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Abstract 

Over the last 25 years stents have developed into an established way of restoring 

luminal patency throughout the gastrointestinal tract. Materials used as well as the 

construction of these devices have become more and more sophisticated in order to 

comply better with the complex environment they are inserted. The requirements 

vary greatly from organ to organ and stent behavior differs significantly between 

stent constructions. However this is not necessarily understood by many operators, 

as the choice of devices is now vast and in many cases decisions are made on 

availability and cost. An increasing challenge in malignant conditions is the improving 

survival of incurable patients, which now exceeds the traditional life expectancy of a 

stent by a factor of 2 to 3. Consequently more patients experience failure of their 

stent and require repeat interventions. This has a poor impact on patients’ quality of 

life and potentially on their survival. Re-intervention is often more difficult, carries the 

risk of additional complications and presents an additional economic burden to the 

health systems. 

This article illustrates current stent designs, their different behavior and their 

limitations. 
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Introduction 

Since the first case series reporting insertion of a covered metal esophageal in man1 

self-expanding stents have become a mainstay of palliating malignant dysphagia, 

malignant obstruction of bowel and bile duct and a secondary strategy for managing 

benign strictures of the gastrointestinal (GI) tract. 

The universal concept is of an elastic skeleton, which may have an additional cover 

applied to stop tissue growing through the interstices and extend patency. Stents are 

compressed into a tubular delivery system, which has a significantly smaller 

diameter than the stent, to allow delivery into the narrowed anatomical segment. 

Balloon-expandable stents, which are used for blood vessels in the leg and heart are 

mounted on a dilatation balloon, which is inflated to stretch and deform the collapsed 

stent into its final configuration and secure the lumen. In contrast self-expanding 

stents, as used in the GI tract, require sufficient radial force, not only to spring back 

to their original configuration, but to push back the tissue narrowing the esophagus, 

bowel or bile duct. This elasticity is provided by a combination of the stent material 

itself and the construction of the stent. 

The surrounding normal mucosal tissue will react to the unexpected ongoing 

mechanical irritation from movement and friction by “overgranulation”, similar to 

callus forming on the hands of a builder. The degree and speed of this reaction is 

highly variable and unpredictable, but as a consequence only fully covered stents 

must be used in benign disease and generally not left for longer than 6-8 weeks, as 

they will become non-removable2. 

In malignant strictures tumor will grow through any gaps in the stent skeleton and 

eventually over the ends of it, if unchecked by further oncological treatment. Stents 

covered by a form of plastic stay patent longer than stents made of a bare skeleton, 
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but are less able to embed and fix themselves within the tumor and may displace 

with peristalsis. This is probably accelerated if the stent is of a rigid construction, 

thus presenting more resistance to the peristaltic movement, which is designed to 

move ingested material forwards. Stents that conform to the anatomy and can 

absorb peristaltic forces are therefore preferable, particularly in tortuous anatomy. 

The requirements and challenges to the stent vary between the muscular 

esophagus, the chemically hostile stomach, the C-shaped duodenum, the delicate 

structure of the bile duct and the large-caliber colon propelling solid feces. The 

emerging additional challenge is patient survival. As an example in 2004 the average 

survival of a British patient requiring an esophageal stent was 90 days3 but due to 

evolution of palliative chemotherapy in 2010 this was reaching 1 year, with 5-year 

survival in T4 tumors coming up to 20%4 depending on lymph node status, tumor 

type and whether it carries hormone receptors. 

As a consequence the requirements for long-term stent performance are ever 

increasing and current stent designs are becoming inadequate. 
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Principles of stent design 

While interventionists and even patients are very familiar with the concept of 

stenting, few are au-fait with the range of different devices and their characteristics. 

One study has charted the properties of esophageal stents5, yet it is unclear what 

properties make the ideal GI stent. Much focus has been placed on the force with 

which the stent expands, and to what extent the stent is covered, but other qualities 

are rarely taken into consideration. 

 

Definitions 

Radial force: The strength with which stent expansion occurs against the 

surrounding tissue 

Axial rigidity: The stiffness of a stent, resisting flexion 

Flexibility: The ability to bend without breaking or kinking 

Conformability: The ability to align to a given shape without resistance 

Stent shortening: The amount of reduction in length as the stent expands from the 

compressed state in the delivery system to its full unconstrained diameter 

Laser-cut stent: A stent cut from a solid tube of metal 

Braided stent: A woven construction where the wires cross over each other but do 

not interlock 

Knitted stent: A woven construction where the wires hook around each other, 

allowing a greater degree of displacement 

 

Principles of Stent Construction 

Laser-cut stents 
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Laser-cut stents are made by perforating a solid tube of shape-memory metal using 

a laser until only thin struts remain (Fig. 1). This type of stent was originally designed 

for use in arteries and it has a very high radial force. Despite being able to be 

compressed into very thin delivery systems, laser-cut stents shorten the least during 

expansion, typically less than 10%, which allows for accurate placement. Their 

drawbacks are a high axial rigidity, with an inherent desire to return to their straight 

shape. As a result they do not conform well to anatomical flexures, tend to deform 

their environment to accommodate their straight configuration and – if covered - 

displace more easily. Rigid stents may exert undue pressure of the stent edges onto 

the bowel wall, which may lead to necrosis and perforation6. The only laser-cut stent 

for the bowel was withdrawn for this reason. A rigid structure in a mobile 

environment is exposed to repeated flexion forces and subject to metal fatigue and 

laser-cut stents have a relatively high reported fracture rate7-12.  

 

Braided Stents 

In this traditional woven construction, a single strand of metal wire is wrapped 

around a metal mandrel, resulting in a “finger catcher” construction (Fig. 2), which is 

also termed “crossing wire” or “S-weave”. Although very flexible, a braided stent 

retains a relatively high axial rigidity, with inherently trying to regain a straight 

configuration. When compressed into the delivery system this type of stent lengthens 

up to twice its nominal size. Conversely the elongated stent shortens up to 50% on 

release, depending whether full expansion is achieved. Example: a large diameter 

10cm stent may measure up to 20cm in a slim delivery system (Fig. 3). To the 

unwary operator the markedly increased length of the undeployed stent may lead to 

unexpected outcomes if the middle stent markers are mistaken for the end markers 
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or stent shortening does not occur due to very tough surrounding tissues. For 

covered versions braided stents are usually dipped or sprayed with liquid silicone. 

However this fixes the wires against each other, preventing displacement and 

markedly increasing the rigidity of the stent (Fig. 4). 

 

Knitted stents 

Also called “hooked wire” or D-weave construction, knitted constructions are 

becoming the norm for GI stents. The wire filament is bent around pins inserted into 

the construction mandrel and looped around other wire segments. The wires can 

displace not only in a lateral, but also in a longitudinal fashion (Fig. 5), allowing 

segmental compression and almost completely abolishing the straightening forces. 

Knitted stents conform to anatomical flexures without embedding their ends in the 

bowel or bile duct wall. They align coaxially in the lumen, which optimizes function 

and makes re-intervention easier (Fig. 6). Stent shortening is up to 30%, i.e. a 10cm 

stent may measure up to 15cm in the delivery system. If knitted stents were covered 

by dipping in silicone they would lose their conformability and they are usually 

covered by suturing a membrane to the outside of the skeleton or trapping it between 

two layers of metal mesh (“double” stent). As this does not fix the wires against each 

other, conformability is preserved. 
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Covered versus uncovered stents 

Bare stents have the advantage of embedding into tumor tissue and normal mucosa, 

resulting in good fixation and very low displacement (“migration”). The trade-off is 

tissue growing through the mesh, either by proliferation of tumor or benign 

hypertrophic overgranulation as a result of the chronic trauma to the mucosa. The 

latter can occasionally be so florid that it may occlude the stent13. In case of 

biodegradable stents it is reversible after the stent has dissolved, but may require 

dilatation or coagulation14,15.  

Covered stents are designed to have longer patency rates, as ingrowth can only 

occur when the cover has perished. Where removal may be necessary, fully covered 

stents with a retrieval lasso should be used. The lasso acts as a purse string and on 

traction the end of the stent constricts and the stent can be extracted, either with 

endoscopic forceps or with dedicated stent extractors (Fig. 7). 

A compromise is presented by partially covered stents, where several millimeter of 

the stent ends are left bare in order to achieve mucosal fixation, while most of the 

middle is covered (Fig. 8). 

Bare and partially covered stents are not designed to be removed. However the 

tissue, into which the stent has embedded can be obliterated by argon plasma beam 

coagulation or insertion of a second, covered stent of the same size or larger16,17. 

After a period of 1-2 weeks the inner stent is extracted and an attempt at removing 

the original stent can be made. “Stent in stent” removal should only be attempted by 

experienced operators and ideally using a combination of endoscopy and 

fluoroscopy to assess stent mobilization and reduce the risk of perforation. 
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Stent materials 

Stent skeleton 

Stainless steel has been abandoned in favor of super-alloys with markedly improved 

elasticity and the added benefit of shape memory. By far the commonest is an alloy 

called nitinol, which is an acronym for Nickel Titanium Naval Ordnance Laboratory. 

Developed by the US Navy it has found wide application, not just in medicine, but 

also in household goods such as pop-up tents and dental braces, due to its shape 

memory.  

Shape memory alloys are a class of materials which possess the ability to retain a 

specific geometry within a fixed temperature range. This property is imparted by 

through a phase transformation in the crystal structure of the alloy from martensite to 

austenite phases. In the martensite form at lower temperatures, the metal can easily 

be deformed into any shape. When the alloy is heated, it goes through 

transformation from martensite to austenite11. In the austenite phase a shape 

memory alloy remembers the configuration it had before it was deformed. Stents are 

manufactured by taking the martensite form of the nitinol and forming the stent by 

laser cutting, weaving or braiding. The stent is then heat treated at a specific 

temperature to impart shape memory over a set temperature range known as the 

‘memory transfer temperature’ where the austenite form of the alloy is stable.  

In addition to shape memory nitinol also possesses superelastic properties which 

allow ductile deformations of up to 25% of the original length without breaking and 

high tensile strengths making them ideal for stent manufacture. 

This feature is based on the ability of the atoms to sublux temporarily in the lattice 

before plastic deformation occurs. For medical devices the memory transfer 
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temperature is body temperature and is imprinted by baking stents at approximately 

500° C before removing them from the mandrel. It is important to understand that the 

full properties of nitinol only come to play after warming up to body temperature and 

consequently expansion will continue over several days. Therefore balloon dilatation 

of stents after deployment is not usually indicated, if a minimum of 25-30% 

immediate expansion has occurred. 

Two non-metallic braided stents are currently in use: A plastic stent (Polyflex, Boston 

Scientific, Marlborough, Mass., USA) made from a nylon skeleton and a 

biodegradable stent (SX Ella BD, Ella-CS, Hradec Kralove, Czech Republic) made 

from polydioxanone, a polymer, which undergoes hydrolysis over 3-4 months. Both 

materials lack the unique properties of nitinol precluding them from being stored in 

their delivery systems. These stents need to be loaded manually during the 

procedure and require large delivery systems. 

 

Stent covers and coatings 

The currently favored materials are silicone and expanded polytetrafluoroethylene 

(ePTFE). Silicone, either applied as a solution to braided stents or as a membrane 

for knitted stents is elastic and relatively bio-resistant and has replaced 

polyurethane. ePTFE, used as a waterproof membrane in outdoor clothing, has a 

lower degree of elasticity but is more resilient to the challenging environment of the 

human body. 

Stent coverings are designed to prevent tissue ingrowth from occluding the stent 

pathway. However, if the wires are fully coated, it may also provide a barrier between 

the stent skeleton and bodily fluids. 
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Two further potential benefits are offered by silicone and ePTFE coves; the first is 

biocompatibility as these coatings reduce the risk of tissue inflammation or 

mechanical irritation that might occur otherwise. Secondly silicone and ePTFE are 

effectively nonstick coatings (ePTFE is a derivative of Teflon®) which inhibit the 

adhesion and growth of yeasts or bacteria which could cause local infection or 

facilitate local corrosion on the nitinol18. 

 

Silicone-dipped stents have the advantage of the metal skeleton being enclosed and 

protected from potentially corrosive processes. However due to the constant 

movement of the target organ and the many forces exerted by swallowing, coughing, 

laughing, hiccups and vomiting the cover invariably becomes detached from the 

stent skeleton, although the time frame and the exact mechanism of that is unclear. 

Once the cover is damaged the metal is exposed to the body’s chemistry. 

Subsequently tumor ingrowth can occur, potentially preventing removal of the stent 

(Fig. 9). 

Most interventionists place fully covered stents in the esophagus, in order to prevent 

rapid re-occlusion. The trade-off is reduced stent fixation, which is particularly 

important if stents need to be placed across the gastro-esophageal junction (GEJ). 

Migration rates across the GEJ vary greatly between stents, with an average of 

around 18% in a national British survey. Manufacturers have tried to address this in 

different ways with variable results. Partially covered stents may be repositioned 

immediately after deployment but quickly become fixed by mucosal or tumor 

ingrowth. One of the most successful designs is a forward facing collar, which acts 

as an anchor over the top of the tumor (Fig. 10). Stent designs with an outer 

uncovered segment to allow mucosal fixation (Fig. 11) are intuitively appealing. 
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However they have the disadvantage of increasing the rigidity of the stent further and 

the outer segment may become detached. One knitted esophageal stent is currently 

available, which to some extent absorbs peristaltic forces, reducing migration by 

providing less resistance to displacing forces (Fig. 12). 

For enteral stents the traditional view is that covered versions have unacceptable 

migration rates. However this relates to a time where only fully covered silicone-

dipped stents were available. Partially covered knitted stents were developed to 

deliver a superior performance, delivering the benefits of a covered stent while 

remaining conformable19. To what extent covered duodenal stents should be avoided 

in order not to obstruct biliary drainage is not entirely clear. However they certainly 

preclude future ERCP and this needs to be taken into account. 

Similarly the anatomy of the biliary with insertion of the pancreatic and cystic duct 

and the hilum requires careful consideration if a covered stent is to be placed as it 

may obstruct drainage from the gallbladder and pancreas. The benefits of covered 

biliary stents in malignancy are still under debate20,21. New biliary stents with a profile 

that is supposed to allow additional drainage around the outside may address this 

problem (Fig. 13). 
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Stent failure 

Primary failure of a stent is rare, often reflecting poor stent position or placement of a 

rigid stent into tortuous anatomy (Fig. 14). 

Secondary failure after initial restoration of patency may be due to obstruction by 

food, feces or bile sludge, tumor growth into the stent or beyond the stent ends or 

stent migration. 

An emerging problem is stent fracture22-24 and disintegration due to metal fatigue or 

corrosion of the metal stent skeleton. This is increasingly observed as improvements 

in palliative chemotherapy extend patient survival. Stent fractures are most 

commonly seen in lower esophageal and duodenal stents exposed to gastric acid. 

They can be observed by the alert operator on routine CT scans (Fig. 15) and should 

prompt patient re-assessment, as stent removal may become unsafe if the integrity 

of the stent is lost. 

A large amount of stent development has happened by modifying existing devices 

and applying materials proven safe in other contexts. Furthermore the requirements 

for device testing vary greatly in different countries but frequently do not involve any 

clinical trials. A voluntary test often applied, is based on electrolytic corrosion studies 

of small implants in an artificial laboratory environment (ASTM 2129). The long-term 

suitability of current stents to the chemically hostile environment of the upper GI tract 

is unproven. 

Patients’ life expectancy is ever increasing and due to the plethora of potential 

difficulties after stent insertion patients need to be kept under review by the inserting 

team. 
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Conclusion 

An understanding of the increasing variety of GI stents is essential to allow patients 

to receive the most appropriate device for their disease and individual anatomy. 

Differing stents characteristics need to be matched to the specifics of the patient, the 

stricture and the life expectancy. Stent materials have not kept up with the increasing 

survival of the patients requiring stent insertion. Consequently more patients will 

present with recurrent symptoms requiring re-intervention into a failed stent and 

need a direct access route to the interventional team. 
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Figures 

 

Figure 1: Different construction of biliary stents. From left to right: Laser-cut stent, 

braided stent with “crossing” wires and knitted stent with “hooked” wires. 
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Figure 2: “Finger catcher” effect of a braided stent. On traction the stent lengthens 

and constricts, which is a useful feature, when removing a stent. 

 

Figure 3: Shortening of a braided stent. Top: A 25x100mm colonic stent measures 

just over 20cm in the 10Fr. delivery sheath (arrowheads). Bottom: The stent shortens 

from the distal end on deployment (arrow). 
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Figure 4: Bare and silicone covered versions of the same braided stent: The silicone-

dipping has fixed the wires together and the stent kinks on flexion. 
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Figure 5: Knitted stent behavior. Top: relaxed stent, Bottom: compressed stent. 

Longitudinal compression (arrows) results in axial displacement of the wires, 

accommodating the forces. 
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Figure 6: Conformability of double knitted stents: The lack of straightening forces is 

demonstrated by both bare and covered configurations. 

Figure 7: Stent extractor (Ella-CS). Top: Capture of the removal wire (arrow), 

Bottom: Withdrawal into the removal sheath 
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Figure 8: Partially covered stent (Wallflex, Boston Scientific, Marlborough, Mass., 

USA): The stent head consists mostly of bare metal (arrow). Note the purse string 

(arrowheads), which is only designed for stent repositioning immediately after 

insertion, but not for removal of an established stent. 
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Figure 9: Left: Axial CT showing circumferential tumor ingrowth (arrow) indicating 

cover failure. 

Right: Endoscopic view of a different patient with a perished stent after 3 months. 

The silicone membrane has disintegrated, allowing tissue ingrowth (arrow). Removal 

was not attempted, swallowing was re-established by coaxial placement of a further 

stent. 
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Figure 10: Anti-migration collar (arrowheads), providing mechanical anchoring above 

the stricture (Ella-HV plus, Ella-CS, Hradec Kralove, Czech Republic). 
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Figure 11: Double esophageal stent. The outer bare segment (arrowheads) is 

supposed to embed in the tumor (Niti-S, TaeWoong, Gyeonggi-Do, Korea). 
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Figure 12: Knitted esophageal stent with silicone-dipped heads, but an ePTFE 

membrane externally covering the skeleton, thus retaining conformability (Egis, S&G 

Biotech, Gyeonggi-Do, Korea). 
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Figure 13: Corrugated cross-section of a knitted stent covered with an ePTFE 

membrane (Flower stent, S&G Biotech, Gyeonggi-Do, Korea). 
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Figure 14: Poor functional result from a rigid stent. Braided duodenal stent with distal 

end embedded in D3/D4 flexure. 

A, CT: The distal stent end is impacted on the duodenal wall (arrowhead), as it 

cannot follow the 90° anterior course of the distal duodenum (arrow). 

B, Percutaneous cholangiogram: The contrast has to pass through the mesh of the 

stent (arrow), as the bowel wall is stretched over the stent exit. 
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Figure 15: Stent fracture 

A, CT showing a migrated and transected esophageal stent. Wire fragments are 

seen around the upper portion (arrow) and the lower head is missing. Arrowhead: 

middle stent marker. 

B, The same patient undergoing re-stenting. The top and middle markers of the 

migrated stent are evident (arrowheads), the distal set is missing. 


