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Abstract 

 

Breast cancer is a major public health challenge. It affects a very large 

numbers of women across the globe. Although improvements in its 

management have dramatically transformed its prognosis at diagnosis, breast 

cancer remains associated with an increased long-term risk of death, persisting 

even decades after diagnosis. A comprehensive understanding of this 

underlying pattern of death from breast cancer in the long-term is currently 

lacking but increasingly important as the number of long-term survivors rises. The 

reliability of the cause of death is of particular interest in this context. 

In this thesis, I use data from the Geneva Cancer Registry to first, determine the 

best methodology for examining long-term net survival, and second, to 

evaluate its determinants. 

Two data settings are available for the estimation of net survival: the cause-

specific setting, where the cause of death is required, and the relative-survival 

setting, where it is not. I first evaluated the accuracy of routinely collected 

cause of death information and the impact of inaccuracies upon survival 

estimates. I observed small but non-negligible advantages in using a reviewed 

cause of death when estimating survival. I then compared the cause-specific 

to the relative survival setting for the estimation of long-term net survival and 

demonstrated that the relative-survival setting was less sensitive to violations of 

the assumptions both for breast cancer patients as well as for patients 

diagnosed with cancer at three other localisations.  
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I further investigated the long-term effects of key prognostic factors and 

treatment for women with breast cancer in the relative survival setting using an 

appropriate strategy for model selection. Although I demonstrated insightful 

non-linear and time-dependent effects for some prognostic variables, the 

analyses were limited by issues of convergence and misspecification of the 

model. High quality population-based data and additional statistical tools are 

required to understand with greater certainty the determinants of breast 

cancer long-term excess mortality. 
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Research questions 

 

 

 

 

What is the most accurate way to estimate net survival 

when reviewed cause of death is available? 

 

& 

 

When using an accurate approach, what can be 

determined about the long-term effects of prognostic 

factors and treatment for women with breast cancer? 
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Aims of the thesis 

 

The overall aims of this thesis are: 

 to evaluate the accuracy of routine cause of death information 

collected within a cancer registry setting and the impact of inaccuracies 

on survival estimates, 

 to evaluate the less biased data setting (cause-specific vs. relative-

survival) for the estimation of long-term net survival when reviewed 

cause of death is available and 

 to use the superior approach found in previous aim to investigate the 

long-term effects of key prognostic factors and treatment for women 

with breast cancer. 
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Objectives of the thesis 

 

The specific objectives of the thesis follow the aims and are as follows 

1. Evaluate data quality  

 

a. to investigate how accurate, the routinely recorded cause of 

death field is compared to the cause of death field derived from 

comprehensive clerical review and 

b. to compare cause-specific survival estimates of net survival using 

routinely recorded cause of death to those derived using cause 

of death clerically reviewed by trained registrars. 

 

2. Evaluate the more accurate data setting (cause-specific vs. relative-

survival) for the estimation of long-term net survival  

 

a. to derive up-to-date life tables for use in the estimation of net 

survival within the relative survival setting, 

b. to apply an inverse probability weighting (IPW) method to 

estimate net survival in the cause-specific setting 

c. to compare and contrast estimates of long-term net survival from 

breast cancer in each data setting using both routinely collected 

and validated data on cause of death and 

d. to assess whether these same findings apply to other anatomic 

localisations. 

 

3. Apply the approach determined to be less biased in 2. to investigate the 

long-term effects of prognostic factors   

 

a. to model long-term excess mortality including clinical variables to 

evaluate the long-term effect of prognostic factors and 

b. to assess non-linear and time-varying effects of these factors using 

the most appropriate methods. 
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An important burden  

Breast cancer is a major worldwide public health concern.  It is the second most 

common cancer in the world after lung and, by far, the most frequent cancer 

among women.  Globally, there are more than 6 million female breast cancer 

survivors 1.  Every 19 seconds, a women is diagnosed with breast cancer 2,3, and 

every 74 seconds, a woman dies from her breast cancer 3. 

In 2012, globally there were: 

 1.7 million women newly diagnosed with breast cancer which 

represented 25% of all cancers and  

 522 000 deaths due to breast cancer. 

Since 2008, breast cancer incidence around the world has increased by more 

than 20 percent, while mortality has increased by 14 percent 1. At the current 

rate of increase, 41 million new cases of breast cancer are expected and 10.6 

million women will die from breast cancer during the next 25 years worldwide 3. 

The incidence rate of breast cancer varies considerably by global region 

(Figure 1). Since risk factors are mostly related to a more westernised lifestyle, 

incidence tends to be lower in developing countries but breast cancer remains 

the most common tumour among women. In 2008, the age-standardised 

incidence rate was 20 cases per 100,000 person-years in East Africa but 

reached 89.7 cases per 100,000 person-years in Western Europe.  

The range in mortality rates between world regions is less than that for 

incidence because survival tends to be higher in high-incidence, developed 

regions (Figure 2). For example, in 2012, the age-standardised mortality rate was 

16.4 per 100,000 in France, against 23.0 per 100,000 in Ethiopia.
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An increasing number of survivors 

Despite the spread of breast cancer worldwide, the prognosis of the disease 

has dramatically improved over the last four decades. The scientific literature 

testifies to this by the number of studies demonstrating survival improvements 4–7. 

The underlying explanation for this improvement in disease detection is both 

through screening programs and better treatment strategies. Surgical 

techniques have been improved, and new chemotherapies and hormonal 

agents have been developed to better fight the disease 8.  

As a consequence, the number of women alive who have presented a 

diagnosis of breast cancer is increasing. This statement wouldn’t be an issue if 

all these so-called survivors would be considered as definitely cured. This is, 

however, not so straightforward. Indeed, several studies have demonstrated 

that no ‘cure’ can be established at a population level. 9–18. This does not mean 

to say that no individual patients can be cured but that there is a persistent 

excess hazard is associated with being diagnosed with breast cancer. This 

might be related to  time-varying influencing factors and/or side effects 

following their disease 19. We distinguish fatigue, difficulties with life insurance or 

return to work, lack of concentration but also more severe events like cardiac 

disease, bones issues, second primary malignancies and thromboembolic 

events, all being related to breast cancer and likely to cause death. Some of 

these sides effects are related to the breast cancer treatment and therefore 

mislead the allocation of the cause of death.  

Patients who have survived a long time since their diagnosis thus represent a 

relatively new challenge in terms of public health, and there is a particular 
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interest in understanding their pattern of long-term mortality 20. In this context, 

long-term survival is the key indicator.  

Examining long-term survival represents a new challenge insofar as the 

implications of surviving after a breast cancer diagnosis beyond 5 or 10 years 

has not been widely considered. Indeed, one of the key assumptions of most 

survival models is the proportionality of the hazards along follow-up time, i.e. 

that the relative effects of the covariates included in the model remain the 

same throughout time after diagnosis 21. However, what is true one year after 

diagnosis might be quite different later on. Several examples of time-varying 

effects are available in the literature 20–26. For instance, in a cohort Norwegian 

cancer patients, Zahl 27 showed that the effect of stage sharply changed over 

time with a significant impact between 15 and 20 years. Jatoi et al. 24 shed the 

light on a time-dependent (non-proportional) hazard for breast cancer and 

showed that, for instance, hormone receptor status had a variable effects on 

survival over time after diagnosis.  

Hence, being able to derive accurate long-term survival related to the disease 

and evaluate its long-term determinants by allowing them to vary through time 

since diagnosis represents an important first step towards the understanding of 

the pattern in long-term breast cancer mortality. 
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BOX 1 

Summary 

 Breast cancer has a significant and increasing burden 

worldwide 

 The number of survivors is increasing, but ‘cure’ may not 

be reached 

 Understanding the pattern of long-term mortality is 

important 

What is next? 

 What is breast cancer? 
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What is breast cancer? 

Carcinogenesis 

The human body is divided into several complex systems. A basic element of all 

these systems is the cell. Almost all cells are capable of division. Mutations can 

however occur because of an error in the DNA duplication during the cell 

division. These are caused by genetic instabilities, which are a result of exposure 

to carcinogens. This leads to an over-proliferation of cells and to uncontrolled 

growth. Such ‘new growths’ are called neoplasms or cancers. In contrast to 

benign cancers, malignant tumours spread and invade (metastasize) other 

organs in the body 28. 

When the process of over-proliferation of the cells outside the normal control 

mechanisms of the body takes place within the breast, we have a breast 

cancer. Breast is defined as the primary site of the tumour. 

The earliest evidence of cancer has been found in fossilized bone tumours and 

human mummies in ancient Egypt. The Edwin Smith Papyrus is the first written 

record of cancer (Figure 3) 29. It was discovered about 3,000 BC in Egypt and 

described, amongst others, tumours of the breast and of their cauterisation 30.  
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Figure 3: Edwin Smith Papyrus, found in Egypt about 3000 BC. Source: U.S. National Library of 

Medicine. 

 

Breast anatomy 

The breast is part of the reproductive system and is designed to produce milk. 

Milk is produced in the lobules (1) and goes to the nipples (2) through the 

lactiferous ducts (3). This milk production system is surrounded with adipose 

tissue (4) forming the breast (Figure 4) 31.  

Breast tissue is epithelial, which is one of the four basic types of tissue found in 

the human body. Tumours growing within the epithelium are called 

carcinomas. These are the most common histological type among breast 

cancer. Invasive breast carcinomas consist of several histologic subtypes that 

differ with regard to their clinical presentation, radiographic characteristics, 

pathologic features, and biologic behaviour. The most common type of 
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invasive breast cancer are infiltrating ductal carcinoma accounting for 70 to 80 

percent of invasive lesions and lobular carcinomas representing 10-15% of the 

breast tumours.32  

 

 

Figure 4: Breast anatomy. Source: Medical Illustrations by Patrick Lynch, generated for multimedia 

teaching projects by the Yale University School of Medicine, Centre for Advanced Instructional 

Media, 1987-2000. 
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The breast has very rich lymphatic drainage. The lymphatic system plays an 

important role in detoxification, immune response and hormone circulation. The 

lymphatic system is a circulatory system in the body and is divided into several 

parts. Lymph nodes are part of the immune system and are connected by 

lymphatic vessels. Most lymphatic vessels in the breast connect to lymph nodes 

under the arm (the axillary nodes) but they also connect to lymph nodes inside 

the chest (internal mammary nodes) and either above or below the collarbone 

(supra-clavicular or intra-clavicular nodes) (Figure 5).  

 

Figure 5: Lymph nodes in relation to the breast. Source: http://www.cancer.org/. 
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Cancer tumours have the ability to spread via the lymph nodes and the 

bloodstream to other sites in the body. Once the cancer enters the lymph 

nodes the more likely it is that the cancer may be found in other organs of the 

body. Because of this, identification of cancer in one or more lymph nodes 

often affects the treatment plan, since the spread of the disease is an indicator 

of its extension and of prognosis. We distinguish, in order of risk of death, 

localized, regional or distant disease. Treatment is planned according to this 

staging categorisation, from aggressive treatments with curative intent to 

palliative treatment. Although the degree of spread is closely linked to 

lymphatic involvement, not all women with cancer cells in their lymph nodes 

develop metastases, and some women with no cancer cells in their lymph 

nodes do develop later metastases. Bigger tumours are more susceptible to 

develop metastases. Breast cancers spread in particular to the bones, brain, 

liver and lungs 33. 

Diagnosis 

Several different symptoms are indicative of breast cancer. Principally these are 

lumps in the breast, an inverted nipple, distortion of skin or skin inflammation.  

A number of investigations can be performed in order to diagnose breast 

cancer. Mammography, then biopsy followed by cytology and/or histology are 

all used to assess whether a lump is a malignant or benign breast cancer. The 

disease can also be asymptomatic for a period of time. Screening programs 

have been introduced to try to detect tumours as early as possible. Despite 

some remaining difficulties with dense breast tissue in young women, screening 

is generally accepted to be an effective method of reducing cancer mortality 
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34,35. The underlying assumption of screening is that detecting breast tumours 

early leads to better prognosis: more specifically, identifying tumours when they 

are smaller, and thus more likely to be at an early stage, reduces the risk that 

the disease has already spread. Further investigations upon diagnosis, such as 

bone scans or checking lymph nodes, allow the full spread of the disease to be 

established. 

Causes and risks factors 

There is not one cause of breast cancer but many predisposing factors 36. 

Oestrogen and progesterone, related to the reproductive cycle, play an 

important role within the breast and the degree of exposure to these hormones 

is closely linked to the development of breast cancer tumours. All factors 

related to hormone regulation such as early menarche, late menopause, 

nulliparity, older age at first birth, absence of breast feeding, use of 

contraceptive pills or hormone replacement therapies increase the probability 

of breast cancer. Besides family history of breast cancer, genetic predisposition 

(BRCA 1 and BRCA 2), and personal history of benign breast disease are risk-

factors for pre-menopausal disease. Obesity, leading to hormone and growth 

factor storage, as well as exposure to radiation, are also known risks factors. 

Staging and grading 

The prognosis for an individual woman is strongly determined by the tumour’s 

characteristics. Stage is used to describe the degree of spread of the tumour at 

diagnosis. The most commonly used coding system for breast cancer is the 

Classification of Malignant Tumours also called TNM devised by the Union for 

International Cancer Control (UICC) and the American Joint Committee on 
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Cancer (AJCC) 36. The smaller and more localised the tumour the better the 

prognosis of the disease.  

Grade is about the evaluation of the level of differentiation of the tumour cells. 

It is a measure of the cell appearance and is based on the resemblance of the 

tumour to the tissue of origin 38. A well-differentiated tumour still closely 

resembles the tissue of origin, whereas a poorly-differentiated tumour does not. 

From well differentiated to poorly differentiated, the grade of the tumour 

provides a measure of the capacity of the tumour to spread. Poorly-

differentiated tumours have a greater capacity to spread compared with well-

differentiated tumours. 

Both staging and grading allow for decisions to be made about the 

management of patients and to identify appropriate treatment plans.   
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Prognostic factors 

A prognostic factor is defined as a feature of the patient or cancer, which is 

measurable at the time of diagnosis that is associated with the outcome. The 

literature has described a large number of prognostic factors for breast cancer. 

We distinguish several types: those related to the patient herself, to the way the 

cancer is diagnosed, and to features of the tumour.  

Patient characteristics 

Age at diagnosis 

Both younger and older ages at diagnosis are associated with a worse 

prognosis 38. Tumours tend to be biologically more aggressive in younger 

patients 40, whilst older patients tend to be diagnosed later, have greater 

numbers of co-morbidities and be treated less aggressively 41.  

Socio-economic deprivation 

There is evidence that socio-economic deprivation is associated with poorer 

outcomes in many countries 42. Women with higher socio-economic level are at 

higher risk of developing a breast cancer, but once the disease has occurred, 

their prognosis is better than for patients with a low socio-economic level. This 

may be explained by less aggressive tumours, more effective treatment 

strategies, comorbidities and lifestyle factors 42. 

Co-morbidities 

Patients with comorbidities have a higher risk of dying from their disease 43. 

Comorbidities are usually categorised with the Charlson index, which consider 

19 conditions, each weighted according to its potential to influence mortality 

44. 
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Lifestyle status 

The woman’s general health condition plays a significant role in breast cancer 

survival 45. As an illustration, low levels of physical activity, higher BMI, and 

smoking increase the mortality risk of breast cancer patients. 

Screening 

Recommendations regarding screening vary from country to country. The 

targeted age, the interval between two screenings, the method to define the 

risk and even the real absolute benefit of screening programs are still debated. 

It seems, however, that screen-detected breast cancer is associated with a 

better prognosis compared to cancers diagnosed through symptomatically 46, 

even after accounting for lead-time and length-time biases 48–50 . This can be 

explained by smaller tumour size and less nodal involvement in screen-

detected women. 

Tumour characteristics 

Tumour stage 

Tumour stage is defined by the TNM classification 51. It combines the size of the 

tumour, the nodal involvement and the presence of metastases. Stage I 

(localised tumour) has a much better prognosis than a stage IV tumour (distant 

disease).  

Tumour size 

Tumour size (T) is defined as the largest diameter of the primary breast tumour. 

Larger tumours have worse prognosis. Tumour size is one of the strongest 

predictors of survival, even a long time after diagnosis. Tumour size is often 

correlated with nodal involvement. We distinguish T0 (no evidence of primary 
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tumour), Tis (Tumour in situ), T1 (tumour is 2cm or less in greatest dimension), T2 

(tumour is between 2 and 5cm in greatest dimension), T3 (tumour is more than 

5cm in greatest dimension) and T4 (Tumour of any size with extension to chest 

wall and/or skin). 

Regional lymph node involvement 

Lymph node involvement describes the number of ipsilateral nodes with 

metastatic tumour growth. It is a strong prognostic factor, with node positive 

patients having on average 4 to 8 times higher mortality compared to those 

who do not have any nodes affected 51. At a pathological level we distinguish 

N0 (No regional lymph node metastasis), N1 (Micrometastases or metastases in 

1-3 axillary lymph nodes and/or in internal mammary nodes, with metastases 

detected by sentinel lymph node biopsy but not clinically detected), N2 

(Metastases in 4-9 axillary lymph nodes, or in clinically detected internal 

mammary lymph nodes in the absence of axillary lymph node metastases) and 

N3 (Metastases in ≥ 10 axillary lymph nodes or in infraclavicular lymph nodes, or 

in clinically detected ipsilateral internal mammary lymph nodes in the presence 

of ≥ 1 positive level I, II axillary lymph nodes, or in > 3 axillary lymph nodes and in 

internal mammary lymph nodes, with micrometastases or macrometastases 

detected by sentinel lymph node biopsy but not clinically detected†, or in 

ipsilateral supraclavicular lymph nodes). 

Metastasis 

Patients with metastasis present poorer survival compared to those who have 

not. For example, a study predicted 20-year survival of patients with a local 

breast cancer (node-negative, tumour size < 1 cm, aged >=45 and grade 1) to 
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be 89%, whereas for patients with metastasis it was 0.18% 52. We distinguish M0 

(no distant metastasis) from M1 (presence of distant metastasis). 

Histological subtype (morphology) 

The six most common types of breast cancer are as infiltrating ductal 

carcinoma, infiltrating lobular carcinoma, mucinous or colloid breast 

carcinoma, medullary breast carcinoma, tubular breast carcinoma and 

inflammatory breast carcinoma. The disease prognosis varies substantially 

according to the morphology of the tumour. Tubular, mucinous and medullary 

breast carcinomas have a better prognosis than the other sub-types. 

Inflammatory breast cancer has a very poor prognosis (10-year survival <30%) 

53.  

Histological grade 

The grade of a breast cancer tumour is assigned using the Elston-Ellis grading 

system. It represents the degree of tumour differentiation, that is, the degree to 

which the tumour no longer looks like the original tissue. It is based on a 

combination of architectural and nuclear characteristics. More precisely, 

tubule formation, nuclear pleomorphism and mitotic activity are each scored 

on a scale of 1 to 3.. The sum of these scores represent the overall grade 32. 

Higher grades (poorly differentiated tumours: total score 8 or 9) have been 

consistently associated with lower long-term survival 54. Grade 2 (moderately 

differentiated tumours: total score 6 or 7) offers a lack of prognostic information 

as it probably consists of a mix of biologically low and high-grade tumours. For 

this reason, the Breast Task Force of The American Joint Committee on Cancer 

has chosen not to include grade in the revised TNM staging system for breast 

cancer. 
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Hormone receptors 

Breast cancer cells either have, or not have, receptors for the hormones 

oestrogen and progesterone. Hormone receptors are proteins, found in and on 

breast cells, whose role is to pick up hormone signals telling the cells to grow. A 

cancer is called oestrogen-receptor-positive (ER+) if it has receptors for 

oestrogen. This suggests that the cancer cells, like normal breast cells, may 

receive signals from oestrogen that could promote their growth. Similarly, the 

cancer is progesterone-receptor-positive (PR+) if it has progesterone receptors. 

Again, this means that the cancer cells may receive signals from progesterone 

that could promote their growth.  

According to the presence of receptors, the cancer is likely to respond to 

hormonal therapy or other treatments. Hormonal therapy includes medications 

that either lower the amount of oestrogen in the body or block oestrogen from 

supporting the growth and function of breast cells. If the breast cancer cells 

have hormone receptors, then hormonal medications can help to slow or even 

stop their growth. If the cancer is hormone-receptor-negative (no receptor is 

present), then hormonal therapy is unlikely to work. Thus, breast cancer survival 

is positively associated with the ER and PR levels 55. 

HER-2 Expression 

HER-2 is defined as the Human Epidermal growth factor-2 Receptor. Patients 

whose breast cancer cells present amplification and/or an overexpression of 

HER-2 have a poorer prognosis compared to patients who do not have this 

amplification/over-expression. (10-year survival 50 vs. 65%) 55. 
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Bioscore 

In addition to their staging system, the American Joint Committee on cancer 

developed a score (Bioscore) to measure  patient’s stage. Briefly, this system 

considers grade, ER status, and HER2 status. Grade 1 or 2 tumors, ER-positive 

tumors, or HER2-positive tumors are assigned a score of 0. Grade 3 tumors, ER-

negative tumors, and HER2-negative tumors are scored with one point. Added 

together, a risk-profile Bioscore from 0 to 3 can then be calculated. Within each 

TNM stage, the risk Bioscore can be used to further stratify patients 56. 

Other prognostic factors 

There are a lot of other molecular factors which are prognostic and will be of 

great importance in the future. These include a woman’s genomic profile, gene 

expression profile, or markers of proliferation of the tumour cells. However, they 

are largely unavailable for population-based data.  

All these factors are essential to understand the mortality patterns of long-term 

survivors and some of them will be used in my research towards this goal. 

Treatment 

Depending on the characteristics of the tumour a large range of treatment is 

available for breast cancer. Four different therapies, used alone or in 

combination might be suitable: surgery, radiotherapy, chemotherapy, and 

hormonal therapy.  

Surgery consists of mastectomy or lumpectomy (also called breast conserving 

surgery). It offers a local treatment to remove the primary tumour. Often, 

lumpectomy needs to be combined with post-operative radiotherapy. 

Radiotherapy uses high-energy radiation, externally or internally, to irradiate 

remaining cancerous cells. Both breast and lymphatic tissues can be treated.  
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Chemotherapy is often used too. Chemotherapy is the use of systemic drugs to 

combat the disease and stop cancer cells from growing. This might be 

administrated either before the surgery, as a neo-adjuvant therapy, to reduce 

the tumour size, or after the main treatment, as an adjuvant therapy. 

Radiotherapy and chemotherapy are non-discriminatory treatments affecting 

both normal and abnormal cells and lead to the death of healthy tissue as well 

as the cancer. Hormonal treatment is a more targeted treatment. Its 

effectiveness depends on the hormone receptor status of the patients’ tumour. 

Hormone therapy inhibits hormone production, which inhibits the growth and 

proliferation of the tumour in the presence of hormone receptors in the tumour. 
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BOX 2 

Summary 

 Breast cancer is a complex and multifactorial disease. 

 Multiple factors have an impact on the prognosis of the 

disease. 

What is next? 

 Breast cancer therefore needs a particular type of 

surveillance. 
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Surveillance of breast cancer 

Population-based data 

Effective cancer control draws on results of a combination of clinical trials and 

observational studies. The two are often placed in opposition with each other 

but should in fact be considered as complementary 57. 

Clinical trials are always subject to randomization. This process induces good 

internal validity, meaning that the observed phenomenon is real and very 

unlikely to be due to chance, bias or confounding. This enables the effect of a 

particular intervention or drug to be fairly assessed. However, clinical trials 

inform us about efficacy in the research setting and do not necessarily describe 

the overall management of cancer patients in the general population setting. 

Indeed, less than 10% of patients with cancer are enrolled in a trial, and 

generally these patients are very different from patients treated in routine 

practice. Trials tend to include only very specifically selected individuals 

(patients with advanced age, comorbidities are usually excluded) and are, 

therefore, not representative of the whole population of cancer patients.  

In particular, observational studies provide information about cancer control in 

a whole population and allow investigators and policy makers to evaluate the 

effectiveness of the health system provided for the general population, as well 

as providing insight into both short and long-term toxicity of cancer treatments. 

Observational studies include all patients within a given jurisdiction and are 

therefore less prone to selection and referral biases. Large-scale observational 

studies have been enabled by advances in computer technology that provide 

linkages between separately collected routine databases.  

43



 

Observational studies do, nevertheless, have important limitations that must be 

carefully considered when evaluating any effect. We distinguish selection bias, 

information bias and the most challenging, confounding. Selection bias 

happens when the study population does not represent the target population. 

Information bias is related to incorrect measures of exposure and/or outcome 

of the study. Confounding happens when the relationship found between the 

outcome and the exposure can be explained by the distribution of a third 

variable, called confounding factor. All these biases need to be discussed 

when considering the results of observational studies. 

Cancer registries  

Population-based cancer registries collect population-based data and so 

monitor progress against cancer. The first was created in Hamburg (Germany) 

in 1926. Today at least 290 population-based cancer registries exist worldwide. 

Their role is the systematic collection, storage, analysis, interpretation and 

reporting of cancer data on patients with cancer 58. These data are essential to 

evaluate the current situation, to set objectives, to define priorities, and to 

assess the future evolution of the disease burden 60,61.  

Cancer registries play an important role in this research, both by providing 

routine data on patterns and trends, as well as data for analytic 

epidemiological studies. More recently, cancer registries have progressively 

developed their activities to include data on time trends and geographical 

variations and survival from cancer. This information allows monitoring of 

progress in implementing cancer control activities, and evaluation of 

prevention, early detection, screening and treatment interventions.  
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For each new (i.e. incident) cancer case, registries record at least some details 

of the individual affected and the nature of the cancer. Cancer registrars, who 

are data information specialists skilled at capturing a complete history for every 

cancer patient, perform the collection. The vital status of the patient can be 

updated regularly via linkage with routine death registrations in order to 

maintain accurate surveillance information. Lifetime follow-up data from 

patients permit registries to analyse cancer patient survival of the population 

through time. 

The role of a population-based cancer registry is thus pivotal. Epidemiological 

data obtained from cancer registration are indispensable to document 

population-based trends in patient numbers; ascertain the need for prevention, 

screening and therapeutic measures; allocate targeted resources for research; 

document the quality and efficiency of cancer treatments; and conduct 

causal research. 

Data quality 

In view of the large responsibilities that cancer registries hold, it is crucial the 

data they collect are of high quality. Even if the data are analysed with the 

best and most up-to-date methodologies, results and conclusions can be 

severely compromised by a lack of data quality. 

For cancer registries, we distinguish four dimensions in terms of data quality:  

 Comparability 

This allows comparisons to be made between populations and over 

time. To achieve this, standardization of practices is required regarding 

coding, classification and definitions. The World Health Organization 
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(WHO) proposed the “International Codification of Disease - Oncology 

(ICD-O)” to provide the international standards. 

 Timeliness 

This is related to the rapidity of data reporting. The aim is minimizing the 

delay between the occurrence of a cancer and its recording. 

 Completeness 

This is defined by the extent to which all eligible cases have been 

registered. A measure for the evaluation of completeness is the 

proportion of cases that have been recorded through their death 

certificates. 

 Validity: 

This concerns the accuracy of the recorded data. 

 

 

  

BOX 3 

Summary 

 Population-based data about breast cancer are 

collected worldwide through cancer registries 

 These data allow surveillance of the disease 

What is next? 

 Accurate follow-up data allow the study of survival, a 

key indicator 
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Survival, a key indicator 

Definition 

There is a great interest, from policy makers, clinicians treating cancer, as well 

as from patients, in the overall evaluation of progress against cancer. This is 

possible through cancer registries and the use of their data 60. Together with 

incidence and mortality, survival is a key indicator used for this purpose at a 

population-based level 61. Despite potential biases such as lead-time or length 

time,  survival of a particular group of patients diagnosed in the same period 

with the same disease provides essential prognostic information for newly 

diagnosed patients.  

The main aim of survival analyses is to describe the proportion of study 

participants who have experienced a specific event of interest at a particular 

point in time after a set starting point. The data involved in survival analyses, 

failure-time data, are characterized by a starting time (diagnosis of cancer), 

and an end time defined by the occurrence of the event of interest (death 

from cancer, recurrences or other event related to the disease) or the end of 

follow-up. This type of analyses is unique because of the presence of censoring. 

In the context of cancer epidemiology, survival is estimated for a group of 

cancer patients by following them from their diagnosis until death (the event of 

interest) or until the end of the study 61–63. 

Several reasons could lead to the outcome not being observed during the 

study’s follow-up period (censoring). Individuals could be lost to follow-up, or a 

competitive event (death from another cause) could happen earlier than the 
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outcome under interest (death from cancer). In order to deal with this type of 

data, specific methodologies are needed.  

Net survival 

It is crucial, when planning to analyse the survival experience of cancer 

patients, to decide which particular quantity we would like to estimate with my 

data 65.  

The simplest measure of survival is overall survival, when all deaths, whatever 

the cause, are considered as events. It is defined by the probability that a 

patient is still alive at a certain time point after the diagnosis. Although 

straightforward, this concept has a limited interest insofar as it does not give any 

specific information about a cause-specific prognosis. 

The alternative concept is the survival related to the disease of interest, 

disregarding deaths from other causes 65. Here the outcome of interest is death 

due to breast cancer (direct or indirect deaths). Deaths due to other causes 

are therefore considered as competing events. This concept splits the overall 

mortality into the deaths that can be attributed to the disease of interest and 

those due to other causes.  

As an illustration of the differences between overall and disease-specific 

survival related to the disease, we could make a comparison for patients 

diagnosed with breast cancer divided in two age groups. The results are 

summarised in Table 1. 

 

Table 1: 5-year overall and disease-specific survival by age groups for patients diagnosed with 

breast cancer. 

Overall survival (%) Disease-specific survival (%)

Young age 88 88

Older age 33 88
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The older patients have clearly a lower overall survival. However, the disease-

specific measure shows that the mortality related to the disease is similar for 

both age groups. 

These two types of survival lead to the consideration of two separate worlds: 

the real world and the virtual or hypothetical world. In the real world, we take 

into consideration deaths from other causes as they occur. The probability of 

death due to breast cancer is therefore the probability that a patient dies as a 

consequence of their disease before another cause. In contrast, in the 

hypothetical world, we eliminate deaths from other causes. Net survival is the 

probability of survival from breast cancer in a situation where dying from causes 

other than the cancer under study is not possible 62.  

‘Real world’ estimations of survival are of interest in the exchange between 

clinicians and patients, and for medical decision making, as these statistics 

provide information on the overall risk of a particular patient dying from the 

cancer during a specified period of time, in a particular locality. 

However, when comparisons are required between populations, including 

between different age groups, net survival and the ‘hypothetical world’ is the 

better approach because it is the only measure that is independent of the 

differences in the mortality from other causes. As such, net survival allows us to 

evaluate research questions related to disease aetiology: the results reflect 

differences in survival associated only with the exposure under study as 

opposed to a mixture of disease-specific mortality and non-cancer mortality 66. 
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Two data settings 

Two settings have been used for the estimation of net (disease-specific) survival. 

The cause-specific setting relies on information about the underlying cause of 

death for each patient. Deaths due to causes other than the disease of interest 

(here, breast cancer) are considered censored in the survival analyses. The 

survival for a given time period can then be calculated directly using standard 

methods such as Kaplan-Meier 64,67.  

The alternative is the relative-survival setting. Relative survival is defined as the 

ratio of the observed survival rate in a specified group of patients, during a 

specified period of time, to the expected survival rate, which is the expected 

rate of an exactly comparable group of individual in the population from which 

the cancer patients are drawn 68. Ideally, the disease under study should be 

excluded from the general population mortality rates estimation, although in 

practice this will make little difference 68. 

Unlike the cause-specific setting, the relative survival setting does not require 

reliable information about cause of death. In its place, estimated rates of 

background, or expected mortality are used to off-set the overall mortality and 

provide an estimate of the excess mortality due to the cancer. This estimate 

disregards information on whether the death is directly or indirectly related to 

breast cancer.  

Net survival within the relative survival setting is based on the idea that the 

mortality can be divided in two additive processes, which are independent. 

The first is mortality linked to deaths from the disease under study, breast 

cancer, and the second is the mortality related to deaths from all other causes. 

Considering instantaneous hazard rates, we have,  
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𝜆𝑜(𝑡) = 𝜆𝑝(𝑡) + 𝜆𝑒(𝑡) 

where 𝜆𝑜represents the overall mortality in the cohort, 𝜆𝑝 defines the mortality 

linked to the other causes of death or the population mortality and 𝜆𝑒 is the 

mortality linked to breast cancer only (also called the excess mortality). If we 

integrate over 𝑡, we have, 

∫ 𝜆𝑜(𝑢)𝑑𝑢
𝑡

0

= ∫ [𝜆𝑝(𝑢) + 𝜆𝑒(𝑢)]𝑑𝑢
𝑡

0

  

Thus, 

𝑒𝑥𝑝 (− ∫ 𝜆𝑜(𝑢)𝑑𝑢
𝑡

0

) = 𝑒𝑥𝑝 (− ∫ 𝜆𝑝(𝑢)𝑑𝑢
𝑡

0

) 𝑒𝑥𝑝 (− ∫ 𝜆𝑒(𝑢)𝑑𝑢
𝑡

𝑜

) 

And finally, using the mathematical definition of survival, we find 

𝑆𝑜(𝑡) =  𝑆𝑝(𝑡). 𝑆𝑒(𝑡) 

Or, 

𝑆𝑒(𝑡) =  
𝑆𝑜(𝑡)

𝑆𝑝(𝑡)
Survival probabilities in the cancer group 𝑆𝑜(𝑡) and external group 

𝑆𝑝(𝑡) are therefore compared along time since diagnosis. A lower survival in the 

cancer group represents higher cancer-related mortality in that group.  

  

BOX 4 

Summary 

 Net survival is a key indicator for the surveillance and 

understanding of progress against breast cancer 

 Two data settings have been used for its estimation 

What is next? 

 The Geneva Cancer Registry is a unique context in 

which net survival can be evaluated 
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The context of Geneva 

Burden of disease 

The incidence rate for breast cancer in the canton of Geneva is one of the 

highest in the world. This is likely to be due to the fact that Geneva is particularly 

representative of a western lifestyle. Trends showed an increase in incidence in 

the last two decades, partly associated with the introduction of screening 

programs. More particularly, it induced an increase in the 50-70-year age group 

of more localized tumours. Lately, because of a decreasing use of hormone 

replacement therapy, the incidence rate appears to be decreasing (Figure 6).  

 

Figure 6: Age standardised incidence rate of breast cancer in the canton of Geneva by period of 

diagnosis, females, 1989-2013. Source: Geneva Cancer Registry 

 

Breast cancer survival is amongst the highest of all cancer sites and has 

dramatically increased with time. Indeed, in Geneva the 5-year disease-

specific survival rate ranged from 45% in the 1970s up to 84% for patients 
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diagnosed between 2000 and 2009 (Figure 7). The prevalence, which 

represents the number of women living in Geneva who have ever had a breast 

cancer, i.e. survivors of the disease, is presented for Geneva in Figure 8 . It also 

increases each year, from 1.1% in 1990 to 2.4% in 2014. 

 

Figure 7: Disease-specific survival trends for cancer patients diagnosed with breast cancer in 

Geneva. Source: Geneva Cancer Registry. 
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Figure 8: Trend of breast cancer prevalence in Geneva, 1990-2014. Source: Geneva Cancer 

Registry. 

 

Geneva Cancer Registry 

The Geneva Cancer Registry, the first registry in Switzerland, was created in 1970 

following a decision of the Council of State. One of the first periodical reports of 

the Registry stated its tasks: 

 Collect information on all neoplastic diseases detected among the 

resident population in the canton, in order to obtain epidemiological 

statistics (calculation of the incidence and prevalence, calculation of 

survival, etc.), establish the level of impact of these conditions and 

measure the stage of the lesion at the time of its discovery in the general 

population or in specific subgroups. The identification of high-risk groups 

or those for whom an early diagnosis is relatively infrequent serves both 

the preventive and the etiological research functions. 
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 Follow up the cases reported for the evaluation of survival from major 

tumour types and for calculating the intervals between significant events 

in the history of the lesion (overall evaluation of preventive and 

therapeutic measures). 

One of the early objectives of the registry also included the organization of a 

system for the regular exchange of information with the physicians responsible 

for monitoring cancer patients. During the first two years of registration 1,112 

cases of cancers among males and 1,227 among females were recorded in the 

Canton (in 1970, Geneva had 331,599 inhabitants in an area of 282 km2). More 

than forty years later, at the end of 2016, these figures had become 66,600 and 

71,200 for males and females, respectively (by 2016, the number of inhabitants 

in the Canton was 470,512). 

The registry has continuously collected exhaustive information about patients 

diagnosed, treated or dying from a cancer among the Geneva canton 

population. All cancers arising in resident patients are recorded even if the 

cancer is treated outside the canton. During these 40 years, a lot of changes 

and improvements have been made in the organization and management of 

the registry as well in its functions. Not only had the number of cases that were 

registered increased substantially but the number of variables recorded for 

each case went from 38 to the current 150. 

Up to 2016, more than 100,000 tumours had been recorded in the Registry’s 

database, along with variables concerning individual and tumour 

characteristics and treatment, collected from various sources. The Cancer 

Registry has a very low percentage (<2%) of cases recorded from death 

certificates only, indicating that it is very complete. All hospitals, pathology 
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laboratories and private practitioners in the canton are requested to report all 

cancer cases. Trained tumour registrars systematically abstract data from 

medical and laboratory records. Physicians regularly receive enquiry forms to 

complete missing clinical and therapeutic data. 

Follow-up of all patients is provided by the OCP (Office Cantonal de la 

Population). The OCP, the office in charge of the registration of the resident 

population (approximately 450,000 inhabitants, mainly urban) performs a close 

active follow-up of the whole population of Geneva. Arrivals and departures in 

Geneva for work, stay or living, have to be declared. All death certificates, 

after being filled by general practitioners, are centralized in Neuchatel (at the 

Office Federal de la Statistique, the Federal Office for Statistics). All these data 

are shared annually with the Geneva Cancer Registry and allows an active 

and exhaustive follow-up of incident cases.  

Dual coding of cause of death 

Uniquely amongst cancer registries, the Geneva Cancer Registry records two 

different variables pertaining to cause of death. The first is based on the 

information available on the death certificates and the second on a 

comprehensive clerical review of the patient’s medical records using all 

available clinical information available. This dual recording of death provides 

the unique context in which my study is able to evaluate the best means of 

estimating long-term net survival. 

A unique context 

Geneva is representative of the burden that is observed in developed 

countries. Women are living longer than ever after being diagnosed with breast 

cancer, because of better diagnostic tests and improvement in treatment 
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strategies. As a result, the number of breast cancer survivors is increasing, 

leading to a much greater interest in long-term survival. To be able to measure 

this long-term survival, the Geneva Cancer Registry offers more than 40 years of 

follow-up. Moreover, thanks to the clerical review of the cause of death, it will 

be possible to conduct an accurate comparison between the two data 

settings available for this estimation of net survival. Finally, because of the 

numerous and high-quality data that are recorded, it is possible to consider the 

evaluation of a significant number of prognostic factors on long-term net 

survival.  
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Summary box 

 The burden of breast cancer is very important 

worldwide.  

 Breast cancer is, in developed countries, the most 

common malignancy and cause of cancer death 

amongst women.  

 This hormone-dependent tumour presents, however, 

good prognosis, thanks to improvement in its 

monitoring and surveillance.  

 Population-based cancer registries take part in 

surveillance by providing observational data about 

cancer, in particular, data regarding follow-up which 

are used for the estimation of survival.  

 Because the number of breast cancer survivors is 

increasing, there is a growing interest in gaining a 

better understanding of long-term survival. 

 Net survival is the concept that allows accurate 

evaluation from the disease of interest.  

 Net survival can be derived using either the cause-

specific setting, for which the underlying cause of 

death is required, or the relative-survival setting, 

which compares the overall survival of the cohort of 

patient to that they would have experienced if they 

had had the same mortality experience of the 

general population.  

 The Geneva Cancer Registry represents a suitable 

place for this study because of high-quality data with 

long follow-up.  
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[ C H A P T E R  O N E ]  
Data quality  
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Net survival can be derived using both the cause-specific and relative-survival 

setting. In this first chapter I focus solely on the cause-specific setting and in 

particular the question of data quality.  

Using the cause-specific setting implies the availability of information on the 

underlying cause of death for all deceased cancer patients.  

This Chapter completes the first aim of the thesis, which is the evaluation of the 

accuracy of the cause of death information routinely collected within a cancer 

registry setting and the impact of inaccuracies upon survival estimates. 

In order to achieve this aim, I define the following objectives: 

o  to investigate how accurate, the routinely recorded cause of 

death field is compared to the cause of death field derived from 

comprehensive clerical review and 

 

o to compare cause-specific survival estimates of net survival using 

routinely recorded cause of death to those derived using 

clerically reviewed cause of death. 

This chapter comprises a copy of the research paper published in BMC Cancer 

alongside text, which describes the background to these objectives, 

summarises the approach and findings, and specifies how the paper fulfils the 

aim and objectives. 
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Background 

Survival within the cause-specific setting 

When estimating survival within the cause-specific setting only deaths due to 

the disease of interest, breast cancer in our case, are counted as events. 

Patients dying due to other underlying causes are censored at their time of 

death. In order to estimate net survival in the cause-specific setting, information 

on the underlying cause of death for every patient is thus required. Statistical 

tools available for overall survival, such as Kaplan-Meier 63 and the semi-

parametric Cox model 70 can then be applied to the censored data in order to 

estimate survival related to the disease.  

Accuracy of cause of death 

The accuracy of the underlying cause of death itself is thus extremely important 

in order to obtain a valid estimate of net survival within the cause-specific 

setting. However, this accuracy cannot be assumed. Berkson and Gage said 

that “The determination of whether a death is entirely due to cancer or entirely 

due to other causes is difficult to establish, if indeed it is even possible to define 

precisely. Actually in most cases it is impossible to establish unequivocally…” 63. 

In cause-specific settings, the difference between a death directly caused by 

cancer and a death being an indirect consequence of it is difficult to 

determine and could lead to misclassification and erroneous survival estimates. 

Percy et al. 71 were the first to demonstrate the impact of misclassification on 

mortality statistics and showed that only 65% of death certificates were 

reporting the cause of death that was described in hospital notes. 
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The Geneva Cancer Registry 

The Geneva Cancer Registry has the particularity not just to record routinely 

information from death certificates but also to perform a clerical review of the 

underlying cause of death for each patient using all the clinical information 

available in their medical records. This information is gathered from the death 

certificates themselves, autopsy reports, the ‘letter at death’ written by the 

patient’s general practitioner and all the patient’s medical notes. By this 

process a revised cause of death variable is obtained. This dual recording of 

cause of death in Geneva provides an ideal setting within which to examine 

how accurate death certificates actually are, and the extent of the potential 

bias introduced to survival estimates by using routinely recorded deaths for the 

measurement of underlying cause. 
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Paper One 

The reviewed cause of death 

Description 

“Accuracy of cause of death data routinely recorded in a population-based 

cancer registry: impact on cause-specific survival and validation using the 

Geneva Cancer Registry” was published in BMC Cancer in 2013 71. In it, I 

describe the process of cancer registration in Geneva. I compare causes of 

death derived from death certificates with the cause of death derived from 

clerical review and calculate the Kappa statistic to estimate the degree of 

correspondence between the two different variables. I also describe the most 

common errors between the two variables, taking the validated version as the 

‘gold standard’. I finally conduct an analysis, which compares the survival 

related to the disease that I would observe 1) when using routinely recorded 

cause of death and 2) when clinically reviewed cause of death was used. 

Main results 

I report that both recording processes matched perfectly for 95.8% of the 

cohort. 2.5% of the cases were considered to have died from breast cancer 

according to their death certificates and but were recoded with a different 

underlying cause of death by the registry. Among these women, the cause of 

death was mostly recoded to heart disease (48%) and other malignant tumours 

(20%).  On the other hand, 1.7% of the cases were recorded as dying from a 

cause other than breast cancer according to the death certificate but were 

recoded to death from breast cancer by the registry. Among these women, the 

main causes of death reported on their original death certificates were other 

malignant tumours (40%) or an imprecise code (19%).  The value of the kappa 
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test reached 0.82 and was statistically significant.  Unadjusted concordance 

varied greatly between subgroups. The concordance was significantly lower 

with increasing age. Similar age-related trends, though not significant, were 

found among the three subpopulations defined by time since diagnosis. These 

age-related patterns were much less marked for age at death. Concordance 

was greater for early stage of disease (stage I and II) compared to advanced 

stage (III and IV). A clear pattern was found according to the type of treatment 

with higher concordance for complete, with curative intent, treatment (0.83), 

intermediate concordance for palliative treatment and lower concordance for 

non-treated patients. The odds of disagreement increased significantly with 

age at diagnosis. We observed the same trend when using age at death. 

Period of diagnosis was not significantly associated with disagreement but we 

did observe a significant decreasing trend for period of death as a continuous 

variable. Patients treated palliatively had significantly higher odds of 

disagreement. Patients treated in the public sector also had a higher risk of 

disagreement as well as those who died in a public hospital. The survival curves 

matched almost perfectly, with a difference in 20-year survival lower than 1%. 

We observed substantial differences for several subgroups: patients aged 70–79 

or 80+, patients diagnosed in the two first period of diagnosis, patients with no 

treatment, patients with hormonal therapy, and patients with metastatic 

tumours. 

Conclusion 

The overall concordance between the two types of death recording was high, 

and the impact on short- and medium-term survival for the whole cohort fairly 

minimal. This suggests that a substantial part of the information related to death 

is captured by the routinely recorded cause of death. Nevertheless, for some 
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subgroups, the additional information use to better define the underlying cause 

of death was shown to be useful because survival estimates were more 

divergent. This was particularly true for older patients and patients presenting 

with more advanced disease. The concordance between the two variables 

was also observed to decrease with time since diagnosis. Thus, the availability 

of additional clinical information appears to be progressively more important 

for the determination of the underlying cause of death as follow-up time 

increases, suggesting that reviewed cause of death is more accurate for the 

estimation of long-term survival.  
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Fulfilment of Aims and Objectives 

In this Chapter I have evaluated how accurate the recording of the cause of 

death at the Geneva Cancer Registry was in this period, and the impact of 

inaccuracies upon survival estimates.  

Like all cancer registries worldwide, the Geneva Cancer Registry uses the 

International Classification of Disease (ICD-10) 72 to record the underlying cause 

of death. Unlike other registries, it also provides a revised cause of death using 

all available clinical information. 

I have shown that there is an overall concordance between these two 

variables, but that important differences are present and these have an impact 

upon survival estimates. As a result of these analyses I conclude that the 

clerically reviewed cause of death is more accurate for the estimation of 

cause-specific survival. Even if the advantage is limited for the whole cohort in 

the short- and medium-term, revised cause of death provides much more 

accurate estimation of survival for sub-populations and, importantly, of long-

term survival for all patients, and should thus be used in cause-specific analyses. 
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Accuracy of cause of death data routinely
recorded in a population-based cancer registry:
impact on cause-specific survival and validation
using the Geneva cancer registry
Robin Schaffar1,2*, Elisabetta Rapiti1, Bernard Rachet2,3 and Laura Woods2

Abstract

Background: Information on the underlying cause of death of cancer patients is of interest because it can be used
to estimate net survival. The population-based Geneva Cancer Registry is unique because registrars are able to
review the official cause of death. This study aims to describe the difference between the official and revised
cause-of-death variables and the impact on cancer survival estimates.

Methods: The recording process for each cause of death variable is summarised. We describe the differences
between the two cause-of-death variables for the 5,065 deceased patients out of the 10,534 women diagnosed
with breast cancer between 1970 and 2009. The Kappa statistic and logistic regression are applied to evaluate the
degree of concordance. The impact of discordance on cause-specific survival is examined using the Kaplan Meier
method.

Results: The overall agreement between the two variables was high. However, several subgroups presented a
lower concordance, suggesting differences in calendar time and less attention given to older patients and more
advanced diseases. Similarly, the impact of discordance on cause-specific survival was small on overall survival but
larger for several subgroups.

Conclusion: Estimation of cancer-specific survival could therefore be prone to bias when using the official cause of
death. Breast cancer is not the more lethal cancer and our results can certainly not be generalised to more lethal
tumours.

Keywords: Cause-specific survival, Cause-of-death, Cancer registry, Concordance

Background
Population-based cancer survival is widely used to evalu-
ate the impact of health care systems in disease manage-
ment. Net survival is the survival that would be observed
if the only possible cause of death were the cancer of
interest [1]. Net survival is especially relevant when the
cohort of interest become older since the risk of dying

from other causes than cancer increases. Net survival is
also very useful when comparing subgroups whose mor-
tality due to other causes could be different and therefore
lead to biased estimation of the survival contrast.
Two main data designs can be distinguished, the cause-

specific and the relative survival designs, according to the
availability of information on cause of death. Such infor-
mation is rarely available in routine, population-based data
and net survival is then commonly estimated within the
relative survival framework. However, when information
about the underlying cause of death is available, net sur-
vival can be estimated using the cause-specific approach,
in which only deaths from the cause of interest are consid-
ered as ‘failures’, while deaths from other causes are
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censored. High-quality information on the cause of death
is required for each individual patient. This information is
commonly available only in clinical trials or hospital
series, but the cause-specific approach is sometimes used
on population-based data from cancer registries, where
the underlying cause of death is derived from death certifi-
cates. The underlying cause of death is the “disease or in-
jury which initiated the train of morbid events leading
directly to death” or the “circumstances of the accident or
violence which produced the fatal injury”. It is codified in
The International Classification of Diseases (ICD), which
was designed to classify causes of death for statistical
tabulation and research. Despite these international rules
(developed over 100 years), comparability and accuracy is-
sues still arise. Different medical terminologies, inaccurate
completion of the death certificates, misinterpretation or
misapplication of the coding rules for selection of the
underlying cause of death can cause comparability prob-
lems between different geographical areas and/or different
periods of time. The validity and accuracy of the reported
underlying cause of death may also be incorrect if the cli-
nician’s certification does not accurately reflect the clinical
history of events leading to death.
Percy et al. were the first to report that misclassification

of the underlying cause of death could bias the mortality
trends and therefore the estimation of cancer-specific sur-
vival [2]. Many other studies, then, have highlighted the
issue of inaccuracy of the cause of death information ob-
tained from death certificates [3-9]. Some studies have
shown that the proportion of misclassification can be very
high [4,10]. However, one study has suggested that the
proportion of misclassification can be lower for screened
patients dying from breast cancer [11].
The validity of disease-specific survival is based on the

assumption that the underlying cause of death is accur-
ately determined. The Geneva Cancer Registry, which
collects all the death certificates of routinely recorded
deaths in the Geneva canton (Switzerland), also reviews
the cause of death of each registered cancer patient
using all the available clinical information relating to
the patient’s disease and treatment. This leads to a par-
ticular and unique situation in which a second, validated
variable defining the cause of death is generated. This
second variable is considered to be a more reliable
record of the patient’s cause of death and so will be ex-
pected to give rise to more accurate estimates of cause-
specific survival.
The purposes of this study are (a) to describe the

process of recording the cause of death in the Geneva
Cancer Registry, (b) to investigate how accurate the rou-
tinely recorded cause of death is compared to the vali-
dated cause of death derived from clerical review and (c)
to examine whether the process of validation leads to
differences in the estimates of cause-specific survival.

Methods
Data
The data used in this study were obtained from the
Geneva Cancer Registry. All women diagnosed with a breast
cancer between 1970 and 2009 and resident in Geneva
were included in the study.
The Geneva Cancer Registry collects information on

incident cancer cases from various sources, including
hospitals, laboratories and private clinics, all requested
to report new cancer cases. Trained registrars systemat-
ically extract information from the medical records and
conduct further investigations in the case of missing key
data. The variables of interest for this study were cause
of death as specified on the death certificate, revised
cause of death, age at diagnosis, age at death, year of
diagnosis, year of death, social class, stage of the tumour,
treatment, sector of care and place of death. The Geneva
Cancer Registry has general registry approval by the
Swiss Federal Commission of Experts for professional
secrecy in medical research (Commission d’experts pour
le secret professionnel en matière de recherche medical).
This approval permits cancer data collection and its use
for research purposes.

Coding of cause of death
The Geneva Cancer Registry is notified of all deaths oc-
curring in the Geneva canton through three different
processes.
First, when a patient dies in the canton of Geneva, a

death certificate is compulsorily completed by the clin-
ician certifying the death who reports the primary, sec-
ondary and concomitant causes of death. The Geneva
Cancer Registry receives photocopies of all these death
certificates through the Geneva Health Administration;
and links them to the incidence database. The causes of
death reported on the death certificates represent the
original causes of death.
Meanwhile, once a year, the Federal Office of Statistics

(Office Federal de la Statistique, OFS) which is a na-
tional publicly-funded organisation collecting death cer-
tificates and maintaining a mortality database for the
whole of Switzerland provides the Geneva Cancer Regis-
try with a mortality database for the Geneva canton.
This is also linked to the incidence database to complete
and/or validate the process described above. This leads to
the definition of the official cause of death as the under-
lying cause of death derived from death certificates.
Finally, the Geneva Cancer Registry is provided on an

annual basis with information on the vital status of the
Canton population by the Cantonal Office of the Popula-
tion (Office Cantonal de la Population, OCP). OCP is a
regional administration that monitors births, deaths, mi-
gration, residency and civil partnerships. Only informa-
tion about the vital status of a patient (deceased or not),
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or information on whether a person has migrated from
Geneva is provided to the Registry. Information on the
cause of death is not available within this database.
After all the records are merged, the Cancer Registry

registrars then go back to the patient’s charts and review
the cause of death according to all the documents avail-
able. These include death certificates, autopsy reports,
letter at death written by general practitioners and all
the patient’s medical notes. By this process the cause of
death variable, the revised cause of death, is obtained.
Sometimes, the Geneva Cancer Registry is able to ob-

tain information about the occurrence of a death and its
cause through the health system (essentially the public
health system) before information from death certifi-
cates, OFS or OCP. This is particularly so for public sec-
tor, where information about the patient’s follow-up is
easier to obtain than in the private sector, with which
communication is mainly based on mails and willingness
of the practitioners.
Some patients leave the canton of Geneva after their

diagnosis with cancer, but return and die in Geneva.
These individuals are recorded as dead in the OFS data-
base. However, since no additional information on their
disease was collected in the Geneva area, they are con-
sidered lost to follow up at the point of their departure
by the Geneva Cancer Registry.

Statistical methods
We first examined the agreement between the official
underlying cause of death and the reviewed underlying
cause of death. We then evaluated the impact of such
disagreement on the cause-specific survival estimates.
We used the Kappa statistic to compare concordance

between the two cause-of-death variables for all patients
who had died (N = 5,065). The Kappa statistic corrects
for agreement expected by chance alone. Its values
range from 0 to 1; 0 represents no agreement whereas 1
is perfect agreement. We stratified the analysis accord-
ing to age at diagnosis, age at death, period of diagnosis,
period of death, social class, stage, treatment received,
sector of care and place of death. Age at diagnosis and
age at death were coded into 5 categories (0–49, 50–59,
60–69, 70–79 and 80 and over), whilst four periods were
used for the temporal analysis of diagnosis and death
(1970–79, 1980–89, 1990–99, 2000–09). Social class
was based on the patient’s last job or, if missing, on the
patient’s partner’s job. It was divided in four categories
(high, medium, low and unknown) [12]. Stage followed
the TNM classification [13] with 5 subgroups (stage I,
stage II, stage III, stage IV, unknown). We distinguished
5 categories for the treatment each patient received: sur-
gery only, surgery plus adjuvant therapy, hormonal
treatment, others (including a mix of different palliative
therapies), and an absence of treatment. Only treatments

received during the first six months after diagnosis are re-
corded by the registry according to the IARC rules [14].
Sector of care was defined as private or public sector. We
also defined 5 categories of place of death: public hospital,
retirement home, private hospital, patient’s home and
unknown.
We used variance-weighted least-squares regression to

evaluate trends in the Kappa values for sub-groups [15].

Table 1 Baseline characteristics of the cohort of female
breast cancer patients diagnosed in Geneva between
1970 and 2009

Overall Deceased

N % N %

Age at diagnosis (mean, SD) 61,5 (0,14) 66,8 (0,21)

Age groups

0-50 2′422 23.0 749 14.8

50-59 2′469 23.4 831 16.4

60-69 2′383 22.6 1′055 20.8

70-79 1′949 18.5 1′317 26.0

80+ 1′311 12.5 1′113 22.0

Period of diagnosis

1970-79 1′890 17.9 1′576 31.1

1980-89 2′192 20.8 1′552 30.6

1990-99 2′896 27.5 1′302 25.7

2000-09 3′556 33.8 635 12.5

Socioeconomic status

High 1′620 15.4 597 11.8

Middle 5′092 48.3 2′171 42.9

Low 2′390 22.7 1′484 29.3

Unknown 1′432 13.6 813 16.1

Stage

I 3′434 32.6 1′014 20.0

II 4′355 41.3 2′044 40.4

III 1′219 11.6 807 15.9

IV 585 5.6 490 9.7

Unknown 941 8.9 710 14.0

Treatment

Surgery only 1′890 17.9 1′252 24.7

Surgery + adjuvant 7′340 69.7 2′693 53.2

No treatment 473 4.5 421 8.3

Hormones only 547 5.2 448 8.8

Others 284 2.7 251 5.0

Sector of care

Private 5′122 48.6 2′028 40.0

Public 5′412 51.4 3′037 60.0

Total 10′534 100.0 5′065 100.0
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We used logistic regression to evaluate the odds of
disagreement between the official and revised cause of
death, associated with each of the factors listed above.
We also examined the concordance between the offi-

cial and the revised cause of death as a function of time
since diagnosis: patients who died within five years after
diagnosis, patients who died after 5 years but before
10 years of follow-up and patients who died after 10 but
before 15 years of follow-up. Because of small numbers,
patients dying more than 15 years after their diagnosis
were not considered.
To estimate the impact of discordance upon cause-

specific survival, we derived Kaplan Meier cause-specific
survival curves for the whole cohort (N = 10,534) using
both official and revised cause of death. In cause-specific
survival analyses, patients are classified as presenting the
event if they are recorded as dying from their cancer
while those who die from other causes are censored at
the date of their death. We performed subgroup survival
analysis by age group, period of diagnosis, stage of the
disease and treatment.

Results
The cohort consisted of 10,534 women (mean age
61.5 years) diagnosed between 1970 and 2009. Nearly
half belonged to the middle social class groups (Table 1).
About three quarters of the women were diagnosed at
early stage of disease (stage I and II). Almost 90% under-
went surgery, associated with adjuvant treatments such
as radiotherapy (63%), hormones (44%) and chemother-
apy (33%; data not shown).
Among the 5,065 women who have died, the official

and the revised underlying cause of death were identical
for 4,620 patients (91%) (Table 2). 254 cases (5%) were
recorded as dying of breast cancer according to their
death certificate but as dying from other causes in the

revised data. Among these women, the cause of death
was mostly recoded to heart diseases (48%) and other
malignant tumours (20%). Conversely, 191 cases (3.8%)
were recorded as dying from other causes according to
their death certificate but as dying from breast cancer in
the revised data. Among these women, the main causes
of death reported on their original death certificates
were other malignant tumours (40%) or an imprecise
code (19%) (Table 2). The overall value of the kappa test
was 0.82 (p-value < 0.001).
Unadjusted concordance varied greatly between sub-

groups (Table 3). The concordance was significantly
lower with increasing age, from 0.87 for ages 0–49 to
0.74 for ages 80+ (p-value for trend test = 0.008). Similar
age-related trends, though not significant, were found
among the three subpopulations defined by time since
diagnosis. These age-related patterns were much less
marked for age at death. Concordance was comparable
in all four periods of diagnosis although it tended to be
lower in the earlier periods. Concordance was greater
for early stage of disease (stage I and II) compared to ad-
vanced stage (III and IV), from 0.84 for stage I to 0.63
for stage IV (p-value for trend <0.001). However, the
concordance between the two underlying causes of death
for women with missing stage (about 14%) tended to be
higher than those for stage IV (and stage III). If these re-
cords corresponded to advanced diseases, as it is often
the case, this stage-related pattern could be greatly at-
tenuated. This pattern was more marked for patients de-
ceased within the first five years after diagnosis. A clear
pattern was found according to the type of treatment
with higher concordance for complete, with curative
intent, treatment (0.83), intermediate concordance for
palliative treatment (0.73) and lower concordance for
non-treated patients (0.63). This pattern was mostly
found among patients who died within five years since

Table 2 Cause of death among women diagnosed with breast cancer in Geneva between 1970 and 2009: effect of
reclassification of the official underlying cause of death by the Geneva Cancer Registry

Cause of death 5′065

Concordant 4′620

Breast cancer 2′508

Other cause 2′112

Discordant 445

Distribution of discordant cases

Revised cause of death Breast cancer as the official cause of death Official cause of death Breast cancer as the revised cause of death

N % N %

Other tumour 50 19.7 Other tumour 77 40.3

Heart disease 121 47.6 Heart disease 35 18.3

Imprecise code 11 4.3 Imprecise code 37 19.4

Other 72 28.4 Other 42 22.0

254 100.0 191 100.0
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Table 3 Concordance by subgroups between the official underlying cause of death and the revised underlying cause
of death for women diagnosed with breast cancer in Geneva between 1970 and 2009

All data Between 0 and 4 years of
follow-up

Between 5 and 9 years of
follow-up

Between 10 and 14 years of
follow-up

N % Kappa SD N % Kappa SD N % Kappa SD N % Kappa SD

Overall 5,065 100.0 0.82 0.01 2,497 100.0 0.76 0.02 1,275 100.0 0.86 0.03 626 100.0 0.83 0.04

Age at diagnosis

0-49 749 14.8 0.87 0.04 317 12.7 0.76 0.06 210 16.5 0.91 0.07 94 15.0 0.92 0.10

50-59 831 16.4 0.87 0.03 380 15.2 0.79 0.05 210 16.5 0.81 0.07 87 13.9 0.90 0.11

60-69 1,055 20.8 0.82 0.03 442 17.7 0.75 0.05 239 18.7 0.87 0.06 146 23.3 0.76 0.08

70-79 1,317 26.0 0.81 0.03 600 24.0 0.73 0.04 339 26.6 0.82 0.05 237 37.9 0.79 0.06

80+ 1,113 22.0 0.74 0.03 758 30.1 0.71 0.04 277 21.7 0.79 0.06 62 9.9 0.63 0.12

Trend test p = 0.008 p = 0.394 p = 0.222 p = 0.105

Age at death

0-49 353 7.0 0.80 0.05 248 9.9 0.76 0.06 94 7.4 0.92 0.10 8 1.3 N/A

50-59 593 11.7 0.86 0.04 350 14.0 0.80 0.05 160 12.6 0.88 0.08 64 10.2 0.96 0.12

60-69 813 16.1 0.79 0.04 427 17.1 0.73 0.05 222 17.4 0.83 0.07 87 13.9 0.86 0.11

70-79 1,105 21.8 0.81 0.03 580 23.2 0.73 0.04 270 21.2 0.85 0.06 130 20.8 0.86 0.09

80+ 2,201 43.5 0.77 0.02 892 35.7 0.72 0.03 529 41.5 0.81 0.04 337 53.8 0.73 0.05

Trend test p = 0.339 p = 0.405 p = 0.256 N/A

Period of diagnosis

1970-79 1,576 31.1 0.80 0.03 695 27.8 0.72 0.04 354 27.8 0.81 0.05 198 31.6 0.75 0.07

1980-89 1,552 30.6 0.80 0.03 686 27.5 0.69 0.04 387 30.5 0.84 0.05 206 32.9 0.82 0.07

1990-99 1,302 25.7 0.86 0.03 654 26.2 0.81 0.04 366 28.7 0.88 0.05 217 34.7 0.91 0.07

2000-09 635 12.5 0.84 0.04 462 18.5 0.81 0.05 168 13.2 0.90 0.07 5 0.8 N/A

Trend test p = 0.143 p = 0.036 p = 0.229 N/A

Social Class

High 597 11.8 0.81 0.04 281 11.3 0.76 0.06 144 11.3 0.86 0.08 77 12.3 0.77 0.11

Medium 2,171 42.9 0.85 0.02 1,034 41.4 0.78 0.03 553 43.3 0.89 0.04 290 46.3 0.86 0.06

Low 1,484 29.3 0.80 0.03 735 29.4 0.71 0.04 363 28.5 0.82 0.05 177 28.3 0.86 0.07

Unknown 813 16.1 0.79 0.04 447 17.9 0.76 0.05 215 16.9 0.85 0.07 82 13.1 0.73 0.11

Trend testˠ p = 0.569 p = 0.297 p = 0.492 p = 0.556

Stage

Stage I 1,014 20.0 0.84 0.03 280 11.2 0.78 0.06 305 23.9 0.85 0.06 198 31.6 0.84 0.07

Stage II 2,044 40.4 0.83 0.02 901 36.1 0.77 0.03 564 44.2 0.87 0.04 286 46.7 0.84 0.06

Stage III 807 15.9 0.77 0.04 538 21.6 0.74 0.04 175 13.7 0.80 0.08 58 9.3 0.76 0.13

Stage IV 490 9.7 0.63 0.04 427 17.1 0.55 0.05 50 3.9 0.95 0.14 8 1.3 0.38 0.28

Unknown 710 14.0 0.79 0.04 351 14.1 0.70 0.05 181 14.2 0.82 0.07 76 12.1 0.84 0.11

Trend testˠ p = 0.000 p = 0.000 p = 0.963 p = 0.272

Treatment

Surgery only 1,252 24.7 0.83 0.03 436 17.5 0.77 0.05 323 25.3 0.85 0.06 216 34.5 0.82 0.07

Surg + adj. 2,693 53.2 0.86 0.02 1,186 47.5 0.82 0.03 766 60.1 0.87 0.04 367 58.6 0.85 0.05

No treatment 421 8.3 0.63 0.05 317 12.7 0.61 0.06 69 5.4 0.79 0.12 23 3.7 0.47 0.21

Hormones 448 8.9 0.73 0.05 345 13.8 0.70 0.05 88 6.9 0.81 0.11 14 2.2 0.86 0.26

Others 251 5.0 0.65 0.06 213 8.5 0.60 0.07 29 2.3 0.87 0.18 6 1.0 0.57 0.37

Sector of care

Private 2,028 40.0 0.86 0.02 870 34.8 0.81 0.03 550 43.1 0.86 0.04 286 45.7 0.87 0.06
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diagnosis. We found no association between social class
and concordance, but a higher concordance for patients
who were monitored (0.86) or who have died (0.85) in
the private sector than for those in the public sector
(0.80 and 0.76, respectively).
Unadjusted odds ratios of disagreement between the

official and the revised underlying causes of death are
presented in Table 4 for the overall cohort and for the
three subcohorts defined by length of follow-up. The
odds of disagreement increased significantly with age at
diagnosis (as continuous variable) for all the patients
(OR 1.03, 95% CI [1.02; 1.03]) and for the three subco-
horts. We observed the same trend when using age at
death as continuous variable (OR 1.02, 95% CI [1.01;
1.02] for all patients). Period of diagnosis was not signifi-
cantly associated with disagreement but we did observe
a significant decreasing trend for period of death as a
continuous variable for all patients and the subcohorts
(OR: 0.97, 95% CI: [0.96-0.98] for all patients). We did
not find a significant trend for stage of the disease when
considering all patients or the subcohorts defined by
follow-up. Patients treated palliatively had significantly
higher odds of disagreement (OR: 2.50, 95% CI [1.82;
3.43] for non-treated, 1.76 95% CI [1.26; 2.46] for pa-
tients treated with hormones and 1.34, 95% CI [0.86;
2.1] for other palliative treatment). The same trend was
observed for the three subcohorts although not statisti-
cally significant. Patients treated in the public sector also
had a higher risk of disagreement (OR: 1.47, 95% CI
[1.20; 1.81] for all patients) as well as those who died in
a public hospital. We did not observe differences by so-
cial class. We were unable to perform a logistic regres-
sion for the subcohort defined by a follow-up time

between 10 and 15 years because of the small number of
observations (<10) for several variables.
Figure 1 presents the breast cause-specific survival

curves up to 20 years since diagnosis using the two differ-
ent cause-of-death variables, for all breast cancer patients
regardless their final vital status. The survival curves
matched almost perfectly, with a difference in 20-year sur-
vival lower than 1%. The estimation of proportion of pa-
tients alive after twenty years of follow-up when using the
official cause of death was 60.51%, 95% CI [59.11; 61.89]
and 61.26, 95% CI [59.85; 62.64] when using the revised
cause of death.
We compared cause-specific survival curves estimated

with the revised and official underlying cause of death for
selected subgroups (Figure 2). We estimated and pre-
sented results only if 10 women were remaining in the ex-
posed group and/or the difference between the two curves
was larger than 1%. Among patients aged 70–79 the sur-
vival at 20-year was 53.9% (95% CI [50.0; 57.6]) when
using the revised cause of death and 51.2% (95% CI [47.3;
54.9]) with the official cause of death. The 20-year survival
was greater when using the revised cause of death among
the two first period of diagnosis. 1.7% and 1.6% difference
for 1970–79 and 1980–89 respectively. We also observed
a difference for patients treated with surgery. The 20-year
survival was 65.2%, 95% CI [62.4; 68.0], based on the re-
vised cause of death and 63.0%, 95% CI [60.1; 65.8] when
using only death certificates.
A difference was already present at 10 years for several

subgroups. Among patients with no treatment, the esti-
mation was larger for reviewed cause of death with 3.5%
difference. Among patients with hormonal therapy, the
survival was 4.3% higher, 37.0%, 95% CI [29.5; 44.6] for

Table 3 Concordance by subgroups between the official underlying cause of death and the revised underlying cause
of death for women diagnosed with breast cancer in Geneva between 1970 and 2009 (Continued)

Public 3,037 60.0 0.80 0.02 1,627 65.2 0.73 0.02 725 56.9 0.86 0.04 340 54.3 0.79 0.05

Period of death

1970-79 630 12.4 0.70 0.04 548 21.9 0.71 0.04 82 6.4 0.67 0.11 - -

N/A
1980-89 1,196 23.6 0.74 0.03 658 26.4 0.68 0.04 362 28.4 0.84 0.05 149 23.8

1990-99 1,483 29.3 0.83 0.03 694 27.8 0.78 0.04 377 29.6 0.87 0.05 211 33.7

2000-09 1,756 34.7 0.88 0.02 597 23.9 0.84 0.05 454 35.6 0.88 0.05 266 42.5

Trend test p = 0.000 p = 0.007 p = 0.140 N/A

Place of death

Public hospital 2,845 56.2 0.76 0.02 1,573 63.0 0.69 0.03 677 53.1 0.82 0.04 315 50.3 0.78 0.06

Retirement
home

1,291 25.5 0.83 0.03 570 22.8 0.77 0.04 328 25.7 0.88 0.06 172 27.5 0.79 0.08

Private hospital 150 3.0 0.85 0.08 55 2.2 0.74 0.13 47 3.7 0.77 0.14 24 3.8 1.00 0.20

Home 374 7.4 0.91 0.05 143 5.7 0.94 0.08 113 8.9 0.87 0.09 54 8.3 0.90 0.14

Others 263 5.2 0.96 0.06 122 4.9 0.96 0.09 70 5.5 0.95 0.12 38 6.1 0.92 0.16

Missing 142 2.8 0.92 0.08 34 1.4 0.94 0.17 40 3.1 0.83 0.16 25 4.0 1.00 0.20

ˠTrend test performed without the missing data.
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the reviewed cause of death vs. 32.7%, 95% CI [25.9;
39.6] when using the variable based only on death certif-
icates. In the same way, the survival at 10-year was 5%
higher for 80+ when using the reviewed cause of death
(47.7%, 95% CI [43.1; 52.1] vs. 42.7%, 95% CI [38.4;
47.0]). Among patients with metastatic tumours, the dif-
ference was in the opposite direction: the estimation of
10-year survival was 1.5% higher when using the cause
of death based on death certificates only, 14.7%, 95% CI
[11.2; 18.7] vs.13.2%, 95% CI [10.0; 16.9] for the reviewed
cause of death.

Discussion and conclusion
Survival statistics derived from routinely collected
population-based cancer registry data are key means of
reporting progress against cancer. In the Geneva Cancer
Registry, in addition to the official underlying cause of
death derived from the death certificate, registrars use
all the available information in order to establish, where
relevant, a revised underlying cause of death which
allows evaluation of the accuracy of death certification.
This study describes both processes of recording the

cause of death and shows their impact upon estimated
survival rates from breast cancer.
The overall concordance between the official and the

revised underlying cause of death was high. Differences
were only present for 8.8% of the deceased patients
representing 4.2% of the entire cohort. This is consistent
with the study conducted by Goldoni et al. [11] in 2009
who reported 4.3% misclassification among their cohort.
The official underlying cause of death was revised to
breast cancer in 191 women (3.8% of those who have
died) according to the cancer registry registrars; the
underlying cause of death of these women had mainly

been coded to other tumours. This could be explained
by the presence of metastases that may have misled the
certifying doctor about the location of the primary can-
cer and leads to differences in cause-specific survival es-
timation among metastatic patients (Figure 2).
On the other hand, most of the 254 women (5.0% of

the patients who have died), coded as breast cancer
deaths on the death certificates and considered as deaths
from other causes from the registry, have been attributed
to heart disease. Most of these women were elderly pa-
tients diagnosed during 1970–89. At that time the guid-
ance for death certification among cancer registries was
not to emphasize the cancer as a cause of death [16].
This might explain a tendency to recode the cause of
death from cancer to heart diseases among elderly.
Our results based on Kappa statistic and on logistic re-

gression showed that disagreement was greater among
elderly women, patients with advanced disease and pa-
tients receiving palliative treatment. This suggests that
less attention is given by doctors certifying death to the
underlying cause of death for patients who are more
likely to die. Concordance is also lower within the first
five years after diagnosis, suggesting that more accurate
information is available to the registrars assessing the
true underlying cause of death during a shorter period
of follow-up.
We also observed increasing concordance in succes-

sive calendar periods of death. Since this variable closely
represents the year in which the review took place, sev-
eral explanations may apply. First, the Geneva Cancer
Registry may have less information in more recent times.
This seems unlikely since more linkages have been set
up over time with the health system in the canton,
allowing a greater exchange of data. More likely, the ac-
curacy of death certificates has improved over time
which has led to more confidence in the official coding
supplied on death certificates.
It is legitimate to ask why the reliability of cause of

death reported on the death certificates may be ques-
tioned at all. It can be argued that the general practi-
tioner responsible for the patient is the person most
likely to be aware of the underlying cause of death inso-
far as they are aware of all the clinical information and
also often know the patients personally. However, this ad-
vantage is not always capitalised on. Physicians are more
likely to misclassify the cause of death than a trained
registrar [4,10,17-19]. The general practitioner is not al-
ways concerned about the epidemiological information
they are providing, and may not be aware of the inter-
national rules of WHO about the coding of the cause of
death. Moreover, the general practitioner often receives
the results of the autopsy after the death certificate has
been issued and therefore does not take into account the
report when certifying the death. The registrars of the

Using the official cause of death (1)
Using the revised cause of death (2)
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Figure 1 Up-to-20-year cancer-specific survival using 1) the
cause of death based on death certificate only and 2) cause of
death reviewed by registrars and the absolute difference be-
tween them: female breast cancer patients diagnosed between
1970 and 2009.
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Geneva Cancer Registry, on the other hand, are able to ac-
cess all pathological and histological information and/or
the clinical information for most cases and review the
cause of death only in the light of the autopsy reports. In
addition, the registrars are more experienced with epi-
demiological data and its coding.
James [20] showed that coding the cause of death

using death certificates only, in isolation from all other
available information, led to biased interpretations of the
cause of death. Our study tends to legitimate the process
of verification that is performed in the Geneva Cancer
Registry and induces that the resulting estimation of sur-
vival is more accurate.
Both methods aim to assign as best as possible the cause

of death and none of them can be considered as the gold
standard. We nevertheless consider the revised cause of
death as more accurate insofar as additional information
is available to experienced registrars but not necessarily to
the practitioner completing the death certificate.
Overall, the revised underlying cause of death did not

have a major impact on the cause-specific survival up to
20 years. However, important differences appeared in sev-
eral subgroups suggesting that using the official under-
lying cause of death could lead to biased estimation of
cause-specific survival in some populations.
The main limitation of this study relates to the propor-

tion of women who have died for whom information
other than the death certificate was available. The more
information available, the more likely it is that we will be
able to find discordance. High concordance reflects ei-
ther lack of additional information available to correct
the official cause of death, or that the death certificates
define the cause of death fairly well. However, among
our cohort of 5,062 deceased patients, a high percentage
was monitored and/or passed away in the public sector
of care, where access to information about cause of death
is more readily available. We therefore assume that infor-
mation enabling review of the underlying cause of death
was available for the great majority of women who had
died and that the overall high concordance between offi-
cial and revised underlying cause of death is real.
Moreover, the number of deaths in the cohort influ-

ences the discordance. The more deaths, the more likely
it is to find differences between the two causes-of-death
and then the concordance. This state is confirmed in our
study with a higher discordance among elderly. Breast
cancer is not the more lethal cancer and our results can
certainly not be generalised to other tumour localisations.
The Geneva Cancer registry data represent a unique

opportunity to review the accuracy of the cause of death
recorded on a death certificate by comparing it to all the
available information in the health system. We observed
that the overall concordance with the cause of death
found on the death certificates is fairly high. More

particularly, the impact on estimates of cause-specific
survival is very small overall, although analyses in sub-
groups show larger differences, suggesting that mis-
classification of the underlying cause of death could lead
to biased estimation of differences or trends in cause-
specific survival.
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[ C h a p t e r  T w o ]  
         Comparison of the two data settings   
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I have shown that routinely recorded cause of death can be inaccurate and a 

source of bias in cancer survival estimates for some sub-groups in the cause-

specific setting, and particularly for long-term survival. I therefore conclude the 

reviewed cause of death as the more accurate variable for estimating cancer 

survival in the cause-specific setting (Chapter 1).  

However, not all cancer registries have access to accurate information about 

the underlying cause of death, making it difficult to estimate cancer survival 

using this approach. The alternative is the use of the relative-survival setting 

where this information is not required.  

The purpose of this chapter is to complete the second aim of the thesis, which is 

to evaluate the less biased data setting for the estimation of long-term net 

survival when reviewed cause of death is known.  

In order to achieve this aim, I define the following objectives: 

o to derive up-to-date life tables for use in the estimation of net 

survival within the relative survival setting, 

o to apply an inverse probability weighting (IPW) method to 

estimate net survival in the cause-specific setting 

o to compare and contrast estimates of long-term net survival from 

breast cancer in each data setting using both routinely collected 

and validated data on cause of death and 

o to assess whether these same findings apply to other anatomic 

localisations. 

This chapter comprises copies of two published research articles, a full paper 

published in Cancer Epidemiology and a Short Communication published in 
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the European Journal of Cancer, alongside text, which describes the 

background to the objectives, summarises the approach and findings, and 

which specifies how these publications fulfil the aim and objectives.  
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Background 

We distinguish two sources of bias when estimating net survival; the first one is 

related to the theoretical definition of the estimator itself and the second 

depends on the data setting used for its estimation.  

Net survival and informative censoring 

Net survival is the survival that would be observed in the hypothetical situation 

where the disease of interest, breast cancer in our case, is the only cause of 

death.  

The main underlying assumption of net survival is that death from cancer is 

independent of background population mortality (the expected rate of death 

in the absence of breast cancer). In practice, however, this is very rarely the 

case because causes of death other than breast cancer can interfer with the 

cancer death itself 73–75. This is described as a scenario of “competing risks” 

where the probability of a patient being censored and leaving the risk set is 

associated with the occurrence of the event of interest. In other words, patient 

characteristics tend to be associated with both deaths from the disease of 

interest (breast cancer) as well as deaths from other causes. 

The association between covariables and withdrawal breaks the assumption of 

independence between the censoring process and the occurrence of the 

event. For instance, we know that old patients are more likely to die from other 

causes of death, due to co-morbidities, and are therefore more likely to be 

censored. This phenomenon is known as informative censoring. Without due 

consideration of informative censoring, estimates of net survival are biased. 
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Adjustment for informative censoring  

Application in the relative survival setting 

Historically, approaches defined by Ederer in 1961 77, and in 1959 78 (known as 

Ederer I and II respectively) as well as by Hakulinen in 1982 79 were used to 

estimate survival from cancer in the relative survival setting. All three of these 

methods were considered, wrongly, to be estimating net survival. Actually, they 

estimated net survival only when the censoring process was entirely non-

informative. This was demonstrated by Pohar-Perme et al. in 2011 80 who 

showed that in practice an absence of informative censoring is almost never 

the case and that all of these three commonly applied methods, as well as 

survival estimates derived in the cause-specific setting, were biased in the 

presence of informative censoring.  

To address the problem of informative censoring within the relative survival 

setting, Pohar-Perme 80 proposed a correction based on inverse probability 

weighting. The weight w is put on both cumulative overall mortality rate Λ̂𝑜 and 

cumulative expected mortality rate Λ̂𝑒 in order to derive the cumulative excess 

mortality rate Λ̂𝑒𝑥𝑐𝑒𝑠𝑠. We have, 

Λ̂𝑒𝑥𝑐𝑒𝑠𝑠(𝑡) = Λ̂𝑜(𝑡) − Λ̂𝑒(𝑡) 

 

Λ̂𝑒 𝑥𝑐𝑒𝑠𝑠(𝑡) =  ∫
𝑑𝑁𝑤(𝑢)

𝑌𝑤(𝑢)

𝑡

0
−  ∫

∑ 𝑌𝑖
𝑤(𝑢)𝑑Λ𝑒i

(u)𝑛
𝑖=1

𝑌𝑤(𝑢)

𝑡

0
, 

where 𝑁𝑤(𝑡) = ∑ 𝑁𝑖
𝑤(𝑡)𝑛

𝑖=1 = ∑
𝑁𝑖(𝑡)

𝑆𝑒𝑖
(𝑡)

𝑛
𝑖=1  and 𝑌𝑤(𝑡) = ∑ 𝑌𝑖

𝑤(𝑡)𝑛
𝑖=1 = ∑

𝑌𝑖(𝑡)

𝑆𝑒𝑖
(𝑡)

𝑛
𝑖=1 . 𝑆𝑒𝑖

(𝑡) 

represents the expected survival for each individual 𝑖, derived from the general 

population life table.  This approach therefore increases the weight of the 
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remaining risk set by dividing it by the expected probability of survival and thus 

enables the mimicking of the cohort that would have been observed without 

the withdrawals, which occur due to competing events (death from causes 

other than breast cancer). Consequently, the bias of informative censoring is 

taken into account. 

Pohar-Perme is now considered the Gold Standard for the estimation of net 

survival within the relative survival setting and has been applied in Paper 2 as 

well as in the Short Communication. 

Application in the cause-specific setting 

Robins 81 and Satten 82 were the first to propose a solution to avoid the bias 

associated with informative censoring within the cause-specific setting. More 

precisely, Robins’ idea was to “develop statistical methods that can be used to 

adjust for non-random non-compliance and dependent censoring in 

randomized control trial” 81. Satten suggested the estimation of survival as a 

missing data issue as patients were censored and therefore likely not to present 

the event of interest. The solution was therefore the use of an “inverse-

probability-of-censoring” weighting. For this purpose, they derived survival using 

the Nelson-Aalen estimator which considers two counting processes. The first, 𝑁, 

represents the number of events. The second, 𝑌, corresponds to the number of 

individuals at risk. To tackle informative censoring, both processes are weighted, 

for each individual 𝑖, by the inverse of their probability of being censored 𝑆𝑐𝑖(𝑡). 

For an individual 𝑖 ( 𝑖 = 1, … , 𝑛), the cumulative net survival Λ̂𝑐𝑠
𝑤 (𝑡) weighted by 𝑤, 

is: 

Λ̂𝑐𝑠

𝑤
(𝑡) =  ∫

𝑑𝑁𝑐𝑠
𝑤(𝑢)

𝑌𝑤(𝑢)

𝑡

0
, 
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with 𝑁𝑐𝑠
𝑤(𝑡) =  ∑ 𝑁𝑐𝑠𝑖

𝑤 (𝑡) =  ∑
𝑁𝑐𝑠𝑖(𝑡)

𝑆𝑐𝑖(𝑡)
𝑛
𝑖=1

𝑛
𝑖=1  and 𝑌𝑤(𝑡) =  ∑ 𝑌𝑖

𝑤(𝑡) =  ∑
𝑌𝑖(𝑡)

𝑆𝑐𝑖(𝑡)
𝑛
𝑖=1

𝑛
𝑖=1 . 𝑁𝑐𝑠

𝑤(𝑡) 

represents the number of deaths at time 𝑡, weighted by 𝑤. 𝑌𝑤(𝑡) represents the 

number of individual at risk at time 𝑡, weighted by 𝑤. This enables survival to be 

estimated for the hypothetical cohort, which would have been observed 

without the withdrawals and therefore eliminates the bias due to informative 

censoring. 

I used a similar strategy to create my own weights for the estimation of net 

survival in the cause-specific setting. I derived the weights using the cancer 

patient data and validated cause of death. I considered that the expected 

mortality of the cancer patients would be the same as the mortality rate from 

other causes of death than breast cancer amongst the cancer patients. I fitted 

a Poisson regression model to the cancer patient data where I considered 

death from a cause other than breast cancer as the event of interest. I 

adjusted on age at death and year of death. I used the model to derive 

expected mortality by age and year. I then used this set of rates to weight the 

breast-specific mortality hazard, in order to derive net survival estimates. I make 

use of this approach to derive my own weights when estimating net survival 

within the cause-specific setting in Paper 2 and in the Short Communication.  

Two data settings, two data biases 

Both cause-specific and relative-survival settings can be used to estimate net 

survival but, as well as being subject to bias as a result of informative censoring, 

survival estimates derived in both settings are also prone to important biases 

related to the data itself.  
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Data bias within the cause-specific setting 

The main bias for the cause-specific setting is misclassification of cause of 

death. This issue is related to the accuracy of cause of death classification, and 

has been covered in detail in Chapter 1. 

Data bias within the relative survival setting 

Estimation of net survival in the relative survival setting is achieved by taking the 

ratio between the observed survival rate in a specified group of patients during 

a specified period of time, to the expected survival rate, which is the mortality 

rate observed in the population from which the patients are drawn. The major 

advantage of the relative survival setting in comparison to the cause-specific 

setting is that information about cause of death is not needed.  

In the relative survival setting, the most important potential bias is the non-

comparability between the cohort of cancer patients and the general 

population used for the estimation of the expected mortality rate. This is 

particularly important when a factor having an impact on mortality from other 

causes is distributed differently between the cancer group and the general 

population, that is, the population used for comparison does not provide an 

accurate estimation of the expected mortality of the patient group. Tobacco 

and lung cancer is an interesting illustration: patients with lung cancer are 

known to have much greater exposure to tobacco compared to the general 

population. Thus, their risk of dying from another smoking-related disease is 

considerably larger 83,84. As a result, the expected mortality derived from the 

general population will be an under-estimate of their expected mortality and 

their net survival under-estimated. Ellis et al. attempted to adjust for this issue 

87



 

using smoking-adjusted life tables 84. Several other factors may act in this 

manner, including physical activity, obesity or diet 86–90. 

In this respect, it is essential to derive the most accurate general population life 

table as possible.  

Derivation of life tables  

Life tables are demographic tools, which detail the probabilities of death 

amongst a given population by a set of covariates, usually age and sex. For the 

Geneva canton, mortality and population data are available at a very 

detailed level. The numbers of deaths and the population size (death and 

population counts) by single year of age and sex are accessible annually from 

1970 to 2013. Such ‘complete’ (single year of age) life table data are attractive 

because of the level of detail they provide. However, the observed mortality 

rates tend to be quite variable especially in the context of a small population 

like Geneva. Consequently, it is unadvisable to use them directly in relative 

survival analyses. On the other hand, abridged life tables (which present 

probabilities for age groups) are much less prone to random variability but are 

not detailed enough since expected mortality rates only available by age 

group.  

I followed the recommendation provided by Rachet et al. 91 that the most 

appropriate life table for use in the relative survival setting is both complete and 

smooth. They have demonstrated the use of a flexible Poisson regression model 

including splines to derive such life tables from routinely recorded death and 

population data. This model performs better than previously applied methods 

developed by Ewbank et al. 92 and Elandt-Johnson et al. 93 which are based on 

strong underlying assumptions about the distribution of deaths by age.  
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I modelled counts of death within the generalized linear model framework, 

using a Poisson error and log-link. Person-years at risk were used as the offset. I 

first considered the effect of age. More specifically, the flexible model defines: 

log(𝑑𝑥) = 𝛽0 + 𝑓(𝑥) + log (𝑝𝑦𝑟𝑠𝑥) 

where 𝑥 represents age in years, 𝑑𝑥 denotes the age-specific death count, 𝛽0 is 

the coefficient at baseline (i.e. the log of the mortality rate at the reference 

age), 𝑓(𝑥) denotes a restricted cubic spline function on age, and 𝑝𝑦𝑟𝑠𝑥 denotes 

the age-specific person-years at risk. The model was implemented using the 

Stata command mvrs (multivariable regression splines) 94 in STATA. Splines are 

made up of piecewise polynomial functions joined at locations called knots. 

As recommended by Rachet et al. 91, I tested six slightly different scenarios for 

the location of knots for the main effect of age upon the mortality rate. I then 

compared each of these scenarios and selected the best model according to 

AIC and BIC criteria. Then, I included the effect of calendar year upon the risk 

of death. I considered three hypotheses regarding the effect of year on 

mortality. First, I assumed that the change in mortality was constant over time 

(linear effect of year). Second, I allowed the change in mortality to be non-

linear by the inclusion of a cubic spline. Finally, I modelled an interaction term 

between age and the non-linear function of year. This allowed mortality to 

change in a non-linear way for each separate single year of age. I compared 

these three models using AIC and BIC criteria in order to select the most 

appropriate one. The model presenting the interaction between age and year 

demonstrated the best fit and was retained. I then used this model to derive 

expected mortality rates for the general population by sex and single year of 

age for the all the years from 1970 up to 2013. 
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Results for women are illustrated in Figure 9. The observed (dots) and fitted 

(lines) mortality rates are presented by age bands. I observed large variability in 

mortality rates when using observed data, especially for middle-aged (30-65 

years old) and the oldest individuals (more than 95), whereas fitted rates 

provide a more stable function for mortality. These fitted mortality rates were 

used for the estimation of net survival within the relative survival setting. 
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Figure 9: Observed and fitted age-specific mortality rates for the Geneva canton general 

population. Year 2000. (A) Females aged less than 35. (B) Females  aged 35-64. (C) Females 

aged 65 and more. 

(A) 

(B) 

(C) 
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Paper Two 

Comparison of the two data settings for breast cancer. 

Description 

“Cause-specific or relative survival setting to estimate population-based net 

survival from cancer? An empirical evaluation using women diagnosed with 

breast cancer in Geneva between 1981 and 1991 and followed for 20 years 

after diagnosis” was published in Cancer Epidemiology in 2015 94.  

In it, I compare the theoretically unbiased estimates of net survival available for 

each data setting. I implemented the weights inspired by Robins and Satten for 

the estimator derived (1) in the cause-specific setting using reviewed cause of 

death and (2) used the Pohar-Perme estimator for the relative survival setting. 

To evaluate the impact of the types of data biases between the settings I 

performed sensitivity analyses for (1) by randomly allocating a greater 

proportion of deaths to the cancer patients and for (2) by artificially increasing 

the expected mortality derived from the general population life table.  

The first sensitivity analyses (1) focused on testing the extent of the possible data 

bias within the cause-specific setting. It is known that misclassification of the 

underlying cause of death is an issue in this context, in particular, deaths 

caused by the disease of interest but attributed to other diseases. I therefore 

artificially increased the number of deaths due to breast cancer, in order to 

mimic different levels of misclassification by randomly re-attributing the cause 

of death variable from non-breast cancer to breast cancer for 10, 15, 20 and 25 

per cent of the deceased patients, and evaluated the impact of this upon net 

survival estimates. The estimation within the cause-specific setting would have 

been considered robust to this bias if different levels of misclassification led to 
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very similar estimations of net survival. Conversely, if a very small change in the 

proportion of deaths attributable to breast cancer induced a substantial 

change in the net survival estimates, this would constitute evidence that the 

cause-specific setting is sensitive to misclassification of the cause of death. 

The second sensitivity analysis (2) addressed relative-survival setting. In this 

context, the most likely data bias is related to the non-comparability between 

the cancer patients and the population from which I extract the expected 

mortality rate. I therefore artificially modified the life table itself, increasing and 

stratifying the expected rate of death, in order to evaluate the impact of such 

a change upon the estimates of net survival. Had similar estimations of survival 

been obtained in this analysis I would have concluded that the relative survival 

setting is robust to non-comparability in the life tables. Conversely, the estimator 

would be found to be less reliable if a relatively small change in the expected 

rates of death led to a very different estimate of net survival.  

Main results 

Within this research, I show that using the cause-specific setting led to higher 

estimation of net survival compared to the relative survival setting. The absolute 

difference between the two estimators increased with time after diagnosis from 

1% at one year to 10.8% at 20 years. It remained less than 3% during the first ten 

years of follow-up (2.4% at 10 years) and started to increase more dramatically 

from 13 years onwards. A possible explanation for this result is that relative-

survival setting takes into account death indirectly due to breast cancer, 

whereas the cause-specific setting does not. Using the cause-specific setting 

means that an explicit decision has to be made regarding the allocation of the 

cause of death whether it was fully attributable to breast cancer or not.. For 
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some others, the cancer is a contributing factor and it is difficult to determine 

whether the death is entirely due to the disease of interest. The line between a 

cancer-specific death and a cancer-consequent death is usually a matter of 

judgement. In the relative survival setting, this issue does not apply insofar as the 

aim is to measure deaths that are in excess of what would be expected for the 

patients under study. Indirect deaths are therefore taken into account implicitly 

in the approach and could explain the differences in net survival estimates.   

I also demonstrated that the relative survival setting is much more robust to 

data biases than the cause-specific setting when estimating long-term net 

survival for breast cancer patients. Indeed, a very small modification in the 

proportion of deaths due to breast cancer led to large variability in the 

estimation of net survival in the cause-specific setting. Conversely, estimation of 

net survival in the relative survival setting was much less sensitive to large 

changes in the expected mortality rates derived from the general population 

life table. 

Conclusion 

Our conclusion was that net survival derived using the cause-specific setting is 

very sensitive, and estimates are likely to be an over-estimation of the true net 

survival. On the other hand, the estimation of long-term net survival in the 

relative survival setting was more likely to be close to the true net survival 

estimation because it showed robustness to violations of the assumptions. These 

results were increasingly important as time since diagnosis increased. I therefore 

concluded the relative survival setting as the less biased method for estimating 

long-term survival from breast cancer.  
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Short communication 

Extension to other localisations 

Description 

“Estimation of net survival for cancer patients: Relative survival setting more 

robust to some assumption violations than cause-specific setting, a sensitivity 

analysis on empirical data.” was published in the European Journal of Cancer 

in 2017 95.  

Paper 2 comprehensively compared the two data settings for breast cancer 

patients. Breast cancer, however, remains a particular cancer localisation. It is 

relatively unusual because survival is high but patients still exhibit excess 

mortality associated with their disease several decades after their diagnosis. This 

pattern of mortality related to the disease is rarely seen in cancers arising at 

other anatomic sites. 

I was therefore interested in testing whether the results that were reported in 

Paper 2 were similar for cancers of different localisations, since my findings for 

Paper 2 have wide-ranging implications for the coding of cause of death and 

the estimation of net survival from cancer registry data. I tested three different 

cancers: lung cancer, a very aggressive disease with poor survival; colorectal 

cancer, less aggressive but affecting older people and presenting a moderate 

prognosis; and melanoma, a cancer arising more often among younger 

people and demonstrating favourable prognosis. With these three sites, I was 

thus able to evaluate these results for tumours with different lethality, different 

patterns of mortality and different age distributions. 
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Main results 

I repeated the analyses conducted for Paper 2 to compare the results found for 

breast cancer using data on melanoma, lung and colorectal cancers. For 

colorectal cancers, 87% of the patients died, 511 of their cancer (59%). Among 

women diagnosed with lung cancer, 97% died. There were 483 deaths, 419 

from lung cancer (87%). Among patients with melanoma, 46% died, 40 due to 

melanoma (29%). For breast cancer, 1700 patients died (68%) 844 from their 

cancer (50%). 

We observed, consistent with our previous analyses, that net survival estimates 

using the cause-specific setting are higher than the estimates using the relative 

survival setting for every localisation. The absolute difference between the two 

estimators increased with time since diagnosis for all four cancers. For 

colorectal cancer, the difference widened from almost 2% at one year to over 

7% at 20 years. For lung cancer, the difference increased sharply within the first 

two years after diagnosis (3% at two years) and moderately afterwards. There 

was no detectable difference during the first three years after diagnosis for 

melanoma, but it subsequently increased to more than 8% at 20 years after 

diagnosis.  

Analyses in the cause-specific setting again highlighted the lack of robustness 

of the net survival estimators to re-allocation of the cause of death, irrespective 

of cancer site. The relative survival setting demonstrated much more stable net 

survival estimations for all cancer localisations when the expected rate of 

mortality was modified. 
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Conclusion 

I concluded that the use of relative survival setting is recommended for this 

estimation of net survival, regardless of the cancer site. Even if not all 

localisations have been tested, I have demonstrated that results found for 

breast cancer were robust to change in lethality of the cancer and in the age 

distribution of the cancer patients.  
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Fulfilment of Aims and Objectives 

In this Chapter, I have demonstrated that the relative survival setting is robust to 

large data change in the general population life table but that the estimation 

of net survival within the cause-specific setting is very sensitive to the allocation 

of the underlying cause of death. I have shown that this is true for breast cancer 

as well as for a range of other cancer sites. 

True, underlying net survival is never perfectly estimated, even within the 

relative-survival setting. However, with informative censoring taken into 

account, my analyses have shown that the relative survival setting is less prone 

to bias and thus more likely to provide close estimates of the true net survival 

compared to the cause-specific setting, even in the presence of reviewed 

cause of death. Since, in chapter 1 I have shown that cause of death from 

standard certificates can be misclassified, it follows that the bias in cause-

specific survival generated when using cause only from death certificates is 

likely to be greater than that observed in these analyses.  

An important aspect of these results is that these data biases were especially 

important for long-term net survival, because of the increasing likelihood of 

misclassification of the underlying cause of death (as shown in Chapter 1) when 

fewer deaths occur. This is intuitive, since attributing cancer as the cause of 

death is more likely when death is temporally close, rather than a long time 

after diagnosis. The impact of these errors on survival estimates are thus 

exacerbated through time as they are effectively multiplied together.  

It is important to note that both estimators were theoretically unbiased since 

weights were applied in both settings in order to take into account informative 

censoring. I used the weights proposed by Pohar-Perme in the relative-survival 
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setting and developed my own based on the work of Robins and Satten for the 

cause-specific setting. This represents the key strength of my research. I was 

therefore able to perform a valid comparison between the data settings, which 

has not been done previously.  

Thus, I have so far shown that although there is evidence that validated death 

data affords an advantage in estimating survival for some sub-groups, 

particularly in the long-term, the cause-specific setting itself is more prone to 

bias in comparison to the relative survival setting. I conclude that because of 

the level and nature of this bias, the cause-specific setting should not be 

applied, and that the relative survival setting is the best way to measure long-

term net survival, even when accurate cause of death information is available. 
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Cause-specific or relative survival setting to estimate population-
based net survival from cancer? An empirical evaluation using women
diagnosed with breast cancer in Geneva between 1981 and 1991 and
followed for 20 years after diagnosis

Robin Schaffar a,b,*, Bernard Rachet b, Aurélien Belot b, Laura Woods b

a Geneva Cancer Registry, Global Health Institute, University of Geneva, Geneva, Switzerland
b Cancer Research UK Cancer Survival Group, Department of Non-Communicable Disease Epidemiology, Faculty of Epidemiology and Population Health,

London School of Hygiene and Tropical Medicine, London, United Kingdom

1. Introduction

Net survival is defined as the survival that would be observed if
the only possible underlying cause of death was the disease under
study [1]. This definition of survival probability is of particular
interest since it is not influenced by changes in mortality from

other causes and therefore allows accurate evaluation of survival
from the disease, essential for cancer control.

Two main approaches have been developed to estimate net
survival, each requiring different data settings and assumptions.
First, the cause-specific approach, which requires a data setting
with reliable individual information on the underlying cause of
death. Thus, only deaths from the cancer under study are defined as
events whilst others are censored. Second, the relative survival
approach [2] compares the overall survival of a cohort of patients
to that which they would have experienced if they had had the
same mortality experience of the general population from which
they were drawn. This approach requires a different data setting,
where mortality data about the population from which the cancer

Cancer Epidemiology 39 (2015) 465–472

A R T I C L E I N F O

Article history:

Received 6 January 2015

Received in revised form 2 April 2015

Accepted 5 April 2015

Available online 20 April 2015

Keywords:

Net survival

Breast cancer

Cause-specific

Relative survival

Informative censoring
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Background: Both cause-specific and relative survival settings can be used to estimate net survival, the

survival that would be observed if the only possible underlying cause of death was the disease under

study. Both resulting net survival estimators are biased by informative censoring and prone to biases

related to the data settings within which each is derived. We took into account informative censoring to

derive theoretically unbiased estimators and examine which of the two data settings was the most

robust against incorrect assumptions in the data. Patients and methods: We identified 2489 women in the

Geneva Cancer Registry, diagnosed with breast cancer between 1981 and 1991, and estimated net

survival up to 20-years using both cause-specific and relative survival settings, by tackling the

informative censoring with weights. To understand the possible origins of differences between the

survival estimates, we performed sensitivity analyses within each setting. We evaluated the impact of

misclassification of cause of death and of using inappropriate life tables on survival estimates. Results:

Net survival was highest using the cause-specific setting, by 1% at one year and by up to around 11%

twenty years after diagnosis. Differences between both sets of net survival estimates were eliminated
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dramatic increase in the general population mortality rates was needed to see the survival estimates

based on relative survival setting become closer to those derived from cause-specific setting. Conclusion:

Net survival estimates derived using the cause-specific setting are very sensitive to misclassification of

cause of death. Net survival estimates derived using the relative-survival setting were robust to large
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patients are drawn is available. Information about the cause of
death is not required and we assume that the cancer-specific
mortality included in the overall mortality is negligible compared
to the overall mortality.

Both approaches are prone to a bias called informative censoring

[3]. This is where the assumption of independence between the
censoring process and the occurrence of the event (death) does not
hold. For instance, an older patient is more likely to die from other
causes than the disease under study than a younger patient. Thus,
the older patients are more likely not to experience the death from
cancer of interest simply because of their older age. The censoring
process is therefore dependant on age and becomes informative. To
take into account this bias, Robins [4] and Satten [5] proposed to
weight the observed data by the inverse of the probability of not
dropping out of the risk set, in order to find a cohort which would
have been seen without the withdrawals. Pohar Perme [6] used
this idea to propose an unbiased estimator of net survival within
the relative survival setting.

As long as informative censoring is accounted for appropriately,
both cause-specific and relative survival approaches derive
theoretically unbiased estimators of net survival. However these
estimators are prone to biases related to the data settings within
which each is derived. These biases are independent of the method
of estimation.

In the cause-specific data setting, what defines a cancer-related
death versus a death from another cause is reliant upon the
judgment of the person extracting the information and often prone
to misclassification. Several studies have described this bias as
being non-negligible [7–14]. For this reason the relative survival
method has generally been preferred to estimate net survival with
population-based data [15,16]. However, within the relative
survival data setting non-comparability between the cohort of
patients and the general population [17] life tables used can also
lead to bias. If a factor is differently distributed between patients
and the general population, the resulting expected mortality of the
cohort will be incorrectly estimated [18]. For instance, patients
with lung cancer are more often smokers compared with the
general population. Their expected mortality is therefore under-
estimated as they are more likely to die from other causes than the
general population [19]. In the long term, this under-estimation
may be balanced by the selection process over time of the more
robust patients, who may die less than the general population [20].
This may impact net survival estimates [21]. Similarly, several
factors can be associated with both cancer mortality and other
diseases and lead to non-comparability between observed and
expected mortality.

Our objective was to compare the two data settings, cause-
specific and relative survival, when estimating long-term net
survival. Both are subject to bias as described above; either
misclassification of the cause of death or use of inappropriate life
tables. We first derived theoretically unbiased estimators by using

weights for both approaches, which took into account informative
censoring. We then performed two sensitivity analyses in order to
examine which of the two data settings was more robust against
incorrect assumptions. We used each estimator as a reference for
the other in order to evaluate the impact on the net survival
estimates (Table 1).

We used data from the Geneva Cancer Registry which holds
high quality data on cancer patients collected since 1970.
This enabled us to evaluate the effect of these biases on
long-term net survival. Furthermore, it afforded a privileged
situation for estimating net survival within the cause-specific
setting as information on cause of death had been independently
verified.

2. Material and methods

2.1. Data

The data were provided by the Geneva Cancer Registry.
The Geneva Cancer Registry collects information on incident

cancer cases from various sources, including hospitals, laborato-
ries and private clinics, all requested to report new cancer cases.
Trained registrars systematically extract information from the
medical records and conduct further investigation in the case of
missing key data. The registry regularly assesses survival, taking
as the reference date the date of confirmation of diagnosis or the
date of hospitalization (if it preceded the diagnosis and was
related to the disease). In addition to passive follow-up (standard
examination of death certificates and hospital records), active
follow-up is performed yearly using the files of the Cantonal
Population Office who maintain a register of the resident
population. The cause of death is validated or revised from death
certificates by registrars using all available clinical information.
Autopsy reports, letter at death written by general practitioners
and all patients’ medical notes are used for the assessment of the
revised cause of death. The treatment can therefore be considered
as breast cancer death when information is found about it being
part of the morbid events leading directly to death [22]. We
included all women diagnosed with an invasive primary breast
cancer between 1981 and 1991. These women have all been
followed-up for a minimum of 20 years, and the last date of follow-
up was 31st December 2011.

2.2. Statistical methods

2.2.1. Informative censoring

Informative censoring in a cohort of cancer patients is a
differential selection process which affects the likelihood of the
event of interest being observed. Different strategies have been
derived for each data setting and are able to take into account
informative censoring when estimating net survival (Appendix A).

Table 1
Description of the two data settings available for the estimation of net survival.

Setting Net survival

Cause-specific Relative survival

Biases Theoretical/Methodological Informative censoring

Data Misclassification of the cause of death Non comparability between the cohort

and the general population

Solutions Tackle informative censoring Concept/Idea Weight the net survival estimator with the expected mortality

Application Use the cancer data to estimate the

expected mortality

Use the expected mortality derived

from general population expected mortality

Check the extent of biases

related to the data

Concept/Idea Sensitivity analyses: Modify the data to check the robustness of the net survival estimate

Application Modify the number of specific death Modify the expected mortality rates of

the general population
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The recently proposed Pohar-Perme [6] estimator enables
informative censoring to be accounted for in the relative survival
data setting, using weights calculated from the expected mortality
of each cancer patient according to their individual characteristics.
Expected mortality is derived from life tables for the general
population from which the cancer patients are drawn and were
previously smoothed.

In the cause specific setting, we used a similar strategy to
weight the net survival estimator. We derived the weights using
the cancer patient data and validated cause of death. We
considered that the expected mortality of the cancer patients
would be the same as the mortality rate from other causes of death
than breast cancer amongst the cancer patients. We fitted a
Poisson regression model to the cancer patient data where we
considered death from a cause other than breast cancer as the
event of interest. We adjusted on age at death and year of death.
We used the model to derive expected mortality by age and year.
We then used this set of rates to weight the breast-specific
mortality hazard, in order to derive net survival estimates.

2.2.2. Potential biases related to the cancer data

In the relative survival setting, the potential bias of interest is
related to the comparability between the cancer patients and the
general population. An under-estimation of the expected survival
would lead in an over-estimation of the net survival. On the
contrary, an over-estimation of the expected survival would result
in an under-estimation of net survival (Table 2).

In the cause-specific setting, the potential bias of interest is
related to the accuracy of the classification of the cause of death.
There are two possibilities; the proportion of breast cancer among
the deceased patients is either over- or under-reported. If some
non-specific deaths are misclassified as breast cancer deaths, the
number of deaths from breast cancer is inflated. Net survival is
therefore under-estimated. Similarly, net survival is over-estimat-
ed when some breast cancer deaths are misclassified as non-breast
cancer deaths (Table 2).

2.2.3. Sensitivity analyses

In order to investigate the biases related to each data setting we
performed two sensitivity analyses (Table 3).

We defined the baseline situation as the estimation of net
survival using the revised and/or validated cause of death in the

cause-specific data setting, and the official Geneva life table in the
relative survival data setting. We considered that both of these
methods derive theoretically unbiased estimates of net survival.

We observed that in the baseline situation (Fig. 1) net survival
estimates derived using cause-specific data setting were higher
than the relative survival data setting. We therefore concentrated
our sensitivity analysis on two of the four potential biases to
evaluate how this difference could have arisen ( and Table 2).

In scenario A, we evaluated whether the suitability of the life
table in the relative survival data setting might be responsible for
the difference observed ( Table 2). Mortality rates of the general
population are only available by age, sex and calendar period in the
Geneva canton. Nevertheless, other socio-demographic factors also
influence the probability of death for an individual cancer patient.
If the life table used in the relative survival setting does not
accurately reflect the background risk of death of the cancer
patient cohort, biased estimates of survival may result. This can
happen, for example, because women with breast cancer tend to be
more affluent than the overall population and these affluent
women have a lower expected mortality rate than the population
of women overall.

Deprivation information about cancer patients is available in
three categories in the Geneva Cancer Registry (high, medium and
low socio-economic position) but the expected mortality available
is not detailed by deprivation. We therefore employed the rate
ratios for the first, third and fifth quintiles of deprivation (derived
from the England and Wales mortality rates for deprivation
quintiles [23]) to build deprivation-specific expected mortality for
the three socio-economic groups in the Geneva data. This
generated a conservative situation because the differences
between these quintiles in the English and Welsh data are likely
to be greater than the (unknown) ratios between the three socio-
economic groups in Geneva. This resulted in a substantially
increased risk of death from other causes for the low socio-
economic group and decreased risk for the high socio-economic
group (Fig. 2). These deprivation-specific life tables were then used
to estimate net survival up to 20 years after diagnosis (scenario
A1).

We further evaluated the degree to which expected mortality
needed to increase in order to eliminate the difference we observed
between the two estimators. We applied the life table for lowest
socio-economic group (who have the highest mortality rates) to all

Table 2
Potential biases related to data settings when estimating net survival.

Net surviv al
Data se�ng

Cause-spe cific Rela�ve- survival

Over-es�ma �on ①

Real % of BCD

②
Under-es�ma� on of  the 

expec ted su rvival
0 10 0

% of BCD in the data

0 10 0 Ec < Ep

Under-es�ma �on ③

Real % of BCD

④
Over-es�ma� on of  the 

expec ted su rvival
0 10 0

% of BCD in the data

0 10 0 Ec > Ep

BCD: Breast cancer deaths.

Ep: Expected survival of the general population.

Ec: Expected survival of the cancer patients.

R. Schaffar et al. / Cancer Epidemiology 39 (2015) 465–472 467

104



the women in the data and estimated net survival up to 20 years
after diagnosis (scenario A2).

We computed the difference between the baseline estimator of
net survival using the cause-specific data setting and the relative
survival estimators in scenario A1 and A2. Differences were
smoothed by running a weighted non-parametric regression on
time after diagnosis [24].

In scenario B, we considered misclassification of cause of death
as the potential cause of the difference ( Table 2). Since the
cause-specific data setting produced the higher of the two
estimations, we considered only the situation in which breast
cancer deaths had been misclassified as non-specific deaths. In this
situation net survival calculated using the cause-specific approach
would decrease.

We randomly re-attributed the cause of death variable from
non-breast cancer to breast cancer for 10, 15, 20 and 25 per cent of
the deceased patients (scenarios B1, B2, B3 and B4, respectively).
We iterated this re-attribution 100 times and derived the mean
cause-specific net survival up to 20 years for each scenario. The

confidence interval was derived using the 95% coverage. The
proportion of deaths due to breast cancer among deceased patients
varied from 49.7% in the baseline situation to 62.2% in scenario B4
(Table 4).

We computed the difference between the baseline estimator of
net survival using the relative survival data setting and the cause-
specific estimators for scenarios B1, B2, B3 and B4 respectively.
Differences were smoothed by running a weighted non-parametric
regression on time after diagnosis [24].

3. Results

The final cohort was comprised of 2489 women diagnosed with
an invasive breast cancer between 1981 and 1991 in Geneva,
Switzerland.

Fig. 1 shows the baseline situation where net survival estimator
using the cause-specific setting was higher than the estimation
using relative survival setting for all of the 20 years of follow-up.

Table 3
Description of the sensitivity analyses performed in order to check the extent of biases related to the data settings.

Setting Baseline situation Scenario

A1 A2 B1 B2 B3 B4

Net survival Cause-specific Revised and/or validated

cause of death

Revised and/or validated

cause of death

Percentage of non-specific death

reallocated

10 15 20 25

Relative survival Official Geneva life table Life table stratified by

social class

Life table of the

most deprived

Official Geneva life table

Fig. 1. Net survival estimators in the baseline situation using both cause-specific and relative survival settings.
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The absolute difference between the two estimators increased
with time after diagnosis from 1% at one year to 10.8% at 20 years. It
remained less than 3% during the first ten years of follow-up (2.4%
at 10 years) and started to increase more dramatically from 13
years onwards (Fig. 1).

In scenario A1, where deprivation-specific life tables were
applied, we observed a smaller but still substantial difference
between the estimators (Fig. 3). By contrast, the smoothed
difference between the two different net survival estimators
derived for scenario A2 (use of life tables of the most deprived
population) was close to 0 during most of the first ten years after
diagnosis (Fig. 3).

Scenarios B1–B4 correspond respectively to the re-allocation of
10, 15, 20 and 25% of deaths from non-breast cancer to breast cancer
(Fig. 4). As the proportion of re-allocation increased, the difference
between the cause-specific approach and the baseline estimate
derived within the relative survival data setting decreased, even
turning negative. When 15–20% of the deaths were reallocated, the
difference was close to zero. This suggested that with this level of
reallocation the cause-specific approach and the relative survival
approach used in the baseline situation derived a very similar
estimate of net survival up to 10 years after diagnosis. Looking at
results after 10 years, the two net survival estimators derived similar
estimations when 25% of deaths were reallocated.

4. Discussion

Net survival is the survival that would be observed in a
hypothetical world where the only possible underlying cause of

death is the disease under study. This study is the first to account
for informative censoring in the estimation of net survival in both
cause-specific and relative survival data settings, allowing an
accurate comparison of two unbiased estimators of net survival.
Theoretically, both methods should give the same estimates of net
survival. However, both net survival estimates are prone to biases
related to the data and their specific assumptions. Differences in
the estimates can be attributed to (i) incorrect expected mortality

Fig. 2. Geneva general population mortality rates by age for year 1991. Comparison between the baseline situation and scenarios A.

Table 4
Deaths distribution among female breast cancer patients diagnosed in Geneva

between 1981 and 1991 according to scenarios.

Breast cancer

death

Other cause of

death

Total number of

deaths

Nb %b Nb %b Nb %b

% Of deaths reallocateda

Real situation

0% 844 49.7 856 50.4 1700 100.0

Scenario B1

10% 930 54.7 770 45.3 1700 100.0

Scenario B2

15% 972 57.2 728 42.8 1700 100.0

Scenario B3

20% 1015 59.7 685 40.3 1700 100.0

Scenario B4

25% 1058 62.2 642 37.8 1700 100.0

a Percentage of cases with non-specific cause of death randomly recoded as

breast cancer.
b The numbers (N) and percentages (%) given are an average of the 100 iterations

for scenarios B1, B2, B3 and B4.
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due to inadequate life tables in the relative survival data setting, or
(ii) errors in the cause of death for some patients in the cause-
specific data setting. We have evaluated these two possibilities
using data on breast cancer patients whose cause of death has been
independently validated, and who have been followed for 20 years
after their diagnosis.

In the cause-specific setting, weights, estimated using the
mortality hazard specific to the other causes of death from the
cancer registry data, were applied to tackle informative censoring
and estimate theoretically unbiased net survival. Although these
internal weights were derived from a model, they may have been
unstable due to small numbers of deaths in this fairly small breast
cancer population. We thus also derived the weights using the
expected mortality from the general population life tables
(therefore similar as those used with the relative survival setting).
Both weighting approaches gave very similar results, confirming
the strength of the cause-specific setting estimator. We assumed
that the weighted net survival estimator in the cause-specific
setting was theoretically unbiased and equivalent to the Pohar
Perme approach. However, simulation-based work is needed to
assess its performance.

We observed that the cause-specific approach gave higher
estimates of net survival compared to the relative survival
approach (Fig. 1). Moreover, the absolute difference between the
two estimators increased with time since diagnosis up to 2.5% at 10
years after diagnosis and over 10% at 20 years. This enabled us to
consider only two ( and , Table 2) out of the four potential
biases related to the data setting. Indeed, we did not evaluate

option or . Option considers the situation in which net
survival is over-estimated because of under-estimated expected
survival. This situation is unlikely insofar as cancer survivors are
often prone comorbidities and are therefore no less likely to die
than the general population, even if at longer term, the situation
may be reversed, with the more robust patients being selected
[25,26]. Option describes the situation in which net survival is
under-estimated because deaths not due to breast cancer are
mistakenly classified as breast cancer deaths. It is however more
likely that the true number of breast cancer deaths is under-
estimated because deaths caused indirectly by breast cancer may
be misclassified.

We first estimated net survival in the relative survival setting
using different life tables to evaluate whether non-comparability
between the general population and the cohort of patient under
study compromises the estimation of net survival. In our study, we
stratified the life table on deprivation (scenario A1) and the results
showed that the net survival estimation was not substantially
altered by this. In scenario A2, we noticed that a very large increase
in the mortality rate was required (30% for a 50 year old woman)
before the net survival estimated in the relative survival setting
reached the net survival estimated in the cause-specific setting
during the first 8 years after diagnosis. Such changes seem quite
unreasonable at a population level. Net survival in the relative
survival setting appeared therefore to be robust to inaccuracies in
the underlying mortality rate.

The second sensitivity analysis showed that the level
of misclassification could be relatively small to observe a

Fig. 3. Smoothed differences between the net survival estimators when informative censoring is taken into account: Cause-specific setting in the baseline situation vs.

Relative survival setting in baseline situation, scenario A1 and scenario A2.
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large change in net survival. Indeed, recoding only 10% of the
non-specific deaths led to a large decrease of the net survival
using the cause-specific settings. The estimator of net survival
derived with cause-specific method proved therefore to be
relatively sensitive to the allocation of the cause of death.
Recoding 15–20% of deaths from other causes to breast cancer
resulted in the convergence of the net survival estimates in both
settings. We have previously shown that a review of clinical files
resulted in cause of death being revised for 9 per cent of women
with breast cancer in the Geneva Cancer Registry data [22]. In
the current study, 20% of the non-specific deaths represented
171 cases out of the 1700 deceased patients. As such, survival
estimates are likely to be biased by the misclassification of a
relatively small number of deaths that are indirectly related to
breast cancer (for instance; side effects of treatment or suicide).
The fact that the proportion of reallocation required to reduce
the survival difference to zero increased after 10 years after
diagnosis (from 10% to 15%) lends weight to this argument
insofar that allocating breast cancer as an underlying cause of
death is less probable with increasing time since diagnosis.

Taken together, these results suggest that survival derived with
the cause-specific approach provides a very sensitive estimator,
likely to be an overestimate of true net survival. On the contrary,
survival derived with the relative survival approach is likely to be
closer to the actual net survival of the patient cohort insofar as it is
very robust to changes to the expected rate of death. This is
especially true with increasing time after diagnosis.

Our study has considered only women with breast cancer.
Breast cancer patients are not, however, representative of patients

with cancer at different localisations. The proportions of specific
deaths and age have a large impact in biases related to net survival.
Future work will test the repeatability of our analyses on other
cancer sites by different age groups. Preliminary results on cancers
of colon-rectum, lung and on melanoma suggested results
consistent with those provided by this study.

A dramatic increase in long-term survivors has been
observed over the last few decades as a result of screening
programs, more precise diagnostic tools and developments in
treatment protocols [27]. In the future a particular interest will
be given to long-term net survival estimation, especially among
younger patients.

Our results suggest that, when analysing routinely collected
population-based data, the relative survival setting is likely to
derive more accurate estimates of net survival, and that the cause
specific setting is vulnerable to misclassification bias, particularly
in the long-term. The relative survival setting is therefore highly
recommended when estimating net survival with population-
based data.
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Abstract Net survival is the survival that would be observed if the only possible underlying

cause of death was the disease under study. It can be estimated with either cause-specific or

relative survival data settings, if the informative censoring is properly considered. However,

net survival estimators are prone to specific biases related to the data setting itself. We exam-

ined which data setting was the most robust against violation of key assumptions (erroneous

cause of death and inappropriate life tables).

We identified 4285 women in the Geneva Cancer Registry, diagnosed with breast, colo-

rectal, lung cancer and melanoma between 1981 and 1991 and estimated net survival up to

20 years using cause-specific and relative survival settings. We used weights to tackle informa-

tive censoring in both settings and performed sensitivity analyses to evaluate the impact of

misclassification of cause of death in the cause-specific setting or of using inappropriate life

tables on net survival estimates in the relative survival setting.

For all the four cancers, net survival was highest when using the cause-specific setting and

the absolute difference between the two estimators increased with time since diagnosis. The

sensitivity analysis showed that (i) the use of different life tables did not compromise net
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survival estimation in the relative survival setting, whereas (ii) a small level of misclassifica-

tion for the cause of death led to a large change in the net survival estimate in the cause-

specific setting.

The relative survival setting was more robust to the above assumptions violations and is

therefore recommended for estimation of net survival.

ª 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Net survival measures the survival that would be

observed if the only possible cause of death was the

disease of interest [1]. It is the most defensible method of

estimating survival from cancer. Two main settings have

been described for its estimation: the relative survival

setting and the cause-specific setting. The latter requires

information on underlying cause of death so that deaths

due to causes other than the cancer of interest can be
censored. Such information is not needed in the relative

survival setting. Here, the overall survival of the cancer

patients is compared with the survival they would have

experienced if they had had the mortality of the general

population from which they were drawn [2].

In both settings, net survival estimation is susceptible

to bias due to informative censoring. Informative

censoring occurs when patients are removed from the
risk set (censored) under a non-random way: these pa-

tients would experience a different mortality hazard

compared with those that remain in the risk set [3]. In

the cause-specific setting, when the interest is in esti-

mating the cancer-specific mortality hazard, patients

who died due to other cause are censored (and so

removed from the risk set). It means that patients with

higher risk of dying from causes other than cancer (for
example, elderly compare to young patients) are more

likely to be removed from the risk set. However, because

age is also an important prognostic factor for cancer,

censoring these patients is informative for the cancer-

survival estimation. In the relative survival setting, this

mechanism of informative censoring is less easy to

conceptualise (because the cause of death is unknown

and/or not used); any variable with an effect on both
cancer-specific and other cause mortality hazards in-

duces informative censoring. Demographic variables

which define the life tables may lead to informative

censoring and need to be accounted for. A new esti-

mator has been described by Pohar-Perme which is able

to take account of this bias within the relative survival

setting [4] and its performances have been assessed in an

extensive simulation study [5]. We have recently pro-
posed a similar strategy for the estimation of net sur-

vival in the cause-specific setting [6].

If informative censoring is accounted for, estimates

of net survival derived in each of these settings are

theoretically unbiased. However, biases relating to the

data setting itself may still occur. In the relative survival

setting, bias can originate from the non-comparability
between the cohort and the general population from

which rates of expected mortality are drawn, due to

unmeasured variable(s) affecting both expected and

excess hazard rates (this latter being the rate from which

the net survival is derived). In the cause-specific setting,

bias can arise from the misclassification of the under-

lying cause of death. Our previous analyses of patients

diagnosed with breast cancer in Geneva showed that the
estimation of net survival using the cause-specific setting

was very sensitive to the codification of underlying cause

of death, but, in contrast, the relative survival setting

was robust to non-comparability in the estimation of

background mortality [6].

Breast cancer may, however, represent a special case.

Survival among breast cancer patients is high, but

deaths directly caused by the original cancer still occur
into the second and third decades following diagnosis: a

pattern of excess mortality which is seen for very few

other anatomic sites. As such, our previous conclusion

may not hold for every cancer type. Here, we extend our

analysis of breast cancer patients to patients diagnosed

with cancers of three other anatomic sites (according to

the international classification of disease, 10th version,

ICD-10)to establish whether the same conclusions hold
for other malignancies.

2. Material and methods

The Geneva Cancer Registry records underlying cause

of death for all cancer patients. More unusual, the reg-
istry also validates the accuracy of this variable by

reviewing all clinical information available for each

patient. The overall agreement between the variables

(revised cause of death versus cause of death based on

death certificates) was high. However, several subgroups

presented a lower concordance, suggesting differences in

calendar time and less attention given to older patients

and more advanced diseases [7]. This context thus rep-
resents a unique opportunity to compare relative sur-

vival and cause-specific settings when estimating net

survival, because the registry holds more accurate in-

formation on the underlying cause of death.
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We selected women diagnosed between 1981 and

1991 at ages 15 to 99 with invasive colorectal (C18e20),

lung (C34), melanoma (C44.1) or breast (C50) cancer.

These malignancies afforded us tumours with a wide
range of aggressiveness as well as very different incident

age distributions. All patients were followed up to the

end of 2012.

Our approach has been described previously [6].

Briefly, we used the Pohar-Perme estimator in the rela-

tive survival setting and our own derived estimator for

the cause-specific setting to estimate net survival. Both

estimators take into account informative censoring, that
is the fact that the number of patients we observed to be

at risk is smaller than the number of patients that would

be at risk in the hypothetical world, were people could

die of the cancer of interest only. Because the same is

true for the number of deaths as well weights are used to

correct the net survival estimates for this bias [8,9]. We

define these estimates as the ‘baseline situation’.

We then examined two sets of scenarios to evaluate
the extent of biases arising from the data setting. The

aim of scenarios A1 and A2 was to evaluate the impact

of the life tables on net survival estimation within the

relative survival setting. In Geneva, general population

mortality rates are available by year of age and calendar

year. However, other socio-demographic variables are

known to have a strong influence on the probability of

death. In scenario A1, we consider a simulated stratifi-
cation of the expected age-, sex- and period-specific

mortality rates by deprivation. In scenario A2, we arti-

ficially increase the expected mortality of all the patients,

well above what would ordinarily be expected, by

attributing the mortality of the most deprived patients

to the whole cohort. We computed the difference be-

tween the baseline estimator (using the cause-specific

setting) and the net survival estimates derived under
scenarios A1 and A2. Differences were smoothed with a

weighted non-parametric regression on time since diag-

nosis [10].

Scenario B aimed to evaluate the impact of mis-

classifying the cause of death on net survival estimation

in the cause-specific setting. Here, we randomly reat-

tributed non-cancer deaths to cancer deaths for 10, 15,

20 and 25% of the deceased patients (scenarios B1, B2,
B3 and B4, respectively). This was performed 100 times

to derive a mean cause-specific net survival for each

scenario. We derived the difference between the baseline

estimator (using the relative survival setting) and the

Table 1
Deaths distribution by age groups, years after diagnosis and cancer sites for women diagnosed with an invasive tumour between 1981 and 1991.

Colon rectum (N Z 996, mean age: 72.1) Lung (N Z 500, mean age: 67.6)

Year of follow up 0e1 2e5 6e10 11e15 16e20 All 0e1 2e5 6e10 11e15 16e20 All

N % N % N % N % N % N % N % N % N % N % N % N %

All patients Deceased 345 40 264 30 95 11 78 9 45 5 868 100 320 66 124 26 21 4 5 1 9 2 483 100

Others 53 15 85 32 65 68 70 90 44 98 357 41 25 8 20 16 8 38 3 60 6 67 64 13

Cancer-specific 292 85 179 68 30 32 8 10 1 2 511 59 295 92 104 84 13 62 2 40 3 33 419 87

<50 Deceased 9 31 11 38 5 17 1 3 e e 29 100 29 60 12 25 3 6 0 0 1 2 48 100

Others 3 33 2 18 0 0 1 100 - - 9 31 1 3 2 17 0 0 0 0 2 67 5 10

Cancer-specific 6 67 9 82 5 100 0 0 - - 20 69 28 97 10 83 3 100 1 100 1 33 43 90

50e69 Deceased 81 37 70 32 13 6 19 9 11 5 220 100 117 61 55 29 9 5 3 2 8 4 193 100

Others 10 12 18 26 9 69 18 95 10 91 90 41 2 2 11 20 3 33 2 67 6 75 24 12

Cancer-specific 71 88 52 74 4 31 1 5 1 9 130 59 115 98 44 80 6 67 1 33 2 25 169 88

70þ Deceased 255 41 183 30 77 12 59 10 33 5 619 100 174 72 57 24 9 4 2 1 e e 242 100

Others 40 16 65 36 56 73 52 88 33 100 258 42 22 13 7 12 5 56 1 50 - - 35 15

Cancer-specific 215 84 118 65 21 27 7 12 0 0 361 58 152 87 50 88 4 44 1 50 - - 207 86

Melanoma (N Z 300, mean age: 53.1) Breast (N Z 2489, mean age: 62.1)

Year of follow up 0e1 2e5 6e10 11e15 16e20 All 0e1 2e5 6e10 11e15 16e20 All

N % N % N % N % N % N % N % N % N % N % N % N %

All patients Deceased 10 7 37 27 30 22 20 15 19 14 137 100 181 11 574 34 417 25 228 13 176 10 1700 100

Others 4 40 20 54 18 60 17 85 17 90 97 71 76 42 205 36 189 45 150 66 130 74 856 50

Cancer-specific 6 60 17 46 12 40 3 15 2 11 40 29 105 58 369 64 228 55 78 34 46 26 844 50

<50 Deceased 1 5 8 36 8 36 0 0 1 5 22 100 8 3 78 32 70 29 34 14 32 13 245 100

Others 0 0 1 13 0 0 0 0 1 100 5 23 0 0 12 15 17 24 11 32 12 38 68 28

Cancer-specific 1 100 7 88 8 100 1 100 0 0 17 77 8 100 66 85 53 76 23 68 20 63 177 72

50e69 Deceased 4 8 11 22 6 12 8 16 7 14 49 100 56 9 205 33 133 21 75 12 77 12 624 100

Others 1 25 5 46 4 67 6 75 6 86 35 71 13 23 50 24 31 23 41 55 56 73 260 42

Cancer-specific 3 75 6 55 2 33 2 25 1 14 14 29 43 77 155 76 102 77 34 45 21 27 364 58

70þ Deceased 5 8 18 27 16 24 12 18 11 17 66 100 117 14 291 35 214 26 119 14 67 8 831 100

Others 3 60 14 78 14 88 11 92 11 100 57 86 63 54 143 49 141 66 98 82 62 93 528 64

Cancer-specific 2 40 4 22 2 13 1 8 0 0 9 14 54 46 148 51 73 34 21 18 5 8 303 37

Italic figures detail the number/proportions of deaths by cause.

Bold figures represent the number/proportions of deaths for the entire period of follow-up.
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cause-specific estimates in scenarios B1, B2, B3 and B4.

Differences were smoothed with a weighted non-

parametric regression on time since diagnosis [10].

3. Results

The final cohort was composed of 996 women diagnosed
with colorectal cancer, 500 women diagnosed with lung

cancer, 300 women diagnosed with melanoma and 2489

women diagnosed with breast cancer.

Table 1 describes the age distribution and aggres-

siveness of each disease. Patients diagnosed with colo-

rectal, lung, melanoma and breast cancer presented a

mean age of 72.1, 67.6, 53.1 and 62.1 years, respectively.

For colorectal cancers, 87% of the patients died, 511 of
their cancer (59%). Among women diagnosed with lung

cancer, 97% died. There were 483 deaths, 419 from lung

cancer (87%). Among patients with melanoma, 46%

died, 40 due to melanoma (29%). For breast cancer,

1700 patients died (68%) 844 from their cancer (50%).

Baseline estimators of net survival are presented in

Fig. 1 for each cancer site. We observed, consistent with

our previous analyses, that net survival estimates using
the cause-specific setting are higher than the estimates

using the relative survival setting for every localisation.

The absolute difference between the two estimators

increased with time since diagnosis for all four cancers.

For colorectal cancer, the difference widened from

almost 2% at one year to over 7% at 20 years. For lung

cancer, the difference increased sharply within the first

two years after diagnosis (3% at two years) and

moderately afterwards. There was no detectable differ-
ence during the first three years after diagnosis for

melanoma, but it subsequently increased to more than

8% at 20 years after diagnosis. For breast cancer, the

absolute difference between the two estimators increased

with time since diagnosis from 1% at one year to 11% at

20 years.

Where deprivation-specific life tables were used

(scenario A1), the difference between both net sur-
vival estimators was fairly constant across all four

cancers (Fig. 2). When we used the life tables of the

most deprived population (scenario A2), we still

observed a small but substantial difference for all

cancer sites.

By contrast, increasing the proportion of deaths

classified as being due to cancer led to a decreasing

difference between the cause-specific estimate and the

Net survival using: 
 Cause-specific se ng
 Rela ve survival se ng. 

Fig. 1. Estimation of net survival for the four localisations using both cause-specific and relative survival setting. Geneva Cancer Registry,

1981e1991.

R. Schaffar et al. / European Journal of Cancer 72 (2017) 78e83 81

115



baseline estimate (derived within the relative survival

setting) for all anatomic sites, even turning negative

for colon cancer and melanoma (Scenarios B1eB4).

For colorectal cancer, the effect was dependent on
time since diagnosis: early in follow up the difference

was eliminated only with more than 25% of deaths

reallocated. However, after 5 years, the re-allocation

of 10e15% resulted in no difference in the two esti-

mators. In contrast, for lung cancer, 25% re-

allocation did not eliminate the difference between

the two net survival estimators. From 6 years after

diagnosis, the difference was almost eliminated for
melanoma if 25% of deaths were reallocated. For

breast cancer, the difference decreased as the pro-

portion of re-allocation increased, even turning

negative. When 15e20% of the deaths were reallo-

cated, the difference was close to zero.

4. Discussion

This study has evaluated whether our previous conclu-

sions relating to the nature and size of modifications to

the data in each setting are similar for breast cancer [6]

and other cancers with very different patterns of

incidence and excess mortality. We account for infor-

mative censoring in all analyses, allowing an accurate

comparison of two unbiased net survival estimators.

Our analyses are therefore not comparable with previ-
ous studies comparing cause-specific survival and rela-

tive survival [11,12]. Indeed, the estimators used for

these studies were not estimating net survival as they did

not account for informative censoring [4].

Differences between the two net survival estimators

varied with time since diagnosis and with anatomic site.

However, the cause-specific approach generally resulted

in higher estimates of net survival. The first sensitivity
analysis (scenarios A1 and A2) showed that the use of

different life tables did not compromise net survival

estimation in the relative survival setting. Even with a

very large modification in the expected mortality rate

(by the application of mortality rates for the most

deprived population to all patients), estimates of net

survival were fairly stable. Net survival estimation in the

relative survival setting appeared, therefore, to be rela-
tively robust to non-comparability of the underlying

mortality rates to the patient population, irrespective of

the anatomic site. By contrast, the second sensitivity

analyses showed a greater impact in net survival esti-

mates within the cause-specific setting: a relatively small

Fig. 2. Sensitivity analysis among both cause-specific and relative survival setting. Geneva Cancer Registry, 1981e1991.
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level of misclassification for the underlying cause of

death led to a large change in the net survival estimate.

This was true for all cancer sites.

After longer periods of follow up, the Pohar-Perme

estimator tended to produce erratic results when the

number of deaths was small. Net survival can increase

within the relative survival setting because the observed

mortality of the cancer patient group can be lower than
their expected mortality. With increasing time, the few

remaining patients need to represent more and more of

their counterparts; such patients, especially among

elderly, are more likely to survive better than the general

population, resulting in overall hazard lower than ex-

pected hazard. The excess hazard therefore becomes

negative and the survival function increases. The erratic

curves in the context of net survival derived with the
relative survival setting therefore originates from the

fact that we are asking questions about the hypothetical

world that are not supported by sufficient information

in the real world. We estimated net survival at 20 years

for comparative purpose but being interested in a ‘25-

year net survival of a 90-year old patient’ implies asking

what would happen in 25 years to a patient who is 90 at

the time of diagnosis if they could not die from other
reasons than cancer. Such a question of course makes no

sense. Therefore, the length of analytical follow-up time

should be restricted so that the population survival

probability for all the patients in the cohort is large

enough. Another difficulty in long-term (net) survival is

due to the increasing probability of multiple tumours. In

our study, for patients having several tumours with the

same ICDO-code (same or paired organ), we considered
only the first tumour for the estimation of net survival.

Even with those limits aforementioned, the relative

survival setting should be the preferred approach when

estimating net survival with population-based data,

regardless of the cancer site, because it is less sensitive to

inappropriate data changes in comparison to the cause-

specific setting. Parametric approaches using flexible

regression models for the excess mortality hazard
[13,14], could be considered in the case of long follow up

time and few cancer deaths, where the Pohar-Perme

estimator produces more erratic results.
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[ C h a p t e r  T h r e e ]  
                                                 Examining the determinants of  

                                                        long-term excess mortality 
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In the first chapter, I showed that the reviewed cause of death was preferred 

for net survival estimation within the cause-specific setting as it uses all available 

clinical information and was shown to provide more accurate estimates of 

cause-specific survival. 

However, in the second chapter, the subsequent comparison of the two data 

settings available for net survival estimation shed the light on the superiority of 

the relative survival setting over the cause-specific setting, even in the presence 

of reviewed cause of death. The analyses highlighted that the estimation of net 

survival, which takes into account informative censoring, in the cause-specific 

setting was sensitive to relatively small changes in the cause of death 

allocation, whereas the relative survival setting is more robust to non-

comparable life tables. The relative survival setting is thus recommended insofar 

as it is much more robust to violations of the assumptions.  

This chapter completes the third aim of the thesis, which is the investigation of 

the long-term effects of key prognostic factors and treatment for women with 

breast cancer, using the relative survival setting, which has been shown to be 

the superior approach. 

In order to achieve this aim, I define the following objectives: 

o to model long-term excess mortality including clinical variables to 

evaluate the long-term effect of prognostic factors and 

o to assess non-linear and time-varying effects of these factors using 

the most appropriate methods. 

This chapter comprises a paper that was submitted to the Journal of Clinical 

Epidemiology in October 2017, alongside text which describes the background 
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to the objectives, summarises the approach and findings as well as additional 

analyses, and which specifies how these publications fulfil the aim and 

objectives.  
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Background 

Up to this point, univariable methodology has been used to derive accurate 

estimations of long-term net survival because the purpose has not been the 

evaluation of the effects of covariables. To do this with univariable methods, 

stratification of the data would be required. However, as I now wish to consider 

several covariables concurrently it is unrealistic to sub-divide the data. The 

alternative strategy is to use multivariable models, which enable the study of 

the association between cancer patients’ excess mortality and an exposure 

while simultaneously taking into account confounding variables. 

Excess hazard models 

As previously seen in the Background section, the mortality hazard, for which all 

deaths are considered as events, can be written as 

𝜆𝑜(𝑡) = 𝜆𝑒(𝑡) + 𝜆𝑒𝑥𝑐𝑒𝑠𝑠(𝑡) 

where, 𝜆0(𝑡) represents the overall instantaneous mortality hazard rate, which is 

equal to the sum of the expected instantaneous mortality hazard 𝜆𝑒(𝑡) and the 

excess instantaneous mortality hazard 𝜆𝑒𝑥𝑐𝑒𝑠𝑠(𝑡).  

𝜆𝑒𝑥𝑐𝑒𝑠𝑠(𝑡) is the instantaneous mortality related only to the cancer of interest. 

When the excess mortality is null, cancer patients experience the same 

mortality as non-cancer patients who have, in all other ways, the same 

characteristics. 𝜆𝑜(𝑡) and 𝜆𝑒(𝑡) are considered as known. They are respectively 

provided by the mortality observed among the cancer patients and by the 

overall mortality in the population derived from general population life tables. 

Therefore, in the multivariable framework, it is only the excess mortality hazard 

rate 𝜆𝑒𝑥𝑐𝑒𝑠𝑠 that is modelled. We note: 
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𝜆𝑜(𝑡, 𝑋) =  𝜆𝑒(𝑎𝑔𝑒 +  𝑡, 𝑍) + 𝜆𝑒𝑥𝑐𝑒𝑠𝑠(𝑡, 𝑋, 𝛽) 

where 𝑎𝑔𝑒 corresponds to age at diagnosis, 𝑡 is follow-up time, and 𝒁 represents 

the variables included in the population life table. 𝜷 is the vector of parameters 

of the model and 𝑿 express the vector of covariables. It should be noted that 𝑿 

includes the covariables 𝒁 as well as 𝑎𝑔𝑒, eventually with additional prognosis 

factors. 

The models which use this additive relationship between mortality rates are 

considered as “excess hazard models” 96.  

Some authors have used a multiplicative relationship between the mortality 

rates 62,97,98: 

𝜆𝑜(𝑡) =  𝜆𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒(𝑡) × 𝜆𝑒(𝑡) 

Such multiplicative models impose fewer mathematical constraints in 

comparison to additive models 100. However, an additive relationship is 

considered to be more likely in the context of cancer prognosis among a 

patient population97,101,102.  

Numerous excess hazard models have been developed 97,103. These have been 

used across many epidemiological studies and are based on several key 

assumptions. First, the baseline mortality hazard rate, which is the mortality 

hazard rate that we would observe when all the variables included in the 

model are set to their reference value, is assumed to be constant within the 

specified time intervals. Second, the ratio between the mortality hazard rates of 

two subgroups of patients is assumed to remain constant over follow-up time. 

Finally, these models assume that continuous variables have a log-linear effect 

on the mortality hazard rate.  
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Flexible excess hazard models 

The underlying assumptions of these standard excess hazard models are 

however restrictive, especially in the context of long-term survival. To relax 

these, flexible models have recently been proposed for overall survival 104,105 as 

well as for net survival 106–109. Their development has been aided by increasing 

computational power and their purpose is to account for non-linear (NL) and/or 

time-dependent (TD) effects of covariables using flexible functions such as 

splines. 

Splines 

A spline is a mathematical function defined as a combination of different 

polynomials which are joint at pre-specified point called knots. A spline 𝑆 takes 

its value in the interval [𝑎; 𝑏] divided in subintervals [𝑡𝑖−1; 𝑡𝑖] with 𝑎 =  𝑡0 < 𝑡1 <

⋯ < 𝑡𝑘−1 < 𝑡𝑘 = 𝑏. A polynomial 𝑃𝑖 is defined for each interval[𝑡𝑖−1; 𝑡𝑖]. We have 

𝑆(𝑡) = 𝑃1(𝑡), 𝑡0 ≤ 𝑡 < 𝑡1, 

𝑆(𝑡) = 𝑃2(𝑡), 𝑡1 ≤ 𝑡 < 𝑡2, 

… 

𝑆(𝑡) = 𝑃𝑘(𝑡), 𝑡𝑘−1 ≤ 𝑡 < 𝑡𝑘, 

and where 𝑃𝑗(𝑡j) = 𝑃𝑗+1(𝑡j+1), j = 2, … , k − 2 

The given 𝑘 + 1 points 𝑡𝑖 are defined as knots. The degree of the polynomials as 

well as the number of knots depend on the complexity of the phenomenon to 

be modelled. An increasing polynomial’s degree or number of knots allows 

increased flexibility but can also lead to over-adjustment of the data. The 

position of the knots can be user-defined a priori (using background clinical 
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knowledge of the phenomenon), or based on the distribution of events in the 

observed data.  

Complex effects 

Non-linear effects 

A continuous covariable has a linear effect on the mortality hazard rate when 

the ratio between the mortality rate measured for a covariable 𝑋 and the 

mortality rate measured for 𝑋 + 1 is independent of 𝑋. For example, consider 

the effect of age on the excess mortality rate. If age at diagnosis has a linear 

effect, the effect of each increasing year of age is constant across the whole 

range of ages in the database. That is, the difference in the excess mortality of 

a 51-year-old compared to a 50-year-old is the same as a 61 compared to a 

60-year-old. This hypothesis of linearity is commonly applied but rarely true in 

practice.  

For a specific covariable X, flexible models can relax this hypothesis and are 

described as follows: 

𝜆𝑒𝑥𝑐𝑒𝑠𝑠(𝑡, 𝑋) = 𝑓(𝑡) + 𝑔(𝑋) 

The non-linear effect of age is considered with the function 𝑔(𝑋). 𝑔 is a flexible 

function often described with splines and enables the effect of the variable to 

be non-linear. 

Time-dependent effects 

The effect of a covariable on the mortality hazard rate is time dependent (non-

proportional) when the ratio between the mortality rate measured for 𝑎 and the 

mortality rate measured for 𝑎 + 1 is independent from time since diagnosis. In 

other words, if we are interested in the risk ratio of two subgroups, the risk ratio is 

124



 

assumed the same at both one and five years after diagnosis; it is considered to 

be constant through time. Let’s imagine an excess hazard model fitting a 

hazard ratio of 1.84 (Figure 10). 
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Figure 10: Example of a time-dependent excess hazard ratio in contrast to the assumption of 

proportional (non-time dependent) effect 

 

Because of the non-time dependent (proportional) assumption the hazard ratio 

remains constant over time. However, the green line shows that the real hazard 

ratio varies over time. Similarly, to that of linearity, flexible models can relax this 

assumption and take into account this time-dependence. 

In a time-dependent model we have, for a specific covariable X: 

𝜆𝑒𝑥𝑐𝑒𝑠𝑠(𝑡, 𝑋) = 𝑓(𝑡) + ℎ(𝑡) × 𝑋 
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The time-dependent effect is taken into account by the interaction term ℎ(𝑡) ×

𝑋 where ℎ represents a spline function of time and enables the effect of 𝑋 to 

vary with time since diagnosis. 

A single variable 𝑋 can have both a non-linear and a time dependent effect 

on the mortality hazard rate. We therefore define: 

𝜆𝑒𝑥𝑐𝑒𝑠𝑠(𝑡, 𝑋) = 𝑓(𝑡) + 𝑔(𝑋) + ℎ(𝑡) × 𝑋 

 

Model selection 

When performing multivariate analyses, a key consideration is which variables 

should be included in the model. In the realm of complex effects, we are also 

interested in testing the presence or absence of significant non-linear or time-

dependent effects for each variable. The more covariables we consider, the 

more models have to be compared.  

As described above, several options are available regarding the association 

between a covariable and excess hazard. We distinguish: 

- No effect 

or 

linear (L) or non-linear (NL) effect.   

and/or 

- Proportional (P) or time dependent (TD) effect 

Each effect needs to be tested independently in order to assess its fit to the 

observed data. It has been demonstrated that if the shape of an effect is 

wrongly evaluated it can lead to biased statistical model estimations 110. In that 

sense, for a specific covariable, neglecting a non-linear effect could mistakenly 
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lead to a time-dependent effect being found to be significant for the same 

variable (and vice versa) 104. Because of this, specific methods need to be used 

to decide which variables and which effects are included in the model. 

Wynant and Abrahamowicz have proposed a model building strategy for this 

scenario. It has been proved to be efficient and successful in detecting the 

correct complex effects as well as eliminating spurious ones 111. This iterative 

backward elimination procedure involves testing simultaneously, for each 

variable, non-linear and time-dependent effects using a “decision tree”. This 

strategy starts from the fitted full model, and successively eliminates spurious 

non-linear and time-dependent effects. 

For example, in the case of a continuous variable X and a categorical variable 

Y (Figure 11). The full complex model (Model Ca) includes all possible complex 

effects of both covariables (non-linear and time-dependent). The first arm tests 

whether, for covariable X, the model supports the inclusion of the NL effect, 

assuming TD effect for all covariables (Figure 11, test 1). The second arm tests 

whether we could eliminate the TD effects of both X and Y in turn, assuming NL 

for covariables X (Figure 11, tests 2 and 3). Each of these tests leads to a p-value 

generated thought the likelihood ratio test (comparison of models 1, 2 and 3 

with model Ca). The effect leading to the highest p-value among the 3 tests, if 

that p-value is higher than 0.05, is discarded. A new full model (Model Cb) is 

then considered in place of model Ca and tested in turn. This is repeated for 

models Cc, Cd, …, etc. until all effects remain statistically significant. At this 

point, the model is considered as final (Model F).  
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Figure 11: Modelling strategy for selection of covariable X effects. Proposed by Abrahamowicz et 

al (Wynant and Abrahamowicz, 2014). 
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Bootstrap analysis 

The issue of model stability has been discussed for a very long time in the 

literature 112,113. Nevertheless, many studies do not perform a formal evaluation 

of how well the selected model represents the observed data.  

One method of evaluating the stability of the modelling strategy is a bootstrap 

sensitivity analysis 114. The analyses are repeated on samples of the same size, 

drawn with replacement from the initial data, a large number (B) of times. 

When the repetition of the modelling strategy leads systematically to the same 

results, the selected model can be considered to be robust.  

Once these steps (drawing and model selection procedure) have been 

repeated B times the bootstrap inclusion (relative) frequency or BIF can be 

calculated. This is a measure of the number of times a specific variable/effect is 

selected in the model selection process over the total of bootstrap sample B. 

Sauerbrei and Schumacher 115 studied the effect of the number of bootstrap 

replications by varying B between 50 and 1000. They concluded that even B = 

100 can give reasonable results, although in practice they suggested working 

with several hundred draws. 
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Paper 3 

Modelling long-term excess mortality 

Description 

Paper 3 presents research which aims to evaluate the association between 

prognostic factors, treatment and long-term excess mortality for women 

diagnosed with breast cancer. My modelling strategy considered complex 

effects: non-linearity and time-dependence, in order to relax underlying 

assumptions about the pattern of excess mortality, which may be clinically 

unfounded. I tested the robustness of my results by using bootstrap analyses. All 

of this was performed using information derived from the Geneva Cancer 

Registry where detailed population-based data are available. Prognostic 

factors related to the patients, to the tumours themselves as well as information 

about treatments given to the women were used in the analyses. 

Main results 

The final model that I derived suffered from a lack of robustness insofar as 

covariables and complex effects were very sensitive to the bootstrap analysis. 

For 60 out of 300 bootstrap samples, the model did not reach convergence. 

The variables size of tumour, hormone receptors status, age at diagnosis, grade 

and nodal involvement were more often selected in the sensitivity analysis. 

However, not all of them were selected in the derived model. Conversely some 

co-variables/effects that were selected in the derived models were found as 

being not significant in the sensitivity analyses. 

We observed a time-dependent association for age: excess mortality increased 

with age during the first 10 years of follow-up but reversed after this point. 

Excess mortality increased linearly with tumour size and that this association was 
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constant over time since diagnosis. Nodal involvement was associated with 

higher excess mortality. There was evidence of a TD association for hormone 

receptor status, with negative receptors being associated with an increased risk 

of dying from breast cancer only during the first 5 years of follow-up. This was 

similar for grade: women with well differentiated tumours displayed a lower risk 

of dying from breast cancer, an association which also tended towards the null 

at the end of follow-up. Radiotherapy was associated with a decreasing risk of 

dying during the first 10 years after diagnosis. 

Additionally, unexpected results were observed for some covariables. Patients 

treated with chemotherapy and/or hormonal strategies were associated with 

an increased risk of dying from breast cancer, likely to be due to indication 

bias, despite an adjustment for patients and tumours characteristics.  

Our results highlighted the importance of taking into account complex effects 

such as non-linearity and/or time dependence. This was illustrated by the 

substantial differences between simple model, which assumed linear and non-

time dependent effects, and the flexible model I developed. I found some 

persistent effects for some specific covariables, which have important clinical 

implications. In particular, time-dependent effects of age and hormone 

receptors status were observed. 

Conclusion 

I concluded that an accurate evaluation of the determinants of excess 

mortality was not possible without further considerations. I observed a gap 

between the modelling strategy that was theoretically well designed and up-

to-date and its application on population-based data. Further analyses should 

be based on a larger population and use more detailed data (on patients and 
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tumours characteristics) with long-term follow-up to tackle model instabilities. 

Furthermore, additional statistical tools from the causal inference framework 

should be used to address the inherent biases related to observational studies. 
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Fulfilment of Aims and Objectives 

The aim of this chapter was the evaluation of the long-term effect of prognostic 

factors and treatment on excess mortality due to breast cancer. Although I 

applied an appropriate methodology to detailed data, I encountered several 

issues during the analyses, which limited the generalizability of the results 

outside of this cohort. Despite these limitations, some interesting patterns were 

observed. In particular, I showed that it was important to consider complex 

effects, such as time-dependent and non-linear effects when examining long-

term excess mortality due to breast cancer. 

Lack of robustness  

The first issue I encountered is related to the lack of reproducibility of the 

derived model, which may therefore not be accurate. There are two main 

reasons this could have arisen. 

Insufficient statistical power 

Breast cancer has a relatively good prognosis. The number of deaths, which is 

the event of interest in my study, is therefore not as large amongst breast 

cancer patients as among other malignancies. In addition, the Geneva 

population is relatively small, therefore a relatively small number of deaths 

included in my cohort. Finally, evaluating the complex effects of prognostics 

factors and treatment on long-term net survival meant that a relatively high 

number of parameters were considered. Together, this resulted in a low 

statistical power. Potential strategies to overcome this are considered in the 

Discussion of Paper 3 and in the Discussion and Perspectives chapter below. 
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Alternative methodology 

It is possible that inappropriate methodology could also have been the 

underlying reason for the model instabilities. To test whether this was the case, I 

considered an alternative statistical tool available for the estimation of flexible 

excess hazard models. This is defined as “stpm2” and is an alternative model to 

“mexhaz”, which was applied in Paper 3. 

“stpm2” 

The command stpm2 is available in Stata 115. The model was proposed by 

Royston and Parmar 104 was extended by Lambert and Royston 116. It is based 

on an extension of the Weibull distribution through splines and the regression 

model is defined on the log cumulative hazard scale. According to the authors 

the advantage of modelling on this scale is that the cumulative hazard, being a 

function of log time, is stable and easy to transform from survival to hazard and 

vice versa. Complex effects are modelled using restricted cubic splines 117. The 

latter use three-degree polynomials, which are forced to be linear beyond the 

two external knots. 

Comparison with “mexhaz” 

All analyses were performed using the same covariables as those used in my 

research paper (paper 3), namely age at diagnosis, size of the tumour (mm), 

nodal involvement (No vs. Yes as reference category), grade of the tumour 

(Well vs. Moderately/Not differentiated as reference category), hormone 

receptor status (oestrogen and progesterone, negative vs. positive as reference 

category), radiotherapy (Yes vs. No as reference category), chemotherapy 

(Yes vs. No as reference category) and hormonal treatment (Yes vs. No as 

reference category).  
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I exactly replicated the analysis based on mexhaz reported in Paper 3 using 

stpm2. Both methods derived almost identical coefficients for all covariables in 

the simple model, which did not include complex effects (Table 2). 

 
stpm2 mexhaz 

  Coefficient SD Coefficient SD 

Age 0.115 0.104 0.114 0.102 

Size of the tumour 0.605 0.199 0.664 0.196 

Nodes involvment -0.333 0.191 -0.370 0.185 

Grade of the tumour -0.830 0.311 -0.727 0.288 

Hormone receptors 0.455 0.303 0.437 0.297 

Radiothereapy -0.601 0.229 -0.585 0.225 

Chemotherapy 0.522 0.247 0.472 0.235 

Hormonal treatment 0.285 0.273 0.319 0.267 
Table 2: Comparison of the covariables coefficients of the simple model according to the 

technique used. 

 

However, attempts to fit the most complex model C, which included all 

complex effects, were not comparable. The most complex model derived using 

stmp2 did not reach convergence. This prevented any comparison between 

these two techniques. Had stpm2 reached convergence, further issues should 

have needed to be considered. Indeed, it is known that regression models 

defined on the log cumulative hazard scale are problematic in the context of 

multiple time-dependent effects. In particular, these models are difficult to 

present graphically 112,118. Because my interest was to display long-term 

association between prognosis factor and the excess mortality hazard in order 

to bring new insight for long-term survival, it is preferable to use regression 

models defined on the log-hazard scale, as is done in the mexhaz R-package 

and as presented in Paper 3.  

135



 

Model misspecification 

Besides the issue of model instability, I also observed model misspecification. My 

study was designed to approach, as far as possible, a randomised control trial 

by selecting a homogeneous cohort and accounting for several prognostic 

factors.  Additionally, complex effects were considered using a complete 

modelling strategy in order to relax assumptions that are clinically unlikely. 

Despite all this, I observed unexpected associations between systemic 

treatments and excess mortality due to breast cancer. 

These observations were almost certainly a result of confounding by indication, 

whereby difference in excess mortality by treatment may originate from 

differences in the underlying reasons that these treatments were given, or not, 

such as presence of comorbidities. 

To evaluate this, I performed a stratified analysis restricting the cohort to 

patients with very similar individual and tumours characteristics. I evaluated 

long-term net survival by chemotherapy and hormonal treatment. No clear 

results in favour of the use of chemotherapy nor hormonal treatment were 

observed (Figure 12, Figure 13). This confirmed that more detailed data are 

needed to disentangle the effects of treatment. Instrumental variables could 

have been used but, are not easy to implement in the context of Geneva. 

There is only one public and university hospital, others are private clinics. Using 

this as an instrumental variable would have raised additional issues related to 

socio-economic disparities. 

Alternative strategies for dealing with this bias are considered in detail in the 

Discussion of Paper 3 and in the Discussion and Perspectives chapter below. 
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Figure 12: Net survival by chemotherapy for patients diagnosed with breast cancer in Geneva 

between 1995 and 2002. Patients aged 50-69 with well-differentiated tumours measuring <30mm 

and with nodal involvement, who also had a least one positive hormonal receptor. 

 

Figure 13: Net survival by hormonal treatment for patients diagnosed with breast cancer in 

Geneva between 1995 and 2002. Patients aged 50-69 with well differentiated tumours measuring 

<30mm and with nodal involvement, who also had a least one positive hormonal receptor 
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INTRODUCTION

Breast cancer is a major disease worldwide. Its prognosis has, however, improved rapidly during 

the last four decades [1]–[3]. Accordingly, there are increasing numbers of women who have 

survived breast cancer. Despite this, there is evidence for a lack of population ‘cure’, that is, the 

probability of dying as a consequence of the disease persists for many years after diagnosis [4], 

[5] even for women who are screen-detected [6]. 

The estimation of net survival has allowed these trends to be observed [7]–[9]. Unlike all other 

metrics, net survival evaluates the mortality arising only from the disease of interest, 

disregarding the influence of other causes of death [10]. In the context of long-term survival this 

is fundamental because the likelihood of death from other causes increases with follow-up time. 

The use of net survival allows accurate comparisons of patient’s subgroups across space and 

time, between which mortality from other causes may vary considerably [9], [11]. 

Although there is a great interest, both clinically and epidemiologically, in the determinants of 

long-term survival for breast cancer patients, follow-up beyond 5 or 10 years has not been 

widely considered. Indeed, one of the key assumptions of many of the survival models that have 

been used is the proportionality of the hazard, i.e. that the association between a single 

covariable and the probability of death is constant through follow-up time. However, it is more 

probable that the influence of a covariable one year after diagnosis might be different later on. 

Several studies have demonstrated such time-varying associations of covariables for breast 

cancer but very few have been able to consider very long-term follow-up [12], [13]. The small 

proportion of these studies which have included long-term observations have demonstrated that 

the associations of some covariables do vary with time since diagnosis in the long term [14]. In 

particular, the influence of treatment represents an interesting line of investigation since it is 

likely that certain treatments lead to severe long-term side effects [12], [15]. 
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The Geneva Cancer Registry offers an ideal context to study the evaluation of determinants of 

long-term net survival. The cancer registry, initiated in 1970, allows very long-term follow-up of 

cancer patients. The availability of detailed information for each woman’s tumour enables 

multivariable survival analysis. 

In this research, we aim to evaluate long-term effects between prognostic factors and the excess 

mortality hazard for breast cancer patients diagnosed in Geneva, focusing especially on 

treatment variables. To reach this aim, we focus on early-stage tumours which were surgically 

resected. We use flexible excess hazard regression models in order to take into account potential 

time-varying and non-linear associations. We apply a systematic model selection process and 

check the stability of our model by conducting a sensitivity analysis using bootstrap sampling.
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MATERIAL AND METHODS

PATIENT COHORT

The Geneva Cancer Registry collects information on incident cancer cases from various sources, 

including hospitals, laboratories and private clinics, all of whom report newly diagnosed cancer 

cases. Trained registrars systematically extract information from the medical records and 

conduct further investigations in the case of missing data. The registry regularly estimates 

cancer patient survival, taking as the reference the date the diagnosis was confirmed or, if it 

preceded the diagnosis and was related to the disease, the date of hospitalisation. In addition to 

standard examination of death certificates and hospital records, follow-up of the patient’s vital 

status is assessed annually by matching the Registry’s database with information held by the 

Cantonal Population Office who maintain a live register of the resident population.

We included all women diagnosed with an invasive primary breast cancer in the Geneva Canton 

between 1995 and 2002. We restricted the sample to patients diagnosed with pathological TNM 

stage I and II disease who were treated with surgery (N=2,029). Among those patients, we 

excluded patients older than 75 years (N= 232). Information on stage was missing among only 

60 (2.57%) patients with surgery. All women were followed-up to 31st December 2013 

(minimum of 11 years of follow-up).

PROGNOSTIC FACTORS AND TREATMENT

We focused on established prognostic factors and on treatment. Age at diagnosis (years) was 

included a priori as an irrefutable prognostic factor [16]. We considered tumour size (mm), 

degree of differentiation (Well vs. Moderately/Not differentiated), nodal involvement (No vs. 

Yes) and hormone receptor status (Negative vs. Positive) which together reflect the severity of 

the disease. We included radiotherapy, chemotherapy and hormonal treatment following 

surgery (each Yes vs. No) in order to examine the long-term associations of these systemic 

treatments with survival.
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STATISTICAL MODELLING OF THE EXCESS MORTALITY HAZARD 

We estimated the excess mortality hazard due to cancer for the patient group. The excess hazard 

corresponds to the mortality hazard related only to the disease of interest (in our case, breast 

cancer) and is defined as the difference between the mortality observed amongst a cohort of 

patients and their expected (background) mortality [Andersen and Vaeth 1989, Esteve 1990]. 

The association between covariables and excess mortality can vary with time since diagnosis, 

particularly when considering long-term follow up. For example, a particular treatment might 

have a strong influence on excess mortality 1 year after diagnosis but a weaker influence 10 

years after diagnosis (time-dependent, TD, association). Furthermore, continuous variables can 

display non-linear (NL) associations (for example, excess mortality might increase exponentially 

with age). In order to consider these complex associations, we used the flexible excess hazard 

model proposed by Charvat et al. [17], which follows the work of Remontet et al [18]. This 

excess hazard model is implemented in the “mexhaz” package written for R software [17], [19].

MODEL BUILDING STRATEGY

We used the model building strategy suggested by Wynant and Abrahamowicz [20]. This 

iterative backward elimination procedure involves testing, for each variable, the presence of 

significant TD and, for continuous variables only, NL associations as well as the overall 

significance of the variable itself. An initial model including all variables, as well as all possible 

TD and NL associations, is fitted. Potentially spurious NL and TD associations are then 

eliminated one by one. Our initial model thus included:

- age at diagnosis (continuous, NL and TD associations included),

- tumour size (continuous, log-transformed, NL and TD associations included),

- nodal involvement (binary, TD association included, “Yes” as reference category), 

- grade of the tumour (binary, TD association included, “Moderately/Not differentiated” as 

reference category), 
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- hormone receptor status (binary, TD association included, “Positive” as reference 

category), 

- radiotherapy (binary, TD association included, “No” as reference category), 

- chemotherapy (binary, TD association included, “No” as reference category) and

- hormonal treatment (binary, TD association included, “No” as reference category). 

The model building strategy resulted in a single derived model which included only those 

variables found to be significant, along with any significant TD and/or NL associations for these 

variables. 

SENSITIVITY ANALYSES

We conducted a sensitivity analysis to examine the stability of the derived model using a 

bootstrap technique [21]. This involved re-applying the model selection procedure to 300 

random samples, drawn, with replacement, from the cohort of cancer patients. This procedure 

allows the evaluation of the strength of association between a particular covariable and the 

excess mortality hazard by the calculation of the bootstrap inclusion frequency (BIF). The BIF is 

the proportion of times a specific variable was included by the model selection process over the 

total number of samples. We further considered only models where the association was 

plausible (outliers where estimated values of the Excess Hazard Ratio (HER) were greater than 

100 or less than 0.01 were excluded). We then plotted all the estimated functional forms of each 

covariable (N ≤ 300), along with the averaged functional form calculated on all the retained 

samples. 
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RESULTS

PATIENT COHORT 

The study included 1,797 women diagnosed with first primary invasive breast cancer between 

1995 and 2002 which was classified as stage I or II at diagnosis and treated surgically (Table 1). 

Data were missing for at least one co-variable for 12.4% of women. The highest proportion of 

missing data was for the size of the tumour (N=72, 4.0%). Only women with complete data for all 

variables were considered for the modelling analyses (N=1,574, 87.6%) [22]. Of these, 351 died 

(22.3%) and 236 were censored (14.9%) before the end of follow-up. The median follow-up 

time was 12.8 years.

STABILITY OF THE DERIVED MODEL

The sensitivity analysis, performed to evaluate the performance of the model building strategy, 

suggested that the model derived for the patient cohort was not very robust. For 60 out of 300 

bootstrap samples, the model did not reach convergence. The variables size of tumour, hormone 

receptors status, age at diagnosis, grade and nodal involvement displayed the highest BIFs in the 

sensitivity analysis (Table 3, more than 90%). However, not all of them were selected in the 

derived model; here neither nodal involvement nor hormone receptor status showed evidence 

of an association with the excess mortality hazard. The covariables describing treatment were 

less frequently selected in the sensitivity analysis, with a BIFs of 75.4%, 59.6% and 45.0% for 

chemotherapy, radiotherapy and hormonal treatment respectively, whilst in the derived model, 

chemotherapy and a TD association for hormonal treatment were retained. Although TD 

associations were frequently observed in the sensitivity analysis for the covariables hormone 

receptors status and age (BIF 95.4% and 87.1% respectively), only the TD association for age 

was found to be significant in the derived model. NL associations for age and size of the tumour 

were not retained in the derived model, which was consistent with the low BIFs observed in the 

sensitivity analysis (18.8% and 34.2% respectively). 
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VARIABLE ASSOCIATIONS WITHIN THE SENSITIVITY ANALYSIS

Figures 1, 2 and 3 display the associations between each of the covariables and excess mortality 

derived from the sensitivity analysis, without outliers. The mean association across all samples 

(black solid line) is also displayed. These show that within the sensitivity analysis we observed a 

TD association for age: excess mortality increased with age during the first 10 years of follow-up 

(Figure 1, a-b) but reversed after this point (Figure 1, c). Figure 2 shows that excess mortality 

increased linearly with tumour size and that this association was constant over time since 

diagnosis. Nodal involvement was associated with higher excess mortality. There was evidence 

of a TD association for hormone receptor status, with negative receptors being associated with 

an increased risk of dying from breast cancer only during the first 5 years of follow-up. This was 

similar for grade: women with well differentiated tumours displayed a lower risk of dying from 

breast cancer, an association which also tended towards the null at the end of follow-up. 

Radiotherapy was associated with a decreasing risk of dying during the first 10 years after 

diagnosis, whereas receipt of chemotherapy and hormonal treatment were associated with an 

increasing risk during the entire follow-up period. 

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472

146



DISCUSSION

The determinants of long-term survival are currently of particular interest because of the 

dramatic increase in the number of patients surviving breast cancer matched to the observation 

that these women are never ‘cured’. Understanding the impact of prognostic factors and of 

treatment with time since diagnosis is therefore increasingly important. In this context, 

population-based data are crucial to understand the influence of treatment and outcomes for all 

cancer patients. 

Our approach

In order to estimate the long-term effects of prognostic factors and treatment on the risk of 

dying from breast cancer, we used data from the population-based Geneva Cancer Registry. 

Randomised clinical trials are the gold standard for evaluating the effect of a treatment. 

However, RCTs only include highly selected groups of patients who do not represent the general 

population of cancer patients. Moreover, the assessment of the benefit is mostly done at a 

relatively short term [23]. In order to estimate these long-term effects using observational data, 

we restricted our cohort to a relatively homogeneous group of younger patients (less than 75) 

with localised disease (stage I and II) and who had received surgery. We adjusted for several 

covariables indicating the severity of the disease, as well as taking in account differences in 

individual characteristics. Furthermore, we considered flexible excess hazard models to 

estimate the mortality related to the disease after controlling for other causes. We considered 

non-linear and time-dependent associations to relax the assumptions that the association of 

continuous variables is linear and that the EHRs of all variables are constant throughout time 

since diagnosis. Both of these assumptions are clinically unlikely in the context of long-term 

survival. We used a recommended strategy [20] for selection of covariables and their complex 

associations, and performed a sensitivity analysis to evaluate the reproducibility of the model 

[21].
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Despite using, on a fairly homogeneous group of patients, this optimised and up-to-date 

modelling strategy, a clear process for variable and complex association selection and a 

sensitivity analysis, our results demonstrated a lack of stability and model misspecification, 

associated with unrealistic effects of some treatments.

Modelling issues

First, our sensitivity analysis demonstrated that the set of covariables included (eventually with 

NL and/or TD functional forms) to model the excess mortality hazard was unstable. Because of 

this demonstrated instability, results obtained from a single model should be interpreted with 

caution. This is best illustrated by the fact that a significant proportion of models (20%) did not 

reach convergence during the sensitivity analysis, as well as the fact that several variables 

selected for the single derived model were rarely retained in the sensitivity analysis (low BIF). 

Meanwhile others not retained in the derived model were often selected by the sensitivity 

analysis (high BIF). 

There are a number of possible reasons for this lack of robustness. The first is related to the 

context in which the study was conducted. Since breast cancer patients present with high 

survival, the number of events is relatively low in breast cancer data, even given long-term 

follow-up. This is especially true for Geneva, which has a fairly small population (495,000 

inhabitants), and in the studied population restricted to early stage cancer patient. It is 

recommended that at least 5 or 10 events per parameter should be included when estimating 

regression coefficients [24], [25]. Because we considered both time-dependent and non-linear 

associations for all prognostic variables, the number of parameters included in our model was 

large relative to the number of deaths. The convergence issues that we encountered are 

therefore likely to be explained, in part, by a lack of power. However, decreasing the number of 

parameters (either by reducing the number of variables, or excluding some complex 

associations) would not have been a better strategy, given that our core aim was to try to better 

understand the long-term associations of prognostic covariables for breast cancer patients. 
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Neither was it practical to increase the number of women in order to increase the number of 

events since this could only have been done by including women with advanced disease, for 

which treatment protocols are very different, or by including elderly women, who do not have 

the opportunity for long-term follow-up.

The analysis excluded 12.3% of the cohort because of missing data, thus leading to a loss of 

information. However this proportion is relatively low for these types of observational data and 

complete-case analyses have been proved to be sufficiently efficient for such ranges of missing 

data proportion [22].

It is possible the lack of stability may have been a result of the modelling approach. We consider 

this unlikely, however. The flexible regression model we applied has been purposefully designed 

to estimate excess mortality hazard and take into account complex associations. The model 

selection strategy has previously been shown to be efficient and successful in detecting the 

correct complex associations as well as eliminating spurious ones [20]. 

The second main issue was that our strategy was unable to fully control for confounding by 

indication leading to model misspecification. This would be an issue even with a perfectly robust 

model. This confounding is best illustrated by the unexpected results for chemotherapy and 

hormonal treatment. Women receiving these treatments experienced an increased risk of dying 

from breast cancer compared to women who did not receive them (Figure 3). This reflects the 

fact that the patients in the cohort who received chemotherapy and hormonal treatment were 

those with more advanced disease at diagnosis (Table 2). This represents a limitation of our 

strategy, which was not able to account for the fact that almost all women who were likely to 

benefit from these therapies were given them, resulting in a small or absent comparison group 

within the patient cohort (confounding by indication). We performed a stratified analysis to 

explore this (data not shown). We grouped patients with very similar characteristics together 

and compared their survival according to receipt of chemotherapy or not. This similarly showed 

an increased risk in the excess hazard of death associated with chemotherapy. This strongly 
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suggests that additional information about the prognosis of patients not receiving chemotherapy 

is missing from our dataset, and that this led to misspecification of the model.  

In addition, interactions between treatment received and other co-variables might be required. 

Although we planned to examine the existence of such interactions, they were tricky to 

implement due to the convergence issues we encountered during the modelling process, and not 

reasonable to explore in our small sample size dataset. 

Other possible strategies

Our results point towards the need for different statistical strategies in addition to our modelling 

strategy to be better able to examine these associations. Causal inference analyses would be one 

suitable approach [26]–[28]. The objective of causal inference is to mimic the randomised trial 

that would have been set for the research question by using observational data and specific 

statistical techniques. This would require much more detailed data on comorbidities and other 

factors used to define the treatment choice. Furthermore, software to implement causal 

inference techniques is not yet available for the excess mortality hazard. Further methodological 

research is thus required to enable such analyses to be conducted.

Clinical interpretations

Nevertheless, a few cautious clinical interpretations can be drawn from these data. Some co-

variables presented high BIFs within the sensitivity analysis and the observed associations 

appeared stable to the exclusion of outliers suggesting that they are indicative of a robust, 

underlying associations. Consistent with Jatoi et al. [13] we found that patients with negative 

hormone receptors presented a higher excess mortality during the first years after diagnosis 

compared to those who have positive hormone receptors (BIF 95.4%). Regarding age at 

diagnosis, our results corroborated exactly with those found by Cluze et al. [16] which showed 

the risk of dying from breast cancer was associated with increasing age at 1 and 5 years after 

diagnosis but that this association reversed at 10 years (BIF 87.1%). In addition to hormone 
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receptor status and age at diagnosis, tumour size, grade and nodal involvement displayed 

associations which were similar to those described in a previous meta-analysis [14]. Although 

our results are broadly consistent with previous studies, caution should be exercised in 

reporting the size of these associations, given that they have been derived from models which 

display a lack of robustness. We observed a time-dependent association for radiotherapy: 

patients treated with radiotherapy exhibited a decreased risk of dying in the first 10 years 

following their diagnosis but an increased risk afterwards. This association was, however, 

sensitive to the inclusion or exclusion of outliers. That said, it could potentially correspond to 

late side effects of treatment, in particular cardiac complications, which are known as a likely 

consequence of irradiations given close to the heart [29]–[31]. 

Conclusion

Our research aimed to estimate the long-term effects of prognostic factors and treatment for 

breast cancer using flexible excess hazard models for patients diagnosed in Geneva between 

1995 and 2002. Our study highlights the challenges of interpreting these associations in 

observational data and as well as the need for high quality and detailed clinical information at a 

population level so that these associations can be examined in detail. With such data, causal 

inference methods could be applied to be able to describe an effect rather than an association. 

However, applying causal inference methods requires further methodological work and the 

development of specialist software for the use of causal inference in the context of excess hazard 

modelling.
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Figure 1: Excess hazard ratio for age at diagnosis, excluding outliers, using 70 years as the reference (a) 1 year after 
diagnosis. (b) 5 years after diagnosis. (c) 10 years after diagnosis.
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Figure 1:  Excess hazard ratio for tumour size , excluding outliers, using 20 mm as a reference. (a) 1 year after diagnosis 
(b) 5 year after diagnosis (c) 10 year after diagnosis.

Size at diagnosis (mm)
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Table 1: Characteristics of the patients diagnosed with breast cancer between 1995 and 2002.

  N %
Age group

<40 87 4.8
40-49 359 20.0
50-59 652 36.3
60-69 535 29.8
70-79 164 9.1
Total 1,797 100.0

Size in mm
0-9 271 15.1
10-19 800 44.5
20-29 395 22.0
30-39 160 8.9
40+ 99 5.5
Missing 72 4.0
Total 1,797 100.0

Nodal involvement
N+ 500 27.8
N0 1,265 70.4
Total 1,797 100.0

Differentiation
Well differentiated 1,113 61.9
Moderately/ poorly differentiated 617 34.3
Missing 67 3.7
Total 1,797 100.0

Hormone receptors
Positive 1,520 84.6
Negative 212 11.8
Missing 65 3.6
Total 1,797 100.0

Radiotherapy
No 291 16.2
Yes 1,506 83.8
Total 1,797 100.0

Chemotherapy
No 1,006 56.0
Yes 791 44.0
Total 1,797 100.0

Hormonal treatment
No 492 27.4
Yes 1,305 72.6

 Total 1,797 100.0
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Table 1: Patient and tumour characteristics according to treatment.

Radiotherapy Chemotherapy Hormonal treatment
No Yes No Yes No Yes

  N % N %  N % N %  N % N %
Age group

<40 16 5.5 71 4.7 14 1.4 73 9.2 39 7.9 48 3.7
40-49 79 27.1 280 18.6 125 12.4 234 29.6 149 30.3 210 16.1
50-59 78 26.8 574 38.1 348 34.6 304 38.4 158 32.1 494 37.9
60-69 87 29.9 448 29.7 374 37.2 161 20.4 114 23.2 421 32.3
70-79 31 10.7 133 8.8 145 14.4 19 2.4 32 6.5 132 10.1
Total 291 100 1506 100 1006 100 791 100 492 100 1305 100

Size in mm
0-9 44 15.1 227 15.1 222 22.1 49 6.2 84 17.1 187 14.3
10-19 91 31.3 709 47.1 512 50.9 288 36.4 172 35.0 628 48.1
20-29 66 22.7 329 21.8 170 16.9 225 28.4 120 24.4 275 21.1
30-39 45 15.5 115 7.6 56 5.6 104 13.1 51 10.4 109 8.4
40+ 27 9.3 72 4.8 33 3.3 66 8.3 38 7.7 61 4.7
Missing 18 6.2 54 3.6 13 1.3 59 7.5 27 5.5 45 3.4
Total 291 100 1506 100 1006 100 791 100 492 100 1305 100

Nodal involvement
N+ 82 28.2 418 27.8 127 12.6 373 47.2 137 27.8 363 27.8
N0 201 69.1 1064 70.7 863 85.8 402 50.8 351 71.3 914 70.0
Missing 8 2.7 24 1.6 16 1.6 16 2.0 4 0.8 28 2.1
Total 291 100 1506 100 1006 100 791 100 492 100 1305 100

Differentiation
Well 
differentiated 186 63.9 927 61.6 497 49.4 616 77.9 346 70.3 767 58.8
Moderately/ 
poorly 
differentiated 84 28.9 533 35.4 472 46.9 145 18.3 114 23.2 503 38.5
Missing 21 7.2 46 3.1 37 3.7 30 3.8 32 6.5 35 2.7
Total 291 100 1506 100 1006 100 791 100 492 100 1305 100

Hormone receptors
Positive 220 75.6 1300 86.3 920 91.5 600 75.9 253 51.4 1267 97.1
Negative 38 13.1 174 11.6 45 4.5 167 21.1 194 39.4 18 1.4
Missing 33 11.3 32 2.1 41 4.1 24 3.0 45 9.1 20 1.5
Total 291 100 1506 100 1006 100 791 100 492 100 1305 100

Complete data
Complete 216 74.2 1358 90.2 900 89.5 674 85.2 397 80.7 1177 90.2
Missing 75 25.8 148 9.8 106 10.5 117 14.8 95 19.3 128 9.8

 Total 291 100 1506 100  1006 100 791 100  492 100 1305 100
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Table 1: Bootstrap Inclusion Frequency (BIF) for each co-variable and their type of associations following the sensitivity 
analysis.

BIF (%)
 Main Non-linear Time dependent
Age 92.9 45.0 87.1
Size of the tumour 99.6 82.0 57.1
Nodes involvment 85.8 - 55.4
Grade of the tumour 90.8 - 51.7
Hormone receptors 97.1 - 95.4
Radiotherapy 59.6 - 18.8
Chemotherapy 75.4 - 32.9
Hormonal treatment 45.0 - 20.4
"-": Not applicable.
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Summary 

An increasing number of women are surviving breast cancer and so a better 

understanding of the long-term consequences of the disease is needed. This 

thesis evaluated first, the most accurate way to estimate long-term net survival 

when reliable cause of death information is available, and second, what can 

be determined about the long-term effects of prognostic factors and treatment 

for women with breast cancer. Two main messages can be drawn from this 

research. First, the type of data setting used to derive net survival is crucial to 

obtain a robust estimation. Second, data currently available in cancer registries 

requires recently developed methodologies to allow a relevant clinical 

evaluation of the determinants of the long-term net survival.  

First research question 

What is the most accurate way to estimate net survival when reliable cause of 

death information is available? 

These analyses have shown that the relative survival setting was the less biased 

setting for net survival estimation, particularly for long-term survival, even in the 

presence of validated cause of death.  

An accurate comparison 

In the context of population based data, the perception that “relative survival” 

was superior to “cause-specific survival” has been pervasive for a number of 

years in the dedicated literature 68,119–121. It thus may appear that these 

conclusions are not novel. Sarfati et al. for instance compared relative survival 

and cause-specific survival and demonstrated that relative survival was the less 

biased 122. Like us, they studied the biases related to the data: misclassification 
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for the cause-specific survival and non-comparability of life tables for relative 

survival. Misclassification of cause of death has also frequently been 

considered. Amongst others, Percy et al. has demonstrated several times that 

misclassification was an issue in the context of the estimation of mortality 

70,123,124 The work from Percy et al. 70 has been cited almost 800 times in the 

literature.  

However, all these studies considered “cause-specific survival” and “relative 

survival” to both be measuring survival related to the disease of interest; none 

accounted for informative censoring. This bias occurs when cancer patients are 

removed from the risk set in a non-random way. My research has thus added a 

further aspect to these methodological developments. I have conducted, for 

the first time, an accurate comparison between the two data settings available 

for the estimation of net survival taking into account the bias of informative 

censoring for both settings. This research is therefore unique and shows that, 

when comparing two theoretically unbiased estimators of net survival, the 

relative survival setting is, indeed, less sensitive to violations of the assumptions 

(non-comparability between the cohort of cancer patients and the group used 

to derive their expected mortality compared to misclassification of the cause of 

death for the cause-specific setting). 

The results described in this thesis are therefore progress those described in 

previous work. In addition to the work of Pohar-Perme et al., this work provides a 

comparison between the estimator proposed in the relative survival setting and 

an unbiased estimator in the cause-specific setting and has demonstrated the 

superiority of the relative survival setting for the estimation of net survival. These 

results concur with those of Percy et al., in demonstrating that misclassification 
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of the underlying cause of death is also an issue when estimating net survival as 

well as mortality. Finally, in addition to the work from Sarfati et al., this work 

demonstrates that the relative survival setting was less biased in the context of 

net survival. This research highlights the importance of being aware of both the 

bias of informative censoring and the difference between the two data settings 

when interpreting survival estimates in the population-based setting. 

Evaluation of long-term net survival 

A further contribution made by this thesis is the extension of the results to long-

term net survival. It has been demonstrated that misclassification of the cause 

of death tends to increase with time since diagnosis. This is probably because 

determining that a death is due to breast cancer is likely to be easier a few 

months after diagnosis than decades later, as well as related to the fact that 

the numbers of deaths decrease with time. This observation further strengthens 

the recommendation of the relative survival setting for the estimation of net 

survival, even when validated cause of death is known, but especially when it is 

not. 

Application across cancer sites 

The superiority of the relative-survival setting was demonstrated for breast 

cancer but also for three other cancer sites. Although I did not examine all 

cancer sites, I selected a full range of different types of cancer. This allowed the 

examination of whether the results were robust to different contexts. On the 

basis of these analyses, it is hard to imagine a very specific cancer site for which 

the cause-specific setting would prevail over the relative-survival one. This could 

however be tested in further research studies by simply running similar analyses 

on all cancer sites. 
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Reviewed cause of death 

Because the Geneva Cancer Registry performs clerical review of the officially 

recorded cause of death from death certificates, reviewing it using all the 

clinical information available, these data offered a unique opportunity to 

evaluate its validity. This represents one of the key strength of this research and 

enabled us to show that, even in the presence of high quality data, the relative 

survival setting is less biased for the estimation of net survival. 

Life tables 

Like the reviewed cause of death represented a strength in my examination of 

the cause-specific setting, the complete and smoothed life tables I used are an 

advantage in the examination of the relative-survival setting. It was the first time 

recommendations from Rachet et al. 90 were applied to data from Geneva. This 

increased the validity of the mortality rates used for the expected rate of death 

and thus of the estimation of net survival. 

Implications and perspectives 

Implications for cancer registries 

These results have wide-ranging implications for the standardisation of survival 

analysis worldwide. This is important for geographical comparisons as well as for 

temporal and subgroup comparisons at a local level. The use of a common 

method would ensure that observed results are not due to either biases related 

to the type of data or in background mortality. There are already some 

examples of large studies which use the unbiased estimator in the relative 

survival setting for the estimation of net survival 125–127. My research should add 

weight to the importance of using the best methodology for these 

comparisons, especially if examining long-term survival. 
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My research should also motivate registries worldwide to unite in using only the 

relative survival setting for the estimation of net survival for their own areas. 

There may be a residual reluctance about the advantage of this because the 

size of bias itself is often moderate 128–130. However, a better understanding of 

this estimator as the only consistent method should motivate common 

consensus. Moreover, it is important to communicate that this method is robust 

especially for long-term survival, which has not been previously demonstrated.  

The work presented in this thesis also implies that the accessibility of the 

statistical tool itself should be improved. The rapid implementation of this is 

important since the current statistical software available to derive net survival 

using the Pohar-Perme estimator is not as user-friendly as other methods have 

been. 

Implications for clinicians 

More specifically, it is important to communicate the superiority of the relative 

survival setting against the use of the cause of death among clinicians. Indeed 

clinicians may be resistant to adopting a method, which does not rely on cause 

of death. Perhaps because of their individual interactions with patients, 

analyses based on cause of death tends to appear inherently more trustworthy 

and concrete to clinical specialists. This research should therefore be shared 

beyond cancer registry employees to all clinicians and collaborators using their 

data for research, in order to raise awareness of relative survival setting being 

more robust for the estimation of net survival.  

Cost-effectiveness of validated cause of death 

One important question arising from these results is whether, for the Geneva 

Cancer Registry, spending resources on reviewing the cause of death is useful.  
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I have shown that cause of death is not required for the estimation of net 

survival. It is, however, used for the estimation of mortality rates. For this, 

reviewed cause of death could presumably be considered as the gold 

standard. However, in Geneva, official cause of death is used for the estimation 

of mortality in order to ensure comparability with the rest of Switzerland. The 

reviewed cause of death is therefore not used for mortality statistics calculated 

by the Cancer Registry.  

From a practical perspective, reviewing a cause of death constitutes a heavy 

and time-consuming workload. Originally, in the 1970s, Registrars in Geneva 

noted differences between the cause appended on the death certificate and 

that in the medical files. They therefore implemented a reviewed cause of 

death variable in addition to the official one. Now, with the 3,000 incident cases 

per year, reviewing the cause of death represents the equivalent of a half-time 

registrar, more than 10% of the total time spent on cancer registration. The cost-

effectiveness of reviewed cause of death could thus be evaluated. 

Second research question 

When using an accurate approach, what can be determined about the long-

term effects of prognostic factors and treatment for women with breast 

cancer? 

Despite using a well-designed modelling strategy and very detailed data, I 

encountered two key difficulties in developing a comprehensive understanding 

of long-term determinants of excess mortality due to breast cancer in my 

cohort. These were instability and misspecification of the model. These two 

difficulties could be overcome by using datasets with a greater number of 
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women, and so inflating the number of deaths, as well as more detailed data 

and additional methodologies, in order to adjust for confounding by indication.  

Context of the study 

As stated in chapter 3, Geneva has a fairly small population but a well-

established, long-running Cancer Registry. Each year, approximately 3,000 

invasive cancers are diagnosed in the canton, from which 400 are breast 

cancers. As a result, the number of deaths due to breast cancer is small, but 

the data do enable long-term follow-up of all women, as well as providing 

detailed clinical data on their cancers.  

Since a better population to conduct this analysis in would need to be both 

larger but also retain the same long-term follow-up in addition to a high level of 

detail for the data, the number of Cancer Registries, which could be used for 

this purpose, is relatively small. Very few other registries have long-term detailed 

data for larger populations. Collaborative studies would be a logical way to 

inflate the number of events in order to increase the likelihood of producing a 

stable model, however detailed long-term data would not necessarily be 

comprehensively available. For example, Switzerland is covered by 20 cancer 

registries but half of them were established after 2005 meaning that long-term 

net survival would be difficult to calculate. Because of the small population 

covered and the network available between health actors, detailed data are 

easily available in the Geneva Cancer Registry. This, however, is less likely to be 

the case in in a larger area across different registry areas or between countries.  

Several collaborative studies have already been initiated at European 

(EUROCARE 126,131–135) or International level (CONCORD 125,136,137) but the level of 

detail remain insufficient for the purpose of my research. As an illustration, from 
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the covariables we used in my research, only age and grade were requested 

by the last call from Eurocare-6. TNM stage, size of tumour, or treatment were 

asked only if available, as not all cancer registries record these data. 

Information on hormone receptor status was not requested. Additionally, 

important differences may exist between these databases leading to problems 

when using them in combination. For example, treatment and screening 

strategies are different across regions or countries and should be addressed 

specifically in the analysis and resulting interpretations. 

Alternatively, several cancer registries in Europe, such those covering 

Netherlands or Nordic countries may have the data required for this type of 

research. Indeed, they are old enough to provide long follow-up of cancer 

patients and are known to collect clinical data for a sufficient number of 

patients 138–141. A comprehensive survey of data available within these registries 

would enable the feasibility of conducting further research to be established. 

It should be added that data that are more precise have now entered clinical 

practice. Genetic profiles and recent progress in treatment strategies, such us 

immunotherapies, local radiotherapies, and new hormonal treatments were not 

considered in my research because no long-term data is available for these 

yet. These innovations and their accurate recording will however allow an 

overall improvement in the data quality and potentially help to disentangle the 

effects of long-term determinants of excess mortality due to breast cancer.  

Methodology 

In standard epidemiological study designs, statistical power is calculated prior 

to the commencement of the study. However, multivariable time-to-event 

analysis with consideration of complex effects is a context in which sample size 
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analysis is a challenging task 142. No adequate studies were found dealing with 

this purpose. Moreover, it is important to note that the convergence issues 

encountered were revealed during the sensitivity analyses and therefore with 

sampled data. These particular data, because they were drawn with 

replacement, could have been significantly different from the baseline data. In 

contrast, the single model deriving from baseline data did actually converge. 

Hence, sample size calculations, if they had been possible to implement, would 

have been unlikely to detect the need for additional events.  

I also considered whether the lack of reproducibility arose because of the use 

of an inappropriate methodology. I considered one alternative model (as 

described in chapter 3) in order to test whether the issue of non-convergence 

originated from computational difficulties with the mexhaz command. These 

analyses showed, however, that mexhaz provided the most convincing results. I 

observed that the other statistical tool “stpm2” was difficult to fit and an 

accurate comparison between them was therefore not possible. No additional 

comparisons were performed but further research could be dedicated to a 

formal comparison of other tools available for excess hazard modelling. 

“mexhaz” was designed specifically for this purpose and I have shown that it is 

adequate for this research question. 

Further research  

Despite the challenges encountered my work was able to highlight how crucial 

it is to take into account non-linear and non-proportional effects, especially in 

the context of long-term excess mortality. I also demonstrated persistent effects 

for some covariables all of which were consistent with what has previously been 

described in the literature. These results suggest that the underlying patterns of 
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excess mortality related to these covariables were successfully identified in my 

models, but that further research is required.  

Even without issues of model reproducibility, the evaluation of the effects of 

prognostic factors and treatment on long-term excess mortality related to 

breast cancer are likely to have been problematic in the context of these data. 

A perfectly robust model would have been able to describe associations but in 

order to evaluate causal effects, additional methodologies must be 

considered. This is illustrated by the unexpected results that were found for 

treatment covariables, which are likely to have arisen as a result of 

confounding by indication. This is because other factors, unmeasured and 

unaccounted for, play a very influential role in the association within the data.  

Additional methods with more detailed data would complement what has 

been already performed with this research. These additional methodologies 

could come from causal inference, the objective of which is to mimic a 

targeted trial and evaluate causal effect between exposure and outcome in 

the context of observational data. 

Propensity scores 143, which belong to the sphere of causal inference, could for 

example be implemented within the modelling strategy we developed for the 

research question. Their purpose is to emulate randomization for treatment 

attribution by creating a score, which is the individual probability of having the 

treatment in respect to a set of pre-specified covariables.   
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Breast cancer remains a major concern worldwide. The fight against this 

disease, in order to improve patients’ life and monitoring involves a large 

spectrum of research areas. With this thesis, I have provided new guidance for 

epidemiologists on how to study long-term net survival and its determinants in 

the context of population-based data. Taken together my research has 

presented a strong case for the strength of cancer registries in bringing 

knowledge regarding long-term survival of breast cancer patients.  

Thanks to the high data quality in Geneva we were able to demonstrate that 

the relative survival setting was the best option for the estimation of long-term 

net survival. This was true despite the availability of reviewed cause of death. I 

demonstrated that the findings can be extended to other cancer localisations. 

My research has also shown that despite the great interest around the 

increasing number of breast cancer survivors, it remains difficult to establish with 

certainty the long-term determinants of deaths related to the disease for these 

particular patients. We believe that cancer registries are key players for this 

purpose but further considerations are needed. Long-term follow up data need 

to be gathered and collected at a higher level of detail for a larger population. 

Additional methodologies are required to tackle inherent biases described for 

observational studies. These methodologies need to be developed in the 

context of excess hazard modelling.  

While there are limitations to the use of cancer registry data, as is the case with 

most data, these are outweighed by the value of building on recent 

experience to close gaps in cancer knowledge that are difficult, if not 

impossible, to address with other approaches. 
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Cochran, 1972 

“…observational studies are an interesting and challenging 

field which demands a good deal of humility, since we can 

claim only to be groping toward the truth.”  
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