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The pre-operative workup of patients with drug-resistant epilepsy requires in some
candidates the identification from intracranial EEG (iEEG) of the seizure-onset zone
(SOZ), defined as the area responsible of the generation of the seizure and therefore
candidate for resection. High-frequency oscillations (HFOs) contained in the iEEG signal
have been proposed as biomarker of the SOZ. Their visual identification is a very
onerous process and an automated detection tool could be an extremely valuable
aid for clinicians, reducing operator-dependent bias, and computational time. In this
manuscript, we present the EPINETLAB software, developed as a collection of routines
integrated in the EEGLAB framework that aim to provide clinicians with a structured
analysis pipeline for HFOs detection and SOZ identification. The tool implements
an analysis strategy developed by our group and underwent a preliminary clinical
validation that identifies the HFOs area by extracting the statistical properties of HFOs
signal and that provides useful information for a topographic characterization of the
relationship between clinically defined SOZ and HFO area. Additional functionalities
such as inspection of spectral properties of ictal iEEG data and import and analysis of
source-space magnetoencephalographic (MEG) data were also included. EPINETLAB
was developed with user-friendliness in mind to support clinicians in the identification
and quantitative assessment of HFOs in iEEG and source space MEG data and aid the
evaluation of the SOZ for pre-surgical assessment.

Keywords: EEGLAB, epilepsy, high-frequency oscillations, seizure-onset zone, iEEG, stereo-EEG

INTRODUCTION

Every year 2.4 million people are diagnosed with epilepsy; it has been estimated that 25% of them
respond inadequately to pharmacological treatment and could therefore be potential candidates
to resective surgery (Banerjee et al., 2009; Kwan et al., 2011). An accurate delineation of the
epileptogenic zone (EZ), i.e., the area of cortex that is necessary and sufficient for initiating seizures
and whose removal is necessary for complete abolition of seizures, is fundamental for a positive
surgical outcome. This process relies on the convergence of clinical information with the results
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of a wide range of investigative tools and techniques (Rosenow
and Lüders, 2001; Engel et al., 2013). In the last decade, high-
frequency oscillations (HFOs) in the intracranial EEG (iEEG)
have gained increasing interest as potential biomarkers of
epileptogenesis, having shown close spatial relationship with the
seizure-onset zone (SOZ) in patients with focal epilepsy (Jacobs
et al., 2008; Worrell and Gotman, 2011; Zijlmans et al., 2012).
SOZ is the area of the cortex from which seizures originate and
is currently used as a surrogate of the EZ in the clinical practice.

The visual detection of HFOs in multichannel long-term
iEEG is a challenging task even for an expert operator and this
has so far somewhat limited a more widespread use in clinical
practice. This limitation has driven recent interest in developing
detection algorithms (Blanco et al., 2010; Dümpelmann et al.,
2012; Burnos et al., 2014; Fedele et al., 2016; Gliske et al.,
2016) and implementing these in time-efficient analysis tools that
require minimal human supervision (Navarrete et al., 2016).

In this manuscript, we present EPINETLAB, a multi-graphic
user interface (GUI) set of Matlab functions developed in
the context of the EPIleptic NETworks project (EPINET1),
a EU-funded initiative focused on the development of
tools for the detection of HFOs in iEEG and source-space
magnetoencephalographic (MEG) data (Foley et al., 2017;
Quitadamo et al., 2017) and on their application to improve
the delineation of the SOZ. The tool was developed as a plugin
for EEGLAB (Delorme and Makeig, 2004), under the GNU
Public License version 3.0 and can be found at the following
link: https://github.com/quitadal/EPINETLAB. The choice
of implementation as an EEGLAB extension was justified by
the wide acceptance of this platform in the neurophysiology
community as a tool for EEG and Evoked Potentials data analysis.
EEGLAB main advantages include:

(1) The ability to import data from a wide range of file formats
which can be easily extended to others not yet supported
with purpose-developed Matlab code;

(2) a wide range of functions for pre-processing of brain
signals such as artifact rejection, independent component
analysis, signal averaging, and spectral analysis including
time-frequency decomposition;

(3) the extensible and open-source nature of this platform,
which is supported by a strong research team and is
enriched by plugins developed in laboratories around the
world.

EPINETLAB was designed to provide an easy-to-use tool to
investigate the spatial and time-frequency properties of HFOs,
to identify the iEEG channels with the highest HFO rate (which
we will refer to as the “HFO area”) and to provide measures
to support the evaluation of the spatial distribution of the
HFO area with that of the SOZ identified in the presurgical
workup. The toolbox is supported by detailed documentation of
each step of the analysis pipeline; parameters for the analyses
can be set in GUIs designed with user-friendliness in mind.
Moreover, the platform allows analysis of multiple files in a single
process and the implementation of a robust channel reduction

1http://cordis.europa.eu/project/rcn/195032_en.html

methodology was designed to reduce computational load and
subject-dependent errors. An addition that is not available in
other tools released so far in the public domain (Navarrete et al.,
2016) is the possibility to load, process, and analyze MEG data
in signal and source-space, thus providing the possibility to
evaluate the concordance between the source locations of HFOs
recorded from pre-operative MEG studies and those identified in
iEEG recordings. Each function in the tool underwent a rigorous
beta-testing phase with neurophysiology clinical scientists (EEG
Technologists) and clinical neurophysiologists, to simulate real-
life operator-dependent situations and minimize unexpected
software termination. In this manuscript, we present the main
features of EPINETLAB as well as examples of HFO detection
and SOZ identification from an iEEG clinical dataset.

MATERIALS AND METHODS

Tool Validation
The initial validation was performed on the iEEG of 12 patients
(6 female, mean age ± SD: 21.25 ± 11.34 years) who underwent
presurgical evaluation either at the Niguarda Hospital (NIG),
Milan, Italy or at the Birmingham Women’s and Children’s
Hospital (BCH) in Birmingham, United Kingdom. Patients’
information is reported in Table 1.

We chose to limit the assessment of the tool to its performance
in the analysis on a set of real data acquired in the context of the
presurgical evaluation of patients with drug-resistant epilepsy.
We therefore measured the spatial concordance between the
iEEG electrodes with the highest HFO presence and the SOZ
determined using the standard clinical evaluation including ictal
and interictal iEEG, functional imaging when appropriate. The
goodness of the latter was supported by the post-surgical outcome
at 1 year. Other equally important aspects of the assessment of
software such as code quality, usability, and sustainability, and
of the individual but invaluable user’s experience were outside
of the scope of the present manuscript, as was measuring the
performance of the automated method against human visual
assessment.

Data Recording
For NIG patients, intracerebral stereo-EEG (SEEG) was recorded
from intracranial multichannel/multi-contact electrodes (DIXI
Medical, 5–18 contacts; 2 mm length, 0.8 mm diameter; leads
1.5 mm apart). The number of electrodes and the sites for
implantation were decided according to anatomical and clinical
data collected during the non-invasive phase of the evaluation
and varied between 5 and 18 contacts per intracranial electrode
(maximum number of 192 recording channels). Band-pass
filter of 0.016–500 Hz was used. EEG signal was acquired
continuously with a Neurofax EEG-1100 system (Nihon Koden,
Tokyo, Japan) and sampled at 1 kHz with 16-bit resolution.
Each channel was off-line re-referenced with respect to its
direct neighbor (bipolar derivations with a spatial resolution
of 3.5 mm) to cancel-out effects of distant sources that spread
equally to both adjacent sites through volume conduction.
When appropriate for diagnostic purpose, the iEEG signal was
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TABLE 1 | Patients’ information.

Patient Pathology Institution Implantation type Engel class

1 Gliosis NIG SEEG Ia

2 Type IIa Focal cortical dysplasia NIG SEEG Ia

3 Type IIb Focal cortical dysplasia NIG SEEG II

4 Type IIa Focal cortical dysplasia NIG SEEG Ia

5 Type IIa Focal cortical dysplasia NIG SEEG Ia

6 Type IIb Focal cortical dysplasia BCH SEEG Ia

7 Type IIa Focal cortical dysplasia BCH SEEG + GRID Ia

8 Ganglioglioma Grade 1 BCH GRID Ia

9 Hippocampal Sclerosis BCH SEEG Ia

10 Meningioangiomatosis BCH GRID Ia

11 Type Ib Focal cortical dysplasia BCH GRID Ia

12 Pilocytic Astrocytoma BCH GRID Ia

Engel’s classification: I, free from disabling seizures (Ia, completely seizure free since surgery); II, Rare disabling seizures; III, Worthwhile improvement; IV, No worthwhile
improvement. NIG, Niguarda Hospital; BCH, Birmingham Women’s and Children’s Hospital; SEEG, stereo-EEG.

FIGURE 1 | Functional blocks in EPINETLAB. Four different blocks of functions are defined: (1) Time-frequency transform and statistical analysis. (2) Automated HFO
detection and artifact identification. (3) Performance evaluation. (4) Supplementary functions.

referenced to the average signal from two electrodes identified
from anatomical and neurophysiological data to be located
in the white matter. Two scalp EEG channels (Fz and Cz
referenced to a mastoid electrode) and chin electromyogram
were recorded in addition to SEEG for sleep staging. The
simultaneous video-iEEG recordings lasted between 5 and
10 days.

For BCH patients, SEEG recordings from 128 contacts were
obtained using a commercial video-EEG monitoring system
(System Plus, Micromed, Italy). Data were acquired with band-
pass filter of 0.016–1 KHz and sampled at 2 KHz. The remaining
recording parameters were the same as those used in the NIG
patients.

Five patients had intracranial strips or grids implanted. In
these patients, platinum-iridium alloy electrode disks (Ad-Tech
Medical Racine, WI, United States), 4 mm diameter arranged
in a grid (max 8 × 8 array), strip (4 × 1 or 6 × 1), and/or a
combination of these were used. Electrodes were placed in the
subdural space via craniotomies and/or burr hole craniotomies
as appropriate.

Data Pre-processing
An expert neurophysiologist reviewed iEEG recordings and
annotated the beginning of the seizures, together with the SOZ,
anatomically defined by all the contacts involved in the onset of
each seizure.
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FIGURE 2 | EEGLAB main bar with the EPINETLAB plugin installed.

For each patient, peri-ictal and interictal data were analyzed
by one of the authors (Lucia Rita Quitadamo) blinded to
the clinical information and to the results of the diagnostic
work-up. Peri-ictal data consisted of two seizure episodes. An
EEG segment containing 10 min before and 2 min after the
electrographic onset of each seizure was extracted and was
considered as the period of interest for HFOs identification.
Interictal data were extracted from 12 min of iEEG signal
collected during stage III NREM sleep of the second night of
the monitoring period. This choice was driven by evidence
suggesting that the maximum likelihood of capturing HFOs
is during NREM sleep (Bagshaw et al., 2009). Data were
resampled to 1024 Hz (linear interpolation) and then visually
inspected to identify artifactual channels, which were disregarded
in subsequent analyses. A bipolar montage between adjacent
contacts located in the gray matter was built in case of
SEEG electrodes, while contacts were referenced to average
reference in case of grid data; signal was then filtered in the
80–250 Hz frequency band. The original epoch was finally
segmented in 2-min long sub-epochs, which were used for further
analyses. Resampling and FIR filtering were performed using
the “pop_resample” and “pop_eegfiltnew” functions from the
EEGLAB suite.

HFOs Detection Algorithm
The theoretical approach behind the algorithm was described in a
recent paper by our group (Quitadamo et al., 2018). Nonetheless,
in this section we briefly summarize the innovative nature of the
algorithm used for the detection of HFOs that constitutes the
backbone of the whole EPINETLAB software.

After signal preprocessing and segmentation, discrete wavelet
transform is computed on 1-s signal windows. The preliminary
data showed high-specificity and sensitivity (96.03 and 81.94%,
respectively) using complex Morlet transform (Quitadamo et al.,
2018). For each channel and each window, the scalogram is first
computed, representing the percentage energy of each wavelet
coefficient and then, for each frequency bin, the algorithm
computes the spectral kurtosis, which reflects the presence of
transient activities in a signal and which can be used to identify
signal properties in the frequency domain (Antoni, 2006). The
distribution of spectral kurtosis over all frequencies and channels
is then fitted against a set of known distributions available in
the Matlab “Statistics and Machine Learning Toolbox” (e.g.,
normal, exponential, gamma, generalized extreme value, etc.).
The distribution ranking first in terms of logarithmic likelihood
is selected as representative of the kurtosis in that specific EEG
segment and its mean and variance values are determined.
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FIGURE 3 | Time-frequency analysis GUI. Once an EEGLAB “.set” file is loaded, different parameters can be set up: channels on which to perform the analysis,
length of the segmentation window (1 s), overlap between consecutive windows (0 s), signal time epoch to analyze (all), frequency band limits (80–250 Hz), and
mother wavelet (Complex Morlet). Display resolution can be reduced in case of really high number of channels and/or sampling rate.

A threshold on the kurtosis distribution is set as: thresh = mean+
3SD; channels are then ranked according to the total number
of windows with kurtosis peaks over thresh value in a restricted
number of frequencies. To reduce the number of channels to
be submitted to further analysis, the median (Q2), and the
75th percentile (Q3) are computed from the distribution of the
number of windows. The list of the channels with a number
of windows >Q2 + (Q3 - Q2)/2 can be retained for further
analysis [the term (Q3 - Q2)/2 is added to take into account the
positive skewness of the distribution]. As a result of this process,
only highly kurtotic channels are retained for HFOs detection
process, reflecting high prevalence of transient activities and
therefore candidate to represent the SOZ. This process allowed
significant reduction of computational load as HFOs are detected
on a subset of relevant channels instead that on the whole initial
dataset. Finally, candidate HFOs are identified as events in which
the power of the wavelet coefficients calculated over 3ms-long
consecutive windows, exceeds the mean power in the whole 1 s
window by 5 SD and for more than 20 ms. Events with power

spreading over all the frequency bands (e.g., spikes) or over many
channels (e.g., muscular activities) are discarded as potential
artifacts.

EPINETLAB Implementation
Functional Blocks
EPINETLAB is implemented as a collection of routines easily
accessible from the EEGLAB main bar. Four different modules
of functions can be recognized, as reported in Figure 1:

(1) Time-frequency transform and statistical analysis: these
functions allow setting the parameters for the time-
frequency analysis and to compute kurtosis-based statistical
thresholding to identify the subset of channels with the
highest occurrence of deviant activity, most probably
associated with the presence of HFOs.

(2) Automated HFO detection and artifact identification: the
detection of HFOs is performed on the power distribution
of wavelet coefficients. The search can be done either on
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FIGURE 4 | Time-frequency display GUI. In the left panel, signal in the time domain is displayed. Channels can be visualized in groups smaller than the original
sample (“Group View” or “List View”) and amplitudes at different time instants can be measured, by enabling a cursor with the “Measure on” function. In the right
panel, time-frequency transforms corresponding to the channels on the left are displayed and power of wavelet coefficients at different time instants or frequencies
can be measured.

the whole channel pool or on a subset of these identified
by means of kurtosis thresholding. Potentially artifactual
events can be discarded based on quantitative criteria.

(3) Performance evaluation: detected HFOs can be graphed in
both temporal and spatial domains. Moreover, the area with
the highest HFO rate, which we hypothesize is related to the
brain epileptogenic tissue, can be statistically determined
according to different methodologies and compared to the
clinically defined SOZ. This process is evaluated in terms of
sensitivity and specificity of the detection.

(4) Supplementary functions: these functions allow to import
MEG file, to compute correlation between MEG sources,
to inspect seizure frequency content, to manipulate channel
labels, montages, and file duration.

When the EPINETLAB plugin is installed into the EEGLAB
suite, a new tab (EPINETLAB (HFOs)) is created in the main
EEGLAB bar menu, see Figure 2. As the tool makes use of
the native EEGLAB file format (.set), naïve Matlab users can
easily interact with the functionalities provided by both EEGLAB
itself and EPINETLAB, so to exploit the generic signal pre-
processing functions and the advanced HFO-recognition ones in
a complementary modality.

Time-Frequency Analysis and Statistics
The Wavelet-based Time-Frequency Analysis functionality opens
a GUI, see Figure 3, where the parameters needed to perform the
wavelet-based time-frequency decomposition can be set.

These consist of the length of the window for signal
segmentation, the overlap between consecutive windows, the
signal time interval to be analyzed, the frequency band of interest,
and the continuous mother wavelet used for the transform. All
the wavelets available in the Matlab Wavelet Toolbox can be
selected and are listed in the wavelet display panel, divided in real
and imaginary parts in case of complex wavelets, as reported in
Figure 3. A functionality is provided to reduce by a predefined
factor the resolution of the time-frequency transforms to be
displayed (see GUI below) in case of a high number of channels-
high sampling rate combination. This does not affect signal
properties but only the way data are displayed.

Wavelet-transformed signal can be saved into a Matlab (.mat)
file and displayed as shown in Figure 4. The left panel is dedicated
to time-domain signal visualization and measurement, whereas
the right panel displays a time-frequency plot of the wavelet
transforms. In the left panel, the user can scroll the signal within
the windows defined by the segmentation; iEEG channels (and
relative transforms) can also be displayed in smaller groups to
improve the visualization of multichannel data and gain can also
be adjusted to increase/reduce channels amplitude on screen.
Signal voltage can be measured at user selected time instants by
activating a cursor on the active screen (“Measure on” “Measure
off”).

A functionality that performs the kurtosis-based statistical
analysis on wavelet coefficients described in section HFOs
Detection Algorithm is available from the time-frequency GUI
(see Figure 5).
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FIGURE 5 | Statistical analysis GUI. Spectral kurtosis is computed on wavelet transforms in each segmentation window and averaged over frequencies. Kurtosis
distribution is fitted with a set of known distributions available in the Matlab statistical toolbox. A kurtosis threshold is set on the distribution which equals the mean of
the distribution plus 3 SD. Channels are ranked according to the number of windows with kurtosis over the threshold. Windows with kurtosis distributed uniformly
over all the frequencies do not contribute to the ranking. In this case, the fitted distribution is a generalized extreme value (GEV) distribution and the threshold is equal
to 13. In the upper right panel of the statistic GUI, the channels are sorted according to their mean kurtosis; in this case OF8–OF9 and OF9–OF10 are the channels
with the highest number of windows with kurtosis exceeding 13. The distribution of frequencies with kurtosis over threshold is also depicted.

The distribution of spectral kurtosis of wavelet coefficients
for all the segmentation windows is fitted and the kurtosis
threshold (thresh value in section HFOs Detection Algorithm)
is computed, see lower left panel in the right part of Figure 5.
Channels are then ranked according to the largest number
of windows with above-threshold kurtosis measure, see upper
panel in right side of Figure 5 and then the subset of
significant channels can be selected as reported in section
HFOs Detection Algorithm and saved in a text file for further
analysis.

HFO Detection
In the HFO Detection GUI (Figure 6), the user can choose
between the kurtosis-based method developed by our group
(Quitadamo et al., 2018) and presented here and classical Staba
detector (Staba et al., 2002). This has been used in the past as
benchmark since it was the first algorithm to provide a semi-
automatic detection of HFOs. The Staba detector computes
the root mean square (RMS) of the signal in 3 ms windows
and defines, as candidate HFOs, segments with RMS values at
least five SD above the mean amplitude of the RMS signal and
lasting more than 6 ms. The final condition to be met is the
presence in the candidate HFO of at least six peaks greater
than three SD from the mean value of the rectified band-pass
signal.

The two implemented methods can be applied on all the
channels or on a subset of them selected either manually or by
the kurtosis-based thresholding as described in section HFOs
Detection Algorithm. If using the kurtosis-based method, the
detection of HFOs can be further refined by discarding the
events that are occurring synchronously on multiple channels
(potentially associated to the spreading of artifactual events) or
with a power uniformly distributed over all the frequencies in the
band of interest (potentially associated to HFO superimposed to
spike events).

Detection results can be visualized on the original signal
for the Staba detector and on the wavelet coefficients for the
wavelet-based detector. The GUI in Figure 7 is a simplified
version of the one reported in Figure 3, except for the fact
that, in the left panel, the rectified iEEG/MEG signal is reported,
as required when using the Staba detector. To the right of
each time series and each wavelet transform, the total number
of detected HFOs is reported; the HFOs and their durations
are indicated with red dotted rectangles and text strings in
proximity. The list of all the detected events can be saved in two
different text files, one for each detection modality. These text
files are used for the evaluation and validation of the detection
process.

The analyses steps described so far can be run sequentially,
unsupervised and, more importantly, concurrently on multiple
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FIGURE 6 | High-frequency oscillation detection GUI. This GUI allows to set up the parameters for the detection of HFOs with two different methods, the Staba and
wavelet-based methods. Detection can be run on all the channels or on a subset of channels, determined, for example, from the kurtosis thresholding. For the
wavelet-based analysis, a twofold artifact removal option is available: the channel-based one allows to reject candidate HFOs which synchronously spread on more
than N channels (default value: 3); the band-power based one allows to reject candidate HFOs with power spreading uniformly over all the frequencies in the band of
interest, typical of spikes.

FIGURE 7 | High-frequency oscillation detection display GUI. In the left panel, the results of the detection with the Staba detector are reported, while on the right
panel results of the wavelet-based detection are reported. The total number of detected HFOs is reported next to each channel. The detected HFOs are indicated in
the two panels with red dotted rectangles, while the duration of the event with a text string.

data files. A GUI has been created (Figure 8) to allow HFO
detection by batch-processing all the chosen EEG files and to set
the parameters for Staba and/or wavelet-based detection.

HFOs Rate Display
The results of the detection can be saved as multiple text files
and used to display the HFO rates in each contact of each
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FIGURE 8 | Multiple-file automatic HFO detection GUI. This GUI allows to run the time-frequency analysis, kurtosis thresholding, HFO detection, and artifact
rejection in an automatic way and on multiple files. Results are saved in text files which can be used for further analyses.

FIGURE 9 | High-frequency oscillation rates display. HFO rates relative to each channel (bipolar, strips, or grid contacts) are visualized as colored bars. Percentages
represent the number of HFO detected on the specific channel over the total number of detected HFOs. Color ranges from black, meaning HFO rate of 0%, to white,
representing the maximum HFO rate. In this case, OF09–OF10 and OF08–OF09 are the channels with the highest HFO rates, 18.66 and 15.04%, respectively.

electrode as color-coded bars (Figure 9). Conventionally, the
black color is associated to channels with no HFOs detected
and the white represents the channel with the highest number
of detected HFOs, normalized by the total amount of detected
HFOs.

If multiple text files are associated to consecutive time epochs
on which the HFOs detection was performed, the contribution of
each electrode in terms of HFO rate and relative to each epoch

can be visualized as histograms, see Figure 10. This is useful, for
example, to estimate the temporal evolution of the contribution
of each channel to the generation of a seizure in terms of HFO
rate.

The HFO rates of all contacts are automatically saved in a text
file when the figures are created. Such files are then used in the
subsequent steps leading to a probabilistic identification of the
HFO area.
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FIGURE 10 | Contribute of the most informative channels to the overall HFO rate in six consecutive epochs.

HFO Area Identification and Comparison With the
SOZ
The identification of which channels belong to the “HFO area”
is available in a further GUI (Figure 11); the results of the HFO
detection process performed on up to two seizure episodes are
loaded from text files produced at the end of the previous analysis
step. A text file containing a list of contacts identified by the
clinical team as belonging to the SOZ is then loaded. The channels
attributed to the HFO area by EPINETLAB are investigated using
five different methods:

(a) The “Max. Value” method: N electrodes with highest
ranking in terms of HFO rate are selected as HFO area.
In Quitadamo et al. (2018), we pragmatically chose N = 5
considering the typical spatial extension of the epileptic
network in a focal epilepsy.

(b) The “Tukey’s fence” method: this method is typically used
when outliers need to be identified in a dataset. Electrodes
with an HFO rate higher than the upper Tukey’s fence (3rd
quartile + 1.5 times the inter-quartile range) of all HFO
rates, are selected. Channels within the HFO area can be
considered data with anomalously high-HFO rates.

(c) The “Fuzzy c-means clustering” method (Jain et al., 1999):
the method aims at identifying two natural clusters in the
HFO rate dataset which the individual HFO rate belongs
to with a defined degree of probability. Channels belonging
to the cluster with the highest HFO rates and with a
probability of belonging to that cluster higher than 0.7 are
selected.

(d) The “k-means clustering” method (Jain et al., 1999): the
selection procedure is similar to the one described above
as point (c), but in which the cluster is identified using a
k-means approach.

(e) The “Kernel Density Estimation (KDE)” method: a KDE
(with Gaussian kernel) (Gliske et al., 2016) of the

distribution of HFO rates is performed first. Then, after
a smoothing procedure to reduce oscillations in the
distribution, peaks, and troughs of the distribution are
identified. If the value of the maximum peak exceeds by
at least 1.8 times that of the closest trough, the value of
HFO rate corresponding to the occurrence of the minimum
trough of the HFO rate distribution is accepted as the
threshold. The HFO rates exceeding that threshold are
selected as HFO area.

Once the “HFO area” is identified, the software compares its
spatial distribution with that of the electro-clinically defined SOZ.
The performance of this comparison is listed in a table for each
method in terms of true positives (TP, channels in the HFO area
and in the SOZ), true negatives (TN, channels outside the HFO
area and the SOZ), false positives (FP, channels in the HFO area
but outside the SOZ), false negatives (FN, channels outside the
HFO area but in the SOZ), sensitivity (TP/(TP + FN)), and
specificity (TN/(TN + FP)), with relative confidence intervals.
Results of the HFO area identification and comparison with the
SOZ can be saved in text files.

Supplementary Functionalities
Additional functionalities, not strictly related to the detection
of HFOs and the identification of the SOZ, are included in the
present tool:

(1) Functions to import/export into/from EEGLAB an
“.npx/.set” file into a “.set/.npx” (Bianchi et al., 2007).
“Npx” is the native file format of the NPXLab suite (Bianchi
et al., 2009), a framework for the analysis of EEG and
brain-computer interface data.

(2) Functions to import into EEGLAB a MEG “.fif” file, native
file format of the Elekta R© Neuromag TRIUXTM system.
Such functions are based on those found in the MNE
toolbox (Gramfort et al., 2014). These functions were
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FIGURE 11 | High-frequency oscillation area identification and comparison with the SOZ. Results of the detection of HFOs on all the analyzed channels and on two
selected seizure episodes can be loaded, together with the SOZ identified by clinicians. Then five different algorithms (Max. Value, Tukey’s fence, fuzzy clustering,
k-means clustering, and KDE distribution) select the contacts in the HFO area which can be then compared with the SOZ. Each method follows its internal statistical
rule and can give different results. Results of the comparison between the HFO area and the SOZ are evaluated in terms of TP, TN, FP, FN, sensitivity, and specificity
(with relative confidence intervals). In the case reported in figure, Tukey’s fence, Fuzzy clustering, and KDE-distribution methods achieve 100% specificity and
sensitivity.

included to allow the analysis of electromagnetic recording
within EPINETLAB.

(3) Functions to alphabetically order channel labels and to
manipulate their label strings.

(4) Functions to reformat original data: users can create
a bipolar montage from monopolar contacts calculating
the potential difference between consecutive contacts of

each SEEG electrode. This addition was deemed useful
by clinicians as bipolar montages are generally preferred
to unipolar in clinical SEEG interpretation to avoid
the potential distortion of the intracranial signal from
artefactual scalp EEG data or from positioning of the
reference electrode in an active location. The average
reference can also be computed and added as a “virtual”
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TABLE 2 | Results of the validation of the HFO detection and HFO area identification algorithm in peri-ictal epochs, by comparison with the clinically defined SOZ, for 12
representative subjects.

Patient Method TP TN FP FN Sensitivity (%) CI (%) Specificity (%) CI (%)

1 Tukey 3 86 3 3 50 11.81–88.19 96.63 90.46–99.3

k-means 4 71 17 2 66.67 22.28–95.67 80.68 70.88–88.32

2 Tukey 3 101 4 0 100 29.24–100 96.19 90.53–98.95

k-means 3 92 13 0 100 29.24–100 87.62 79.76–93.24

3 Tukey 5 75 4 0 100 47.82–100 94.94 87.54–98.6

k-means 5 78 1 0 100 47.82–100 98.73 93.15–99.97

4 Tukey 4 76 3 2 66.67 22.28–95.67 96.20 89.3–99.21

k-means 4 77 2 2 66.67 22.28–95.67 97.47 91.15–99.69

5 Tukey 3 83 7 1 75 19.41–99.37 92.22 84.63–96.82

k-means 3 89 1 1 75 19.41–99.37 98.89 93.96–99.97

6 Tukey 2 32 0 0 100 15.81–100 100 89.11–100

k-means 2 28 4 0 100 15.81–100 87.50 71.01–96.49

7 Tukey 2 17 1 1 66.67 9.43–99.16 94.44 72.71–99.86

k-means 3 15 2 0 100 29.24–100 88.24 63.56–98.54

8 Tukey 1 20 0 1 50 15.81–100 84.21 60.42–96.62

k-means 1 17 3 1 50 1.26–98.74 85 62.11–96.79

9 Tukey 5 23 1 1 83.33 35.88–99.58 95.83 78.88–99.89

k-means 6 20 3 0 100 54.07–100 86.96 66.41–97.22

10 Tukey 2 23 1 2 50 6.76–93.24 95.83 78.88–99.89

k-means 2 18 6 2 50 6.76–93.24 75 53.29–90.23

11 Tukey 3 16 2 4 42.86 9.9–81.59 88.89 65.29–98.62

k-means 3 15 3 4 42.86 9.9–81.59 83.33 58.58–96.42

12 Tukey 2 22 6 1 66.67 9.43–99.16 82.14 63.11–93.94

k-means 3 17 10 0 100 29.24–100 62.96 42.37–80.6

channel to the original dataset to allow reformatting the
data against the average reference, a solution often used in
the interpretation of intracranial subdural grids data.

(5) Functions to segment a file into n consecutive fixed-length
epochs. This functionality is useful in the presence of
large datasets which could cause significant computational
burden in calculating wavelet transforms and spectral
kurtosis on lower-spec PCs.

(6) Functions to inspect the time-frequency content of an iEEG
epoch. This function was inspired by an extremely useful
feature of Elpho-SEEG, a Labview software which allows
to evaluate frequency distribution of EEG signal over time
(Gnatkovsky et al., 2011).

(7) Functions for the single pulse electrical stimulation analysis
(Klooster et al., 2011).

(8) Functions to export detected HFOs in Micromed-
compatible format [Micromed s.p.a, Mogliano Veneto
(TV), Italy]. This utility allows users of Micromed EEG
systems to superimpose detected HFOs on a Micromed
EEG file. Clinicians can integrate the results of the
released automated algorithm with a more familiar clinical
environment.

RESULTS

EPINETLAB underwent a 6-month extensive beta-testing
program by experts from a wide range of backgrounds (engineers,

medical doctors, clinical physiologists, and EEG technicians), in
order to refine the user interface and minimize program crashes.

In the 12 patients of the validation set, the detection of
the HFO area with the Tukey’s fence method and the k-means
clustering, which has provided the best performance in a recent
study by our group (Quitadamo et al., 2018), was evaluated
in comparison with the clinically identified SOZ; results are
reported for each patient in Table 2 for peri-ictal data and in
Table 3 for interictal data.

In peri-ictal epochs, Tukey’s method resulted in average
sensitivity of 70.93% and average specificity of 93.12%, while
k-means clustering with average sensitivity of 79.27% and average
specificity of 80.03%. Using the Youden’s metric of overall system
performance (Youden, 1950) (J = sensitivity + specificity - 1,
with sensitivity and specificity expressed as unit fraction), an
index value of 0.64 is obtained for Tukey method and of 0.59 for
k-means method.

In interictal epochs, Tukey’s method resulted in average
sensitivity of 49.46% and average specificity of 93.30%, while
k-means clustering had an average sensitivity of 77.97% and
average specificity of 71.40%. A Youden’s index value of 0.43 is
obtained for Tukey method and of 0.49 for k-means method.

DISCUSSION

This manuscript presents a Matlab toolbox developed with the
aim of supporting researchers and clinicians in the detection
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TABLE 3 | Results of the validation of the HFO detection and HFO area identification algorithm in interictal epochs, by comparison with the clinically defined SOZ, for 12
representative subjects.

Patient Method TP TN FP FN Sensitivity (%) CI (%) Specificity (%) CI (%)

1 Tukey 3 57 5 3 50 11.81–88.19 91.94 82.17–97.33

k-means 4 36 25 2 66.67 22.28–95.67 59.02 45.68–71.45

2 Tukey 3 59 1 0 100 29.24–100 98.33 91.06–99.96

k-means 3 46 14 0 100 29.24–100 76.67 63.96–86.62

3 Tukey 2 54 0 3 40 5.27–85.34 100 93.4–100

k-means 5 40 11 0 100 47.82–100 78.43 64.68–88.71

4 Tukey 1 26 0 5 16.67 0.42–64.12 100 86.77–100

k-means 4 17 6 2 66.67 22.28–95.67 73.91 51.59–89.77

5 Tukey 3 44 2 1 75 19.41–99.37 95.65 85.16–99.47

k-means 4 34 11 0 100 39.76–100 75.56 60.46–87.12

6 Tukey 2 20 0 0 100 15.81–100 100 83.16–100

k-means 2 15 5 0 100 15.81–100 75 50.9–91.34

7 Tukey 1 25 3 2 33.33 0.84–90.57 89.29 71.77–97.73

k-means 1 25 3 2 33.33 0.84–90.57 89.29 71.77–97.73

8 Tukey 1 24 1 1 50 1.26–98.74 96 79.65–99.9

k-means 2 18 6 0 100 15.81–100 75 53.29–90.23

9 Tukey 1 22 2 5 16.67 0.42–64.12 91.67 73–98.97

k-means 2 14 9 4 33.33 4.33–77.72 60.87 38.54–80.29

10 Tukey 2 15 2 2 50 6.76–93.24 88.24 63.56–98.54

k-means 2 14 4 2 50 6.76–93.24 76.47 50.1–93.19

11 Tukey 2 9 1 5 28.57 3.67–70.96 90 55.5–99.75

k-means 6 4 2 1 85.71 42.13–99.64 66.67 22.28–95.67

12 Tukey 1 11 3 2 33.33 0.84–90.57 78.57 49.2–95.34

k-means 3 6 6 0 100 29.24–100 50 21.09–78.91

of HFOs and the identification of the SOZ in iEEG/MEG data.
The tool was designed as a plugin of the EEGLAB framework,
a widely used, user-friendly software for the analysis of brain
electromagnetic data. The plugin is released for free upon request
under the limitations of the GNU GPL 3.0.

EPINETLAB was implemented as a multi-GUI set of functions
to allow users not experienced in the Matlab environment to
apply advanced signal processing techniques to datasets acquired
during pre-surgical evaluation. The tool is based on a structured
analysis pipeline and allows to pre-process data, compute time-
frequency transformation of EEG signal, operate a kurtosis-based
selection of the most informative channels, which was the most
innovative aspect of the algorithm released by our group, detect
HFO events, reject artifact events, and finally identify the “HFO
area” using appropriate and robust statistical testing. Moreover, a
functionality for the statistical comparison of the HFO area with
the clinically defined SOZ is provided and the process is evaluated
in terms of TP, FP, TN, FN, sensitivity, and specificity.

The preliminary validation of this tool on a small group of
patients who were investigated with iEEG using a combination
of grid/strips and SEEG and successfully operated showed good
concordance between electrodes with the highest contribution
of HFOs and the SOZ identified clinically. The analysis suggests
that, at least in this subset of patients, peri-ictal segments of
iEEG offer a better yield than those selected in the interictal state
during sleep. This finding requires further validation on larger
patient cohorts and this toolbox can facilitate large-scale data
analysis, removing bias due to inherent subjectivity, and lack of

quantitative measures associated with visual inspection of the
iEEG trace.

In our opinion, the main strengths of the toolbox are:

• The compatibility with the most used file formats for brain
data, which favors sharing of data and the dissemination of
results.
• The possibility to import and analyze MEG data, which

allows to compare results on the SOZ from complementary
methodologies.
• The GUI-oriented approach used for the software

implementation, which allows also non-specialist users to
easily set parameters and independently run the analysis.
• The totally automated HFO detection process, which

decreases unavoidable human bias in case of high-density,
long term recordings.
• The possibility to modify the code and extend its

functionalities, adding new wavelet transforms or new
algorithm for the detection, for example, as source-code is
released.

The final version of the tool ready for release incorporates
improvements that resulted from the feedback received during
extensive beta testing by different professional groups in
three departments. With modest training the tool can be
used by professionals who are conversant with properties
of neurophysiological signals. HFOs detection and SOZ
identification are a topic of great interest at this time in epilepsy
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practice and research and we developed this tool hoping that it
will constitute a valid support for clinicians who are currently
tasked with visual analysis of iEEG.

Finally, this software in its current implementation is intended
to provide only a limited 2D graphic representation of the
electrodes; the contribution of each contact to the total HFO
content of the analyzed signal is color-coded as seen in Figure 9.
However, quantitative data are exported in ASCII format and
can be used to create objects in existing image-fusioning software
such as 3D-Slicer (Fedorov et al., 2012).

CONCLUSION

A novel user-friendly and multi-GUI EEGLAB plugin is
implemented for the detection of HFOs and the identification of
the SOZ, according to an innovative algorithm already clinically
validated and released by or group within an EU-funded project.
It provides clinicians with a set of GUI-based and user-friendly
functionalities that can be available to research teams working on
epilepsy presurgical workup data.
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