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"-You are accustomed to have set before 

you the latest triumphs of mind over matterl eos 

however, after you have seen 

what I shall endeavour to show youl I think you 

will readily admit that for once the case is 

reversed, and that the triumph rests with naturej 

in having for so long concealed what has been so 

eagerly sought, and what is at last found to have 

been so thinly covered 

Osborne Reynoldse 

From the proceedings of the Royal Institution of 

Great Britain* 

Read 2nd February 1877. 

-7 JU 
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ABSTRACT 

The terminal velocities, drag coefficients, orientatigns 

and the flow patterns of single spheresi cylinders and disas 

falling in a viscous liquid are determined experimentally for 

Re I ynolds numbers ranging from 0.007 to 103. Detailed investiGatiQns 

are carried out for the orientations of'cones and capped eyýindersj 

where the geometry of the body is very important. The transition 

from steady to unsteady motion for discs and cylinders is dýscussad 

in terms of the geometry and the ratio of the densities of the 

b6dy and the liquid. Shedding of vortex rings Uive rise to unsteady 

motion. At Reynolds numbers greater than about 500l discs and 

spheres fall in a helix, while smooth cones with Re > 800, tumble. 

Collision occurs between two equal bodies falling 

directly one behind the other, After collision, discs stay ýogetharj 

initially non-parallel cylinders slide along each othor until 

they bisect at right anglesland spheres and parallol. cylinders 

rotate and separate horizontally at a decreasing rate, 

Clusters of bodies fall faster than a. single body, 

Behaviour of 3 or more spheres depends on the Raynolds numborm 

When 0.06'< Re < 0.16, three similar equally spaced spheres 

dropped in a horizontal line interchange positions but do not 
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separate. If unequally spaced, one sphere is left behind, which 

sphere depends on the initial spacing. 3to 6 spheres initially 

in a compact cluster form into a regular polygon which expands 

at a decreasing rate in a horizontal plane, when 0.06 4 Re /- 7, 

If Re >7 or the cluster contains 7 or more equal spheres, no 

polygon is formed. For this behaviour the sphere and liquid 

densities have to be comparable, so that the spheres move in 

response to changes in fluid motion* 3 or more equal discs 

cluster ori a stable 11 butterfly 11 configuration formed by 

three discs, while cylinders form into stable pairs crossed 

at right angles and into triplets of sy=etric form 0 

The behaviour of discs and cylinders loaded with 

spheres depends only on the position of the sphere and the ratio 

of their weights in the liquid. 
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CHAPTER 1 

INTRODUCTION 

lol STATEMENT OF THE PROBLEM AND OUTLINE OFTHE THESIS 

The latter stages of the growth of a precipItatIng 

particle is almost entirely governed by the hydrodynamic 

interactions of the individual particles. This process is 

studied in the following cases. 

(1) A single drop collecting small droplets in its path* 

(2) Snow crystals growing into hailpellets by accretion of 

supercooled water drops. And 

(3) snow oryatalo adhering with each other to form snowflakes. 

But in all these cases, the calculations so far 

carried out by cloud physicists have been based only on the 

interactions of two neighbouring particles* The more complicated 

problem of the interactions between many particles has not 

been attempted. 

It may soon be necessary to consider the multi-particle 

probleml owing to the improvements that should take place in our 

knowledge of cloud models. A serious gap would then be the lack 

of theoretical or experimental data on the fall behaviour of 

small clusters of these particles, 

The basic forms of most of these precipitating 

particles fall into few elementary types of boaies of revolution. 
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For example, cloud droplets and spherical hailstones could be 
- 

represented by spheres, snow crystals by either discs or cylinders, 

and conical hailstones by capped cones. 

As a primary step towards the understanding of the 

multi-Particle problem, it was decided 

investigation in the laboratory of how 

behave when falling in close proximity 

treatýment was further limited to only 

types of particles in a cluster. 

The questionj howeverl arisei 

to make an experimental 

models of these particles 

to each other, The 

small numbers of similar 

s as to the conditions 

that have to be satisfied to apply the results of these model 

experiments to the case of precipitating particles falling in 

air, The usual conditions of matching the geometry and the 

Reynolds numbers could be seriously challenged. The other 

requirements and their limitations are discussed in detail 

in section 1-3. 

The work described in this thesis, in addition to 

the behaviour of small clusters of simple bodies, also deals with 

the orientation during free fall of more complex models of 

naturally-occuring snow crystalsq The types treated are capped 

c0lu=s, rimed plates and needles, The reason for this study 

lies in the ex#planations of the spectacular optical phenomena 

observed in the sky, when a thin cirrus cloud obscures tho sun 

or the moon. The nature of these depend amone; othor things, 

on the type and the orientations of ice crystals present in the 
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cloud Humphreys 1929). For simple crystals like plates and 

needles, the orientations durino free fall is known, at least 

in the extreme cases. However, little is known of the orientation 

during free fall of the more complex crystals, Model experiments, 

provide an easy means, to investigate this behaviour. 

Outline of the thesis 
I 

In the subsequent sections of this chapter, previous 

work on the behaviour and flow round single bodies is discussed. 

The discussion is mainly on the theoroticr. 1 work in these fields. 

The last section deals with the merits and demerits of model 

experiments. 

The present experimental investigations on the 

behaviour of spheres and cylinders are discussed in chapters 

2 and 3 repectively, while chapter 4 includes the work on 

both discs and cones. These results are compared with the 

experimental results of earlier workers wherever possible. 

1.2 FLUJ PAST A SINGLE BODY 

Exact equations for the flow field 

The behaviour of more than two bodies falling close 

to each other is undoubtedly, determined by the interactions 

of the flow fields around-each body, The bodies 'Till move in 

response to these modified flow fields, Hence the knowledge of 
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the flow round an individual body, fallino unaffootod by any 

other external source, is an extremely important step in the 

solution of the multi-particle problem. 

The uniform motion of a single body through a 

fluid has been thoroughly investigatedl ever since time of 

Sir Isacc Newton. When a body moves throut, --h a fluid it experiences 

a resistance or drag in the opposi'., o direction to its moticn, 

due to the fluid displaced. Newton postulateoho first law for 

this drag, purely from a momentum theorem. He aasumed that the 

fluid through which the body moves, consints of a large number 

of particles, which has only mass dimensions, and exert no 

influence on each other. The body imparts a velocity, 

proportional to its own velocity, to all the particles in 

ito path. The rate of change of momentum thus imparted being 

the drag on the body, thus the drag 

D=fAqV2......... ( 1.2.61 

where T is the cross-sectional area nornal to the flow, 

P+ the density of the fluid, IVI the velocity of the body 

and fIa constant of proportionality. 

Even thouGh Newton's assumptiono give an: incorract 

value for 'fl, this law still holds, with little modificationg 

for the case where the drag is mainly due to inertia. 

In the modern conceptions, the entire shape of the 

body is taken into consideration, and not just the front of the 
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body as Newton aasumed. Also the individuality of the fluid 

particles is discardedt with the result that each fluid element 

exerts an influence on its neighbours. This is attributed to 

the property of the fluid called t' Viscosity 'to Paradoxically 

the concept of viscosity was also introduced by Newton@ The 

law of viscosity is named after him. 

The viscosity of a fluid alone causes the resistance 

to the motion of a body, primarily due to the forces necessary 

to deform the various fluid elements. Prandit & Tietje 

, P4 sw ho Vthat the drag exp; terienced by a body in a 

fluid without any viscosity is zero. Hance ovaq inertial forces 

cannot produce a drag, and 

they may be, are necessary 

However, the total drag is 

viscous forces compared to 

inertial to viscous forces 

Parameter termed the Reyno: 

the viscosity forces however small 

to cause a drag on a moving body. 

determined by the importnace of the 

the inertial forces, The ratio of 

is represented by a non-dimensional 

Ids number, and is expressed as 

Re v1 
7- 

where :VI is the kinematic viscosity of the fluid and 1 

a representative length of the body. 

Newton's quadratic eýmression could be modified 
to include the Reynolds number, and written as 
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Du f(Re) Ap2...... ( 1*2*2 
. f. 

Y 
2 

The function f(Re) is termed the drag coefficient 

C.,,, and takes care of the complications that arise from the 

various effe-u-ts of viscosity. 

For geometrically similar bodies, the law of dynamic 

similarity states that CX is a unique function of Re. Henct the 

knowledge of C. as a-function of Re will provide the drag of a 

P(Lrticular shape for all fluids, all velocities and all body 

dimensions ( Prandlt & Tietjens 1957, P93 )- 

Theoretical determinations of the drag coeffid. j-, &nt 

and the flow patterns as a function of the Re. -, vnoýs number, 

involve the solution of the Navier-Stokcs equations under 

specific boundary 6onditions. 

When a body moves steadily through an incc. pI';., -)LiLiI"ý)je 

fluid, or when the fluid floiz steadily past a stationary body, 

tho velocity of the fluid V at any point should satisfy the 

modified Navier-Stokos equation 

+ 

and 0 

where p is the pros-sure. 

vo**o&s*o*aoa(19293) 

No oxact solution to this equation has-yet been 

obtallill. The mathematimal dIfficulties of this equationare 

two f old. 
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The presence of the quadratic term V. VV, and 
(2) the term with')r'is of a higher order. 

Also the correct solution should satisfy the 

boundary condition which, for 

fluid, aro 

(1) the velocity at infinity 

(2) the fluid in contact with 

velocity as the body, so that 

surface of the body. However, 

special cases. 

a body moving in a stationary 

should be zero, and 

the body should have the same 

there is no slipping at the 

solutions have been obtained in 

B Potential Flow 

Neglect of the viscous terri, )rV2 V, gives the 

potential solution. This solution, even though it satisfies 

the equation, the necessary boundary condition that both the 

tangential and normal components of the velocity, at the surface 

of the body, should be equal to the corresponding velocities of 

the body, cannot be satisfied, The flow distribution 

corresponding to this solution is shown in fig Isle 

As stated earlier, the drag for a frictionless fluid 

pas-t a body is zero, and the necessity of even a slight amount 

of viscosity to cause a drag, was empha3ised, The no slip 

boundary condition is another way of statinG that viscosity 

-however small, cannot be neglected near tho surface of the bodys 

In a layer close to the body and extending behind the body, 
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Fig. 1.1 POTENTIAL FLOW ROUND A SPHERE. 



22 

viscous forces cause the whole picture of the flow pattern to be 

diff6rent. Instead of the ry=etrical flow liner, ( fie 191 

vortices and a boundary layer are forned behind the body, 

But as long as the flovr pattern* in front is concerned, the 

potential theory gives the correct flow lines* Fig 1*2 shows the 

formation of the vortices in the boundary layer. The comparison 

of the first and the last photographs shows the flow in the 

front is unaffected by the formation of vortices, the latter 

being re6tricted to the boundary layer. 

Hence when dealing with fluids of small viscositYi it 

is justified to use the potential flow solution for all-points 

outsido the boundary layer, while insido the boundary layer the 

treatment is very complicated. The draC on such a body arisGs 

only from the flow inside the boundary layer. 

C Slow notion or viscous flow 

The other liniting case where the viscous force is 

very large compared to the inertial force, an exact solution 

could be obtained, provided the quadratic term in the velocity is 

neglected, The solution could be made to satisfy the boundary 

conditions, 

In the case of a rigid sphere moving, in an infinite 

incompressible fluid, the solution was given by Stokes. Using 

the conce- o 1962, p 596 pt of Stokes' stream function ( Bee La=7 

he obtained the drag on a sphore moving vrith a velocity, V, as 



FIG 1.2 

Formation of vortices in the boandary layer - After Prandlt & Tietjens 

(1957) 

PLATM I. ' 

I. - Flow rt)und cylinder im- Iý [ý 11., 

rnp(listely after starting (potential I-m-in1j, ho, t thý, cylinder; 
flow) accumulation of boundary layer 

material. 

P,,,, z 

,II, -, --- I", "'llic-, FiG. 4. -The eddies increase in mine. 
flow bremkinig loise from cylinder. 

PLATZ S. 
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7cl V oo*e*oooo*o ( 

wherel? L I is the dyna-mio viscocity of the fluid and, r, th-- 

radius of the sphere. 

In terma of the drag coefficient and the Reynolds 

number, this reduces to 

Cx Re = 24 oboosooooooo( 
Hence for very low Reynolds numbers, the drag 

coefficient is inversly proportional to the Reynolds number. 

Using the same assumptions Oberbeck (1876) solved 

the Navier-Stokes equation for an ollipsoid. Tho drag for this 

being 

7c wL V dL ............. 

where dt is a function of the dimensions of the axes of the 

ellipsoid and its value also depend on the orientation of the 

ellipsoid with respect to the floj7, it is vrorl&while noting 

that dL is also the diameter of a sphere which has the same 

resistance as the particle when moving with the same velocity 

in the fluid. Hawskley (1954) termed this parameter as the 

I'drag, diameter" of the ellipsoid and extended the idea to 

include any particle. 

For sphera-ýpds ckr bodies of revolutiong the value 

of 'dj_' could be computed in terms of the dimansions of the 

body, from Gans (1911) simplified treatement. 
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'For a thin disc with diameterl d, and thick-neesttt 

dd ýL6 d when moving edgeways 97r 

and 24 dcL ý-ic d when moving normal to the stream. 

This gives for a disc moving edgeways 

C. Re = 21-38 I" S" ISIS I (1.2.7) 

where Re =2 t_ejV 
I 

and if moving normal to the stream 

C: b Re = 20-34 oooooooo(1,2.8) 

where Re = pjV d 
I 

For the other Uniting casot tho infinite circular 

cylinder, a solution. is not feasible from the Gans-Oberbeck 

method, In this case it is impossible to satisfy the boundary 

condition that the velocity of the fluid is -,, oro at infinity, 

Solutions have been attempted by Berry & Swain (1923) and by 

Wilton (1915), The former authors used a limiting process, 

but their velocity at infinity does not vanish, but is 

proportional to log 
eR as R->oo I while Wiltonts solution gives 

indeterminate values along the front and rear Generators of 

the cylinder, Harrison (1924) attempted to find a solution by 

satiLfying the boundary conditions as far as posrd-blej-but has 
A 

been sUccessful in only making slight improvements on the 
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solutions of the previous workers6 

However? a solution seem to be possible, if the infinite 

cylinder is bounded by walls parallel to its axis of revolution. 

This was demonstrated by Bairstow, Cave & Lang (1922) for a 

special case when the cylinder is mid-way between the two walls 

five diameters apart. They found that 

C2, Re = 14,2, 

This result differs considerably from White's (1946) 

empirical relation, which when extrapolated to this special case 

gives 

C., Re = 18.0. 

Bairstow et al used the maximun velocity of flow 

velocity along the axis ) to compute the drag coefficientio and the 

Reynolds number, while White used the mean velocity# This could 

partly explain the discrepancy. 

Davies (1947), while discussing the drag for all cases 

of ellipsoidal particles, derives an expression for the drag on 

a long but finite cylinder, moving with the axis horizontal and 

vertical, 

For a cylinder falling with the axis horizontal 

-4 
TE rL VL 

J. 0se d+0.5 + 0(d/L) 

where, L is the length of the cylinder. 

This expression was also derived by Burgers (1938) 
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and the term 0(! 1)3 
was introduced by Boersma (1960). L 

The condition for pure viscous flow, for which 

Gans-Oberbeck expression and all its applications are valid, is 

satisfied only if the ellipsoids move without any preferred 

orientation. For when the inertial forces are negligible, the 

body would fall with the orientation in it was released. This is 

a direct consequence in the derivation of Gans-Oberbeck formula. 

In fact Gans (1928) make special mention of this, that in a 

purely viscous flow, a body with three mutually perpendicular 

planes of symmetry would fall without any preferred orientation. 

Usi*I)Z these expressions for the draSt the terminal 

Tall velocities of spheres, dics, and finite cylinders could 

*he not be computed for pure viscous flow, as the drag is t 

weight of the body in the fluid. For spheroids whose ratio of 

the axes are less than 2 to 11 Green & Lane (1964) show that the 

error in the computed velocity is small, when the drag diameter, 

d, Lj is replaced by the "equivalent diameter"s dsl which is 

the diameter of the sphere having the same volume as the 

particle, But for higher ratios, this substitution gives a 

smaller value for the fall velocity# 

Fuchs (1964, p4o) introduces a "shape factorlt')( , 

and computes the fall velocities in the general case of 

non-spherical particles, from the expression 
2 dS: s ps - Pi 

?c 18 vL *qoq***. 
(1,2.10) 

where pS is the. density of the material of the particle. 
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Table 1.1,0 gives the values for this shape fgotor, 

'A j as calculated by Fuchs for prolate and oblate spheroids. 

The value of, 'Y-, is 1 for a sphere and is greater 
wle. t ed'" than unity for a! ethe cases. This fact that for a given 

volume, the sphere has the greatest fall velocity was shot: n 

experimentally by Kunkel* (1948). 

The definitions of the drag coefficients and Reynolds 

A 

numbers for these irregular particles provide conoidarablo 

difficulty, due to the ambiquity that arises as to the definition 

of the "size" of these particles. Pattijohn 8e Christiansen (1948) 

and Heiss & Coull (1952), find that for isometric particles 

and short cylinders, whose shapes are such that the projected 
2 

area coul,; be represented by n C., and Re, when defined in 
%0 

ýý, 

terms of the equivýlent diametert d. , gives the relation 

24 Cý Re - %f I 

where, is defined as the ratio of the area of the sphere 

having the sarae volume, to that of the particle, This was 

introduced by Wadell (1934) as "sphericity" and is a measure of 

the deviation of the particle from the sphorical shape. 

HaV. ý: sley (1951) finds that if C: j, and Re are 

defined as 

ps - 

Iv dts 

LP d-. S 
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TABLE 1.1o 

Values for the Dynamic shape factorl %, for ellipsoidal 

particles. After Fuchs (1964) 

Ratio of 
the axes 

Prolate ellipsoids 
during motion 

oblate ellipsoids 
during motion 

Along Across Along Across 
polar polar Average polar polar Average 
axis axis axis axis 

1.1 o. 994 1.005 11001 

1-3 0*970 1.027 i. oo8 - - 

1.5 o, 94o 1, o44 1*010 1,072 0.958 o. 996 

2 0.95 1109 105 1.14 0199 I. o4 

3 0.97 1.20 1.12 1.26 1.04 1111 

4 1.01 1.30 1,20 1.38 1, o8 1.18 

6 1. o8 1,, 47 1*34 1,56 1,17 1930 

8 1.15 1.62 1*47 1,71 1.25 1.4o 

10 1.22 1976 1.58 1.83 1.32 1.49 

20 1.54 2.34 2.08 2-31 1.59 1.83 



30 

the relation between C. and Re takes the form of that for a sphero. 

However, these definitions for the velocity, drag 

coefficient and Reynolds number could only be applied if the 

shapes are Seometrically similar or not very different from a 

spherical shape. For exlzreme shapes these calculations are not 

valid ( Davies, 1947). 

So far only the theoretical work on these relations 

has been discussed,, Hardly any mention was made on their 

experimental verification. 

Stokes'formula for spheres (1.2.4. ) has been verified 

by many workers. Early confimation came from Allen (1900) who, 
V 

using paraffir wax spheres in anilinei founa that ror very low 

velocities, the draG was proportional to the velocity, and that 

no slipping occurs at the boundary. However, his results show 

'r. Arnold (1911), using metal a considerable amount of scattý 

spheres in oil, compares the viscosity usinG Stokes' L:. w 

and Pois'lntlleis law. lie finds deviation from Stokes' law 

occurs for Re as lol-i as 0,, 01',, Schillen-(1932), discussing the 

various verifications of the Stokes' formula, shows that for 

Re-4- 0*5, the deviation from Stokes' formula 4s less V-. an tha 

experimental error. However, using the more uccurarte results 

of IMIO'llor (1938), the upper limit to Stbkos' lav, could be 

placed at Re = 0.1. The deviation at this Reynolds number ic 

- 1.5% ( Fuchs, 1964 P31), This correspoids to watar-drops of 

radius 20 ýL falling in air at OOC and 900 mb prossure 

( See Plason 1957, p421)o 
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All tho direct experimental verifications of Stokes' 

formula have been carried out in liquids and not in gases* In 

the latter medium, it becomes difficult to obtain low Reynolds 

numbers without using small spheres, This gives rise to slip 

and uncertainity in the measurements of their diametersl added 

to this is the practical difficulty to obtain true spheres. 

But, by the determination of the electronic charge, e, 

Millikan ( 1917 ) who use& Stokest formula to compute the radius 

of the oil drops, indirectly verified Stokes' law, However, 

an approximate verification had been carried out by Zeleny 

& McKeehan (1910) in the study of fall velocities of Plant 

spores of spherical shape. 

For non-spherical particles, Fuchs justified his 

calculations for the dynamic shape factor from the results of 

McNown & Malaika (1950) and also explores the possibility of 

using his values for elongated bodies, by treating them like 

prolate or oblate spheroids having the same axial ratios Support 

for this possibility is seen in the experiments of Heiss & Coull 

(1952)o 

For thin discs, the experimental evidence is raree 

But Schmiedel's (1928) results justify the accuracy of the 

formula (1*2.8) for discs falling normal to the streamo 

Squires & Squires (1937) attempted to verify the relevent 

formulae for discs falling edgewise and normal to the stream. 

But unfortunately their results were very much affected by 
V 
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the proximity of the walla. Also these authors fail to mention 

the Reynolds number for which they justify the use of Gans- 

Oberbeck formula. For finite long cylinders there is hardly any 

satisfactory experimental datafl 

Using the Stokes' strean function t it is possible 

to map the contours of stream lines for a movinS body, These 

lines represent the direction of the flow at any point, Tho 

magnitude of the velocity is given by the differentials of the 

stream function. E. g. in Cartesian co-ordinates for two 

dimensional flow 

VX =- -ýýy and 'Vy - 
_D tf' 

v -j ; jý 

Stream linos for a sphere moving in a viscous 

fluid, calculated by Lamb 096a, P599) is shown in fig 1*3o 

The direction of motion is along 7. &1. The flow lines are 

completely sy=etrical and show no wako behind the sphere, 

Limitations to viscour. solutinn 

Other than for very low Reynolds numbers, the Stokes' 

law for spheres vequires that 

(1) the aphero is rigid 

(2) there is no slip at tho surEaco, 

(3) the diameter of the sphere is large compared to the 

mean free path of the fluid molecules, 

the fluid is non-compressible and infinito in extent' and 



Fig. 1.3 FLOW ROUND A SPHERE. after Stokes. 
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the 'VelocitY is uniform. 

If the sphere is not rigid, for example liquid drops, 

and if the viscosi. ty of the fluid making the drop is comparable 

to that of the medium, circulations develop inside the drop 

causing a decreate in the drag. Lamb (p600) gives the modified 

expression for the drag as 

ujr 
I+ 2fl, L 
1+ 

IISI"" (1.2.12) 

where IL and TL 
. 
are the dynamic viscosities of the medium and 

the fluid drop. 

If the viscosity of the drop is very much larger 

than that of the medium, as for water drops in air, this effect 

can be neglected. 

The condition of slip is also discussed by Lamb 

p602). This correction, which also gives a decrease in resistance, 

is caused, by the fluid adjacent to the moving sphere not 

having the same velocity as the sphere. This effect becomes 

important only when dealing with spheres movina in gases 

( Fuchs 1964, P25), 

If the diameter of the sphere becomes comparable 

with the mean free path of the fluid molecules, then the fluid 

cannot be considered as homogeneous* The modified expression 

for the drag was shown theoretically by Cunningham (1910) and 

experimentally by Millikan, (1923) to be 
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D 
67r -r Vo 41 9 

(1.2.13) 

06++ 

where the mean free path' 
0*3502 p 

c its vne average toleculdr velocity, 0 
This, again, is important only for very sme. 11 spheres 

3t-- diameter falling in air, But if the sphere i 

diamater exceeds 10 ý9 this expression reduces to Stokes' 

formula ( Dryden, Bateman and Murnaghan, 1956). Hence in dealinm 
i 

with water drops of diameter greater than 10 ý falling in air, 

Stokest law may be assumed, provided Re 4-091* 

The in-compreaBibility of the fluid does not , 

become at all significant for those low velocitiesl for which 

Stokes' law is valid* 

All the limitations so far discussed are negligible 

for solid spheres falling in liquids. Even though the corresponding 
I 

cases for non-spherical bodies have not been worked out, it may 

be assumed that all these limitations rjay be neglected for all 

solid particles falling at low Reynolds numbers in a liquid. 

However, the assunption that the fluid is infinite 

i+xtent is something which can never be achieved in practice* 

Lamb's theoretical curves for'the stream function showý 

( see fig 1-3) that tho outer boundary greatly modifies the 

flow patterns. This is to be expected as, in a pure viscous 

fluid the effect of any shear in the fluid is transmitted 
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all along the fluid. The photographs of the flo%j round a cphere 

moving in glycerine solution obtained by Ellis-Williams (1915) 

show the extent to which the presence of the walls changes the 

flow lines. 

Modification of the stream lines correspond to a 

change in the drag on the moving sphere. This effect has been 

investigated in detail both theoretically and experimentally by 

many workers. Basically the prosence of the walls causes a 

increase in the drag on the body. For small values of r/. x, 

where, r and x are ropresentative dimensions of the particle 

and the wall, the increase in the dra,,, r is given by the factor 

1 

where, b is a constant which depend on the type of the particle 

and the bounding wall. 

For a sphere movin, alonZ the a-vills of a cylindrical 

container, Landenbore (1907) showed that b=2.4. Later Faxon 

(1923), while extending the correction factor to include 

higher powers of ( r/x also pointed out that due to a 

mathematical error, the constant, b, should 2.1* His improved 

expression is 

1+2.104 2,09 j3 + 0.95 )5 

Fuchs ( 19649 p 24) quotes Bacon'. -j. (1936) e-.. DOe.. mcntal 

verification of this result upto !* 2ý 0.3 and Re c 0-02- 
x 
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Brenner (196ý) extended this result to include all 

particles. For a parUcle moving parallel to One of its three 

mutually perpendicular planes of symmetry, close to a boundary 

having planes orthoSonal to the principal axes of the particles 

Brenner showed that 

D.. 
oes(I. 2,15) 

b Da 0 (!: )3 
6n vl'V -x x 

where, D is the drao on the particle moving with a velocity, V, 

In a bounded fluid and the drag for the same particle 

moving with the same velocity in an unbounded fluid* 

This reduces to Faxents ex-pression for a spheres when 

DOO is substituteff. by the Stokes drag 6nrLVr. 

Brenner's expression is of general application. He 

supports his theory by the experiments of Pettijohn & Christiansen 

(1948), Heiss & Coull (1952) and of Squires & Squires (1937) for 

single bodies fallin- in an enclosed mediumt and accounts for 
U 

the discrepancy betwoen the theoretical curve of Kynch (1959) 

and the experimental values of Eveson, Hall & Ward (1959) for 

the sedimentation ot two equal spheres in a liquid* 

E Oceen's ap]2roximation and "relaxation" mothodso 

The solutions of the Navier-Stokes equation so far 

discussed, were for the two extrerim cases. Tho potential flow 

solutions which neglects the viscous torraq was erroneous in the 
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boundary layer of the body, due to the importanco of even a 

slight amount of viscosity. Ben* Nowoverl for all points outside 

this layer, the solution is very satisfactory* The type of flow 

from'this solution is irrotational. 

On the other handq the viscous flow solution 

completely neglects the inertial termsl and obtains satisfactory 

values for th. e drag and strýaines at low Reynolds numbers. 

The neglect of the inertial forces in comparison wit h the viscous 

forces at all points in the flow field, is an absolute necessity 

in this solutions But as the distanco from the body incroases, 

the viscous forces decrease at much faster rate than the 

inertial forces* So that at largo distances from the body, the 

inartial forces will become sufficiently comparable with 

the viscous forces, not to justify their neglect. Hance 

theoreticallyl unless Re->O, the viscous flow theory cannot be 

applied at largo distances from the body. However, from a 

pritical point of view, negligible error arises for Re -4,0*01, 

as stated earlier. Osoon (1910), using this arauraent, made a 

fundamental improvement to the viscous flow theory. 

In the solution of the Navicr-Stokeo equations, it . 

is necessary to consider the body at rest in a steadily 

moving fluid, or the body movinr, 'stoadilý in a stationary 

fluid, Those two cases are identical. Forl by makin., the origin 

move with the body, the latter came could be transformed to 

the formor, Thus in both cases, the velocity of the fluid 
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relative to the origin ( viz body) has a fixed constant value 
U (say) at large distances 

of Navier-Stokes equations 

Oseen linearised this term 

This simplification is jus, 

inertial terms are li. -Uted 

body. 

from the body. Now the non-linearity- 

arise from the quadratic term V. V V. 

by writing U, VV instead of V. V V. 

Lified so far au the importance of the 

, only at large distances from the 

For a sphere, using this approydmation, Oseen 

obtained the relation between the drag coefficient C3, , and 

the Reynolds number Re, to the first order of Re as 

3 Cý Ro. 24 (1 +-, -ý Re (1,2.16 a). 

later to be improved by Goldstein(1929) to include higher 

powers ol Re, to the form 

1 
19 2 17 

- Re3+. **) C.. r, Re 24 1+4 Re -- Re + 11 2UO 204SU 

......... (1.2.16 b ). 

Goldstein gives his result for much higher powers 

of Re, so that the drag could be calculated upto Re=2.0. But 

such tedious computations are unnecessary as deviations from 

experimental values occur even at IZe=0.5. inli-:, 1.4 shows the 
%7j 

C: D - Re curve for a sphere. The theoretical curves of Stokes 

and Goldstein-Oseen are compared with the e,, T-er: Lmental values 

listed by Fuchs (1964. P32), 

Using the analytical solution of Goldstein, 

Pearcey & Mollugh (1955) computed the flow round a sphere 
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Fig 1-4 CD -Re Curve for spheres 
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for Re = 1.4. and 10. 

These authors divided their flow field into two 

regions. One where the flow is essentially irrotational and the 

other of vorticity or rotational flow, called the 0 wake'?. 

The division is provided by a third region, where the magnitude 

of the velocity of the fluid is very small, and changes direction 

very rapidly, The "thic1mess" of this transition region decreases 

with increasing Reynolds number, such that at Re 4 and 10q a 

clearly well defined wake is evident, but even at Re = 1, the 

establishment of the wake is apparent. 

The flow linen in the wake also indicate that the 

velocity of the fluid is directed towards the sphere, and at 

larC, e distances decreases inversly an the distance from the 

sphere. The velocity in front of the sphere, is directed ai-! ay fron 

the sphere and decreases as the inverse square of the distance. 

The magnitude of the flow velocity at a pQrticular distance in 

the wake increases, while in front of the sphere, it decreases 

as the 
-Reynolds number increases, 

Even though a clear distinct wake was observed at 

RG = 10, their calculations do not show an existance of a 

stationary eddy behind the sphere. 

Apart from the flow lines, these authors do not 

indicate any valuou for the draa coefficients. But presumably 

since they used Goldstein's analytical solution, any values for 

the drag coofficients would not be any better than Goldstein's 
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values. 

P. roudrdan 9, Pearson (1957) went aL stop furifier. They 

used two linear equations for the distances, close to and far 

away from the sphere. The successive terms in the expansions for 

the two stream functions, thus obtained, wero detormined uaing- 

a "matching" procedure. They do not show their flow lines or 

calculate the values of the flow velocitios, but indicate the 

formation of a closed eddy behind the sphere at Re = 8. 

Neverthefless an expression for the drag coefficient was 

obtained, which includes a logarithimic term in the Reynolds 

number as 

CD Re = 6n 
[1. 

j Re + 
ý70 Re 2 log 

e 
Re +0 (Re 2)] 

.;.. (1.2.17) 

Oseen's approximation has been used in case uf other 

shapes as well, Oseen (1927) himself extondod his innovation for 

the flow past a thin disc normal to the stream, Hocking (1958) 

using a axisymmetric doublet technique extended this wDrk to 

include higher powers of Reynolds number. His expression being 

C, Re = 20*34 
[1+ 

0*1591 Re -0*0009 Re 
2+ 

too** 

The term in Re was deduced by Oseen. 

, erimental This expression is compared with the e,,.,, p 

results of Schmiedel (1928) and Willmarthq Hawk & Harvey (1964) 

in fig 1.5. 

Hooking using his technique for hjg.. ýier Reynolds 
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numbers ( 100 to 200 ), found that the drag coefficient remains 

constant, but is more theui two, times too high, (3,69 compared to 

1.8). He also indicate that a stationary eddy eýdsts behind a disc 

normal to the stream for all Reynolds numbers. 

Aoi (1955) gives a detailed theoretical discussion 

in the cases of prolate and oblate spheroids* The expression for 

the oblate spheroid reduces to Oseen's result in the limitine 

case of the disc. 

The accuracy of Oseents approximation is very limiteC 

Linearioation of the inertial term enhances its effect on the 

drag, thereby giving much higher values for the drag coefficient. 

Hence the validity of Oseents solution does not extend . at all 

very far from the viscous solution, and e. oss not justify the 

tedious computation3 involved. 

But, the importance of Oseen's idea, was seen in the 

solution for the flow past an infinite cylinder. : Et was stated 

earlier that no solution is possible for this case using the 

viscous flow theory. Lamb (1962t p614) using a method similar 

to Osten, obtained the following equation for the drag coefficient 

of a long thin cýculdr cylinder (1> 100), L 

C3, =. 8r**, **... (lo2*19) 

where a= Euler- constant 0.577 

and Re =Vdd being the diameter of the cylinder, 
). Y- .0 
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Finn ( 1953 ) using long wires suspended in a wind 

tunnel directly confirmed this equation for Re. ', O,, 2, while extensions 

of the Cý-Re curves of Wiesalsberger (1921) and Relf (1914) join 

smoothly with Lamb's theoretical curve. 

Bairstow, Cave & Lang (1923)t Sidralt (1950) and 

Tomotika & Aoi (1950,51), extended LaM fs analysis to include 

highe-., powers of Reynolds number, in an expression of the type 

Cm = 8Tr 2: An 'a 

where, ý, n could either be solved numerically for special 
"so 

values of Re or expanded as a power series in Re, 

Fig 1.6 compares these theoretical curves with the 

experimental valuec. The series solutions thouSh givine closer 

values than Larib's, still do not justify ( as -, n the case of I 

other bodi,:; s ) the rigorous calculations. However, the validitY 

of these solutions could be placed at Re-4.1. 

Inabilit, y to imnrove the solutions usinL,,,, linezarised 

equations, led some wor%ers to try numerical solutions using the 

exact non-linear equation. In 1933, Thom used a raethod of reneated 

interpolation, in a field of initially aosuzied values. He divided 

the flow field into squares, and placed initially assuned values 

of tae stream functionT and vorticity, g , at each corner. These 

values were then used to find t1le values cl (r and g at tho centre. Z 

The new computed value at the centre was used to find the 

values at the ori7, inal corners. This process "as repeated I 
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Fig 1*6 CD- Re Curve for infinite circular cylinders 
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ovar and avor again, until the values of, andt all 

over the field were determined, 

Using this rather tedious process Thom computed the 

flow field and the clxag coefficient for the flow past a infinito 

circular cylinder at Re = 10 and 20. Those compare very well 

with the experimental observations ( see fig 1.6 ). 

In principle I this is a finite difforence mothoa$ 

the residues being liquidated by ropeatod intorpolation, 

Kawaguti (1950) used this method for the flow past a sphere at 

Re =20 and for a circular cylinder at Re = 40, (in 1953)o 

ýhis method which givea very satisfactory results 

was later developed into a "relaxation" nothod by Allen & 

Southwell (1955) for cylinders at Re= 0,11 10,10 
21 

and 10 3 

and by Jenson (1958) for spheros at low Reynolds numbers (< 40). 

These authors outline the principfleof this method very clearly. 

In the words of Jenson It ýhe pr4. ncipl,.: of relaxation is to cover 

the field with a lattice, and approximate to the solutions of 

the differential equations by satisfying a similar finite 

difference equations which relates tha values at neighbourjr- 

pointoo The solution to the problem is thun found at a finite 

number of points and the complete solution is obtained by 

interpolation between lattice points". 

Though the basic priciplo used by these authors ic 

the same, the treatoment however diffors mainly through tho 

r% solve tho chipco of co-ordinate systems. Allen & SouthwOlli 
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two-dimensional equation for tbo cylinder. uring two 

transformations for the stream functionlky 9 and vorticity, 9 

The new values, TI and 9, then becomes independent of 

the Reynolds number. The Reynolds number being absorbed into 

the Laplacian operator. The lattice points are determined by 

changing the cartesian co-ordinates, x and y, to G( and 

the velocity potential and the stream function for irrotational 

flow. 

Jenson, on the other hand, transforms the aquations 

into spherical polar co-ordinates and his lattice spacings are 

accomodated in radial co-ordinates by substituting, r a-e 
zI 

and drawing lattice lines at regular intervals of z. Jenson 

uses a finer lattice near the surface of the sphere as 

and vary most rapidly in this region. 

The flow lines and the values for the drag 

coefficients obtained by this method are by far the beat availableg 

Kawaguti and Allen & Southwell show that laminar solutions are 

possible for cylinders for Reynolds numbers (> 40 ) above 

which vortex rings are shed behind the cylinder. But indicates 

that such steady regimes could not be realized in experiments 

because the smallest disturbance can upset tho. m. Hence this 

method seem to fail once the flow behind the cylinder becomes 

unsteady. 

Fig 1.7 shows the stream lines and vorticity contours 

for spheres at Re = 59 10,20, and 40, after Jenson. He also 
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predicts that a closed eddy behind a sphere is first formed at 

Re = 17, The values of drag coefficients for the above Reynolds 

numbers compare very well with the experimental values see 

fig 1.4 ). 

Su=arising all the theoretical computations for 

the flow past spheres, all solutions using Oseen's approxim4tion 

are not valid beyond Re = 2, while that of Proudman & Pearson's 

improved solution may be extended upto Re :; 1 5. Usino relaxation 

methods, very accurate valuos can be obtained for particular 

-P the Reynolds number as long as no unsteady motion values o., 

exists behind the sphere. 

Similar regimes exist Xor all other shaped bodies 

as well. 

No series solution warrmts any accuracy for Re 

d But, howeverlempirical relations have been proposed by manir 

authors. of these, that of Kalycko (1934) merits best credit. 

His expression is valid within 2-1. for the range 2 1, Re Z, 400 

and takes tho forn 

Ro 4 

24 4ý71 _0 

This provides a very convionient formula for 

computing the dra3 coefficients, but nevertherlesst one still 

has to depend on the tho etical calculations for the flow 

patterns* 
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Another important fact, that emerGos from the 0 

4 

theoretical computations of the flow lines, is that they show 

that vorticity gets concentrated more and more behind the body 

as the Reynolds number increases, while irrotional flow exists 

elsewhere. Hence the effect of the boundirE walls. or wall effect 

gets very much reduced as the Reynolds number increases. 

Experimentally, 11c9nown & Malaika (1950) showed that the walls 

have neglible effect above Re = lo On physical grounds tool 

this fact is obvious. For increase in Reynolds number correaponds 

to a decrease in viscosity. For lower viscosity, any shear in 

the fluid is transmitted only a short distance from the cause 

of the shear. So that for a body moving in a low viscous fluid, 

the velocity of the Tluid becomes negli3ible not far from the 
C) 1ý2 

body. Hance the condition that the fluidft the bounding wall 

is zero becomes redundant, 

193 ORIENTATION OF FREELY FALLING BODIES 

The drag on a body depends on the orientation in 

which it falls. For very low Reynolds numbers, for which Gans- 
,,; 

ý &,, L M"Ztaoý -LY 
h(AVM 4 

Oberbeck theory is applicable, a body could fall in any 

orientation, But for an ellipsoid of revolution in tranalation&I 

motion in ge an ideal fluidl Kirchoff (1869) pointed out that, 

there are three mutually perpendicular directions of permanent 

translation, A ellipsoid set in motion in any of these directions, 
I 
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without rotation, would continue to move in this manner. Of 

these tljxee directiono, he also showed that the direction along 

the shortest axis ic most stable. The atreamlinos round a flat 

plate for irrothtional flow, computed by Lamb (1962, p86) ahow 

the cause for this orientation. Lamb (pI71) also -ives a detailed 

mathematical proof for tILQ above mentioned behaviour of a 

freely falling ellipsoid, at high Reynolds numbers. 

In the lic,, -ht of this analysis, long cylindera 

would fall with their lona a:; -Jo normal to the stream, and thin 

discs with their short axio alonU the stream. Bodies which 

are neither flat nor lone ana whose shapes do not vary very 

much from spherical, do not show a otronc tendency to orient 

themelves. But eventually they, too, ' show this type of 

preferred orientation, but at much higher Reynolds number. 

While discs fall with a rreflered orientation above Re =I 

( Willmarth et al 1964), isometric bodiea like tetrahadrono 

did not show a prefOrred orientation until the Reynolds nunbor 

exceeds over 100 ( Pettijohn 0. - Christiansen 1948). For nor6 

spherical bodies like a octo-hedron, or as the sphericity 

approaches unity, this Reynolds number in much higher. 

Henco, beyond the viscouc regime, bodies fall in 

such a way as to present the greatest recistmice to motion- 

Extreme shapep show this tendoncy very rapidly. Near sphorical 

bodies, whose projected areas are anyway not rauch different, 

have much less tendency to orient thomse:, -vor.. 
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As the Reynolds number increases, with the shedding 

of vortex rings, the fall behaviour of bodies become very 

unsteady. Discs show a fluttering motion when Re> 80, as 

shown by Schmiedel (1928), Miller & IIIInally (1936) found that, 

for high Reynolds numbers (> 500) rectangular prisms and 

long cy. "Unders ýSenerally spun or rolled about their long axis* 

Rough spheres and cubes also showed a spin, Those oscillations 

cause the body to deviate from a vertical path* 

Recently Sha5ý=Atq in a note to the Scientific 

American, said that smooth cannon balls dropped froma helicopter 

did not fall vertically but were subjected to a spiralling motion* 

In discussing the hydrodynamics of wind sensoral Scoggins (1964) 

shows photographically that, in very calm atmosphere, smooth 

balloons show a spirallinG raotion, I'lowever I it should be noted 

that the Reynolds numbers in these cases are very high (> 105)0 

Further investigations on this type of behaviour Of 

different types of bodies were carried out in the present 

experiments and are described in the relevent chapters, 

1.4 TWO OR MORE BODIES FALLING IN A VISCOUS FLUID 

The behaviour of two bodios falline in close proXiMity 

has been investigated only in the case of spheroso 

For very low Reynolds numberst S=OIUCIIO%'I-'I'-i (19111 12) 

made the first theoretical investiCation of the sedimentation of 
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two equal spheren, The method was to suporiMpone the motions 

produced by each sphere in isolation, The superimposition in 

'I this way, is valid only when the separation s between the 

centers of the spheres is large compared to the radius r 

Smoluchowski's results could then be valid only for small 

values of By introducing terms to satisfy the boundary 

conditions on one sphere and then on the other, Faxen (1925) 

found that the drag for two oqual spheres moving along their 

line of centres as a series in(E) upto 
5. 

Stimson & Jeffery 
s 

(1926) also worked out an expression for the drag force for spheres 

falling one behind the other, when there is axial symmetry. 

The drag force on each spherej in all these 

ca., jeslis the same and could be expressed as 

nYL r'A sooooo. o. (1.4.1) 

the value for 2ý depends on the orientation and separation. 

The most rigorous treatement was given by Stimson 

& Jefferyo These authors, however, tabulate values of ?ý for 

various ratios of from IeI28 toob These values could be 
A. 

regarded as the best values for the motion when one sphere is 

directly behind the other. But since the solution involves 

axial symnetry, it cannot be used for more than two spheres or 

when moving in any other orientation. 

Recently Kynch (1959) extonded the analYsis tO 

higher powers of to facilitate closer comparison with 
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ex-oeriments for snallor separations. 

The main predictions of these workers could be 

summarised as follows. 

(1) Pair of equal spheres always fall faster under gravity, than 

do single sphere falling alone. 

(2) This enhancement in the rate of fall is more marked when 

I -the spheres are close toSether. 

(3) The pair always maintains the same constant separation 

and orientation. 

(4) Vertical fall is observed only if the line joining their 

contres io oithor_vertical or horizontal, Otherwise their 

velocity has a component in the downward sense along the 

line joining their centres. 

Evoson, Hall & Ward (1959), usinS small perspax 

spheres of diamtor 0*327 to 0.477 c, m. in castor oil verified 

these predictions, With a suction device, they were able to 

release the spheres with any separation and orientation, The 

motion of tho spheres was followed ucing a cathetometero The 

Reynolds numbers in those experiments were usually less than 

00011, 

These authors also state that no rotation was 

observed even when the spheres were almost touccohinge But after 

a letter by Matthews & Smith (1960), Eveson (1960) reported 

having observed a slow rotation with a pair of spheres falling 

side by side4 
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Absence of a relative velocity between the two equal 

I spheres in the viscous regime makes this problem irrelevent to 

Cloud Physics. Hence the motion of two unequal spheres has been 

throughly investigated. The behaviour of a small cloud droplet 

when being approached by a larger dropt is one of the central 

problems. of Cloud Physics. 

The trajectory of a small droplet in the vicinity 

of a larger drop was calculated by Langmuir (1948) for both 

viscous and potential flow round the larger drop, An expression 

for the collision efficiency was deduced using these trajectoriese 

The collision efficiency was defined as the ratio of the actital 

collision cross-section to the true cross-section of the sphere* 

For the intermediate region between viscous and potential flow, 

Langmuir gives an interpolation formula. A serious set back 

in these derivations is that Langmuir assumed that the smaller 

droplet had negligible size and caused no disturbance on to 

the flow round the collector. 

Since then, various workers havo improved on LanGmuirls 

trajectories. The best contribution was-made, by Hooking (1958)s 

In his method, Hooking allowed fully for tho mutual interferonco 

of the two drops* He also computed the drag for each sphoro as 

a series in (r1s) retaining terms upto (r/07. Kynch (1959) 

a180 treated the motion of two unequal sphorese Important 

predictions that resulted from theso analyses were that 
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(1) in this case too, there is an enhancement in the velocity 

of each sphere, and 

(2) if two spheres of unequal size, but having the same individual 

terminal velocity, fall together, the smaller will always 

move f aster than the larger. 

The latter prediction was verified by Slack in 

Porton for Re = 0*3 and 1.8, This work is published in Jayaweera, 

Mason & Slack (1964), 

For higher Reynolds n=bers, with the flow becoming 

increasingly asy=etrical, the behaviour of two spheres changes 

considerably. 

Oseen (1927), using his own approximations showed 

thatq if two equal spheres move along their line of centres, 

the trailing sphere moves faster than the leader. When thoy move 

perpendicular to the line of centres, thore is a repulsive 

force between them, inducing separation. 

The existance of a wake behind a sphere due to 

the inertial foreas, causes a trailing sphere to catch up with 

tho leader. This sucking in, which eventually causes capturo 

or collision is called "wake capture'll and is observed 

experimentally for various combinations of materials of sphores 

and fluids. Happel & Preffer (1960) using plastic spheres in 

a glycol solution sets the lower limit for wake capture at 

Re =0*25. Woods & Mason (1965) find that for water drops in 

air, the radius should exceed 35 [, 
-, corresponding to Re =1, 
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CL The difference between these two results is understarw0ble. The 

former authors were able to detect any slight closing up of the 

two spheres, by measuring the separations at two points 30 0 m- 

apartl while in the experiments of Woods & Mason the approach 

velocity has to be at least one-tenth the individual terminal 

velocity at about ten drop radii apart, so that the wake capture 

effect could be t1ifferentiated from any other spurious effeotso 

Corresponding approach velocity for 40 ý radius drop is about 

3 cm per sec* 

From these two experiments, it may be concluded 

that wake capturz is noticeable even at Reynolds number of 0.25, 

but will not be appreciable enough to cause capture of two 

equal water drops in air unless the Reynolds number is greater 

than one. 

Even for higher Reynolds numbars, between 25 and 100, 

Rowe & Henwood (1961) showei 

a sphere in the presence of 

higher when the interfering 

with respoct, to the stream. 

the ratio of this increased 

independent of the Reynolds 

I that there is a decrease in drag oa 

another, the decrease being much 

sphere is in front than behind 

Their experiments also showed that 

drag to that of single sphere is 

number, within t; 2. c limits of 

experimental accuracy. However, the errorb in their observat-iono 

are as high as 30%. The drag reduction was obsorved upto 100 

diameters, but the offect is prominont only about 30 diancters 

away. For two spheres with their line of centras parpoLdicular 
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t, O the stream, o6 vory small relulaivo force was dotontod by 

these authors even for these high Reynolds numbers* 

In the literature, no work is mentioned for the 

behaviour of few particles in a cluster. Howoverl work has boon 

done for large n=bers of sedimanting particles ( soo Fuchs 1964 

and Green & Lane 1964 ). 

Receatly after the publication of the present work 

on spheres ( Jayaweera, Mason & Slack 1964 ), Hocking (1964) 

and Brethorton (1964) considered the behaviour of small cluators 

of spheres moving in a viscous fluidt in an attompt to explain 

the present observations theoretically. Hocking used tho slow 

motion thqory and was able to explain most of thu observations 

portaining to low Reynolds numbers* Somo of tho discrepancies 

arising from Hocking's analysis, which he attributes to the 

inertial effects, was partly explained by Brethorton using 

Osoents flow field, Moro detailed discussion of these two 

analyaos is gi7. en in section 2.4, chapter 2. 

MODEL EXPERIMENTS 

The principle of dynamic similarity is enunciated 

by Bradshaw (1964) an "a necessary and sufficiOnt condition 

for similarity is that all possible, non-aimencional combinations 

of the geometrical and dynamic scales of tho systent togotber 

with the properties of the fluid, shall be the name in the two 

cases considered". Once these requirements are fulfilledq then 
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the flow pasb the two systems is identical, and does not depend 

on the 2roperties of the fluid or that of the solid, taken 

separately. 

For a greater number of flow phenomena, these 

requirements are basically represented by 

(10 geometric similarity, and 

(2) equality of Reynolda aiimbor 

the former controlling the eeometric scales and the latter, 

the dynamic scales of the systems, 

Fuchs (1964) points out that these are the only 

conditions necessary for matching the flow proporties only 

if the notion of the body is uniform and rectilinear. In other 

words, those are applicable only if the body falls with its 

terminal velocity. But if the body moves under a external force 

in a curved path or with non-uniform velocity, then an 

additional condition has to be satisfiod. 

Hooking (1958) in discussine tho motion of two 

spheres in a fluid, showed thatj unless the ratio of the density 

of the fluid to that of the material of the body ( Pf/Ps 

is small, unsteadiness of the notion cannot be neglected. 

The motion of one sphere in the vicinity of anothor is, no lon3or 

uniform. It has to be re-prosonted by tho unstoadY equations of 

motion. In the Stokes' regime, tho first terin in this equation, 

which indicated the degree of unsteadiness, is a function of 

the density ratio, Hence, even if the Reynolds numbers for the 
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two geometrically similar systems are the same, the motion 

would not be the same unless the density ratioj(p4/p, )j is also 

matched. 

Fuchs introduced tho the concept 

of the "Stokes' number", So This is defined as the ratio of 

the distance, 11 traversed by the particle against the viscous 

drag, if projected with a velocity, U, to that of a dimensiong 

r, of the particle. 

Thus 

1 tU 
-r 

1 is also called the stopping distance 

and the "relaxation" tiu,. -3 

el 

. 'The additionb2-condition 

required with this concept being the equality of the Stokes' 

number. 

Fuchs also indicates that, if the Reynolds numbe-- 

is large, so that the resistance is not proportional to the 

velocity, then the use of similarity theory becomes complicated 

and affords no advantage except for steady rectilinear motion* 

When there are two or Moro bodies in a clusters 

no steady rectilinear motion is possible. Each body MOVOG under 

the external force arising fron the motion of othorso So that 

unless the density ratio or the Stokes' number is also matched 

as well, it is impossible as well as mea-rdngless to apply the 
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results of nodol experiments to that of the real oase. 

Failure of model experiments in this respect, in 

shown in the collision efficiency experiments of Sartor(10.154) 

and Schotland'(1957), The forno-r used water drops in a viscous 

liquid for Reynolds numbers betwoon 0.02 and 1, -to, match water 

drops .4 
40 j-, - radius falling in air, The values of the collision 

efficiencies were two or three times larger than the computed 

values of Langmuir or Hocking. Schotland used the simplifying 

assumption that, as the Reynolds number is small, the fluid 

density is no longer a significant parameter, thereby maltin3 

the last condition unnecessary. Theoretically this assu--aption 

is correct. For very low Reynolds numberst the inertia of the 

fluid can be neglected. But however, this authors intention 

was tho study of wake capture between two, equal spheres, which 

itself requires that the. Reynolds number ahould beg at leastf 

greater than that of Stokes regime. Hence no weight could be 

attached to his assumption thato the fluid density is not 

significant'. Anyhow the collision efficionc-ýea obtained were 

far too high. 

In the present experimentsq the dena: Lty-ratio 

p+/ps, is never less than 10-1, while that for the case Of 

water or ice in air, this is of the order 10-3, Due to this 

difference in tho density ratios and in the light of the 

failure of model experimentsl the direct applicabilitY Of the 

present results in the case of bohaviour of clusters, to 
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atmospheriG particles, is very limited. But these observations 

would give a qualitative nicture of the behaviour to be expected, 

and further could help in the solution of the flow trajector. 4-es 

for more than two bodies in a cluste-L. At the same time the 

orientation and other behavicur of steady motion of a singlQ 

body, could be applied directly as long as the equality of 

Reynolds number and -the geometric sinilarity are satisfied,, 
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CHAPTER 2 

SEDIMENTATION OF SPHERES 

2.1 
-EXPERIMENTAL 

ARRANGEMENT 

The experiments were conducted in three ractancular 

tanks, one of which is shown in fig 2.1, each containing a different 

liquid. A larger tank 21z 21 M-5 
1 

was used with water, while smaller 

tanks 30 cm. x 30 Cm. x 70 cm. was used with sugar solution and 

liquid paraffins The last two tanks had a glass bottom as well* 

The spheres are colleoted in a transparent cage placed at the 

bottom of each tank, which is lifted up at the end of the 

experiment to recover the spheres. 
With liquid paraffins the exporiments were Vorformed 

in a well insulated room, where the temperature could be varied 

by either heating or refrigeration. The temperature of this room 

could be maintained steady to within CO The air inside the room 

was well circulated to ensure constant temperature throughout 

the room. 

The temperature of the liquids was recorded continously, 

during the experimentl using two mercury thermometers, one placed 

at the top close to the centre and other at the bottomt Close 
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FIG 2.1 

Tank and the auction system 

Tm Tank ( 30 cm. x 30 cm. x 70 cm. ) 

8uction pump M=4.50 plane mirror 

Dw Dispenser 

Vz V-tube 
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to a side wall. The illuminations were such that no rise in 

temperature occurs during the experimento 

For photographic purposes, the camera was mounted in 

a vertically movable carriage ( fig 2.2). Two microscopic lamps 

were fixed on to this carriage so as to illuminate only the 

region where the camera is in focus. Since the spots of light 

follow the falling spheres, no part of the fluid was exposed to 

heat by the lamps for a long time to cause a temperature rise 

in the liquid. 

The spheres were released just below the surface 

of the liquid. This ensured that the temperature of the spheres 

&; 94*#- 
was the same as that of the liquid, and that there was hardly 

any air bubbles on the spheres, In any case, spheres with air 

bubbles were not used* 

Two types of dispensers were used for the release 

of spheres. The one shown in fig 2*3, released two spheres with 

known orientation and separation, The other shown in fig 2.4 as 

released coplanar clusters of known geometry and spacing. 

( These two dispensers will be hereafter roferred to as 

dispenser 1 and dispenser 2 respectively )* In both cases the 

spheres were held under suction and suspended Just below the 

surface of the liquid, and the spheres fell sm6othly once the 

partial vacuum was releaseds 

The dispenser 1( fig 2*3) was of a very similar typo 



FIG 2.2 

IT 

I 
M= Microscopic lamps 

Movable Carriage 

i 

w 

Shackman camera 

C= Counter weight T= Timin- unit 0 
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Dispenser 1 

_ _'tjj. » LULJ';; -) 

S= Screw, (1 mm. per revolution) M= Micro- screw 



(a) 

B= Barrel 

FIG 2.4 

Dispenser 

(" 

Perspex plate 

T= Brass tube 
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ý6 -)La-t 
as used by Eveson et al (1959), This essentially consists of 

two brass tubes A and B of internal diameter 3/1611. The spheres were 

suspended from the two curved tubes of internal diameter 1/16" sealed 

to the bottom ends of A an B. The two tubes A and B can be moved 

vertically and independent of each other along the two millimetre 

scales C and D, The screw M enables any minor vertical adjustments, 

upto a centimetre, of the tube A, The horizontal separations of the 

two tubes was varied by the screw S, which has a pitch of 1mm per 

revolution, With this device, the horizontal separation of the two 

spheres could be estimated upto 0.1 mm. The dispenser was mounted 

on a wooden base, so that it could be firmly placed on the tank 

in such a way that the plane containine the two tubes was parallel 

to any of the opposite pairs of the walls of the tank, A wide alit 

at the centro, of the wooden base allowed the tubes to pass through* 

The two tubes were connected by P. V. C. tubing via a V-tube to the 

same suction pump. 

The dispenser 2, ( fig 2,4a), consists of a cylindrical 

barrel, B, of 9 cm. diameter and 6 cm. high made of Aluminium. The 

top was firmly closed but connected axially to a brass tube, T, 

2.5 cm. internal diameter and 30 cm. lonG, To the base a perspex 

plate of thicItnons o. 96 cm. (31 11 ) with 

fig 2.4b) was screwed firmly. This plate 

any other similar plate with a different 

replaced. The holes in the plate were of 

size to hold the spheres securely under 

holes drilled in it ( age 

could be removed, so that 

configuration could be 

a funnel shape and of 

auction. 



71 

Tho details of the sphares and the liquids used are 

listed in Table 2.1. With differont combinations of these 

liquids and spheres, it was possible to investigate the 

behaviour of spheres for Reynolds numberaq defined An 

Re = 
Vo d herG Vo is the terminal velocity, d the diamtor 

:: r 1 1. 

of the sphere and -Irthe kinematic viscosity of the liquid* 

The viscosities of the liquids wore measured usina 

a. calibrated Ostwald's viscomotor, and the density by a. 20cc 

Specific Cravity bottle. Tho diamator of the spheres were 

measured by a micrometer screw gauCo and only smooth sPheres 

with diameter correct to within 1 0,5% were solectod, 

The spheres were timed over a distance of 80cm# 

in the water tank and 40 cm. in the other two 

thoir terminal velocities. A stop watch which 

0.1 sec. was used for this purpose. A minimum 

of 30 cm* in the water tank and 15 cm, in the 

allowed to ensure the attainment of the tormi 

( see Appendix 1 )o 

tanks to calculate 

could be read to 

distance of fall 

othor two tanks was 

nal velocity - 

2,. 2 DRAG COEFFICIENTS AND FLOW PATTERNS FOR Sll, ', GLE SPHEPMS 

The drag coefficient for a smooth sphere as a function 

i 
of the Reynads number has been very accuratoly dotermined by 

; k- 

many workers for freely fallinG or ventilated stationary spheros. 

A. detailed description of these determinations upto a Reynolds 

number of 10 
4 

is given by Davies (1945). Furthor as tho alroady 
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TABLE 2,1 

Spheres 

Material Dens'ty-3 
go CM 

Diameter range 
at intervals of 1/1611 

Perspex 1.19 1/8 11 to 3/8" 

Nylon 1.14 11 

Polystyrene 1,09 It 

Polyethylene 0098 1/8" to 1/2" 

Liauids 

Material DensitZ 3 
g. cm 

Viscosity 
centistokes 

Reynold5number 
rango 

I-later 1.00 at 20 oc 1000 150 
Sugar sol. 1910 3 30 to 200 
Cone. 251/101 0 at 20 C 

Liquid Paraffin 0.884 at 150C 340 0*01 to 15 
o. 875 at 37.8 0C 80 
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existing results agree well with each other, any Attompt to ma]cG- 

further improvements seem unnecessary. However, measuromants of 

the drag coefficients were made to chock the accuracy of tho 

present experiment, Fig 2.5, shows that the present values 

compare very well with the experimental values listed by Fuchs 

(1964, P32). The drag coefficients wore calculated from the 

measured terminal velocities of fall, and hat a error of 
1 5%. 

No correction was made for the wk-11 effects, The ratio of tho 

diameter of the sphe-Ada to the distance betwoon the walls was 

always less than 0.03, and the good fit with the previous results 

indicates that wall effects could be noglect-od at leasb to 

within the experimental accuracy, Anyway abovo Re= 1, the wall 

correction is negligible. 

The flow behind a falling sphare was investioated 

by using a soluble dye., "Biebrich Scarlet R" oil solublo dycl 

was used with liquid paraffin, and a water soluble aniline dyo 

was used with water and sugar solution. A thin layer of dissolvod 

trail corrosponding dye was coated on the sphere, which loave3 a %, 

to the flow behind the sphere when fallina through the liquid, 

Laminar flow oxists for Roynolds numbers loss than 

about 0.5, but as the Reynoýs number incroases, the flow becomes 

inereasingly, aL; ymmetrical. The first visual standing eddies 

behind the sphere were formed at Re= 24.5- This value is higher 

than Jonsonls(1959) theoretical value of 17. The inability to 

observe visually tha presence of very small eddies may be tho 
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cause of the. higher value obtained. 

ndinjý ddia, behind the sphere, shown in The 

fig 2.6a, becomeselongated as the Reynolds number increases Upto 

180, beyond which thel; ýý-T-s 
get separated from the sphere 

shedding vortex rings. These are shed alternately from the opposite 

sides of the sphere, and as each ring is shed the sphere is 

de: flected from the vertical path. This zig-zag motion of the sphere 

is evident from fig 2.6b. 

At higher Reynolds numbersq the rate of shedding 

of eddies increases, and above Re= 400, the flow becomes turbulent, 

with the result the zig-zag motion gets gradually transformed 

into a spiralling motion. Since the zig-zag motion is caused by 

the shedaing of oddies, the spiralling motion may also be due 

to the shedding of oddies at a greatply incroasad frequency* 
I 

It was statod in soction 1*3, that smooth cannon 

balls falling in air and ballons rising in vary calm air at super- 

critical Reynolds numbers (*>105), showed a spiralling mot: ion) 

No satisfactory oxplanation for this motion has yet been put 

forward. It may be that, the cause for those is also tha break- 

up of the flow behind the spheres. Corrblation'botween-those 

and the present obperkations cannot be made until the motion 

for 103 4 Re < 105 is studied. 
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Flow behind a sphere 

(a) 

Standinc, eddies 

2L[., '; -gý Tle 1,180 

(Perspex -1",, Re = 120) 4 

(b) 

Shedding of eddies showing 

tllp zir--zag motion 

, -)0 180 

(Perspex 1/8", Re = 295) 
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2*3 THE BEHAVIOUR OF PAIRS OF SPHERES 

A TwOequal-sized spheres fallinE side by side 

For very low Reynolds numbersl < 0.01, sArlimoutatiort 

of pairs of equaAL spheres have been investigated by Eýeson, 

Hall & Ward (1959). But for higher Reynolds numbers, thero in 

hardly any experimental datao The Reynolds number refer to a 

single sphere falling in the absence of the other. 

When the Reynolds number exceeds about 10, two 

spheres initially touching each other show a sudden horizontal 

separation and fall vertically with their individual terminal 

velocities. Hence no detailed investigations were made for 

Re > 10o 

For all lower Reynolds numbers, tho rate of fall 

of both spheres is greater, in all cases, than that of either 

sphere falling individually, This enhancement in velocity 

of fall is greater when the spheres are close togothore 

When Re <0., 03, the behaviour is exactlY tho same as 

that observed by Evoson et al (1959). The spheres showed no 

tendency to separate-or r6t&t9., But-., Ior*Re > O. o5, each sphere 

rotates about a horizontal axis through its centre and normal 

to the line of centros. The left hand side sphere rotates 

in a clockwise sense, while the right hand side sphere in an 

anti-clockviiso sense. This type of rotation, which will be 

referred to as "inward" rotation was made visible by half 
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painting the spheres, and is shown in fig 2.7. The rotation is 

accompanied by separation of the two spherea, but the spheres 

remain separated'with their line of centres horizontal throughout 

the fall, 

The rate of separation and rotation increases with 

increasing Reynolds number, but decreases as the spheres aeparato. 

Thus the rotation and separation cease.. to exist after the 

spheres have reached a particular maximum soparation. 

The separation of the two pairs was recordod at 

constant intervals of time (j or ý sec. ) using a Shackman 

camera incorporated with a timing device. The two spheres ware 

released using the dispenser 1 so that the axis of separatior 

was parallel to the wall of the tank facing the Shackman camora, 

S, p The camera was mounted on the moveable carriage and focussed 

on to the spheres. The axis of the camera lens was kept 

porpondicular to the line of separation of the spheres. The lens 

being an ordinarY 3*5,5 cm# lens. Another camera V( Vito C) 

was placed with its axis horizontal and along the line of 

contras of the two spheres. The arkangomant is schematicall7 

represented in fig 2.8, The camera V just takes oriz; photograph 

when the two spheres are in line with its axis. This ensured 

that the camera S records the actual separation between the 

two spheres. If the camera V showed a displacement of the 

two spheres, the run was discarded. 

The two spheres always separate alons thoir line 



FIG 2,7 

Separation and rotation of horizontally separated two 

equal srheres. After Jayaweerai Mason & Slack ( 1964 ). 
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FIG 2.6 

Pý', 0t0 5-, 'ie lior--41. zontal 

, raphic %rrangement to measure t. 

separation of two cpheres. Plan view 

30cm. 

I 
A B 
I I (IV 

60cm. 

1 60 cm. 1 

Tank - 

S Shaeldman camera movable vertically 

V Vito C camera fixed 

A and, B= the two spheres. 
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of centreB, Tbizs was found by interohangimg the positions 

of the cameras V and S, and taking photographs at regular 

intervals of time with camera. ý, Zjn all cases the spheres were 

one behind the other, showing the separation always tako place 

along the line of centres, 

The Shackman camera always moved so that the spheros 

were. 'in the centre of field of view. The soparation between tho 

two spheres was-. read using a micro-film reader. The outline of 

the spheres was very sharp, so that separations could be very 

accurately dotermined. To calibrate these separations, a 

photograph of a5 cm. scale suspended horizontally in the- 

liquid on the same plane as that in which tho spheres fall, 

was taken. 

These measurements, made either at j or ý see 

intervals depending on the velocity of fall, showed that for a 

given pair falling in the same fluid, whatever the initial 

soparation they reach the same maximum limiting separationj Xm 

This is a function of the Reynolds number and the diametar 

of the sphere, as shown in fig 2.9. (X/d) decreased from 
m 

7.8 at Re= 0.5 to a nearly constant value of 3 for Re > 8. 

The rotation of the spheres exists until this maximum 

separation was reached. 

B Two equal-sized spheros fallina vartically one behind tho othor 

This investigation was alsoPceri6d_oWusing the 
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same experimental arrangement as in case A, except that the use 

of the camera V becomes unnecessary, To make certain that the 

spheres are vertically one behind the other, a plur,: b line made 

with a thin white silk thread ( gauge 4-0 ) was hunS about 10 cm# 

from the lino of centres of the spheres and In focus for the 

camera. The thread has no effect on the notion of the spheres* 

When the two spheres are reýleased vertically one 

behind the other, they remain this way but the separation 

decreases, as they fall. For Reynolds numbers as low as 0-31 

in accordance with the observations of Happol &, Preffer ( 1960 

there is a decreas6 in the separation but the velocity of 

approach was so small that the rear sphere never overtook the 

front sphere, even when the initial separation was only 

three diameters. For Re = 0#32 ( 3/16 it diameter perspex sphere 

in liquid paraffin at 180C ) the separation chanaed only from 

2 on, to 1.5 cm. after a fall of 40 cm, But if Re> 11 the roar 

sphere gets accelerated in the wake of the front sphere and 

tends to overtake it. When Ro exceeds 4, this acceleration io 

already noticeable when the spheres are ton diameters apart, 

At large distances apart, the velocity of approach 

varies inversely as the separation but settles ao%in to a nearly 

constant value at small separations - nee fig 2,10a. The relative 

velocity on apparent contact is little less than half the 

terminal velocity of an individual aphere at Re-10 and about 
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0,15 for Ro- 2. 

No rotation of the sphereB wero observed until tho two 

spheres wore almost touching, after which the rear sphere slides 

round the leader, and when the line of centres become horizontal, 

the spheres separate and rotate in opposite directions, and 

continue to diverge laterally as they- fall just as in We 

For separations greater than ten radii, the velocity 

of the front sphere was unaffected and moved uniforbly with 

its own terminal velocity, But for shorter separations there 

was an increase in the velocity of the front sphere as wolle 

Referring to fig 2.10a, the region where the volocity of approach 

increases with decroasing separation is when the velocity of 

t4o front sphere is unaffected, while the other region whero 

the velocity of approach is nearly constant, is when the front 

sphere also moves with a non-uniform increasing velocity. 

Pearcey & McHugh (1955) showed that the flow behind 

a sphere is dirocted towards the sphere and for large distancesl 

the velocity, Vs of the fluid is given by 

v-m( 
r/s) Vo = terminal volocitY of vo 

the sphoree 

For 

Re m-= 3*526 

4, = 4.87 

10, = 7*17 
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For. a particular Reynolde number, the velocity of 

the fluid is inversely proportional to the separationg so in 

the velocity of approach at large distances from the experimental 

results. This suggests that the rear sphere at large n6parations 

(>10 radii) moves in response to the flow fýeld croated by the 

front sphere. To check this the values of Iml was compared 

with the corresponding experimental values and is shown in 

fig 200b. Good agreement exists for Re= 1 and 4* However, 

for Re= 10, Pearcey & McHugh's value is too high. 

For small Reynolds numbers, when the denaity of 

the fluid is comparable to that of the sphere, the time taken 

for any sphere to adjust its velocity in response to changos 

in the fluid velocity can be neglected Hocking 1958)e 

The present experimental values show, at least for large 

separations, that such a situation exists for Reynolds numbers 

as high as 4. 

Two unequal spheres falling vertically one behind the other 

In this case too, the rear sphere noves with a 

greater velocity than its individual terminal velocitys 

Measurements revealed that the relative motion of two unequal 

spheres is equivalent to a linear superposition of their 

difference in terminal velocities upon the motion of two equal 

spheres, The rear sphere being controlled largely by the flow 

behind the front sphere. 
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Thus if the rear splaere has a lower terminal velocýty 

than the leader, it will catch the leader, only if the difference 

in the terminal velocity is less than the approach velocity of 

two spheres identical to the leader, at the pQrticular distance 

apart. When such a capture occurs, the two spheres initially 

rotate and separate, but eventually the sphere with the greater 

terminal velocity moves ahead* 

D Two equal-sized spheres with the line of centres inclined 

to the horizontal 

A pair of equal spheres, each with Re >1, and 

initially in different horizontal planes, slide along their 

line of centres, but at the same time the rear sphere approaches 

the leader, and ultimately occupies the sAme horizontal plane, 

and moves as in (A)* 

The vertical separation between the two spheres 

decreases much faster than the horizontal soDarations In no 

case was there even a apparent collision. Fig 2.11 gih%ves a 

typical path taken by the rear sphere relative to the leader. 

The two axes correspond to the vertical and horizontal 

separations in units of the radius of the spherel and the points 

are separated in j sec. intervals* It is clear from this path 

that the minimum separation between the sphere is much greater 

I than the diameter of the spheres. 
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Fig 2.11 Typicol path of a rear sphere relative to an equal sphere on front 

(Perspex -V)6* in I iquid paraffin at 18*C Re - 1.37; v. - 4.35 cm/sec. ) 
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E Discussion 

The behaviour of two spheres confirm that if the 

inertial forces are present, there is an increase in velocity 

for a sphere falling ono behind the other and a repulsive 

force if separated in a horizontal line. Rotation of the spheres 

exists only when the spheres separate horizontally. 

For two equal spheres not directly one behind the 

otherg the rear sphere initially gets pulled into the wake of 

the front sphere but later separates without collision. This 

observation differs from Schotland (1957) who, with a similar 

experimentq obtained a very high Dollision*efficiency; 

Schotland explains his high value in terns of the rear sphere 

getting pulled into the wake of the front sphere. In the present 

experiments too, the initial pulling indicates that if the 

separation at the later stages did not occur the spheres would 

have collided. It seems that Schotland calculated his collision 

efficiencies only considering the initial stages of the 

trajectory of the rear sphere. 

Collision occurs only if the inertia of the sphere 

is large enough to squeeze the liquid between the two spheres. 

But for these low Reynolds numbers and when the densities 

of the sphere and liquid are comparable, the sphere would 

move in response to the changes in velocity of the fluidl 

thereby getting pushed away from the leading spheret 
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The present experimental results cannot be directly 

applied to the case of water drops in air, due to the large 

difference in the density ratio. However, there is one important 

point of agreement in that the Reynolds nunber has to be greater 

than one, for wake capture to occur in both cases ( see Woods & 

Mason 1965 )# 

2.4 THE BEHAVIOUR OF THREE OR MOR7 EQUAL-SIZED SPHERES 

The behaviour of three or more spheres in a oluster 

was studied for various initial coplanar configurations. The 

dispensor 2 was used to release the spheres* With the difforent 

combinations of the spheres and the liquids, it was found that 

the behaviour depends only on the Roynolds number. 

3-to 6 spheres released ina con, )2actcluoter 

(a) Re 4 0.06 

The spheres tend to follow their initial configuration, 

whatever the number in the cluster as long as they are uniformly 

distributed. But the velocity of fall is more than that for 

isolated spheres. The enhancement is Greater tho more compact tho 

cluster. However, the initial configttration oven if it is a 

regular polygon is susceptible to small perturbations* 

If the cluster is not uniforn, tho maa%o donser portion 

move faster than the other, This cause a tiltine of the clustor 

which then appear to slide along the line of tilte 



92 

o. o6 4 Re /, 7 

The behaviour of spheres in this Raynolda number 

I 

range showed that: 

(1) Even if the spheres are initially staggered by a few diameters 

they eventually draw level and ultimately arrange themselves 

in the same horizontal plane at the vertices of a rogular 

polygon as shown in fig 2.12. 

(2) The polygon expands slowly at a decreasing rate during 

the fall. 

(3) The speed of fall is greater than that of a single sphere. 

(4)The enhancement of the fall speed in greater more compact 

the cluster. Hence as the polygon expands the velocity of fall 

decreases, 

(5) The final configuration was achieved more slowly with a 

large number of more widely separated; spheres. 

(6) During the early life of the polygon each sphere rotates 

"inwards" about a horizontal axis that is normal to a lino 

joining the centre of. the sphere to the centre of the polygon* 

(7) When the separation exceeds a certain value ( about 6 

diameters at Re., 1 and 3 diameters at Re ,, 7) rotation ceases, 

but the separation continues. The regular polygons are not formed 

if the initial separation exceeded this value* This shows that 

rotation is necessary for the regular polygons to be formed* 

(8) In this case too, as for Re < 0.069 if the spheres composing 

the cluster aro arranged very asy=etrica-U.. the densest portion 



FIG 2.12, 

Clusters of spheres. 0.06 4'- lZ e /, 

7 and 8 spheres break up 

( penspex, cl = 3/16", 7Re = 0.32 ) 
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portion trave3S fastest. 

In order to Investigate the initial stages of the 

formation of the regular polygon, three spheres were released 

in a horizontal isosceles triangle. The apex sphere oscillated 

in a decreasing vertical spiral relative to the other twol which 

executed linear oscillations along the horizontal line of 

centres and moved apart as the apical sphere moved towards 

them. The initial amplitude of these oscillations depends on the 

apex angle.. whicfi is greater for largbr deviations of apex angld 

from 60 01 
.. But th-e oscillations gradually'damp-but and the three 

spheres form a stable. equilatoral trianglo. 

C, Similar behaviour was obýrved during the formation 

of 4-, 5-1 6- sided regular polygons, The individual sphbros 

oscillate about their equilibrium positions but eventually 

achieve a stable regular configuration. 

Ro 

The spheres of the cluster quickly separate with a 

sudden onset of rotation* which soon ceasec, and no regular 

polygons are formed. The spheres separated to about 3 diameters 

and fell with the individual terminal velocities* 

to 6 spheres released in a horizontal strxight line 

The tendency for the spheres to form a regular 

polygon is much less in this case, The Reynolds number range 
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0.06 /, Re /_ 7 could further be sub-divided where different 

behaviour occuts. 

(a) o, o6 /, Re z. 0,16 

When three equal spherest initially in contact or 

equally spaced within six diameters are released in a horizontal 

straight line, the centre-sphere moves slightly ahead, one of 

the laggards then moves betw6en the other two, and the third 

now trailing ) passes between the other two. This interchange 

of positions continhes throught the fall, but the spheres 

keep close together and do 

in the lead stolxrotating. 

plane througfý the fall, 

If the spheres 

sphere is always left behi 

upon the initial spacings. 

separated as 

not separate, The sphere temporarily 

The three spheres keep to a vertical 

are not equally spaced, then one 

md, which sphere, depends critically 

If the spheres are numbered and 

(1) -a- (2)- b- 

which sphere left behina for the various ratios of b/a are as 

follows: 

b/a 4-1-17 1,20-1-30 1-33-1.40 1,5 1.60-2.0 >2.0 

sphere 
2 

left behind 
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For b/a /, 2t one sphere is left behind after one or two inter- 

changes, while for b/a > 2l the sphere 3 is left behind from the 

start. The two spherpo falling together after leaving the 

third, move in the same way as described in section 2-3# 

Two slightly separated pairs initially in a horizontal 

. straight line diverge as they fall, each pair rotating as a 

doublet. Ultimately the members of each pair separate. If the 

four spheres are all touching in a horizontal straight line, 

the behaviour is very inconsistant. They either form into 

two pairs as in the previous cases or forms a three leaving the 

fourth behind. With five or six sphoree the outer ones move out, 

re-enter the cluster from behind and cause it to break up* 

16 < Re 4, ' 

If three to six contacting spheres are released 

in a straight line, they separate and eventually form a 

regular polygon as in the case A( b). Hence for this rogion, 

for any initial configurationg as long as the spheres are 

touching, they form a regular horizontal poly3on. 

(0) Re 

The polygon is not regular, and progressively 

breaks down until, with Reynolds number greater than seven2 the 

other 
spheres appear to repel each A and separate but show no tendency 

to form a polygon, the spheres remain in the same horizontal 

line but with a increased separation betweOn the spheres, 
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Hence to got a regulm polygon batwoon 3A Re 4 7t 

the spheres have to be releaýsed in a compact clusters but above 

Re= 7, no regular polygon is formed whatever the initial 

configuration. 

C7 or more spheres in a cluster 

A compact cluster containing seven or more equal 

spheres do not form a regular polygong but breaks into two or 

more groups ( see fig 2.12 ). Even if the spheres are initially 

released in a regular polygon, the cluster is unstable. The 

tendency to break up is higher for larger Reynolds numbers and 

greater numbers in the cluster. E. g. a regular heptagon gets 
aA"L 

distortea for Re4.0.1, 
-wh; U: e breaks up for larger values of 

Re. If an additional sphere is placed at the centre of a regular 

hexagon it moves ahead and to one side. This causes the hexagon 

to tilt towards the sphere, which re-enters the hexagon from 

the rear side and causes it to break up. 

D Discussion 

Hooking (1964) made a theoretical investigation to 

find out how many of these observations can be explained 

using Stokes' slow motion equations. Hocking made tOo assumptions 

in his analysis. The first the necessary Stokes, assumption 

thl-It 
'' ,, 

Re ->O, and the second that the separationg st is large 

compared to the radius, r. Since Stokes' equations are vhlid 
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only for the region near the sphere, Hocking's equations are 

valid only if 

Re r/s /, <I, and Re (s/r) 

These assumptions retain the most important terms in 

the interactions of the spheres and enables the fluid motion to 

be found by the superposition of the motion produced by each 

sphere in the absence of the others. But this analysis is not 

applicable when the spheres are in contact. An important 

requirement in this analysis is that the fluid density should 

be comparable to that of sphere, so that the equations of motion 

can be written with the hydrodynamic forces on each sphere 

always balancing its weight in the fluid. 

Hocking considered In' equal sphores and wrote the 

equation for the velocity of the lifth sphere in the presence 

of the others. Using this equation he determined the-path df*, the 

sphere. 

For three or four equal spheres released in a 

straight line, Hocking found the behaviour was as observed in 

h the experiment. With three equal spheres unequally spaced, tle 

theory and experiment agree on the sphere that is left behindo 

except for the range 1.24, b/a <' 2, which is the range for 

which the behaviour is most sensitive to changes in b/ao 

Investigating the initial stages for the formation 

of a regular polygon, experiment showed the spheres execute - 
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damped oscillations about the regular shape. Hocking oonsiderinS 

three spheres in a horizontal isosceles triangle found that the 

apex sphere excecutes undamped oscillations in the horizontal 

plane and not that of a decreasing vertical spiral as seen in 

the experim: ont. Furtherl the oscillations of the base spheres 

cannot be predicted by theory. Since Hocking's analysis cannot 

explain the formation of the steady configuration for three 

spheres, he makes no further effort to investigate the case 
three 

of more thanAequal spheres in a cluster or for spheres initially 

placed arbitarily. 

However, assuming the spheres initially placed in 

a regular polygon, Hocking was able to show that this 

configuration is stable only if 3 
-1- n -4 

6, and for 7 ý- n 4- 12 

the configuration is unstable. But Rocking was unable to show 

that the polygon expands at a decreasing ratol instead the 

polygon remains the same siz3 and execute undamped oscillations 

about this position. Hocking speculated that the cxpansion of 

the regular polygdn and the damped oscillations observed 

experimentally are due to the inertial effects which are 

ignored in his analysis., 

Bretherton (1964) ijavestigated this speculation by 

using the flow field appropiate to Oseon's flow rather than 

Stokes' flow. With this innovation, Brethorton was able to 

show that the polygon expands at a docreasing rate and the 

oscillations of the polygon are damped* Howevor, the theoretical 



100 

value of the damping coefficient seems too small. 

Bretherton concludes that with his analysist which takes 

some account of the inertial effects, a configuration initially 

not too far removed from a horizontal regular polygon will relax 

slowly but systematically into that shape for Ro(s/r) 44 1 and 

n : ý-12 this will not occur. 3n 6* But if 74 

None of these analyses considers the case of more 

than 12 spheres, but as Hocking says 11 it is physically unlikely 

that the unstable configuration can change back into a stable one 

as the number increasest's 

These two theories give satisfactory qualitative 

agreement for the later stages of the formation of a polygon, even 

though the formation of the polygon in the present experiments 

took place main*j'. y for higher Reynolds numbers and smaller 

separations than considered in these theories. But the important 

condition for the theorptical analyses, is that the densities of 

fluid and sphere should be comparable and thht the spheres should 

move in response to the changes in the fluid velocityo In the 

present experiment these two conditions aro satisfiedo The donaity hlý 

of the sphere and that of the fluid never exceeded 193 and it was 

shown in section 2o2 B that, for at least upto Re= 4o, the 

spheres move in response to the changes in flowo 

The rotation of the spheres observed in the experiment 
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is again outside the theoretical considerations. Potation is caused 

by the asymmetry of the flow in the two hemispheres divided by the 

plane parallel to the flow. This occurs only for small separations 

and is determined by the terms 0( rls )4. For the larger 

separations considered in the theory, this effect is negligible. 
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7 'TER Cilk 

SE*D_IHE! -TTAT 1017- OF CIRCULAR CYLII; DE2S. 

ITENTAL ARRAYGMiRNIT. 3.1 EXI'E`RDý 

The experimental set up was very similar to that used 

with spheres. However, the dispensers %ad to be modified to hold 

the cylinder firAy. This was acco"plished by using adaitors 

shown in fie-3-1. 

These ad. al, tors, mit from persk., ax. rods, essentially 

consists of a groove on one end to hold the cylindersl and the 

othor end shared so as to connect securely to the tubes A and B 

in div;? enser 1 or to the plate in 2. A hole through 

the axis of the adaptor connects the groove to tho suction 

s,,? Ir, tem. 

The dispenser 1 ; -.. odified with these adaptors could 

release the cylinders in any orientation, because the groove 

could be rotated in a vertical plane, while tho tubes of the 

dispenser in a horizontal ý, Iane. With dionenser 21 any, number of 

cylinders could be released but only with the axes of the 

cylinders restricted to a horizontal plane. 

For thin cylinders heavy materials such as Duralumin 

(fe2,806c,. 71-3), steel (7.84gor. 1"3) and brass (8.3, gcrl-3) were 

used. The diameters of these cylinders ranýZed frora 0.0435 CM 
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FIG ý, l 

Adaptor 
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to 0.120 cm. With perapex or polystyrene, zuch higher eiameters 

upto o. 64o cm (1/4 in. ) were possible. The cylinders were out 

from smooth rods of these materials and the ends were laced 00 

as to Set right circular cylinderaq and 7ade smooth by polishing. 

The diameters of the cylinders were measured using a 

microneter screw gauge, so that measurements could be made to 

three significant figures. Any cylinder with nore than OGY 

variation in the diameter along the length was rejected. The 

lenGth was neasured either with vernier calipers or a low-power 

travelling microscope, so that this alno could be evaluated to 

three significant fiSures. All the cylinders used have to be 

straight and rigid, hence the maximum yerrissible lenoth was 

linited by the lianeter and the material of the cylinder. For 

thin netal cylinders this length was lout 3 cm, while for 

perspex cylinders with greater diameterc, lengths as much as 

15 cm were pocsible. 

The liquids uced were the saiae as for spheres, except 

that sti3ar solutions of concentrations as high as 49%, was used. 

The density of -this soltitio-n wts 1.22 acm"3 and has a Ikincriatic 

viscosity of 10.2 cs at 201C. The liqr. ids were 1-cept in the same 

ta, ýf, --: s as -ý-1. enticned in section 2.1 cha-'Iter 2. With this co: AInation 

of solids and liquids, it was possible to m,., L,,. e careful 

observations on cylinders ranrinS in Reynolds numbers defined as C2 

Re=ZO-d where Vois the terninal velocity when -Palling with the 

long axis horizontal, cLthe diameter, and v, tho kineratic 
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viscosity of the fluid, from less than 0.01 to about 10 

3.2 BEHAVIOUR OF SINGLE CYLIYDE LS. 

A Orientation and flow behind 

In section 1.3 chapter 1, it was state(, that for very 

low Reynolds nur-bersq a body WOUlL , 'all in any orientationg but 

as the inertial effects become prominent and depending on their 

geometry, bodiec fall in such a way as to present the greatest 

resistance to -, iotion. 

For cylinders, if Re<0.01, any orientation is possible. 

*th which they were released, and They fall in the same attitude w. 

unless the initial orientation of the axis of revolution is 

vertical or horizontal, the cylinders fall inclined to the 

vertical in the direction of this axis. With hiTher Reynolds 

numbers, the cylinders tcnd to orient with their axes of 

revolution horizontal if the dianater to length ratio d/L is 

less than 1, and with their axes vertical if d/L is greater than 

1, and those with d/L = 19 fall in either orientation, depending 

upon their attitude on release. If o. oleRe <0.1, long cylinders 

(L/d >5) oscillate before reaching their stable orientationg but 

when R00.1, these oscillations are heavily daraped. 

The type of cylinders hereafter considered in this 

chapter are those with L/d >5 and Re>0.01, henco the cylinders 

always fall with their axes of revolution horizontal. 
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Flow behind cylinders was observed in the smic way as 

for spheres, and found to depend on the Reynolds nuLiber and the 

diameter-length ratio. 

For all cylinders upto a Reynolds number of 269 no 

standine eddies were observed# However, as the Reynolds nu,,,, ber 

increased beyond unity, the flow round the cylinder becornes 

increasingly asymmetrical. When the Reynolds number exceeds 26, 

the flow lines in the rear become reversed and give rise to two 

standing, eddies of opposite rotation. In this case, as for 

spheres, the Reynolds number for which eddies are visible, is 

much higher than that observed or yredicted by previous workerse 

For a long cylinder, these two eddies rise from either 

side along the lenCth of the cylinder leaving a wavy flat streak 

behind. Fig. 3.2 shows this wavy streal: as seen frora the 

direction along the length of the cylinder. For a shorter 

cylinder, the flow past the ends Cive rise to a three-dirtensional 

circulation which is pyramidal rather than cylindrical in shape 

as shown in fiG. 3.3 a and b. The flat streak behind a long 

cylinder becomes thinner and less wavy as the length decreases 

until, when the pyramidal flow occurs, a thin straiuht streak i. - 

formed. On further reducinG the length, two separated streaks as 

shown in fig. 3-3b are forued. The separation between these two 

streal-x is greater when the cylinders are short. 

Mien the Reynolds number exceeds 50, eddies ceparate 

from the surface of the cylinder, and are shed as Karnan vortex 
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FIG 3.2 

Flow behind a long circular cylinder, 26 1 Re 0 50 

( Perspex, d= 1/8", L=6.0 cm. Re = 39-5 ) 

End-on view 



FIG 3.3 

Flow behind a short circular cylinder, 2 t', eý- Re50 

C Perspex, d= 1/-'"; L=2.0 cm. Re 39.5 ) 

(a) (b) 

Broad - side view End - on view 
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streets. For a long cylinder, vortices are nhed regularly and 

alternately fron the opposite sides and two sets of reGularly 

spaced, expanding vortex rings of opposite rotation are formed 

along its trail as shown in fis. 3.4. This observation aZ; rees 

fairly well with that of Kovasznay (1949), who using a hot wire 

techniques detected periodic behind a cylinder at 

Re >40. 

' eddy production was measured and "'he frequoncy o. A 

found to denend on the diameter d, the terziinal velocity V, and 
AZI 0 

the Reynolda number Re. If the frequency of shedding is low, it 

is neaeured diýectly by the time taken to shed a given nur., ber of 

rinl3s, while for higher frequencies, a indirect method of 

photoeraphing the rings and counting the- number in a given 

lenEth, was used, Thin could be done since the rings remained 

stationary with respect to the fluid except for their expansion. 

Knowing the velocity of fall, the frequency could be calcul-Ated. 

A plot of 
m 

against Pe gave a curve very similar to that 

It 
V0 

obtained-by Relf and Sizuraons (1924) for ventilated ctationary 

cylinders (see f, "Le, -., 1.5). This shows that in this regimel the 

fall in the'drag coefficient is accompanied by a rise in the 

vortex frequency. 

/For shorter cylinders eddies of con-parable strength 

break away fron the edges as woll as fro., i the sides. This gives 

rise to a flutter of the cylinder about a horizontal axis 

through the centre and normal to its length. The amplitudo of 
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FIG 3,4 

Shedding of eddies by a circular cylinder, Re 50 
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oscillations is comparatively large for shorter cylindors, but 

decrease progressively as the length increasect and the cylinder 

falls stably. 

The transition from the fluttering motion to steady 

motion io not abruptv the observations of fig. 3.6 allow a fairly 

definite boundary to be dravin between the two regimes. Different 

boundary curves, when d/L is plotted against Re occurs for 

different materials and it was not possible. to find a suit,: ýble 

parameter to fit these different curves to, - ,, 
other. In fig. 3.6, 

two ouch curves are drawn for steel and peropex cylinders. For 

clarity individual observations for steady, persistant flutteringt 

and heavily damped fluttering c. ra drawn only for stecl. In both 

cases the influence of d/L for transition from steL '%ey to 

fluttering -ýiotion decrease as Reynoldr- number increases. On the 

lower Reynolds number sidel both boundary curves are asyraptotic 

to Ro=50t the Reynolds number for which vortices are shed, and on 

the higher Reynolds ni: Tiber side, it shows that if L> 25d, 

whatever the Raynold8 nuiaber, the cylinder would fall stably. 

Thus for lengths Creator than 25 dia-meters, the flow round the 

edges has no effect on the bohaviour of tho cylinder for all 

Reynolds nuabors considered. 

Long cylinders with Re>50, which fall stably with the 

long axis horizontal, showad a small oscillation about this axis 

due to shedding of eddies from the oprosite sides of the cylinder 

but unlike the case of spherest this did not cause the cylinders 
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Fig. 3.6 Transition - from st*ady to unst*ady motion of cylinders 
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to deviate from a vertical path. Short fluttoring cylinders 

showed a slow spin about the vertical axcia (about 1/2 revolution 

in 40 cra fall). The spin is not smooth and the direction arbitrary. 

A possible cause for this spin could be the separation of tho 

eddies from the edges. 

B Terminal velocity 2d the drag coefficients. 

For a cylinder of length L, and diameter d, falling with 

its long axis horizontal at torwinal velocity V through a viscous 

fluid, tho draC coefficient I could be calculated by equatins the 

drag -Corces to the net wei, -, at of the cylinder as 

nd 
2L (p -p )S 1 Cý 

f 
V2 dL 

T, f 

I; iving %d 
Pr- - P+ 

00000000a93.2.1 C-11 'f V2 

The tcriý, ilnal velocity of fall was r. easured for cylinders 

of different diametern and len, -thso For a , -articular dieuieter at 

y of fall in a given fluid low Reynolds nu---,. bers, the velocit- 

increases snoothly with length to reach a nearly constant value at 

laree lenrths (see fig. 3-7). For lka& <'0-39 this r-I=i2u, "` 
0 

constant value is reached for I, /d-. 100, corresponding to about 

6 cm of the cylinders used. But as Re increases, the L/d 

ratio to obtain this naximum velocity decreasec to about 5 for 

Re =1. 

For lonS cylinders, the teriAnal velocity is deternined 

only by the drag per unit len-th of the cylinder# hence is 
0 
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Fig. 3.7 Velocity as a function of leng'th 

4.4 

3.6 

2.8 

2.0 

595 crm 

55 cm. 

13 ern. 

C cim 
135 crm 

1.2 

02 4 

0 steel 
Brossý 

340 cs. 

6 10 
L cm. 



116 

independcnt of length. The decrease in velocity as the lenath 

decreases can be attributed to the drag caused by the ends boing 

comparable to the drag on the curved nurface of the cylinder. The 

present results show that this end-effects decreasca as tho 

Reynolds number increases; but 'or low Re/. 0-3, this effect 

for lengths as lar, -e as 100 diameters. 

Since the diraensions of the tank is 30 cra x 30 cmi the 

effect of the walls on the velocity of fall of lonC cylinders 

cannot be neelected; for when Pe<0-3 a len-th as raucli as 6 cm was 

necessary to attain the maxiLiun velocity. Lut since the wall 

effects decrease with the Reynolds number and further since the 

maximum velocity is reached for smaller lengthsl the wall effects 

are negligible for Re>0.5. Anyway for Re>l, oven for lonC 

cylinders, the wall effects can bo neglected. 

The effect of walle parallel to the long axib of the 

moving cylinder is nogli-ible in these experimonts. Talzaisi (1955) 

invectigated this effect theoretically for an infinite cylinder 

with Reynoldo numbers in the Lazb's reeine. The ratio of the 

diameter of the cylinder to the dirstance between the walls in the 

present experimonts never exceeded 0,005, Liaking Takaiiii's 

correction factor to Lamb's fornula nooli: riblo. 

To evalus. te the correction due to the walls on the 

velocity of fall of a lone cylindcr, Brenner's (1962) theoretical 

expression for the effect of boundaries on the Stoltentrecistance 
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of a particle was usea. This expreagion mentioned in noction 1.2 

chapter 11 is as 

P., 

(3-2-2) 
I-k+0 (I=) Or iv 3) m 

where D is the distance between the walls and k=2.1 

If a cylinder falls at terninal velocity V.. in an 

^luid and at velocity V in a bounded fluid of the saLie infinite I 

dynamic viscosity^l, the drag F is the same in both casuz, being 

equal to the effective weight. 

Thus 

bo L YL C. 1, Ro VL ....... (3.2-3) F=I mt C. Re. V 

where the subrcripts refers to an infinite fluid. 

Ilenc c 
C! 3, P. - 
CB. Re 

(3.2.4) 
.w Go 

,0 
is the draa on a cylinCer of the aa-.. le lon, th moving in an If F k; 

infinite fluid with velocity V9 then C,,., and Ro., take new values 

such that 
01 

JL CRVL 
.1 

Using (3-2-3), (3-25) and (3-2.2) we Ilave 
P, e- (3.2.6) 
A0 W1.0 

and fro-.. -ii (3.2.4) 
81 V., c3,. Re.., 

&F C-z Re 

For stl. ailRe and since V iS, '. lot vOrY dif2erent from V Laubla 
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expression 
Re 

go ct*O 

IC3> 
all"z 

allows us to write 
II C. z,. Re-ca 

IR TI 

R e-. o 

sees*** (3-2-7) 

Hence Ya =E=I F + 0( L 
67r IZ V. L 

Ne, 7: 1ectine the O(L/)))" tern and *substituting for F usinm thb 

Lanb's exprosr Aon 
F4 Ir V., L 

e. 

we get 

v )ca.. ) W 4) 
- .. - . (3.2.9) 

31-ý-q, 7-c. ( -5'- ) 

Hence the ratios of draG COOffiCients and the neynolds 

nunbere for a boundod and unbounded fluid A as 

Cý CZ-6 =1 /00. ooo. **o (3-2-10) 

and Re Re,, = 0( ooo*oo (3.2.11) 

For ROI, 0-3, the experimental valuea for C., and Re was 

corrected for wall effecto on the longest cylindersq using tho 

equationo (3.2.10) and (3.2oll), and so produce their 

corresponding values in an infinite fluid. These corracted values 

for 10-24. Re4O. 3, appear in table 3.1, showing Close agroemont 

with the values calculated uoin, -, Lamb's forriula. 4j 

These results also appoar with other values upto Po=l, 

in fie. 3.8, w1here the theoretical curve of La-, ib and the 

ex. perinental results of Finn (1953), WiecelsbarZer (1922) and 
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TABLE 
-3-, 

1 

Wall effect correction for the drag coefficient and Reynolda 

number for a freely falling circular cYlinderl for Re -, Oe. 3- 

C, Re C21.0 Re.. C. 7. 
from Lamb 

34 t1 0.24 toool 28 0*27 2895 

50 1 0,15 1'0*01 43*5 o,, 16 43*0 

115 3 0*053ý0*005 97 0.055 95,10 

195 6 0,028±0.002 16o 0*030 15390 

280 t9 0.018±0.001 236 0.019 225*0 

85 t2 0*075tO6005 71 0,081 6900 

P-50 ±'8 0.02240.001 200 0.023 195,0 
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Tritton (1959) are plotted for comparinon. The experimental 

valuen of the drag coefficients deviate proorensively from L=bls 

formula when Rcynoldo number incroascs beyond 0.4. An altornate 

formula derived by Burgers (1938), Davies (1947) and Broersma 

(1960) for the Stokes resistance for a long cylinder fallinG in 

an infinite fluid, from Orns-Oberbeck expression for a prolato 

ellipsoid, vi. -, 
4. ir, 2 Vo L 

aL 
(3.2.12a) Itl 

. CL -t 0.5 + 0( 1-) 

or 
C-%a Le 

Tr 
3,2,12b ADIC, -x +0-5 

gives much poorer agreement with the expcr; L, -jcntal results than 

does Lamb's formula for these Reynolds numbers, The limit for 

Burged formula could be placed at A=0,05 within the limits 

of the'presont experimental accuracy. Kowoverl deviation is 

apparent beyond A-0.01. Indeed Bur5ord formla implies that, for 

.,, 
Re = conotant, and c-pori a fixed L/d IC-, -, icntally this is 

certainly not tha case. 

The discrepancies are apparmt iL fio, -. 3-9 where the two 

extreme curves of fig. 3-7 are compared with values computed from 

both the Burgors' and Lar., Vs f ori sulacas corroctod f or wall of f ects 

from equation (3.2.2). The aGrec=ent for lonc, thin cylinders is 
L, 

good in all three cases at Ro=0,02, but at lb=0.24, the Burgors' 

formula gives volocitios that aro 507. too hieh. 

In ffs. 3-10, the prosent values of the drag coefficient 

for 14Pe4103 ELre compared with thoso of Rolf (1913), WiosoleborGer 
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Fig. 3.9 V*Iocity of fall compared with Lamb and Burgers' formula* 
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and Tritton (1959). The agreement between all thece valuos 

are pite impressive but they all give values lower than the 

VSWG theoretical values obtaineiXOseen's approximation. Howovor good 

a. -reenont e: cist with the values frora relaxation methods of 

Allen and Southwell (1955) for Ro=l and 10. 

The decreaGe of velocity ac-leng-th decreases was 

attributed to the end effects . For ReQ. 3, this effect exists 

for L--100d. (See fig. No theoretical formula exist for the 

drag c qFficient Of CYlinders when the length becomes coLparable N 

to the diameter. Burge& formula which takes into account this 

factor proves inadequate for Re>0.05- 

However, with the present recults, an emr. irical formula 

can be su, -, -, ested to take into account tha end effects whon Re-1,0-39 
Cl 4 

of the form 
I V-6 Vý 

+ 
........ (3,2.13) 

R41. 

where V,, re: Lers to the velocity of a finite cylinder in an 

infinite fluid# 

CoMining this equation with equation (3.2.9)9 tho 

velocity V for a finite cylindcr in a bounded fluid is Given "y 

k ......... 
(3.2.14) 

R o-6 e-. o 
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or in terms of G. Re this leads to 

+ CL 
R"6(-, - C-3, R CX6" 

I+ L-2- (a 
T A- 

;Lk R 

C; -'2 4. Ra e- 03L3 
. 3ý 

The empirical : Corraula for the velocity (3.2.14) in 

plotted in fiG- 3-11, for coaparison with the experiaertal 

resultso Tho continuous line refors-to the for. -jula, while 'X I 

indicates the experimental values. Tho at-reement is impressive C; 

for L45 cm, but for greater lengths, the theoretical forv, ula 

gives smaller velocities than the exper: L: -. nt. This discrepancy 

increases for higher Reynolds nuizibers of the cylinders, For 

Re= 0,23, a discrepancy of about 5% exists for L=6 cm. This 

means that at high Reynolds numbers, the and correction term does 

not decreaze fast enough as leneth increaces to -maho the end 

effects not-li-ible for L>100d. i1ior Ro40.1, this formula fitz 

very well with the eXpcri; m. -, -ital values for all lenmths L'ý5d- 
Q 

The formula (3.2.14) could be uced to e=plain the 

diccrepancy between a set of Mite's (1946) experimental results 

and Lamb's theoretical fornula (3.2.7)o nite found that for two 

identical steel cylinders, the velocities of fall in two glycerine 

solutions of viscocities 6 and 13 Poise in identical cylindrical 

containers were invorsely proportional to the dynanic viscocitiese 
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, Since the pro6uct C611le is proportional to V(Lj Vlh: Ltels re6ultG 

show that foA. the two Reynolds numbers in the "two cases, (71, Re is 

the came. But White Coos on further, assuming that since he used 

tho same cylinder in identical containcro the end and wall effects 

should Ve the 8ame, to conclude that in the general case of a long 

cylinder fallinC in an infinite fluid the product C.,, Re iq 

independent of the Reynolds fiui-., ber. Since the Reynolds nu, -bors in 

Wh-f. te's experiments are-,, 091, this conclusion is in direct 

con-Plict vrith Lamb's formula. 

The error in White's conclusion lies in his assumption 

that the end effects in the two cases are equal. The equation 

(3.2.14) was aDplied to Mite's results and it was found that the 

velceities in the two cases turn out to be equal within #I 

which is well within Mite's experimental accuracy* The end 

effects decrease with Re in such a way aa to =Wo the product 

&Re a conatant for the two cdses but in no way contradicts 

Lanb's for=la. 

c Conclusion 

From the present experisental racults it could be 

concluded that for ReO-3, Larý-. bls formula could be used to 

determine the terminal velocity for lone cylinders (Lý100d)j 

fallinG freely in a viscous modium. However, if the distance 

between the bounding walls of the uediura in comparable with the 

length of the cylinder, a wall correction han to be applied, 
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unina Brennarla oxprossion. 

For highor Raynoldn numbers greater than 11 the wall 

effects are neglitible as the prosont rosultv agroo vory well 

with those of previous workers. 

Won the diameter of the cylinder beconos comparable 

with the length, and if the Reynolds niviber is within the vnlid4. ty 

of Laub's formula, a empirical correction factor could be 

introduced to Lamb's formula, This correction factor decreases 

with the 71, eynolds runber, but doen not decrease fast enough with 

, 
lJ. r,; iblo for L)100d. leneth to malto the end effects nor, 

Tho present o=perVental resultz licit* the valieity of 

Burgoos'forrula 200.01, showinG that for higher Reynolds 

n=bcrs tho cylinder no lonjer falls in a pure viscous resloo. 

This is in agreement with the observatione on orientation whora 

for Ro>0*01, the inortial forcos becone appreciable to wAO tho 

cylinder uove in a preferred orientation. 

PrHAVOM OF TWO "IT LOITG ID'-' ""! CAL CYLIITD-RS 
1 1117 z 

Two equal long cylinder. -, interact with each ot: ier in all 

directionn, c: ctondinq. -ion roleaced vortically ipto 100 diatiotera w, 

one behind the otaor. Their bollaviour waa dotornined largely by 
-Z 

their relative position3 on bein- released into the tanlt. But in 
V 

all cases the ultiLiate c. "fect iz for the two cylindern oither to 

fOL11 noparatod but parallel to each other or together croosed at 
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the Centre rieht angles to each other. The bohaviour was found to 

be indeDendent of the Reynolds mKor upto Oat in which vortmm 

rings are shed. However detailed observationo aro nade only for 

&OURM. 

A Releacod si. -xultaneousl in the samp horizontal 

(a) Lonl-axes 7) rallel 

The two cylinders rotate inwardo and neparatc 

horizontally as they fall but otill renain parallel to each other 

(See fig. 3,12 photograph 1). In this respect they behave very 

nuch lilzo spheres (See cection 2. a chapter 2), in that the 

separation and rotation decrease as tho separation increases. 

However, the maximuz separation was very much larCer in the case 

of cylinders, that they were found to separate right along the 

fall. Hence it was not possible to estimate the max imuý seyaration 
S 

as the influence of the walls at these separation aik quite 

appreciable. 

(b) jRýir,, 
_zjY. ea_croqsed 

Mhatevor the initial osition of the two a. -. -e, -. a. -, long an P 

attain a they are crossed, they slida relative to eaoh other ana , 

stable position in which they bisect each other at right angles. 

The two cylinders were released with angle& between the m"cas as 

low as 30*, and crossing each other at various pointa. Photographs 

taken in a horizontal plane from the bottora of the tank after a 

50 cm fall, showed that for all cases the tj. jo cylinders fc-131. 
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FIG 3.12 

Final configuration for two and three equal cylinders 

2 
" 4- d=l,; -) iaia, L=D,,, -) (; Ili* 
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d=l.?, i, l-i. L=7. c) C-Il- 

d=0.63 mm. L=G. 0 ein. 

I 

steel d=0.63 mm. L=690 cm* d=0*63 inm. L=6.0 cnio 
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stably and are bisected at right angles (See fig-3-1,2 photograph 2). 

This stablo confi, -, ruration is attainod zore rapidly at higher 

Reynolds numbers. 

(c) Se-parated but not parallel. 

Tho two cylinders flutter aa thoy fall, with decreasing 

amplitude, and eventually become parallel and then separate as in 

(a) above,, Simultancous release is important in this wcperimentj 

otherwise the cylinders tend to become crossed. 

(d) In line and se arated alonE tho cormon axis. 

In this case, two distinct types of behaviour are 

observod. If Re>0.19 the cylinders continue to separate but 

preserve their initial orientation. If Re<0.11 the cylinders tilt 

in the vertical plane towards each other and flutter about a 

horizontal axis. Tho oocillations of both cylinders which are 1800 

out of phase, grajually decrease, the cylinders eventually become 

parallel and then separate as in cas-- (a). The ginal position is 

attained more rapidly and with fewer oscillations at higher 

Reynolds numbers. 

Released with a vertical 
-septxationo 

(a) Parallel and direStly one., njnd, ýhq othar. 
_1.2: _ _- 

As 
Bilte in the case of spheres waho capture exists but for 

X 

nuch greatpr neparations4 The trailing I 
cylinder catches vlao leader, 

rotates round it, and Men the lino of centres becone horizontal, 

they separate and fall as in A(a), The two cylinders always keep 



132 

their cccces parallel to each other. 

Tho velocity of approach was calculated by measuring the 

separation at 3uccessive intervals of time during the fall, using 

the same photographic technique as for spheres. The velocity of 

approach thus calculated is plotted a, - a function of separation 

shown in fie-3-13. Whercas for spheres the approach velocity 

decreases slowly to reach zero at large separations, with cylinders 

it drops sharply from a maxinum value at separations of about 30 

diameters, to zero at about 80 cliametcrs. 

The satne experinent was conducted with unequal c-1--lineers. 

When the trailing cylinder is zhorter and has a lower terminal 

velocity than the leader, it raay catch tho leader only if the 

difference in the terminal velocities is les. s than the ma'XiMul 

approach velocity for a pair of identicill cylinders, Just as in 

the case of spheres, the trailinC cylindert in addition to its own 

terrainal velocity$ acquires the velocity of the fluid dragged by 

the leading cylinder. This linear superposition of the velocities 

of the cylinder and the fluid occurs in all cases irrespoctive of 

whether the trailing cylinder catches the leador or not. 

v1hen the trailinC cylinder is loiiL-, or than the leader, and 

if the difference in the termiual vclocitico could cause crpture, 

the trailing cylinder tends to flutter before it overta? es the 

leader, but remain in the vertical plane common to both cylinders. 

In the region swept out by the cross-soctional area of 

the cylinder, the flow could be reear,, fted to be the sane along any 
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Fig 3.13 Wake capture of two equal cylinders 
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section parallel to the cylinder as lonG as the end-effects of the 

cylinder are negligible, Hence a short cylinder parallel to the 01 
leader placed vertically behind the leader would experience the 

same velocity along its length, but a cylinder longer than the 

leader would experience a faster movinG fluid at the contre than 

at the ends, This inhoraoCeneity of flow alonG tile length vay be 

the cause 1; &r lonSer cylinders to OxecutA oscillations in the 

wake of the loader. 

(b) Parallel but dis-nlaced hor-i-nontally as well. 

The relative raotion of such a pair was determined by 

plotting their horizontal and vertical separations at sliccessive 

intervals of time. The path of the trailer with respect to the 

leader placed at the origin is shown in fie-3.14. Points are 

separated at'l/4 sec intervals. As the cylinders approach each 

other, they close 4Lore rapidly in tho vertical than in the 

horizontal direction. At a certain stage the horizontal aeparation 

remains sensibly constant while UO vertical separation continues 

to decrease, Mien tho cylinders are sufficiently closel the 

trailing cylinder moves away from the lendor increasinE the 
V 

horizontal separation. Eventually the tvio cylinders maintain a 

constant vertical separation but soparate horizontall., 1V, at 

decreasing rate. All through the izotion the two cylinders fall 

with their axes horizontal and par-all-al to cach other. The path 

is very similar to that observed for equal spheres similarly 

displaced (See fiG. 2,11)9 ex, cept that the two spheres finally 
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Fig 3.14, Path of a cylinder relative to an equal cylinder in front 
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reach the same horizontal level while the cylinders separate 

maintaining a fixed vertical neparation. In both caces fixed 

paths are followed deterrained by their initial positiona. 

(c) Not i2arall el, 

The trailing cylinder tilt4towards the leader and slides 

toward-- it. Both cylinders now flutter before taking up a otable 

position in which they bisect each other at ri,, ht angl'e&:. 

T77RCt, OR "ORB I'D! ', rTIC. A. L CYTIlTj')E, 2,, S 

UsinG the dispenser 2 with the correspondinE adeptors, 

or three A more long identical cylinders Were released with the axes 

horizontal, but with various initial conAgurations. 

Wen relotsed si-'-. iu. LtanouoolY all parallel to each oth6rl 

the cylinders separate but maintain their axes parallel and 

remain in the sane horizontal plane. If tho axon are not parallel 

initially, then the cylinders tead to fall parallel to eachAthor. 

Fie- 3.12 phatoiraph 3 shows this efZect. 0 

For all other initial configurations, they may cluster to 

form crossed doublets or cy=etrica14 patturns. Mile the 

crossed doublet is stableg the latto! is not. The two parallel 

members separate, remaining nearly parallel, while the upper 

member falls betwoon aW away from thou. The two of these 

separatino cylinders may later combine to forLi a syi=etrical 

cross that falls faster than tho romaininS cylinder and leavos it 

bohint. This sequence is shown in photooraphs 4,5 and 6 of 
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f ig. 3,12. 

Hence if thore are two or more cylinders, they either 

forra into sets of stable pairs crossed at the centre, right angles 

to each other, or separato with their axes parallel, 

M CYLINDERS LOADED_KITH SPHERES. 

A needle shaped or columnar ice crystal will fall freely 

in air with its long axis horizontal. But if this ice cryotal 

captures a supercooled water drop in its path, its oriontationt 

direction and velocity of fall would be considerably affected. 

To investigate this behaviour in tho laboratory, a 

cy, linder was loaded with a sinGle sphere alone its length and the 
.1 10 

motion was studied. However, the exyeriments could be performed 

only in a large viater tank (2 ft x4 ft Y, 6 ft), as the motion of 

thece loaded cylinders were such that with any smaller tank, tha 

walls would intorfere with the ýýiotion. Hence the iiaterials of the 

cylinders and spheres have to be restricted to either perspex or 

polystyrene. The Reynolds nu: -, bers were greater than about 1009 

with the cylinders shedding Karman vortex otreets along thoir 

path, 

If a cylinder of naass m..,, 9 length 21 and diameter d 

is loaded with a sphere of mass m. and radius r at a dLstance 

x from the centre, the behaviour deponds on all these 

parameters. The observed behaviour can bo classified into three 
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distinctly difZeront types according to its orientation as 

notion I Long axis horizontal. 

notion II Long axis inclined* 

notion III Long axis vortical. 

Classifying tho behaviour into these throo types by 

changing all the above rientioned pararactersq it was found that 

the behaviour can be determined entirely by two parameters. 

(1) the ratio of the weights of the sphere in water to 

that of the cylinder in viater WEI /V 
rI 

and 

(2) tho x/l ratio 

In fi, -. 3.15, three types of notion are plotted with 

respect to these two parameters. Dictinct boundaries divided the 

three zones from one another. Frota these three zones, the type of 

motion for a Civen combination of the two parameters Wa /Vl 
r EL-nd 

x/1 can be predicted. 

Motion I 

The cylinder remains with its axtis horizontal and moves 

in a vertical path. If the diameter of the sphere is equal or 

greater than that of the cylinderl the cylinder turns so that the 

sphere is on the underside. For shorter cylinders which flutter 

when fallinS unloaded (see section 3.2), loading tends to 

stabiliso this behaviour* Flutterin,,.,, of a loaded cylinder occurs 

for much shorter lengths. However, the length below which 

fluttering occurs depends on the position of loading and the 
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welght ratio. For smaller W8Ar, as the loadine beco"Os close to 

the centre, the critical length for flutteria approach to that 

of a unloaded cylinder. 

Loading of a cylinder falling with its axic horizontal, 

increases its terminal velocity A fall. But the velocity for a 

given WSMr, remains independent of the position of loadinC as 

long as the cylinder falls horizontally. For example, if for a 

particular sphere and cylindor, the loaded cylinder falls in a 

horizontal position for x=xl, then for all x4x, (800 fig-3*15) it 

will remain, horizontal and will fall with the same tervinal 

velocity. 

Ken x=O, all loaded cylinders fall vertically with the 

axes horizontal; with larger ratios of WSPr Q0.5), the rod 

oscillated about its long axic, may be duo to the shedding of 

vortex rings from the sphere, but still the combination fall 

vertically. 

The terminal velocity V of fall for a cylindor landed at 

the centre showed a steady incroase with the mass of the loaded 

sphere. In fiE. 3.16, the ratio of the terrainal velocities of a 

cylinder loaded at the centre to that of an unloadod cylinderg 

V/VO , was plotted as a function of W8 /W 
r. 

There is a cons. 1derrable 

scatter in the rosultog however, it shows a steady incrm3e of V/V 
0 

with W 1W . It is evident from the graph that if W AT < 0.04, 
sr0sr 

loading cannot cause a increase in the teriiinal velocity. 
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Liotion II 

The axis of tho cylinder is inclinod to tho horizontal. 

The fall path is no longer vertical but inclined in the direction 

of the axis. The deviation from the vertical is a maximum when 

the inclination of the axis is 45'. In the initial stirtges of this 

motion, the cylinder noves with the sphere on the underside 

without any oscillations, but later rotary oscillations about 

its long axis set in. The onset of oscillations is quicker when 

the loaded mass is higher. 

Motion III 

The cylinder falls with its long axis vertical and 

spinning about this axis. The notion bocomes less stable as the 

loading gets further away from the edge. The velocity of fall is 

very much increased as the drag for this position of fall is 

considerably reduced. 

The flow behind tho loaded cylinders did not reveal any 

information as to the type of behaviour. Vortices aro shed from 

both the cylinder and sphere, which later coalesce downstre, -nm to 

r, ive two -sots of vortex rings. 

ApIp, lication to needle-chejL2d icc SEXI. 123. tala. 

By loading, it is possible to chanGe the orientation of 

a freely falling cylinder. Since the threc types of motion did 

not dopond on the Reynolds number for 102, e-, Re 4 3-01 v it uay be 

assumed that tho sarae applies for all Reynolds numbers. There is 
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no reason to consider the Reynoldo number to be a significant 

par=oter for theae behaviour ae the bodiou considered havo no 

geometrical similarity. 

The average mass of a neadio-shaped ico crystal is 

0.004 mg. Usually the dicaticter oC ruch needles remain sensibly 

constant, so that the mass dependz on the length a'nd is relatod by 

m. f. = 0.0029 (21) 0 4. &0. (1,, ason 1957. pp 3.69-172) 

where ri., is in milligram 4-. Lnd 1 in =. 

For m, = 0.004 mg, 
21= 1,7 mm and d=6N 

the velocity of fall for such a needlo is about 50 CmIsOc (Mason 

11.0157). 

The smallest mass of water-drop that will c"-use the 

needle to fall inclined is, ms= 0.08 mr (fig. 3.15, x=l). This 

corresponds to a radius of 4511. To make the needle fall verticr-1 

the mass of the drop should be at least 0.25 Mfg correspondine to 

6511 radius. The water drops of these sizes will fall in air at OOC 

tivoly. and 900 mb with velocities of 26 cra/coc and 40 cm1sec rospec,, 

Hence the needle-shaped ice crystal may collide with such drops 

in its path. 

Supercooled wator drops in the above sizes are found in 

the atmosphere. Hencc if a needle-ohaped ice crystal collects such 

a drop it may got inclined and fall with a increased velocity, 

with the result that preferential collection may take place at the 

ends and eventually fall with the axis vertical. 
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CHAPTER 

SEDIMENTATION OF DISCS AND CONES 

4,1 BEHMOUR OF SINGLE DISCS 

A Ex2erimental arrangement 

The behaviour of thin discs falling freely in a 

viscous liquid was investigated for Reynolds numbers, defined in 

terms of the diameter, d, and terminal velocity, V0, when falling 

with the short axis verticall ranging from 0.07 to 600o The 

materials for the discs and the liquids were the same as for 
0 

cylinders ( chapter 3), but in addition thin glass discs were 

used* The diameters of the discs varied from 0.475 cm, to 2-2 cm-9 

and the thickness-diameter ratio (t/d) varied from 0.04 to 0*3 

for perspex discs and from 0,007 to 0*10 for other materialso 

The releasing mechanism was the same as for 

cylinders, except that the groove in tho adaptors (fig 3*1) 

was unnecessary. Further the two tubes A and B of the disponser 1 

was modified to a shape as shown in fie 4.1. 

B The behaviour and flow behind 

Much of the present work on the behaviour of single 
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YIG 4.1 

Dispenser 2( riodified ) 
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discs for Re >1, has been anticipated in a recent paper by 

Willmarth, Hawk & Harvey (1964). The present experiments confirm 

most of their observations. 

All discs in the Reynolde n=ber range > 0*07, 

showed a tendency to orient themselves with their short axle 

vertical, Thinner discs ( t/d < 0.1 ) attain this orientation More 

readily than thicker discs. However, all discs with Re > 0.2, 

when released with the short a2ds horizontal ( edge-on ) 

turned to theýreferred orientation within 30 cm- of fall. This 

corresponds to about 1 minute of the fall time. 

Detailed study of the notion of thinAiscs at very 

low Reynolds numbers (< 1) has been carried out by Schmiedel 

(1928) and Squires & Squires (1937), but none of these authors 

indicate the Reynolds number above which the discs fall with a 

preferred orientation. Schmiedel, mentioned that at low Reynolds 

numbers it was difficult to orient discs with their faces 

horizontal as they tend to fall with their initial orientation, 

but gives no data of the Reynolds number in which this occurs* 

Squires & Squires made measurements on the drag coefficients 

of discs falling ed63-on for Reynolds numbers upto 0.24t but 

only over fall distances of 17,5 emo in which any tendency for 

the discs to orient would be unnoticeable. Willmarth et al (1964), 

did not consider Reynolds numbers of this ordert but found that 

all discs with Re > 1, fall with the preferred orientation of 
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short axis vertical, 

The flow behind the discs was observed usin- soluble 

dye. For Reynolds numbers as low as one, AAAug-eclad-r-es Were 

visible behind the discs. Even for lower Reynolds numbers the 

flow is asy=etric, but no eddies were visible. 

With increasing Reynolds numbers, these two eddies 

elonSate steadily and eventually break away into a set of Narman 

vortex streets. Fig 4*2 shows a disc with eddies about to be 

separated, With the shedding of eddies, the discs flutter 

executing pitching motion, but the mean path remains vertical. 

The velocity of the discs vary from a maximum to a minimum in 

half-cycle of flutter, but the average velocity of fall is constants 

The Reynolds number for which the eddies separate 

depends on the (t/d) and(p. /%) ratios. For all the discs, 

considered in the present experiments, if Re < 100, the discs fell 

steadily without any fluttering, while for Ro > 190, all discs 

shed vortex rings executing pitching motion. 

Willmarth et al investigated this transition region 

100 /, Re 4,190 in detail. They defined another parametert called 

the "dimensionless moment of inertia, 1,11 to distinguish the 

steady and pitching motion. I is definel as the ratio of the 

moment of inertia of a thin disc about a diamoter and a quantity 

proportional to the moment of inortia of a rigid sphoro of 

fluid about its diameter, d. 
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FIG 4.2 

Disc with eddies about to be se2arated. Perspex in water 

0.635 cm, 

t=0.032 cin. 

Re = 189 

I 
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Hence 
n PS 

17 
Pi. 

This term displays the inertial effects of the disc 

and arises naturally in the inertial terms of the equations of 

motion for the rotation of a disc about the centre of mass. 

Willmarth et al used steel discs, with t/d ratio 

ranging from 0*002 to OoO4, falling in glycol solutions of density 

1.08 to 1.15 g cm"3, The Reynolds numbers for these discs were 

in the transition region 90 < Re ý 180. Classifyina the motion 

of the discs into steady and persistant pitchine motion, they 

found a distinct boundary curve could be drawn when the Reynolds 

number at which instabilty occurs, is plotted against I This 

curve is shown in fig 4&3# A disc having Re and I on to the loft 

of this curve falls steadily, while on to the riGht of the curve 

executes pitching motion. 

Using the boundary curve, WiLlmarth et al successfully 

explained the results of Si=ons & Dewey (1930) that eddies are 

formed behind a ventilated stationary disc placed normal to the 

stream at Re = 100. A mounted disc is equivalent to a freely 

falling disc having a very large I However, they were unable 

to account for the low value of Re 80, obtained by Schmiedel 

(1928) for the onset of fluttering of thin discos made from 

heavy materials like gold or silver, falling freely in a viscous 

liquid. 
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Fig. 4.3 Boundafy st-poialiml sto-ody und samwolf rviofoori tow di-. (% 

14 x, 63 
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Present results for glass discs 



151 

The present curves for tho transition from steady to 

unsteady motion of steel and brass discs agree woll with Willmarth 

et al's curve , but differs considerably for perspex and glans 

discs, 

Since the densities of the liquids remain very 

nearly the samet the density ratio is mainly determined by the 

density of the disc, In the experiments of Willmarth et al, 

p /p since they used only was very nearly Nte constant at 7.59 

steel discs. The present experimentswere conducted with 

considerably different density ratios and corresponding to eacht 

a distinctly different boundary curve was obtained. The boundary 

curve for steel agrees with that of Willmarth et al, But with 

glass and perspex discs, which have a much lower the 

boundary curves coincide only in the region where the Reynolds 

number for instability occurs at Re = 100 independent of I 

This disagreement is illustrated in fig 4.3 and Table 4.1, In 

the former the boundary for Glass discs is compared with that of 

Willmarth et al, while in the latter the values of the maximum 

Reynolds number for instability and the corresponding value of 

I are listed for different density ratios. This value for I 

increases with the decreasing density ratio. 

Unfortunately attempts to find a suitable paramotor 

to fit g1l these results were unsuccessful, A similar difficulty 

was encountered in tho boundary between steady and unsteady motion 
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TABLE 4,1 

The maximum Reynolds number. Rem I for instability 

and the correspondIng Im for discs 

ILaterial of disc Pý, / P, Re 
m 

I* 
m 

4 Steel 7.8 170 8X 10"4 

+ Glass 2#5 181 2X 10"3 

+ Perspex 102 189 6*5X 10 

++Steel 172 8X 10ý4 

Present results 

++ After Willmarth, Hawk &'Harvey ( 1964 )* 
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of cylinders ( see fig 3.6 ). But it is evident that for a fixed 

density ratio, a definite boundary curve exists for steady and 

unsteady motion for a disc. 

The frequency of eddy production increases with 

increasing Reynolds number and for Ra> 400, the motion of the disc 

is very turbulent. The disc no, longer fall in the same vertical 

plane but in a small helix with the disc spining as well as 

fluttering. The maximum Reynolds number in tho present exporiments 

did not exceed 600 and no tumbling of the discs was observed* 

The drag coefficients for sinrle discs 

The drag coofficient Cý for a disc falling freely with 

the short axis vertical could bo calculatod by equating the not 

weight of the disc in the liquid, to the draa force. 

Thus 

7c d 

or Cj) 

P, V2 It C12 c 
j0 7- 

2t pe P, 

-2 
v0 P+ 

When Re -'- 100, a unique curvo is obtained for tho 

drar, coefficient as a function of the Roynolds number ( fig 4*4 )e 

These results agree well with those of Schmiodel (1928). But in the 

Reynolds number range ( 100 4. Re 4 190 ) where the transition 

from steady to unsteady motion occurs, the values of C-, are 
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scattered between 1-3 and 1.9. In this range, the drag coafficiento 

depends very critically on the t/d and p. /p. ratios. Hence unless 

these two ratios are also matched, a unique value for C. cannot 

be obtained. 

For discs having the same t/d and a /pi., tho draG 

coefficient decreases smoothly with increasing Reynolds number 

until the fluttering occurs, when it begina to increase* The 

points marked in fig 4.4 refers to one such easel where 

the results are for perspex discs with t/d- 0.1 falling in water 

and sugar solution. The transition for these discs occur at 

Re = 189. Sclimiedel observed a similar curve with the transition 

occuring at Re = 80. In Schmiedells experiments p. /p. was 

high ( >10 ) and t/d was very small (4 OeO3 ) that discs of 

different p /p,, and t/d ratios should not have appreciably 

different hydrodynamic characteristics. 

The drag coefficients for fluttering discs aro 

calculated assuming that the disc falls with the face normal with 

the average velocity of fall. The increase in drag coefficients 

for such discs indicates that there is a docrease in the fall 

velocity once fluttering or unsteady motion seta in* Thue 

shedding of vortices is accompanied by a reduction in fall 

volocity of the disc. 
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4.2 BEHAVIOUR OF TVIO OR-IMORE EQUAL DISCS 

(a) Behaviour of ta eqHal discs fallinU one behind the other, 

For Re >1, attraction between two equal diacs * 

falling horizontally one behInd the other is apparent at separations 

exceeding 40 diameters. As the rear disc is accelerated into the 

wake of the leader and closes to within 2 or 3 diambters it begins 

to oscillate and when the discs become very close they both 

oscillate together and fall exactly similar to each other. The two 

discs remain separated and never catch up completely. 

When the centres of the two discs are displaced by 

less than a radius, the rear disc catches up and comes to rest 

at an angle to the leader, which remains horizontal., At higher 

Reynolds numbers > 100, the angle between the two discs is 

4 300, but this inclination increases with decreasing Reynolds 

number and may approach 900 at Re,, -15- 

For greater horizontal displacements of the discl 

wake capture does not exist, discs fall with their individual 

terminal velocities, 

(b) Behaviour of two equal discs separated only horizontally 

When Re <19 if two disco are released with thoir 

faces horizontal and the centres separated by leso than two 
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diameters, the two discs rotate "inwards" about a horizontal axis 

normal to the line of centres. This rotation continues throughout 

but the discs do not separate. But as tho Reynolds number 

increases the two discs separate while rotating and the number 

of rotations decreasesg until when Re >15, the two dimes tilt 

towards each other initially and turn back to fall unaffected by 

the presence of the other* 

(0) Behaviour of 3 or more equal discs 

Three equal discs if they cluster together formp 

a "butterfly" configuration ( fig 4*5 ) in which one member 

remains horizontal and the other two form a symmetrical 'Veel 

in the rear. Such a cluster is very stable when the angle 

between an inclined disc and the horizontal disc is less than 

300, and fallswithout any flutteringand only at high Re when 

the flow becomes turbulent does it tend to break up* 

Even with more than three equal discs this basic 

"butterfly" pattern exists, The other discs may rest on this 

configuration. Howeveri such clusters are not stables the 

instability increases with the number of discs in the cluster* 
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FIG 4.5 

" Butterfly " configuration for three equal discs 

Perspex d=1.27 cm., t=0.032 cme Re = 280 
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4*3 BEHAVIOUR OF sinGm. DISCS LOADED WITH SPHERES AT THE EDGE 

The effect on the motion of a single disc when loaded 

with one or more equal spheres at the edge was observed. The 

behaviour of loaded discs were such that a largo tank ( 21x4'x6' 

was required, thbreby restricting the experimento to be carried 

out only in water, malting most of the discs considered to flutter 

on free fall. 

Since the loading was restricted to the edge, the 

behaviour of loaded discs depended only on the ratio of the 

weight in water of the loaded spheres to that of the discs 

WS1 Wj 0 

In this respect this behaviour resembles that of loaded cylinder* 

( See section 3-5 Chapter 3) 

(a) Single sphere loaded at the ed_Te of the disc 

When k 40.2, the loading has hardly any effect on 

the motion of a disc, The pitching and fluttering motion exist 

as in the unloaded disc. 

When k>0.21 the loaded disc moves in helix of x 

large diamoter which was 2 feet for 1c - 0,2 no that the disc 

usually hit the side of the tank. The disc continues to flutter 

about the diameter passing through the sphere, The disc remains 

very nearly horizontal and spins as it moves round tho hell% 
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in such a way that the sphere always leads* The motion is tho 

same whether the sphere is on the underside or top side of the 

clisc. 

As k increases still further the dice becomes 
0 

inclined to the horizontal and the diameter of the helix decreasen. 

For k-0.4, the inclination is noticeable and the diameter of 

the helix is about 15 cm- 

Above k=0.6, the disc always falls with the 

loaded sphere on the underside and is very heavily inclined to 

the horizontal, For thin discs t/d < 0,05, a holical motion with 

the dice turning round the sphere was observed* 

For thicker discs ( t/d > 0605 ), the combination 

showed a pitching motion. The disc changing its inclination 

regularly about a mean inclined position, which becomea more 

vertical as k increases. 

These two types of motion for thin and thick 

discs could be distinguished by the flow behind them. In the 

former case, the disc did not shed vortex rings. The thickness 

being insufficient to cause separation of the flow from the discs 

Since the disc moves in an inclined position, the flow lines 

pass smoothly along the disc. The sphere on the other hand 

either had a single standing eddy or shed a single row of vortox 

rings depending on its diameter and the velocitY of fall* 

In the case of thicker discs, the flow separation 
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occurs from the edges of the discs and a double row of vortex 

rings are shed, the sphere shedding a single row of vortices as 

before. It was not possible to determine whether the rates of 

production of vortex rings by the sphere and the dis'o were the 

same, but from the trail, it was neon that an eddy is shed every 

time the disc changes the direction of pitching, and another occurs 

in between, possibly from the sphere. 

In determining the value of k, the weights of tho 

spheres and discs in water have to be considered. This is abovin. 

in Table 4.2, where the ratio kI of the weig4t in air of the 

sphere and disc above which the disc always fall with the sphere 

on the underside, are listed for different combinations of the 

materials of the sphere and disc, But when these ratios are 

transformed to the net weights in water, all values give the 

ratios between 0.5 or 0,559 

Siwmarising, these three types of motion could be 

classified in terms of k as 

typo (1) k < 0,2 unaffected 

(2) 0*2 <k e, 0*5 falls in a large holix 

(3) k > 0.55 sphere always on the 

underside 
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TABLF, 4.2 

The ratio of the weights in air of the sphere and 

disc, k above which the loaded disc always falls 

with the sphere on the underside. 

Material of sphere 

Material of diSC Glass Perspex Plastacine 

P 2.539*cm-3 P= 1019GOCM"3 Pr1,89g,, Cm-3 

Glass 0*5 0.6 2,0 - 2*2 o, 6 0*7 

Perspex too small Oe5 - Oe55 001 0*2 
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Two equal spheres loaded at the__ed_kM_on the same side of the 

disc. 

If two equal spheres are loaded at the edge subtending 

an angle 0 at the centre, the behaviour is similar to that of 

a single sphere having the combined weights of the two spheres, 

and placed mid-way between the two spheres along the edge, 

When 0_490 09 the values of It for the throe typos of 

motion are not much different from the case (a). But with > 90 01 

the values of It increase sharply, until when 0> 150 0, loading 

seem to have hardly any effect on the behaviour. 

weight of the spheres together in water 
wdlgght of disc in water 

(0) Two-equal spheres loaded at the same position but on 

o2posite sides 

For 0.2 4. k 4 OA, the behaviour is the samo as for 

(a) above, the discs exhibiting helical motion but with the face 

horizontal. But for k>0.4, it falls vertically with tho faco 
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along the direction of fall. The ve: 

increased as would be expected. The 

one from each sphere, and none from 

thicker discs, the flow immediately 

the rings later coalesce downstream 

streets. 

Locity of fall is very much 

two sets of rings are sheds 

the disc if it is thin. With 

behind is complicated, but 

to form two rows of vortex 

(d) More than two spheres loaded on the edgeon the same side 

More than two spheres, if all placed within an anglo 

900, act as if a single sphere of equivalent mass was placed at 

the centre of mass along the periphery. 

(e) Application to falling plates in the atmosphere 

Assuming similar behaviour occurs when a hexagonal 

plate type ice crystal captures a suporcooled water drop in tho 

atmosphere, the table 40, gives the corresponding radii of the 

drops that would cause the plates to undergo motiona types (2) tand 
Me 

The drop sizes obtained are within tho ranso of 

supercooled drop sizes present in the atmosphere* There is thoroforo 

a possibility that plates may capture such drops and undergo such 

a motion, Howevert due to the small difference in the terminal 

velocities, the drops may be captured by the plates by the wake 

effect. Possibility of such capture was observed in the laboratory 
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TABLE 4.3 

Radii of supercooled water drops that effect the 

mot-4on of plates in the atmosphere. 

Plates (assumed as circular discs) 

Diameter (ýL) 500 500 100 
Thickness 50 10 10 

Mass (ftx-ý) 10 2 o, o8 

Velocity (cm. see"') 

at 900 mb, &0 oc, 50 19 6 

Reynolds number 20 7 0.45 

For motion in a helix 

Mass of water drop(") 

(ms 0.2 mL 2 0*4 0, o16 

Radius jo-) 78 45 16 

Velocity (cm. sec"') 
at 900 mb, &00C. 50 22 3*0 

Reynolds number 
of drop 6 195 OeO7 

continued next page 
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TABLE 4.3 ( continued from last page ) 

For motion with sphere always on 
the underside of the plate. 

Mass of water drop (H) 

(ms =0e5 5 1 o,, o4 

Radius 100 6o 20 

Velocity (cma sece-1) 

at 900 mb. &00C, 76 30 5,4 

Reynolds number 
( of drop ) 10.2 2.65 o. 16 
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experiments with a disc and a sphere having the same terminal 

velocity. 1/8 11 
perspex sphere falling in sugar solution of viscosity 

2.3 cs. which has the same terminal velocity ( 2.7 cm. per seco) 

as that of a diameter, 0.062 cm. thick perspox disc falling 

in the same liquid, was found to be attracted by the wake of the 

disc for distances as much as 30 cm*, when the sphere is diroctly 

behind the disc. 

4*4 CYLINDERS CAPPED W- HE-QUAL DISCS AT THE ENDS 

Perspex cylinders of sizes as used in the exporiments 

described in Chapter 3, were capped at each end with thin equal 

glass or perspex discs. These capped cylinders were released in 

the water tank ( 2'x4'x6' ) and their orientations in free fall, 

for different combinations of cylinder and diso sizes were observed. 

If the capped cylinder is released with the axis of 

the cylinder horizontal, it remains in this position only if the 

length of the cylinder is greater than a particular length L. 63ay)* 

For shorter cylinders the combination turned to fall with the 

axis vertical. 

If initially released with the axis vertical, they 

maintaino this position for all lengths, but if released in an 

inclined position, fall with the axis horizontal if L> Land 

vertical if 1 4- Lcm 
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The length, L., has the following properties@ With 

the rest of the parameters fixed, Lc 

(1) increases with increasing diameter of the diael dj (fig 4.6) 

(2) decreases with increasing diameter of the cylinder, dr (fis 4#7) 

The thickness and the density should have an effect 

on the length L., in that they change the mass of the disco However, 

since the mass of the disc is very auch smaller than that of the 

cylinder ( -C 11300), changes in the thickness and density have 

hardly any effect on L,. * 

For given diameters of cylinder and discq if the 

capped cylinder is released with axis vertical, the velocity 

increased steadily with length, while if the axis is horizontal, 

the velocity showed a small decrease at shorter lenaths but 

attained the constant value corresponding to the velocity of a 

long uncapped cylinder, at large lengths. The length of the 

cylinder corresponding to the point of intersection of those two 

curves is equal to L. # Fig 4.8 shows the act of curves for a 
I 

perspex cylinder of diameter capped with glass discs of 

thickness 09015 cm, 
Hence-when LI Lc , the velocity of fall with the 

axis horizontal is less than that with the axis vertical and 

vice-versa for L eý Lc , showing that capped cylindors prof or to 

* These mesurements could be made only if L> Lc a 



ell% 
u 

x 

&0 
WN 8 

u 

10 

10 
li 
6) 
ir. 

C 

I 

qq 
C4 

g 

c4 
0-; 

Co ö 

Iq 
ci 

0e r14 Co q r4 

W, 2 

169 

9 

U) 
U 
U) 

LL. 
0 

w 
ui 

ui 

a 

'k 



Fig. A. 7 Variation of Lc with diameter of cylinder disd - gloss t-0.015 cmý (Ccylinder 

- Perspex 

28 

24 

20 

16 

9 

12 

8 

4 

ýddO*95cm, 

0 0.2 0.4 0.6 0.8 1.0 

DIAMETER OF THE CYLINDER d, cm. 



4---N Q 
NT 

IIR 
E 

"? 

g 

C) 

2 "; '. 

171 

4iI 

, 0. 
=tý 

Iq 

414 

0 
r4 14 0 00 m r4 

1,2,95 w2 11vA AO Allz013A 



172 

fall with the orientation which corresponds to tie smaller velocity, 

These results, while confirming that bodies fall in 

such a way as to present the greatest resistance to motion, also 

show that cylinders which usually fall with their long axis 

horizontal, fall with the axis vertical for lengths as much as 

nine times the differewe between hhe diameters of the disc 

and cylinder (see Table 4A), when capped with equal discs at 

either end. 

A plication to 
_Cloud _Physics 

Prismatic columns with end platos (capped eolumns 

or collar stud) are fairly commonly occurring type of ice crystal 

in the airmosphere. Such crystals are formed due to the changes 

in the environmental conditions of the atmosphere through which 

they fall ( Mason 1957, P177 ). These ice crystals sometimes 

have one of the plates larger than the other, 

If the crystals falls with the columnar axis 

horizontallthan tharo is no reason why one of the plates should 

grow more than the other, but if the axis is vertical, the flux 

of water vapour to the leading plate is more than for the roar, 

hence the leading plate will grow faster than the other, For 

these ice crystals, the ratio of the length to the difference between 

the diameter of plate and column could vary from 2 to 15e Honco 

from the present experimental resultal it could be ascumed that 
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TABLE 4.4 

Variation of L. with ( dL - dr ) 

( dt - dr )cm. Lc. cm9 X= di dr 

0, b31 2.4 ? e75 

0.47 4, o 8,5 

o�63 5.0 8,0 

0,79 71b5 9.5 

0.79 6.8 8ý, 6 

o�96 7.5 798 

leil 10a5 995 

1.12 1010 8.9 

1.26 11.0 8o75 

1.28 12.0 go4 

1, o42 13,0 9»15 

1,44 15sO lo, 4 

1,56 15sO 94,6 

1,58 16.. o 1011 

1.72 1795 10,2 

1,74 19.0 1009 

1,88 20.5 1049 
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some of the crystals would fall with the axin vertical* For these 

crystals, the higher growth of the leading plate will help to 

maintain this position throughout the fall. 

Many optical phenomena are formed by ice cryntalo 

fallinC; with, the refracting edges either vertical or horizontal. 

E. g. horizontal extensions of haloes are formed by crystals falling 

with the refracting edges vertical, while the vertical extensions 

are formed by crystals falling with refracting edges horizontal 

( Humphreys 1929), 

Capped columns which could fall in either orientation, 

depending on the size, may give rise to most of the optical 

phenomena in the sky, However, other types of crystals like 

tabular crystals ( d/L >1) and columnar crystals ( d/L . 4-1 

may also be responsible for these phenomena* Good transmission 

of light through the crystals is essential for these phenomena* 

4o5 BEHAVIOUR OF FREELY FALLING COMES 

The behaviour of cones made of eithor perspox or 

duralloy was observed as they fall through the tanks containing 

either liquid paraffin or sugar solutions at room temperature* 

The Reynolds number, defined in terms of the base diameter, 

ranged from 0,5 to 1500, 
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Cones having a Slat base and Re 4 45, fall with the 

axis of symmetry vertical. But the orientation depends critically 

on the angle of the cone 01(0 refers to the apex angle of 

the isoscelese triangle formed by a plane through a diameter of 

the base pasaing through the apex of the cone ). 

if 450, whatever the initial orientation the 

cones always fall with the apex upwards, while for O> 450, 

the apex downwards position is the more stable of the two* In 

the latter case both orientations are possible, but if the cone 

suffers any perturbation it falls with the apex downwards, 

Cones falling with the apex upwards begin to flutter 

if the Reynoldnumber exceeds 45, while those with 600!! ý 800 

are very steady at Reynolds numbers as high an 1500 and, oven 

when 0*> 800, they do not flutteruntil the Reynolds number 

exceed about 100* 

Double cones ( fig 4,9 a) formed by cementing baso 

to base two cones with equal base diametors with apex angles 

and Oapbtuso and 01 acute ) also fall with axas vertical 

', 
the cone always at Reynolds numbers 4.200. For a given OZ 

falls with the acute angled apex FAI upwarls if &, is less 

than a critical value given by 

2.0 
*- 

+A =Z X 14 
as shown in fig 4,10 
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Fig. 4.9 
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This orientation in achieved whatever the initial 

orientation. On the other hand if > then both orientations 

are possible but the more stable orientation is with the apex A 

downwards. 

Cones with a spherical cap ( fig 4*9 b) showed a 

similar behaviour. For a given height thl of the Spherical cap, 

the cone always fall with the apex upwards if 10< and is more 

stable vith apex downwards if G>ID* where 

h ir G* = 0.68 ý +.. ; 

p 

This condition is observed to hold for values of 

h/r between 0.2 and 1.0 as shown in fie 4*11* 

The fluid flow around the falling cones was observed 

by coating them with soluble. dye. At Reynolds numbers between 

5 and 20Q depending upon the geometry and the orientation of tho 

cone, separation of the flow occurs at the circle of contaot and cx- 

standing edde" formsin the wake of the cone as shown in fig 4,129 

above Reynolds numbers of about 200 for hemispherically-cappod 

cones, the eddies are shed alternatively from the opponito sides 

of the cone which now begins to flutter - see fis 4*13* At 

Re ý> 800, tho flow becomes highly turbulent and erratic and the 

cones tumble as they fall. 
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FIG 4.12 
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Application to conical hailpellets 

Most hailpellets are approximately spherical, conical 

or dicoidal in shape. They are formed only by accretion of super- 

cooled droplets on to a frozen drop or an ice crystal. Of the 

processes that lead to the formation of cbnical hailstones, the 

most probable is that indicated by Weickmann (1956). The super- 

cooled dropletawhich collide-with the nucleus of the pellet will 

crystallize on location and tho hailpellet will grow downwards 

in a diverging manner. The increase in the diameter of the base 

leads to a conical shape with the base pointing downwards* 

The conical shape-is the ideal form at low tomporaturese 

Their structures and sizes have been very well documented in the 

literaturD, Howeverl different authors hold contradictory views 

on the orientation of free fall, List & Davos (1959) support 

Duch's (1814) viewlthat these fall with the base downwards, while 

Arenberg (1941) holds the contrary view. 

The results of the present experiments stress the 

importance of the geometry on the orientation* However, the 

variation of the density in the hailpellet ( the bases being 

moredense than the tips ) may exert some control on tho 

orientation, 

The usual shape of conical pellets is that of a 
I 00 hemispherical base with the apex angle of about 70 90 
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( Arenberg 1941 ). Measurements on some hailpellets collected 

locally ( on October 1964 ) showed that the apex angle could be 

even smaller Iv 500, while the bases are very nearly hemiapherical 

or conical with angles ~120 0, The orientation of these pellets, 

from the present results, should be with the apex pointing 

upwards* Furthor since the apex is of a lesser density, this 

'orientation is more likely to prevail, thus confirming the view 

that conical hailpellets grow in the way suggested by WeicImann., 

Spherical pellets could also arise from conical 

pellets which tumble as they fall on reaching a Reynolds number 

> 800, The random collection of drops on such a pellet may 

lead to a spherical shape. 
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APPENDIX 1 

FALL DISTANCE REQUIRED TO ATTAIN TERMINAL'VELOCITY FROM REST 

Suppose a body of mass Im' and density OP. ' fall 

from rest into a liquid of density tpI and kinematic viscosity 

Let IV' be its velocity after it has fallen a 

distance Ixt in a time It's 

If C: b is the drag coefficiant correaponding to 

this velocity IV' and let 'At be the cross-sectional area of 

the body normal to the atraam, then the equation of motion at 

this instant is as 

m 
dV 

=M 
AS -9. E! PJ LV 

-jpA Ca (see Fuchs dt PS 2p V2 
's 

dt 
(1964, p70 

The first term on the right hand side is the not 

weight of the body in the fluid, The socond term is the. resistance 

due to the energy expended in setting the medium itself in 

motion, which is the resistance of an ideal fluid to the . It 

accelerated motion of a body ( Fuchs 1964, P70). The third term 

is the drag expierienced, by the body at this velo6ity IVI. 

I 
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Re-arranging the equation 

m(i p-f ) i-v 
=mp, - -g-jp2 

dt PS fvA0b 

dV 
=2( pj -N Ps Pi. A C., V2 dt 2 ps + p.; 2 pjs + P4 m 

= F2 _k2v2 

Where F2 = 
2-( Pf 

2 
.s+ 

P4 

and k2__ _p! g p+ A 
2 ps + p.,. m 

C: o 

Now C:, is a function of IV. But in order to 

solve this equation, a simplified assumption is made by making 

C, 
>a constant. As V increases from zero, C1, will decrease* Hencel 

if the value of q.,, at the terminal velocity is used, the value 

for k2 would be smaller than its actual value. As will be seen 

later, this will correspond to a higher estimate of the fall 

distance required to attain terminal velocity* If the distance 

as got from these calculations are allowed, then the body 

would definitely be falling with its terminal velocitys Honce 

the above assumption is justified in the context of the presont 

problem. 

Thus the equation could be written as 

._ 
dV k2 dt 

(F C) 
2_ 2 

rv 
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solving for IV# with the boundary condition that 

at t=O, V=O 

we get 

V=C tanh (Ck2t) where C= FA 

This shows that IV' increases with t, reaching the terminal 

velocity V0 as t --> 00 

hence C= V 
0 

giving V=V0 tanh (V0k2t) 000004-900(1) 

The distance Ixt traversed beforo attaininjý the volocity"VI is 

V tanh Vk2t) dt 

1 1,2 t log Cosh V 
e10 

to attain 99.9% of the terminal velocity 

V0k2t=3.8 from result (1) 

go o 

Hence the distance tjkversed in this time from result (2) is 0, 

X0 =1aX3.1 
k 
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The largest value for x0 for a perticular liquid 

is estimated by choosing the parameters which gives the smallest 

value for k 

For the three cases of bodies considered 

(1) spheres, (2) discss (3) cylinders, the following tables 

give the maramum distance that has to be allowed for a body to 

attain 99.5% of the terminal velocity when falling in (1) water, 

(2) 20016 sugar soulution at 200C, and (3) liquid paraffin at 100 0 

Case 1 sphere k2 P± 
- 

2-0 
2 ps + P,, r 

Liquid Max, Re CZ k2 X0 CM& 

Water 103 0,5 0,22 15 

Sugar solution 150 1 o, 47 6.5 

Liquid paraffin 20 2.5 1.02 3. o 
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Case 2 discs k2=. 2p 
Pf CD T= thickness of disc) 

.s+ 
p4_ -T 

Liquid Max, Re CI k2 xo Cmq' 

Water 103 1.5 4,5 0,7 

Sugar solution 300 1.5 4,5 Oo7 

Liquid paraffin 

I 

10 4, o 101 3*0 

Case 3 Cylinder k22 
P+ C2ý 

IT 2p+P. ý. r S 

Liquid Max. Re cl k2 x0 Cris 

Water 103 100 0.58 5e5 

Sugar solution 150 100 0*58 5*5 

Liquid paraffin 

1 

5 

-- --- I 

5.0 log 1,7 

- -1 

* High value of x0 for liquid paraffin was bDcause much thicker 

discs were used with this liquid than with the other two. 
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in a viscous fluid 
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The sedimentation of small clusters of uniform spheres, falling freely through 
a viscous liquid, has been studied with Reynolds numbers (based on diameter 
of the sphere and its velocity of free fall in the unbounded fluid) of individual 
spheres ranging from 10-4 to 10. The fall velocity of a cluster is, in all cases, 
greater than that of individual spheres, the more so when the spheres are closer 
together. Two spheres falling side-by-side rotate inwards and separate as they 
fall if Be > 0-05, but no rotation nor separation is observed for Be < 0-03. 
When equal-sized spheres of Re >1 fall vertically one behind the other, the rear 
sphere is accelerated into the wake of the leader, rotates round it and separates 
from it when the line of centres is horizontal. If two spheres of unequal size but 
the same individual terminal velocity fall together, the smaller always travels 
faster than the larger. When three similar equally spaced spheres are dropped 
in a horizontal line, they interchange positions but do not separate when 
0-06 < Re < 0-16. But, if 0-16 < Be < 3, one sphere is always left behind; 
which sphere depends critically upon the initial spacings. If three to six equal 
spheres, of 0-06 < Re < 7, start falling as a compact cluster, they eventually 
draw level and arrange themselves in the same horizontal plane at the vertices 
of a regular polygon. The polygon expands at a decreasing rate during fall. When 
three spheres are arranged initially in a horizontal isosceles triangle, the spheres 
oscillate about their equilibrium positions but eventually the spheres form a 
stable equilateral triangle. If Be > 7, or the cluster contains 7 or more equal 
spheres, it shows no tendency to form a regular polygon but breaks up into two or 
more groups. A regular heptagon, and a hexagon with an additional sphere at 
its centre, are also unstable. 

1. Introduction 
The fall of single spheres and the sedimentation of a uniform suspension of 

many particles in a viscous medium have been studied extensively but the 
intermediate case of a falling cluster containing only a few Spheres has apparently 
received little atteDtion. 
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The behaviour of a pair of spheres of very low Reynolds number failing in 
close proximity through a viscous fluid was first treated theoretically by Smolu. 
chowski (1911,1912) by a method which is equivalent to superimposing the 
motion produced by the two spheres in isolation. He calculated the first terms in 
an expansion in powers of als, the radius of the sphere divided by the separation 
between centres, and his result is valid only for small values of this ratio. By 
introducing terms to satisfy the boundary conditions on one sphere and then on 
the other, the drag can be found by iteration to any degree of accuracy. This 
was done by Fax6n (1925) who found the drag for two spheres moving along their 
line of centres by including terms of up to (al8)5. Stimson & Jeffery (192r)) 
also solved this problem for two spheres falling one behind the other where 
there is axial symmetry. Kynch (1959) extended the analysis to include higher 
powers of als and to facilitate closer comparison with experiments for small 
separations. He also treated the case of unequal spheres. Hocking (1958) has 
expressed the drag for two spheres falling in line, either one behind the other, or 
side-by-side, as a series in a18 to as high a degree as required, and has evaluated 
the drag as a function of separation by retaining terms of up to (a/, 9)7. 

The main predictions of these workers may be summarized as follows. 
(i) Pairs of spheres always fall faster under gravity than do single spheres 

falling alone. 
(ii) This enhancement in the rate of fall is more marked when the spheres 

are close together. 
(iii) Pairs of equal spheres falling together maintain a constant separation and 

orientation. 
(iv) The members of a pair fall vertically only if the line joining their centres 

is either vertical or horizontal. Otherwise their velocity has a Component in a 
downward sense along the line joining their centres. 

(v) If two spheres of unequal size but having the same individual terminal 
velocity fall together, the smaller will always move faster than the larger. 

Eveson, Hall & Ward (1959) claimed to have verified the first four of these 
predictions and also to have shown that the spheres fall without rotation but, 
after the publication of some observations by Matthews & Smith (1960), Eveson 
(1960) reported having observed a slow rotation with a pair of falling spheres. 

Since the behaviour of more than two spheres falling under the influence of both viscous and inertial forces appears to defy detailed mathematical analysis, 
it was decided to carry out some simple experiments with spheres falling through 
a viscous liquid. Accordingly, observations were made with spheres having 
individual Reynolds numbers (based on sphere diameter and velocity of free 
fall) ranging from 10-4 to 10. The lower values allow one to test the theories based 
on the total neglect of inertial forces while the higher values of Re extend into 
r6gimes where both viscous and inertial terms are significant. 

2. Experimental method 
Experiments were conducted atPortoninaPerspextank, 20cm x 20cm x go cm deep, containing castor oil (density O-97gem-3 at 20'Q. The tank was surrounded 

by a thermostatically controlled lagged cabinet provided with glass windows and 
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this cabinet was itself contained in another thermostatically controlled chamber. 
In this way, the temperature of the liquid could be held constant to within 
± 0-01 *C for several hours and no convection currentswere ever detected, Spheres 
of steel (density 7-8geM-3), aluminium (2-7gcm-3), bakelite (1-3gem-3), 
ebonite (1-2gcm-3) and Perspex (1-19gcm-3) ranging in diameter from 0-03 to 
12-5cm were used. Suitable choices of sphere size and density, and of liquid 
density and viscosity, enabled observations to be made of spheres with Reynolds 
numbers ranging from about 10-4 to 10. 

The Imperial College experiments were carried out in a glass tank 30 em 
x 30 cm x 60 cm deep containing liquid paraffin (density 0.88 g CM-3 at 20 *C). 

This tank was chosen after several tests with larger and smaller tanks showed 
that there were no undesirable wall effects with a tank of this convenient size. 
Spheres of polyethylene (0-98gcm-3), polystyrene (1-05gCM-3) , nylon (1 - 14 g 
cm-3) and Perspex (I - 19 g cm-3) ranging from J in. to I in. at intervals of ?W in. 
were used. The Reynolds number for a constant geometry could be varied by 
heating or cooling the paraffin and thereby changing its kinematic viscosity 
which varied from 88 cS at 36 "C to 340 cS at 15 'C. With this arrangement it was 
possible to work with spheres of Reynolds number, defined as ud/p, d being the 
diameter of the sphere, u its terminal velocity in an infinite medium and P 
the kinematic viscosity of the fluid, ranging from < 0-01 to 10. 

Two methods of releasing a small cluster of spheres were used. The first, 
designed to produce a close but random arrangement of spheres, employed a 
I in. thick aluminium disk which rotated in the horizontal plane over, and almost 
in contact with, a flat stationary plate over the centre of the tank. The disk 
contained a number of holes of various sizes and the required number of spheres 
was placed in whichever of the holes they most nearly filled to a height equal to 
its diameter. The disk was then rotated until the bole containing the spheres 
was brought close to the edge of a slot in the lower plate. The cluster was then 
released by rotating the disk rapidly through a small angle. The spheres fell 
about 2 cm before entering the liquid. This method greatly reduced the entrain- 
ment of air bubbles in the cluster; in any case, clusters containing bubbles 
were not used. 

In the second method, the spheres were held by suction in holes drilled in a 
flat plate. The plate was suspended just below the surface of the liquid and the 
spheres fell away immediately the partial vacuum was released. This method 
enables coplanar clusters of known geometry and spacing to be produced. 

3. Sedimentation of a pair of spheres 
(a) Equal-sized spheres falling 8ide-by-8ide 

Over the whole range of Reynolds numbers, the rate of fall of both spheres is 
greater, in all cases, than that of either sphere falling individually, and this 
enhancement in speed of fall is greater when the spheres are close together. 

For Be < 0-03, the spheres show no tendency to separate or to rotate but for 
Be > 0-05, each sphere rotates inwards (in the sense shown in figure 2, plate 1) 
about a horizontal axis through its centre and normal to the line of centres. The 
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rate of rotation increases with increasing Reynolds number but decreases as the 
spheres separate. The rotation continues until the separation reaches a maxi- 
mum limiting value, which is a decreasing function of the Reynolds number 
as shown in figure 1, and ceases when the separation exceeds this value. Figure 2, 
plate 1, shows the rotation and separation of a pair of half-painted Perspex 
spheres (d = ý, in., Be = 0-1) falling through castor oil and photographed at 
intervals of 2 sec. 

(b) Equal-8ized spherm falling vertically one behind the other 
When Re > 1, the rear sphere becomes accelerated in the wake of the front sphere 
and tends to overtake it. When Be exceeds 4 this acceleration is already notice- 
able when the spheres are ten diameters apart. At large distances apart the 

Reynolds number, Re 

Fi(; unE 1. The maximum limiting separation x. of two equal spheres falling 
side-by-side as a function of Reynolds number. d= diameter of sphere. 

velocity of approach varies inversely as the separation as shown theoretically 
by Goldstein (1929) and Pearcey & McHugh (1955), but settles down to a nearly 
constant value at small separations-see figure 3. The relative velocity oJI ap_ 
parent impact is about one-half the terminal velocity of an individual sphere. 
Until this stage neither sphere rotates but, now, the rear sphere slides round the 
leader and, when the line of centres becomes horizontal, the spheres separate, 
rotate in opposite directions, and continue to diverge laterally as they fall just 
as in (a). 

(c) Two equal 8pheres with line of centre8 inclined to horizontal 
A pair of equal spheres, each with Re >1 and initially in different horizontal 
planes, appear to slide along the line of centres as well as falling vertically. They 
tend to occupy the same horizontal plane, and, having done so, remain like this 
but diverge laterally at a steadily decreasing rate. 

12 10 11 12 13 14 15 
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(d) Pairs composed of unequal-sized spheres having the 
same individual terminal velocity 

By adjusting the temperature of the castor oil an 8 mm ebonite sphere was made 
to fall at the same terminal velocity as a 1-58 mm, steel sphere, and a 24- 63 mm 
Perspex sphere to fall at the same velocity as a 3-97 mm. steel sphere. In both 
cases, the smaller sphere of the pair always fell more rapidly than the larger, just 
as predicted by Kynch (1959), and this result was made unambiguous by adjust- 
ing the temperature of the liquid so that the larger sphere had a slightly higher 
terminal velocity. 

I 
C. ) 

4-0 

3-5 

3-0 

2-5 

2-0 

1-5 

1.0 

0-5 

u= 10-0 cm/sec 

7i 
4-75 7-5 

63 

a18 

FiGuRE 3. The relative velocity of approach, V, for two equal spheres falling one behind 
the other, plotted as a function of a18 for various values of the Reynolds number. u is 
the terminal velocity of an individual sphere, a its radius, and 8 the vertical separation 
of the two spheres. -, at 88 cS; ----, at 140 cS. 

The relative motion of the two spheres, with Re 0-3 and 1-8, is shown in 
figure 4. This shows the successive positions of the smaller sphere relative to tile 
larger as obtained from a series of photographs taken at regular intervals. The 
left-hand picture shows the smaller sphere being accelerated into the wake of the 
larger, colliding with it, roiling round it, and then separating from it. In the 
right-hand picture, the smaller sphere is first attracted towards the larger but, 
on coming level with it, is repelled by it. Both spheres showed rotation which 
increased as the spheres approached each other and died away as they separated. 

4. Equal-sized spheres released in a horizontal straight line 
(a) 0-06 < Be < 0-16 

When three spheres, initially in contact or equally spaced within 6 diameters, 
are released in a horizontal straight line, the centre sphere moves slightly ahead, 
one of the laggards then moves between the other two, and the third (now trailing) 

0-02 0-04 0-06 0-08 0-10 0-12 0-14 0-16 0-18 0-20 0-22 0-24 0-26 0-28 0-30 
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passes between the other two. This interchanging of positions continues through- 
out the fall, but the spheres keep close together and do not separate. The sphere 
temporarily in the lead stops rotating. If the spheres are not equally spaced 
initially, one sphere is always left behind. If the spheres be numbered and sepa- 
rated as (1) <- a -* (2) <- b --> 

which sphere is left behind depends critically upon the ratio bla as follows: 

bla 

sphere left behind 
1-17 1-20-1-33 1-33-1-40 1-50 1-60-2-0 > 2-0 

2 3 3 

For b/a < 2, one sphere is left behind after one or two interchanges of position, 
but if bla > 2, sphere 3 is left behind from the start. 

Two slightly separated pairs initially in a horizontal straight line diverge 
as they fall, each pair rotating as a doublet. Ultimately the members of a 
pair separate. With five or six spheres the outer ones move out, re-enter the 
cluster from the rear, and cause it to break up. 

(b) 0-16 < Re <3 
If between three and six contacting spheres are released in a straight line 
they separate and eventually form a regular polygon, all the spheres lying in the 
same horizontal plane. 

(c) Re >3 
The polygon is not regular and progressively breaks down as the Reynolds num- 
ber is increased until, with Re > 7, the spheres appear to repel each other and 
separate but show no tendency to form a polygon. 

5. Clusters of 3 to 6 equal spheres 
0-06 < Be <7 

When three to six equal spheres, starting as a compact cluster, fall together we 
observe that: 

(i) Their speed of fall is greater than that of a single sphere. 
(ii) This enhancement of the rate of fall is greater the more compact the 

cluster. 
(iii) Even if the spheres are initially staggered by a few diameters they 

eventually draw level and ultimately arrange themselves in the same plane at 
the vertices of a regular polygon; see figure 5, plate 2. 

(iv) The polygon expands slowly and at a decreasing rate during fan. 
(v) When three spheres are arranged initially in a horizontal isosceles triangle 

the apex sphere oscillates in a decreasing vertical spiral relative to the other 
two, which execute linear oscillations along the horizontal line of centres and 
move apart as the apex sphere moves towards them. These oscillations gradually 
die out and the three spheres form a stable equilateral triangle. During the forma- 
tion of 4-, 5-, or 6-sided polygons the individual spheres again oscillate about their 
equilibrium positions but eventually achieve a stable, regular configuration. 
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(vi) The final configuration is achieved more slowly with a larger number 
of more widely separated spheres. 

(vii) During the early life of the polygon each sphere rotates inwards about a 
horizontal axis that is normal to a line joining the centre of the sphere to the 
centre of the polygon. 
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FIGURE 4. Relative motion of two unequal-sized spheres having the same terminal velocity. 
The diagram shows the position of the smaller sphere at equal intervals of time for two 
distinct cases. 

(viii) When the separation of the spheres exceeds a certain value (about 
6 diameters at Re =I and 3 diameters at Re : -- 7), rotation ceases but separation 
continues. Regular polygons are not formed if the initial separation of the spheres 
exceeds the critical distance. 

(ix) If the spheres composing a cluster are arranged asymmetrically the 
densest portion of the cluster travels fastest. This causes a tilting of the cluster 
which then appears to slide as a whole along the line of tilt. 

Re < 0-06 
The spheres tend to follow their initial configuration but fall faster than isolated 
spheres. They show no tendency to form a regular polygon and even if released 
in such a pattern they are susceptible to small perturbations. 

Re >7 
The spheres of a cluster separate quickly with a sudden onset of rotation, but 
this soon ceases, and there is no tendency to form regular polygons. 
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6. Clusters containing more than six spheres 
A compact cluster containing 7 or more equal spheres shows no tendency to 

form a regular polygon but tends to break up into two or more groups. A cluster 
arranged initially at the apices of a regular heptagon is unstable. For Re < 0.1 
the heptagon becomes distorted and for larger values of Be it breaks up during 
fall. If an additional sphere is placed at the centre of a regular hexagon it moves 
ahead and to one side. The hexagon then tilts towards this sphere which re- 
enters the hexagon from the rear and causes it to break up. 

Figures 2 and 4 are Crown Copyright Reserved and are published by permis- 
sion of H. M. Stationery Office. 
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5. Chvýwrs of' :1 to G "'phercs, with ()-m; < Re < 
the saine horizontal plane at the vertices of regular polygons. Clusters of 7 or 8 splieres- 
fail to form regii1ar configurations. 
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