradation and release of the fluorescent proxy via 

the application of UV light. In fact, after only ten minutes the onset of degradation via 

SEC and SEM was visible. Furthermore, after 1 h of exposure to UV light, the 

microparticles were visibly broken as observed via microscopy and nearly all of the 
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dye had been released, with only 4 % remaining encapsulated within the particle 

sample. 

Further investigation into the polymeric particle blends of PLLA and PNO2BnMA 

revealed that PNO2BnMA synthesised via RT DIC coupling showed enhanced phase 

separation compared to PNO2BnMA via polycondensation at 110 °C. Therefore, it 

was postulated that PNO2BnMA is affected by its thermal history. Interestingly, 

addition of the fluorescent ABM was found to act as a compatibilizer to aid miscibility 

between the PLLA and PNO2BnMA. DSC characterisation of the homopolymer and 

particle blends revealed that after subjecting the blend to a heating and cooling cycle, 

the polymers are miscible. Moreover, utilising a pre-heated polymer blend of PLLA 

and PNO2BnMA enabled the synthesis of spherical non-anisotropic microparticles, 

with evidence of phase separation visible via SEM. 

This work details the great potential for use of stimuli responsive PLLA/PMA particle 

blends for controlled drug delivery and release. The degradation control afforded by 

incorporation of the UV sensitive PNO2BnMA implies the high level of control 

achievable by tuning the ratio of PLLA and PNO2BnMA within the particle matrix. 

Additionally, the easy functionalisation achievable with malic acid opens a wide range 

of possibilities for the addition of a variety of responsive units to target a broad range 

of properties and applications. 
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6. Synthesis of Degradable Microparticles via 

Radical Ring-Opening Polymerisation of 

Vinyl Acetate and a Cyclic Ketene Acetal 
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6.1 Introduction 

In recent years, an increasing amount of research has been directed into expanding the 

range of properties attainable with poly(ɛ-caprolactone) (PCL) based material, with a 

specific emphasis based on incorporating functionality into the PCL backbone.1-3 To 

this end, addition of functionality into PCL has been achieved through 

functionalisation of ɛCL, chain end modification and/ or copolymerisation of ɛCL with 

other functional monomers.4-7 Nevertheless, even though each synthetic technique 

enabled introduction of functionality, each methodology presented limitations, 

including laborious syntheses, yield-lowering protection/deprotection steps during 

functional monomer synthesis, incompatibility between the functional group and 

desired reaction catalyst and polymerisation conditions, etc.3, 6, 8-10 Therefore, 

incorporating functionality into PCL still remains synthetically challenging. 

 

Scheme 6.1: Schematic representation of two different synthetic approaches to attain an equivalent 

aliphatic polyester 

 

Radical ring-opening polymerisation (rROP) of cyclic ketene acetals (CKAs) has 

emerged as a promising, unconventional alternative to the synthesis of polyesters.11 

Since the first reported rROP of 3,9-dimethylene-1,5,7,11-tetraoxaspiro[5,5] 

undecane by Bailey et al., rROP of a wide range of CKAs has been investigated.12-15 

Of particular interest, free radical polymerisation of the seven-membered ketene 

acetal, 2-methylene-1,3-dioxepane (MDO), has been shown to undergo ring-opening 

to form an aliphatic polyester with a PCL-like structure (Scheme 6.1).12 Additionally, 

rROP has been regarded as a highly advantageous synthetic route to produce 
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degradable polymers as a result of the easily scalable, industrially applicable radical 

polymerisation procedure.16  

Investigation into the rROP mechanism of MDO by Bailey et al., revealed that the 

polymerisation proceeds by a process similar to conventional free radical 

polymerisation.12 Hence, decomposition of the initiator results in the formation of a 

radical species, which can react with the double bond of the CKA (Scheme 6.2a). The 

resultant cyclic radical can then undergo isomerization by radical ring-opening 

polymerisation, to yield an initial primary radical (Scheme 6.2b). The primary radical 

can then react with a second CKA monomer, thus the reaction propagates and results 

in the growth of a polyester chain (Scheme 6.2c). Elucidation of the structural 

properties of PMDO by Gonsalves et al. highlighted that the resultant polyester 

consisted of a branched polymeric structure compared to the linear analogue obtained 

by ROP of ɛCL.17 The branched structure was deemed to be a consequence of 

backbiting in the form of 1,4- and 1,7- hydrogen transfer reactions that have been 

shown to occur during polymerisation. Therefore, PMDO displays different 

mechanical properties (such as density, crystallinity and thermal properties) compared 

to PCL synthesised by ROP of ɛCL.11 
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Scheme 6.2: Schematic representation of the mechanism for the rROP of MDO 

 

Particular research interest has been focussed on copolymerising vinyl monomers with 

monomers containing ester units, thus enabling the incorporation of degradable ester 

repeat units within the conventionally non-degradable backbone of vinyl polymers.11, 

16 Indeed, a broad range of vinyl monomers have been studied and copolymerised with 

CKAs, such as vinyl acetate (VAc), 4-vinyl anisole, 2-hydroxyethyl methacrylate 

(HEMA) etc., to form copolymers with degradable properties.13, 18, 19 However, several 

investigations into the copolymerisation of MDO with styrene (St) or methyl acrylate 

(MA) have resulted in the formation of a copolymer with a predominantly block-like 

microstructure.20, 21 Consequently, the copolymer has a low incorporation of ester 

repeat units within the final polymer. The type of copolymer formed has been shown 

to be dependent on the monomers reactivity ratio e.g., monomers with a similar 

reactivity ratio will form a random/alternative copolymer structure, whereas 

monomers with different reactivity ratios will be incorporated at different rates, thus 

leading to the formation of block-like polymers.18, 19 

Copolymerisation of VAc and MDO has been reported to successfully form 

degradable polymers with a random monomer distribution.18, 19, 22 Hedir et al. reported 

a)

b)

c)
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that the final copolymer composition can successfully be tuned depending on the 

initial monomer feed of MDO:VAc.22 Further investigation by Hedir et al., into the 

copolymerisation of MDO and vinyl bromobutanoate (VBr), revealed that the 

degradation rate of the copolymer is highly dependent on the copolymer composition. 

Therefore, as a consequence of the random copolymer composition observed with both 

P(MDO-co-VBr) and P(MDO-co-VAc), it was hypothesised that the degradation 

profile of P(MDO-co-VAc) can be targeted by varying the initial MDO:VAc monomer 

ratio. The potential ability to tune the degradation rate coupled with the industrially 

relevant rROP copolymer synthesis implies that P(MDO-co-VAc) would be the ideal 

material for use as a microparticle matrix to encapsulate a wide range of compounds 

applicable for a range of industrial applications (e.g., pharmaceutical, agricultural, 

etc.). Encapsulation of an active ingredient (AI) can help to reduce any associated 

toxicity of the chemical and also act to protect the AI from loss, leaching and 

degradation occurring under various environmental conditions.23-25 Consequently, 

controlled release from biodegradable particles promises an efficient alternative to 

conventional agrochemical delivery.26 

Inspired by the work by Hedir et al., this Chapter discusses the introduction of tuneable 

degradability into PVAc microparticles by incorporating MDO degradable ester 

linkages into the polymer backbone through copolymerisation of VAc and MDO. 

Encapsulation of 3-bromo-4-(butylamino)-2,5-dihydro-1H-pyrrole-2, 5-dione (ABM) 

into the P(MDO-co-VAc) particles is also investigated and compared to encapsulation 

into PVAc particles. Furthermore, the attained random copolymer and ease of 

functionality previously reported with vinyl polymers highlight the range of 

possibilities achievable through the synthesis of microparticles from degradable vinyl 

polymers through copolymerisation with CKAs.  
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6.2 Results and Discussion 

6.2.1 Free Radical Polymerisation of Vinyl Acetate 

Vinyl acetate was polymerised by free radical polymerisation using the method 

reported by Albertsson et al., (Scheme 6.3).18 As a general example, vinyl acetate was 

polymerised in bulk at 60 °C under an atmosphere of nitrogen, using 2, 2-

azobisisobutyronitrile (AIBN) as radical initiator. The polymerisation was heated for 

2 h before characterising the monomer conversion by monitoring the loss of the 

ethylene resonance (δ = 4.55 ppm) and appearance of the methine resonance 

characteristic of the polymer backbone (δ = 4.8 ppm) via 1H NMR spectroscopy. The 

white polymer was precipitated three times into petroleum ether to remove excess 

monomer, before drying in vacuo. 1H NMR spectroscopy revealed the characteristic 

resonances for PVAc, in good agreement with previous literature (Figure 6.1). The 

polymer was further characterised via SEC analysis, which revealed an Mn of 19,000 

g/mol and a broad dispersity (ÐM) of 5.2 characteristic of uncontrolled free radical 

polymerisation (Figure 6.2). 

 

Scheme 6.3: Schematic representation of free radical polymerisation of PVAc using AIBN as 

initiator 
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Figure 6.1: 1H NMR spectrum of PVAc synthesised via free radical polymerisation, *=Water residue 

(CDCl3, 300 MHz) 

 

 

Figure 6.2: SEC chromatogram of PVAc synthesised via free radical polymerisation (CHCl3, PS 

standards). 

 

 

 

 

CDCl3
a

b

c
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6.2.2 Microparticle Synthesis Using Poly(Vinyl Acetate) 

Microparticles from PVAc were synthesised using the single oil-in-water solvent 

evaporation technique optimised for PLLA in Chapter 2. As a general procedure, 

PVAc was dissolved in dichloromethane, before emulsifying the organic phase with 

an aqueous phase (containing Mowiol 488 (2 wt%) as stabiliser). Dichloromethane 

was evaporated overnight, thus enabling particle hardening, before characterising the 

suspension via light scattering and optical microscopy (Figure 6.3 a) and b) 

respectively). 

 

Figure 6.3: Characterisation of PVAc particle suspension via light scattering and optical microscopy 

 

Characterisation of the PVAc particle suspension by light scattering revealed the 

formation of an increased volume weighted mean particle size of 22 μm and a broader 

particle size distribution compared to PLLA and PCL (Chapter 2, Section 2.3.5). 

Nevertheless, the absence of particle aggregation observed by optical microscopy 

implied that the increased particle size was a consequence of the increased molecular 

weight of PVAc compared to previously synthesised polyester particles (Chapter 2). 

Therefore, it was assumed that the particle size could easily be tuned by increasing the 

shear speed and shear time. The PVAc particles were characterised further by 

analysing the particle morphology via Scanning Electron Microscopy (SEM). To 
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achieve this, a sample of the particle suspension was washed with deionised water, 

before being dried onto a carbon tab fitted to an aluminium SEM stub. The sample 

was gold coated before SEM analysis, which revealed that the PVAc particles display 

a smooth, spherical morphology (Figure 6.4).  

 

Figure 6.4: SEM characterisation of PVAc microparticles synthesised via single oil-in-water solvent 

evaporation technique. 

 

Interestingly, during particle washing, the particles tended to aggregate and required 

increased sonication to maintain a non-aggregated state. Indeed, after three wash 

cycles the particles mainly appeared in an aggregated state (Figure 6.5). Burt et al., 

also observed aggregation between washes of ethylene-VAc particles.27 This was 

reasoned to be a consequence of the increase in interfacial tension observed with 

removing the mowiol 488 stabiliser. 
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Figure 6.5: Optical microscopy analysis of PVAc particles after washing three times in deionised 

water 

 

The synthesis of PVAc particles was investigated further by encapsulating 3-bromo-

4-(butylamino)-2,5-dihydro-1H-pyrrole-2,5-dione (ABM) using the optimised 

encapsulation procedure detailed in Chapter 3, section 3.2.3. In general, ABM (0.1 

wt%) and PVAc were dissolved in dichloromethane, before emulsifying with an 

aqueous solution (containing Mowiol 488 as stabiliser (2 wt%)) for 30 s at 7000 rpm. 

The dichloromethane was evaporated overnight thus enabling particle hardening. To 

quantify the dye loading (E) of the PVAc particles, a known concentration of particles 

was washed with DI water to remove excess dye and stabiliser, before removing water 

by freeze-drying the sample overnight. The resultant dried particles were dissolved in 

dichloromethane. The E was characterised using a fluorometer by comparing the 

fluorescence intensity of the sample against the fluorescence intensity of six known 

concentrations of free ABM in dichloromethane. The particles displayed a good E of 

34%, thus confirming successful encapsulation of ABM into PVAc particles. 

After the successful determination of the E of ABM within PVAc microparticles, it 

was interesting to determine if addition of the dye affects the particle morphology. To 

facilitate this, a sample of the washed particle suspension in water was placed onto a 

carbon tab on an aluminium stub and allowed to air dry overnight. The sample was 
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coated with gold before characterising the particle morphology via SEM (Figure 6.6). 

SEM characterisation confirmed that the particles maintained a smooth, spherical 

morphology. Furthermore, no evidence of dye crystallisation was visible throughout 

the sample. 

 

Figure 6.6: SEM analysis of PVAc microparticles with encapsulated ABM (0.1 wt%) prepared via a 

single oil-in-water solvent evaporation technique 

 

To determine the release rate of ABM from PVAc microparticles, an aliquot of the 

PVAc suspension was placed in a 50:50 solution of ethanol/ water, thus enabling rapid 

extraction of both unencapsulated dye and dye from the particle surface followed by 

a slower release rate of encapsulated dye, extracted from the particle matrix by 

diffusion. The change in fluorescence intensity was monitored over 5 h and compared 

to the fluorescence intensity of six known concentrations of free ABM using a plate 

reader. Characterisation of the change in fluorescence intensity unveiled that PVAc 

microparticles exhibited full release after just 1 min in the ethanolic medium (Figure 

6.7). Further investigation into the complete dye release exposed that the PVAc 

microparticles were soluble in the 50:50 ethanol and water release medium. Therefore, 

future work is required to determine a more appropriate solvent system for 

determining dye release rate from PVAc microparticles. 
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Figure 6.7: Characterisation of the full release of ABM from PVAc particles contained within an 

ethanolic release medium by monitoring the change in fluorescence intensity on a plate reader 
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6.2.3 Free Radical Copolymerisation of P(MDO-co-VAc) 

Copolymerisation of PVAc and MDO with a 50% monomer feed was achieved by free 

radical polymerisation in line with the report by Albertsson et al., (Scheme 6.4).18 As 

a general procedure, VAc and MDO were copolymerised in bulk at 60 °C for 4 h under 

an atmosphere of nitrogen, using 2, 2-azobisisobutyronitrile (AIBN) as radical 

initiator. After quenching the polymerisation in an ice bath, the copolymer was 

precipitated three times into hexane to remove excess monomer, before drying in 

vacuo. The successful copolymerisation of MDO and VAc was confirmed by 1H NMR 

spectroscopic analysis (Figure 6.8).  

  

Scheme 6.4: Schematic representation of free radical copolymerisation of MDO and VAc using 

AIBN as initiator. 
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Figure 6.8: 1H NMR spectrum of P(MDO-co-VAc) (41:59) synthesised via free radical 

polymerisation, (# signals of the side reactions of 1,4- and 1,7- hydrogen transfer (CDCl3, 300 MHz) 

 

1H NMR spectroscopic analysis enabled calculation of the individual monomer 

incorporation of VAc and MDO in the final copolymer (Figure 6.8). Indeed, 

comparison of the integrals of the methine protons from VAc and the methylene 

protons of MDO from the polymer backbone at δ = 4.80 - 5.20 and 4.00 ppm 

respectively revealed the mole fraction of each monomer within the final copolymer 

(41% MDO and 59% VAc). Further examination of the 1H NMR spectrum of P(MDO-

co-VAc) revealed the presence of resonances at δ = 0.90 ppm and 3.68 ppm, 

characteristic for the presence of side branches within the copolymer (Scheme 6.5). 

During rROP, the growing primary radical is highly reactive and unstable. Therefore, 

to increase the radical stability, the growing polymer chain can undergo intramolecular 

1,4- and 1,7- hydrogen transfer reactions, resulting in branch points along the polymer 

backbone. An estimation of the percentage of side chains within the copolymer (15%) 

was determined by comparing the integral of the side chain branch resonances               
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(δ = 0.90 ppm and δ = 3.68 ppm), with the methylene resonance close to the MDO 

carbonyl group on the polymer backbone (δ = 4.00 ppm). The polymer was further 

characterised via SEC, which revealed a high Mn (31,300 g/mol) and a broad dispersity 

(ÐM) 8.98 which is synonymous with free radical polymerisation and the introduction 

of MDO into the copolymer (Figure 6.9). 

 

Scheme 6.5: Schematic illustration detailing the possible side reactions occurring during rROP with 

MDO via 1,4- and 1,7-hydrogen transfer 

 

 

Figure 6.9: SEC chromatogram of P(MDO-co-VAc) (41:59) synthesised via free radical 

polymerisation (CHCl3, PS standards) 
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6.2.4 Microparticle Synthesis Using P(MDO-co-VAc) 

Microparticles of P(MDO-co-VAc) were synthesised using optimised single oil-in-

water solvent evaporation conditions detailed in Chapter 2. Subsequently, P(MDO-co-

VAc) (41:59) was dissolved in dichloromethane before emulsifying with an aqueous 

solution (containing 2 wt% Mowiol 488 as stabiliser). The dichloromethane was 

evaporated overnight allowing the particles to harden. The resultant solution appeared 

to be a white cloudy suspension, with no evidence of sedimentation within the reaction 

flask. Characterisation of the particle suspension by light scattering displayed a broad 

particle size distribution with a volume weighted mean of 25 μm (Figure 6.10 a)). 

Further characterisation of the particle suspension by optical microscopy revealed that 

similarly to PVAc particles, no evidence for particle aggregation was observed (Figure 

6.10 b)). Hence, it was expected that the large particle size was a result of the increased 

molecular weight of the copolymer compared to the ring opened polymers analysed in 

previous chapters. Therefore, it was assumed that the particle size could easily be 

tuned by increasing the shear speed and shear time. 

 

Figure 6.10: Characterisation of P(MDO-co-VAc) (41:59) particle suspension via a) light scattering 

and b) optical microscopy 
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P(MDO-co-VAc) particle synthesis was investigated further by encapsulating ABM 

using the same optimised encapsulation conditions as for PVAc particle encapsulation. 

In order to characterise the encapsulation of ABM into P(MDO-co-VAc) 

microparticles, the E was calculated. To do this, the particles were washed three times 

in DI water (to remove excess dye and stabiliser) and freeze dried overnight before 

dissolving the sample in dichloromethane. Similar to the synthesised PVAc 

microparticles, slight aggregation was observed during particle washing (Figure 6.11). 

The E of the P(MDO-co-VAc) particles was characterised by comparing the 

fluorescence intensity of the washed particles to the fluorescence intensity of known 

concentrations of ABM in dichloromethane. The P(MDO-co-VAc) particles displayed 

a good E of 42%, similar to the E calculated for PVAc particles (34%), thus implying 

the incorporation of MDO into the polymeric particles does not affect the particles 

ability to encapsulate AI’s. 

 

Figure 6.11: Optical microscopy of P(MDO-co-VAc) (41:59) particles after three washes with DI 

water 

 

After the promising encapsulation properties observed with P(MDO-co-VAc) 

particles, it was interesting to determine if the addition of MDO within the polymeric 

matrix affects the particle morphology. SEM characterisation of the P(MDO-co-VAc) 

particles both with and without dye revealed the presence of flattened, circular discs, 
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which appeared as a film-like deposit on the carbon tab instead of the spherical 

morphology expected based on previously imaged PVAc particles (Figure 6.12). 

Hence, the observed flat morphology of P(MDO-co-VAc) particles suggested that the 

particles had collapsed during the required drying and high vacuum sample 

preparation. Albertsson et al. have demonstrated that the random incorporation of 

MDO (Tg = -60 °C) into the polymeric backbone of PVAc (Tg = 30 °C) decreases the 

Tg of the resultant copolymer.18 Indeed, the Tg has been shown to be readily tuneable 

based on the composition of MDO:VAc in the final copolymer.18 It was hypothesised 

that the decreased Tg of the 41:59 MDO:VAc copolymer (Tg = -45 °C) decreased the 

structural stability of the particle, hence as water was removed, the intrinsically 

swollen particle collapsed, thus, resulting in the appearance of flattened and collapsed 

structures, as observed via SEM.28 
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Figure 6.12: SEM characterisation of P(MDO-co-VAc) (41:59) microparticles a) without dye and b) 

with dye 

 

To further investigate the particle collapse observed with P(MDO-co-VAc) particles, 

a sample of the particle suspension was monitored via optical microscopy before and 

after drying on a glass slide for 1 h (Figure 6.13). Interestingly, particle aggregation 

and coalescence was evident after air-drying for one hour (Figure 6.13 b)). To further 

elucidate the particle morphology change, the particle suspension was also monitored 

during particle drying by optical microscopy (Figure 6.14). Interestingly, as the water 

evaporated, the larger particles appeared to elongate, this was postulated to be a 

consequence of particle collapse during drying. However, full particle collapse was 

not visible by optical microscopy on either study. Therefore, it was postulated that 

application of vacuum during SEM analysis removed final traces of water present in 

the sample, thus further destabilising the particles and resulting in complete particle 
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collapse. Consequently, it would be interesting to study PVAc particles with a lower 

incorporation of MDO, to determine if a balance between good degradability and 

stability is attainable at lower MDO ratios. Furthermore, the ease of copolymerisation 

between vinyl polymers and CKAs by rROP in addition to the ease of functionality 

previously reported with vinyl polymers implies the broad potential future scope for 

this project, such as variable degradability, incorporation of functionality into the 

particle and production of stimulus-responsive particles. 
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Figure 6.13: Optical microscopy analysis of P(MDO-co-VAc) (41:59) particles a) before drying b) 

after air-drying for 1 h 

 

Figure 6.14: Optical microscopy analysis of P(MDO-co-VAc) (41:59) particles during drying 
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In order to elucidate information regarding the ABM release rate from P(MDO-co-

VAc) particles, an aliquot of the particle suspension was placed into a 50:50 water: 

ethanol solution and the change in fluorescence intensity monitored over 5 h. 

Interestingly, conversely to PVAc microparticles, the P(MDO-co-VAc) particles were 

insoluble and displayed minimal signs of release after five hours within the release 

medium (Figure 6.15).  

 

Figure 6.15: Characterisation of the change in fluorescence intensity observed with P(MDO-co-VAc) 

(50:50) particles in a 50:50 water: ethanol solution over five hours using a plate reader 

  

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400

[A
B

M
] R

el
ea

se
d

 (
%

)

Time (min)



Chapter 6. Synthesis of Degradable Microparticles via rROP of VAc and a CKA 

 

203 

 

6.3 Conclusions 

In conclusion, the successful incorporation of enhanced degradability into PVAc 

microparticles was achieved by utilising a copolymer of VAc and MDO, prepared by 

rROP, as the particle matrix. Characterisation by light scattering and optical 

microscopy revealed that both PVAc and P(MDO-co-VAc) particles could be 

successfully attained using an optimised single oil-in-water solvent evaporation 

technique. Furthermore, both sets of polymeric particles displayed a broader particle 

size distribution compared to the polyesters synthesised via ROP in Chapter 2. 

Nevertheless, the absence of observed aggregates and sediment implied that the 

particle size could easily be tailored by varying the particle shear speed and time. 

Investigation into the encapsulation of a fluorescent dye revealed that both PVAc and 

P(MDO-co-VAc) particles were able to successfully encapsulate ABM and displayed 

good E’s of 34% and 42% respectively, as confirmed by fluorometry. Whilst 

monitoring dye release into a 50% water: ethanol medium, negligible release was 

observed with P(MDO-co-VAc) particles over a 5 h period. Conversely, full, 

immediate dye release was observed with PVAc particles, as a consequence of the 

high solubility of PVAc within the ethanolic release medium. Therefore, future work 

would be required to find the suitable conditions for dye release from PVAc particles. 

Further characterisation of PVAc particles by SEM revealed that the particles 

exhibited a smooth, spherical morphology with or without dye. On the other hand, 

only collapsed particle morphologies were evident via SEM characterisation of 

P(MDO-co-VAc) particles. It was hypothesised that the low glass transition 

temperature (Tg) of 2-methylene-1,3-dioxepane (MDO) decreased the stability of the 

particles and as such, the particles collapsed upon drying. It was postulated that a lower 

concentration of MDO within the microparticle would enable the production of stable 
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microparticles. The attained random copolymer and ease of functionality previously 

reported with vinyl polymers highlight the range of possibilities available through the 

synthesis of microparticles from vinyl polymers and CKAs.  
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7. Microparticles, Films and Polymerisation-

Induced Self-Assembly with Poly(ω-

Pentadecalactone) and its Copolymers 
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7.1 Introduction 

Ring-opening polymerisation (ROP) of cyclic lactones has opened a pathway to a wide 

range of polyesters with a diverse scope of mechanical and thermal properties (e.g., 

crystallinity, glass transition temperature, degradation rate, etc.).1 Currently, most 

research has been focussed on the polymerisation of small ring lactones (4-, 6- and 7-

membered rings), such as poly(lactic acid) (PLA) or poly(ɛ-caprolactone (ɛCL)).2-4 

The high ring strain observed with the smaller ring lactones has enabled the successful 

synthesis of high molecular weight polyesters with rapid propagation kinetics, using a 

wide range of initiators and catalysts. Conversely, macrolactones have been less 

widely studied as a consequence of the decreased ring strain observed with larger ring 

monomers. Hence, traditional reaction methods have been shown to only yield low 

molecular weight polymers with slow kinetic propagation rates.5 Since the pioneering 

work by Kobayashi et al., in 1995 investigating enzymatic ROP of 12-, 13- and 16- 

membered lactones, there has been an increase in research into polymerisation of 

macrolactones, as a consequence of the promising properties offered by the larger 

rings, (such as high molecular weight polymers and high tensile strength).6-10 

ω-Pentadecalactone (PDL) is a 16-membered lactone naturally found in fragrant fruits, 

animal musk and angelica root oil (Figure 7.1).11 When polymerised, the resultant 

poly(ω-pentadecalactone) (PPDL) consists of a long, 15- carbon alkyl repeat unit. 

Hence, polymerisation of PDL is an efficient synthetic route to the production of high 

molecular weight polymers. PPDL displays high crystallinity as a consequence of its 

long aliphatic backbone.12 Moreover, the high crystallinity observed with PPDL, has 

been shown to exhibit high mechanical and tensile strength properties comparable to 

that of low density polyethylene (LDPE) (Figure 7.1 b) and c)).13-15  
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Figure 7.1: Chemical structure of a) PDL, b) PPDL and c) LDPE 

 

Polyesters are well known for undergoing hydrolysis via hydrolytic scission of the 

ester linkage within the polymer backbone.16-19 The long aliphatic backbones observed 

with macrolactones promises the possibility of increased stability towards hydrolytic 

degradation.20 Indeed, the high crystallinity and high hydrophobicity observed with 

PPDL contribute to the low susceptibility of PPDL to hydrolytic degradation. In fact, 

PPDL has only been shown to degrade enzymatically or under high temperature (425 

°C).6 On the other hand, PPDL has been shown to exhibit signs of degradation in 

compost, thus rendering it an extremely interesting polymer for agrochemical 

applications.21 

PDL has been copolymerised with a range of smaller degradable ring lactones in 

attempts to enhance the biodegradability profile.22, 23 The copolymerisation of PDL 

and ɛCL has been studied using several catalyst systems. Investigation into the 

copolymerisation kinetics revealed that either ɛCL or PDL was consumed 

preferentially before the growth of the second monomer, depending on the applied 

catalyst. However, in each case, transesterification side reactions occurred, thus 

resulting in the synthesis of random copolymers.24-26 Furthermore, Ceccorulli et al. 

revealed that copolymers of PDL and ɛCL displayed cocrystallinity, thus the melting 

temperature (Tm) and crystallisation temperature (Tc) were linearly dependent on the 

initial molar ratio of the monomer feed (PDL: ɛCL).27 The significant influence 

observed on the copolymer properties when varying the initial monomer ratio 

a) b) c)
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highlights the promising potential of copolymers of PPDL and smaller ring degradable 

lactones, to yield tuneable, degradable copolymers. 

This chapter demonstrates the promising potential of PPDL and its copolymers to yield 

a range of highly advantageous biodegradable morphologies, (microparticles, thin 

films and cylindrical micelles). PPDL was applied in a single oil-in-water solvent 

evaporation technique to achieve highly crystalline microparticles. Furthermore, the 

random copolymers formed through copolymerisation of PDL and ɛCL were used to 

prepare biodegradable thin films. The high crystallinity associated with PPDL was 

exploited to achieve worm-like micelles via a hybrid method of polymerisation-

induced crystallization-driven self-assembly (PICDSA) during copolymerisation with 

ɛ-decalactone (ɛDL). The interesting properties possessed by PPDL, imply the highly 

beneficial achievements attainable by incorporating PPDL into microparticles, films 

and cylindrical micelles, each capable of achieving the controlled release of an 

agrochemical.  
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7.2 Results and Discussion 

7.2.1 Poly(ω-Pentadecalactone) Microparticles 

7.2.1.1 Ring-Opening Polymerisation of Poly(ω-Pentadecalactone) 

The ROP of PDL was performed in line with the previous report from Wilson et al., 

using benzyl alcohol as an initiator and Mg(BHT)2(THF)2 as a catalyst (Scheme 7.1).28 

Mg(BHT)2(THF)2 was synthesised according to the method described by Ittel et al..29 

In order to enable comparable results to microparticle degradation in Chapter 4, PPDL 

was polymerised to a degree of polymerisation (DP) of 100 (PPDL 100). The reaction 

was polymerised at 80 °C for 16 h before characterising the conversion by 1H NMR 

spectroscopy via the ratio of the integrations of the α-methylene shift of PDL (δ = 4.15 

ppm) compared to PPDL (δ = 4.05 ppm), in agreement with previous literature.30 The 

resultant polymer was purified by precipitation into methanol before being dried in 

vacuo. Characterisation of the white polymer by 1H NMR spectroscopy enabled the 

calculation of the DP through the integration of the benzyl methylene resonance (δ = 

5.11 ppm) to the α-methylene resonance of PPDL (δ = 4.05 ppm) (Figure 7.2). 

 

Scheme 7.1: Schematic representation of ROP PDL using Mg(BHT)2(THF)2 as a catalyst at 1 M 

PDL in toluene 
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Figure 7.2: 1H NMR spectrum of PPDL 100 (CDCl3, 300 MHz, 298 K) 

 

Further characterisation of the polymer by size exclusion chromatography (SEC) 

revealed a dispersity (ÐM) of 2.18, with evidence of a lower molecular weight shoulder 

visible on the SEC chromatogram (Figure 7.3). The broad ÐM and low molecular 

weight shoulder were attested to transesterification side reactions occurring 

synchronously with polymerisation during ROP. Consequently, through back-biting, 

the active chain end can react with the ester linkage on the polymer backbone, thus 

resulting in a shortened chain and a cyclic species, leading to a broad dispersity. 
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Figure 7.3: SEC characterisation of PPDL 100 (CHCl3, PS standards) 

 

7.2.1.2 Synthesis of PPDL Microparticles 

Microparticles from PPDL 100 were prepared using the optimised single oil-in-water 

solvent evaporation conditions from Chapter 2. In brief, PPDL 100 was dissolved in 

dichloromethane before homogenising at 7000 rpm for 30 s with an aqueous solution 

(containing Mowiol 488 (2 wt%) as a stabiliser). The organic solvent was evaporated 

overnight before characterising the particle suspension via light scattering (Figure 

7.4). 

 

Figure 7.4: Light scattering characterisation of PPDL microparticles prepared via single oil-in-water 

solvent evaporation 
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Light scattering of the particle suspension revealed an average volume weighted mean 

particle size of 10 μm, however, larger aggregates were evident in the solution, ranging 

up to 500 μm in size. During particle synthesis, PPDL 100 was only just soluble in 

dichloromethane, consequently, sediment was also observed at the base of the 

emulsion. Characterisation of the particle morphology by scanning electron 

microscopy (SEM) revealed the formation of perforated crystalline particles (Figure 

7.5). The long aliphatic backbone of PPDL enables the polymer chains to assemble 

into a highly ordered, densely packed structure. Hence, during particle formation, the 

long chain length of the polymer could prevent tight packing between the PPDL 

chains, thus reducing the strength of the intermolecular bonds between the polymer 

chains. Furthermore, the low solubility of PPDL 100 in dichloromethane would result 

in the polymer precipitating before the dichloromethane can fully evaporate. 

Therefore, it was postulated that the low solubility and long crystalline chain of the 

polymer would result in the formation of highly porous particles as confirmed via SEM 

analysis (Figure 7.5). 

 

Figure 7.5: SEM characterisation of PPDL microparticles using CH2Cl2 as organic phase 
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As a consequence of the low solubility of PPDL 100 in dichloromethane, various 

organic solvents were investigated with the aim to decrease the concentration of 

sedimentation formed during particle synthesis. The most promising solvent appeared 

to be chloroform. PPDL 100 dissolved easily into chloroform, however, a similar level 

of sedimentation was observed at the base of the reaction flask as noted with particle 

synthesis using dichloromethane. The particles were characterised via SEM (Figure 

7.6), which confirmed the successful synthesis of PPDL 100 microparticles with a 

smooth surface morphology. However, SEM analysis of the sediment confirmed the 

presence of broken and deformed particles. It was postulated that the increased 

solubility of PPDL 100 in chloroform compared to dichloromethane enabled the 

formation of microparticles with increased surface smoothness. However, the long 

chain length of the polymer still resulted in the formation of large pores within the 

microparticle, thus decreasing the particle stability. Consequently, the particles would 

be more susceptible to breaking or falling apart. 

 

Figure 7.6: SEM characterisation of a) PPDL microparticle suspension and b) sediment arising with 

CHCl3 as organic solvent 
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The synthesis of PPDL 100 microparticles was investigated further by encapsulating 

3-bromo-4-(butylamino)-2,5-dihydro-1H-pyrrole-2,5-dione (ABM). The particles 

were prepared using the optimised single oil-in-water conditions. ABM (0.1 wt%) was 

dissolved in conjunction with PPDL 100 into chloroform, before emulsifying with an 

aqueous solution (containing Mowiol 488 (2 wt%) as stabiliser). Chloroform was 

evaporated overnight before washing the particles with deionised water and freeze 

drying. The washed and dried sample was dissolved in dichloromethane, to enable an 

accurate determination of the percentage of encapsulated dye. The particle dye loading 

(E) was determined by comparing the fluorescence intensity of the encapsulated dye 

against the intensity of six known concentrations of unencapsulated ABM using a 

fluorometer. However, the resultant particles synthesised with both dichloromethane 

and chloroform as the organic phase displayed low E (≥ 12%). The observed low E 

was postulated to be a consequence of the broken particle morphology and large pore 

size. As a consequence of the low E observed with PPDL microparticles, it would be 

interesting to investigate particles synthesised from homopolymer blends or 

copolymers of PPDL and a smaller ring lactone, such as poly(3-hydroxybutyrate) 

(PHB), PLA or a responsive polymer.  
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7.2.2 Synthesis of Thin Films from Poly(ω-Pentadecalactone), Poly(ɛ-

Caprolactone) and their Copolymers 

7.2.2.1 Copolymerisation of Poly(ω-Pentadecalactone) and Poly(ɛ-Caprolactone) 

Polymeric films have been proven to be ideal structural materials for controlling AI 

release.31-33 The one-pot copolymerisation of PDL with ɛCL has been shown to yield 

random copolymers, resulting from transesterification side reactions.24-26 Therefore, 

the thin film degradation rate can be controlled by tuning the copolymer composition 

of PPDL and PCL. Copolymers of P(PDL-co-ɛCL) were synthesised by one-pot ROP 

using an equimolar ratio of benzyl alcohol initiator and Mg(BHT)2(THF)2 catalyst, 

with a total monomer concentration of 2 M in toluene at 80 °C, in line with the 

procedure by Wilson et al. (Scheme 7.2).24 

 

Scheme 7.2: Schematic representation of copolymerisation of PDL and ɛCL 

 

To be consistent with previous degradation chapters, an overall DP of 100 was 

targeted. The incorporation of each monomer within the final copolymer was 

systematically varied by modifying the initial ratio of PDL: ɛCL. The monomers were 

polymerised for the desired time before characterising the monomer conversion by 1H 

NMR spectroscopy (Table 7.1). The individual α-methylene shifts for both PPDL and 

PCL appeared at δ = 4.05 ppm, therefore, the calculation of individual monomer 

conversion could not be achieved by 1H NMR spectroscopy. Conversely, the overall 

monomer conversion was calculated by integration of the polymer α-methylene shift 

(δ = 4.05 ppm) compared to the monomer α-methylene shift (δ = 4.06 ppm). The 



Chapter 7. Microparticles, Films and PISA with PPDL and its Copolymers 

218 

 

polymerisation was quenched by addition of acidified methanol before precipitating 

the copolymers into methanol to remove any excess monomer. The polymers were 

dried in vacuo before characterisation by 1H NMR spectroscopy, quantitative 13C 

NMR spectroscopy and SEC (Figure 7.7 and Table 7.1). To enable a comparative 

study, homopolymers of PPDL and PCL were polymerised to DP 100 using previously 

discussed methods (Section 7.2.1 and Section 2.2.1.3 respectively). 

 

Figure 7.7: Quantitative 13C NMR spectroscopic analysis of P(PDL-co-ɛCL) copolymers with (PDL: 

ɛCL) monomer composition a) 75:25 b) 25:75 and c) 50:50 (700 MHz, CDCl3, 298 K) 
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Table 7.1: Copolymerisation of PDL and ɛCL targeting DP 100 with varying monomer ratio’s 

[PDL]: 

[PCL] 

p 

(%) 

Mn theory
 

(kDa)a,b 

Mn NMR 

(kDa)a 

Mn SEC 

(kDa)c 

ÐM 

SEC
c 

Diadsd 

PDL*-

PDL 

PDL*-

ɛCL 

ɛCL*-

PDL 

ɛCL*- 

ɛCL 

100:0 97 23,400 27,000 24,500 2.18 
- 

(1.00) 

- 

(0.00) 

- 

(0.00) 

- 

(0.00) 

75:25 96 20,200 20,200 16,600 2.18 
0.03 

(0.04) 

0.17 

(0.16) 

0.15 

(0.16) 

0.65 

(0.64) 

50:50 94 16,800 15,700 14,700 1.83 
0.23 

(0.23) 

0.25 

(0.25) 

0.25 

(0.25) 

0.27 

(0.27) 

25:75 98 14,400 17,000 7,600 1.42 
0.47 

(0.49) 

0.23 

(0.21) 

0.20 

(0.21) 

0.10 

(0.09) 

0:100 95 11,000 16,000 15,300 1.08 
- 

(0.00) 

- 

(0.00) 

- 

(0.00) 

- 

(1.00) 
 

aDetermined by 1H NMR spectroscopy, bCalculated from ([ɛCL and/or PDL]0/[BA] × p × (molecular 

weight of ɛCL and/or PDL) + (molecular weight of BA), cDetermined by SEC analysis in CHCl3 

against PS standards, dDerived from quantitative 13C NMR spectroscopy, where * denotes the 

analysed carbonyl, numbers in parentheses show theoretical values based on the composition 

calculated using the equation P(A*-B)=fa×fb  

 

Synthesis of random copolymers was confirmed by the presence of four carbonyl diad 

resonances within the quantitative 13C NMR spectra for the three copolymer 

compositions, which corresponded to PDL*-PDL, PDL*-ɛCL, ɛCL*-PDL and ɛCL*-

ɛCL (where * is the observed carbonyl). Furthermore, the intensities of the diad 

resonances fit well with the expected intensities for the corresponding desired ratio of 

PDL: ɛCL within the final copolymer. SEC characterisation revealed the formation of 

narrow, monomodal traces during polymerisation of ɛCL, however, as PDL was 

introduced into the copolymer, the ÐM increased and evidence for low molecular 

weight species were present in the SEC chromatograms. The increased ÐM and low 

molecular weight species present in the copolymers were a result of transesterification 

side reactions and unavoidable cyclic species arising during the polymerisation of 

strainless macrolactones. 
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7.2.2.2 PPDL Film Formation 

7.2.2.2.1 Solvent Casting 

Initially, the formation of PPDL 100 films via solvent casting was investigated. In 

order to achieve this, three different concentrations of PPDL 100 in chloroform (2 

wt%, 5 wt% and 10 wt%) were prepared.  Several drops of the respective solution 

were distributed evenly onto a glass slide, before leaving the chloroform to evaporate 

overnight. However, at all concentrations, the PPDL appeared to have detached from 

the glass slide (Figure 7.8 a). This was postulated to be a consequence of the rapid 

evaporation rate of the chloroform. Therefore, to decrease the chloroform evaporation 

rate, PPDL (10 wt%) was evenly distributed onto a glass slide and placed within a tall 

PTFE cup. The chloroform was evaporated overnight before characterising the film 

height by interferometry (Figure 7.8 b).  

 

Figure 7.8: Solvent casting of PPDL 100 (10 wt%) films onto a) a glass slide on the bench b) 

interferometry characterisation of solvent casting onto a glass slide in a PTFE cup 

 

Interferometry analysis of a PPDL 100 (10 wt%) film after solvent casting onto a glass 

slide within a PTFE cup revealed the formation of a 4 μm thick film with a rough 

surface. The rough surface was also evident for PPDL at 2 wt% and 5 wt% in 

chloroform and was attributed to an uneven layering of the PPDL 100 during 

chloroform evaporation. It was evident that to achieve reproducible PPDL film 

synthesis with comparable film thickness, a more controlled technique was required.  

a) b)
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7.2.2.2.2 Spin Coating 

Spin coating enables evaporation of the organic solvent during high speed rotation of 

the sample. Consequently, the combination of the resulting centripetal force and 

surface tension of the solution results in the formation of evenly coated films.34 

Therefore, the three concentrations of PPDL in chloroform (2 wt%, 5 wt% and 10 

wt%) were applied onto a glass slide before spin coating for 1 min at 2000 rpm. The 

subsequent films were characterised via interferometry (Figure 7.9). 

 

Figure 7.9: Interferometry analysis of PPDL 100 films after spin coating for 1 min at 2000 rpm with 

an initial [PPDL] in chloroform of a) 2 wt%, b) 5 wt% and c) 10 wt% d) resultant mass and film 

height at the three concentrations 

 

Spin coating at a concentration of both 2 wt% and 5 wt% PPDL 100 in chloroform, 

yielded an even, uniform film, however, slight peeling was observed with the higher 

concentration of 10 wt% PPDL 100 in chloroform. Characterisation of the synthesised 

film mass revealed that only films synthesised at 5 wt% and above yielded films with 

a high enough mass to be characterizable via SEC. Therefore, all further film synthesis 

was performed at a concentration of 5 wt% polymer in chloroform. 
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7.2.2.3 Thin Film Degradation  

As a consequence of the diverse soil composition experienced worldwide, the 

degradation profile of the films was monitored in three degradation media: neutral, 

enzymatic (10 mg/mL) and basic (pH 10). Protease, lipase and esterase are well known 

to be synthesised by microbes within the soil. The concentration of each enzyme can 

change rapidly depending on diffusion, the soil composition and the immediate plant 

surroundings. Therefore, to enable a comparable study to direct degradation in soil, 

the films were immersed in a solution of Cleanzyme, which contains a cocktail of 

enzymes commonly found in the soil.  

Multiple films were synthesised for each copolymer composition by spin coating for 

1 min at 2000 rpm at a polymer concentration of 5 wt% in chloroform. To characterise 

the films by SEC, the films were extracted from the slides by dissolving in chloroform, 

allowed to dry-down into a vial and then re-dissolved into the chloroform SEC solvent. 

Subsequent SEC characterisation of the films revealed both the original polymer and 

film had the same SEC chromatogram, with identical Mn and ÐM. Therefore, film 

synthesis does not affect the properties of the polymer. Initial samples of the films 

were characterised by SEC and interferometry, thus enabling comparison of both the 

total mass loss and film height loss during degradation (Table 7.2).  
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Table 7.2: Film thickness and mass of films synthesised by spin coating from PPDL, PCL and their 

respective copolymers at 5 wt% [polymer] in chloroform 

[PPDL]:[PCL] at (nm) 

Mn SEC 

(g/mol)b 

ÐM SEC
b
 

100:0 400 24,500 2.18 

75:25 500 16,600 2.18 

50:50 800 14,700 1.83 

25:75 400 7,600 1.42 

0:100 300 15,300 1.08 
 

aFilm thickness determined by interferometry analysis bDetermined by SEC characterisation in 

CHCl3 against PS standards 

 

After synthesis, the films were immersed directly into the desired degradation media. 

However, after one week of degradation, the films had detached from the glass slides, 

therefore, the degradation study could not be continued (Figure 7.10). This was 

postulated to be a consequence of the high hydrophobicity of the polymer compared 

to the glass slide. Consequently, for future progress, it was hypothesised that films 

could be spin coated onto either silanised glass (thus increasing the hydrophobicity of 

the glass) or on to a different substrate, such as silicon. 

 

Figure 7.10: Visual observation of detached films after one week in a) aqueous and b) basic (pH(10)) 

degradation media *Imagery of detached films in enzymatic medium was unattainable as a 

consequence of the milky white colouration of cleanzyme. The films were observable floating on the 

top of the solution, however, the thin films split and fell apart when removed from the jar. 
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7.2.3 Polymerisation-Induced Self-Assembly of Poly(ω-Pentadecalactone-co-ɛ-

Decalactone) 

Self-assembly of block copolymers is generally achieved via post-polymerisation 

techniques, such as solvent switch and direct dissolution. These robust techniques 

enable the production of a wide array of structures, e.g., spheres, cylinders, vesicles, 

etc.35-38 The attained morphology can be controlled by the degree of repulsion, the 

initial molar monomer ratio and the selectivity of the solvent, which can all influence 

the packing parameter of the copolymer (Figure 7.11).36 The resultant self-assembled 

structures have been shown to have high industrial relevance and have been applied 

for a range of applications e.g., coatings, elastomers and drug delivery.39-41 However, 

large scale synthesis of nanostructures via post-polymerisation self-assembly is 

currently challenging and most resultant nanostructures are in highly dilute 

concentration.42, 43  

 

Figure 7.11: Schematic representation of the self-assembled morphologies available in a block-

selective solvent where p = dimensionless packing parameter, v = volume of the hydrophilic chains, 

a0 = contact area of the hydrophobic head group and lc = length of the hydrophobic tail36 
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In recent years, polymerisation-induced self-assembly (PISA) has arisen and promises 

to solve the associated problems with post-polymerisation self-assembly.44, 45 To 

achieve self-assembled structures using PISA, the block copolymers are prepared in a 

selective solvent, chosen so that the first block is completely soluble, yet the second 

block is insoluble.46 Therefore, the polymer remains in solution during polymerisation 

of the first block, but as the second block is added to the chain, the insolubility of the 

growing second block results in polymer self-assembly. Currently, the majority of 

research has utilised reversible-addition-fragmentation chain transfer (RAFT) 

methodologies with vinyl monomers, therefore, PISA using ROP of polyesters opens 

the possibility to achieve a wide array of structures with interesting and diverse 

degradable properties.47 

The unique structural properties associated with cylindrical or worm-like micelles 

have been shown to improve the mechanical properties of epoxy resins, be useful as 

templates for electronic materials and have enhanced drug delivery capability (as a 

consequence of their long circulation time and altered cell internalisation pathways 

when compared to spherical micelles).48-51 Nevertheless, only a narrow composition 

window is available when using the hydrophobic effect as the main driving force for 

assembly.36 Therefore, obtaining pure cylindrical morphologies has been proven to be 

challenging. Conversely, crystallization-driven self-assembly (CDSA) of block 

copolymers combines the hydrophobic effect with the high crystallinity of the 

hydrophobic block, thus providing a powerful and effective methodology for the 

selective synthesis of cylindrical micelles.52-54  

7.2.3.1 ROP of P(PDL-co-ɛDL) 

Polymerisation induced self-assembly (PISA) enables the production of hierarchical 

structures, such as micelles, cylinders and vesicles, etc., in a one-pot polymerisation 
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system.43 It was postulated that the high crystallinity observed with PPDL would 

enable crystallisation driven self-assembly (CDSA) when copolymerised into a block 

copolymer. Therefore, it was interesting to investigate the one pot block copolymer 

synthesis of poly(ω-pentadecalactone-co-ɛ-decalactone) (P(PDL-co-eDL). The 

copolymerisation of PPDL and PeDL was performed targeting a 1:4 monomer ratio 

(respectively) using the method reported by Wilson et al., (Scheme 7.3).55 

 

Scheme 7.3: Schematic representation of ROP of ɛDL and PDL 

 

The successful copolymerisation of P(PDL-co-ɛDL) was confirmed by monitoring the 

decrease in the monomer α-methylene shifts of PPDL and PDL (δ = 4.11 ppm and δ = 

4.22 ppm respectively) coupled with the formation of the polymer α-methylene shifts 

of PDL and PPDL (δ = 4.86 ppm and 4.05 ppm respectively). After polymerisation 

for 12 h, the polymerisation was quenched by addition of acidified methanol before 

precipitation into cold methanol. The resultant white powder was dried in vacuo before 

characterisation by 1H NMR spectroscopy (Figure 7.12).  
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Figure 7.12: 1H NMR spectrum of P(PDL-co-PDL) (CDCl3, 300 MHz, 298 K) 

 

Characterisation by 1H NMR spectroscopy enabled calculation of the DP of each 

polymer by end group analysis. Moreover, comparison of the integrals of the benzyl 

methylene resonance of the chain end (δ = 5.11 ppm) to the α-methylene resonance of 

PPDL (δ = 4.05 ppm) and PDL (δ = 4.86 ppm), revealed a DP of 40 and 160 for PPDL 

and PDL respectively (Figure 7.12). The copolymer was further characterised via 

SEC, which again confirmed the presence of low molecular weight cyclic species 

characteristic of the polymerisation of macromonomers (Figure 7.13). 
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Figure 7.13: SEC chromatogram of P(PDL-co-DL) (CHCl3, PS standards) 

 

Fernández et al., reported that during copolymerisation ɛDL is consumed at a faster 

rate compared to PDL as a consequence of the different reactivity of the co-

monomers.23 Therefore, ɛDL is fully polymerised before PDL is incorporated into the 

chain, thus leading to the formation of block-like rather than random copolymers. To 

confirm the structure of the synthesised P(PDL-co-DL), the polymer was further 

characterised via quantitative 13C NMR spectroscopy (Figure 7.14). The resultant 13C 

NMR spectrum revealed the formation of the characteristic block copolymer shifts at 

δ = 174.1 ppm and 173.4 ppm representative of carbonyl diad resonances of PDL*-

PDL and ɛDL*-ɛDL respectively. However, the appearance of a third, low intensity, 

carbonyl resonance at δ = 173.8 ppm, representative of PDL*-ɛDL implied that even 

though the polymers have a block-like structure, there is some graduation where a 

PDL unit neighbours an ɛDL unit within the copolymer. The relative ratios observed 

by integration of the carbonyl diad resonances revealed that the PPDL to PDL is 

approximately 1:4 and thus agrees with the initial monomer feed ratio. 
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Figure 7.14: Quantitative 13C NMR spectrum of P(PDL-co-DL), (125 MHz, CDCl3, 298 K) 

 

7.2.3.2 Homopolymerisation of ɛ-Decalactone and ω-Pentadecalactone 

To successfully achieve PISA, the first block synthesised remains soluble within the 

chosen reaction solvent during polymerisation, however, the second block is insoluble 

in the reaction medium, thus destabilising the copolymer and driving self-assembly. 

Therefore, to elucidate the optimum solvent for PISA of P(PDL-co-DL), the solubility 

of PDL and PPDL in the desired reaction solvent was required. Therefore, ɛDL was 

polymerised to DP 160 using the same polymerisation conditions as detailed for 

homopolymerisation of PPDL (Section 7.2.1.1) (Scheme 7.4). In brief, ɛDL was 

polymerised to DP 160 using an equimolar ratio of benzyl alcohol initiator and 

Mg(BHT)2(THF)2 catalyst, with a total monomer concentration of 2 M in toluene. The 

reaction was polymerised at 80 °C for 12 h before characterising the conversion by 1H 

NMR spectroscopy. The reaction was quenched by addition of acidified methanol, 

before precipitation into methanol and drying in vacuo. The successful synthesis of 

PDL*-
PDL

PDL*-
eDL eDL*-

PDL

eDL*-
eDL
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PDL was confirmed by 1H NMR spectroscopy and SEC (Figure 7.15 and Figure 7.16 

respectively). Comparison of the integration of the PDL methine on the polymer 

backbone (δ = 4.86 ppm) and the methylene of the benzyl end group (δ = 5.11 ppm) 

enabled calculation of the polymer DP, in good agreement with previous literature 

(Figure 7.15).56 

 

Scheme 7.4: Schematic representation of ROP of ɛDL using Mg(BHT)2(THF)2 as catalyst 

 

Figure 7.15: 1H NMR spectrum of PDL DP 160 (CDCl3, 30 MHz, 298 K) 
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Figure 7.16: SEC chromatogram of PDL DP 160 (CHCl3, PS standards) 

 

To enable comparable solubility to the PPDL block of the 1: 4 PDL: ɛDL ratio of the 

polymerised P(PDL-co-ɛDL), PPDL was polymerised to DP 40 using the method 

detailed in Section 7.2.1.1. The polymerisation was heated at 80 °C for 4 h, before 

quenching the polymerisation by addition of acidified methanol. The resultant 

polymer was precipitated into methanol and dried overnight in vacuo, before being 

characterised via 1H NMR spectroscopy and SEC (Table 7.3).  

Table 7.3: Characterisation of homopolymerisation of PDL DP 160, PPDL DP 40 and 

copolymerisation of P(PDL-co-DL) DP 200 (ratio 1:4 respectively) using Mg(BHT)2(THF)2 as 

catalyst and benzyl alcohol (BA) initiator 

 

Polymer 
Target 

[M]/[I] 

Time 

(h) 

Mn theory 

(g mol-1)a,b 

Mn NMR 

(g mol-1)a 

Mn SEC 

(g mol-1)c
 

ÐM 

SEC
c 

Actual 

[M]/[I] 

PPDL 40 40 4 8,800 8,700 9,800 2.20 36 

PDL 160 160 12 26,800 27,000 19,500 1.39 158 

P(PDL-

co-DL) 
200 12 33,400 35,400 35,800 1.68 191 

aDetermined by 1H NMR spectroscopy, bCalculated from ([Monomer]0/[BA] × conv. × (M.W of 

monomer) + (molecular weight of BA), cDetermined by SEC analysis in CHCl3 against PS standards 
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7.2.3.3 Solubility Study 

To successfully achieve self-assembly via PISA, the solubility of both segments of the 

copolymer in the polymerisation solvent is highly important. Therefore, it was 

reasoned that the optimum solvent must adhere to three main solubility criteria: 

1) PDL must be fully soluble 

2) PPDL should be insoluble at room temperature, but soluble at an elevated 

temperature 

3) P(PDL-co-DL) should be soluble at high temperatures and remain in solution 

when cooled back to room temperature 

To determine the optimum conditions for PISA of P(PDL-co-DL), the solubility of 

PDL, PPDL and P(PDL-co-DL) was investigated in an initial visual analysis in a 

variety of solvents (Table 7.4). Furthermore, the polymers were immersed in the 

different solvents at room temperature, 80 °C and 110 °C and the cloudiness of the 

solution monitored over time. A copolymer ratio of PDL: DL of 1: 4 was targeted as 

in a normal self-assembly, this would enable the production of spheres, however, in 

CDSA, cylindrical structures should be evident. Ethyl benzene and butyl benzene 

appeared to be the most promising solvents. Moreover, both solvents were able to fully 

solubilise PDL at room temperature and elevated temperature and only solubilise 

PPDL at higher temperatures. Furthermore, both solvents were found to solubilise 

P(PDL-co-DL) at 80 °C and 110 °C and interestingly, the copolymer remained in 

solution even after the solution was cooled. 
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Table 7.4: Solubility of PPDL, PDL and P(PDL-co-DL) ratio of 1:4 at 50 mg/mL in a variety of 

solvents 

 

x = insoluble, ✓* = partially soluble and ✓ = soluble 

 

7.2.3.4 Self-Assembly of Poly(ω-Pentadecalactone-co-ɛ-Decalactone) 

After the promising solubility observed visually of P(PDL-co-DL) in both ethyl 

benzene and butyl benzene, it was interesting to determine if after cooling the solution, 

the copolymer had formed a self-assembled structure or fully dissolved in the solvent. 

To further elucidate the potential copolymeric transformation, a solution of the 

P(PDL-co-DL) in ethyl benzene (50 mg/mL) was prepared and heated to 80 °C for 

one hour, before leaving the solution to cool to room temperature overnight. The initial 

50 mg/mL solution and a diluted solution of 1 mg/mL were characterised via dynamic 

light scattering (Figure 7.17).  

Solvent 

Polymer 

PPDL PDL PPDL-co-PDL 

RT 80 °C 110 °C RT 80 °C 110 °C RT 80 °C 110 °C 

Hexane x x x - - - x x x 

Octane x ✓* ✓* - - - - - - 

Decane x ✓ ✓ ✓ ✓ ✓ x ✓ ✓ 

Butanol x ✓* ✓ ✓ ✓ ✓ x ✓ ✓ 

Octanol x ✓ ✓ ✓ ✓ ✓ x ✓ ✓ 

Toluene ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Ethyl 

Benzene 
x ✓ ✓ ✓ ✓ ✓ ✓* ✓ ✓ 

Butyl 

Benzene 
x ✓ ✓ ✓ ✓ ✓ ✓* ✓ ✓ 

Propylene 

Carbonate 
x x ✓ ✓* ✓ ✓ - - - 
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Figure 7.17: DLS characterisation of P(PDL-co-DL) self-assembly in ethylbenzene a) 50 mg/mL 

and b) 1 mg/mL  

 

Interestingly, light scattering characterisation of the initial 50 mg/mL copolymeric 

solution in ethylbenzene revealed the formation of two distinct particle size 

distributions (Figure 7.17a)). It was postulated that the concentration of particles in 

solution was too high for accurate characterisation and was resulting in interparticle 

interactions, thus interfering with the characterisation. Therefore, the solution was 

diluted to a lower concentration of 1 mg/mL (Figure 7.17b). Nevertheless, even at a 

lower concentration, multiple distributions were evident by light scattering analysis. 

DLS functions on the assumption that the particles are spherical. Therefore, it was 

postulated that the multiple distributions evident by dynamic light scattering (DLS) 

could be a consequence of self-assembled cylindrical morphologies. To further 

investigate the self-assembly behaviour of P(PDL-co-DL) in ethyl benzene, the 

solution was characterised via transmission electron microscopy (TEM) (Figure 

7.18a). To do this, a drop of the initial solution was placed on a carbon lacey film with 

300 mesh copper grid and dried overnight before staining with uranyl acetate. To 

prevent sample aggregation or over-crowding on the TEM grid, a diluted sample was 

also characterised via TEM (10 mg/mL) (Figure 7.18b). At both concentrations, 
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cylindrical micelles could be observed, thus implying the polymer had undergone 

CDSA after cooling to room temperature.  

 

Figure 7.18: TEM characterisation of self-assembled structures of PPDL-co-PeDL self-assembly in 

ethylbenzene at a) 50 mg/mL and b) 10 mg/mL 

 

7.2.3.5 Attempt at PISA of Poly(ω-Pentadecalactone-co-ɛ-Decalactone) 

To further examine the self-assembly behaviour observed with P(PDL-co-DL), a one-

pot copolymerisation was performed at 2 M in ethyl benzene. The copolymerisation 

was heated at 80 °C for 12 h, before leaving to cool to room temperature overnight. 

Interestingly, after twelve hours of heating, the copolymer had a gel-like consistency 

when heated and after cooling. Derry et al., recently reported critical gel temperature 

associated with the formation of worm-like micelles assembled during PISA in hexane 

with poly(lauryl methacrylate)-poly(benzyl methacrylate).39 A sample of the 

polymerisation solution was diluted in ethyl benzene before characterisation via TEM. 

However, no self-assembled structures were evident via TEM analysis.  
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7.3 Conclusions 

In conclusion, this Chapter detailed the wide variety of advantageous morphologies 

attainable from PPDL and its copolymers. When applied in a single oil-in-water 

solvent evaporation technique, PPDL yielded highly crystalline spherical 

microparticles as observed via SEM. However, large aggregates were observed 

forming during particle hardening, thus resulting in the formation of sediment at the 

base of the reaction flask. Investigation into the encapsulation of a fluorescent ABM 

within a PPDL microparticle resulted in a low E (12%), presumably as a consequence 

of the low solubility and high crystallinity of PPDL. However, the interesting particle 

structure and polymeric properties afforded with PPDL highlight the great potential 

offered by PPDL microparticles potentially achievable through copolymerisation or 

blending of PPDL with a smaller ring lactone or responsive polymer. 

Copolymerisation of PDL with ɛCL yielded random copolymers, whose composition 

could be accurately tuned by varying the initial molar monomer ratio, as confirmed by 

quantitative 13C NMR spectroscopy. Investigation into the synthesis of films from 

PPDL 100 revealed that spin coating at 2000 rpm for 1 min enabled the formation of 

thin, evenly distributed films with no evidence of peeling at concentrations of 2 wt% 

and 5 wt%. Expanding the investigation to different P(PDL-co-CL) compositions 

enabled the production of thin films with characterizable profiles by SEC and 

interferometry when prepared at 5 wt% polymer in chloroform. However, after one 

week in aqueous, enzymatic and basic degradation media, all film compositions had 

detached from the glass slides. This was postulated to be a consequence of the 

difference in hydrophobicity of the glass slide compared to the PPDL and PCL films. 

Nevertheless, the ease of film synthesis and characterisation suggest the potential for 
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PPDL film degradation to be achievable by using a different substrate, such as 

silanised glass or silicon. 

One pot copolymerisation of PPDL and PDL with Mg(BHT)2(THF)2 as catalyst 

yielded block-like copolymers, as confirmed by quantitative 13C NMR spectroscopy. 

Investigation into the solubility of P(PDL-co-DL) revealed that ethyl benzene and 

butyl benzene were able to solubilise P(PDL-co-DL) at elevated temperature, but not 

at room temperature. However, it was observed that after heating, the copolymer 

remained in solution even when cooled to room temperature. Characterisation of the 

resultant solution by TEM revealed the presence of worm-like micelles. Furthermore, 

the morphology of the copolymer was characterised directly after polymerisation in 

ethyl benzene via TEM, however, no self-assembled structures were observable, 

therefore, future work optimising the PICDSA conditions would be required. 

Nevertheless, the high versatility achieved through copolymerisation of PPDL 

highlights the wide array of potential enhancements attainable to the agricultural 

industry via application of PPDL and its copolymers.   
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8.1 Conclusions 

In conclusion, the synthesis and characterisation of biodegradable microparticles for 

the controlled release of an active ingredient (AI) has been shown to be an excellent 

platform for the production of enhanced agricultural formulations. In the first 

approach, a range of lactones were polymerised to yield well-defined polyesters with 

tuneable molecular weights. Magnesium 2,6-di-tert-butyl-4-methylphenoxide 

(Mg(BHT)2(THF)2) was found to be an efficient catalyst for the ring-opening 

polymerisation of poly(3-hydroxybutyrate) (PHB). However, high monomer 

conversion was unattainable using the polymerisation system as a consequence of 

monomer deprotonation during initiation. Microparticle formation using the 

synthesised polyesters was demonstrated using a versatile single oil-in-water solvent 

evaporation technique. Characterisation of the particles via light scattering and 

microscopy revealed the high influence of formulation variables on the resultant 

particle size and stability. Optimisation of the emulsification parameters enabled the 

creation of a repeatable procedure for microparticle synthesis that was demonstrated 

to be easily applicable to a wide variety of polymers and molecular weights. 

The optimised single oil-in-water technique was further expanded and was discovered 

to be highly versatile for the encapsulation of hydrophobic dyes. However, 

characterisation of the particle morphology and dye loading via scanning electron 

microscopy (SEM) and fluorometry revealed that the structure of the dye and its 

compatibility with the polymeric particle can drastically alter the particle 

encapsulation and release rate. The degradation and release profiles of the different 

polyester microparticles was investigated under simulated environmental conditions, 

which showcased the high resistance to hydrolysis of poly(L-lactide) (PLLA), 

poly(D,L-lactide) (PDLLA) and poly(ɛ-caprolactone) (PCL) in a range of degradation 
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media. PHB was discovered to be less stable under enzymatic degradation conditions, 

exhibiting complete dye release and particle collapse after 12 weeks. 

The synthesis and characterisation of novel microparticles prepared from 

homopolymer blends of PLLA and poly(malic acid) (PMA) was reported. The 

miscibility of the polymer blends was discovered to highly influence the resultant 

microparticle morphology. Visible phase separation between PLLA and 

poly(nitrobenzyl malic acid) (PNO2BnMA) resulted in the formation of janus-type 

raspberry microparticles. Conversely, addition of 3-bromo-4-(butylamino)-2,5-

dihydro-1H-pyrrole-2,5-dione (ABM) aided polymer miscibility and enabled the 

formation of spherical microparticles as observed via SEM analysis. The successful 

triggered degradation and release of ABM from PLLA/PNO2BnMA particles was 

demonstrated, with near complete release observed after exposure of the particles to 

UV-light for 1 h. 

The versatility of the optimised solvent evaporation technique was further 

demonstrated via the synthesis of novel particles using a random copolymer of poly(2-

methylene-1,3-dioxepane-co-vinyl acetate) (P(MDO-co-VAc)) prepared by free 

radical-ring opening polymerisation (rROP). The P(MDO-co-VAc) particles were 

shown to display a smooth particle morphology and were able to successfully 

encapsulate ABM. However, the low glass transition temperature (Tg) of 2-methylene-

1, 3-dioxepane (MDO) decreased the stability of the particles and as such, the particles 

collapsed upon drying. 

The optimised particle synthesis was also applied to the ring-opened macrolactone 

poly(ω-pentadecalactone) (PPDL), however, only low yields and low dye loading 

were achieved. Therefore, this approach was deemed unsuitable for the preparation of 
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PPDL microparticles. Copolymers of PPDL and PCL were prepared by one-pot ROP 

using Mg(BHT)2(THF)2 and thin films successfully synthesised via spin-coating the 

copolymers onto glass slides. The P(PDL-co-PCL) films could be readily 

characterised via interferometry and size exclusion chromatography (SEC). However, 

as a consequence of the high hydrophobicity of the polymers, the films detached from 

the glass slides after one week in the respective degradation media. A preliminary 

investigation into the potential for Polymerisation-induced self-assembly (PISA) of 

PPDL and poly(ɛ-decalactone) (PDL) was investigated, with the promising formation 

of cylindrical micelles observed via transmission electron microscopy (TEM) via self-

assembly in ethyl benzene. 

8.2 Future Work 

Having established and optimised techniques for particle synthesis, encapsulation of 

ABM and degradation and release procedures, there are many future opportunities 

attainable based on the work detailed in this thesis. For instance, continuation of the 

microparticle degradation and release studies detailed in Chapter 3 and 4 would enable 

the production of a degradation library with full, comparable information regarding 

particle stability and effect of polymer type, molecular weight and crystallinity on the 

particle degradation and release profiles. Furthermore, the observed triggered 

degradation and release attained by incorporation of the UV sensitive PNO2BnMA 

within a PLLA particle implies the great potential for tuneable degradation and release 

controlled by varying the ratio of PLLA and PNO2BnMA within the particle matrix. 

Additionally, the easy functionalisation achievable with malic acid opens a wide range 

of possibilities for the incorporation of numerous responsive units within the 

microparticles to target a broad range of properties and applications (e.g., pH 

responsive or enzymatic responsive for triggered release as the particle lands on the 
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soil). With a similar aim, it would also be interesting to study the change in particle 

degradation and release rate observed with varying the MDO and VAc copolymer 

composition. Furthermore, the ease of functionality previously reported with vinyl 

polymers has the potential to provide an alternative pathway for the incorporation of 

functionality into the microparticles and for the synthesis of stimulus-responsive 

particles. 

Although the PPDL microparticles could only be attained in low yields, incorporation 

of a second polymer or copolymerisation of PDL with PLA, PHB or a responsive 

polymer could potentially act to increase the solubility of PPDL in the organic solvent. 

Therefore, this could also act to increase the stability of the resultant microparticles 

enabling their use for the controlled release of an AI under environmental conditions. 

The versatile film synthesis and characterisation technique developed in Chapter 7 

could easily be adapted to prevent film detachment during degradation via spin coating 

the films onto a different substrate (e.g., silanised glass or silicon). Further 

development of the procedure could be investigated for the encapsulation of an AI, 

thus enabling investigation into the degradation and release profile observed with 

PPDL films. 
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9.1 Materials 

L-Lactide (LLA) (Purac) and D,L-lactide (D,LLA) (Purac) were recrystallized once 

from dichloromethane and twice from toluene before standing over 3 Å molecular 

sieves for 3 days followed by a final toluene recrystallisation. Benzyl alcohol (BnOH) 

(Sigma-Aldrich), ɛ-decalactone (ɛDL) (Sigma-Aldrich), ɛ-caprolactone (ɛCL) 

(Acros), β-butyrolactone (βBL) (Sigma-Aldrich) and 1,8-diazabicyclo[5.4.0]undec-7-

ene (DBU) (Sigma-Aldrich) were distilled twice from calcium hydride (CaH2) 

(Sigma-Aldrich) prior to use. Diphenylphosphate (DPP) (Apollo Scientific Ltd.) was 

dried over phosphorous pentoxide in a vacuum desiccator for 4 days prior to use. ω-

Pentadecalactone (PDL) (Sigma-Aldrich) was dissolved in toluene (75 wt%) and dried 

overnight on 3 Å molecular sieves. Vinyl acetate (VAc) (Sigma-Aldrich) was de-

inhibited before use by passing through a basic alumina plug. 2,2-Azobis(2-methyl 

propionitrile) (AIBN) (Sigma-Aldrich) was re-crystallized from methanol prior to use. 

Magnesium 2,6-di-tert-butyl-4-methylphenoxide (Mg(BHT)2(THF)2) was synthesised 

according to the method by Ittel et al.1 3-Bromo-4-(butylamino)-2,5-dihydro-1H-

pyrrole-2,5-dione (ABM) was synthesised using the previously reported method by 

Mabire et al.2 2-Methylene-1,3-dioxepane (MDO) was synthesized using the 

previously described method by Bailey et al.3 Mowiol 4-88 (Mw = 31,000 g/mol, 

Sigma-Aldrich), nile red (99%, Acros) and Cleanzyme (JANI SOURCE) were used as 

received. Deuterated-chloroform (Apollo Scientific Ltd.) and deuterated-benzene 

(Apollo Scientific Ltd.) were dried over 3 Å molecular sieves and distilled under 

vacuum before use. All other solvents and reagents were purchased from either Sigma-

Aldrich or Fisher Scientific and used as received. 
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9.2 Instrumental Methods 

Proton (1H) nuclear magnetic resonance (NMR) spectra were obtained on a Bruker 

DPX 300 and 400 spectrometer (300 MHz and 400 MHz) at 293 K. Carbon (13C) NMR 

spectra were recorded using a Brucker DPX 400 spectrometer and Bruker DRX 500 

spectrometer (400 MHz and 500 MHz) at 293 K or Bruker AV-II-700 spectrometer. 

Phosphorous (31P) NMR spectra were obtained on a Bruker DPX spectrometer. All 

chemical shifts were reported as δ in parts per million (ppm) and referenced to the 

residual solvent signal (CDCl3; δ = 7.26 ppm and 77.16 ppm for 1H and 13C NMR 

spectra respectively). Size exclusion chromatography (SEC) was used to determine 

the dispersities (ÐM) and molecular weights of synthesised polymers. SEC was 

conducted in chloroform (CHCl3) using a Varian PL-GPC 50 system equipped with 2 

𝑥 PLgel 5 µm MIXED-D columns in series, a UV detector and a differential refractive 

index (RI) detector at a flow rate 1.0 mL min-1. The system was calibrated against a 

Varian Polymer Laboratories Easi-Vial poly(styrene) (PS) standard and analysed by 

the software package Cirrus v3.3. Particle size distributions and mean diameters were 

determined using a Malvern Mastersizer at 293 K (Mastersizer S, Malvern Instruments 

Limited, U.K.). Particle size analysis of microspheres was performed using an optical 

microscope and a confocal microscope with a MPLAPONLEXT50 lens. Images were 

captured and processed by Image Pro Plus software. Scanning Electron Microscopy 

samples were air-dried onto an aluminium stub fitted with a carbon tab before being 

gold coated using a Quorum sputter coater. Particle morphology was determined using 

a Zeiss SUPRA 55VP FEGSEM fitted with EDX X-ray analysis system and an EBSD 

camera or a Zeiss GeminiSEM 500 fitted with SDD-EDX and STEM detectors. 

Transmission electron microscopy (TEM) samples were prepared on graphene-oxide 

(GO) TEM grid and imaged without staining or carbon lacey film with 300 mesh 
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copper grid with uranyl acetate staining. TEM analysis was performed using a JEOL 

2000 FX electron microscope operating at 200 kV accelerating voltage. Fluorescence 

wavelength scans were recorded using an Agilent Cary Eclipse Fluorescence 

spectrophotometer. Release studies were performed using the FLUOstar OPTIMA 

plate reader with 96 F-bottom Greiner black well plates at excitation 390 nm and 

emission 520 nm unless otherwise stated. DLS analyses were carried out using a 

Malvern Zetasizer Nano ZS instrument operating at 25 °C with a Mw He-Ne 633 nm 

laser module. Measurements were made at an angle of 173° (back scattering) and 

results were analysed using Malvern DTS 6.32 software. Film height and profilometry 

data was obtained using a Bruker Contour GT-X Optical Profiler and subsequently 

analysed using the software package Vision 64. Vertical Scanning Interferometry 

(VSI) was employed utilising either green or white light, a 5𝑥 objective lens, a 1𝑥 

multiplier, 3𝑥 scanning speed and a 1% threshold value, the resultant data was 

reconstructed and visualized in the Gwyddion 2.47 software. Differential scanning 

calorimetry (DSC) was obtained using a Mettler Toledo DSC1 star system. Heating 

and cooling cycles were run in triplicate in series under a nitrogen atmosphere in a 40 

μL aluminium crucible. 

9.3 Experimental Procedures 

9.3.1 General Experimental Procedures for Chapter 2 

9.3.1.1 General Ring-Opening Polymerisation Procedure for Lactide 

Using a modified version of the previously reported procedure, in a typical lactide 

ring-opening polymerisation, L-lactide (1 g, 6.938 mmol, 25 equiv) was dissolved in 

dichloromethane (10 mL, 0.7 M) before adding benzyl alcohol (28.7 μL, 0.278 mmol, 

1 equiv.), followed by DBU (10.4 μL, 6.938 𝑥 10-5 mol, 1 mol%).4 The polymerisation 

reaction mixture was then stirred for the appropriate reaction time. An aliquot of the 
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crude polymerisation reaction was characterised by 1H NMR spectroscopy to 

determine the monomer conversion (98%). The polymer was purified via precipitating 

the crude polymer twice into pet ether and once into methanol. The final polymer was 

then characterised by 1H NMR (300 MHz; CDCl3): δ 7.33 ppm (m, 5H, C6H5CH2), 

5.18 (q, 1H, OCOCH(CH3)OCO), 1.56 (d, 3H, OCOCH(CH3)OCO, 3JH-H = 2.9 Hz) 

and SEC (CHCl3): Mn = 4,900 g/mol, ÐM = 1.17. 

Poly(D,L-Lactide): 

Monomer conversion by 1H NMR spectroscopy = 94%, 1H NMR (300 MHz; CDCl3): 

δ 7.38-7.29 (m, 5H, C6H5CH2), 5.25-5.11 (m, 1H, OCOCH(CH3)OCO), 1.60-1.51 (m, 

3H, OCOCH(CH3)OCO) and SEC (CHCl3) Mn = 3,800 g/mol, ÐM = 1.17. 

9.3.1.2 General Procedure for Ring Opening Polymerisation of ɛ-Caprolactone 

Synthesised in-line with the previously reported procedure, ε-caprolactone (1 g, 8.320 

mmol, 25 equiv.) was dissolved in toluene (10 mL, 1 M) before adding BnOH (34.5 

μL, 0.333 mmol, 1 equiv.), followed by DPP (83.3 mg, 0.333 mmol, 1 equiv.).5 The 

polymerisation was stirred for the appropriate reaction time. Before quenching the 

polymerisation, a portion of the polymerisation mixture was separated and used to 

determine the conversion based on the 1H NMR measurement (97%). The 

polymerisation was quenched through the addition of Amberlyst 21, before 

precipitating the crude polymer three times into hexane. The final polymer was then 

characterised by 1H NMR (300 MHz; CDCl3): δ 7.37-7.29 (m, 5H, C6H5CH2), 5.11 (s, 

2H, C6H5CH2), 4.05 (t, 2H, OCOCH2CH2CH2CH2CH2CO, 3JH-H = 7.9 Hz), 3.64 (t, 

2H, CH2OH, 3JH-H =7.7 Hz), 2.30 (t, 2H, OCOCH2CH2CH2CH2CH2CO, 3JH-H = 9 Hz), 

1.73-1.28(m, 4H, OCOCH2CH2CH2CH2CH2CO), 2H, OCOCH2CH2CH2CH2CH2CO) 

and SEC (CHCl3): Mn = 4,700 g/mol, ÐM = 1.06. 
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9.3.1.3 General Procedure for Ring Opening Polymerisation of β-Butyrolactone 

BnOH (3.8 μL, 3.485 𝑥 10-5 mol, 1 equiv.) and Mg(BHT)2(THF)2 (21.2 mg, 3.485 𝑥 

10-5 mol, 1 equiv.) were added to an ampoule containing β-butyrolactone (284 μL, 

3.485 mmol, 100 equiv.) in toluene (1.742 mL, 2 M) and left to stir at 80 ˚C overnight. 

A crude sample was taken for determination of the monomer conversion by 1H NMR 

spectroscopy (40%) before quenching the polymerisation with acidified methanol. The 

polymer was precipitated three times into hexane before drying in vacuo. 1H NMR 

(300 MHz; CDCl3): δ 7.35 (m, 5H, end group, C6H5CH2), 5.25 (m, 1H, backbone, 

CH(CH3)O), 5.12 (s, 2H, chain end, C6H5CH2), 2.57-2.43 (m, 2H, backbone, COCH2), 

1.29 (m, 3H, backbone, CH3), SEC (CHCl3): Mn = 4,800 g/mol, ÐM = 1.15. 

9.3.1.4 General Procedure for Microparticle Synthesis 

A typical procedure for the synthesis of microparticles is as follows: The organic phase 

(2 g, 10 wt%) was prepared by dissolving PCL 25 (0.25 g, 2.190 mmol, 12.5 wt%) in 

dichloromethane (1.75 g, 0.0206 mol, 87.5 wt%). This was added to the aqueous phase 

(18 g, 90 wt%) which consisted of mowiol 4-88 (2.67 g, (15 wt % aqueous solution), 

1.212 𝑥 10-5 mol, 2 wt%) in water (15.33 g, 0.852 mol). The two solutions were 

emulsified using a Silverson high shear mixer at 7000 rpm for 30 s. The solution was 

then transferred to a larger beaker and left with low shear overhead stirring to harden 

overnight. The particles were characterised via light scattering and optical microscopy 

(Table 9.1). 
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Table 9.1: Particle size of different polymeric emulsions determined by the volume weighted mean 

recorded via light scattering 

Polymer DPa Polymer Particle Size (μm)b 

PLLA PDLLA PCL 

25 12 10 10 

75 15 14 14 

100 15 15 16 

250 19 17 19 
 

aDetermined by 1H NMR spectroscopy, bDetermined by volume weighted mean from light scattering 

analysis 

 

9.3.1.5 General Procedure for Encapsulation of a Fluorescent Dye 

Rhodamine B (0.0125 g, 2.609 𝑥 10-5, 5 wt%) was dissolved in the organic phase (2 

g, 10 wt%) with PLLA (0.238 g, 1.653 mmol) and emulsified with the aqueous phase 

(18 g, 90 wt%) as detailed in section 9.3.14. An aliquot of the microparticle solution 

was taken (500 μL, 6.944 𝑥 10-4 g/mL) and compared by UV/Vis spectroscopy to a 

solution of Rhodamine B in water (6.944 𝑥 10-4 g/mL). The absorption maxima of the 

rhodamine B microparticle containing solution was taken away from the absorption 

maxima at λmax = 554 nm of the Rhodamine B solution to determine the amount of 

fluorescent dye encapsulated (89.5%). The particles were washed three times with 

deionised water before freeze-drying the sample followed by dissolving the powder in 

dichloromethane to determine the encapsulated content within the microparticles. 

9.3.2 General Experimental Procedures for Chapter 3 

9.3.2.1 Typical Procedure for Microparticle Swelling Study 

Polymer and particles were prepared using the method described above. The dried 

particles (0.125 g) were dispersed in either deionised (DI) water (10 mL) or a 50:50 

water: ethanol (10 mL) solution. Samples were taken at regular time intervals and the 

change in particle size and morphology monitored via light scattering and optical 

microscopy.  
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9.3.2.2 General Procedure for Microparticle Degradation and Release Studies 

The polymer and particles were synthesised according to the previously described 

procedures. The dried particles were suspended in the desired degradation medium 

(8.289 mg/mL) before being stored with rotation on a Stuart rotator at room 

temperature (RT) in the dark. After predetermined times, samples (300 µL) were 

collected and washed three times with deionised water before freeze-drying for 

particle characterisation via SEM, SEC (CHCl3) and fluorescence monitoring of the 

dye loading (E). Further aliquots (200 µL) of the particle degradation medium were 

added to a solution of 50:50 EtOH: H2O (1.8 mL). The change in fluorescence 

intensity was monitored over 5 h, regular samples of the release medium, were 

collected, filtered through a 0.22 µm polyethersulphone filter and the resultant 

fluorescence intensity measured on the plate reader at excitation 390 nm and emission 

520 nm (unless otherwise stated). The fluorescence intensity was compared to six 

known concentrations of ABM to determine the percentage ABM released from the 

particles. 

9.3.3 Experimental Procedures for Chapter 5 

9.3.3.1 General procedure for functionalisation of malic acid 

Malic acid was functionalised using a modified version of the previously reported 

procedure by Miller et al.6 In general, for the synthesis of methyl malic acid, malic 

acid (5 g, 37.3 mmol) was cooled over ice, before slowly adding trifluoroacetic 

anhydride (12.5 mL, 88.6 mmol). After stirring for 3 h at 0 °C, volatiles were removed 

under reduced pressure before adding an excess of methanol (50 mL, excess). The 

reaction was left to proceed for a further 12 h at RT before removing excess methanol 

in vacuo. The reaction mixture was diluted with EtOAc (300 ml) and extracted with 

Na2CO3 (10 %, 3 x 200 ml). The aqueous phase was acidified to pH 7 using 1 M HCl 
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and excess EtOH was extracted using EtOAc (4 𝑥 100 ml) before recollecting the 

aqueous phase, acidifying further to pH 2/3 and extracting the pure monoester with 

more EtOAc (5 𝑥 200 ml). The solution was dried using MgSO4 before having solvent 

removed via rotary evaporation to leave a white solid. Yield: g, 32%, 1H NMR (300 

MHz; CDCl3): δ 4.52 (t, 1H, CO2HCH(CH2CO2CH3)OH, 3JH-H = 5.4 Hz), 3.84 (s, 3H, 

CH2CO2CH3), 2.98-2.76 (m, 2H, CH2CO2CH3), 
13C NMR (400 MHz; CDCl3): δ 

173.01, 76.32, 56.79, 51.82, 39.70. 

Ethyl malic acid: 

Yield: 18.9 g, 54%, 1H NMR (300 MHz; (CD3)2CO): δ 4.49 (t, 1H, 

CO2HCH(CH2CO2CH2CH3)OH, 3JH-H = 6 Hz), 4.21-4.13 (m, 2H, CH2CO2CH2CH3), 

2.82-2.64 (m, 2H, CH2CO2CH2CH3), 1.24 (t, 3H, CH2CO2CH2CH3, 
3JH-H = 7.1 Hz), 

13C NMR (400 MHz; (CD3)2CO): δ 205.47, 172.85, 171.05, 67.50, 60.68, 38.54, 

13.52. 

Nitrobenzyl malic acid: 

Yield: 5.05 g, 50%, 1H NMR (300 MHz; (CD3)2CO): δ 8.15-8.13 (m, 1H, aromatic, 

C4H3CHCNO2CCH2O), 7.81-7.76 (m, 1H, aromatic, C4H3CHCNO2CCH2O), 7.61-

7.66 (m, 1H, aromatic, C4H3CHCNO2CCH2O), 5.58 (m 2H, C6H4NO2CH2O), 4.68-

4.65 (dd, 1H, CO2HCH(CH2)OH, 3JH-H = 4.8 Hz), 2.91-2.74 (m, 2H, 

CO2HCH(OH)CH2), 
13C NMR (400 MHz; (CD3)2CO): δ 205.35, 172.48, 170.98, 

147.34, 133.91, 129.25, 124.77, 67.60, 63.06, 38.43. 

9.3.3.2 Typical step growth polymerisation of functionalised malic acid 

For a general step growth polymerisation of functionalised malic acid for example for 

the synthesis of poly(methyl malic acid); methyl malic acid (2 g, 15.1 mmol) was 

heated and stirred at 110 °C for three days under nitrogen. An aliquot of the 
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polymerisation was analysed via 1H NMR spectroscopy to determine the monomer 

conversion (47%). 1H NMR (300 MHz; CDCl3): δ 7.00–6.73 (m, 1H, CH, fumaric 

acid), 5.66-5.45 (m, 1H, CO2HCH(CH2CO2CH3)OH), 3.80 (s, 3H, CH2CO2CH3), 

3.09-2.82 (m, 2H, CH2CO2CH3), SEC (DMF): Mn 1,300 g/mol, ÐM 1.40. 

Poly(Ethyl Malic Acid): 

1H NMR (400 MHz, (CD3)2CO) δ 7.00–6.73 (m, 1H, CH, fumaric acid), 5.80–5.32 

(m, 1H, OCOCH(CH2CO2CH2CH3)O), 4.28–4.15 (m, 2H, OCOCH2CH3), 3.37–2.58 

(m, 2H, CH2OCOCH2CH3), 1.27 (t, 3H, OCOCH2CH3, 
3JH-H = 7.3 Hz), SEC (DMF): 

Mn 1,600 g/mol, ÐM 1.16. 

Poly(Nitrobenzyl Malic Acid): 

1H NMR (300 MHz; CDCl3): δ 8.17–8.07 (m, 1H, aromatic, C4H3CHCNO2CCH2O), 

7.75–7.36 (m, 3H, aromatic, C4H3CHCNO2CCH2O), 7.03–6.77 (m, 1H, 

OCOCHCHOCO, 1H, OCOCHCHOCO), 5.85–5.41 (m, 1H, 

CO2HCH(CH2OCOBnNO2)O, 2H, OCOCH2C6H4NO2), 4.65 (s, 1H, 

CO2HCH(CH2OCOBnNO2)O, chain end), 3.35–2.79 (m, 2H, CHCH2OCOBnNO2), 

SEC (CHCl3): Mn 4,700 g/mol, ÐM 1.06. 

9.3.3.3 Typical DIC coupling of nitrobenzyl malic acid 

Nitrobenzyl malic acid (162 mg, 1 mmol) was dissolved in CHCl3 (1 mL) before 

adding DPTS (64.7 mg, 0.2 mmol) with stirring. The reaction was cooled in an 

acetone/ dry ice bath before adding DIC (189.3 mg, 1.5 mmol) dropwise over 1 min. 

The reaction was left with stirring at RT for 5 h before precipitating the polymer into 

cold hexane/methanol (10:1, v/v). The polymeric solution was passed through a silica 

plug before removing the solvent in vacuo. 1H NMR (300 MHz; (CD3)2CO): δ 8.24–

8.10 (m, 1H, aromatic, C4H3CHCNO2CCH2O), 7.88–7.51 (m, 3H, aromatic, 
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C4H3CHCNO2CCH2O), 7.03–6.77 (m, 1H, OCOCHCHOCO, 1H, OCOCHCHOCO), 

5.83–5.42 (m, 1H, CO2HCH(CH2OCOBnNO2)O, 2H, OCOCH2C6H4NO2), 4.40 (s, 

1H, CO2HCH(CH2OCOBnNO2)O, chain end), 3.32–3.01 (m, 2H, 

CHCH2OCOBnNO2), SEC (CHCl3): Mn = 1,900 g/mol, ÐM 1.40. 

9.3.3.4 General procedure for microparticle synthesis using homopolymer blends 

Similar to the particle procedure detailed in Section 9.3.1.4, the organic phase (2 g, 10 

wt%) was prepared by dissolving PLLA 100, the malic acid based polymer with or 

without ABM in dichloromethane (1.75 g, 20.6 mmol, 87.5 wt%). This was added to 

the aqueous phase which consisted of mowiol 4-88 (2.67 g, (15wt % aqueous 

solution), 1.212 𝑥 10-5 mol, 2 wt%) in water (15.33 g, 0.852 mol). The two solutions 

were emulsified using a Silverson high shear mixer at 7000 rpm for 30 s. The solution 

was then transferred to a larger beaker and left with low shear overhead stirring to 

harden overnight. The particles were characterised via light scattering and optical 

microscopy. 

9.3.3.5 General procedure for UV-triggered microparticle degradation 

Microparticles were prepared using the optimised single oil-in-water technique 

detailed in Section 9.3.1.5. The particles were washed three times with DI water and 

freeze-dried before being re-suspended in DI water (8.289 mg/mL). The particles were 

exposed to UV light (365 nm) for 1 h, with aliquots sampled every 10 min. Particle 

characterisation was determined via SEM, SEC (CHCl3), mass loss, release on a plate 

reader (excitation: 390 nm, emission: 520 nm) and change in E on a fluorometer 

(excitation: 360 nm, emission: 365-700 nm). 
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9.3.4 Experimental Procedures for Chapter 6 

9.3.4.1 Typical procedure for the radical-ring-opening polymerisation of vinyl 

acetate 

VAc was polymerised according to the previously reported procedure by Albertsson 

et al.7 In an inert environment, VAc (2 g, 0.0232 mol) and AIBN (0.19 g, 1.157 mmol, 

5 mol%) were stirred for 2 h at 60 °C in an ampoule. The polymerisation was quenched 

by placing the ampoule into an ice bath. A sample of the polymerisation was 

characterised by 1H NMR spectroscopy to determine the conversion (40%). The 

polymer was dissolved in chloroform and precipitated three times into cold hexane to 

remove excess monomer, before drying the white polymer in vacuo overnight. 1H 

NMR (300 MHz; CDCl3): δ 5.06-4.77 (m, 1H, CH2CH(CO2CH3)), 2.01 (s, 3H, 

CH2CH(CO2CH3)), 1.76 (m, 2H, CH2CH(CO2CH3)), SEC (CHCl3): Mn = 19,000 

g/mol, ÐM = 5.2. 

9.3.4.2 Typical procedure for the radical ring-opening copolymerisation of MDO 

and vinyl acetate 

A 50:50 MDO:VAc was synthesised in line with the previously reported procedure by 

Albertsson et al.7 In an inert environment, MDO (1.32 g, 0.0116 mol), VAc (1 g, 

0.0116 mol) and AIBN (0.095 g, 5.785 𝑥 10-4 mol, 5 mol%) were stirred for 4 h at 60 

°C in an ampoule. The polymerisation was quenched by placing the ampoule into an 

ice bath. A sample of the polymerisation was characterised by 1H NMR spectroscopy 

to determine the conversion (72%). The polymer was dissolved in chloroform and 

precipitated three times into cold hexane to remove excess monomer, before drying 

the white polymer in vacuo overnight. Characterised by 1H NMR spectroscopy and 

SEC. 1H NMR (300 MHz; CDCl3): δ 5.20-4.85 (m, 1H, CH2CHOCO), 4.06-4.02 (m, 

4H, OCH2CH2), 3.62 (s, 3H, CH3CCOCH), 2.60-2.58 (m, 2H, CHCH2COOCH2CH2), 
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2.33-2.29 (m, 2H, CH2CH2COOCH2CH2), 2.09-1.97 (m, 3H, CHOOCCH3), 1.95-1.45 

(m, 2H, CH2CHOCOCH2), 1.45-1.10 (m, 2H, CH2CH2CH2CH3, 2H, 

CH2CH2CH2CH3, 2H, CH2COOCH2CH2CH2), 1.46-1.24 (m, 2H, COOCH2CH2CH2, 

2H, COOCH2CH2CH2), 0.90 (t, 3H, CH2CH2CH2CH3), Copolymer composition by 

1H NMR spectroscopy: VAc = 40%, MDO = 60%, SEC (CHCl3): Mn = 31,300 g/mol, 

ÐM = 8.98. 

9.3.5 Experimental Procedures for Chapter 7 

9.3.5.1 General ring-opening polymerisation procedure using Mg(BHT)2(THF)2 

PDL and eDL were polymerised according to the reported procedure by Wilson et al.8 

For the polymerisation of PDL; BnOH (4.76 μL, 1.248x10-5 mol, 1 equiv.) and 

Mg(BHT)2(THF)2 (7.58 mg, 1.248x10-5 mol, 1 equiv.) were added to an ampoule 

containing PDL (0.3 g, 1.248 mmol, 100 equiv.) in toluene (1.248 mL, 1 M) and left 

to stir at 80 ̊ C overnight. A crude sample was taken for determination of the monomer 

conversion by 1H NMR spectroscopy (97%) before quenching the polymerisation with 

acidified methanol. The polymer was precipitated three times into methanol and dried 

in vacuo. 1H NMR (300 MHz; CDCl3): δ 7.35-7.34 (m, 5H, aromatic C6H5CH2), 5.11 

(s, 2H, COOCH2C6H5), 4.05 (t, 2H, CH2CH2COO, 3JH-H = 6.8 Hz), 3.63 (t, 2H, 

CH2CH2OH, 3JH-H = 8.4 Hz), 2.30-2.26 (t, 2H, OCOCH2CH2, 
3JH-H = 7.5 Hz), 1.65-

1.25 (m, 24H, CH2 backbone), SEC (CHCl3): Mn = 24,500 g/mol, ÐM = 2.18. 

ɛ-Decalactone: 

1H NMR (300 MHz; CDCl3): δ 7.32-7.35 (m, 5H, aromatic C6H5CH2), 5.10 (s, 2H, 

COOCH2C6H5), 4.84-4.81 (m, 1H, CH2CH(C4H9)OCO), 2.26 (t, 2H, OCOCH2CH2, 

3JH-H = 7.5 Hz), 1.61-1.27 (m, 12H, CH2, backbone), 0.88 (t, 3H, CH3, backbone, 3JH-

H = 4.2 Hz), SEC (CHCl3): Mn = 19,500 g/mol, ÐM = 1.39. 
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9.3.5.2 Typical procedure for the copolymerisation of ω-pentadecalctone and a 

lactone 

All copolymerisation’s were performed using standard glovebox and Schlenk-line 

techniques using the previously reported procedure by Wilson et al.9 In a typical 

procedure for copolymerisation of PDL and ɛ-CL, BnOH (8.6 μL, 8.294 𝑥 10-5 mol, 1 

equiv.), Mg(BHT)2(THF)2 (10 mg, 16.5 μmol, 1 equiv.), ɛ-CL (460 μL, 4.147 mmol, 

50 equiv.) and PDL (1 g, 4.147 mmol, 50 equiv.) were added to a sealed ampoule, 

before heating at 80 °C for a defined time period. The reaction was quenched with the 

addition of acidified methanol (5 % HCl). The polymer was taken up in chloroform 

and precipitated three times into excess methanol until no further monomer residue 

was observed. 1H NMR (300 MHz, CDCl3, ppm): δ 7.37-7.35 (m, 5H, aromatic 

C6H5CH2), 5.11 (s, 2H, COOCH2C6H5), 4.06 (t, 2H, CH2OCOCH2 PCL, 2H, 

CH2OCOCH2 PPDL 3JH-H = 4.2 Hz), 2.31-2.28 (m, 2H, CH2OCO), 1.67-1.25 (m, 2H, 

CH2, backbone), 13C NMR (700 MHz, CDCl3): δ 174.14 (PDL*-PDL, OCOCH2), 

174.08 (PDL*-ɛCL, OCOCH2), 173.74 (ɛCL*-PDL, OCOCH2), 173.65 (ɛCL*-ɛCL, 

OCOCH2), Total monomer conversion determined by 1H NMR spectroscopy = 94%, 

SEC (CHCl3): Mn = 14,700 g/mol, ÐM = 1.83. 

ω-pentadecalctone and ɛ-decalactone:  

1H NMR (300 MHz, CDCl3, ppm): δ 7.38-7.35 (m, 5H, aromatic C6H5CH2), 5.12 (s, 

2H, COOCH2C6H5), 4.90-4.85 (m, 1H, CH2CH(C4H9)OCO), 4.07 (t, 2H, CH2CH2OH, 

3JH-H = 4.5 Hz), 2.29 (t, 2H, OCOCH2CH2, 
3JH-H = 4.5 Hz), 1.64-1.24 (m, 2H, CH2, 

backbone), 0.90 (t, 3H, CH3, backbone, 3JH-H = 2.8 Hz), SEC (CHCl3): Mn = 35,800 

g/mol, ÐM = 1.67. 
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9.3.5.3 Typical procedure for film synthesis via solvent casting 

As a general procedure for film synthesis via solvent casting, PPDL (0.2 g,       1.664 

𝑥 10-4 mol, 2 wt%) was dissolved in chloroform (2 mL). The subsequent solution was 

distributed evenly onto a glass slide and placed at the base of a PTFE cup before 

leaving overnight to dry. Film height was characterised via Interferometry = 4 μm. 

9.3.5.4 Typical procedure for film synthesis via spin coating 

As a general procedure for film synthesis via spin coating, PPDL (0.2 g, 1.664 𝑥 10-4 

mol, 2 wt%) was dissolved in chloroform (2 mL). Several drops of the polymeric 

solution were dropped onto a glass slide before spin coating for 1 min at 2000 rpm. 

The films were characterised via SEC (CHCl3): Mn 24.500 g/mol, ÐM 2.18 and 

Interferometry = 200 nm. 

9.3.5.5 General procedure for film degradation 

In a typical film degradation, the glass slides containing the spin coated-films were 

immersed in a pre-prepared solution of DI water, Cleanzyme10 or a basic buffer 

solution of sodium carbonate and sodium hydrogen carbonate (pH 10). 

9.3.5.6 Typical polymerisation-induced self-assembly procedure for poly(ω-

pentadecalactone-co-ɛ-decalactone) 

In a polymerisation procedure, analogous to block copolymerisation detailed in 

Section 9.3.5.2, the polymerisation solution was cooled to room temperature overnight 

before characterising the polymeric structures via TEM and DLS.  
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10.1 Complementary Data for Chapter 3 

10.1.1 PLLA 100 Particle Degradation and Release in PBS 

 

Figure 10.1: SEM characterisation of PLLA 100 particles after degradation in PBS for 12 months 

 

 

Figure 10.2: SEC characterisation of PLLA 100 particles after degradation in PBS for 12 months 
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Figure 10.3: Observed [ABM] released from PLLA 100 particles after degradation in PBS for 12 

months 

 

10.1.2 Empty PLLA 100 Particle Degradation 

 

Figure 10.4: SEM characterisation of PLLA 100 particles without dye after degradation in water for 

a) 0 months, b) 3 months, c) 6 months and d) 8 months 
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Figure 10.5: SEM characterisation of PLLA 100 particles without dye after degradation in 

Cleanzyme for a) 0 months, b) 3 months, c) 6 months and d) 8 months 

 

Figure 10.6: SEC characterisation of PLLA 100 particles without dye after degradation in water for 

12 months 
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Figure 10.7: SEC characterisation of PLLA 100 particles without dye after degradation in Cleanzyme 

for 12 months 

 

10.2 Complimentary Data for Chapter 4 

10.2.1 PLLA 25 Particle Degradation and Release in Water 

 

Figure 10.8: SEM characterisation of PLLA 25 particles after degradation in water for a) 0 months, 

b) 2 months, c) 4 months and d) 6 months 
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Figure 10.9: SEC characterisation of PLLA 25 particles after degradation in water for 6 months 

 

Figure 10.10: Characterisation of the change in [ABM] released into water/ethanol from PLLA 25 

particles after degradation in water for 6 months 
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10.2.2 PLLA 250 Particle Degradation and Release in Water 

 

Figure 10.11: SEM characterisation of PLLA 250 particles after degradation in water for a) 0 months, 

b) 3 months, c) 6 months and d) 8 months 

 

 

Figure 10.12: SEC characterisation of PLLA 250 particles after degradation in water for 8 months 
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Figure 10.13: Characterisation of the change in [ABM] released into water/ethanol from PLLA 250 

particles after degradation in water for 8 months 

 

10.2.3 PDLLA 100 Particle Degradation and Release in Water 

 

Figure 10.14: SEM characterisation of PDLLA 100 particles after degradation in water for a) 0 

months, b) 3 months, c) 6 months and d) 8 months 
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Figure 10.15: SEC characterisation of PDLLA 100 particles after degradation in water for 8 months 

 

 

Figure 10.16: Characterisation of the change in [ABM] released into water/ethanol from PDLLA 100 

particles after degradation in water for 8 months 
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10.2.4 PCL 100 Particle Degradation and Release in Water 

 

Figure 10.17: SEM characterisation of the change in particle morphology observed with PCL 100 

after a) 0 months, b) 3 months, c) 6 months and d) 9 months in water 

 

 

Figure 10.18: SEC characterisation of PCL 100 particles after degradation in water for 9 months 
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Figure 10.19: Characterisation of the change in [ABM] released into water/ethanol from PCL 100 

particles after degradation in water for 9 months 
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