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ABSTRACT 

This thesis presents a novel application of machine learning technology to automate network 

security audit and penetration testing processes in particular. A model-free reinforcement 

learning approach is presented. It is characterized by the absence of the environmental model. 

The model is derived autonomously by the audit system while acting in the tested computer 

network. The penetration testing process is specified as a Markov decision process (MDP) 

without definition of reward and transition functions for every state/action pair. The presented 

approach includes application of traditional and modified Q-learning algorithms. A traditional 

Q-learning algorithm learns the action-value function stored in the table, which gives the 

expected utility of executing a particular action in a particular state of the penetration testing 

process. The modified Q-learning algorithm differs by incorporation of the state space 

approximator and representation of the action-value function as a linear combination of 

features. Two deep architectures of the approximator are presented: autoencoder joint with 

artificial neural network (ANN) and autoencoder joint with recurrent neural network (RNN). 

The autoencoder is used to derive the feature set defining audited hosts. ANN is intended to 

approximate the state space of the audit process based on derived features. RNN is a more 

advanced version of the approximator and differs by the existence of the additional loop 

connections from hidden to input layers of the neural network. Such architecture incorporates 

previously executed actions into new inputs. It gives the opportunity to audit system learn 

sequences of actions leading to the goal of the audit, which is defined as receiving 

administrator rights on the host. The model-free reinforcement learning approach based on 

traditional Q-learning algorithms was also applied to reveal new vulnerabilities, buffer 

overflow in particular.. The penetration testing system  showed the ability to discover a string, 

exploiting potential vulnerability, by learning its formation process on the go.  

In order to prove the concept and to test the efficiency of an approach, audit tool was 

developed. Presented results are intended to demonstrate the adaptivity of the approach, 

performance of the algorithms and deep machine learning architectures. Different sets of 

hyperparameters are compared graphically to test the ability of convergence to the optimal 

action policy. An action policy is a sequence of actions, leading to the audit goal (getting 

admin rights on the remote host). The testing environment is also presented. It consists of 80+ 

virtual machines based on a vSphere virtualization platform. This combination of hosts 

represents a typical corporate network with Users segment, Demilitarized zone (DMZ) and 

external segment (Internet). The network has typical corporate services available: web server, 

mail server, file server, SSH, SQL server. During the testing process, the audit system acts as 

an attacker from the Internet.    
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1 Introduction 
This chapter represents the context of the research, problem description and research 

challenges. It describes the motivation behind the project, research assumptions, objectives 

and the hypothesis of the project. Additionally, it specifies the thesis outline. 

1.1 Background and motivation 
 

All computer systems face the risk of being compromised. Systems become more and more 

complex, which leaves room for more errors left by developers. Those errors can provide the 

route for potential unauthorized intruders. There is a strong upward trend in the number of 

vulnerabilities per year (Secunia, 2015). This makes companies invest more resources into 

vulnerability assessment activities such as penetration testing. 

Penetration testing is a process of attacking a computer system in order to reveal 

potential vulnerabilities (Mukhopadhyay, 2014). It helps to determine whether the system is 

secured against computer security threats. There are many ways to theoretically evaluate 

potential vulnerabilities in the system, however they need to be tested in reality by performing 

penetration testing activities.  

The importance of penetration testing is beyond question. It helps to reveal security 

issues by performing real-life attacks. Regular audit decreases the financial or reputational 

risks related to data loss, network attacks, malware attacks, Denial of Service attacks and so 

on. It can address the information protection problems connected to firewall configuration 

vulnerabilities, access control methods and intrusion detection faults. By revealing the weak 

points of the target system, penetration testing helps to sort the risks according to their level 

of importance. It helps to redirect financial and human resources to deal with the most critical 

security issues in a minimal time frame. 

There are different areas of penetration testing, such as social engineering, application 

penetration testing, and network penetration testing (Shah and Mehtre, 2015b). Social 

engineering is a process of psychological influence in order to compromise a security system 

(Atkins and Huang, 2013). It is based on human interactions and cannot be automated in 

nature. Application penetration testing, in turn, is a process of testing the software during its 

development cycle (Arkin, Stender and McGraw, 2005). It is an integration of security 

mechanisms in the application development cycle and is deeply integrated into the software 

development process. Network penetration testing is, therefore, a subject of interest for this 

research. Network penetration testing is a simulation of network attacks in order to trigger 

potential vulnerabilities (Denis, Zena and Hayajneh, 2016). By network penetration testing, 
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we define the execution of exploits sequences with a combination of investigation actions (OS 

check, Port scan, etc.). 

Automation of penetration testing is one of the biggest challenges in computer 

security. It reduces human error and decreases the resources spent by the penetration testing 

team. The automation of this process is considered nowadays as an automation of separate 

parts such as port scans and exploit compilation/execution, with a human as decision-maker. 

 Penetration testing is a crucial method for auditing network security by executing real 

world attacks to compromise the target defense systems (Bechtsoudis and Sklavos, 2012; 

Holik et al., 2014; Rushing, Guidry and Alkadi, 2015). Such a computer security audit is 

traditionally made manually by cyber security experts with the help of security tools providing 

semi-automation during different penetration testing phases: target definition, environment 

analysis and attack execution (Stefinko et al., 2016). 

Analysis of the penetration testing market showed the absence of smart penetration 

testing tools able to learn a decision-making strategy automatically. It means they have 

predefined sequences of attack/probe actions that can be chosen by user. They are unable to 

develop new attack strategies themselves, based on their previous experience. There is a 

variety of penetration testing/vulnerability assessment software on the market: 

Nessus/OpenVAS, Core Impact, Nexpose, GFI LandGuard, Qualys Guard, MBSA, Retina, 

Secunia PSI, Nipper, Saint, Metasploit and so on.  

One of the most popular vulnerability scanners is Nessus (Tenable Network Security 

Inc., 2015): a security tool that makes a vulnerability analysis. Nessus scans for various types 

of vulnerabilities, ones that hackers could exploit to gain control or access a computer system 

or network. Furthermore, Nessus scans for possible misconfiguration (open mail relay, 

missing security patches and so on), default passwords, common passwords which it can 

execute through Hydra (an external tool) to launch a discretionary attack. Nessus has its own 

database of Network Vulnerability Tests (NVT) and they can be added manually as plugins. 

After the penetration testing task is set up by a computer security specialist, Nessus starts to 

execute NVTs, one by one, using the list of targets. Such a method does not provide any 

automation in decision-making. As a result, it will not be able to operate independently of the 

computer security specialist. 

Core Impact (2015) is one of the most advanced vulnerability scanners on the market. 

It is audit software that replicates cyber attacks to assess the security of web applications, 

network systems, endpoint systems, mobile devices, users and wireless networks. Core Impact 

is the smartest penetration testing system on the market. It is the most automated software at 

present. It has an ability to provide automated plans for penetration testing. 
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The next popular penetration testing tool is Rapid 7 Nexpose (Nexpose 2015). It is a 

vulnerability scanner which aims to support the entire vulnerability management life-cycle: 

detection, verification, risk classification, reporting and mitigation. It has Metasploit 

integrated for vulnerability exploitation. The main advantage of Nexpose is the possibility of 

executing multiple scan engines at the same time. In this case, the vulnerability scanner can 

significantly decrease the scan duration. However, Nexpose cannot learn any attack strategy 

by itself. 

Modern vulnerability scanners/penetration testing software requires better 

automation. They are still significantly dependent on computer security experts. For example, 

a Metasploit framework provides only the set of exploits and payloads. All configuration setup 

like information about the attack source, targets and payloads is done manually by penetration 

testers. It does not provide recommendations about the attack strategy as well. Modern 

penetration testing software cannot learn attacks by itself or make an attack strategy adaptive 

during penetration testing. The Core Impact vulnerability scanner, which is the most advanced 

to date, has the ability to build automated attack plans that can be used by an audit security 

officer for further penetration testing. However, it has a variety of problems. The Core Impact 

scanner creates a possible attack plan based on a model of the environment, which should be 

built first. It leads to extensive probe action executions against the target network and host 

configurations. The resulting attack plan significantly depends on the created model quality. 

While building the model and generating the optimal attack plan, the Core Impact scanner 

assumes that the configuration of the network stays static. It means that, in order to deal with 

the network/host configuration changes, it needs to recreate the environment model and 

recalculate the whole attack plan, which significantly decreases the adaptation properties of 

the tool. Some internal model parameters of this software are based on statistics derived from 

internal company simulations and expert knowledge. In cases where the tool does not have 

enough data for the new OS version or network configuration, it might have problems 

generating the optimal attack plan. 

Therefore, there is a lack of automation in penetration testing software on the market. 

The tools have no ability to accumulate experience and learn the attack process during the 

computer security audit for future usage to become more autonomous. The software also has 

adaptation problems. It means, there is no possibility to update the attack strategy during 

penetration testing process depending on environment changes. 

The research community is attempting to automate penetration testing in a more 

efficient way. The traditional approach to the process is based on modelling the target system 

and deriving possible attacks from that model (penetration testing plan) for later execution by 
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the auditor. The automation of that process relates to the automation of model development 

and planning stages (Futoransky, Notarfrancesco, Richarte, & Sarraute 2003; Qiu, Jia, Wang, 

Xia, & Lv 2014). 

There are different approaches to modelling potential attacks: attack trees, attack 

graphs, MDP and POMDP (Barik, Sengupta & Mazumdar 2016; Durkota & Lisy 2014; Qiu 

et al. 2014; Report 2010; Sarraute, Buffet, & Hoffmann 2013; Zhao, Shang, Wan & Zeng 

2015). 

An attack tree is a formal description of the attack model based on different attack 

sequences (Schneier, 2000). The root defines a particular goal of the attack and branches – 

different sub-goal sequences. Nodes of the tree can have OR relationships if they are 

alternatives or AND relationships if they represent the steps of achieving the goal. The tree 

construction is based on detailed information about the target security system. After the tree 

is developed, each node can be assigned a value (e.g. Possible/Impossible). This assignment 

is the subject of serious research by cyber security experts. As a result, it will be possible to 

derive attack sequences by processing the tree from the leaves to the root (Kordy, Kordy, 

Mauw & Schweitzer 2013; Zhu, Chen, Zhang & Xin 2008). 

An attack graph is another formal representation of the attack model (Swiler & 

Phillips 1998). Compared to attack trees, an attack graph is more related to the representation 

of attack actions broken down into atomic components, described by preconditions and post 

conditions over system properties. They represent the information about the combination of 

atomic threads. Every node defines the state of the attack. Attack graph development can be 

based on attack statistics (e.g. vulnerabilities scoring system) and/or probe actions, performed 

in advance. Different paths of the graph represent different attack sequences compromising a 

target security system (attack vector). 

 Another representation of the attack model can be based on the Markov Decision 

Process (MDP) (Durkota & Lisy 2014). MDP is a discrete time stochastic process. The states 

of the process can define the attack state and transitions represent the set of actions available 

on the current attack step. The attack graph can be described by MDP as well. The attack 

model can be defined with a higher level of uncertainty using partially observable Markov 

Decision Process (POMDP). It is a generalization of MDP. It is assumed that system dynamics 

(the behavior of the system) is defined by MDP but the agent cannot fully derive the state. The 

agent observes it as a probability distribution over the set of possible states. Such a modelling 

approach is used in order to model uncertainty of the real world. An example of this approach 

in penetration testing is presented in Sarraute et al. (2013). 



16 
 

Traditionally, after the model is designed, a model based planning algorithm is used 

in order to generate optimal attack paths for penetration testing. It generates the sequence of 

attacks (attack vectors) based on the graph/tree traversal algorithms (Jha, Wing & Sheyner 

2002; Ou, Boyer, & McQueen 2006; Qiu et al. 2014). If there are enough statistics regarding 

the transition probabilities between attack states then another approach can be used. It consists 

of the representation of the attack graph as MDP and selects the actions with lower cost in 

every state. As a result, the planning algorithm will generate a sequence of actions (attack 

vector) based on the MDP representation (Barik et al. 2016; Durkota & Lisy 2014; Sheyner, 

Haines, Jha, Lippmann & Wing 2002). 

The problem of automated planning is a definition of the static known model of the 

environment, which should be built first. Imprecise models lead to simulation errors and 

generation of penetration testing action sequences having no sense. The environmental model 

of the most advanced penetration testing software, Core Impact, is based on an enormous 

amount of statistics, gathered from its own virtual infrastructure. Such a huge amount of 

simulations does not resolve the resource intensiveness problem. The static nature of the 

model makes it not environmentally adaptive. Every time the network topology changes, the 

model should be rebuilt, otherwise the planning algorithm will generate the wrong sequence 

of penetration testing actions. 

Therefore, there is an unresolved problem of full penetration testing automation. None 

of the approaches give automation in terms of decision making. The existing penetration 

testing systems need to be supervised. Most of them just propose part-automation with a cyber 

security specialist as an attack strategy decision-maker. Existing approaches have a lack of 

adaptivity as well.  

This thesis proposes a novel adaptive approach to automate the penetration testing 

process, including the decision making stage. The automation of the penetration testing will 

exclude a human from the actual penetration testing stage. It will help to mitigate a number of 

drawbacks related to the human factor, such as: inability to process huge volume of 

information, delays in decision making, work hours constrain and high cost of cyber security 

specialists.  

 In the same time, a given approach will raise a cyber security expert to the higher 

level of control. The specialist still will be able to tune up learning algorithms, develop 

learning strategies and create machine learning solutions, which will increase the performance 

of the automated penetration testing process. It will give an opportunity to tune up this process 

according to the given tasks and goals of the project.  Therefore, a cyber security expert will 



17 
 

be excluded from the routine level of penetration testing and will be able to redirect his skills 

towards a higher-level control tasks. 

Our approach is based on application of a model-free reinforcement machine learning 

algorithm. The penetration testing system does not have a full predefined model of the 

environment and learns it by acting in the network using a Q-learning algorithm. This fact 

helps to mitigate all the disadvantages of environmental model development. In order to 

generalize the solution, the algorithm was modified using an approximator based on artificial 

neural network (ANN) and recurrent neural network (RNN). In order to prove the concept, an 

audit tool and testing environment was developed.  

 

1.2 Research aims and objectives 
Current machine learning approaches allow the development of a tool that significantly 

advances the automation of vulnerability discovery in an arbitrarily configured network. The 

overall aim of the research is to: 

Apply a machine learning technique to automate the penetration testing process in 

order to make it learn the attack strategy itself on the go and make decisions on 

penetration testing actions: 

➢ O1: Identify the weaknesses of modern approaches to penetration testing and 

problems raised in the scope. 

 

➢ O2: Investigate machine learning algorithms that can be used in the cyber 

security scope. 

 

➢ O3: Use the theoretical ground defined in O1 and O2 to develop an adaptive 

automated model-free learning approach to the penetration testing process. 

 

➢ O4: Generalize the approach revealed in O3. 

 

1.3 Contribution 
The thesis makes a contribution to the automation of penetration testing systems and the 

vulnerabilities assessment scope: 
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➢ The automation of penetration testing was examined in the context of a self-

learning penetration testing system. It was shown that it can learn the attack 

strategy itself, while in action.  

 The penetration testing process was modelled as MDP. 

 The model free approach to the automation of penetration testing was 

applied, based on a traditional Q-learning algorithm. The proof of 

concept tool was developed. It showed the effectiveness of the chosen 

approach. 

 Testing infrastructure with 80+ virtual machines was built, 

representing a typical corporate network. 

➢ The generalization of the approach to the automation of penetration testing 

based on the approximation. 

 The model free penetration testing process was generalized using an 

approximator. 

 A new way to represent hosts based on a specific feature set was 

defined. 

 Deep architecture of the approximator Autoencoder + ANN was 

developed. 

 Deep architecture of the approximator Autoencoder + RNN was 

developed. 

 Performance comparison of Deep architectures was made. 

➢ The automation of the new vulnerabilities search, buffer overflow 

vulnerabilities in particular. 

 The model free approach to the automation of new vulnerability 

discovery was applied, based on traditional Q-learning algorithm. 

The proof of concept tool was developed. 

 

 

1.1 Thesis outline 
The thesis is organized as follows: 

• Chapter 2 discusses the literature review of previous works that have been 

done to automate the penetration testing process. Problems and challenges are 

highlighted. The general approach to penetration testing is discussed as well. 

Information on different machine learning techniques is presented. 
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• Chapter 3 presents the Markov decision process (MDP) concept. It also 

describes the definition of the penetration testing process in terms of MDP, 

using transition function, reward function, action and state spaces. It 

represents the definition of buffer overflow vulnerabilities. Information on 

the Q-learning algorithm is given. The concept of Q-learning approximation 

is discussed, as well as deep machine learning architecture, including 

autoencoder, ANN, RNN. Additionally, the penetration testing tool 

architecture and testing environment is presented. A set of experiments is 

briefly introduced. 

 

 

• Chapter 4 illustrates the actual results of the experiments. It describes the 

experiment setups, hypotheses, experiment outcomes with different sets of 

hyperparameters and acting policies. The performance of learning algorithms 

is compared. 

 

• Chapter 5 concludes with the result of the undertaken research. It compares 

the achievements with the research scope results and gives future research 

directions. 
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2 Literature review 

2.1 Introduction 
 

This chapter presents a more focused review of the literature of the presented context. The 

Attack graphs and Attack trees sections describe the research related to the development and 

analysis of such models as well as to automation attempts of their generation. The Planning 

section relates to the planning approach to derive the attack sequences for computer security 

audit. The Tools section describes the literature on automation attempts of penetration testing 

by aggregating existing attack tools. The Alternative approaches section presents the rest of 

the literature related to the automation of penetration testing. The last part of the literature 

review concerns machine learning applications within the field of cyber security. It also gives 

an overview of machine learning techniques used in that scope. 

 

2.2 Attack trees 
In Schneier (1999) and Schneier (2000), the attacks are modelled using ‘Attack trees’. This is 

a visual representation of the attack. It can be formally described using formal language. The 

goal of the attack is defined by the root of the tree. It can include subtrees as well. The nodes 

are structured in hierarchical order. Nodes enforce their sub-nodes to be executed first. The 

nodes can have an OR or AND property and are associated with the cost of execution. 

The attack tree model was upgraded in Tidwell, Larson, Fitch, & Hale (2001). It was 

presented a new attack tree model for Internet attacks. It was developed the language to 

aggregate attack behavior descriptions as well. The novelty of the approach was in adding 

precondition and post condition assertions. Such parametric attack trees provide a framework 

for expressing exploits and multi-stage attacks. 

In Moore, Ellison, & Linger (2001), the authors extend the previous attack tree 

approach by adding reusable attack patterns for characterizing an individual type of attack and 

attack profile to organize such patterns. 

The research outlined in Mauw & Oostdijk (2006) proposes the formalization of 

earlier work by Schneier (1999). It formulates the conditions that allow particular 

manipulations with attack trees. They try to extend the approach by defining attacks as multi-

sets. The paper indicates the scalability problems. 

Recent literature also has examples of applying attack trees for penetration testing. In 

Sarraute, Richarte & Obes (2013), the attacks are modelled as an attack tree. It is later used in 
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order to find the optimal attack path. The tree is probabilistic with nodes having asset or action 

types. An asset node is connected by OR relations with all actions producing this asset 

(attacking agent – exploit). An action node is connected by AND relations with all its 

requirements. By iteratively decreasing groups of tree nodes, a single attack path is generated, 

which minimizes the expected cost associated with attack actions. The only actions used by 

authors were: exploit execution, TCP/UDP Connectivity test, OS probe. 

Kordy et al. (2013) present a tool for modelling attack trees and for their quantitative 

analysis. It can be used to modify, create and hide trees. The tool gives the framework to build 

security models and graphically analyse them. 

In Zhao et al. (2015), a rule based tree method is presented. The idea of the automation 

is based on a predefined chain of rule based trees created by a cyber security specialist. The 

attacks are performed and assessed according to that information. The problem in this 

approach is the need for the creation of, and regular updates to, those trees of rules. 

The attack trees approach is not as popular in recent literature. This is related to the 

problems associated with this attack model. An attack tree is not adaptive and cannot react to 

the changing environment. It can be successfully used to model the attacks on static 

configurations or in cases where the dynamics of the target system are not important. 

Therefore, in order to adapt to the changing environment, attack tree must be recreated each 

time the environment changes, which is computationally intensive. In case  Attack trees also 

have a state space expansion problem. They are not able to deal with attacks on large networks. 

With the size of network, the tree grows significantly quickly. Attack trees cannot represent 

the possible loops of the attack states as well. 

The more advanced alternative of network attack representation is an Attack graph 

model. 

 

2.3 Attack graph 
An attack graph is a data structure used to represent all possible attacks on a network. This 

attack model is usually related to the planning based approach to penetration testing. Attacks 

are divided on atomic actions described by preconditions and post conditions over properties 

of the system under attack. An attack graph defines an analytical knowledge about potential 

threats, which can occur according to the possible combination of actions. It represents 

possible attack plans. In order to generate such plans, planning techniques are used. 



22 
 

The attack graph approach was first proposed by Swiler & Phillips (1998) for 

network-vulnerability analysis systems. The approach needs a predefined database of common 

attacks, consisting of atomic steps, to be used as an input to the system. It also requires the 

network configuration, topology information and topology profile to be able to function. By 

combining all the input information together, the analysis system creates a superset attack 

graph. Nodes represent the current stage of attacks. The arcs represent the attacks themselves. 

The probabilities of success or costs can be assigned to the arcs. In that case, any graph 

algorithm can be used to identify the attack path with the highest probability of success. 

Other early researchers (Templeton & Levitt 2000) approach the attack graphs as an 

action model. They propose the description of a model of attacks based on the requirements 

of the attack elements, their satisfaction of the requirements of each other and the method of 

composition of those components into complete attacks. Such a model does not need prior 

knowledge of the particular scenario. Therefore, such a method can be used to describe 

unknown attacks, which is represented as an abstracted overview of the atomic threads. 

In contrast with Templeton & Levitt (2000), Ritchey, Allen, Church, & Ammann 

(2000) approach the attack graph not as an action, but as the state space model. They propose 

to generate different attack scenarios by model checkers. The idea behind the approach is to 

define vulnerabilities as a state machine suitable for a model checker. After definition, the 

model should be checked against the hypothesis that particular assets cannot be reached by an 

attacker. As a result, a model checker will prove it or will propose the steps of the attack as a 

counterexample. 

A similar model-check approach can be found in Sheyner et al. (2002) and Sheyner 

& Wing (2004). These articles have the same approach to the vulnerability assessment process. 

However, the analysis stage is added after the attack graph construction. First, they create a 

model of the tested network as a state machine, where state transitions related to the atomic 

attacks are executed by an attacker. The example of the security property is ‘the attacker 

should never obtain root access to host A’. It is checked by the model checker and the attack 

graph is generated based on counter-examples, violating the property. The idea is to identify 

possible ways to transition into the ‘successful penetration state’, which defines successful 

exploitation of the potential vulnerability. During the last stage, the graph is parsed and the 

original meaning of state variables is recovered as they were represented in the network 

intrusion domain. 

Later research proposed the idea of monotonicity of the attacks in the attack graph 

approach to penetration testing (Jajodia, Noel & O’Berry 2005; Jajodia & Noel 2010). The 

described approach is related to modelling of the target network based on its security 



23 
 

conditions. The exploits that a potential attacker uses are modelled as transition rules between 

security conditions. A presented tool, developed by the authors, builds an attack graph and 

computes a possible attack path as a combination of exploits compromising particular network 

resources. 

 

2.4 Planning 
Futoransky et al. (2003) proposes a framework in order to automate risk assessment and 

penetration testing, in particular. It can also be used for attack simulations. It is based on the 

previous publication (Obes, Sarraute, & Richarte 2003). The approach is related to a multi-

dimensional attack graph generation based on quantified goals, probabilistic assets and 

complex cost function. In their model, an attack is defined as a group of agents executing 

sequences of actions, obtaining assets to reach the goals. Agents are collaborating to 

accomplish the goals. 

The authors offer three approaches to the attack building process. Before building 

actual attacks, they propose to gather all the information about the target environment. Based 

on that knowledge, an attack graph of all possible actions is developed and a planning 

algorithm is used to build the attacks. This approach works only for very small instances of 

the problem (less than 20 hosts network). It’s related to the exponential grow of the attack 

graph size with number of hosts and possible actions.  

Another approach is to model the environment as a Markov Decision Process (MDP) 

with probabilistic transitions. The transition model is derived from the huge amount of 

statistics gathered earlier by continuous simulations of the attacks against different network 

configurations. It was provided by the Core Impact pentesting software lab. After the model 

is constructed, the planning algorithm can be used to build the attacks. 

The third approach is similar to the first one but with different topology of the attack 

graph. The authors propose to make it multilayer by alternating layers of goals and actions. 

There are connections between each goal and to the actions that might satisfy it and all actions 

to the set of sub-goals that it requires. During the attack graph construction phase, all 

quantifiers are not expanded and are treated as a single element. It helps to avoid state space 

explosion. 

The outcome of the research is a proposed framework with automative planning using 

a preconstructed environment model. It is implemented in Core Impact Classic pentesting 

software to support the penetration testing process. 
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The problem with the authors’ approach is in the fact that automative planning can be 

used only in static known models of the environment. The planning process is a model 

simulation. In order to reveal the potential attacks, the environment should first be modelled. 

In cases where it is not modelled precisely, the predicted attacks might have no sense. 

Another problem is in the construction of the environment model itself. The authors 

used statistics derived from the Core Impact simulation data. This information is continuously 

connected in virtual environments by executing different attack actions against different 

network/host configurations. Therefore, without access to a huge amount of information 

statistically describing the pentesting actions’ outcome, the precise model might not be 

accurate enough for the penetration task. 

After the model of the environment is built, it cannot be changed during the planning 

process. It means that if the network topology or configuration of the host is changed, the 

planning will miss those changes due to the lack of adaptation. 

In Hoffmann (2015), an overview is presented of different modelling approaches in 

order to simulate penetration testing. This work addresses the description of earlier models of 

the environment used in Core Impact research (Futoransky et al. 2003; Sarraute et al. 2013), 

as well as their extensions for future experiments. The work covers only the modelling stage 

of the penetration testing environment without application of automative planning. The paper 

reflects the search of a new environment representation model for Core Impact lab, mentioned 

in earlier research by the authors. 

The models are systematized according to the uncertainty of the environment and 

attack component interaction. The authors mention the attack graph approach, which totally 

abstracts from the uncertainty and opposite POMDP extreme case incorporating the attacker’s 

initial knowledge. The MDP model is also introduced that is a middle ground between those 

two extremes. 

The attack graph approach is based on the attack graph model described using 

Planning Domain Definition Language (PDDL) with Planning algorithm application to 

generate possible attack paths. It is assumed that: there is no uncertainty about the network 

graph topology (known network graph); no uncertainty about host configuration (known host 

configuration); the network is static; actions are monotonic (once an asset is obtained by an 

attacker it cannot be lost); and that Action=hops (non-static preconditions and effect of each 

action corresponds exactly to the ‘hop’ in the network graph). 

The POMDP model is more realistic. This approach models the attacker’s incomplete 

knowledge about the network as an uncertainty of state, which is a probability distribution 
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over possible network graphs and host configurations. An initial probabilities distribution 

encodes the prior knowledge to the attack phase. The states describe the network configuration 

and the status of the attack. In that model, it is assumed that the network graph is known and 

that there is no uncertainty about network topology, the network is static, actions are 

monotonic and equal to hops. The only assumption to be relaxed as a result of remodelling is 

that the host configuration should not be known anymore. This is the current model that the 

Core Impact lab is integrating at the moment. 

Modelling penetration testing process as an MDP is a middle ground between Attack 

graph planning and POMDP. The idea behind that approach is a formulation of the uncertainty 

of an attacker in terms of action outcomes, hiding the details of host configurations. The MDP 

model is an abstraction of POMDP. In the MDP case, the only information that should be 

defined is the success probability of exploit executions. The exploit can only succeed or fail. 

It does not consist of any sub-actions which cause hidden states, that leads to moderate 

accuracy decrease. Exploit execution is an atomic action. MDP representation significantly 

decreases computational complexity. 

In Reddy & Yalla (2016), the mathematical analysis of the penetration testing was 

performed. An application of the novel algorithm is discussed to create a mixed test plan for 

the cyber security audit. The authors highlight four stages of penetration testing: 

1. Information collection about the target system. 

2. Post analysis of gathered data. 

3. Actual exploitation. 

4. Result analysis and report. 

During the first stage, the cyber security professional uses probe actions to collect the data 

related to the target. At the second stage, the information is analysed, the attack strategy is 

manually created and the attack actions (exploit execution) are performed. Therefore, the 

penetration testing process is defined as a composition of probe and attack actions. Such a 

structure for penetration testing is also recommended in the NIST standard addressing network 

security (Wack et al., 2003). 

 

2.5 Tools aggregators 
In Stefinko et al. (2016), a comparison of manual and automated penetration testing is 

presented. The philosophy of automation in this paper is related to the automation of each 

stage of the penetration testing as much as possible, using different audit tools like Kali 

Linux/Metasploit framework. The attack strategy decision-making is performed by the cyber 



26 
 

security expert. The approach decreases the load caused by routine actions. However, it still 

requires a highly skilled professional to use such systems and does not exclude the human 

factor. By excluding the human factor it’s meant the automation of decision making process 

during actual attack. 

An easy-to-deploy penetration testing platform is developed in Duan et al. (2008). It 

uses a LiveDVD SolarSword developed by the Opensolaris OS team. The authors propose a 

semi-automatic pentesting method with multi-target start conditions. The approach allows to 

set multiple scripts against multiple targets at the start, which will be used accordingly. It is 

based on the originally developed approach using post-processing data by a control centre. 

This module provides administrative support to the pentest system. The control centre stores 

and performs all automatic tests manually created by the system supporter, including scripts, 

templates, semantic rules and so on. The penetration testing process consists of three stages: 

information gathering, vulnerability exploitation, and results analysis. During the first phase, 

the system uses the LiveDVDSolar Sword to scan the network environment. After scan results 

are transferred to the control center, the attack strategy decision should be made. The decision-

making process is based on a CMU tool, which generates the attack graphs (Sheyner et al. 

2002; Wing 2008). The CMU internal decision-making algorithm was used. The problem with 

such an approach is that the system is hard to support and maintain. The scripts that the system 

uses are created manually by cyber security experts for the user of the system. They need to 

be updated regularly. It means that the time and expertise that was decreased for the user 

increases for the specialist that supports this penetration testing system. Therefore, the human 

factor is not decreased in general. 

In Shah & Mehtre (2015a), the Net-Nirikshak tool is presented. This tool provides a 

sequential automation of the penetration testing process for a limited range of tasks. It scans 

the target system to derive versions of the services installed, and checks the possible 

vulnerabilities against the National Vulnerability Database (NVD). As a result, the tool 

generates a report about found vulnerabilities. It also can perform SQL injection attempts. 

 

2.6 Alternative approaches in the cyber security domain 
In Pan & Li (2009), a new penetration testing approach for an E-commerce authentication 

system is presented, based on different generation test cases. First, it is proposed that the new 

input program sets be generated from the existing ones in order to trigger vulnerabilities. For 

this purpose, a linear system based on the relaxation iteration algorithm (Gupta & Mathur 

1998) was developed. During the second phase, the pentest cases are refactored and used 
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again. In the last stage, the dynamic taint propagation (Haldar et al. 2005) method is used to 

verify the possibility of potential vulnerabilities being feasibly exploited. 

Qiu et al. (2014) proposed automation using penetration testing scheme generation. By 

penetration testing scheme, the authors mean a description of execution of penetration testing. 

Such a description is constructed based on manually developed rules by penetration testing 

consultants. After automatic penetration testing scheme generation, the vulnerability scanner 

uses the vulnerability database to check the target system. After the potential vulnerabilities 

are revealed, the exploitation mechanism starts actual exploit executions, one by one. 

Therefore, there is a lack of research related to the automation of penetration testing. 

None of the approaches give real automation of penetration testing in terms of attack strategy. 

The existing penetration testing systems need to be supervised or need to have a predefined 

set of rules. Most of them just propose part-automation with a cyber security specialist as an 

attack strategy decision-maker. 

The current research proposes a new approach to the automation of penetration testing. 

It suggests letting the penetration testing tool (without any prior knowledge) explore/attack 

the target system and, using machine learning, learn by trial and error the right attack strategy 

on the go, according to its experience. In order to understand which machine learning approach 

to choose, a literature review on machine learning was carried out. 

 

2.7 Machine learning approach 
There is a variety of machine learning approaches: supervised learning, unsupervised, semi-

supervised, reinforcement learning (Erik 2014; Kotsiantis et al. 2006; Sutton & Barto 2012). 

Supervised learning methods (Aguilar and Riquelme, 2007) are based on a function 

that maps input to desired output. This approach is often used for classification problems. The 

learning process is based on feeding pairs of data to the algorithm: input and the respective 

output. After processing those pairs, the algorithm is able to predict the correspondent output 

for the particular input. Such an approach demands a large amount of data and quantity of 

iterations. Such an approach is limited to the labeled data only.  

Unsupervised learning (Baldi, 2012) is the opposite to the supervised learning 

approach. Its data is not labeled. It automatically associates the input information with possible 

existing classes to reduce the dimensionality of data. The algorithm analyses data itself and 

tries to find similarities and differences in given input to find existing patterns. 
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The third type of learning algorithm is reinforcement learning (Xu, Zuo and Huang, 

2014). The agent that learns according to this algorithm learns by trial and error. It travels 

through states by performing actions without any prior information and receives the reward 

signal from the environment. If the reward signal is high, it will be motivated to do such 

actions more often, if the reward signal is low, or negative, it will avoid those actions. 

Therefore, after a period of exploring, the agent will be able to learn some sort of desirable 

behavior or acting policy. All types of learning are widely used in computer science. The next 

section describes the application of those algorithms related to the cyber security domain. 

 

2.7.1  Machine learning approaches applied in the cyber security 

domain 
According to the literature, there is a variety of specific cyber security tasks related to the 

application of machine learning approaches: Intrusion detection systems (IDS), 

Phishing/Spam detection, Behavior biometrics, Security of human interaction proofs, 

Cryptography, Code analysis (Ford and Siraj, 2014). 

Most of the literature about the application of machine learning in cyber security 

concerns IDS systems, rather than vulnerability assessment/penetration testing. An intrusion 

detection system is a software solution that monitors the network in order to identify malicious 

activity. 

A hybrid approach to the IDS development based on the ability to tune its own 

classifiers and feature extraction algorithms is represented in Anfilofiev et al. (2015). The 

novelty of the approach is the specific usage of genetic algorithms. There is a lot of literature 

related to the application of semi-supervised learning in IDS systems, starting with older 

publications such as Lane (2006) and Aslam et al. (2006), up to the most recent ones such as 

Wagh (2014), Shinde & Parvat (2014) and Sahu et al. (2014). 

The machine learning classifier is applied in Khan et al. (2014) for DNS DDOS attack 

detection. The authors propose calculation of the Lyapunov exponent in order to access the 

complexity of network packet flow. After the exponent is calculated, its magnitude is used to 

classify whether or not the traffic is normal. The method detects a DNS DDOS attack with 

66% accuracy. The experiment was used with static data, but the authors claim that it can be 

applied with live traffic. 

Botnet detection is an area of interest for machine learning application (Haddadi et 

al., 2014). Haddadi et al. analyse HTTP traffic to detect bot control commands. For this reason, 

the classifier C4.5 (Hssina et al., 2014) and Naive Bayes was used. The experiment showed 
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that C4.5 performance is better than Naive Bayes. Zhang et al. (2015), Di Mauro & Longo 

(2014) and Moore et al. (2005) show a similar application of machine learning in network 

traffic detection. Different algorithms discussed are: random forest, correlation-based 

classification, semi-supervised clustering and one-class SVM. 

Abnormality detection is a popular method in intrusion detection scope (Gou et al., 

2009; Tsang n.d.; Wong & Lai, 2006). The main idea for this is to improve the IDS detection 

rate. 

A genetic immune model which is adaptive to the rule-based IDS (Xu, Sun and 

Xiaojun, 2003; Tomandl, Fuchs and Federrath, 2014) is proposed in Yang et al. (2013). It uses 

the artificial immune system model (AIS model) based on the specific algorithm described in 

(Yanchao et al., 2001). The AIS is an adaptive system, inspired by immunology theory and 

biological immune models. It’s a class of rule-based machine learning systems, which 

algorithms are modeled after the immune system’s characteristics of learning and memory. 

The paper proposes to model IDS as the state transition system, leading to the target 

compromised states. States and transitions are expressed in a double DNA chains pattern, The 

Machine Learning and Cybernetics (2003) paper is interesting in terms of penetration 

modelling. The author considers a possible attack as a collection of states leading to the 

compromised state. The research is based on the old DARPA works (Dasgupta & Brian 2001; 

Lippmann et al. 2000). 

 Machine learning is also applied in order to resolve the Phishing/Spam detection 

problem. In Abu-Nimeh et al. (2007), the authors compare different machine learning 

techniques for phishing prediction such as: Logistic Regression (LR), Classification and 

Regression Trees (CART), Bayesian Additive Regression Trees (BART), Support Vector 

Machines (SVM), Random Forests (RF), and Neural Networks (NNet). They use 49 features 

and 2889 emails to train their classification system. 

 Another classification framework is presented in (Zhuang et al., 2012). The research 

is based on analysis of Kingsoft Internet Security Laboratory malware collection. The 

proposed framework is intended to join different classification solutions for better 

Phishing/Spam detection. The specific feature set is proposed as well. 

 The behavior biometrics domain also uses machine learning techniques. Its main goal 

is to authenticate the user by its behavior. Users classification is described in El Masri et al. 

(2014). Microsoft Word was used as a test application. The main idea was to let users use MS 

Word and let the system create a pattern of interaction. After a profile is created, the system 

authenticates the user according to his/her actions. 
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 Another example of machine learning application in the current domain is keystroke 

analysis (Revett et al., 2007). Authors examined Login/Password type pattern of 50 users and 

collected a series of attributes used for classification of the profiles and further authentication.  

They apply Probabilistic Neural Network (PNN) in order to reduce behavior training time and 

increase classification accuracy of users. The accuracy of the method was 90%. 

 Machine learning is used in Breaking Human Interaction Proofs related researches 

(CAPTCHAs). Chellapilla and Simard (2004) investigate the vulnerability HIPs. The goal of 

the research is to make the CAPTCHAs more resistant to attacks based on pattern recognition 

techniques. The authors performed six experiments with EZ-Gimpy/Yahoo, Yahoo v2, 

mailblocks, register, ticketmaster, and Google HIPs. They revealed that the most difficult 

stage for CAPTCHA recognition is segmentation. 

In Shabtai et al. (2010), the authors present work on automated static code analysis. 

They used a machine learning classifier in order to process the huge database of *.apk files. 

Those files stored the android application source code. As a result, malicious apk files were 

identified. 

In Younis & Malaiya (2014), it is proposed that the vulnerability exploitability metric 

(Alhazmi and Malaiya, 2005; Manadhata and Wing, 2011) be based on software structure 

properties such as dangerous API calls and reachability. Using the metric as a feature, the 

researchers constructed a model which uses machine learning techniques such as SVM (Lin 

and Chen, 2008; Wang, 2008) for automatically predicting the risk of vulnerability 

exploitation. 

 In (Yu and Cao, 2006) the machine learning approach is extended to the cryptography 

domain. Chaotic neural networks are used in order to generate binary sequences used for 

masking plaintext. This method makes the cyphertext more secure. 

 Therefore, the literature review showed applications of machine learning in the cyber 

security domain related to Intrusion detection systems (IDS), Phishing/Spam detection, 

Behavior biometrics, Security of human interaction proofs, Cryptography, Code analysis. 

However, there is an absence of application of machine learning techniques to the automation 

of penetration testing. This fact leaves the problem of penetration testing automation 

unresolved.  

2.8 Chapter summary 
According to the literature review, there is a lack of research related to the automation of 

penetration testing. The problem of full automation including decision making is not resolved. 

Modern tools, automating different stages of penetration testing, do not provide the 
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automation of the decision making process. Model checker and planning approaches have 

serious resource consumption problems to provide a reasonable attack strategy due to the huge 

state space and difficult environmental models. The problem of human resources load is still 

unresolved. The existing penetration testing systems need to be supervised or need to have a 

predefined set of rules. Most of them just propose part-automation with a cyber security 

specialist as an attack strategy decision-maker. Existing approaches are not adaptive and not 

able to act in changing environments. 
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3 Methodology 

3.1 Introduction 
This chapter describes the methodology for the current research. The main goal of the project 

is to automate a penetration testing system by making it learn attack strategies on the go. As 

an additional result, the system will be able to learn multistep attacks and to search for zero-

day vulnerabilities. 

Based on the literature review, the reinforcement learning approach was chosen in 

order to reach the goals of the project. Compared to the other approaches, it does not require 

the labeling of input data and is ready to analyses it on the go. Because of the fact that the 

testing environment is not known, the main requirement for the algorithm should be that it is 

model free. There are not many alternatives in model-free based reinforcement learning 

algorithms. The choice is mainly between the well-known Q-learning algorithm and its 

competitor – SARSA (State-Action-Reward-State-Action) (Tokarchuk, Bigham and Cuthbert, 

no date; Nissen, 2007; Harm van et al., 2009). These algorithms are very similar. The only 

difference is in the fact that Q-learning compares the current state versus the best estimated 

next state, but SARSA compares the current state versus the actual next state. SARSA may 

work faster sometimes, but Q-learning has a bigger advantage. It is an off-policy algorithm 

(Geist and Scherrer, 2014). Q-learning also converges to optimality in tabular cases. That is 

why it was chosen as a reinforcement learning algorithm. Tabular cases are the cases when Q-

values are stored in a table in the memory for every MDP state-action pair, contrary to their 

calculation using approximator. 

Q-learning works very well for tabular cases. These are the cases that have a fairly 

small state/action space and the knowledge (Q-value) is accumulated in a table. The bigger 

the state space, the more inconvenient the usage of the table becomes. For those reasons, in 

real-life tasks, the Q-function is approximated (Irodova and Sloan, 2005; Melo, Meyn and 

Ribeiro, 2008; Xu, Zuo and Huang, 2014). The universal approximator in machine learning is 

a neural network (Mhaskar and Hahm, 1997; Most, 2005). This is a collection of neural units 

(neurons), modelled by their architecture, in the same the way that a human brain processes 

tasks. 

The penetration testing task can have enormous state/action space. That is why it was 

very important to choose the right features that would describe the state/action space for the 

current problem. The more relevant features are used, the more precise the state/action space 

is described. However enormous quantity of features will result in significant load of the 

learning algorithm input. As a result, the learning algorithm might become so inefficient, that 
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it would not be able to resolve given task in foreseeable time. To resolve this problem, the 

features set can be compressed into smaller features space prior to actual learning. For those 

reasons Autoencoder was used in current project. Autoencoder is a neural network that can be 

learned to compress its input to the smaller hidden layer with minimal error. Therefore, the 

feature set inputted to the Autoencoder will be compressed into the new smaller feature set. 

After, it can be inputted to the approximator of the actual learning algorithm, that can be 

defined using other neural network architecture.The detailed concept of Autoencoder will be 

explained further in this chapter.  

Therefore, in order to minimize the load on the neural network as approximator, deep 

architecture was used. Instead of solely the neural network, an autoencoder and approximator 

neural network were connected together (Pascal and Hugo, 2010; Hinton, Krizhevsky and 

Wang, 2011; Lore, Akintayo and Sarkar, 2015). In the literature, such an approach is called 

‘deep learning’. This architecture resolves two problems: the autoencoder decreases the 

quantity of features representing state/action space; and the neural network approximates the 

state/action space based on a smaller number of features left. The type of neural network that 

has been chosen is a recurrent neural network (RNN) – in particular the Elman type (Li, Deng 

and Zhang, 1997; Samek, 1999; Zhang, Tang and Vairappan, 2007). It is a special type of 

network that has an additional neuron feeding to every neuron in the hidden layer of its 

previous value. Therefore, there is an analog of memory implemented. This architecture is 

distinct from others due to its ability to learn sequences of actions. This type of RNN has the 

vanishing gradient problem (Pacanu et al. 2013; Bengio 1994; Liu n.d. 2012). In other words, 

it is not able to learn long sequences of data. For these reasons, in the research community, 

Long Short-Term Memory (LSTM) RNNs are used (Lipton et al. 2015; Gers et al. 2000, 

2002). 

The type of RNN to use is dictated by the problem itself. In penetration testing, the 

common sequences of actions to use are not that long. It is usually the combinations of one-

two exploration actions (check OS, portscan) + remote exploit execution + local exploit 

execution. This simplification is reasonable for exploit-type attacks. Our work was not focused 

on breaking the attacks on the smaller components, which considered as future work. 

Therefore, it means that the Elman RNN is a convenient choice. It has a simpler learning 

process and easier development phase. It should be mentioned that, in order to deal with the 

vanishing gradient problem in Elman RNN, the simple ReLU (Rectifier linear unit) activation 

function (Xu et al. 2016; Caglar et al. 2016) in the activation layer can be used. ReLU 

activation function is the function defined as a positive part of its argument. 
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This chapter on methodology begins with the problem description in the section 

‘Problem representation’. It outlines a general MDP representation and modelling 

information. The next section is concerned with the Q-learning description with tabular case 

and approximation. The artificial neural networks for approximation are described, followed 

by the autoencoder architecture. The final section of the chapter presents the experiment 

outline. 

 

3.2 Problem representation 

3.2.1 Markov Decision Process 
Penetration testing can be very well described by the Markov Decision Process (MDP). It is a 

mathematical framework for modelling sequential decision-making problems. Given an MDP 

M, this relation is performed as follows: 

Let 𝑡 ∈ N define the time or stage 

Let 𝑋𝑡 ∈ 𝑋 and 𝐴𝑡 ∈ 𝐴 define the random state of the system and the action 

chosen at time t. After the action is selected, the transition will be made: 

(𝑋𝑡+1, 𝑅𝑡+1)~𝑃0(∙ |𝑋𝑡 , 𝐴𝑡)    (1) 

    Where 𝑋𝑡+1 is random and 𝑃(𝑋𝑡+1|𝑋𝑡 = 𝑥, 𝐴𝑡 = 𝑎) = 𝑃(𝑥, 𝑎, 𝑦) holds for: 

𝑥, 𝑦 ∈ 𝑋, 𝑎 ∈ 𝐴. 

Further, the acting agent does the following: 

1. Observes the next state 𝑋𝑡+1 and reward 𝑅𝑡+1 

2. Chooses a new action 𝐴𝑡+1 ∈ 𝐴 

3. Repeats the process 

The main goal of the agent is to learn the best way to choose actions in order to maximize the 

expected total discounted reward. 

The agent can select actions in any moment based on the observed history. The rule 

of that selection is called ‘behaviour’. The behaviour of the agent and some initial random 

state 𝑋0 represent a random state-action-reward sequence ((𝑋𝑡 , 𝐴𝑡 , 𝑅𝑡+1); 𝑡 ≥ 0) where 

(𝑋𝑡+1, 𝑅𝑡+1) are related to each other according to the formula (1) and At is the action given 

by the behaviour according to the history  𝑋0, 𝐴0, 𝑅1, … 𝑋𝑡−1, 𝐴𝑡−1, 𝑅𝑡 , 𝑋𝑡 . 

The return of a behaviour is represented as the total discounted sum of the rewards 

incurred: 
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𝑅 =  ∑ 𝛾𝑡𝑅𝑡+1

∞

𝑡=0

 

Therefore, if 𝛾 < 1 then the rewards in the future are worth exponentially less than the reward 

received at the first stage. It is a discounted reward of MDP. In the case of 𝛾 = 1, the MDP is 

called ‘undiscounted’. 

The main target of the decision-making agent is to maximize the expected return, 

irrespective of how the process started. This maximizing behavior is called ‘optimal’. 

The next subsection demonstrates the learning process of an action strategy. 

 

 

3.3 Attack strategy learning  

3.3.1 Q-learning 
The goal of the penetration testing system, as mentioned in the objectives section of this 

research, is to learn the attack strategy itself, directly from the acting process. That is exactly 

what Q-learning does in MDP. Its aim is to approximate the optimal action-value function Q* 

directly. Q-learning can be presented as a sample-based, approximate version of value 

iteration, generating a sequence of action-value functions (Qk ;  k >= 0). If Qk is closer to Q*, 

the policy that is greedy related to Qk will be closer to being the optimal policy. 

The Q-learning algorithm works in the following way. A finite MDP is defined as 

𝑀 == (𝑋, 𝐴, 𝑃0) with the discount factor 𝛾. The algorithm stores an estimate 𝑄𝑡(𝑥, 𝑎) of 

𝑄∗(𝑥, 𝑎) for each state-action pair (x, a) ∈ 𝑋 × 𝐴. 

Observing (𝑋𝑡 , 𝐴𝑡 , 𝑅𝑡+1, 𝑌𝑡+1) with updated estimates according to the formulas: 

𝛿𝑡+1(𝑄) =  𝑅𝑡+1 +  𝛾 max
𝑎′∈𝐴

𝑄(𝑌𝑡+1, 𝑎′) − 𝑄(𝑋𝑡 , 𝐴𝑡) 

𝑄𝑡+1(𝑥, 𝑎) =  𝑄𝑡(𝑥, 𝑎) +  𝛼𝑡𝛿𝑡+1(𝑄𝑡)||{𝑥=𝑋𝑡,𝑎= 𝐴𝑡},    (𝑥, 𝑎) ∈ 𝑋 × 𝐴 

The algorithm of Q-learning is presented below: 

Function: Q-Learning (X,A,R,Y,Q) 

Input: X is the last state. A is the last action, R is the immediate reward received, 

Y is the next state, Q is the array storing the current action-value function 

estimate 
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1: 𝛿 ← 𝑅 + 𝛾 max
𝑎′∈𝐴

𝑄[𝑌, 𝑎′] − 𝑄[𝑋, 𝐴] 

2: 𝑄[𝑋, 𝐴] ← 𝑄[𝑋, 𝐴] +  𝛼 ∙ 𝛿 

3: return Q 

Where α is the learning rate and ᵞ is the discount factor for future rewards. 

Q-learning can act differently, depending on the chosen policy. The policy of the decision-

making agent is called ‘ε-greedy policy’. It lets the agent choose between random and greedy 

(estimated maximization of the reward) actions with 1-ε probability. In the case where ε is 1, 

the agent will act fully randomly. If it is 0, the agent will act only according to its gained 

experience. There are more adaptive acting policies such as softmax, which let the agent act 

randomly at the start to explore the state space first and, after some time, to choose actions 

based on experience. 

In summary, reinforcement learning is an unsupervised learning technique, in that the 

attacking agent does not have a pre-existing model of the system, which resembles real-life 

conditions where an attacker does not have any knowledge of which attacks are more 

promising. This is unlike supervised learning because the agent is not trained with examples 

of what would constitute a successful attack, according to a given set of relevant attributes; 

rather, it learns from scratch. It is worth emphasizing this point: reinforcement learning offers 

a mechanism for an agent to learn the optimal sequence of actions (given metrics of its 

behavior) starting from complete ignorance. Of the various algorithms that solve the 

reinforcement learning problem, Q-learning is chosen here because of its simplicity and its 

convergence properties – it has been proven to converge to optimality with a probability of 1 

in tabular cases Watkins & Dayan (1992).  

 

3.3.2 Q-learning approximation 
Q-learning is a reinforcement learning algorithm that learns an action-value function, given 

the expected utility of performing a given action in a given state. The traditional 

implementation is based on a Q-learning table where the utility function (Q-function) stores 

its values. As complexity of the state space increases, the standard Q-table approach does not 

scale well. This problem is usually addressed by using an approximator. Q-learning with a Q-

function approximator does not learn Q-values one by one, rather, it learns the Q-function 

itself. In this project, an artificial neural network was used as an approximator for learning the 

Q-function. 
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3.3.3 Artificial neural networks 
Artificial neural networks are models inspired by the structure and functionality of biological 

neural networks, as shown in Figure 3.1. 

 

 

Figure 3.1 Typical neural network 

 

The basic component of a neural network is the node. It generates the output value for a given 

input. In the case of a simple feed-forward neural network, the neural net uses those 

interconnected nodes to process information across its architecture, from input nodes to output 

nodes. Input nodes are the nodes on the left. They receive information from outside of the 

network and together form the Input Layer. They are filled by the user of the network. Input 

Layer nodes usually have one input and multiple outputs. The middle layer of the network is 

called the ‘Hidden Layer’. It has multiple input connections and multiple outputs. It is the 

layer that processes information received from input nodes. The rightmost layer of neurons is 

the output layer. It outputs the result of processing the information through the neural network. 

There can be a different quantity of neurons per layer and a different quantity of hidden layers. 

Each connection between nodes has a weight, which is multiplied by the value of the neuron 

from the previous layer, and feeds to the current node as an input. Nodes process this 

information using special functions called ‘activation functions’ and generate the output, 

which, in turn, is multiplied by the weight of the next connection and feeds to the next layer 

neuron. 
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Figure 3.2 Perceptron with one output node 

 

The simplest neural network is a single-layer perceptron (Figure 3.2). It is composed of a 

single layer of output nodes. The inputs are directly transferred to outputs. The sum of inputs 

is multiplied by weights calculated for each output node. If the resulting sum is close to some 

threshold in a particular node, then it will be activated and assigned a value (typically 1), 

otherwise it will be deactivated (set to 0). This is an example of a linear threshold unit. The 

comparison with the threshold is done by an activation function called the ‘threshold activation 

function’. Different functions can be used, depending on the data/task that needs to be 

processed. 

Neural networks used in machine learning consist of multiple layers of nodes and are 

called ‘multi-layer perceptrons’. They are usually feed-forward. This means that they have 

direct connections from the input layer to hidden and from hidden to the output layer. This 

project uses artificial neural networks for approximation purposes. According to the universal 

approximation theorem, every continuous function of 𝑛 real numbers can be approximated by 

a multi-layer perceptron with one hidden layer. 

Within the literature, one of the most popular algorithms for learning a multi-layer 

neural network is back-propagation. 

 

3.3.3.1 Back-propagation algorithm 
The back-propagation algorithm is used in order to learn a multi-layer neural network. 

Let us consider a three-layer neural network – input, hidden and output – consisting of two 

neurons each (Figure 3.3). Each layer, except the input layer, has one neuron connected to all 

the other neurons in the layer. These are called ‘bias neurons’. They do not have any incoming 

connections, they have value 1 and are used to help make network learning smoother. 
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Figure 3.3 Three layer neural network 

 

The main idea of the back-propagation learning algorithm is to change the weights of the 

neural network (NN) in order to make it map inputs to outputs with minimal error. 

At first, an NN does a forward pass of the information fed into input units through its 

architecture. It calculates the value for each node of the next layer starting with the hidden 

one. For example, h1 will be calculated as:  

𝑛𝑒𝑡ℎ1 =  𝑤1 ∗ 𝑖1 +  𝑤2 ∗ 𝑖2 +  𝑏1 ∗ 1 

where w1, w2 are connection weights and i1 and i2 are input unit values. 

Next, the activation function of the node needs to be calculated in the following way 

(activation function can be different): 

𝑜𝑢𝑡ℎ1 =
1

1 + 𝑒−𝑛𝑒𝑡ℎ1
 

This approach is repeated for all neurons in the layer. After all layer neurons have been 

calculated, the procedure is repeated for the next layer in the following way: 

𝑛𝑒𝑡𝑜1 = 𝑤5 ∗ 𝑜𝑢𝑡ℎ1 + 𝑤6 ∗ 𝑜𝑢𝑡ℎ2 + 𝑏2 ∗ 1 

𝑜𝑢𝑡ℎ1 =
1

1 + 𝑒−𝑛𝑒𝑡ℎ1
 

Knowing the values for all output neurons, the total error for every output node can be 

calculated using the squared error function: 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑
1

2
(𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡)2 

where ‘target’ is a value that the neural network is supposed to learn related to current inputs. 
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In the case of two output neurons, total error will be the sum of total errors of every 

node. This is called ‘forward pass’. 

The next stage of the algorithm is to correct the weights by propagating the error back 

to the input nodes. 

Weights should be updated in the direction of output layer to input layer. For every 

output weight, a partial derivative needs to be calculated in order to know the increment of 

correction. For example, for weight 5, the increment will be: 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤5
=

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑜𝑢𝑡𝑜1
∗

𝜕𝑜𝑢𝑡ℎ1

𝜕𝑛𝑒𝑡01
∗

𝜕𝑛𝑒𝑡𝑜1

𝜕𝑤5
 

In a similar manner, the correction for weight 1, for example, will be: 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤1
=

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑜𝑢𝑡ℎ1
∗

𝜕𝑜𝑢𝑡ℎ1

𝜕𝑛𝑒𝑡ℎ1
∗

𝜕𝑛𝑒𝑡ℎ1

𝜕𝑤1
 

The remaining weights should be calculated in a similar way. The update of the weight is done 

with the following formula: 

𝑤5
+ = 𝑤5 − 𝜂 ∗

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤5
 

where 𝜂 is learning rate. This parameter sets how big the correction will be each time the error 

is propagated. 

Therefore, after some iterations, back-propagation will correct the weights of the 

neural network and it will be mapping a given input to the given output without any error. 

In this project, a neural network is used to approximate the Q-function in the Q-

learning algorithm. As a target value, the network will receive a real utility calculated in the 

current state for the current action, using an environment reward value. As an input, it receives 

the parameters describing the state/action pair. 

Another way to approximate Q-learning is to use an artificial neural network with a 

different architecture: the Elman Recurrent Neural Network (RNN). 

 

3.3.3.2 Elman Recurrent Neural Network 
A useful characteristic of RNN architecture is the fact that hidden layer neurons have recurrent 

connections (Figure 3.4). They feed the values obtained in a previous processing step back to 

the neurons of the hidden layer, merging them with present values. This property is considered 

a ‘memory’ of the NN and gives the opportunity to learn a sequence of actions. This project 
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makes an audit system learn a sequence of actions, leading to successful security penetration. 

That is the main reason for using the Elman RNN as an approximator, as an alternative to a 

traditional ANN. 

 

 

Figure 3.4 Elman RNN architecture 

 

Where x is input at the time step t. S is hidden layer node with a looped connection to itself 

and y is an output node. U, V, W are connection weights. 

The difference in architecture makes the learning process of such neural networks a 

bit different. It is still based on the back-propagation algorithm, however it is modified and 

called ‘back-propagation through time’ (BPTT). 

 

3.3.3.3 Back-propagation through time algorithm 
In order to be able to apply back-propagation to RNN, it can be unfolded in the way shown in 

Figure 3.5. 

 

Figure 3.5 Unfolded RNN 
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The idea of learning in BPTT is the same: gradient error calculation with respect to weights 

U, V, W and further weights correction. After a forward pass, backward propagation of the 

error starts. According to the analogy with summation of the output layer error in traditional 

BP, gradients at each time step for one training example are summed up: 

𝜕𝐸

𝜕𝑊
= ∑

𝜕𝐸𝑡

𝜕𝑊
𝑡

 

In order to calculate the sum, we use the chain rule of differentiation. That is exactly what was 

used during backward propagation of the error in traditional BP. For example, for E3 the 

formula will be: 

𝜕𝐸3

𝜕𝑉
=

𝜕𝐸3

𝜕𝑦3
^

𝜕𝑦3
^

𝜕𝑉
 

                      =
𝜕𝐸3

𝜕𝑦3
^ 𝜕𝑧3

𝜕𝑦3
^ 𝜕𝑧3

𝜕𝑉
 

                       = ( −𝑦3𝑦3
^ ) ⊕ 𝑠3 

where 𝑧3 = 𝑉𝑠3 

For the weight W, the gradient will be (Figure 3.6): 

𝜕𝐸3

𝜕𝑊
= ∑

𝜕𝐸3

𝜕𝑦3
^

3

𝑘=0

𝜕𝑦3
^

𝜕𝑠3

𝜕𝑠3

𝜕𝑠𝑘

𝜕𝑠𝑘

𝜕𝑊
 

 

 

Figure 3.6 Gradient calculation for weight W 
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It should be highlighted that the principle behind BPTT is exactly the same as in the traditional 

BP case. The only difference is in the summation of gradients for the loop connection weight 

on every time step. 

The state of a complicated environment, such as a computer host (where the 

penetration testing system acts), is usually described by a set of features. If the features are 

defined and their values have been obtained, then they can be formed in the vector. The chosen 

action in that current state can also be formed in the vector joint with the ‘state’ vector. This 

joint vector can be fed to the neural network as input, one element to one input node. As a 

result, the network will calculate the Q-value for a given pair. 

Features describing state and used as a neural network input can be chosen by the 

researcher. However, the features space might be too large. In this case, the quantity of neurons 

will be increased as well. That will lead to performance problems. In addition, it might not be 

clear what features are really needed. In order to address this problem, the other type of neural 

network can be used – an autoencoder. This has the ability to find correlations between input 

data that can be used to decrease feature space. 

3.3.3.4 Autoencoder 
An ‘autoencoder’ is a particular architecture of ANN consisting of an input layer, hidden layer 

and output layer (Figure 3.7). 

 

 

Figure 3.7 Autoencoder architecture 

 

The input (x) and output (x’) layer have the same size. The main advantage of an autoencoder 

is the ability to use unsupervised learning. Its main principle of operation and learning consists 

of adjusting the internal weights of ANN to recreate the input as an output with minimal error. 

This property can be used to reduce the input layer to the smaller hidden layer with minimal 

information loss. As a result, the autoencoder learns to extract the correlation of input data 
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automatically and maps it in a smaller space. The learning process of the autoencoder uses the 

traditional back-propagation algorithm (Table 3.1). 

 

Table 3.1 Learning process of autoencoder 

For each input X 

1. Do a feed forward pass to compute 

activations at all hidden layers 

2. Compute activations at the output layer 

to obtain an output X` 

3. Measure the deviation of X` from the 

input X (square error used here) 

 

4. Back-propagate the error through the net 

and perform weight updates 

end for 

 

The main function of the autoencoder is a reconstruction of its input X. It consists of encoder 

and decoder parts. The encoder is a transition ᶲ and the decoder is a transition ψ : 

ᶲ: X → F 

ψ: F → X 

𝑎𝑟𝑔 min
ᶲ,ψ

‖𝑋 − (ᶲ°ψ)𝑋‖
2
 

In the case of only one hidden layer, the autoencoder maps its input: 

𝑥 ∈ 𝑅𝑑 = 𝑋𝑖𝑛𝑡𝑜𝑧 ∈ 𝑅𝑝 = 𝐹: 𝑧 =  𝜎1(𝑊𝑥+) 

where  is an activation function for each element. The experiments here used sigmoid, 

tangent and rectified linear unit. After z was calculated, it is reconstructed into X`: 

𝑥′ = 𝜎2(𝑊′𝑧 + 𝑏′) 

During the autoencoder training process, autoencoder minimizes reconstruction errors. Square 

error was used here: 

ℒ(𝑥, 𝑥′) =  ‖𝑥 − 𝑥′‖2 = ‖𝑥 − 𝜎2(𝑊′(𝜎1(𝑊𝑥 + 𝑏)) + 𝑏′)‖
2
 

This project uses the autoencoder to decrease the features space representing the target host. 
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The penetration testing system consists of two agents communicating via a network. 

One attacks the target and the second resides there to give environmental feedback for the first 

agent. The second agent collects the set of features to define the state space. The state space 

consists of features describing the target host and its current status: hacked (admin privileges), 

hacked (ordinary user privileges), attack failed, OS checked. Those flag-type features are 

combined with the features describing the host from the software point of view. This is related 

to the fact that most exploits compromise the particular service/process. Therefore, features 

will be able to indicate the vulnerable process presence on the host. It will give an opportunity 

for the learning algorithm to correlate information about sets of processes and successful 

exploits. The features vector is created in the following way: 

• The target host gets a list of processes and their dll modules. 

• The unique list of dll modules is created. 

• Every process is checked against this list to form a vector of 0s and 1s, 

showing the presence/absence of each dll. 

• The result of extraction is saved as a vector of 0s (dll module is presented) 

and 1s (dll module is not presented), describing the state of the target host 

(Figure 3.8). 

‘Hacked/not hacked’ flag features are not yet added to the features vector. This 

process will happen after the features set is reduced. 

 

 

Figure 3.8 Feature extraction result 

 

During the first attempts at modelling, the host configuration API functions were included 

instead of dlls. Although the APIs list better represents host functionality, it is very 

complicated to derive such a list and it is almost impossible to get a full list of APIs used in a 

particular system. In contrast, the list of dlls for every process can be easily obtained. 
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The resulting vector is an input for the autoencoder. It is a feature space vector and 

the goal is to reduce it. The learning process of the autoencoder starts. It repeats a number of 

iterations. During those iterations, the autoencoder continuously encodes and decodes the 

inputs to minimize the difference between input and output. Output is the recovered input. The 

autoencoder can be connected with another, which gives the opportunity to use deeper, more 

effective architecture (Figure 3.9). 

 

Figure 3.9 Deep autoencoder architecture 

 

The experiment was performed without a second autoencoder layer. More details are presented 

in the Results section. In case a second layer of autoencoder is used, then the process of 

learning repeats for the second autoencoder as well. The only difference is that the input for 

the second autoencoder is the value of hidden layer neurons of the first. This can slow down 

the learning process in general. However, the second autoencoder learns much faster. An 

example of the learned autoencoder is presented in Figure 3.10. Autoencoder is used for 

feature extraction before actual penetration tests. It needed for agent to be able to describe a 

system under attack and interpret its feedback after penetration testing phase started. 
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Figure 3.10 Learned autoencoder 

 

After the autoencoder learning process is finished, the audit system derives a vector of its 

hidden layer values and adds ‘hacked/not hacked’ flag features. It is the vector representing 

the new decreased features set, describing a state of the target host. This vector, combined 

with the action vector, will be fed to the Elman RNN approximator in order to determine the 

Q-function value. Therefore, a deep learning architecture is achieved, consisting of two neural 

networks combined together: the autoencoder to decrease the quantity of features describing 

state space and the Elman RNN used as an approximator in Q-learning. 

Further, the program chooses the action according to the Q-learning policy. The policy 

is an ε-greedy one. It means that the program sometimes acts randomly, and sometimes 

according to its experience (Q-value). Acting according to experience is described below. Let 

us consider when there are three possible actions to choose from: execute exploit1, exploit2 

or exploit3. 

Let us assume that, during its first iteration, the program acted randomly. In this case, 

the program has chosen exploit3. The vector shown in Figure 3.11 will be created. 

 

 

Figure 3.11 The action vector 
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This vector is the input to the RNN. After the RNN processes this input, it will calculate the 

Q-value for that particular state-action pair. The Q-value is a prediction of how good this 

particular action is in this particular state from the point of view of reward accumulation. At 

the same time, the program will execute exploit3 and will receive the real reward, depending 

on how successfully exploit3 was executed. The error between Q-value and real reward will 

be calculated and this error will be propagated back, changing the weights in the RNN. 

After exploit3 has been successfully executed, the system will move to another state: 

the flag feature ‘hacked (admin privileges)’ or ‘hacked (user privileges)’ will become 1, 

depending on the exploit3 result. The vector representing state will be changed. The feature 

vector describing the host will remain the same in that case, so the autoencoder will have no 

need to learn new features. It is very effective because the learning of the autoencoder takes 

time, which cannot be wasted after every action. However, if the action resulted in changing 

the target, the feature vector built by the autoencoder will be updated using the new target. 

This approach to the definition of ‘state space’ helps to include information not only on the 

status of a particular host, but also the attack trajectory through the network. In this project, 

all experiments were performed without host transitions (this is a possible direction for the 

future). 

As a result of transition to another target, the vector which describes the new state of 

the host will be created, as indicated in Figure 3.12. 

 

Figure 3.12 The new state of the host 

 

This vector will be an input to the autoencoder to reduce features. The autoencoder will be 

relearned (Figure 3.13). 
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Figure 3.13 Relearned autoencoder 

 

After the autoencoder has been relearned, the program will derive a vector of its hidden layer 

values. It is the vector describing a state. Now the program will choose the action according 

to the ε-greedy policy. Let us consider the case where it acts according to its experience (Q-

value). The program has three actions: exploit1, exploit2 or exploit3. First of all, the program 

will calculate Q-value1 for the first action: exploit1. It will form the action vector ‘1 0 0’ and 

will combine it with the vector from the autoencoder and status flag features, which describes 

the state (Figure 3.14). 

 

 

Figure 3.14 Action vector 1 

 

This vector will be an input for the RNN. As a result, the Q-value1 for action1 (execute 

exploit1) will be received. It should be mentioned that this is just a calculation of Q-value: 

there is no error back-propagation yet. 

Next, the Q-value2 for action2 (execute exploit2) will be calculated. The program will 

form the action vector ‘0 1 0’ and will combine it with the vector from the autoencoder plus 

status flag features, which describes the state (Figure 3.15). 
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Figure 3.15 Action vector 2 

 

This vector will be an input for RNN. As a result, the Q-value2 for action2 (execute exploit2) 

will be received. 

In the same way, the Q-value3 for action3 (execute exploit3) will be calculated. The 

program will form the action vector ‘0 0 1’ and will combine it with the vector from the 

autoencoder with host status flags, which describes the state (Figure 3.16). 

 

 

Figure 3.16 Action vector 3 

 

This vector will be an input for RNN. As a result, the Q-value3 for action3 (execute exploit3) 

will be received. 

The program will compare Q-value1, Q-value2 and Q-value3, and will choose the 

max. Let us consider the case when it is Q-value1. 

In this case, the program will execute exploit1. It means that the vector shown in 

Figure 3.17) will be an input for the RNN. 

 

Figure 3.17 Final action vector 
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It should be mentioned that the action/pair vector (execute exploit3) from the first iteration 

will already be saved in the memory of the RNN (Figure 3.18). 

 

 

Figure 3.18 Previous action vector 

 

This means that the actual input for the RNN will not only be the vector that was chosen during 

the second iteration, but the combined vectors from the first and second iterations. It is a 

representation of the sequence of actions. 

The program will receive the real reward, depending on how the exploit1 worked. 

Finally, the error between Q-value1 and real reward will be calculated and this error will be 

propagated back, changing the weights in the RNN. The state of the host will be changed as a 

result. 

This process will continue according to the Q-learning algorithm until the learning 

process has ended. 

 

3.4 Environment architecture 
In order to test an application of the developed approach to the real systems, the virtual 

environment was build. It replicates a typical corporate network. The only difference with real 

system is in hosts, represented as virtual units, instead of having their own hardware. Hosts 

run using resources of two real joint clusters. This fact does not influence on the 

experimentation results. Therefore, this configuration can be considered as real system testing 

environment. The system architecture includes 80+ hosts and represents a typical corporate 

network prototype, consisting of four parts: entry points, attacker segment, demilitarized zone 

(DMZ) and user segment (Figure 3.19). The communication between zones is controlled by 

firewalls and IDS. The main purpose of the entry points segment is to isolate the prototype 

and the City University network. These hosts have Windows 7 OS and are defended by 

Windows firewall to block all traffic going outside the network. Entry points can be used as 

an attacker host as well. The attacker and entry points segments are the hostile environment 

in terms of computer security. They represent segments from which the corporate network can 
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be attacked. Attacker segment hosts have Kali Linux OS installed. It has a variety of computer 

security audit tools such as: Aircrack-ng, Burp suite, Cisco Global Exploiter, Ettercap, John 

the Ripper, Kismet, Maltego, Metasploit framework, Nmap, OWASP ZAP, Social engineering 

tools, Wireshark, Hydra, Reverse Engineering tools, Forensics tools like Binwalk, Foremost, 

Volatility etc. The next segment is the DMZ. It was set up in order to defend services, which 

need to be accessed from user and attacker network segments. The demilitarized zone hosts 

provide the basic network services: corporate mail server, file server, web server, SQL server, 

SSH server and so on. The connection between segments is defended using IPFW firewall and 

SNORT IDS. This software filters all internal and external traffic and raises the alarm in case 

of suspicious behavior. The main purpose of the DMZ is the creation of the primary barrier 

against malicious attacks on the User segment. Mail and web servers have been implemented 

using Courier and Apache, based on the OS FreeBSD. The most protected segment of the 

prototype is the segment of end-users. It is protected against external intrusions by two 

firewalls and the DMZ. End-users have access to the services presented in the DMZ. They can 

securely communicate with each other. 

The infrastructure is built using virtual machines based on VMware technology. 

Physically, all virtual machines are stored on two clusters under VMSphere management.  

The servers in DMZ zone and firewalls were not used in experiments. They were 

incorporated in the testing environment in order to build a network as close to reality as 

possible. Those hosts will be used for the future experimentation including penetration agent 

detection and server attacks.  

 

 

Figure 3.19 Physical scheme 
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3.5 Tool architecture 
 

The system architecture consists of a client and a server (Figure 3.20). The server is installed 

on a host within the same network as the target. The target is the host to be attacked. During 

the computer security audit, the server performs multistep attacks by generating a sequence of 

actions and executing them, one by one, in a single attack. Actions include exploits and 

discovery actions such as port scan and OS detection. The server executes remote exploits 

itself. However, for local exploits, it sends the task for execution to the client, residing on the 

target. This functionality makes possible the scenario where a local exploit will be executed 

immediately after the remote one. After the server attacks a target, the client receives the 

notification that the attack was executed. The client checks the success of the exploit execution 

and then sends the result back to the server. It also restarts the services if needed. In the 

approach used here, all decisions concerned with the combination of exploits and the 

generation of the vulnerable string are learned using Q-learning on the server side. The client 

generates the reward signal. It should be noted that the client works using admin rights on the 

target machine. Such an architecture solution prevents the usage of the tool for malicious 

purposes. It will not let the operator of the tool break into anyone’s system, except the one he 

owns. The client is installed on the target and provides environmental feedback to the Q-

learning algorithm deployed on the server. This indicates whether the exploit has breached the 

target’s security and updates a reward signal according to the actions of the server. The 

architecture assumes that the feedback agent can be installed on the target host. 

 

 

Figure 3.20 System architecture 
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3.6 Experiments 
The experiments were intended to prove that Q-learning could be successfully applied to the 

penetration testing process in order to make it learn the attack strategy itself. This application 

was based on a model free approach. The penetration testing system did not have a model of 

the environment it was acting in. It was just executing actions and was learning the successful 

attack strategy by trial and error. All experiments involved an attacking agent and an 

environment agent. The attacking agent represented the computer security audit system. It 

performed attacks on the remote targets. The environment agent resided on the target in order 

to provide environmental feedback to the attacking agent. Based on this feedback, the agent 

accumulated knowledge and learned the optimal attack strategy. Experiments were divided 

into five groups: MDP experiment, Field experiment, New vulnerabilities experiment, Deep 

Architecture ANN experiment, Deep architecture RNN experiment. 

In case of an MDP process, a model is described (apart of the state/action space) by 

definition of transitions between states and predefined rewards for every action in a particular 

state. This approach is called Model-dependent. In cases when the agent (acting in MDP state 

space) doesn’t know transitions between states and predefined reward for its actions, it learns 

the model on the go by trial and error. This approach is named model free approach.  

Therefore, in order to apply the model free approach, two requirements have been relaxed: 

predefined reward function and predefined transition function for all possible states.  

The first group of experiments was intended to test the basic hypothesis of the model 

free approach, that the penetration testing system based on the Q-learning algorithm would be 

able to learn the attack strategy itself without a predefined reward function. The relaxation of 

this requirement leads to the receiving of rewards directly from the environment. Since 

experiments were designed to test the basic concept, the penetration testing process was 

defined as a specific MDP with state and action spaces. The case was generalized later in Deep 

Architecture ANN experiment and Deep architecture RNN experiment. The transition 

function was defined as well at that stage of the experiment. The agent attacked the target and 

learned the optimal attack strategy. In order to check the performance of the algorithm, 

different hyperparameters were tested such as: learning rate, reward discount parameter, 

quantity of episodes. Different acting policies were compared as well: random, ε-greedy, 

softmax policies. The dynamics of convergence to the optimal attack strategy was graphically 

assessed. More information about those experiments can be found in the MDP experiment 

section.  

The second group of experiments was also related to the investigation of the  model 

free approach. Additionally to the relaxation of the predefined reward function, the transition 
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function definition requirement was relaxed as well. The penetration testing system was 

attacking the target while knowing the state/action space definitions only. Rewards were 

derived from the environment. The transition function was not predefined. As in the previous 

case, the hyper-parameters performance for the Q-learning algorithm was tested, such as 

learning rate, reward discount factor and different policies. The criteria of optimality was 

compared graphically. More details can be found in the Field experiment section. 

The third group of experiments was intended to prove that the Q-learning model-free 

approach could be successfully applied to the new vulnerabilities identification, the buffer 

overflow in particular. The attacking agent was sending different inputs to the remote target 

machine’s service waiting for the input. The network service had a predefined buffer overflow 

vulnerability. The goal of the penetration testing system was to learn the sequence of actions 

leading to the successful vulnerability exploitation. The experiment was based on the 

particular MDP. The reward and transition function were not predefined. The performance of 

the algorithm was tested according to different hyperparameters: learning rate, reward 

discount parameter, quantity of episodes. Different acting policies were compared as well: 

random, ε-greedy, softmax policies. The generalisation of the experiment is considered as 

future work. More information can be found in the New vulnerabilities experiment section. 

The goal of the fourth group of experiments was to generalise the Q-learning model 

free approach for real world scenarios with huge state spaces. The algorithm was modified by 

using deep artificial neural network architecture as a state space approximator. It consisted of 

an autoencoder joined with an artificial neuro network (ANN). The autoencoder needed for 

the target host features extraction. ANN was used for actual approximation of the learning 

process. Due to deep architecture, the penetration testing system received the opportunity not 

only to learn the attack strategy while acting, but to extend the accumulated knowledge to the 

cases it never experienced before. The experiments were divided in two phases.  

The first phase consisted of attacking a remote target to learn the successful attack 

strategy. During this phase, the optimal hyperparameters for the Q-learning algorithm were 

used, identified during the MDP experiment and the Field experiment, such as learning rate 

and reward discount factor. However, additional approximator architecture related 

hyperparameters were tested in order to check penetration testing learning performance.  The 

autoencoder was tested with different values of weight decay, quantity of iterations, neurons 

per hidden layer, sparsity penalty term. The ANN hyperparameters were tested as well, such 

as: quantity of iterations, weight decay, learning rate. Different acting polices were used: 

random, ε-greedy and softmax. 
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During the second phase, the penetration testing system was executed against a remote 

host it had never experienced in the past. This experiment was intended to prove the ability to 

approximate the previously accumulated knowledge for the real case scenario with huge state 

space. More information can be found in the Deep Architecture ANN experiment section. 

The fifth group of experiments was intended to test the adaptivity of the penetration 

testing architecture and better approximator functionality. A model free approach based on Q-

learning application was used. The reward and transition functions were not predefined for 

every state and were learned while acting. The deep architecture of the approximator was 

changed. ANN was substituted by a recurrent neural network (RNN), an Elman network in 

particular.  

Experiments consisted of two phases. During the first phase, the penetration testing 

system was learning the attack strategy by attacking the remote target. The optimal 

hyperparameters were identified during previous experiments. Different action strategies were 

used: random, ε-greedy, softmax policies. 

During the second phase, the penetration testing system was attacking the target, 

which had not been experienced earlier, using previously accumulated knowledge. After 

successful penetration, the case was emulated when the configuration of the target was 

changed (one of the vulnerabilities was patched). In other words, the attack strategy, learned 

earlier, was no longer leading to successful penetration. In those circumstances, the 

penetration testing system should have been relearned automatically to find the new successful 

attack strategy itself. More information can be found in the Deep architecture RNN experiment 

section. 

The next chapter represents the information on the full set of experiments performed 

in order to achieve the goals of the project.  
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4 Results 
This section describes the experimental results, including Q-learning policy performance and 

learned attack strategies. The interpretation of the results of the experimentation is presented 

in the Conclusion and future  chapter. The outline of the experiments is described in the 

Experiments section of the Methodology chapter. 

This research on computer security, specifically on the audit process, is related to the 

application of Q-learning algorithms in order to make a penetration testing system learn attack 

strategies and adapt to the changing environment. The attacking agent performs different 

attack sequences in order to find the vulnerabilities of the target system. It receives feedback 

from the environment and corrects its attack strategy accordingly. As a result, accumulated 

knowledge provides the ability to make decisions during the penetration testing process 

automatically. This methodology allows the attack agent to learn new attack strategies if the 

host configuration under attack is changed. 

First, the computer security audit was modelled as a Markov Decision Process (MDP) 

in order to test a number of decision-making strategies and to compare their optimality. This 

model will be able to describe a behavior of the penetration testing system. It also can be tuned 

up to deal with real-life penetration testing constraints such as: attack detection rate, level of 

network traffic etc. In order to do so, additional features, defining state of the system can be 

added. In current research, exploit properties only were considered as constrains for the 

decision making such as: level of harm for system under attack, date of release, level of 

privileges etc. 

Second, a novel decision-making approach to the audit process was used, based on a 

modified Q-learning application, which was implemented with three different policies: Q-

learning random policy, Q-learning ε-greedy policy and Q-learning softmax policy. At the 

end, the optimality of these policies was compared. 

Third, a deep learning architecture for the approximator was developed in order to 

generalize the implemented approach for the real-life scenario. The proof-of-concept tool and 

testing architecture was built.  

The following subsections describe the experimental hypothesis, setup, result and 

other related information. 
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4.1 MDP experiments 

4.1.1 Hypothesis 
This group of experiments is intended to test the hypothesis that the Q-learning algorithm can 

be used to make a penetration testing system learn attack strategies by itself on the go, without 

a predefined reward function. The agent derives the reward from the environmental feedback 

directly. Additionally, it will show that the acting agent will be able to learn multistep attacks. 

 

4.1.2 Experiment setup 
The experiment uses the testing infrastructure described in the Environment architecture 

section of the Methodology chapter (Figure 4.1) 

 

 

Figure 4.1: The experiment setup 

 

The first host represents the penetration testing system. It has the residing agent 

program with the capability to attack the target. By ‘attack’, we mean the ability to execute 

exploits and probe the target (check the OS, scan ports, etc.). The second host is the target 

under attack. It has the second agent residing (on Target 2), which will give environmental 

feedback to the penetration testing agent, such as: exploit worked successfully with admin 

rights; exploit worked successfully with user rights; exploit failed; returns the OS name; 

particular port is open; particular service is presented. Both agents communicate via sockets. 

The target host has remote code execution and privilege escalation vulnerabilities. 

During an experiment, the penetration testing agent attacks the target host by 

executing different actions – exploits and probe actions. The target agent sends back 
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environmental feedback. Based on that process, the attacking agent’s machine learning 

algorithm learns the optimal sequence of actions (attack strategy). 

After hypothesis validation, the experiments related to learning performance were 

realized by changing different hyper-parameters of the learning algorithm. First, the quantity 

of episodes was changed. Second, the values of learning rate and discount factor were tested. 

In order to have a learning ability, the machine learning algorithm should know what 

process it is interacting with. For that purpose, the penetration testing needs to be modelled as 

an MDP. This MDP is not universal and describes only that particular experimental situation. 

The goal of the experiment was to validate proof-of-concept of the idea, stated in the 

hypothesis – the generalization problem was addressed in the later Deep Architecture ANN 

experiment by applying Q-learning approximators.  

In order to make the penetration testing system adaptive, a model-free approach was 

used. It does not have a predefined model of the environment. As opposed to the model-based 

approach, the requirement for transition and reward functions can be withdrawn. The current 

experiment is intended to test the hypothesis without a predefined reward function, describing 

all possible rewards for all actions in all states. Rewards are received directly from the 

environmental feedback as a result of action. Transition function requirement is not withdrawn 

for the current experiment. It is defined as a table describing every state-action pair transition. 

This requirement is later withdrawn in the Field experiment. 

Actions, transition, states and MDP itself are presented in the next subsection, on the 

‘The MDP process’. 

 

4.1.3 The MDP process 
The penetration testing process was modelled as an MDP with states/ action defined below. 

Only exploits presented in the table were used during experiment. 

The list of states and the list of actions are presented in Table 4.1 and Table 4.2, 

respectively. 

 

Table 4.1 MDP states 

0. Initial state – The state from which the audit starts 

1. Win7 – The state where it is checked whether the host has 

a Windows OS 
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2. Lx – A state when it is checked whether the host has a 

Linux OS 

3. P445 – A state when it is checked whether the host has 

Port 445 open 

4. P135 – A state when it is known that the host has Port 135 

open 

5. P22 – A state when it is known that the host has Port 22 

open 

6. P2525 – A state when it is known that the host has Port 

2525 open 

7. Serv1 – Checked that Service1 exists on the host 

8. Serv2 – Checked that Service2 exists on the host 

9. SSH – Checked that SSH service exists on the host 

10. Rm_Ex_1 – Remote Exploit 1 (admin) executed 

11. Rm_Ex_2 – Remote Exploit 2 (user) executed 

12. Lc_Ex_3 – Local Exploit 3 executed 

13. SSH_prob - SSH probing 

14. Rm_Ex_1_2 – Remote Exploit 2 (admin) executed as a 

second exploit in the attack chain 

15. Rm_Ex_2_2 – Remote Exploit 1 (user) executed as a 

second exploit in the attack chain 

16. Lc_Ex_3_2 – Local Exploit 3 executed as a second exploit 

in the attack chain 

17. Fail_terminal – Final state – dead end, such as exploit 

failed 

18. Suc_terminal – Final state, target was reached, such as 

host hacked ( admin privileges on the host) 

 

Table 4.2 MDP actions 

0. OS_Win_Check – Checks if OS is Windows 7 

1. OS_Lin_Check – Checks if OS is Linux 

2. Port445_Check – Checks if Port 445 is open 

3. Port135_Check – Checks if Port 135 is open 

4. Port22_Check – Checks if Port 22 is open 

5. Port2525_Check – Checks if Port 2525 is open 
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6. Serv1_Check – Checks if Service1 works 

7. Serv2_Check – Checks if Service2 works 

8. SSH_Check – Checks if SSH service works 

9. Rm_Ex_1_Check – Execute remote Exploit 1 (admin) 

10. Rm_Ex_2_Check – Execute remote Exploit 2 (user) 

11. Lc_Ex_3_Check – Execute Local exploit 3 

 

The example of MDP transactions from the initial state is presented in Figure 4.2. The bigger 

size of the figure is presented in Appendix A. 
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Figure 4.2 Transitions from initial state 

Actions and states are defined as numbers 0-18 in the Q-table of the Q-learning algorithm. 

 

4.1.4 Reward 
A ‘reward’ is the numerical value received by the agent after an attack/probe action was 

executed. It is the agent motivator to learn the successful attack strategy. Since the 

methodology described here is based on a model-free approach, the reward function is not 

predefined for all possible actions in all possible states. The reward is received directly from 

the environmental feedback. For example, if the last action in the sequence resulted in 

successful penetration, the agent will receive a high reward for the last transition to the 

successful final state. The Q-learning algorithm will propagate this reward to the previous 

transitions itself. This mechanism will form the agent’s experience, identifying the sequence 
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of transitions leading to the highest possible reward. The task of the agent is to learn the 

sequence of actions guaranteeing the highest cumulative reward. 

The reward is defined as follows: 

𝑅 = 𝑅 + 𝑅1 + 𝑅2 + 𝑅3 

where the main reward is defined as R. This reward indicates successful penetration for the 

agent. In cases where an agent got admin rights on a target host, it receives 100 as a main 

reward, otherwise it receives 0: 

R1 – Represents exploit effectiveness according to the metasploit rating (great, 

good and so on). The more effective the exploit, the higher the reward. 

R2 – Represents the possible OS/service harm after the exploit is used, according 

to the Common Vulnerabilities and Exposures (CVE) database. The more likely 

it is that the system service will be crashed, the less reward the audit agent will 

be awarded. 

R3 – Additional reward for testing actions (portscan, OS detection and so on), 

defined as 20/n (where n is the number of iterations per episode). This reward 

motivates an agent to explore the environment and reduces the state space before 

exploitation. 

In the current experiment, the agent can choose from three exploits. Remote exploit 2 

guarantees user privileges on the target host. Remote exploit 1 guarantees admin privileges on 

the host. Local exploit 3 escalates the privileges locally from user to admin. Remote exploit  

1 is more harmful for the target system and it has a lower reliability rating, according to the 

CVE. It means that, from the point of view of optimality, it is considered to be less optimal to 

use. Remote exploit 2 is more reliable and less harmful. It means that the agent receives more 

reward when it successfully uses remote exploit 2 compared to remote exploit 1. More harmful 

exploit cases the crash of the system under attack with higher probability. That is the reason 

why it receives less reward. As the goal of the attack is to get admin access on the Target 2, 

the agent should not cause DOS for system under attack. The optimal sequence of actions 

(attack strategy) leading to successful penetration guarantees the highest cumulative reward. 

In current research, reward does not reflect the value of the target. It will be added in the future 

work. 
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4.1.5 Results assessment 
The attack agent can learn a number of attack strategies. They are represented by different 

sequences from the set of available actions. The learning ability of the agent will be 

demonstrated if any of those successful attack strategies are learned. According to the 

experiment design, the agent can find a number of available solutions leading to the successful 

penetration of the target host. Those solutions differ by optimality. It is assessed by comparing 

the cumulative reward received after the attack strategy has been fully executed. The higher 

the value, the more optimal the solution. Possible successful attack strategies that can be 

learned by the agent are presented below. The list is sorted by optimality (1 being the highest): 

1. Probe action (Check the OS/ Check Service/ Port scan) + execute a remote 

exploit with user privileges + execute local exploit for privilege escalation. 

2. Execute a remote exploit with user privileges + execute local exploit for 

privilege escalation. 

3. Probe action (Check the OS/ Check Service/ Port scan) + execute a remote 

exploit with admin privileges. 

4. Execute a remote exploit with admin privileges. 

5. Sequence of actions leading to Fail state (penetration fail). 

Solution 1 will generate the highest cumulative reward as optimal. 

The performance of the learning algorithm is measured by cumulative rewards 

graphically. The higher the graphic curve rises of the cumulative reward across episodes, the 

better the performance of the learning algorithm. The faster it grows, the faster an acting agent 

learns. 

4.1.6 Experiment outcome 
This section presents the actual results of the described experimental setup. There were 

different acting policies used during the learning process: 

• Random – Actions are chosen randomly. 

• ε-greedy – Actions are chosen randomly or according to experience with 1-ε 

probability. 

• Softmax – Actions are selected randomly but each action has a different 

probability of being chosen. This probability is calculated according to the 

experience of the learning agent. The higher the potential reward, the more 

probable it is that the action will be chosen. In other words, softmax policy selects 

the actions according to the probability distribution of a number of different 

possible actions to choose in a particular state. 
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4.1.6.1 Q-learning with random policy 
Initially, Q-learning with random policy was applied. The MDP solution after 100 episodes of 

Q-learning is presented in Figure 4.3. 

 

Figure 4.3 MDP solution using random policy Q-learning 100 episodes 

 

This output shows an MDP solution, cumulative reward and Q-matrix with Q-values. The 

optimality of the solution is defined by the cumulative reward value. The bigger it is, the more 

optimal the solution that was found. The sequence of steps to trigger vulnerability was 

revealed: 

• Initialization 

• Check if OS is Windows 

• Execute Remote Exploit 1 (admin) exploit 

• Successful vulnerability exploitation 

After increasing the quantity of learning episodes to 1000, a new MDP solution was found 

(Figure 4.4). 
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Figure 4.4 MDP solution using random policy Q-learning 1000 episodes 

 

The solution to trigger the vulnerability after 1000 episodes is different: 

• Initialization 

• Check if OS is Windows 

• Execute Remote Exploit (user) 

• Execute Local Exploit 

• Successful vulnerability exploitation 

The further increase of episodes did not change this result.  

The next experiment was performed for the ε-greedy acting policy. 

 

4.1.6.2 Q-learning with ε-greedy policy 
At the next stage of the experiment, Q-learning with ε-greedy policy was applied. The MDP 

solution after 100 episodes using Gamma=0.8, Alpha=0.8, 1-ε=0.15 is shown in Figure 4.5. 
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Figure 4.5 MDP solution using ε-greedy policy Q-learning 100 episodes: Gamma=0.8, 
Alpha=0.8, 1-ε=0.15 

A solution was found: 

• Initialization 

• Check Service 1  existence 

• Execute Remote Exploit (admin) 

• Successful vulnerability exploitation 

However, it is clear from the random policy testing that a more optimal solution exists. The 

quantity of episodes was increased to 1000 (Figure 4.6). 

 

Figure 4.6 MDP solution using ε-greedy policy Q-learning 1000 episodes: Gamma=0.8, 
Alpha=0.8, 1-ε=0.15 
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The solution after 1000 episodes was different: 

• Initialization 

• Check if Port 135 is open 

• Execute Remote Exploit (user privileges) 

• Execute Local Exploit 

• Successful vulnerability exploitation 

The further increase of episodes did not change this result. At the next stage of the experiment, 

1-ε was increased to 0.55 and the quantity of episodes decreased back to 100 (Figure 4.7). 

 

 

Figure 4.7 MDP solution using ε-greedy policy Q-learning 100 episodes: Gamma=0.8, 
Alpha=0.8, 1-ε=0.55 

 

A solution was found: 

• Initialization 

• Remote Exploit (admin) execution 

• Successful vulnerability exploitation 

This solution is not optimal, since Remote Exploit (admin) is not the most reliable from the 

set of available exploits and the agent did not even try to decrease the state space by probing 

actions. After the quantity of episodes was increased to 1000, the result became more optimal. 

A more reliable chain of exploits was found: 
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• Initialization 

• Remote Exploit (user) execution 

• Local Exploit execution 

• Successful vulnerability exploitation 

However, the agent still did not try to decrease the state space before exploit execution. 

Nothing changed at 3000 episodes, the solution was the same. 

At the next stage of the experiment, 1- ε was increased to 0.98 and the quantity of 

episodes was decreased back to 100 (Figure 4.8). 

 

 

Figure 4.8 MDP solution using ε-greedy policy Q-learning 100 episodes: Gamma=0.8, 
Alpha=0.8, 1-ε=0.98 

 

A solution was not found. It was found that 100 episodes was not enough for the agent to learn 

a successful strategy. The situation was the same after 1000 episodes. 

After the quantity of learning episodes was increased to 3000, a solution was found 

but was not optimal: 

• Initialization 

• Probe action 

• Remote Exploit (admin) execution 
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• Successful vulnerability exploitation 

Even after 10000 episodes, the situation remained the same. 

The next experiments were performed using the softmax acting policy. 

 

4.1.6.3 Q-learning with softmax policy 
At the next stage of the experiment, Q-learning with softmax policy was applied. The solution 

after 100 episodes with Gamma=0.8, Alpha=0.8 is shown in Figure 4.9. 

 

 

Figure 4.9 MDP solution using softmax policy Q-learning 100 episodes: Gamma=0.8, 
Alpha=0.8 

 

Usage of Remote Exploit 1 (admin priv) is not an optimal solution. The state space 

was not decreased. Increasing the number of episodes to 1000 produced the same result. 

However, 3000 episodes leads to a more optimal solution (Figure 4.10). Before the execution 

of Remote Exploit 1(admin priv), the agent checks if the service exists. It decreases the state 

space. However, the more optimal Remote Exploit 2(userpriv) was not applied. After 10000 

episodes, the solution stayed the same. 
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Figure 4.10 MDP solution using softmax policy Q-learning 10000 episodes: Gamma=0.8, 
Alpha=0.8 

Next section describes the experiments related to the performance of the learning 

algorithm in regards of different parameters and acting policies. 

 

4.1.7 Learning performance 
The performance of the learning algorithm depending on the parameters and policies is 

presented below.  

 

Figure 4.11 Random policy Q-learning performance with Gamma=0.2 
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Figure 4.12 Random policy Q-learning performance with Gamma=0.5 

 

Figure 4.13 Random policy Q-learning performance with Gamma=0.8 

Figure 4.14 ε-greedy policy Q-learning performance with Gamma=0.8, Alpha=0.2/0.5/0.8,    

1- ε=0.15 
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Figure 4.15 ε-greedy policy Q-learning performance with Gamma=0.8, Alpha=0.2/0.5/0.8,    
1- ε=0.55 

 

Figure 4.16 ε-greedy policy Q-learning performance with Gamma=0.8, Alpha=0.2/0.5/0.8,    
1-ε=0.98 

 

Figure 4.17 Softmax policy Q-learning performance with Gamma=0.8, Alpha=0.2/0.5/0.8 
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The performance of the Q-learning algorithm with random policy was tested using 

Gamma=0.2 and Alpha=0.2/0.5/0.8. The quantity of episodes is 100 averaged by 100 tests 

(Figure 4.11). None of the three curves converge to their maximum reward smoothly. This 

fact indicates stabilization problems. However, the Q-learning algorithm with parameters 

Gamma=0.2 and Alpha=0.8 has the best performance, since its curve is consistently above the 

others and the value of the maximum cumulative reward is bigger. 

At the next step, Gamma was increased to 0.5 and Alpha=0.2/0.5/0.8. The quantity of 

episodes was the same: 100 averaged by 100 tests (Figure 4.12). The curves become a bit 

smoother. The algorithms using Gamma=0.5, Alpha=0.5/0.8 converge to their maximum 

rewards much faster. The algorithm with Gamma=0.5, Alpha=0.8 has the best performance. 

Finally, Gamma was increased to 0.8, Alpha=0.2/0.5/0.8 (Figure 4.13). The curves 

become much smoother. The maximum reward is significantly higher. The most effective 

algorithm with Gamma=0.8, Alpha=0.8 converges to the cumulative reward value 267, which 

is almost double the reward value of the algorithm with Alpha=0.2. 

In order to test the performance of the Q-learning algorithm with the ε-greedy policy, 

Gamma was set at 0.8, Alpha=0.2/0.5/0.8 and 1- ε=0.15 (Figure 4.14). The optimal parameters 

for 1-ε=0.15 are Gamma=0.8, Alpha=0.8, since the curve representing these parameters is 

above the others. It converges to a much higher cumulative reward, with the value at 250 

compared to the other curves at 175 and 142. It is quite sharp at the beginning and its value 

increases faster. 

The same parameters were tested for 1-ε=0.55 (Figure 4.15). The best performance 

was shown with 1-ε=0.55, Gamma=0.8, Alpha=0.2. All curves are flat and convergence to the 

max cumulative reward became smoother. 

The next test was performed with 1-ε=0.98, Gamma=0.8, Alpha=0.2/0.5/0.8 (Figure 

4.16). Curves become flat but less stabilized. There are a large number of small peaks. The 

best performance is the algorithm with parameters Gamma=0.8, Alpha=0.8, 1-ε=0.98. 

The performance of Q-learning with softmax policy with Gamma=0.8 and 

Alpha=0.2/0.5/0.8 is shown in Figure 4.17. The best performance was shown with 

Gamma=0.8, Alpha=0.8. In the case where the learning rate is less than 0.8, the curve becomes 

flatter and convergence to the max cumulative reward becomes slower. 
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4.1.8 Conclusion 
The hypothesis that Q-learning can be used to make the penetration testing system learn attack 

strategies itself on the go without predefined reward function was demonstrated. The acting 

agent was able to learn multistep attacks as well, consisting of probing actions and exploit 

execution, external + local in a sequence. 

The performance of the learning algorithm demonstrated convergence to optimality 

with the number of episodes increased. The best Q-learning hyper-parameters were identified: 

learning rate = 0.8, discount factor = 0.8, and the best acting policy was ε-greedy with 1-

ε=0.15. 

This experiment partly proved the application of a model-free approach to the 

penetration testing. It showed that the agent can successfully learn the optimal attack strategy 

without a predefined reward function, describing all possible rewards for all possible states-

actions pairs. The reward was derived directly from the environmental feedback. Therefore, 

the penetration testing system is one step closer to the automation, since the reward for the 

state/action pair is derived by the audit agent itself.  

The transition function for the MDP was predefined. In order to fully approve the 

application of the model-free approach, the predefined transition function should be 

withdrawn in addition to the reward function. It will let the agent derive the model of the 

environment directly from acting. It will itself learn expected rewards and possible transitions. 

The Field experiment section is intended to test such a hypothesis.  

 

4.2 Field experiment 

4.2.1 Hypothesis 
This experiment is intended to address a real-life uncertainty and to prove that, in this scenario, 

the penetration testing system will be able to learn attack strategies on the go, and, in addition, 

will learn multistep attacks. The uncertainty of a real-life scenario is defined by the agent’s 

lack of knowledge about which actions lead to the states and actions that guarantee the highest 

cumulative reward. In other words, there are no predefined transition and reward functions for 

the agent. It should learn this information during the experiment. 

 

4.2.2 Experiment setup 
The experiment uses the same testing infrastructure as that in the MDP experiment described 

in the Environment architecture section of the Methodology chapter.  
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The context of the Field experiment differs from that of the MDP experiment. In real 

life, the result of the penetration testing action is not known in advance since the tested system 

is always different. That is why it is not possible to define rewards and transitions in the R-

matrix for the Q-learning algorithm statically. However, this information can be derived from 

the environmental feedback while acting. After the action is executed and feedback from the 

environment has been received, the knowledge that the agent has about the environment will 

be updated. It is accumulated in the Q-matrix representing agent experience. 

The field experiment differs from the MDP experiment by additional requirement 

withdrawal.  It does not have a predefined transitions function, and, furthermore, it does not 

have a predefined reward function. It is the representation of a free-model approach to the 

real-world scenario. The model of the environment is not given to the agent. The only 

knowledge it has is state and action spaces. It does not know which actions are better (which 

guarantees the highest cumulative reward). Furthermore, the agent has no information about 

which actions lead to which states. This experiment is aimed at validating the project 

hypothesis while addressing the uncertainty of a real-life scenario. After hypothesis validation, 

the performance of the learning algorithm was tested by changing different hyper-parameters 

such as the: quantity of episodes, learning rate and discount factor.  

The MDP process is the same as in the MDP experiment with the only difference 

being that transitions are unknown to the agent. The agent has knowledge about state and 

action space only.  

The reward is defined in the same way as in the MDP experiment. Additionally, the 

agent is punished by receiving negative reward while it’s stuck in the same state. 

A result assessment is done as same way as in the MDP experiment, the learning 

algorithm performance is compared by cumulative rewards graphically. The higher the 

graphic curve rises of the cumulative reward across episodes, the better the performance of 

the learning algorithm. The faster it grows, the faster an acting agent learns.

 

4.2.3 Experiment outcome 
This section describes the outcome of the Field experiment. The experimental conditions are 

described in the section Experiment setup. Different acting policies were tested: 

• Random policy – Actions are chosen randomly. 

• ε-greedy policy – Actions are chosen randomly or according to experience with a 

certain probability. 
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• Softmax policy – Actions are chosen randomly but some actions are chosen more 

often with the higher potential reward. This policy tries to avoid the states with a 

very low potential reward. 

In order to check the learning algorithm performance for every policy, a variety of hyper-

parameters were tested such as: iteration quantity, learning rate and discount factor. 

 

4.2.3.1 Q-learning with random policy 
The field experiment with random policy after 100 episodes with Gamma=0.8, Alpha=0.8 is 

shown in Figure 4.18. 

 

 

Figure 4.18: Field test random policy Q-learning 100 episodes: Gamma=0.8, Alpha=0.8 

 

Figure 4.18 demonstrates the sequence of actions leading to the successful penetration 

of the target and Q-matrix defining agent experience. After 100 episodes, the optimal solution 

was found. The attack strategy was the following: 

• Initialization. 

• Check if Port 135 is open. 

• Execute Remote Exploit (user privileges) 

• Execute Local exploit to escalate privileges. 

After increasing the quantity of learning episodes to 1000, the same optimal solution was 

found but with different probe action (Figure 4.4). 
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 Figure 4.19 Field test random policy Q-learning 1000 episodes: Gamma=0.8, Alpha=0.8 

 

After 1000 episodes, the most effective solution was found: 

• Initialization. 

• OS check. 

• Remote exploit (user privileges) execution. 

• Local exploit execution. 

With a further increase of episodes, this result remained the same.  

The next set of experiments is intended to test the ε-greedy acting policy. This policy 

makes the agent act randomly or according to its experience with a certain probability. 

 

4.2.3.2 Q-learning with ε-greedy policy 
The field experiment with ε-greedy acting policy after 100 episodes with Gamma=0.8, 

Alpha=0.8 is shown in Figure 4.20. The agent has chosen random actions with probability 

0.15. 
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Figure 4.20 Field test ε-greedy policy Q-learning 100 episodes: Gamma=0.8, Alpha=0.8, 1-
ε=0.15 

After 100 episodes, the solution was found: 

• Initialization. 

• OS check. 

• Remote exploit (admin privileges) execution. 

It is not the optimal sequence of actions. The advantage of this solution is that probe action 

was used, which is intended to decrease the state space. However, the more dangerous exploit 

was used, which has a risk of crashing the target system. The quantity of episodes was 

increased to 1000 ( 

Figure 4.21). 
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Figure 4.21 Field test ε-greedy policy Q-learning 1000 episodes: Gamma=0.8, Alpha=0.8, 1-

ε=0.15 

 

The solution after 1000 episodes was better: 

• Initialization. 

• Remote exploit (user privileges) execution. 

• Local exploit (rights escalation). 

However, it was not the optimal solution. The probe action was missed. A further 

increase of episodes resolved that problem and the solution converged to the optimal one. 

 The next set of experiments is related to the softmax acting policy. This policy makes 

actions that are chosen randomly but some actions are chosen more often with the higher 

potential reward. This policy tries to avoid the states with a very low potential reward. 

 

4.2.3.3 Q-learning with softmax policy 
The field experiment with softmax policy after 100 episodes with Gamma=0.8, Alpha=0.8 is 

shown in Figure 4.22. A solution was found but it was not the optimal one.  

 

 

Figure 4.22 Field test softmax policy Q-learning 100 episodes: Gamma=0.8, Alpha=0.8 

A solution was found after 100 episodes: 

• Initialization. 
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• Remote exploit (admin privileges) execution. 

 

The sequence of actions was not the most effective. There was no probe action used 

and remote exploit (admin) was executed, which is more harmful for the host. The quantity of 

episodes was increased to 1000. The solution is presented in Figure 4.23. 

      

Figure 4.23 Field test softmax policy Q-learning 1000 episodes: Gamma=0.8, Alpha=0.8 

 

The solution after 1000 episodes was better: 

• Initialization. 

• Checking Port 22. 

• Checking Port 135. 

• Remote exploit (admin privileges) execution. 

 

However, it was not the optimal solution. There were two similar probe actions used. 

The further increase of episodes resolved that problem and the solution converged to the 

optimal one. After 5000 episodes, the solution was: 

• Initialization. 

• Checking OS. 

• Remote exploit (user privileges) execution. 

• Local exploit (escalate privileges). 
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 Next section describes the experiments related to the performance of the learning 

algorithm in regards of different parameters and acting policies. 

 

4.2.4 Learning performance 
The performance of the learning algorithm depending on the parameters and policies is 

presented below. 

 

 Figure 4.24 Performance of random policy Q-learning 100 episodes: Gamma=0.2, Alpha = 

0.2/0.5/0.8 

 

 Figure 4.25 Performance of random policy Q-learning 100 episodes: Gamma=0.5, Alpha = 

0.2/0.5/0.8 
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Figure 4.26 Performance of random policy Q-learning 100 episodes: Gamma=0.8, Alpha = 

0.2/0.5/0.8 

 

Figure 4.27 Performance of ε-greedy policy Q-learning 100 episodes: Gamma=0.8, 
Alpha=0.2/0.5/0.8 

 

Figure 4.28 Performance of softmax policy Q-learning 100 episodes: Gamma=0.8, 

Alpha=0.2/0.5/0.8 
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The performance of the Q-learning algorithm with random policy was tested using 

Gamma=0.2 and Alpha=0.2/0.5/0.8. The quantity of episodes is 100 averaged by 100 tests. 

The performance of Q-learning with random policy with different values of Gamma and Alpha 

is shown in Figure 4.24,  and Figure 4.25. 

In Figure 4.24, the curve with Gamma=0.2 and Alpha=0.2 smoothly converges to the 

solution. However, it does not accumulate a high cumulative reward. The rest of the curves 

are not smooth. The algorithm with parameters Gamma=0.2 and Alpha=0.5 has a better 

performance. The convergence is faster and the accumulated cumulative reward is higher. The 

Q-learning algorithm with parameters Gamma=0.2 and Alpha=0.8 has the best performance 

since its curve is fully above the others and the value of the maximum cumulative reward 

value is higher. 

Figure 4.25 represents the increase of Gamma parameter (Gamma=0.5). Curves 

became smoother. The algorithm with Gamma=0.5 and Alpha=0.8 demonstrated the best 

performance. 

In Figure 4.26, it is clear that the maximum reward is significantly higher for 

Gamma=0.8 and Alpha=0.8. Those values are the most effective for the Q-learning algorithm 

random acting policy. 

Figure 4.27 represents the performance of Q-learning with ε-greedy policy with 

different values of Gamma and Alpha. The maximum reward is significantly higher for 

Gamma=0.8 and Alpha=0.8, ε = 0.15. Those hyper-parameters values are the most effective 

for the ε-greedy acting policy from the performance point of view. They make the algorithm 

learn faster and converge to the higher cumulative reward. 

The performance of Q-learning with softmax policy is shown in Figure 4.28. The 

algorithm with Gamma=0.8, Alpha=0.8 showed the most effective learning process. The curve 

representing the best solution indicated some stabilization problems. However, it converged 

to the optimal solution. 

 

4.2.5 Conclusion 
This experiment was able to demonstrate the hypothesis that the penetration testing system 

will be able to learn attack strategies on the go. The multistep attack sequence was found. The 

algorithm was able to learn the optimal attack strategy in conditions where a model-free 

approach was applied. In other words, the experiment demonstrated the hypothesis in 

conditions where there is no transition and reward function provided, which describes all 
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transitions and rewards from all states. Such information was learned by the agent on the go, 

while acting. 

The current experiment validated the model-free approach for the particular MDP 

example. It motivated the extension of such an approach to the general case, so that it can be 

used in real-world scenarios. The generalization is presented in the later Deep Architecture 

ANN experiment and Deep architecture RNN experiment. 

Importantly, the experiment demonstrated the core hypothesis about the possibility of 

developing self-learning penetration testing. The attack toolset of the penetration testing 

system is the set of exploits which can be executed against the target. Those exploits need to 

be renewed from time to time in order to keep the attack system up to date. This requirement 

motivated us to apply our model-free approach based on the Q-learning algorithm to make the 

penetration testing system learn new ways to exploit potential new vulnerabilities itself. As a 

result, the system should be able to create new exploits and add them to its toolset. It will 

make the penetration testing tool significantly autonomous and self-updating. It was decided 

to validate the approach on Buffer Overflow vulnerability. The experiment is presented in the 

New vulnerabilities experiment section. 

 

4.3 New vulnerabilities experiment 

4.3.1 Hypothesis 
This experiment aims to demonstrate that the Q-learning algorithm can be used to make a 

penetration testing system learn vulnerability exploitation, in particular buffer overflow, 

which it has not experienced before. The approach is model-free. In other words, there are no 

transition and reward functions, predefined for all possible states. 

 

4.3.2 Experiment setup 
This experiment is intended to make a penetration system learn to exploit the buffer overflow 

vulnerability. The buffer overflow vulnerability allows the possibility of abnormal behavior 

by the program, so that it overruns the boundary of the buffer and rewrites additional memory 

locations. As a result, it will be able to execute malicious unauthorized actions. 

The mechanism of the buffer overflow is simple. While the program runs, different 

functions are executed in a particular order. When a new function is to be executed, the running 

environment saves the current address (return address), puts the function parameters in the 

stack and jumps to the function code address. When the function is executed, the running 
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environment uses the return address saved in the stack to restart the execution of the main 

program. However, in the case where the return address is rewritten by some unauthorized 

actions, the program will restart execution of the code stored at this new memory address. The 

buffer overflow vulnerability gives an opportunity to the attacker to overrun the buffer of the 

vulnerable function stored in the stack. As a result, the attacker can rewrite the return address 

stored in one of the stack registers after the buffer. The stack example is shown in Figure 4.29. 

 

  

Figure 4.29 The memory storage of parameters in the stack 

 

Similar to the ‘MDP experiment’, the experimental infrastructure consists of two hosts (Figure 

4.30): attacker(1) and target(2). 

 

 

Figure 4.30 New vulnerability experiment infrastructure 
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The attacker has an attack agent installed. The target has an environmental agent installed. 

The only difference is that the OS of the attack host is Windows 7, and the OS of the target 

host is Ubuntu Linux. The target machine has a vulnerable program residing there as well. 

Instead of exploit execution, the attack agent tries to generate and send a string to the 

vulnerable program on the target host in order to overrun its buffer and rewrite the return 

address. The sequence of actions that the attacking agent should learn is: 

• Add shellcode. 

• Add the additional bytes needed in order to ensure that the desirable return 

address is shifted until it will not rewrite the old return address. For these 

reasons, NOP (No operation) operation was used. 

• Add return address pointing to the shellcode. 

• Send an input to the tested program. 

 

Similar to the ‘MDP experiment’, a specific MDP was created in order to model that particular 

situation. 

A simple vulnerable program, which the attacking agent tries to compromise, was 

created using C++ for the agent to attack (Figure 4.31). It resides on the target host. 

 

 

 Figure 4.31 Program with stack overflow vulnerability 

 

The program represents the vulnerable service working on the target side. It emulates the 

potential buffer overflow vulnerability that can be exploited. The penetration testing system 

should be able to identify such security breaches. As a result, it will learn the sequence of 

actions leading to the successful vulnerability exploitation. 

The program reads the input parameter from the console and copies it to the buffer, 

using the vulnerable strcpy() function. The buffer has a particular size. Strcpy() does not check 

the length of the copied string. The audit agent does not have any information about the 

program, including the buffer size. It just knows that there is a program waiting for the input. 
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The audit agent tries to learn a correct sequence of data which will trigger the vulnerability. 

The environmental agent sends the string to the vulnerable program. It also restarts it in the 

case of a crash and checks if the shellcode was executed. 

The audit agent uses Q-learning to combine (in a correct sequence) different 

shellcodes, a new return address (pointing at the shellcode), and the block of NOP operations. 

Four different shellcodes were used for this purpose: 

Shellcode1: Linux/x86-64: Connect Backdoor, date release: 14 Sep 2014. 

‘\x31\xc0\x31\xd2\x31\xdb\x31\xc9\xb0\x02\xcd\x80\x83\xf8\x01\x7c\x02\xeb\

x62\x50\x6a\x01\x6a\x02\xb0\x66\xb3\x01\x89\xe1\xcd\x80\x89\xc3\x31\xc9\x

b0\x3f\xcd\x80\x41\x83\xf9\x04\x75\xf6\x68\x7f\x01\x01\x01\x66\x68\x1b\x39

\x66\x6a\x02\x89\xe1\x6a\x10\x51\x53\x89\xe1\xb0\x66\xcd\x80\x31\xc9\x29\x

c8\x75\x1b\xb0\x02\xcd\x80\x83\xf8\x01\x7c\x05\x31\xc0\x50\xeb\x0d\xb0\x0

b\xeb\x1f\x5e\x52\x56\x89\xe1\x89\xf3\xcd\x80\x31\xc0\xb0\x06\xcd\x80\xf3\x

90\x0f\x31\xf3\x90\xeb\x8b\x31\xc0\xb0\x01\x31\xdb\xcd\x80\xe8\xdc\xff\xff\

xff\x2f\x62\x69\x6e\x2f\x62\x61\x73\x68’ 

Shellcode2: Linux/x86-64: Reads data from /etc/passwd, date release: 27 March 

2014. 

‘\x48\x31\xc0\xb0\x02\x48\x31\xff\xbb\x73\x77\x64\x00\x53\x48\xbb\x2f\x65\

x74\x63\x70\x61\x73\x53\x48\x8d\x3c\x24\x48\x31\xf6\x0f\x05\x48\x89\xc3\x

48\x31\xc0\x48\x89\xdf\x48\x89\xe6\x66\xba\xff\xff\x0f\x05\x49\x89\xc0\x48\

x89\xe0\x48\x31\xdb\x53\xbb\x66\x69\x6c\x65\x53\x48\xbb\x2f\x74\x6d\x70\x

6f\x75\x74\x53\x48\x89\xc3\x48\x31\xc0\xb0\x02\x48\x8d\x3c\x24\x48\x31\xf

6\x6a\x66\x66\x5e\x0f\x05\x48\x89\xc7\x48\x31\xc0\xb0\x01\x48\x8d\x33\x48\

x31\xd2\x4c\x89\xc2\x0f\x05’ 

Shellcode3: Linux/x86-64: console command execution (output to console),  date 

release: 4 Oct 2015. 

‘\xeb\x19\x31\xc0\x31\xdb\x31\xd2\x31\xc9\xb0\x04\xb3\x01\x59\xb2\x05\xcd\

x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80\xe8\xe2\xff\xff\xff\x68\x65\x6c\x6c\x6f’ 

Shellcode4: Linux/x86-64: console command execution (output to console), date 

release: 14 Aug 2014. 

‘\xeb\x19\x31\xc0\x31\xdb\x31\xd2\x31\xc9\xb0\x04\xb3\x01\x59\xb2\x05\xcd\

x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80\xe8\xe2\xff\xff\xff\x61\x74\x74\x61\x63

\x6b’ 
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The effectiveness of each shellcode is defined by two parameters: platform support and release 

date. The newer the release date, and the more platforms are supported, the more preferable is 

the shellcode. This information was used in the definition of the reward function in order to 

motivate the audit agent to use the most preferable shellcode. For this experiment, it is not 

important what the shellcode actually does. We are just interested in its successful execution, 

which is the indication of the vulnerability presence. 

The next subsection defines an MDP for that particular example. 

 

4.3.3 MDP process 
The MDP state-action space and transitions were defined as shown in Table 4.3 and Table 4.4. 

Table 4.3 MDP States 

0 Initial state – The state from which the audit 

starts 

1 SH1 – ‘Shellcode1: Linux/x86-64: Connect 

Backdoor’ was added 

2 SH2 – ‘Shellcode2: Linux/x86-64: Reads data 

from /etc/passwd’ was added 

3 SH3 – Shellcode3: Linux/x86-64: Shell echo 

command’ was added 

4 SH4 – ‘Shellcode4: Linux/x86-64: Shell echo 

command’ was added 

5 SH1_N1 – 223 bytes of \x90 (NOP) were added 

6 SH1_N2 – 256 bytes of \x90 (NOP) were added 

7 SH1_N3 – 138 bytes of \x90 (NOP) were added 

8 SH1_N4 – 141 bytes of \x90 (NOP) were added 

9 SH1_N5 – 115 bytes of \x90 (NOP) were added 

10 SH2_N1 – 133 bytes of \x90 (NOP) were added 

11 SH2_N2 – 57 bytes of \x90 (NOP) were added 

12 SH2_N4 – 1 byte of \x90 (NOP) was added 

13 SH2_N3 – 240 bytes of \x90 (NOP) were added 

14 SH3_N1 – 123 bytes of \x90 (NOP) were added 

15 SH3_N2 – 151 bytes of \x90 (NOP) were added 

16 SH3_N3 – 205 bytes of \x90 (NOP) were added 

17 SH3_N4 – 4 bytes of return address were added 

18 Fail_terminal – Sequence failed 

19 Suc_terminal – Sequence succeeded 
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Table 4.4 Actions 

0 Add ‘Shellcode1: Linux/x86-64: Connect 

Backdoor’ 

1 Add ‘Shellcode2: Linux/x86-64: Reads data 

from /etc/passwd’ 

2 Add ‘Shellcode3: Linux/x86-64: Shell echo 

command’ 

3 Add ‘Shellcode4: Linux/x86-64: Shell echo 

command’ 

4 Add 223 bytes of \x90 (NOP)  

5 Add 256 bytes of \x90 (NOP)  

6 Add 138 bytes of \x90 (NOP) 

7 Add 141 bytes of \x90 (NOP)  

8 Add 115 bytes of \x90 (NOP)  

9 Add 133 bytes of \x90 (NOP)  

10 Add 57 bytes of \x90 (NOP)  

11 Add 1 byte of \x90 (NOP)  

12 Add 240 bytes of \x90 (NOP)  

13 Add 123 bytes of \x90 (NOP)  

14 Add 151 bytes of \x90 (NOP)  

15 Add 205 bytes of \x90 (NOP)  

16 Add 4 bytes of return address  

 

Transitions for the first and second states are presented in Figure 4.32 as an example. 

 

Figure 4.32 Transactions of new vulnerabilities MDP 
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4.3.4 Reward 
The reward is derived directly from the environmental feedback and motivates the agent 

learning the successful attack strategy. The reward and transition functions are not predefined 

for every state-action. They are learned in the acting process. The task of the agent is to learn 

the sequence of actions guaranteeing the highest cumulative reward. 

The reward is defined as a combination of main and additional rewards, R = R + 

R1 + R2, where the main reward is defined as R indicating successful execution 

of a shellcode, and the additional rewards are defined as follows: 

R1 – Represents shellcode release date. The more recent the shellcode used, the 

bigger the reward that will be awarded. 

R2 – Represents heterogeneity of the platforms where the shellcode can be 

executed. The more platforms are available for a particular shellcode, the higher 

the reward is. 

 

4.3.5 Results assessment 
The attack agent is able to learn a variety of attack sequences. They are formed by the 

combination of the shellcode, additional NOP bytes and the return address. The learning 

ability of the agent will be demonstrated if it will be able to learn the sequence of actions 

leading to the successful buffer overflow. There are solutions with different optimality that 

can be identified. 

The optimal attacking sequence that the agent can learn is: 

• Add Shellcode3 

• Add 223 bytes of \x90 (NOP) 

• Add return address pointing to the shellcode 

• Send an input to the tested program 

 

This solution is the optimal one because it accumulates the highest cumulative reward. It is 

related to the fact that Shellcode3 covers multiple platforms and is more relevant according to 

the release date. 

The second solution that can be found by the attacking agent is: 

• Add Shellcode4 

• Add 240 bytes of \x90 (NOP) 
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• Add return address pointing to the shellcode 

• Send an input to the tested program 

 

This solution is less optimal because Shellcode4 is older than Shellcode3. 

The performance of the learning algorithm is compared graphically by rewards 

accumulation during different acting policies. The higher the graphic curve of the cumulative 

reward rises with episode increase, the better the performance of the learning algorithm. The 

faster it grows, the faster an acting agent learns. The best hyper-parameters were used, which 

were identified during the MDP experiment and Field experiment (Gamma = 0.8, Alpha = 

0.8). 

The hypothesis of the current experiment will be demonstrated if the agent is able to 

learn a successful attack strategy. This strategy should result in a successful buffer overflow 

vulnerability exploitation of the target service. 

 

4.3.6 Experiment outcome 
This subsection represents the results of the current experiment. As in a previous MDP 

experiment, the same action policies were applied: 

• Random – Actions are chosen randomly. 

• ε-greedy – Actions are chosen randomly or according to experience with 1-ε 

probability. 

• Softmax – Actions are selected randomly but each action has a different 

probability of being chosen. This probability is calculated according to the 

experience of the learning agent. The higher the potential reward, the more 

probable it is that the action will be chosen. 

 

4.3.6.1 Q-learning with random policy 
Initially, Q-learning with random policy was used. The result is presented in Figure 4.33. 
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Figure 4.33 Solution using random policy Q-learning 100 episodes 

 

This output shows an MDP solution and cumulative reward. The solution was: 

• Initialization 

• Add ‘Shellcode3: Linux/x86-64: Shell echo command’ 

• Add 223 bytes of \x90 (NOP) 

• Add 4 bytes of return address 

• Send combined string: Successful vulnerability exploitation 

 

After only 100 episodes, the optimal solution was found. The later increase of the episodes 

did not change the solution. 

 

4.3.6.2 Q-learning with ε-greedy policy 
At the next stage of the experiment, Q-learning with ε-greedy policy was applied. The MDP 

solution after 100 episodes using Gamma=0.8, Alpha=0.8, 1-ε=0.15/0.55/0.98 is shown in 

Figure 4.34, Figure 4.35 and Figure 4.36. 

 

 

Figure 4.34 MDP solution using ε-greedy policy Q-learning 100 episodes: Gamma=0.8, 
Alpha=0.8, 1-ε=0.15 
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 Figure 4.35 Solution using ε-greedy policy Q-learning 100 episodes: Gamma=0.8, Alpha=0.8, 
1-ε=0.55 

 

 

Figure 4.36 Solution using ε-greedy policy Q-learning 100 episodes: Gamma=0.8, Alpha=0.8, 
1-ε=0.85 

 

Surprisingly, the agent with 1-ε=0.15 did not find the optimal solution since the shellcode was 

outdated: 

• Initialization 

• Add Shellcode4 

• Add 240 bytes of \x90 (NOP) 

• Add return address pointing to the shellcode 

• Send an input to the tested program 

 

After 1-ε was increased to 55, the solution was still not the optimal one: 

• Initialization 

• Add Shellcode4 

• Add 240 bytes of \x90 (NOP) 

• Add return address pointing to the shellcode 

• Send an input to the tested program 
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Only after the quantity of episodes was increased to 1000 did the solution converge to the 

optimal one: 

• Initialization 

• Add ‘Shellcode3: Linux/x86-64: Shell echo command’ 

• Add 223 bytes of \x90 (NOP) 

• Add 4 bytes of return address 

• Send combined string: Successful vulnerability exploitation 

 

When 1-ε was set up to 0.98, the agent was not able to find the solution at all after 

100 episodes. Even after 1000 episodes, the solution was still not optimal. Only a further 

increase to 5000 guaranteed the convergence to the most effective solution: 

• Initialization 

• Add ‘Shellcode3: Linux/x86-64: Shell echo command’ 

• Add 223 bytes of \x90 (NOP) 

• Add 4 bytes of return address 

• Send combined string: Successful vulnerability exploitation 

 

The next section shows the application of the Q-learning algorithm using softmax 

acting policy. 

 

4.3.6.3 Q-learning with softmax policy 
In the current stage of the experiment, Q-learning with softmax policy was applied. The 

solution after 100 episodes with Gamma=0.8, Alpha=0.8 is shown in Figure 4.37. 

 

Figure 4.37 Solution using softmax policy Q-learning 100 episodes: Gamma=0.8, Alpha=0.8 

 

The optimal solution was not found straight away after 100 episodes. However, a less optimal 

sequence of actions was identified: 
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• Initialization 

• Add ‘Shellcode4: Linux/x86-64: Shell echo command’ 

• Add 240 bytes of \x90 (NOP)  

• Add 4 bytes of return address 

• Send combined string: Successful vulnerability exploitation 

 

After the further increase of episodes to 1000, the solution was optimal: 

• Initialization 

• Add ‘Shellcode3: Linux/x86-64: Shell echo command’ 

• Add 223 bytes of \x90 (NOP)  

• Add 4 bytes of return address 

• Send combined string: Successful vulnerability exploitation 

 

Next section describes the learning algorithm performance related experiments in 

regards of different parameters and acting policies. 

 

4.3.7 Learning performance 
The performance of the learning algorithm depending on the parameters and policies is 

presented below. 

 

Figure 4.38 Random policy Q-learning performance with Gamma=0.2 
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Figure 4.39 ε-greedy Q-learning performance with Gamma=0.8, Alpha=0.8, 1-

ε=0.15/0.55/0.98 

 

Figure 4.40 Softmax policy Q-learning performance with Gamma=0.8, Alpha=0.8 

 

The performance of the Q-learning algorithm with random policy was tested with the 

best values of Gamma and Alpha. In Figure 4.38, the optimal values of Gamma=0.8 and 

Alpha=0.8 are presented. The quantity of episodes is 100 averaged by 100 tests. The curve is 

smooth and converges to the cumulative reward value of 285. The next experiment was 

performed with ε-greedy policy. 

The performance of the Q-learning algorithm with ε-greedy policy is presented in Figure 

4.39, where Gamma=0.8, Alpha=0.8 and 1-ε=0.15/55/98. All the curves smoothly converge 

to optimality. However, the best performance was shown with 1-ε=0.15. The curve rises faster 
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than the others. It demonstrates a faster learning process and converges to the highest value of 

cumulative reward. It indicates that the algorithm with such a hyper-parameter for ε-greedy 

policy guarantees the most effective learning process. 

The performance of Q-learning with softmax policy with Gamma=0.8 and Alpha=0.8 is 

presented in Figure 4.40. The curve smoothly converges to the optimal value of 278. It rises 

quite fast at almost the same speed as that of the curve representing the most effective ε-greedy 

policy. The algorithm with those two policies converges faster to the optimal solution. It 

reaches the highest cumulative reward value as well. 

 

4.3.8 Conclusion 
The hypothesis that the penetration testing system is able to learn a vulnerability exploitation 

which it has never experienced before was demonstrated for the particular example of buffer 

overflow. The multistep sequence of actions was found. The algorithm was able to learn the 

optimal attack strategy without any predefined knowledge about transition and reward 

function being provided, which describes all transitions and rewards from all states. Such 

knowledge was learned by the agent while acting. 

The performance of Q-learning in this experiment showed that the best acting policy 

was ε-greedy with 1- ε = 0.15. The best convergence to the optimality was demonstrated with 

learning rate = 0.8, discount factor = 0.8. 

The current experiment validated the model-free approach to the new vulnerabilities 

discovery process, in particular buffer overflow. The experiment successfully proved the 

initial hypothesis. In order to make the experiment more realistic, it requires further 

generalization, which is considered to be future work. This experiment is an initial research 

towards a self-updating autonomous penetration testing system, which can update its 

functionality with new exploits by itself. It also covers the problem of new vulnerabilities 

search which has not yet been covered by exploits. The research showed sufficient potential 

to make the penetration testing tool significantly autonomous and self-updating. 

The next experiment represents the generalization of the Field experiment, which is a 

logical extension of the MDP experiment. It should prove the model-free learning approach 

in a general case scenario. 
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4.4 Deep Architecture ANN experiment 

4.4.1 Hypothesis 
This group of experiments is arranged in order to generalize a model-free learning approach 

to the general penetration testing case scenario. It is intended to demonstrate the hypothesis 

that the Q-learning algorithm with an approximator, based on an artificial neural network, will 

be able to learn attack strategies on the go and successfully attack targets it has not previously 

experienced. The agent derives the reward directly from the environmental feedback while 

acting.  

 

4.4.2 Experiment setup 
The experiment uses the testing infrastructure described in the Environment architecture 

section of the Methodology chapter. It is shown in Figure 4.41. 

 

 

Figure 4.41 The experiment setup 

 

Attacker host 1 represents the penetration testing system with an attacker agent 

installed. Target host 2 is the first goal to attack. The second goal is the New Target 3 host. 

Both target hosts have feedback agents installed in order to provide the environmental 

feedback to the penetration testing system. All agents communicate via sockets. Both target 

hosts have remote code execution and privilege escalation vulnerabilities. Their 

configurations are similar to each other but not identical. Both have Windows 7 OS installed 

and a similar set of processes.  
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The experiment is intended to generalize the particular case of the Field experiment. 

It has two stages. During the first stage, the penetration testing system attacks Target host 2 in 

order to learn the attack strategy. ‘Attack strategy’ means the sequence of actions leading to 

the successful penetration for Target 2. 

The learning process is different to that of the Field experiment. Instead of acting 

according to the Q-values table, the learning algorithm derives Q-values using the neural 

network as an approximator. An artificial neural network approximates the Q-value function. 

It uses features representing the target host as an input, and returns a Q-value for the current 

state/action pair as an output. Features representation of the states are described in the Feature 

extraction section. Features are extracted using an autoencoder. It allows the algorithm to 

efficiently learn attack strategies in the case of huge state spaces. 

The autoencoder configuration is presented in Table 4.5. 

Table 4.5 Parameters for autoencoder 

Variables Values Comments 

Layers: 1 Quantity of hidden layers 

Neurons per layer: 285 Quantity of neurons in hidden layers 

Activation function: sigmoid Activation function 

Epsilon: 0.12 Random weights initialization 

parameter 

Lambda1: 0.003 Weight decay parameter 

p: 0.1 Sparsity parameter 

Beta: 3 Weight of sparsity penalty term 

Lambda2: 0.02 Learning rate 

Iterations: 500 Learning iterations 

 

In order to make the penetration system learn the attack sequence (using the ANN 

approximator) against the target host configuration, defined by features, a deep learning 

architecture was developed. It consists of two neural networks combined: the autoencoder and 

the ANN. When the system experiences a new target host, features are collected. The features 

description and collection process is presented in the section Autoencoder. The feature set is 

used as an input for the autoencoder. It decreases the features space by processing input 

information. As a result, the smaller feature set (which is the set of hidden layer neurons of 
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the autoencoder), joined with the action vector, is fed to the approximator ANN as an input. 

The output of the approximator is an estimated Q-value. After the environment agent sends 

the reward to the attacking agent, the real Q-value is calculated. As a result, the error between 

the estimated and real Q-values is determined and the approximator readjusts its weights. 

The optimal parameters for Q-learning, which were revealed during the MDP 

experiment/Field experiment, were used. The performance of the modified Q-learning 

algorithm is tested against random, ε-greedy and softmax acting policies. 

The second phase of the experiment consists of attacking New Target 3 host, using 

the experience learned during the attack of the Target host 2. The penetration testing system 

attacks the host, which it has never experienced before. The only knowledge it has is the 

feature set representing the configuration of the new target. This feature set was used as an 

input to the approximator in order to get the sequence of actions leading to the successful 

penetration for the New Target host. 

The experiment demonstrates the general case scenario for the smart penetration 

testing system. It accumulates the attack experience during the first stage by attacking Target 

host 2. Afterwards, it uses its experience in order to successfully attack the New Target host 

3, which it never experienced before. In other words, the final target and the host providing 

the knowledge for the system are different. Therefore, the system learns the attack behavior 

and demonstrates successful penetration testing activity without a human interaction. 

 

4.4.3 MDP process 
The representation of the penetration testing process is generalized for huge state space. It 

means that instead of a fixed number of states, their general representation is defined by the 

feature set. The feature set is related to the definition of the configuration of the Target host. 

‘Configuration’ means the combination of processes and dlls used by the host. More details 

on features description can be found in the Autoencoder section of the Methodology chapter. 

The actions of the MDP process are defined in Table 4.6. 

Table 4.6 MDP Actions 

0. OS_Win_Check – Checks if OS is Windows 7 

1. Ex_1_remote – Execute remote Exploit 1 (user 

privileges, Windows 7) 

2. Ex_2_remote – Execute remote Exploit 2 (admin 

privileges, Windows XP) 
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3. Ex_3_remote – Execute remote Exploit 3 (admin 

privileges, Windows 7) 

4. Ex_4_local – Execute Local exploit 4 (escalate 

privileges) 

 

The transition function is not defined for every state and is learning on the go while acting. 

The reward function is not defined for every state-action as well and is described in the next 

section. 

 

4.4.4 Reward 
A reward is the numerical value received by the agent after attack/probe action was executed. 

The reward is received directly from the environmental feedback. It is the mechanism 

motivating the agent to learn the successful sequence of actions leading to the successful 

penetration to the target host. The task of the agent is to learn the attack strategy guaranteeing 

the highest cumulative reward. 

The reward is defined as follows: 

𝑅 = 𝑅 + 𝑅1 + 𝑅2 + 𝑅3 

where the main reward is defined as R. This reward indicates the successful penetration for 

the agent. In cases where the agent got admin rights on a target host, it receives 100 as a main 

reward, 0 otherwise: 

R1 – Represents exploit effectiveness according to the metasploit rating (great, 

good and so on). The more effective the exploit, the higher the reward. 

R2 – Represents the escalation of privileges bonus. The higher reward is given 

for remote penetration with admin privileges contrary to the user privileges only.  

R3 – Additional reward for testing actions (portscan, OS detection and so on), 

defined as 20/n (where n is the number of iterations per episode). This reward 

motivates an agent to explore the environment and reduces the state space before 

exploitation. 

 

4.4.5 Results assessment 
The setup of the experiment provides four exploits available for the attacking agent: Remote 

exploit 1 (user privileges, Windows 7), Remote exploit 3 (admin privileges, Windows 7), 

Remote exploit 2 (admin privileges, Windows XP) and Local exploit 4 for privilege escalation 
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for Windows 7. The first exploit is remote and guarantees user privileges on the target host. 

The second exploit provides admin privileges on the target host with remote access. Windows 

XP exploit won’t work on the Target. Local exploit escalates the privileges locally. Exploits 

differ according to the reliability rating and potential harm for the target system. Remote 

Exploit 3 (admin privileges, Windows 7) is more reliable and less harmful. It means that an 

agent receives more reward when it successfully uses Exploit 3 compared to Exploit 1. The 

agent also has probe actions available. The combination of actions leading to successful 

penetration defines the attack strategy. A variety of attack strategies differs by optimality (the 

quantity of reward accumulated by an agent during its execution).  

Attack strategies that can be found are presented below and sorted by optimality: 

1. Probe action + execute a remote exploit 3 with admin privileges. 

2. Execute a remote exploit 3 with admin privileges. 

3. Probe action + execute a remote exploit 2 with user privileges + execute local 

exploit. 

4. Execute a remote exploit 2 with user privileges + execute local exploit. 

5. The rest of the actions leading to Fail state. 

 

The optimal attack strategy is the first one. The optimality of the other solutions 

decreases to the end of the list. The performance of the learning algorithm is defined by 

cumulative rewards value and measured graphically. The higher it is and the faster it grows, 

the more effective the learning process is. 

The attack agent should not just learn the attack strategy but it should be able to 

successfully apply the attack strategy to the new, never experienced target.  

 

4.4.6 Experiment outcome 
This subchapter represents the actual results of the described experimental setup. The 

experiment was based on deep learning architecture, consisting of two parts connected 

sequentially: autoencoder and state space ANN approximator. The autoencoder extracts the 

feature set defining the state of the target host. The ANN approximator uses this information 

in order to make the attacking agent learn the attack strategy. Therefore the description of the 

experiment is divided into two parts. The feature extraction section describes the group of 

experiments related to the learning process of the autoencoder with different values of hyper 

parameters. It demonstrates the feature extraction process. The second part of the experiment 
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represents the description of the actual Q-learning process with the ANN approximator. There 

were different acting policies used during the learning process:  

• random – actions are chosen randomly. 

• ε-greedy – actions are chosen randomly or according to experience 

depending on parameter ε.  

• softmax – actions are selected randomly but each action has a different 

probability of being chosen. This probability is calculated according to 

the experience of the learning agent. The higher the potential reward, the 

more probable the action will be chosen. 

4.4.6.1 Feature extraction  
The first part of the current experiment is related to the features extraction process. This is 

based on autoencoder architecture. The features representation and architecture itself is 

described in the Autoencoder section. The experiment is to make the autoencoder learn 

features representation. The autoencoder receives the list of processes and dlls of the target 

host as an input. It encodes the features into its smaller hidden layer and decodes it back to the 

output layer. After this process, the error is calculated as a difference between the input and 

output and the weights of the autoencoder are corrected. After a number of iterations the error 

becomes minimal and the hidden layer can be used as a new decreased feature set. The feature 

extraction experiment consists of testing the performance of the learning process of the 

autoencoder using different hyper parameters. The learning process is defined by the error 

minimisation procedure and compared graphically. 

4.4.6.1.1. Autoencoder learning performance 
This section shows the performance of the autoencoder learning process according to different 

numbers of iterations. Decoding error graphs are presented below. 

 

Figure 4.42 Autoencoder learning process using initial parameters 
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Figure 4.43 Autoencoder learning process after 50 iterations 

 

Figure 4.44 Autoencoder learning process after 100 iterations 

 

Figure 4.45 Autoencoder learning process (100 neurons per hidden layer and 100 interations) 
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Figure 4.46 Autoencoder learning process (λ1 = 0.1) 

 

Figure 4.47 Autoencoder learning process (λ1 = 0.00003) 

 

Figure 4.48 Autoencoder learning process (β = 0.1) 

 

The first number of iterations was set up to 20. The result of decoding error 

minimization is presented in . It can be seen that 20 iterations are not enough. The autoencoder 
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iterations was increased to 50 (). It is noticeable that the curve becomes smoother. The learning 

error was decreased from 273 to 200. This trend was expected, since the accuracy of weights 

in the autoencoder increases with the quantity of iterations.  represents the learning error after 

100 iterations. The curve has become quite smooth. The learning error has been decreased to 

136. This is the optimal value in order to have a balance between the accuracy of the feature 

set and the speed of the extraction process.  

The other hyper-parameter to test is the number of neurons per hidden layer. Previous 

experiments related to the iteration quantity were performed with 300 neurons per hidden 

layer. In order to decrease the error even more, the number of neurons was set to 100. The 

result of features extraction at this number is shown in . Decreasing the quantity of neurons 

leads to the minimization of learning errors to 108. However, during this process, the quantity 

of information, which is needed for reliable features representation also decreases. During 

experiments, it was found that 285 is an optimal quantity of neurons to extract features for the 

Q-learning ANN approximator. 

The next parameter to test is the weight decay λ1 (regularization term). All previous feature 

extraction experiments were performed using λ1 = 3e-3. For the current case, the weight decay 

was significantly increased to 0.1. This parameter prevents the weights of the autoencoder 

from growing too large. The reaction of the decoder error is presented in . As a result, the 

learning error increased to 136 against the smaller weight decay case of 108. In order to test 

the small weight decay case, λ1 was significantly decreased to 0.00003 (). The learning error 

is increased compared to the average weight decay value of 138. Therefore, the optimal value 

for λ1 (weight decay) was found to be 0.003. 

The next hyper-parameter for the autoencoder to test is the sparsity penalty term. This 

parameter is responsible for switching off some of the neurons in a hidden layer. It is used 

when the quantity of hidden layer neurons is larger than the quantity of input neurons. For all 

previous cases, the sparsity penalty term was set up to 3. This parameter was decreased to 0.1 

(). As a result, the error was decreased to 100. However, this representation of features caused 

problems in the Q-learning algorithm learning process. The optimal value for sparsity penalty 

term was found to be 3. 

Therefore, the optimal hyper-parameters for the autoencoder were found: 285 neurons 

per hidden layer, λ1 (weight decay) = 0.003, β (sparsity penalty term) = 3. The next three 

subsections show the results of the penetration testing system’s learning, using different action 

policies. The learning process is based on deep architecture consisting of autoencoder and 

ANN. All hyper-parameters of both neural networks are optimal, according to the previous 
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experiments. These action policies were tested: random policy, ε-greedy policy and softmax 

policy. 

 

4.4.6.2 Q-learning with random policy 
 

During this experiment, Q-learning with random policy was applied. The solution with 

Gamma=0.8, Alpha=0.8 is shown in Figure 4.49. 

 

Figure 4.49 Q-learning ANN with random policy 

 

The cumulative reward converges quite slowly to -0.664. The graph has lots of small peaks. 

This is caused by the neural network approximator. The optimal solution was not found after 

almost 200 iterations. Eventually, penetration was successful but the action sequence was less 

optimal: 

• Initialization. 

• Execute a remote exploit with admin privileges. 

 

The next subsection represents the results of learning using the ε-greedy acting policy. 

 

4.4.6.3 Q-learning with ε-greedy policy 
In this experiment, an ε-greedy policy was used. The results are shown in Figure 4.50 

(Gamma=0.8, Alpha=0.8, ε=0.15). 
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Figure 4.50 Q-learning ANN with ε-greedy policy 

 

As a result, the cumulative reward converges faster than in the random policy case andthe 

value itself is higher and equals -0.548. Higher cumulative rewards indicate the better solution. 

This value is the highest among the policies. The attack strategy that was found during this 

acting policy was optimal: 

• Initialization. 

• Probe action (check OS). 

• Execute the remote exploit with admin privileges. 

This sequence of actions is better compared to the random policy case. This is related to the 

fact that a more effective exploit chain was found. 

The next acting policy which was tested was the softmax policy. 

 

4.4.6.4 Q-learning with softmax policy 
The next experiment is based on the same optimal values for gamma and alpha, but the acting 

policy was changed to softmax (Figure 4.51). 
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Figure 4.51 Q-learning ANN with softmax policy 

 

The cumulative reward converges to -0.784. This value is lower than ε-greedy policy. The 

agent learns slower as well. As in random acting policy case, the optimal solution was not 

found: 

• Initialization. 

• Execute the remote exploit with admin privileges. 

The next experiment described in the Deep architecture RNN section is related to the usage of 

a different approximator for the Q-learning algorithm. 

4.4.6.5 Previously unexperienced target attack 
This experiment represents the attack of previously learned agent against a new host,  which 

has not been experienced before. After the attacking agent has learned the successful attack 

sequence on the Target 2, it attacks New Target 3. It acts according its own experience 

gathered during learning stage using ε-greedyacting policy. This policy was used as it provides 

the best performance for the learning algorithm. It is demonstrated in Q-learning with ε-greedy 

policy experiment. The agent extracted the feature set representing the configuration of the 

New target 3. This feature set was used as an input to the approximator in order to get the 

sequence of actions leading to successful penetration. The solution is presented in Figure 4.52. 
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Figure 4.52: The solution for previously unexperienced target attack 

 

The cumulative reward has the value 0.2. A solution was found: 

• Initialization. 

• Execute the remote exploit with admin privileges. 

• Successful penetration 

 

The sequence of actions leading to the successful penetration is not the optimal one. However 

it is effective to get admin privileges on the remote host.  

The agent was able to penetrate a new host, with which it had never interacted before. It used 

an experience accumulated during the previous learning iterations while attacking another 

host.  

 

4.4.7  Conclusion 
The experiment proved the hypothesis that the penetration testing system was able to learn 

attack strategies on the go by applying the Q-learning algorithm with an artificial neural 

network as approximator. This group of experiments extended the Field experiment to the 

general case scenario and demonstrated the ability of the agent to successfully function in 

much bigger state space.  

The agent learned the attack strategy trying to penetrate to the Target host 2. It was able to 

identify a New Target host 3, never experienced before, as being similar to the Target host 2 

and applied its experience to attack it. As a result, it successfully penetrated the New Target 

host 3. During the learning phase different attack policies were used. The best acting policy 

was ε-greedy. 

The experiment demonstrated the room for improvement. The efficiency of the approximator 

can be increased by applying a different neural network architecture. 
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The experiment showed the successful penetration to the new, previously unknown host, after 

learning similar configuration. The system learned the attack behavior and demonstrated 

successful penetration testing activity without a human interaction. 

However, in real life scenarios it can be the situation that the configuration of the host is 

updated after an agent was learned. It might be still similar to the configurations the agent 

experienced earlier, but a number of vulnerabilities could be patched. It might lead to 

penetration failure, since the learned attack sequence will no longer work.  

Similar problem can appear when the agent will attack a new configuration, completely 

different from the ones it has experienced before. In this case it will fail to successfully 

penetrate the host because of lack of knowledge. 

Thus, there is the need for the agent to be adaptive. It should be able to restart the learning 

process in case of failure, to find a new successful attack strategy. This process will readjust 

the approximator and will adapt the agent to the new host configuration, while keeping 

previously accumulated knowledge. 

Deep architecture RNN experiment addresses those issues. 

 

4.5 Deep architecture RNN experiment 

4.5.1 Hypothesis 
This group of experiments is intended to prove the ability of the penetration testing system to 

learn attack strategies on the go by applying the Q-learning algorithm with approximator, 

based on recurrent neural network. It also should be able to successfully attack previously 

unknown targets and adapt to its configuration changes. ‘Adaptation’ means the relearning 

process and identification of a new successful attack strategy. 

 

4.5.2 Experiment setup 
The experiment uses the testing infrastructure described in the Environment architecture 

section of the Methodology chapter. It is shown in Figure 4.53. 
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Figure 4.53 The experimental setup 

The Attacker computer 1 has an attacker agent installed. It serves as a host for the 

penetration testing system. The Target host 2 is the computer under attack. The agent uses it 

to learn the attack strategies. The New Target host 3 is the computer which is attacked as 

previously unknown target. Both target hosts have the environmental agent installed. It 

provides the environmental feedback to the penetration testing system. All agents 

communicate using sockets. The configuration of the targets is similar but not identical. The 

configuration of the New Target host 3 changes during the experiment. Targets have Windows 

7 installed with similar sets of processes. They have the same remote and local vulnerabilities 

as in previous experiments. 

According to the issues highlighted in the Deep Architecture ANN experiment, the 

current group of experiments is intended to improve the existing generalized case architecture 

of the penetration testing system. A new approximator is used based on Recurrent Neural 

Network (RNN). It has additional connections among hidden layer neurons, which feed the 

previous information to the input again. This architecture provides to the approximator the 

ability to “memorise” past actions. It should significantly speed up the learning process. More 

details on RNN can be found in the Elman Recurrent Neural Network section of the 

Methodology chapter. 

Another purpose of these experiments is to demonstrate the adaptivity of the agent. The 

experiment consists of three stages. During the first phase, the penetration testing agent will 

attack Target host 2 in order to learn the successful attack strategy. The optimal parameters 

for Q-learning, which were revealed during the previous experiment, were used. Different 

acting strategies were used: random, ε-greedy and softmax. 
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During the second phase, the agent will attack New Target host 3, which it never experienced 

before. The sequence of actions, leading to successful penetration, will be chosen according 

to the previous experience. The experience was received during phase 2. 

After successful penetration on the New Target host 3, the configuration of the host will be 

changed. The new configuration will be updated in such a way that the old successful attack 

strategy (revealed during the second phase) will no longer provide target penetration. As a 

result the agent should restart its relearning process to find a new successful attacks strategy. 

Therefore, the system will learn the attack behavior and will not only show successful 

penetration testing activity without a human interaction, but will automatically adapt to the 

changing environment. 

4.5.3 MDP process 
State space definition for the generalized architecture used in the current experiment is 

identical to the state space in the Deep Architecture ANN experiment. It is represented by the 

set of features. Those features describe the configuration of attacked hosts from the point of 

view of residing processes. More details on features description can be found in the 

Autoencoder section of the Methodology chapter. 

The actions of the MDP process are defined in the same way as for the Field 

experiment (Table 4.7). 

 

Table 4.7 MDP Actions 

0. OS_Win_Check – Checks if OS is Windows 7 

1. Ex_1_remote – Execute remote Exploit 1 (user 

privileges, Windows 7) 

2. Ex_2_remote – Execute remote Exploit 2 (admin 

privileges, Windows XP) 

3. Ex_3_remote – Execute remote Exploit 3 (admin 

privileges, Windows 7) 

4. Ex_4_local – Execute Local exploit 4 (escalate 

privileges) 

 

The agent does not have a predefined transitions function reward function for every possible 

state. It is the representation of a free-model approach to the real-world scenario. The model 

of the environment is not given to the agent. The only knowledge it has is state and action 

spaces.  
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4.5.4 Reward 
The reward is defined by the numerical value received from the environment as a reaction on 

an agent’s actions. It provides a motive to the agent to learn the sequence of actions leading 

to the final goal. The target for the current experiment is to find the attack strategy leading to 

successful penetration to the host under attack. 

The reward is defined as follows: 

𝑅 = 𝑅 + 𝑅1 + 𝑅2 + 𝑅3 

where the main reward is defined as R. This reward indicates the successful penetration for 

the agent. In cases where the agent got admin rights on a target host, it receives 100 as a main 

reward, 0 otherwise: 

R1 – Represents exploit effectiveness according to the metasploit rating (great, 

good and so on). The more effective the exploit, the higher the reward. 

R2 – Represents the escalation of privileges bonus. The higher reward is given 

for remote penetration with admin privileges contrary to the user privileges only. 

R3 – Additional reward for testing actions (portscan, OS detection and so on), 

defined as 20/n (where n is the number of iterations per episode). This reward 

motivates an agent to explore the environment and reduces the state space before 

exploitation. 

 

4.5.5 Results assessment 
The attacking agent has four exploits in its arsenal: Remote exploit 1 (user privileges, 

Windows 7), Remote exploit 3 (admin privileges, Windows 7), Remote exploit 2 (admin 

privileges, Windows XP) and Local exploit 4 for privilege escalation for Windows 7. The first 

exploit is the remote one, guaranteeing user rights on the attacked machine after its execution. 

The second exploit provides admin access level to the target remotely. The local exploit 

escalates the privileges to admin level locally. Windows XP exploit will fail. Exploits have 

different ratings and different possibilities to harm the target. A remote exploit 3 with admin 

privileges causes less harm and is more reliable. The agent is able to use probe actions as well. 

While acting, the agent learns the sequence of actions leading to the successful penetration to 

the target (attack strategy). There are a number of attack strategies that can be learned by the 

agent, which are all different according to their optimality.  

Possible attack strategies are similar to the deep architecture ANN experiment: 
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1. Probe action + execute a remote exploit 3 with admin privileges. 

2. Execute a remote exploit 3 with admin privileges. 

3. Probe action + execute a remote exploit 1 with user privileges + execute local 

exploit. 

4. Execute a remote exploit 1 with user privileges + execute local exploit. 

5. The rest of the actions leading to Fail state. 

 

The attack strategies are sorted according to their optimality. The first one is the optimal one. 

It will guarantee the highest cumulative reward. The performance of the acting policies is 

compared graphically. The higher the graphic curve rises across the episodes, the better the 

policy performance. The faster it grows, the faster an attacking agent learns. 

 

4.5.6 Experiment outcome 
This subchapter describes the outcome of the experiment defined in the Experiment setup  

section above. It demonstrates the learning process of the attacking agent based on Q-learning 

with approximation. The approximator consists of deep machine learning architecture: 

autoencoder + RNN. The autoencoder is used for feature extraction of the host under attack. 

The RNN approximates the state space defined by the feature set. Three acting policies were 

applied to the learning process: 

• random – actions are chosen randomly. 

• ε-greedy – actions are chosen randomly or according to experience with 

1-ε probability.  

• softmax – actions are selected randomly but each action has a different 

probability of being chosen. This probability is calculated according to 

the experience of the learning agent. The higher the potential reward, the 

more probable the action will be chosen. 

4.5.6.1 Q-learning with random policy 
This experiment consists of applying Q-learning based on an RNN approximator with random 

policy. The results are presented in Figure 4.54. 
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Figure 4.54 Q-learning RNN with random policy 

 

The cumulative reward convergence value is -0.752. The agent learns quite fast. The following 

solution was found: 

• Initialization. 

• Execute the remote exploit with user privileges. 

• Execute the local exploit. 

 

The next acting policy that was applied was the ε-greedy acting policy. 

 

4.5.6.2 Q-learning with ε-greedy policy 
During this experiment, the ε-greedy policy was chosen. Figure 4.55 presents the results 

(Gamma=0.8, Alpha=0.8, ε=0.15). 
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Figure 4.55 Q-learning RNN with ε-greedy policy 

 

The cumulative reward converges to -0.04, which is a higher value than the random policy. 

The optimal solution was found. The following solution was found: 

• Initialization. 

• Probe action (check OS). 

• Execute the remote exploit with admin privileges. 

Furthermore, the softmax acting policy was tested. 

 

4.5.6.3 Q-learning with softmax policy 
During this experiment, the softmax policy was used (Figure 4.56). 
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Figure 4.56 Q-learning RNN with softmax policy 

 

The cumulative reward converges to -0.752. The optimal solution was found. However, the 

agent was able to find the strategy leading to successful penetration: 

• Initialization. 

• Execute the remote exploit with admin privileges. 

 

4.5.6.4 Adaptivity during attack of a previously unknown 

target  
This experiment represents the attack of previously learned agent against a new host,  not 

experienced before. After the attacking agent has learned the successful attack sequence on 

Target 2, it attacks New Target 3. It acts according to its own experience gathered during the 

learning stage using ε-greedy policy. This policy was used as it provides the best performance 

for the learning algorithm. The agent extracted the feature set representing the configuration 

of the New target 3. This feature set was used as an input to the approximator in order to get 

the sequence of actions leading to successful penetration. The solution is presented in Figure 

4.57. 
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Figure 4.57: The solution for attack on previously unknown target  

 

The cumulative reward has the value 0.2. A solution was found: 

• Initialization. 

• Execute the remote exploit with admin privileges. 

• Successful penetration 

 

The sequence of actions leading to successful penetration is not the optimal one. However, it 

is effective to get admin privileges on the remote host.  

The agent was able to penetrate a new host, with which it had never interacted before. It used 

an experience accumulated during the previous learning iterations while attacking another 

host.  

After successful penetration, the vulnerability exploiting by Remote Exploit 3 was patched. 

The Remote Exploit 3 was no longer working. However, the agent was able to find an 

alternative solution (Figure 4.58). 

 

Figure 4.58: Adaptive alternative solution 

The cumulative reward has been decreased to -0.2. A solution was found: 

• Initialization. 

• Execute the remote exploit with user privileges. 
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• Execute local exploit 

• Successful penetration 

The sequence of actions will guarantee the successful penetration. 

 

4.5.7 Conclusion 
The experiment showed that the penetration testing system was able to learn attack strategies 

on the go by applying the Q-learning algorithm with an RNN approximator. It is the second 

case of generalization of the MDP experiment. This experiment demonstrated the adaptivity 

for the real-life scenario, when the audited host was pathed (fixed) during the penetration 

testing process. Therefore, the system learned the attack behavior. It demonstrated the 

successful penetration testing activity without a human interaction. The system automatically 

adapted to the changing environment as well. 

4.5.8 Results conclusion 
Table 5.1 describes the performance of the learning algorithm and its parameters 

across all experiments. Best performance is marked using green color. 

Table 5.1 Q-learning performance comparison (over 100 episodes) 

Experiment Learning 

rate 

Discount 

factor 

Policy 1- ε Higher 

cumulative 

reward 

Q-learning type 

MDP 

experiment 

0.2 0.2 Random N/A 99 Tabular 

MDP 

experiment 

0.5 0.2 Random N/A 137 Tabular 

MDP 

experiment 

0.8 0.2 Random N/A 151 Tabular 

MDP 

experiment 

0.2 0.5 Random N/A 127 Tabular 

MDP 

experiment 

0.5 0.5 Random N/A 149 Tabular 

MDP 

experiment 

0.8 0.5 Random N/A 150 Tabular 

MDP 

experiment 

0.2 0.8 Random N/A 150 Tabular 
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MDP 

experiment 

0.5 0.8 Random N/A 195 Tabular 

MDP 

experiment 

0.8 0.8 Random N/A 250 Tabular 

MDP 

experiment 

0.2 0.8 ε-greedy 0.15 149 Tabular 

MDP 

experiment 

0.5 0.8 ε-greedy 0.15 176 Tabular 

MDP 

experiment 

0.8 0.8 ε-greedy 0.15 263 Tabular 

MDP 

experiment 

0.2 0.8 ε-greedy 0.55 100 Tabular 

MDP 

experiment 

0.5 0.8 ε-greedy 0.55 175 Tabular 

MDP 

experiment 

0.8 0.8 ε-greedy 0.55 210 Tabular 

MDP 

experiment 

0.2 0.8 ε-greedy 0.98 30 Tabular 

MDP 

experiment 

0.5 0.8 ε-greedy 0.98 100 Tabular 

MDP 

experiment 

0.8 0.8 ε-greedy 0.98 140 Tabular 

MDP 

experiment 

0.2 0.8 softmax N/A 115 Tabular 

MDP 

experiment 

0.5 0.8 softmax N/A 175 Tabular 

MDP 

experiment 

0.8 0.8 softmax N/A 205 Tabular 

Field 

experiment 

0.2 0.2 Random N/A 59 Tabular 

Field 

experiment 

0.5 0.2 Random N/A 113 Tabular 

Field 

experiment 

0.8 0.2 Random N/A 123 Tabular 

Field 

experiment 

0.2 0.5 Random N/A 75 Tabular 
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Field 

experiment 

0.5 0.5 Random N/A 130 Tabular 

MDP 

experiment 

0.8 0.5 Random N/A 180 Tabular 

Field 

experiment 

0.2 0.8 Random N/A 99 Tabular 

Field 

experiment 

0.5 0.8 Random N/A 178 Tabular 

Field 

experiment 

0.8 0.8 Random N/A 249 Tabular 

Field 

experiment 

0.2 0.8 ε-greedy 0.15 98 Tabular 

Field 

experiment 

0.5 0.8 ε-greedy 0.15 176 Tabular 

Field 

experiment 

0.8 0.8 ε-greedy 0.15 251 Tabular 

Field 

experiment 

0.2 0.8 softmax N/A 53 Tabular 

Field 

experiment 

0.5 0.8 softmax N/A 140 Tabular 

Field 

experiment 

0.8 0.8 softmax N/A 215 Tabular 

New 

vulnerabilities 

experiment 

0.8 0.8 random N/A 287 Tabular 

New 

vulnerabilities 

experiment 

0.8 0.8 ε-greedy 0.15 290 Tabular 

New 

vulnerabilities 

experiment 

0.8 0.8 ε-greedy 0.55 280 Tabular 

New 

vulnerabilities 

experiment 

0.8 0.8 ε-greedy 0.98 25 Tabular 
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New 

vulnerabilities 

experiment 

0.8 0.8 softmax N/A 275 Tabular 

Deep 

architecture 

ANN 

experiment 

0.8 0.8 random N/A -0.664 Deep 

architecture 

(approximation) 

Deep 

architecture 

ANN 

experiment 

0.8 0.8 ε-greedy 0.15 -0.548 Deep 

architecture 

(approximation) 

Deep 

architecture 

ANN 

experiment 

0.8 0.8 softmax N/A -0.784 Deep 

architecture 

(approximation) 

Deep 

architecture 

RNN 

experiment 

0.8 0.8 random N/A -0.752 Deep 

architecture 

(approximation) 

Deep 

architecture 

RNN 

experiment 

0.8 0.8 ε-greedy 0.15 -0.04 Deep 

architecture 

(approximation) 

Deep 

architecture 

RNN 

experiment 

0.8 0.8 softmax N/A -0.750 Deep 

architecture 

(approximation) 

 

The first experiment was related to modelling the typical penetration testing concept. 

It consisted of a single host attack. The audit process was modelled as an MDP. In order to 

find the optimal attack sequence, a traditional Q-learning algorithm was applied. The standard 

modification for tabular cases was used. This experiment approved successful application of 

a model-free approach to the penetration testing. It showed that the agent can successfully 

learn the optimal attack strategy without a predefined reward function, described as all 

possible rewards for all possible states-actions pairs. The reward was derived directly from 

the environmental feedback. The performance of the learning algorithm demonstrated 



124 
 

convergence to optimality after 100 episodes. The best Q-learning hyper-parameters were 

found: learning rate = 0.8, discount factor = 0.8. During testing, the ε-greedy acting policy (1 

- ε = 0.15) was revealed as the best one from the point of view of performance. The MDP 

experiment was later generalized in Deep learning ANN and Deep learning RNN experiments. 

In contrast to Reddy & Yalla (2016), where an expert is used to analyse probe data and run 

mixed test plans manually, the result here demonstrates that the experimental penetration 

testing system learned the attack strategy automatically, which consisted of probe actions 

followed by attack actions. In other words, the experiment showed that the audit system was 

able to demonstrate the typical behavior of the penetration tester. The human factor was 

successfully excluded and the system learned the attack strategy itself.  

The second experiment addressed the exclusion of the transition function from the 

definition of the environment. The experiment setup was based on the first experiment. 

However, the attacking agent was updating the reward and transition table for the Q-learning 

algorithm dynamically according to the environmental feedback. In those conditions, the 

attacking agent was able to learn the optimal attack strategy and was able to perform a 

multistep attack as well. The experiment demonstrated the core hypothesis about the 

possibility of developing automated self-learning penetration testing. 

In comparison with Duan et al. (2008), the approach taken here was able to perform 

successful attacks using exploit combinations. The penetration testing system learned by itself, 

without any manually created scripts. The human factor was excluded from the decision-

making process. In compared paper, scripts should be created manually and updated regularly. 

The approach described in this thesis is more general. It makes it possible to learn any 

sequence of attack actions, including scripts construction in perspective. It will be possible if 

the scripts are divided on atomic actions and the particular rewards are set up. This case was 

partly approached in the New vulnerabilities experiment, which still needs generalization. 

This experiment is an important basis for further research on penetration testing, which is able 

to add new exploits to its database itself or search for zero day vulnerabilities. 

The purpose of the third experiment was to test the hypothesis that the penetration 

testing system is able to learn a new vulnerability exploitation, in particular buffer overflow, 

which it has never experienced before. The case was demonstrated for the particular MDP. 

The attacking agent was trying to combine different shellcodes, NOP operations and return 

addresses in order to learn successful vulnerable sequences. A multistep sequence of actions 

was found. The algorithm was able to learn the optimal attack strategy without any predefined 

knowledge about transition and reward function being provided, which describes all 
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transitions and rewards from all states. Such knowledge was learned by the agent while acting. 

The experiment has not yet been generalized. It is considered to be future work.  

 The goal of the fourth experiment was to generalize the MDP experiment for huge 

state spaces. The learning algorithm was modified by Artificial Neural Network approximator 

implementation instead of Q-table. The modification is able to learn attack strategies against 

multiple host configurations in a network. It demonstrated the hypothesis for the general case 

scenario. The experiment showed room for improvement. The efficiency of the approximator 

can be increased by applying different neural network architectures. The experiment showed 

the successful penetration to the new, previously unknown host, after learning similar 

configuration. In comparison to competitors, it makes the approach described here work in 

new, previously unknown networks. Therefore, the penetration testing system can be relearned 

in one network and perform the audit in another. 

The fifth experiment is a modification of the fourth experiment. The main difference 

is in using a Recurrent Neural Network approximator instead of an ANN one. It validated the 

hypothesis as well. Additionally, it proved the adaptivity for the real-life scenario, when the 

audited host was pathed during the penetration testing process, but the audit system was still 

able to adapt and perform successful penetration. 

For each of the five experiments, additional experiments were accomplished in order 

to investigate the learning algorithm performance. In every case, the learning algorithm was 

modified to have a different acting policy. It was changed from random to ε-greedy (0.15), ε-

greedy (0.55), ε-greedy (0.98) and softmax for every experiment. The features extraction 

process was tested as well. The deep architecture hyper-parameters were investigated: 

iteration quantity, hidden layer neuron quantity, weight decay value and sparsity penalty term 

value.   
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5 Conclusion and future work 
This thesis describes automating the audit process, penetration testing in particular. Full 

automation including decision making is somewhat more difficult than automation of separate 

stages of penetration testing or resolving the planning problem. Modern tools, automating 

different stages of penetration testing, do not provide the automation of the decision making 

process. This is due to the huge state space and difficult environmental models. It demands 

serious resource consumption in order to analyse all state space by model checker/planning 

algorithm in order to provide a reasonable attack strategy. The computer security expert uses 

mentioned semi-automatic tools to support manually created attack strategies. Therefore, the 

problem of human resources load is still unresolved in a modern penetration testing life cycle. 

From the other side, the existing planning approach tries to resolve this problem by 

development of the environmental model for future penetration testing simulations. As a 

result, the attack strategies can be derived. By attempting to automate the decision making 

process in such a way, the planning approach generates its own specific problems. The process 

of building the environmental model has huge time and computational costs. This fact brings 

additional load related to the audit process and resolves the problem only in the specifically 

modelled environment. In cases where the model was not developed properly, the attack 

strategy of the audit agent will have no sense. Leading specialists in the field (Core Impact 

Lab) approach this problem by doing a huge amount of simulation in their virtual 

infrastructure to generate the statistics on which the environmental model will be based. Later, 

the planning algorithm is used to derive the attack strategy. Thus, the approach is not adaptive 

at all. Every new version of the operating system or new configuration of the host demands 

new additional simulations in order to rebuild the model of the environment. Additionally, 

modern penetration testing systems are not able to accumulate experience while acting. As a 

result, they cannot learn the attack strategies themselves and generate them on the go even 

after the host configuration has changed.  

The involvement of the cyber security expert to the decision making in penetration 

testing lifecycle brings several drawbacks. The volume of the information in modern corporate 

networks is enormous. Human expert is not able to analyse full amount of data in the 

reasonable time. Therefore, he’s forced to skip some facts to be able to operate further. Such 

information might be crucial for decision making process and, as a result critical attacks can 

be missed. Another serious drawback is the expert time cost. The more skilled cyber security 

professional is, the more expensive penetration testing process is. The automation of the 

penetration testing process will let human expert to control more penetration testing processes 

simultaneously. It will move him to the higher control role, which can be filled my less skilled 
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specialist, decreasing the cost of penetration testing. In the same time an advanced security 

expert can be moved to the machine learning related tasks for tuning up the penetration testing 

automation algorithms. Additionally, those algorithms can work out of hours nonstop. 

Reduction of the penetration testing cost leads to the availability of such service for the smaller 

companies. They will be able to have the regular information security checks without 

attraction of the highly trained professionals. It will make all industry much resistant to cyber 

security attacks in general.     

 This thesis has demonstrated the automation of the penetration testing process by 

applying a model free machine learning approach. Therefore, the human factor has been fully 

excluded from the decision making process. It made the full automation of the penetration 

testing process possible contrary to the automation of separate stages. There is a variety of 

advantages related to this approach. Firstly, the audit system is able to derive the attack 

strategy itself without cyber security officer involvement. Secondly, the approach lets the 

penetration testing system learn the attack strategy on the go by accumulating the experience, 

received during the audit process. Thirdly, in order to build an attack strategy, the system does 

not need the environmental model. Consequently, the penetration testing system does not 

depend on the configuration of the attacking system. It will be able to find the attack strategy 

in any case. Therefore, the system is much more adaptive to the configuration changes. The 

approach mitigates the problem of huge state space by using the approximators to define all 

possible host configurations. This solution allows derivation of successful attacks strategies 

even for hosts that have not been experienced before. Another advantage of our approach is 

independence of the features describing target hosts. The developed deep learning architecture 

works universally for any quantity and quality of the chosen feature sets. Therefore, the 

penetration testing system becomes significantly scalable and adjustable.  

Lastly, realizing the significance of the automation of the new vulnerabilities 

discovery process, the approach was applied to the buffer overflow vulnerability discovery as 

well. The results of the research showed that the penetration testing system was able to learn 

and identify the sequence of actions triggering the buffer overflow vulnerability.  

5.1 Automation of penetration testing using a model free 

machine learning approach 
 

The MDP experiments and Field experiments in the Results Chapter verified the model free 

approach to the automation of penetration testing. The particular example of penetration 

testing process as an MDP was modeled and the state space and action space defined. Contrary 



128 
 

to the planning approach, the reward and transition spaces were not defined. Instead of 

definition of full environmental model and later penetration testing process simulation, the 

approach let the audit agent act straight away to accumulate experience and learn the attacker 

behavior autonomously. In other words, the rewards and transition function are learned on the 

go. As opposed to the model checking or planning approaches, this approach does not collect 

any state/action transition statistics via model simulations or using model checker. The 

advantage of the approach is in its ability to generate attack strategies without going through 

a huge amount of simulations for every possible host configuration such as: OS version, open 

ports, programs installed etc. The agent is able to derive the attack strategies based on minimal 

experience, which is accumulated with every penetration testing action, making the attack 

strategy more and more optimal. In order to develop the self-learning penetration testing 

system, a model free Q-learning algorithm was applied. It guaranteed the convergence to the 

most optimal attack strategy for tabular cases. Using this algorithm, the audit agent is able to 

predict the optimality of actions in particular states leading to the penetration testing goal. 

Based on that fact, the agent can derive the optimal attack strategy. Additionally, in the Deep 

Architecture ANN experiments/Deep architecture RNN experiments in the Results chapter, 

the approach was generalized by application of an approximator based on custom deep 

learning architecture consisting of an autoencoder and ANN/RNN neural networks. 

Approximator incorporation showed the effectiveness of the approach in general case 

scenarios. It mitigated the huge penetration testing state space problem. The audit agent was 

able to learn faster and accumulate more generalized information about hosts. Another 

advantage of the deep learning architecture itself is its universalism. The usage of an 

autoencoder made the learning process independent of quantity or quality of features. In other 

words, no matter which features have been chosen to represent hosts, the audit agent will be 

able to accumulate the knowledge and generate attack strategies.  

 The developed approach can be easily deployed in real-life networks. Attack agent 

needs to be installed at the host, which will be the starting point of the penetration test. It will 

be performing actual attacks. Additionally, feedback agents should be installed on all target 

hosts of the network. It can be done simultaneously by network administrator using remote 

tools. After agents are deployed, the system checks the connection between components and 

ready to start autonomous penetration testing. 

 The results show valuable insight of applying the model free machine learning 

approach to penetration testing automation. The approach makes the automation of full 

penetration testing cycle possible, including the decision making process. Because of the deep 

architecture approximator, the solution is more adaptive compared to the planning or model 

checking approaches. The results showed that the audit agent was able to derive successful 
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attack strategies for hosts it had never experienced before. Such a scenario will not work in 

named alternative solutions. In the case of experiencing new host configurations, the model 

dependent approaches will not be able to proceed until the model is rebuild. In contrast, this 

agent was not only able to deal with never experienced host configurations, but to adapt itself 

when the configuration of the target host changed in the middle of the audit process. The 

approach taken here made it possible for the audit agent to be relearned and to generate a new 

successful attack strategy. Therefore, the approach demonstrated the possibility to create a 

smart penetration testing tool which learns the behavior of penetration tester and apply it for 

autonomous audit without decision making made by human.  

 

5.2 Conclusion 
 

The computer security audit process has been successfully automated, penetration testing in 

particular. A model free machine learning approach was applied in order to automate the 

decision making. The objectives of the project were accomplished successfully. Modern 

approaches to penetration testing and machine learning application were investigated and are 

available in the literature review. Using the theoretical ground of this research, the automated 

self-learning approach to penetration testing was developed based on Q-learning application. 

It was generalized by using approximators. The results show that the methodology allows us 

to not model the target system for further validation, but to use a model-free learning algorithm 

that learns attack strategies on the go. The results are very encouraging and are better than 

previous planning and model-checking approaches in terms of adaptivity and scalability. 

The approach outlined in this research does not depend on the modelling stage, which 

makes it possible to exclude the human factor, which was demonstrated in Results section. 

The penetration testing system uses the general feature set to represent the configuration of 

the hosts. They are represented as a set of processes. Therefore, such features minimize 

platform dependency. In other words, even if a new version of the OS does appear, the 

approach would still be relevant. It should also be mentioned that the deep learning 

architecture, supporting the learning process, is not dependent on particular features. It was 

developed in such a way that the feature set can be changed without any harm to the knowledge 

accumulation process. If the features are changed from processes to open/closed ports or any 

other possible features, the approach will not be affected and will still work. This is a 

significant and novel step for cyber security audit automation.  
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5.3 Future work 
 

There are several research directions from the work presented in this thesis. Deep Architecture 

ANN experiment/Deep architecture RNN experiment in the Results chapter presented the 

custom build machine learning architecture. Optimal learning algorithm parameters were 

found and a custom feature set developed. Different ways of feature representation could be 

developed in the future in order to optimize the proposed approach. Additional information 

could be added to the feature set, describing a host’s network position related to the attack 

path. It will make the agent learn attack strategies based not only on the information related 

to the target host, but to its network environment as well. Current deep learning architecture 

leaves the freedom to experiment with different feature extraction mechanisms. For example, 

instead of RNN/ANN, different types of neural networks can be used in the future. The back-

propagation algorithm can be substituted, as well as activation functions to improve learning 

performance.   

 The New vulnerabilities experiment applied the model free machine learning 

approach to the buffer overflow vulnerability discovery. The agent was able to learn the 

sequence of actions leading to the successful exploitation of the vulnerability. The 

effectiveness of the approach was shown, however it was based on a particular example. 

Future work could generalize this experiment by developing new appropriate features sets and 

deep learning architecture. As a next stage, the deep architecture can be extended on the 

additional types of vulnerabilities such as SQL attacks.  

Several future extensions to this research on adaptive penetration testing are 

suggested. At the moment, the exploit is a minimal action unit in developed machine learning 

architecture. Breaking exploits into smaller parts of code and making them inputs for the 

learning system could be pursued.  It would give the possibility for the audit agent not only to 

learn the sequence of exploits leading to successful penetration, but to compile them from the 

code parts automatically depending of the target. This might give the opportunity to the agent 

to create completely new exploits never existing before based on its experience. Future work 

on generalization of the New vulnerabilities experiment could also be incorporated in that 

concept.  

In the MDP experiments in the Results chapter, the audit system is modeled using 

MDP. However, the model could be improved by remodeling it using POMDP, which can 

represent hidden state space. Such remodeling will not affect the learning process, but will 

make it possible to represent actions consisting of another action. This will extend the 

capabilities of current penetration testing systems. It will make it possible for the audit agent 
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to learn complicated multi step attacks consisting of another multistep attack. Such an 

approach will also give the opportunity to the agent to break the goals into sub goals and 

process them in the right order. 
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