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ABSTRACT

The equations describing the flexural. vibrations

of a number of configurations of laminated beams, incor-

porating elastic and viscoelastic laminates, have been

derived.	 Solutions for vibration response have been

obtained for the laminated beams, subjected to harmonic

excitations and damping action due to strains in visco-

elastic layers in each system is evaluated. 	 In general,

the solutions are limited to beams with simply supported

end conditions, though for the 3 layered configuration,

the procedure is outlined for other end conditions also.

The theory given for the 3 layered case is applicable

to any unsymmetrical configuration, without limitation

on the frequency range of application.	 Detailed analysis

of this configuration includes determining the solutions

for displacement and stress responses, studying the

influence of various geometrical and physical parameters

on vibration damping effectiveness of the system, beha-

viour at high frequencies and the effect of non-linearity

due to amplitude dependence of viscoelastic material, pro-

perties.	 Other configurations, with higher number of

layers have been analysed, the viscoelastic layers being

placed alternately or adjacently.	 The .quations of

each system have been programmed on the Atlas digital

computer for computations based on the theoretical an lyi



The effect of important parameters has been investigated

and the applicability of each configuration determined

from point of view of increased damping and improved fre-

quency response of the system.

Vibration response tests have been carried out on

a few samples of laminated beams, in order to verify the

results obtained theoretically.	 Experimental work has

also been done to determine the dynamic properties in

shear, of a few viscoelastic materials, including those

used in making the laminated beams for vibration response

tests.
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Terminology

= Thickness of layer 'i'.

Young's modulus of layer 'i'

(in-phase component for a viscoelastic layer)

Quadrature component of Young's modulus for

viscoelastic layer 'i'.

Shear modulus of layer 'i'

(in-phase component for a viscoelastic layer).

- Quadrature component of shear modulus for

viscoelastic layer 'i'.

Length of the beam.

e Width of the beam.

Mass density of layer 'i' per unit volume.

= Mass density of sandwich, per unit length.

Ii	 Modal number.

p	 Circular frequency, radians/second.

= Material loss factor of layer 'i' in shear.

= Material loss factor of layer '1' in direct

strain.

Sandwich loss factor or system loss factor.

t	 - Time variable.

x	 Space variable in beam longitudinal direction.

z	 - Space variable in beam transverse direction.

= Differentiation with respect to 'x'.

Differentiation with respect to 't'.



12

u	 = longitudinal displacement.

ii.	 Longitudinal displacement in 11ier t'e

w	 = Transverse displacement.

Wi 	- Transverse displacement in layer 'L

- Flexural angle.

Angles of rotation of the normdl. to

and	 section, in different layers, as indicated

in various configurations.

k.	 = Shear coefficient of layer 'i'.

y	 Shear strain in layer 'i'.

v i	Poisson's ratio of layer 'i'.

E-

Z.	 =	 \71E1/(1-l12).

f(x)	 Intensity of dynamic loading.

x0	- Amplitude of harmonic vibration of beam ends.

DRE	 Displacement response effectiveness.

SRE	 - Stress response effectiveness.

E/E
J .p	 j p

0	 - t./t
J .p	 J p

-	 / Et (1)	 - Shear parameter.

:L.J	 1 j

Gp	 2	 = Shear parameter as used

(	
)2(flJt 2

3 1 3	 t	 in section III. \

(Ar)
S	 -	 = Shear factor for minimizing

t
3 3 L'	 peak displacement response.
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U 2
pp

y	 Frequency factor for minimizing
(*)4 

E tt	 3 3	 peak displacement response.

K	 Generalized dynamic rigidity of sandwich.

= Generalized ilynamic rigidity of reference

system.

k	 K,

and	 Young's modulus and thickness respectively,, of

t 5	 the solid reference system.

a1
Qi	=

nth. mode frequency.

= Ratio of amplitude of relative transverse

motion (with repect to ends) of middle of

the beam, to the motion of the ends.

Ratio of amplitude of absolute transverse

motion of middle of' the beam, to the motion

of the ends.

= Relative transverse motion (with respect to

ends) of any point on the beam, at any instant.

= Absolute transverse motion of any point on

the beam, at any instant.

Amplitude of motion wA.

= Amplitude of motion

0R	 Phase difference between WRand beam end motion.

= Phase difference between	 and beam end

motion.
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i) Remaining notations denoting various algebraic

expressions, are given in individual Chapters.

ii) In a 3 layered sandwich beam, the middle layer has

been referred to as the 'core and the outer layers

as the 'faces.
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CHAPTER I:

l.A.	 INTRODUCTION:

Conventional approach for controlling vibrations in

mechanical systems has been to avoid resonance, due to

coincidence of excitation frequency and any natural fre-

quency of the system. This is usually achieved by

changing the mass or stiffness of' the system. 	 Some other

methods include use of tuned vibration absorber to change

the natural frequency, reducing level of excitation at

the source by proper balancing etc. These approaches

are no longer of any practical use when vibration exci-

tations occur over a wide frequency range, as in aircraft

and missile practice, motor car etc.	 In addition, the

trend towards light weight, high performance systems

requires the obvious use of damping, to control resonant

response, which might otherwise result in structural

fatigue failure, equipment malfunctioning, noise radiation

and discomfort.

The materials of the structures usually chosen from

point of view of strength and rigidity are in practice

not found to have appreciable internal damping. A

bibliography of various techniques for damping is given

in [1 - 3].'	 Apart from material damping, damping occurs

* Numbers enclosed in brackets [ 3 are the numbers of
references, given at the end.
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.

in structures at contact surfaces due to interfacial

slip [2] or it may be introduced at supports of beams

and plates by using viscoelastic adhesive at the inter-

faces 1k), the axial and rotational motion at the joint

dissipating energy in the viacoelastic material. 	 None

of these methods gives high damping, which would be

required in intense noise and vibration environments,

However, the use of laminated .tructu.rea, involving

elastic and viscoelastic layers offers a useful promise. In

these structures, the energy dissipation occurs in

viscoelastic layers due to their shear and/or direct

strains.

Laminated (or sandwich) structures incorporating

viscoelastic layers are finding practical applications

[5-8).	 In t5) an instance 18 given regarding the use

of laminated construction in design of a circular bulk..
head for a missil, and its mountings. 	 Other examples

include circuit boards and mounting platforms for elec-

tronic instruments.	 Commercially, damping tapes [6]

are available for application on a solid structure,

required to be damped. These are composed of a stiff

metal, foil and a thin layer of viscoelastic adhesive.

Structural sections have also been damped by the use of

viscoelastic layers [8). The development of plastics

for use as viscoelastic laminates is a useful step in

this direction.
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Vibration response analysis of structures, having

any number of elastic and viscoelastic layers bonded

together, is thus desirable. 	 Since flexural vibrations

of beams and plates result in large displacement and

stress responses, it is nce8sary to carry out analysis

under these conditions. Equations of motion and

expressions for boundary conditions for various end

conditions for multilayered configurations are required

for resoijant response and wave propagation studies.

From the solution, it is desired to know the influence

of various geometrical and physical parameters of the

laminated structure, on damping effectiveness. 	 In

addition to dynamic considerations of' high damping over

a broad frequency range, static stiffness of the system

also usually has an important influence, at design stage.

Previous studies of a three layered unsymmetrical sand-

wich configuration have been limited in scope and appli-

cation.	 Analysis of such a configuration, without

restrictions on the relative properties of various layers

and meant for general application at both low and high

modes of vibrations in structures, has not been reported.

It is also necessary to carry out analysis of other un-

symmetrical sandwich configurations, with higher number

of layers, the viscoelastic layers being placed alter-

nately or adjacently.
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The properties of viscoelastic materials are known

to depend upon the frequency, temperature and strain

amplitude. This causes complications not only in

theoretical analysis but also in the choice of visco-

elastic materials for a specific need.	 The stress-strain

laws for viacoelastic materials are known from the theory

of viscoelasticity.	 For a linear viscoelastic material,

there are various methods of specifying the properties,

namely by using complex modulus, creep function 1 stress

relaxation function, differential operator form or

representing the stress strain relations by a hypotheti-

cal model, composed of an array of springs and dashpots

etc.	 All these forms can be related to one another

(9-12).	 For €inusoidal vibration conditions, the com-

plex modulus is a useful way of expressing the dynamic

properties of viscoelastic materials, e.g. complex

modulus in shear may be expressed as

G	 Gj+iGzGi(1+i11)

where G1 and	 are the elastic (or inphase) and loss

(or quadrature) parts respectively.	 Gj1/Gj is the

material losa factor.	 A similar terminology is used

for corresponding modulus, under direct strain conditions.

In practice, G 1, and	 are dependent upon frequency,

temperature and strain. For a given frequency and

temperature, their appropriate values may be used in
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linear theory.	 However, inclusion of strain effect

in a system makes the problem a non-linear one.
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I.B: LITERATURE SURVEY:

At first, a review of work done on the vibrations

of sandwich structures, made up of elastic layers only

will be given. Later, work on damped sandwich con-

figurations will be reviewed.

Enough work has been reported on the static analysis

(bending and buckling) of sandwich structures, review of

which is available in [1 Li17].	 Work on the dynamic

analysis of such structures has been reported only re-

cently. A complete survey may be found in [15].

Kimel et al (18] and Raville et al [19] have deter-

mined natural frequencies of vibrations of 3 layered

sandwich beams with simply supported and fixed ends

respectively and verified the theoretical results experi-

mentally.	 The faces (i.e. outer layers) used are thin

compared to the core (i.e. middle layer), which is

assumed to take up shear only. 	 n-Yuan Yu [O,21] gave

an accurate theory for 3 layered elastic symmetrical

sandwich (both faces being similar). 	 There is no res-

triction on the ratio of face to core parameters and

all inertia terms are included. 	 In [22], using above

mentioned theory, natural frequencies of vibrations of

infinite and simply supported plates are determined and

in [2 1i], it is indicated how forced flexural vibrations

of sandwich plates may be analysed for time dependent
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boundary conditions.	 In £23], the equations are
reduced to simplified form, for cases involving thin

faces and low frequencies.	 The theory is later [25]

extended to take into account the geometrical non-

linearity, i.e. for large displacements.

Frankland [26], in a discussion to ork by Yi-Yuan

Yu points out the need for high frequency analysis of

sandwich structures. The thickness shear and stretch

modes, which normally occur at very high frequencies

for homogeneous plates, may occur at lower frequencies

for sandwich plates and might cause coupling with simple

forms of extensional and flexura]. vibrations. 	 Bolotin

[27] has derived equations for vibrations of elastic

rigid and soft laminates arranged alternately, taking

into account only the shear effect in soft lan1Pinates and

bending in rigid laminates. Tangential inertia terms

are neglected and free vibrations are analysed.	 Chang

and F6ng [28] and Bieniek and Freudenthal [29] have de-

rived the equations of motion of a conventloanal 3

layered sandwich plate, with faces taken as thin compared

to the core, in order to carry out frequency response

analysis.	 In [28], the faces are takQn as membranes

only and not assumed to take bending and shearing.

Various families of modes, including those which are pre-

dominantly of flexural or shear types are discussed.



In [29], it is indicated how material damping for various

layers may be taken account of by using complex moduli,

in place of elastic ones, taking the damping as frequency

and amplitude independent.

The work on viscoelastic damping of structures

appears to have started with the work of Oberst [30:1

and Lie'nard [31].	 The configuration analysed is a

2-layered one, obtained by applying a layer of visco-

elastic damping material to a metal plate. 	 This is

known as unconstrained or extensional damping treatment

and the damping is due to direct strains induced in the

viscoelastic layer, as the plate bends.	 Experimental

work on this type of damping was also reported by Itter-

beck and Nyncke [32), who used a thin layer of bitumen

emulsion containing Schist powder on steel plates and

measured the damping in a temperature range of -200C

to 80°c.	 Further theoretical and experimental work by

Oberst, Lie'nard and Nead [33] showed that damping

depends upon the stiffness and loss factor of the visco-

elastic material and its thickness. 	 A review of this

work is given in [2 and 59].	 Schwarzl [34] pointed out

that in an arbitrary 2 layered beam, flexural and

extensional vibrations are coupled and analysed the

forced vibrations of such a beam, both layers being

viscoelastic and having different damping properties.
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Work on the development of viscoelastic materials, to

fulfil the requirements for high damping, has also been

reported t35).

A 3 layered sandwich configuration, in which the

middle layer i.e. the core is viscoelastic is known as

constrained layer configuration. 	 In this case, shear-

ing motion is predominant in the core and is responsible

for the damping action as the structure vibrates in

bending.	 Plass [36) analysed such a configuration, in

which both the faces were considered very thin (only
the

membranes) and shear effect m Acore was included. 	 A

stress strain law for linear viscoelastjc material,

corresponding to a 3 element model was used for the core,

and decay of free vibrations of the structure was

analysed.

kerwin [37) analysed the damping of vibrations of

a 3 layered configuration, with different faces, due

to shear motion of the vi.scoelastic core. 	 The results

are applicable to cases where loss factor of the material

of the core is small and bending stiffness of one of

the faces is small with respect to that of the other

face.	 Later, general analysis was given in [38,39,60],
which includes both shear and extensional damping effect.

Expressions for loss factor of the system are given and

optimised with respect to various parameter [60].
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Shear damping is shown to depend on the mode of vibra-

tion. The results are given for the case when exten-

sional stiffness of core and that of one of the faces

are less than the stiffness of the third layer. 	 The

loss factor of the system is taken as the ratio of

imaginary to real part of complex stiffness of the system.

The expression for complex stiffness is obtained by firstly

regarding all layers as elastic, determining the neutral

axis by elastic analysis and taking moments about the

neutral axis.	 Later, the moduli of viscoel.astic layers

are changed to complex values.	 Actually1 in an arbi-

trary 3 layered plate, involving viscoelastic laminates,

there is no fixed fibre which remains unstrained at

all instants, in a similar way to an arbitrary 2-layered

configuration analysed by Schwarzl [34]. 	 So, the

dynamic analysis of any arbitrary 3 layered sandwich

involves consideration of coupled extensional and bend-

ing vibrations.	 Such equations are not derived in

[37-39,60] and no response studies are given.

The relation between natural frequency and wave

number of vibration, assumed in [60] is valid only for

a solid beam and not for a laminated beam. Although the

error involved due to this. may be small for taped struc-

tures, such a relation cannot be used for sandwich

structures.	 Further, the analysis in [6oJ involves an
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assumption regarding the stress strain relation for the

middle layer in terms of longitudinal force at middle of

one of the faces. Thi3il valid only when extensional

effect of the middle layer is neglected.	 However in (60),

this stress strain relation is employed even when the

extensional effect of core is included.	 In the above

mentioned analysis, all layers are assumed to experience

bending vibrations, with sinusoidal variation along length.
The effect of boundary conditions is discussed later in

[13), on the basis of energy dissipation near and away

from boundaries. Experimental work has also been carried

out on taped structures for determining system loss factor

but the properties of viscoelastic materials used are not

accurately known, as reported in (60] and thus a precise

verification of the theory is lacking.

It has been shown in [39 and 1*'t] that shear damping

in a 3 layered constrained configuration is more effective

and useful than the extensional damping in a 2-layered

unconstrained case. However, unconstrained configuration

is easier to achieve on an existing structure, analysis

is simple and the damping achieved is not dependent on

mode of vibration.	 But the viscoelastic material is ex-

I
posed in the unconstrained case and the environmental effect

due to humidity, chemicals etc. may be adverse.	 Also, to

achieve high damping, it may be necessary to use very thick

layers in practice in this case.
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The damping in both constrained and unconstrained

configurations may be increased by the use of a stiff

spacer between the plate to be damped and viscoelastic

layer, thus magnifying the shear motion of the latter

[41,42].	 The foregoing analysis of 3 layered case has

also been extended to multiple damping tapes [40) and

it was shown that use of multiple damping tapes on the

same side Of the plate to be damped, gives same damping

as a single tape with viscoelastic material thickness

same as in one of the tapes, but foil thickness equal

to sum of those of individual single tapes.	 An alter-

nate method of determining lose factors of composite

structures is given in [45 and 46], by defining the

loss factor in terms of energy concepts and the energy

storage aid dissipative mechanisms in the structure are

taken in accordance with those in arrays of viscoleasitc

springs.

Kurtze et al [53 and 54] have carried out analysis

of propagation of transverse waves and the effect of

damping in sandwich configuration. Whittier [47]

analysed theoretically and experimentally the case of

sinusoidal excitation of a sandwich cantilever, made up

of a thin layer of viscoelastic layer, a spacer, the

beam to be damped and a constraining cover, the object

being the evaluation of damping derived.	 The inertia

force terms are neglected, cover stiffness is assumqd
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much less than that of the beam to be damped and neutral

axis of the composite structure is taken at the centre

of the beam to be damped. 	 Also, the equations are

applicable only to a Cantilever. 	 Yi-Yuan Yu [48)

analysed free flextura]. vibrations of symmetrical sandwich

plates, taking complex moduli for each layer in the

equations derived by treating all layers as elastic, which

was done earlier [20).	 Log decrement was taken as the

measure of damping, taking the moduli as frequency in-

dependent.

Mead [49) pointiout that flexural loss factor is

not in itself a sufficient criterion for assessment of

damping effectiveness of any system, since damping treat-

ment changes the stiffness and the mass of the structure.

Since the resonant response of displacement, acceleration,

stresses etc. depends on stiffness and mass as well,

separate criteria are required for assessing reductions

of each of these responses. 	 These are derived for single

degree freedom system for harmonic and random displacement,

velocity, acceleration, inertia force and bending stress

responses t49].	 It is seen from [50 and 61] that reso-

nant response of a continuous system, in a normal mode,

is damping controlled in the same way as a lumped psi-a-

meter spring mass system. Thus, the various criteria

given in [49] are applicable to sandwich configurations.

These have been applied by Mead [51, 52] to a symmetrical
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8afldWich plate, with viscoelastic core.	 Equations of

motion have been derived for the sandwich plate, subjected

to harmonic excitation, taking account of direct stresses

in faces, shear stresses in core and transverse inertia

terms. The solution is obtained for simply supported

plate. The various damping effectiveness criteria have

been optimised and several design studies were reported.

Experimental work was done on symmetrical sandwich beams,

having thin and soft viscoelastic core, in order to deter-

mine dynamic stiffness and loss factor of the system for

a few modes under harmonic excitation, for comparisons

with theory.	 Some experiments were also done for random

vibrations.	 Like the experimental work of Ross, Ungar

and Kerwin [60), the dynamic properties of viscoelastic

materials used were not determined in separate tests but

were those supplied by the manufacturers.

Yildiza [57) has derived the equations for the two

dimensional case of a 3 layered plate, which correspond

to those of Kerwin [37] for one dimensional case. 	 No

solution or damping studies were given.

Experimental work on vibration damping of 3 layered

sandwich structures has been done by Ruzicka [55) and

Parfitt and Lambeth [56]. 	 In the former investigation,

no comparisons with any theoretical work were done, but

in the latter, comparisons with the theoretical work of

[60] ere done and a lot of discrepancy was observed for
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stiff damping layers.

Recently flexura]. vibrations of symmetrically arranged

multi-layered cantilevers, with elastic and vilcoelastic

layers occurring alternately, have been analysed t59].

The solution for displacement response for harmonic

excitation was obtained by solving equations of motion

by finite differences and was verified experimentally

by tests on 3 and 5 layered symmetrical cantilevers.

The properties of viscoelastic materials used, were

separately determined in shear test, taking into account

the effect of frequency, temperature and strain. 	 These

effects were allowed for in the solution.	 Design study

has also been reported on above mentioned configurations.

In a recent paper (58), a 3 layered beam with a soft

core has been analysed taking into account the effect of

shear in core and direct stresses in faces together with

the transverse inertia terms of the sandwich. 	 Complex

modulus is employed for the viscoelastic core in the

equations in order to study free vibrations i.e. to

determine natural frequency of vibration corresponding to

various modes and their decay, giving damping of the

system.	 It is indicated that the relation between loss

factor and natural frequency for a normal mode is inde-

pendent of boundary conditions but is dependent on geo-

metrical and physical properties of the layers. 	 No

formal solution appears in the paper but it is pointed



out that in order to evaluate damping 1 natural frequency

may first be calculated on a digital computer. 	 The

results are expected to correspond to those of [60] for

simply supported beams. 	 Strictly speaking, it is not

correct to use complex modulus for viscoelastic material

for analysing free vibrations 1 since complex modulus can

only be employed for sinusoidal excitation conditions

and free vibrations are not expected to be sinusoidal

in this case.	 The correct form of stress strain law to

be used in such a case is the operator form for linear

viscoelastic materials. 	 However, the conclusions re-

grading dependence of loss factor as discussed in [58)

should remain valid if studies are made under sinusoidal

excitation conditions, using complex modulus for visco-

elastic core and evaluating system damping loss factor

at the resonant frequency corresponding to each mode,

hich would be excited if generalized dynamic loading for

the mode is employed.

Some further examples on the erroneous use of complex

modulus for free vibrations, which are not sinusoidal,

have been pointed out in [62 - 64].	 The theory of

linear viscoelasticity is reasonably complete to find

applications and several problems have been solved in

viscoelastic continua mechanics. 	 Review of these appear

in [9, 64 - 68].
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I.0 SCOPE AND OUTLINE OF PRESENT WORK

It may be seen from Literature Survey given in

previous section that work on the vibration analysis of

laminated structures, with viscoelastic damping has so

far been restricted to a few types of configurations.

Derivation and solution of equations governing flexural

vibrations of an arbitrary 3 layered unsymmetrical beam

with viscoelastic core, without any restrictions on the

ratio of geometrical or physical parameters of the layers,

do not appear to have been done.	 Detailed dynamic

analysis of such a configuration, with a view to under-

standing the damping behaviour, is desirable.	 Also in

most cases up till now, the equations of motion have

been limited in application to low frequencies because

of neglect of axial and rotational inertia terms. The

effect of inclusion of these on the vibration analysis

of above mentioned configuration is not known.

Shear damping in a constrained treatment has been

found to be frequency dependent and is maximum only

under certain optimum conditions. These optimum con-

ditions change in practice due to excitations occurring

over a wide frequency range resulting in excitation of'

different modes and also due to change of viscoelastic

material properties with frequency and temperature.

The use of increased number of layers suitably arranged,



using different damping materials is expected to increase

damping over a wide frequency range. There is lack of

work on vibrations of laminated structures, with increased

number of layers. The various layers in a multilayered

configuration may be arranged either by placing the elastic

and viscoelastic layers to occur alternately or the

viscoelastic layers may be placed adjacent to each other,

being constrained by elastic layers. 	 The latter type

will be called a "multi-cored configuration".	 Vibration

analysis of multi-layered configurations, with parameters

of' any layer different from those of any other layer in

the arrangement, and the effect of various geometrical

and physical parameters is desirable.

The properties of viscoelastic materials are known

to be dependent on the strain amplitudes. 	 The effect

of this non-linearity on resonant response forlarge values

of strains, may be of importance and has been included

in very few cases, as cited in "Literature Survey".

Much of the experimental work done for verification

of theoretical work tends to be uncertain because of

lack of sufficiently accurate properties of viscoelastic

materials, which are dependett on frequency, temperature

and strain.	 It is necessary to take account of each

of these effects in comparison of theoretical and experi-

mental work of laminated structures.
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With above points in mind, the present work was

outlined, as given below.	 Chapter II deals with the

derivation of equations of flexural vibrations of a

three layered unsymmetrical beam, using energy principles.

In analysis I given in section II.C, the outer faces

are assumed to bend like Bernoulli-Euler beams, while

in analysis II given in II.D, there is no such restriction.

In both cases, shear and extensional effects of qore

and all inertia terms of the sandwich are included.

Thus, the equations are applicable for high frequencies

as well. The boundary conditions for various end con-

ditions are stated in terms of assumed displacements.

Series solutions for dynamic response are given for simply

supported end conditions and use of approximate varia-

tional methods is discussed for cases involving other

end conditions.

In Chapter III, effect of various geometrical and

physical parameters of a three layered configuration with

viscoelastic core, is determined oi the system damping,

displacement and stress response effectiveness of the

system.	 In addition, static stiffness is also deter-

mined for three layered unsymmetrical configuration, with
same total thickness but different face thickness ratios.

Comparisons are made between results of analysis I and

II and also with those obtained from results of other

authors.	 Influence of core extensional terms is determined.



Solutions for vibration response are obtained, with both

ends of simply supported sandwich beam subjected to

sinusoidal motion of same amplitude and phase and

resonance curves are plotted.	 Damping effectiveness

and resonant response studies are correlated in order

to determine the validity of the former studies.	 Effect

of axial and rotational inertia terms on dynamic response

is determined.	 Solution for an assumed non-linearity

in stress strain law, due to amplitude dependence, is

derived by approximate variational method.

Further multi-layered configurations analysed in

Chapter IV are five and seven layered unsymmetrical lamina-

ted beams, with elastic and viscoelastic layers arranged

alternately.	 Two types of multi-cored configurations

are analysed in Chapter V.	 In each case, the equations

of motion together with expressions for boundary conditions

for various end conditions are obtained and solutions for

dynamic response for beams with simply supported ends

are given.	 Effect of important system parameters is

studied in each case and applicability and usefulness of

each configuration are indicated.

Experimental work reported in Chapter yr deals with

measurement of dynamic properties, in shear, of a number

of viscoelastic materials and vibration response tests

on three layered unsymmetrical, five layer unsymmetrical
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and four layered double cored configurations. The

dynamic properties are measured for different' frequencies,

temperature and shear strain amplitudes.	 These are

used in theoretical computation of displacement response

of the layered configurations tested experimentally,

for comparison of theoretical and experimental results.

The vibration response tests on multi-layered beams were

carried out by subjecting both ends of simply supported

beatu to sinusoidal displacement excitation of same

amplitude and phase.	 At various frequencies, the dis-

placement response and phase of various locations on the

beams, were measured.	 Finally in Chapter vii, some

general conclusions and points for further iork are

discussed.
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CHAPTER II

3 LAYERED UNSYNMETRICAT BEAN -- EQUATIONS OF MOTION --

DERIVATION AND SOLUTION

I

II.A Introduction to procedure employed

The equations of flexural vibrations of a 3 layered

beam, all, the layers having different properties and

subjected to dynamic loading, with any distribution along

the length, are derived.	 The differential equations of

motion are derived from equilibrium considerations,

treating all layers as elastic, the stress-strain law

not involving any functions of the time variable (denoted

as the elastic case).	 These differential equations

may be used to obtain the governing equations for the

laminated beam, involving viacoelastic layers by using

the appropriate stress strain laws for t1he viscoelastic

layers, these laws involving functions of the time vari-

able (denoted as the viscoelastic case),	 Subsequently,

a solution to these governing equations may be deter-

mined.	 For sinusoidal excitations, however, it is

simpler to follow an alternative procedure for linear

viscoelastic materials, based on the correspondence

principle (9],	 Due to this, the solution for visco-

elastic case may be obtained from that for the corres-

ponding elastic case, by replacing the appropriate moduli
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of elasticity in the latter solution, by complex ones.

This procedure is followed in the present Chapter.

However for non-linear viscoelastic materials, the

stress strain law is used during the formulation itself

and the solution is determined later, as given in

Chapter III.

Assumptions made for the derivation of equations

of motion are discussed in section II.B.	 Two forms

of assumptions are used separately in Analysis I and

Analysis II which are given in sections LI.0 and II.D

respectively, for the 3 layered unsymmetrical case.

br the derivations, energy method (Hamilton's Principle)

has been employed.	 The same equations could be derived

by considering the equilibrium of forces and moments.

However, the former method i preferred because of a

number of reasons, notably

i) By minimization of energy integral, both differ-

ential equations of motion and boundary conditions are

obtainable for the given formulation.

ii) Itis easier to include or ignore effects like

bending, shearing etc. of any laminate, in a multilayered

case.

iii) If exact solution of the differential equations is

tedious in certain cases, an approximate solution may be

obtained by minimizing the energy integral itself approxi-
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mate].y, by variational methods, e.g. Ritz method etc.

II.B: Assumptions

II.B.1 : Assumptions for analysis I

The following assumptions have been mad. for deri-

ving the equations of motion in Analysis I given in

section II.C.

1) Both the faces I and 3 (Fig.II-la) are assumed to

bend according to Bernoulli-Euler's theory, i.e. the

transverse section of the layer, originally plane1

remains plane and normal to the longitudinal fibres of

the beam after bending.

2) At a section,the transverse displacement 'w' remains

constant, throughout the thickness of the beam.

3) The longitudinal displacements 'u' at ti transverse

section are assumed to vary as shown in Fig.Il-1(b).

The variation is linear across the thickness in each

layer, the slope being '' in each face but different in

the core.

*)	 All displacements are assumed small, as in linear

elasticity theory.

5) There is perfect continuity at the interfaces and

no slip occurs there while the beam is bending.

6) The viscoelastic material of the core is linear

i.e. its characteristics are strain independent.
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The influence of non-linearity will be introduced

in Chapter III later.

II.B.2	 Assumptions for analysis II

For analysis II given in section II.D, assumptions

4), 5) and 6) of analysis I discussed in section II.B.1,

hold.	 However, the remaining assumptions are as under:

The shear effect in each face has also been taken

into account. This effect is of importance for thick

faces and for high modes of vibrations.

ii) The equations derived do not assume a constant

transverse displacement at a transverse section, but it

is assumed to vary linearly through each layer thickness.

Although this assianption is involved when the equations

are derived, it is relaxed when the equations are used

in the present work.

iii) The longitudinal displacements are assumed to vary

across the thickness of the sandwich as shown in Fig.

11-1(c).	 In analysis I, the transverse section in

each face is assumed to rotate through an angle , the

flexural angle.	 However, in analysis II, such an angle

is assumed different for layer 1 and layer 3, being

in the former layer and u3 in the latter layer.

The assumptions made for analysis II are more general

than those for analysis I and the equations so derived

should be more accurate for any 3 layered configuration,
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each layer being quite different from the others.	 A

comparison of the results given by both the analyses

will be given in Chapter III.

11.13.3: Assumptions by other authors

The assumptions made by other authors, while analy-

sing sandwich structures under static or dynamic con-

ditions are as under:

In all cases, the transverse displacement 'w' is

assumed constant at a section. 	 Regarding longitudinal

displacements, the assumptions are different in each case.

Yu Yi Yuan 20 h treated the case of symmetrical face

sandwich (Fig.II-ld), ith face and core having any gen-

eral properties.

In a simplified version 23J, he derived the equa-

tions for a symmetrical sandwich plate, taking the faces

as membranes and not taking bending and shearing.	 A

plot of 'u' displacements across thickness, corresponding

to this is given in Fig.II-1(e). 	 In another simplified

case given in U23], be assumed the faces as thin mem-

branes, with the core assumed existing up to middle of

the faces.	 The same version was used by Hoff [16 and

17] for the static analysis of symmetrical sandwich

structures.	 In addition, the bending effect of faces

about their own axes was allowed for. 	 Chang and Fang

C 28) assumed the variation of 'u' displacements a shown



forces.

t2
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in Fig.II-1(f) and the faces were not assumed to take

any bending or shear. 	 The displacement patterns

assumed in t18 and 19] and 51] are similar to those

in Fig.TI-1(b).	 A detailed review of these references

has already been given in Chapter I.

II.C: Analysis I

II.C.1: Equations of motion - derivation

According to Hamilton's principle [79], the station-

ary value of functional w is equivalent to the equili-

brium problem, where
t

p	 (T-U+V) dt
ti

T is the kinetic energy of the system

U is the strain energy

and V is potential energy of time dependent

ith the assumed form of displacements, expressions for

strain energy, kinetic energy and potential energy will

be erived.	 The longitudinal displacements assumed

at a section are shown in FigII-2(a). 	 These are mea-

sured from a reference line, and vary across thickness

of each layer due to bending and shearing effects.



is-.	 5hat q.5I Y2.

43

FtRENC( LINE

(a.)
	

LJ+

-

	

I	 (

A
	

—I

CL

T
	 - 

_1_1••

	

-fl

(b)	 ____ ____

FIG.]I-a__
I



44

The transverse displacement at the section is w. The

formulation will be done in terms of displacements u1 , U3

and w.	 Using these it is possible to get the displacements

and strains of any fibre in the system. Under specified

conditions, solution of equations of motion will determine

the magnitude and signs of these displacements and hence

the position of neutral, axis of the sandwich. 	 The position

of neutral axis is left to be determined in any given case

from the solution to equations of motion, since its posi-

tion varies from instant to instant in the viscoelastic

case f 34].	 Subsequently, the equations derived in this

section for elastic case, will be converted to be used for

viscoelastic case.

The expression for y 2 , the shear strain in core i.e.

layer 2 will be written down, keeping in view the sign

convention as given in Fig.II-2(b).

'V' 2 =	 -

= (u _.!) - (u+.)
-t2

t +t___	 13-	
l3a wherea=t2+ 2-	 t2	 t2

-	
a

- w — (since fl.xuual angle 	 w')-	 t2	 t2

(11.2)

The total strain energy of the sandwich is the sum of membrane

energy of the faces, energy due to bending of the faces
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about their own axes, shear and extensional energy of

the core.

Strain energy contribution of face (i)
f.L on12 dx

f E1bt1 J	 ox

E1bt 13 L 2	 (Ii.j)

+ 24 OOx

Similarly, strain energy due to face (j)

- E3bt3 tan,2 dx
OOx

E bt	 rL (OW)2 dx+	 2 J0 
Ox2

Shear strain energy in core (2)

G2bt2k2	 y22dX

(".4)

(".5)

where 2 is given by equation (11.2)

and k2 is shear coefficient, due to non-unifrm

distribution of shear in layer 2.
t 2 L	 u' -u'	 2

Core Extensional Energy = bE2 J	 2f	 32 z2 ) dxdz

where ' denotes partial differentiation,

With respect to x, u 12 and u,2 are shown on Fig.II-2(a)

and z2 is a dusy coordinate in the core.

On simplifying	 LbEt
Core Extensional Energy	 2 

J (u +u;+u 2u;2) dx

(11.6)
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From Fig.II-2(a),
ti

U12 = U 1 - U

U32 = U3 + ' 2

(11.7)

After substituting eqn. 11.2 in eqn. 11.5 and eqn. 11.7

In e'n. 11.6, and adding up all the strain energy expres-

s ions ,

Total strain Energy 'U' of sandwich

= $ JuL UI_u, - w'	 + r1 J u 2dx + r3 J u 2 dx

L	 L
+ q1 ,f (w") 2dx + q3 $(wht)2dx

L	
W't21- c2 5 1uj2 +u 2+uu; + , (t12+t32-t1t3)

+uw"(..2. -t1)+uw"(t3- -fldx	 (11.8)

where a = bG2t2k2

b	 3q =	 Et

r	 = . E1t	 (i=i,3)

C2 = bE2t2/6

Now, kinetic energy due to longitudinal displacements in a

layer 'i', with middle displacement equal to u 1 and rotation

about middle = L, is given as1
L

btp1	
+	 z )20	 2	 i	 1	 dxdz1

-ti
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bP1	 —2 1J(i2	 '•	 t.'

2	 -j)dx (11.9)

is mass density of layer 'i per unit volume
t is thickness of layer Ii'.

Hence, total kinetic energy of sandwich, due to transverse

and longitudinal displacements
1L2	 r" bP	 . 2 -- 2 ___

0	 +	
j	 (u t +u.	 )dx2	 i i z 12 (11.10)

where P = b(P1t 1 ^ P 2t 2+ P3t3).

Now, Rotation	 =

From Fig.II-2(a)

Wotation 12 =
2

Displacement u2 of mid fibre of layer 2

u1+u,
=

t3+tl
where	 - 2

t:3_tl
1=	 tk

Substituting these in eqn. 11.10,

Total kinetic energy f ((,7) 2 , 
bP1t1	 2 bp3t3 

• 2 +

o	 2	 2	 3
T	

.2(1133	 bP2t U
w	 24	

2i 3
2	 2

+ bp2t2	
_• -j 3 

ii 'c2 ) 2 ]dx	 (11.11)

Potential energy 'V 1 due to forcing function of inten-

sity (per unit lenkth) f(x) t(t) as in Fig.II-2(c)
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L
= $ f(x) g(t) w dx (11.12)

Now, equations 11.8, 11.11 and 11.12 are to be substituted

in eqn. 11.1.

E 1uation 11.1 is

rt 2
J	 (bT-6U -6V) dt = 0ti

The variations of U, T and V will be done term by term,

in Appendix 1, where the details are given.	 On combining

the various terms, the equations of motion are obtained

as below, for arbitrary virtual displacements 6w, 6u 1 and

bu3 .	 Also, the end point conditions, i.e. the boundary

conditions are derived.

(2q+c*) w	 _2s(!)2	 + 2sa	 +s*	 2sa

2	 2

f(x)g(t)-p	 b[p2t2(C3'1 +e.,k ' )+"'	 (11.13)

2sa	 2s	 2s	 --	 w'-c	 w'''+ —2u1-u'(2r1+2c2)-	 2 3
t 22	 t2	 t2

U	 U

	

= -b [Piti•1;+P2t2(-_+ + . ?;2. + ' 'c)]	 (11.14)

____	 2s	 2s2sa W'—cw'''---2U1—C,2u	 2 u3-9(2r3+2c2)
t 2	t2	 2..	 a.u	 u
= -b c,t 3 i;+ 2t 2 ( ! + 31 + . ' c 4 )]	 (11.15)

where	 q =	 (E1t1 s- 3 t 3 )

	

=	 bE1t1
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r3 - 4b15t3

a 4G2bk2t2
bE2t2

02 =	 6

t 2+t 2_ 1 	 3	 13)c aC2	
2

c2 (	 -t1)

t
c2 (t,-	 -)

t ti

21 =

t +t
C	 = 11

2	 2
t

C, a	 12
2t3-t1

a	 12

___________	 2 P2t2 2£5 a	 12	 +p2t2C1 • 12	 2

p 1 , p2 , p 3 are the mass densities per unit volume

for layers 1, 2 and r.spectively.

p is mass density per unit length of the sandwich

a b(p1t1+p2t2+p3t3)

The boundary conditions for simple supported ends ars

waO
a 0	 (11.16)

n' 1 - u	 o

Shear co.fficient 'k2 ' will be determined in Section II.D.3.
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II.C.2 Solution for Simply Supported Beam - Elastic Case

Firstly, this will be determined for the elastic

case, i.e. when all layers are assumed as elastic.

Later, the solution for a 3 layered sandwich, with visco-

elastic core will be deduced from this in section II.C.3.

The dynamic response is required to be determined

for a loading of intensity f(x) sin pt.	 Assuming the

solution in the form of series

-p
nTCx	w =	 L sinpt

n=1
00

	= 	 nitxu cos	 sin pt
n=i In	

L

nitx

	

u =	 u cos	 sinpt
n=i 3n	 L

(11.17)

It can be seen that this assumed solution satisfies the

boundary conditions given in (11.16) and also reduces

the differential equations of motion (11.13) to (11.15),

to algebraic equations. Writing the loading 1(x) in

the form of series 1(x) =	 sin "" , substituting
n=1

eqn. (11.17) in (11.13) to (11.15) and simplification

gives

*w (h ) = fu £ +u gin 3	 3n 3	 n 3	 n

(11.18)u I -u3g1=whin I

U1	
2 + '13n 2 = Wu h2
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2s	 nIt 2 bpt1p2 - bp2t2p2where	 2 + 2Lri+c)(-t) -	 3t2

	2s - (lllt)2	 bp2t2p2
C	 *	 6t2

2sa
____ nit ()2 r- - C

2	

(lL)3 + 3L

:12 = c()2	 2s	 bp2t2p2
L	 2t 2	 S

2s ________g2 =	 2 + 2(r3+c)(!)2 - bp3t,p2 -	 22
t2

2sah2 = c()3 +	 2	
- bp2p2t2c4()

t2

3	 2sa nit= c**(i.) -
	 2	 bp2t2C3p2()
t2

2sa nit
=	

+c***()3	 b 2t2C4()p2

2

11t)4 + 25a2(nit)2 -h3 = (2q+c*)(j_	
2 Lt2

Elimination of u and u from equations (ii.ia) givesin	 3n

f3 (h1 g2-h2g1 )- g3(11h2^f2h1)	
(11.19)wthn 3

Equations (11.17) to (11.19) give the desired solution.

II.C.3 : Solution for simply supported beam, with visco-

elastic core

If the zore, i.e. layer 2, is viscoelas*ic, the



solution may be got for sinusoidal excitation conditions

by replacing the elastic moduli G 2 and E2 by complex

ones. Denoting loss factor in shear by 12 and that in

direct stress/strain conditions as 	 for layer 2, the

solution for viscoelastic case may be got by replacing

G2 by G2 (i^t1 2 ) and E2 by £2 (1+i 2 ) in the equationsgiven

in ir•ca. ,	 and simplification, The following equa-

tion is obtained

bw[RT +1IT) =1	 (11.20)n
IL	 IL

where

R =Real. Term = 
E t 3(i)[h3'+ (R1R2+1112)-(R3R2+I,12)

T	 33 R22 + 12

1T _Imaginary	 E3t,3()h1[h31+12 21	 32 23
ii Term	 R2 + 122

II	 r r	 IIR2 = frgr - f1 g2 - S1 g + g g1

12	
I r	 r I	 r I	 r r

= 12

= - h1r	 + h1' •

I 1

R3=h2-h21

13 = h2' • + h2r D

II	 r r	 I= h1rS2r_ b 1 g2 - b2 g + h2 g1
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B =

C =

D =

In above,

r I	 r I	 I rh1Ig2r+ h1 2 - g 1 h2 - g 1 h2

frhr f11h21- grhr+ g11h11

I r	 r I	 I r	 rh2 + 1 h2 -	 - g 1 h1

r - •23k2	 + a2302, -	 2.32
1	 623 + Q3813	 3	 613p1

If1

r =

=

rg2

2.312	 a2•382•,

023	 2 +	 3	 2

a	 0	 0	 p

	

•23k2 - 2.3 2.3	 2.3 2
23	 6	 +	 6

•23k2	 a2302,

823 '2	 6	 2

_c o'2.3 k2,,6	 + a23623,	
3	 2.3 2/3

= 2 $23k21,,6	 +

1 + 013 + 202.3) - 62.3(1 20	 )

	

h 1r = •k	
2623	 12	 1.3 a2,

20

	

8	 (1-	 1.3)
+ 2.3 2	 12

1+6 1 3+202 3	
e

.	 2.3
'2	 12 (1_2 0 13 )a23a 2

	

= $23k2(	
2823

1+61 3+20	 e
______________	 2.3 2.3h2	$23k2(	 20	

2.3) +
	 12	 (2- 0	 )1.32.3

2- 0

12



1+e	
+ 

20	 a23025
•23k2(	 28	 12	 1.3(2-8	 )

2.3

14a
r	 1.3 1.3 + $23k2

(1+ 6^ 28	
)2

3 -	 12	 2.3	 2.3

a23023 (02	 _e	 +1)_(0131+823).2	 3)
+	 12	 1.3	 1.3

- [!.!_•3+3 + 823W2 
(1+	 er,))12

!.03k2 (l+ e13+2e2•3) 2I2+ 2.302.3(e2 -e
12	 1.3 1.32.3

ip
2	

pip2___________

(i=1,2,3)	 ":1 2I	 (fllt)l*Et

1.3 
= l/E3,	 01.3 - i/t3I

823 = 2/t,	 a23	 2/E3

The coefficient f1 ' depends on the distribution of

loading f(x) along x. 	 For uniformly distributed load

of intensity 'f' per unit length, f	 f (for n=1,3,5...
= 0 (for n=2,,6...

For concentrated load P, applied at a distance L' from

2P	 nitL'one end, £ = - sin	 for n = l,2,3,et... (81].n L

II.C. 1& : Simplified C se

Here, the case dealt with in sectionsll.C.2 and

II.C.3 will, be simplified, by neglecting some terms as
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follows.	 If we neglect the extensional effect of layer

2 i.e. core, and also all inertia terms except the

transverse inertia terms, the equations of motion (11.13)

to (11.15) can be simplified to the form:

AW" , -	 (w" - -uj --) +	 f(x) sin pt
2	 2	 2

c !!L.. (w' - -u	 + Du e t 	0	 (II.21a)t 2	t2	 it2	 I

	

1.11	 =

where A -	 (E1t13 +E3t33)

C bt2G2

D	 b(Et1 + E3 t 3 m2)

m = E1t1/E3t3

m'= 1+m

tl+t3
a=t2+	 2

p = b(p 1 t 1 + p2t 2 + p3t,)

The boundary conditions as simplified from Appendix I

are:

For simply supported end:

For fixed end:

w = 0

qII	 0

hi	 0

wt = 0

(II.21b)

U 1	 0

0
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3 
-pp2 ]	 f

For free end:	 w" = 0

= 0

2q w' , +2s[C fa	!L.) .._]	 0-Ut 2	I t2 t2

where q =	 (E1t1 +	 )

S = bt2Q2

Also equation (11.19) for simply supported beam is

simplified to:
a2/t 2

n[(!!)	 {A +	
2 (fllt)2	

- p2 .:I = f	 (11.22)
rn'21	 1(ç)

For a symmetrical case (i.e. when=layers 1 and 3

are identical), this equation will be compared with that

in [51].	 In the present notation, eqn. 22 of [si) for

a symmetrical 3 layered sandwich beam can be taken as

Et
w bt	

1 1 (!i!. ) f 1 +n	 6 L

t +t
3(	 2)2

(fllt)2 E
1 t1t2

ç2

(11.23)

Eqn. (11.22) for the case t 1 = t, and E 1 = E3 reduces to:

t +t 2(_1 2)
bE1t13

W	 6	 +	 nIt 2 3 
• P 2 ] =fn

(2 2	 1	 ______
2bE 1t 1 + btLi2

(II.24
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Expressions given in 11.23 and 11.2 1! can be shown to be

identical.

A comparison can also be made for the expression

for natural frequency of simply supported sandwich beam

as given in (19).	 If E 1 = E3 = E is substituted in

eqn. (11.22), the expression given in brackets deter-

mining natural frequency of vibration of beam can be

seen to be identical to that given in E19).

Hoff's (16 and 17) resulting differential equations
bYLb.1YSIS

for static of symmetrical sandwich beam, are obtainable

from differential equations (11.21), by taking into

account the difference in expression for 'y 2 ' in both

cases, in addition to the substitutions for symmetry

t 1 = t 3 and E1 = E3 and also taking away the dynamic

terms.	 In [16 and 17],

U3 —U1

=	 +	 + w' (where u3 = — U1 for symmetrical

case)

whereas 2 in section II•C11 is

U1 - U3	 w'a

=	 t	 t2	 2

Eqn. (II.21a) reduces to that for an ordinary homo-

geneous beam if the terms for core 2 are eliminated.

Replacing G2 by Ga(l+1a) in eqn. (11.22), the resulting

equation for viscoelastic case is obtained as:

W [Real term + I Imaginary term - pp 2 )	 f	 (11.25)
Vt

n	 n
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where gC(1+ 2) {!. L(1	 2)^()2

nit4 ___________________Real Term 
= i:-	 A +	 )

{ C(1+n22)+()21 
+{ (fllt)2 

j2

nit2 (1+'2)C
Imaginary Term =

C(1+n2) + (!E) 2 2	 (nit)23 2

2ag = t2

h = (fll')2

2

II.C.5 Beams with Various End Conditions

The solution tor beam with simply supported ends

has been obtained in previous sections, in series form.

For other end conditions, methods of solution to deter-

mine dynamic response will be indicated. No detailed

solution will be attempted but the use of approximate

variational methods will be outlined for the simplified

case of section II.C.&.

The differential equations and boundary conditions,

taking all layers as elastic are given by equations

(II.21a) and (II.21b). 	 For viscoelastic core, shear
D

modulus	 has to be replaced by G2

where D.1.	 0
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Since C in eqns. (II.21a) and (II.21b)involves G2,
D

C ill be replaced by C	 c'

where c' = bt2G2'2

and C =

Taking the solution as:

S	 C
w = w (x) sin pt + w Cx) co	 pt	

(11.26)
u =	 (x) sin pt + tr (x) cos pt
I	 is	 Ic

Substituting in equ. (II.21a) and equating sine and con

terms identically, the equations of motion are

- c. (1 a	 •	 m'	 2- u5 ?.- - ppS	 t2	 S t 2	1	
2	

(x)	

(11.27)
a

t 2 cç"lcç'

- r_"c t2
2

Ca, ii	 - u ic	) - pp2wc	

f	
(11.28)

= 0C'a	 - uj -i—)- t2

Cm' '	a	 in'	 _CIfllI(wCa

2 " is	 t2	 t2

(11.29)

C1!L.( ' !-	 m'	 Cs(wSa	 in' =02 -u1—)+Du'	
2	

15

(11.30)

Similarly the boundary conditions (II.21b) can be
expressed in terms of w , w , u and u •	 The solutions	 C	 is	 ic

may be obtained by:
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1) Finite difference approach: This may be done by

replacing the differeatial equations by difference quo-

tients at a number of points on the beam, obtained by

dividing the beam into a number of parts [97). The

resulting equations are a number of simultaneous alge-

braic equations. This method has been used in [59]

for symmetrical, layered cantilevers and can be used

for above equations as well.
S

2) Dy using classical method of solution of simultan-

eous differential equations, with constant coefficients

[98].	 Both complementary function and particular solu-

tion are to be obtained separately. 	 Obtaining the

former involves determination of multiple roots of alge-

braic polynomial equation and solution of simultaneous

algebraic 'equations.

Both the above mentioned methods involve tedious

and time-consuming computation on a digital computer,

since the order of differential equations is high.

Below, the use of approximate variational methods, which

do not involve the direct use of these differential

equations, is outlined.	 These are expected to be simpler

and less b.me-consuming for low frequencies, for which

these are intended.

a)	 Ritz Method:	 In this method, a Bolution is assumed

in the form of series, involving undetermined coefficients
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and substituted in the total energy integral e.g.the

assumed solution may be:

+ a w	 + a w	 +W = alw(1)	 2 (2)	 ()

u1 = b 1u1(1) + b2u1(2) + ••••
(11.31)

where each of the terms W (1)i W(2) U1(1) etc. is a

function of the independent variables, and satisfies

geometrical boundary conditions C7', 76-79). The unde-

termined coefficients a 1 , a 2 , a3 , b 1 , b2 etc. are obtained

by minimisation of energy integral.	 In the present case,

approximate solution for dynamic response, in elastic case,

will be obtained first, from the energy integral for

sinusoidal excitations and then shear modulus for core

will be made complex, in order to get complex solution

for sandwich with viscoelastjc core.

e.g. for a cantilever subjected to sinusoidal exci-

tation of intensity f(x) sin pt, boundary conditions for

fixed end i.e. at x = 0 are:

w	 w' = 0,	 U1 = 0

For free end i.e. at x =

wu = 0 ,	 u1 '= 0
	

(11.32)

2qw' ' + 2sf (u 1 e-w'rJ	 0

1	
E1t1

where e =	
+ E3t3t2

f	 I +
2t2
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Total energy integral corresponding to the simplified

case of section II.C. t& is obtained from section II.C.1

t2 L	 2

= J [ 
Jq(wu) + r(u) 2 +s(u1e-w'f)2 -

t I 0

-f(x) w sin pt3dxl dt	 (11.33)

	

where q =	 (E1t1 +E3t 3 )

	

r =	 - (E1t1^E3t3m2)

b

	

S =	 t2Q2

Etjiin 
= Et33

Assuming a solution of the form:

w =	 a.(1- cos	 sin ptl
j=1,3,,	 I

(II.31i)
bfsin 2L sin ptu1= £	 jitx

J=1,3,5

This satisfies the first 5 boundary conditions, given

by eq. (11.32), but the last one is not satisfied. 	 Now,

this last boundary condition is a natural boundary condition

and is not required to be satisfied Liz Ritz approximate

method [71i,77,79].	 In this method, the geometrical or

displacement boundary conditions have to be satisfied by

each term in the series assumed. But natural or forced

boundary conditions need not be satisfied, the reason being

that minimisation of energy integral gives both Eulers
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differential equations and natural boundary conditions.

Since an assumed solution minimises the energy integral

approximately, both differential equations and natural

boundary conditions are satisfied approximately too.

The accuracy is expected to enhance as the number of

terms in the assumed series are increased.

For illustration, taking one term in the series

w = a 1 (1- cos	 ) sin pt

(1L. ) sin ptU1 = b	 2L

Substituting this in expression for 	 given by eqn. (11.33),

integrating with respect to x and substituting expressions

for	 and	 equal to zero, we get

a 1 - f	 (eb -	 a1) - 0.23 pp2 La1

= 1(x) CL -

r7t4	fTcb ^ sL e(eb 1 -	 a) - 0

Solution of these simultaneous algebraic equations, gives

the solution for elastic case.	 For viscoelastic case,

G2 occurring in above equations i replaced by G 2 (1 ii2),

making the coefficients of a 1 and b 1 in these equations

complex.	 Simultaneous solution of these equations gives

the desired solution.	 In practice, a few terms might

give a reasonably approximate solution, for lower frequencie
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b) Lagrangian Multiplier Method

Frequently, it may be difficult to assume a series

in Ritz method, which satisfies all the displacement

boundary conditions even.	 In such a case, Lagrangian

multiplier method may be employed. 	 It has been used

in [75) for static problems.	 It differs from Ritz

method in that the assumed series as a whole is con-

strained to satisfy those boundary conditions which are

not satisfied by each term in the series, e.g. 6th

boundary condition in eqn. (11.32), which is a natural

boundary condition, was not satisfied by each term of
the series assumed in the foregoing Ritz method illus-

trated.	 This may be satisfied, however, by using a

Lagrangian multiplier. The ener gy expression is

modified in thts case as below.

= Energy expression as before - X(constraining

condition)

Taking 2 terms in each series in the solution assumed

for a 3 layered cantilever, in the foregoing illustration,

Wz . (1- co j)	 a3(1 - COS 
2L

(11.35)

	

3tx	 I- b 1 sin	 + b3 ir 
2L

The constraining condition is

2qw'' + 2sf [u1e - w'f)	 0 at x	 L	 (11.36)



f(x)EL -

f(x)[L +

0
	

(".37)

0

0
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Substituting solution (11.35) in eqn. (11.36) gives

2q-a1 ( ) 3 +

+ 2af[e(b 1 -b3 )J - 2sf2 [a 1 () - a3 ()]	 = o

t2

Now,	 = f t 
$Lfq(H)2 + r(tq)

2 +a(u1e-w'f)2 -
	

2 w2
t i 	0

- f(x) w sin pt3 dx

7t3-	 -2q a 1 () + 2qa3 ( ) 3 + 2sef

-2s e f b3- 2sf2a 1	+2sf2a3()3) dt

Substituting the assumed solution, integrating ith

respect to 'x and equating expressions for

= 0	 (j-1,3)

= 0	 (j=1,3)

0

This gives 5 simultaneous algebraic equations

a 1A+a3 B+b 1c+XD =

a 1F+a3 Gi-b3H+XJ =

a Ki-b M+XN	 =
1	 1

a3P+b3Q+XR	 =

a 1S+a3T+b 1U+b3 V =
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where A = q()L + Lsf2() 2 - pp2L(- -

IIB = - pp2L(1. -

C	 - Lsef()

D = 2q() 3 + 2sf2()

F = B

27r 2	 2
G = 9qL()4+9Ls f	 - pp	 +

H = -3Lsef

J =	 .2sf2() - 2q()3

K = -Lsef()

N	 Lr()2 + Lse2

N = -2sef

P = 3K

+ LseQ = 9Lr()2	 2

R= -N

S = -D

T = -J

U = R

V = N

For viscoelastic core, G 2 ( and thereby 's9 is
made complex, by substituting Q2 (1+i' 2 ) for G2 .	 Solution

of simultaneous algebraic eqas. (11.37) involving complex
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110.0 c.p.a.
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coefficients gives the desired solution. 	 The approximate

solution so obtained has been compared,for a symmetrical

cantilever, with the solution obtained in £59], using

finite difference technique. The parameters of the

sandwich cantilever taken are:

= t 3 = 0.187", t 2 	O.137', L = 15"

E 1 	E3	 3 x 1O ' lb/in2,

Core material - P.V.C. (sheet A, as referred to in

Chapter vi).	 Properties used, correspond o a tempera-

ture of 26.3°Cand shear strain amplitude = 0.1 x 10'.

The root of the cantilever is excited by harmonic dis-

placement x0 sin pt, thus the value of (Cx) is pp2x0.

The results obtained for the first resonance are:

Peak Value of Tip	 Frequency correspqnding
to Root Amplitudes to Peak ratio of Tip

to Root Amplitudes

1) From [59],
usIng finite
difference
solution.

2) Using Eqn.
(".37)

6.1195
	

42.5 c.p.s.

There is a shift of frequency corresponding to peak

ratio of tip to root amplitudes, while the peak value of

th. ratio is almost same in the two cases. Thus, the
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above approximate solution, which is simple, gives

reasonable results for low frequencies. 	 !lore terms in

the series are required to be included in the assumed

solution, for obtaining accurate results, especially at

higher frequencies.

II.D: Analysis II

II.D.1 Equations of motion - derivation

The assumptions made for Analysis II of a 3 layered

configuration are discussed in section II.B.2. 	 These

assume linear variations of both u and w displacements

along thickness. These can be called first order appro-

ximations, in the manner of }4indlin t69). The equations

used later in this section will be those in which first

order approximation is taken for 'u' displacements but

zero order approximation for 'w' displacements.

Ilindlin (69) has converted the 3 dimensional equa-

tion of elasticity to infinite series of 2 dimensional

equations by expanding the displacements in an infinite

series of powers of thickness co-ordinate of a plate

and by integrating through thickness,

ni.e. u	 = .,z (u 4 ) ; z is thickness cordinate, and
1

implies displacements of order e n'.	 The nature

of' equations for a homogeneous plate with zero and first

order approximations have been discussed. 	 Zero order

approximations give, for an isotropic plate, reasonable
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results for extensional vibrations but not for flexur.

r69 - Chapter IV].	 First order approximations are

accurate for ulexural vibrations, and in addition

,iccommodate simple thickness modes as well (simple thick-

ness shear and simple thickness stretch modes	 (69 -

Chapter V].

Yi-Yuan Yu t201 has used first order approximations

for 'u' displacement and zero order approximation for

'w' displacement, while analysing free vibrations of

elastic symmetrical sandwich plates, in plane strain.

First order approximations for layer (1) imply

•	 (0)	 (1)U-U.
1	 1
•	 (o)	 (1)w =w	 +zw
i	 1	 i

(11.38)

The notations used in present derivation are:

(0)For u	 ;	 u. will be used.1.	 1
(1)	 -For u1 	;	 u1 will be used.

-	 (0)	 (1)And, w and w1 denote w1	and w1	respectively.

So, for a 3 layered laminate, we have 12 parameters, due

to
u1, i, w. and	 i = 1,2,3	 (Flg.II-3)

However, all these are not independent, from reasons of

continuity of displacements at interfaces,	 Only 8 para-

meters are independent, since at interfaces,
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ti,

2

t2

2

t3

2

t3

2

tI
u1+u1.—=u2-u2

- t i 	-
Wi Wl•_=W2_w2

1L2 	 U2--U3

W2 +W2r._W3 -W3

The 8 independent parameters used below, will be

(11.39)

u2 , u3 u2 and	 w2	 and w2.

In [20) and [69], equations of motion have been derived

from the variatior1equation	 J ('i.	 - pj) ôudv	 0.
V	 :LJ,.

t is for stress and v is for volume. This equation

is derivable from Hamilton's Principle [69 page 3.02 and

1.20). We shall use Hamilton's Principle as such, as used

in Section II.0 for Analysis I i.e.

2 (T - U + v) dt = 0	 (ii.4o)ti
For a beam, using plane stress conditions, stress

strain relations are: [92)

E is for Youngs modulus

is for poisson's ratio

C is for strain and

is for stress

These can be reduced to the form:

- E*e +e
x	 x	 z

-	 e + Z e	
(11.111)
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E1here	 E* = 21-

YEz- 21-

Also	 t = Gy (11.42)

where t is shear stress and y is shear

strain and G is shear modulus.

Now, expression for strain energy

U - Es:	 [ae + e +ç dv

Substituting from (II.41)and (11.42)

V

U -	 2 e 2)	 2i! e e	 Gy2] dv (11.43)-	 x z	 xz
0

summed for all, layers over the entire volume v.

Taking the coordinate system as in Fig.II-3 and dummy

coordinate systems xz 1 , xz2 and xz3 in layers 1, 2. and 3
respectively, and with signs of longitudinal and trans-

verse displacements taken independently, we have for

layer (i),

e x . -	 U = U' + U Z
:i	 ax	 1.	 1.	 i.	 i	 *

- --- WI' = w.	 (11.44)
1	 az 1	 1.

1 awI'	 -	 -
V.	 =	 +	 = U.	 SW-' +W' Z.

	

:1.	 i	 i	 1

Substituting eqn. (11.44) in eqn. (11.43) and sim-
plifying
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strain energy =

foi• layer (i)
S [ i ( 2	 —2 ___	 2t.)+ Z.(u.t.)
L E
- . t.+u!1 i i	 12+ 1	 1 iii.0

k .G.	 t.31 1ç-2,2	 ,2 i + 2u.wt.)3b dx
2	 1 3. 1. i 1	 12	 iii

(11.45)

where k. is shear coefficient of layer (i), due to non-

uniform distribution of shear stress across thickness.

Total Kinetic Energy 'T due to layer (i)
t	 t 1

	L	 •	 L -
.	 ,2p.

	

= L	
(*i+ z ) 2bdz1)dx + J	 I f—.(Ctii " t.2

-i	 -1
U z.) 2bdz )dxii	 i

L	 t3	 L
r P	 2	 . 2	 )bdx + f	 L. 2	 -- 2 1u t.+u.	 )}bdx= J —w. t.+w. 1 1 1 122	 1 1 1 120	 0

(11.46)

is mass density of layer I per unit volume.

Potential energy 'V' due to dynamic loading of intensity

f(x)g(t) as in Fig.II.2(c) applied on layer (1)

g(t) $ f(x) (wi_wi 
t1) dx	 (11.47)

Applying Hamilton's Principle as given by eqn. (11.40),

expressions for U, T and V being given by eqns. (11.45),

(11.46) and (11.47) respectively, summation is done for

layers i = 1, 2, 3 for these expressions.	 Also, U 1 , u3w1
and	 are eliminated from these expressions by using eqn.

(11.39).	 The details are given in Appendix 2, where 8

simultaneous partial differential equations are deduced by
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carrying out the variations of the various energy inte-

gr a is.

These 8 equations reduce to 5 simultaneous equations

(ii.'i8) to (11.52), if variation of w is not taken into

account, i.e. w 1 , w2 and	 are not taken in the formula-

tion. The remaining unknowns of the system are: u2,	 ,

u2 ,	 and w2 . w2 is replaced by w from here onwards.

t 2t -.i. b(4 t13-t12u+	 2	 u) - k1Q1b(t1Zi1+t1w')
.. t	 t12t2 ..	 t .3 ..

= .! bt 1	 çt12+	 2	 2^	 (11.48)

i b(2t1u-t1t2t-t12)^ i b(2t 3u-ft 2 t 3t	 t32

2
+ b— (2ut 2 ) =	 b[2t ii-t t	 -t12 122

.•
+ i b[2t3+t3t2i2+t33)
+	 b[2t2i] (11.49)

E*	 t t 2 2 - -	 t12t2 -	 E
2	 2	 2 1 2 2	 2	 u;)+ -b( 3 22 	t2t uu'22u" t t u"^ 32 2	 2

E*	 t3
2 __ -

+ - b(	 u") - k G t b(w s ^ )2	 222 2 2
t	 ..	t t 2	 t12	 btt3t22

	

____	 2—	 ____
-2 bf	 u2-t1t2u2+	 2	 U1J 2	 2

tt2..	 p	 ..t3+ 23	
+ -4 bt	 1	 (11.50)
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E* 2	 _____

b	 [ t33+t32u+ t2t32 ,j	2 	 2 -k3G3t3b(u3+w2)

2. ____23 -,

	

2 3 3 3 
+ 3	

+	 2 -	 (11.51)

t (' w") bk G t (i'+w")^ bk G t (' h")11 1	 333 3	 222 2

= b(p 1 t 1 +p 2t 2+ 3 t 3 )i	 - g(t)f(x)	 (11.52)

Boundary conditions for simply supported beam are:

= u	 = U:; = u' 2 = 0

(11.53)
w• =0

For symmetrical case (i.e. when faces 1 and 3 are

identical),	 = U3	 u	 - 0

E 1 = E3 and t 1 = t3.

For these conditions, equations (11.48) and (11.51)

are identical and eqn. (11.49) disappears. 	 Only 3 equa-

tions (11.48), (11.50) and (11.52) exist.	 These can be

shown to be similar to 3 equations of £20].	 It is seen

that equation (11.52) is similar to III equation of eqn.

30 in [20 ].	 Eqn. (11.50) is similar to II equ. of eqn.

(30) in [20 &nd L n. (11.48) is identical to the one got

by substracting equ. I and II of eqn. (30) in [20].

There is a discrepancy in eqns. (11.48) to (11.52),

which becomes evident when these are compa*ed with eqn.s.

(11.13) to (11.15). E in eqns. (11.48) to (11.52) involves



76

E
Poisson's ratio	 (E =	

-2' but Poisson's ratio Ito..
,	 i_V

not occur in (11.13) - (1X.i).	 In both cases, transverse

displacement is constant at a section, SO stresses and

strains in. transverse direction are not of importance,

and herwe 'v' is not expected to occur in these beam equa-

tions. The reason of occurrence of 1y1 in eqns. (it.48)

- (11.52) is due to the fact that these equations have

been simplified from 8 simultaneous equations in Appendix

II, where neglecting effect of	 and 
e 

still leaves

stress-strain relatjon as

- E	 (from equ. ii.i)

= -	 C2 x1_ v

In equs. (II.i3) to (11.15), O	 E e has been taken.

So in equs. (11.48) - (11.52), the terms E (i a 1, 2, 3)

should Is replaced by E 1 for the above-mentioned reasons.

II.D.2 : Solution for simply supported beam Elastic case

For simply supported beam, assuming a solution in

series form, fbr sinusoidal excitation conditions as:

U2 a

U2 a

UI -

zj 2n

fla 1
U.

Uln
fla 1

flExcos	 sin pt

cos	 sin pt

L sin pt (11.54)
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n,txL u cos	 ainpt3n	 Lnaj

______• nitx) w sin	 sinpt'-J	 n	 Lna I

This solution is for a sandwich with elastic core.

It is seen that the solution above satisfies the boun-

day conditions and reduces the difterential equations

(11.48) to (11.52) to algebraic equations, when substituted.

Expanding 1(x) *	 sin "' , and substituting
11=1

eqn. (11.54) in (Ii. !i8) - (11.52) gives

uA.-B-C2n	 2n	 in

uF -	 -

a w11D

a wK

(II.)

	

-uM -	 -	 wQ

	

-u R-	 s+t T a-wV2n	 2n	 3n	 ii

	

U2 Q2 +	 +	 + w tI] a

where

p1t12 2
A a E 1 (fllt)2 12 -
	 2 p1

E	 p1t12t2 2
4

t,
C a	 E1()2 + k161t 1 31 t13p2

2	 p2t22 2t (!2) + 2 (UYC)2 3_	
2	 p

F a E1t1 2 1 .	 2 'i:-

E	
1t22()2 E2 )fl't2	 p1t1t222	 pt'- 

I	 ______	 _____2	 12 2	
+k2G2t2..	 - 2 2_

12
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2 (fllt)2 - p1t12t2 2
I 2L	 2

E22	 _____N a (!) 2 tE3t 3t 2+ .- t 2 _ p,t2t,p2- 22
	 2

2	 p

E	 _____(flit)2 kGt
	

223 2 223 2N=..tt2(!!.)2 22	 ____ ____
2	 1232 L	 12

2
t 2 (fl'lt)2	 t2tj	

2
3 2 L -p3 2

22

R	 t 2 fllt)2	 P:3t, p
2

p3t2t,2 2
S	 flit)2tt2	 p

_ ( fllt ) 2 3 3 +1'	 -k3G,t3 
i:—	

t3'p2

kGt +kGt +kGtI	 (!!)2C 1 1 1 2 2 2	 ,]-tp1t1p2+p2t2p2+p3t3p2)

D	 k1G1t1(iL)

K	 k2G2t2()

Q - k2G2t2T_

nitV * -k3G,t3 -

a	 where j a 1,2,3

tID.3: Shear Coefficient

Its value for a rectangular beam is well known and

is equal to ., when distribution of abear stresses, in

static bending is determined by assuming that warping due
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to shear does not effect the bending stresses.	 In

such a case, shear coefficient 'k' is defined as

average shear stress on a section
TS1Iór modulus x angle of shear at neutral axis.

'k' depends on shape of s'ection and the mode of motion,

which affect the distribution of shear at a section.

Mindlin and Deresiewicz t703 have determined the

shear coefficient for beams, by equating the lowest

thickiesa-shear frequency obtained from Timoshenko's

approximat. equation involving 'k' to that obtained from

general equations of theory of elasticity. The object

is to get accurate results at high frequencies. 	 For a

.olid boa., this thickness shear frequency is known to

occur at very high. frequencies.

By using a procedure similar to above, Yu Ti Yuan

[21) has found a value of 'k' for a symmetrical sandwich

by matching the lowest frequency of thickness shear mode,

obtainabl, from approximate sandwich plate theory and

the exact elasticity theory. There is a single value of

'k' for the entire sandwich plate.

For an arbitrary 3 layered beam, in the equations

derived in section II.D.1, 3 values of 'k' have been used,

value of k being different for each layer. In each layer,

the shear strain y due to assumed displacements

(y	 +	 ight appear to be constant. But quilibrium
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equation	 X +	 = 0 implies that t is varyingox	 zx

through the thickness. 	 Hence, in order to get an

expression for the transverse shear Q at a section for

any layer, Q is taken = kGAy, A is area alJd Q is shear

modulus.	 For Section II.C,k 2 is required to be found,

if extension effect of core 2 is taken into account.

If this effect is not taken into account, it may be seen

from equilibrium considerations that shear strain is

constant across the thickness of core and hence k 2 = 1

Below, the values of k for each layer will be deter-

mined, by making the assumption that warping due to shear

does not affect the longitudinal stresses due to bending.

the additional effect taken in section II.D, com-

pared to those in II.0 are the shear effects in faces.

Since we assume that the introduction of shear effects

does not affect the longitudinal stresses due to bending,

the distribution of shear stresses in various layers

due to bending will be found from section II.C.

Considering the various layers as shown in Fig.II-ti,

and z1 are dummy coordinates in layer (i) where i

1,2,3.	 Taking t as the shear stress in layer I at a

distance	 from interface and u, as the longitudinal

displacement at distance y 1 from the interface between

layers 1 and 2.
ti

U1_Wr	 + y 1w' (From section III.C.1 - Fig.II-2)

(11.56)
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Equilibrium of forces in 'x' direction, acting on the

element as shown in Fig.II-4(b) gives;
ti

b ox = b E1 5x J (u" 1 ) dy1
zi

Substituting for u 1 and simplifying, t1

- E1 r(u-w' hI-4)(t1-z1) 	
w'''	 2	 2
2	 (t1 -z 1 3

(11.57)
is zero at z 1 = t 1 , i.e. at free surface.

Shear force	 in layer (1) = b	 t1dz1

Substituting for	 and integrating,

Q 1	= -bE1 fu 	 + v''' 12
	 (11.58)

Similarly, for layer 3, using y3 and z3 as dummy coordinates,

as longitudinal displacement at distance y3 and	 as
shear stress at distance z3 from free surface, and employ-

ing the same procedure as for layer 1,

t ____	 2,= E3 Cu - w' '' .2)z3 + 2	 Z3 •j (".59)

C3 is zero at free surface, i.e. where	 0
t3

Shear force Q = b J t3d:3

t	 • 1.3
	bE Eu" '	 W
	3 3 2	 ir (11.60)

Taking T2 as shear stress in layer 2 &t distance z 2 from
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interface of layers 2 and 3 and u. 1., as the longitudinal

displacement at distance y2 from the same interface,

(Figs. 11-4 c and d)

u 2 = Py2 + Q

where
= (u.-w' .i) - (u3 + w'

t2

t
Q = u, + 4

Equilibrium of forces in x direction, as shown in Fig.

11-4(c) gives

ti	
t

t2b5x	 bE1x S{u +w'''(y1- .--)dy1

t2

+ bE25x f (Pty2 + Q") dy2
z2

2 = E 1ut 1+E2 [-!L(t22_z22)+Q1'(t2_Z2))

t2

= b

E2P" 
t	

E2Q"
bEE1ut1t2+	

3	 2 + 2	
t2]

(11.61)

(11.62)

For each layer, k will be taken as

-	 Average shear stress in the layer
Shear modulus x Angle of shear at middle of' layer

=	 Average shear stres in layer 	 (11.63)Shear stress at middle of layer

Value of k for each layer can be written down, knowing

expressions for and Q for each layer, as given by equations



k3=

(ix.6i)

(11.65)

Z[E t u +E t	
in	 3")^E2t (!)w	 3	

tjDO	 fl U

1 1 in 2 2' 3	 6	 2 L n 12 -n=1

U
DO

___	 (nit
[E 1t 1u +E t	 'in	 -)+E2t2-)w(- 

6t+ -j-')]
in 2 2

n=1
(11.66)

k2=
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(11.57) to (11.62).

Substituting the solution for simply supported beams,

00

viz.	 w 
=	 w 

6 nitx
L.#	 L

ii=1
p0

nitx
u = Z u cosin	 L1

and simplifying
2

Zr_1 	 + n 1 (iE))
00U t 1 wt

12n=1

2
DO U t wt

Z_	
n._1I. (p))

n=1	 8

200 -u t ut
E_3+
	 (!E)]

12
n= 1

2

-U3t3 
W t

_____ n3
pn=1

As discussed earlier, if E 2 = 0, i.e. extension effect

ot layer 2 is not taken into account, k2	I

For any given situation, the values of k1 , k2 and k,

can be calculated if w and U 1 are known. These should

be got from analysis I given in Section II.C. 	 Since k2
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required in II.0 is not known, initially it may be taken

equal to 1 and w and Uln may be computed. A new value

of k2 is got from eqn. (11.66). This value may be used

again and the process repeated till two consecutive values

obtained are almost similar.

Thus, thevalues of k1 , k2 and k3 required in section

II.D and Ic2 in section II.0 may be got from equations

derived above. These values are meant for the elastic

case, i.e. when all layers ars elastic.	 For a 3 layered

configuration, with viscoelastic core, strictly speaking,

as defined by eqn. (11.63) is a complex quantity. 	 So

in response analysis of a sandwich involving viscoelasti

laminates, kshould be regarded as complex in the equa-

tions of motion, but it makes the equations more compli-

cated.	 However in calculating modal lo&s factor,

might be taken as real, 	 $ince at a normal mode, the

phase difference between average shear stress and shear

stress at middle of any layer is expected to be small,

especially if the material loss factor is low. 	 In the

present work, k has been taken as a real quantity, for

simplicity, since the evaluation of damping is done at

a normal mode and the response analysis is carried out

at low frequencies involving core viscoelastic materials

which Aà1 not rigid.

Values of ki have been listed for a given sandwich
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in section 111.8. 	 The values are nearly equal to 1,

but k2 tends to have different value for a sandwich

having a rigid core.

II.D.1 : Solution for Simply Supported Beam with

Viscoelastic Core

The solution for a 3 layered sandwich with elastic

core, and simply supported ends has been already obtained

in section II.D.2. 	 For viscoelastic core, when the

sandwich is subjected to sinusoidal excitation conditions,

the moduli for the core can be replaced by their complex

values.	 Replacing Q2 by G2 (1+	 and E2 by E2(1+i2)

in eqns. (11.55) gives the solution required.	 In above,

is the loss factor in shear and	 is that under

direct stres/strain conditions.

The solution for transverse displacement is given

by
nirx

W - L W 3111 L S1fl pt
n=1

where w1 is given by

bw11 URT + 1T	 'n	 (11.67)

Rvr = Real Term = 1r -	 D - 
QY)

r(R1R2 +1 1 12 ) (Q1..+c5i . -Q21 C 13R2-12R3 )J

1I + (R3R2+I3I2)(r_Q1 +
	

S	

j

R 22 + 12



8

= Imaginary Term =

+	 (11R2-12R1)(Q1 .. + Q3 )

Q1B	 s
21'?2 

1312)+(I,R2_12R3)(Q2r_ c +

2	 2R2 + 12

where	 = (VPTq)(BJ-cB)-TcQ1H1^(TN+sp)(DJ-cK)+TcN11c1

I	 TNI(DJ_CK)_CKI(TN+sP)_TQI(BJ_cH)_CHI(vp_TQ)

(RP^TM)(BJ-cH)+TCN1H1+(sp TN)(AJ-CF)^TCN1F1

12 = TMI(BJ_CH)_CIII(RpTN)+TNI(AJ_cF)_cFI(sp+TN)

R3	 (vP-TQ)(AJ-cF)-TcQ'F-(DJ-cK)(Rp+TM)-cTKii1

13	 TQI(AJ_CF)CFI(VP_TQ)^CKI(Rp TN)-TN'(DJ-CK)

I - 1ni2 r 2 E2F -	 I Lt2 2

i E2H
12

nil:K'	 k2G2t2la(r...)

N' = (Ult)2	 t22P2]

Et
N' - ( flTr ) 2	 2 2 p )^k Q t '1- -
	 12	 2 2222

I	 nt
Q = i:— k2G2t2,2

nit
21 k2Q2t2?12(t—)

I	 nitLI = r) tkGt')
2 2 22
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Expressions for the remaining terms A, C, D etc. are

given with equation (11.55).

Further

xU2	Wy

12	 = wC.)

-	 AX BZ D
uln

-	 rRX SZ VU3

where

(11.68)

(11.69)

(11.70)

(11.71)

X	 - R 1R2 ^1 1 12	11R2-12R1
V - ____+12 2	 2 2R2 12	 R2 +12

z	 - R5R2 1512 
+ 

13R2-12fl3

2 2	 2	 2V	 R2+12	 R2+12

Substituting for u2	u2 and 1n id	 in eqn. (Ii.5Z&)

gives complete solution.
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CHAPTER III : SOME STUDIES ON 3-LAYERED CONFIGURATIONS

III.A Damping effectiveness

III..1 : Expressions defining damping effectiveness

The resonant response of a distributed system is

damping controlled in the same way as that of a lumped

parameter spring mass system EO, 61).	 On this stipula-

tion, criteria for damping effectiveness are derived in

(19).	 The displacement response to sinusoidal excitation

at a normal mode is obtained from the equation

-nip q + K(1+	 = f0 sin pt
	

(111.1)

where q is the generalized displacement coordinate for

any mode, 10 is the amplitude of harmonic loading, m

is the generalized mass, K is generalized stiffness, and

is the damping loss factor of the system. The rela-

tions of	 to other definitions of damping like critical

damping ratio, log, decrement, ratio of energy dissipated

per cycle to maximum strain energy etc. are given in

[2 and 61].
I

Resonant response for damped structure =

Before the addition of damping, resonant response of tin-

treated structure = f/KRT1R	 'R 
<<1)

KR and 
'1R being the generalized stiffness and damping

of the untreated system.
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,Criterion for displacement response effectiveness

(DRE) =
8

	 (111.2)

where k = K/Ku.

On the same basis, other criteria are derived in (49)

for reducing stress, velocity, acceleration etc. 	 Such

criteria are applicable for studying damping effectiveness

of the system at one mode only.	 However, there may be

more than one mode present, due to geometry of the structure

or space distribution of excitation. The influence of

the latter is discussed in section III.E.

The solutions of Chapter II can be expressed in a form

similar to eqn. 111.1 e.g. equation 11.25 of the simplified

case of analysis I, which is the equation for the nth term

in the series solution assumed, corresponds to equation

111.1.	 Both these equations are for a single mode of

vibration.	 For eqn. 11.25, the expressions for various

criteria can be written as follows.

ki or DRE for nth mode Imaginary term in egn. 11.25
KR

KR being dynamic rigidity of' the reference system.

If the effectiveness of a 3 layered unsymmetrical sandwich

is compared with that of a solid beam of thickness t and
S

Young's modulus E,

IC	 - ( fl7tk bE t
88

12



where H

N

(or D.RE,)
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Also,	 or loss factor of sandwich, corresponding to nth

Imaginary term in egn. 11.25
mode	 = Real term in eqn. 11.25

Taking E = Ea	 3
t = t	 and using notationss

1

	

e 3 =	 ; i = 1,2
3

d 13 =

	

2.3 
=	 / E3t()2

and after algebr&ic simplification,

H')2
'is	 =

(1+a	 e	 )(M2+'i22) + KM1.3 1.3

(111.3)

- _____ (26	 +6	 +1)2(1 ')2
- 23	

2.3 1.3

-	 2.3	 I
-	 +i)(1+'i22) +1

2.3	 1.3 1.3

=	 Hti2

N2'i2
2

(III.tt)

For a generalised mode 'n', longitudinal stress at

extreme fibres of layer 3

= E3 (u	 w" 2	 (III.,)

where +ve sign is for the fibre at the interface of layers
the

2 and 3 and -y e sign for outside fibre.



Et
- +	 $8 (flTt)2 w- -
	 2	 n

(111.8)
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Substituting the assumed solution given in section

II.0 eqn. 111.5 becomes

t
nit - nTt2	 nitx

= E3 tu3(t—) +	 n 2	
sin L	

(111.6)

Expression for u is obtained in terms of w from
3n	 U

eqn. II.21a after the substitution of the assumed

solution.	 Using this to eliminate u3 in eqn. (111.6),

the longitudinal stress at the centre of the beam, at

extreme fibres of layer '3' for mode 'n' is
ac

£UIfl	
-	 t

- E3() 2 [	 2

-
m' 2
t2

—J w2	 n
(111.7)

where -ye sign gives the stress at the interface of layers

2 and 3, while ye sign gives that at the outside of layer

3.	 Q2 involved in 'C' has to be taken as Q2 (1+i 2 ) for

the viscoelastic core.

In a solid beam with parameters t 5 and E, having

the same generalized transverse motion 'wa ' at mode '11

Stress induced at the &uter fibres

Stress response effectiveness (denoted by S R.E.)

for the eandwich = (k') c	 (111.9)

where c is the ratio of absolute value of stresses given

by equations 111.7 and 111.8 and (ku 5 ) is the transverse

displacement response effectiveness.
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Taking E and t 8 as E3 and t 3 respectively,

c is given by

C = 21,/R2 +
	

(III. 10)

where

cz130
_____________

2(1+61.,+202., p2.3	 (1+cIi30i,(1+na2))
1:t=

02•3a1•301•3

	

	
2^(1+a13e13)]2^[12(1+a13013)J

2.3

and

023
223 (a13O13)2i2(1^013 + 2023)

1= -
[2.31.301.3 

+ (1+	 +
2.3

k') 18 given by eqn. (111.1*).S

In above, the damping effectiveness criteria have

been derived for the simplified case of analysis I viz.

from eqn. 11.25. 	 Below, the derivation of these criteria

from eqn. 11.20 (Analysis I - general case) and eqn. 11.67

(Analysis II) will be pointed out.

In each case, the equation is of the form:

bwfR	
+ 'T	 f	 (111.11)

n	 n

where expressions for real term	 ' and imaginary term

are given in eqns. 11.20 and 11.67.	 Both RT andn	 Ii



a____
p = (III. 12)

bITnk,1	 =S	
bEt3
- S S	 (!1L)4

12	 L

(III. 13)
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involve frequency terms since all the inertia terms

have been included in the derivation. 	 However, in the

simplified case, for which criteria have been derived in

eqn. 111.3, III. lt and 111.9, it was possible to separate

frequency terms from both real and imaginary terms,

since only translatory inertia terms are included. 	 The

definitions of ' , kt etc. are applicable at a mode
S	 S

'n' and the frequency of excitation corresponding to

that mode is given by:

However 1 for the general case of equation (111.11),

frequency 'p' corresponding to the 'nth' mode is deter-

mined from RT = 0.	 At this frequency 1 terms in
n

involving 'p' may be determined. Then,

where E and t are for the chosen reference system.S	 S

Because of inclusion of terms involving p' in both

RTa	 I, equations (111.1) and (111.11) are no longer

similar and so there are no straightforward expressions

f or
for 'K' generalized and 'm' generalized and henceex-

pression for '' in this case.

If only transverse inertia terms are taken in the



hence for nth mode,

itn
1)

tn

i
ku	 =-

KR

(111.15)

95

analysis, the equations 11.20 and 11.67 can be reduced

to the form:

w [Real term 'r ' + i Imag. term 'i ' - pp2 ] = fn	 tn	 tn	 n

(Iii.i4)
ternS

where 'ri' and '-t' 
are obtained from the	 given in

eqns. 11.20 and 11.67 for analysis I and II respectively,

by eliminating all terms involving 'p'.	 Equations

111.1, 111.14 and also 11.25 are of the same forw and

KR being the generalized rigidity of the reference system.

III.A.2; Discussion on the effect of system parameters

on damping effectiveness

(i): Expressions for 3 , DRE and SRE given by eqne. 111.3,

111.4 and 111.9 respectively, are seen to be functions

of the following parameters:- 
• 23' 'p2' O23 613and

r	
2.3 is called the shear parameter and has been

chosen in such a way that it involves the in-phase shear

modulus of layer 2, Young's modulus and thickness of layer

3, beam length and the modal number. All the ratios are

taken with respect to one of the faces, being layer 3 in
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this section.	 Layer I has been referred to as the

'cover' and layer 2 as the 'core'.	 Effect of each

of the system parameters will be discussed.

Eqn. (111.3), when differentiated with respect

to 2 gives a stationary value of Ti •	 The value of
.3	 5

corresponding to this is given by

(1_I_ a	01.3 1.3
2.3 2 oPT.	 h2(1+a	 0 33)+ah1.3 1.

(III. 1Gc

where a =	 (1+0	 +28	 )2(1+i2)
023	 1.3	 2.3

h = __
a13D13 +1)(l+Ti22)

823

This stationary value subsequently is seen to be a maxi-

mum value.	 Eqn. (III.1Ga) for shear parameter 2.3

thus gives an optimum value of loss factor '11'.

Similarly, eqn. (Iii.t) for 	 becomes maximum at a

value of	 given by
2.3

2.3'oPT.	 Ii
	 (iii.i6i

where 'h' is same as in eqn. (III.16). 	 Fig.III-1 shows

plots of	 for ' and	 , given by eqns.optimum	 5	 5

(III.l6) and (III.16b) respectively, for certain chosen

parameters. The values of (4' 	 )	 are seen to in-
2.3 opt.

crease with increase of core thickness ratio 0	 and
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values of (p	 )	 for ' ' and 'k ' are different..3op.	 s	 s
Fig. 111-2 indicates how the optimum value of shear

parameter may be varied by changing the parameters of

the cover, viz. a 13 andO13 .	 It is seen that the

stiffer the cover used, the higher is the value of

Fig. 111-3 shows the Influence of core material

loss factor 
'2 on optimum damping obtainable and the

corresponding value of shear parameter, for a chosen

sandwich beam, whose parameters are given on the Fig.

Increase of ' is seen to increase (t )	 almost2	 sopt.

linearly, while corresponding (	 )	 is reduced as2.3 op
increases.

	

Fig.III-4 is a plot of Ti vs. 4'	 for varying
s	 2.3

values of core thickness ratio e 3•	 The curves show

a maximum value of Ti5 for optimum value of

Since 
•23 

involves 'n', the modal number of vibrations,

the sandwich will have different Ti at various modes.
S

Also, for a given mode, only an optimum value of core

shear modulus G2 will give the maximum damping. The

curves are seen to be flatter for higher values of

ratios	 The optimum value of Ti is seen to in-

crease with increase in 	 .

Fig. 111-5 is drawn for DRE and SRE (for maximum

stress at the outer fibre of layer 3) and behaviour is
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.4

similar to that of Fig.III-4 for 	 except that the

values of 2 3opt. are different from those of
for the same parameters of the system.The influence of

2.3 for varying values of '2 3may also be seen from

Figs. III-k and 111-5. 	 It is expected that increase of

0	 would increase T and ku •	 This is seen to be
2.3	 a	 a

true for high values of 
•23' 

but for low values of •23'

increase of 0	 decreases u and DRE at first till a
2.3	 a

minimum value is reached after which further increase

of023 increases both	 and DRE.	 For a given sandwich,

it may be determined from expressions for 	 and ku,

by differentiation with respect to 0231 whether such

a minimum value is likely to occur, e.g. for ki1 8 , a

necessary but not sufficient condition for a stationary

value with respect to 02.3 is found to be:

1 + 0 j3 > 2023.

The shear damping in the core is due to the con-.

straining effect of the cover.	 Fig. 111-6 is drawn for

indicating effect of cover parameters on , and DRE.

For a given thickness ratio 	 increase of a 13 in-

creases DRE due to increase of dynamic rigidity.

However, an otimum value of r is seen to occur at a

certain value of a 13 , as shown in the figure.

It is seen from the foregoing discussion that all
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the geometrical and physical parameters of the system

influence the damping obtainable from the system,

since these determine the strains and 8tresses associated

with the system.

(ii)	 Previously, the reference system for the compari-

son of the ratio of rigidity of the sandwich and solid

reference beam, was taken as E = E and t = tS	 3	 S	 3
Below the reference system will be taken as:

= E3 and t = t 1 +t = Total thickness of the faces.

It will be possible to study the effect of using various.

face combinations, keeping the total thickness of the

sandwich same.	 In this case, expressions for ki and

k, for simplified case of Analysis I, of section II.c.4,

are:

k	 =	 3 + a	 (i-A)3 +	 XY	 (111.18)1.3
2^ 2

- 3, 1+25) 2 (1+ 22 )where	 X	 -

1	 1 1r, 2 )	 jy	 =	
. t a1 (i-A) +

( being =

E t 2 nir23s L'

a13 =
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t3/t
A:	 S

t2/t
and 5	 a

Expression for	 can be written from ecpls. 111.17 and

III. 18.

'k' in equ. (111.18) is the ratio of dynamic rigidity

of sandwich to that of solid reference beam.

kttj	 A +cx13(1-A)', ktatjc being the ratio

of static rigidity of sandwich (taking account of both

faces only) to that of the solid reference beam.

Figs. 111-7 to 111-10 are plottedfork, k, ' and

kttj vs X for varying values of a 13 .	 Each Fig. is for

a particular value of p, the shear parameter. 	 X=O.5

corresponds to a symmetrical sandwich and other values of

'X' give various unsymmetrical cases, keeping the total

thickness of faces same. k 	 . is minimum for a sym-
static

metrical sandwich (being =0.25) and so an unsymmetrical

sandwich is to be preferred for increased static stiffness.

For a 1	= i, v and kl% decrease for,unsymmetrical cases.3	 S	 S

(i.e. for X>0.5).	 The decrease is not very significant

for Figs. 111-7 and 111-8, which are for low values of 'VP'.

However, a proper choice of	 in an unsymmetrical case

can improve the damping performance, as shown in Figs.

111-7 to 111-10.	 Thus, a suitable design of an unsymne-

trical 3 layered sandwich might be preferred for better

performance under static conditions and reasonable damping
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under dynamic conditions, compared to a symmetrical sand-

wich of the same total thickness.

Figs. 111-11 and 111-12 are plottedib , k 1 and k

vs.	 for varying values of X, a13 and 5. The grpyi$

for k, and , show an optimum value at certain values of

shear parameter ,. Comparisons of these Srepa5 indicate

that bt graph$for '' are flatter for larger values of '5'

(viz. for thick core) than those with smaller values of

'5'.	 In practice, a variation of, may occur due to

change in G2 because of change in frequency and also in

modal number I1'. Thick cored sandwich gives higher

damping 'i' for a larger range of w'. 	 However, the

situation is not similar for ku 8 or DRE asthown in Fig.

111-12.

It may also be seen that the maximum valuecC 't'

for S = 10 in Fig. 111-12 is not very much different for

various values of X i.e. in these cases the face thick-

ness ratio has no appreciable effect on maximum damping.

When	 = 1, symmetrical case (i.e. X 	 0.5)

always gives higher damping than any unsymmetrical case.

However, for	 = 3, the value of X for maximum damping,
is different.

Graphs similar to those given in Figs. 111-11 and

111-12 are useful not only in indicating effect of sytem

parameters but also in determining the performance
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characteristics of any layered sandwich. 	 For any

modal number 'n' and shear modulus Q2 for the core, is

calculated and on the appropriate Sraph gives the posi-

tion of the operating po;int.	 In addition to giving

and nearness to optimum conditions, the dynamic

displacement response can be got from

= fl=1	 K(k+ik)-pp2

	 (111.19)

Detailed application of these graphs for design study is

discussed in section III.E.

III.B: Extensional effect of the core

In a 3 layered sandwich, with the core made of' a

viscoelastic material, shear effect is usually predominant

in the core and most of the damping in the system is due

to that effect.	 In an unsymmetrical case, however, if

the viscoelastic core is thick and rigid arid one of the

faces is less rigid compared to the other face, one might

expect damping due to direct strains in the core as well

in addition to that due to shear, the former type is

known as extensional damping f 60 J . Since the equations

of Chapter II contain both these effects, it is possible

to study the extensional effect of the core as below.

I'loat viscoelastic materials are taken as incompress-

ible (72, 92] and so	 = 3G2 .	 Also extensional damping
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loss factor	 is taken equal to that in shear t 2 t6o, 73).

Fig.III-13 shows srap1.s of total damping and also

damping due to shear effect in the core only. 	 It is

seen that as the constraining effect of layer '1' is

reduced by decreasing a13 , extensional damping effect

increases.	 In Fig.iII-14, a plot of 'i vs	 for5	 .3
varying values of a13 , is drawn.	 It is seen that the

curve for loss factor	 is flat, for lower values of

a 1,3 , as 
•2.3 

varies.	 The variation in 
•2.3 

may be

regarded as that in modal number 'n' and hence high

damping may be expected in such a case, over a large

frequency range. This is due to the extensional damping,

which is predominant when a13 is small and ihich is

not sensitive to variation with model number 'a', as

is known in a 2 layered configuration [30 ].	 In table

T-1, the extensional damping is seen to be of signifi-

cance at either very lowoz' high values of 
•23' 

when

shear effect is not of importance.	 In Table T-2, results

are given for a symmetrical sandwich. Before calcula-

ting 'q' by analysis II, shear coefficients 'k 1 ' re-

quired therein are calculated from section II.D.3.

Extensional damping effect becomes apparent for values

of core shear modulus G2 greater than 10 lb/in 2 , in

the case illustrated, even when there is enough con-

straining of the viscoelastic core, by the outer faces.
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III.C: Comparisons

The results obtained from analysis I and analysis II

will be compared with each other and also with those

obtained from t60]. For this purpose, a number of cases

are anaJ'sed and results are talu]ated in tables T-3 to T-5.

and k 5 are calculated from reilta of Chapter II and

the form of relations used, correspond to equation 111.15.

The values of shear coefficients required in each case

have been calculated, using procedure given in section

II.D.3.	 Loss factor T) is also calculated from [60 page

61 eqn. 20:J.	 Expression for	 is not directly avail-

able from [60] and hence has not been calculated.

II.C..i: Comparison of results from analysis I and II

Analysis II is expected to be more accurate for modes

involving short wavelengths i.e. at high frequencies,

since it includes shear effect in faces as well. 	 Tables

T-3 and T-k illustrate this point. When the core thick-

ness is small and thickness of each face is large as for

Table T-3, the percentage difference between results of

analysis I and II is more pronounced when the modal number

is high or for modes of short wavelengths. The percentage

differences were calculated •ver the values of analysis II.

When the core thickness is more as in table T..Li, shear

effect occurs mostly in the core even at higher modes and
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so the corresponding percentage difference is not high

in table T-4.	 In both these tables, results of i

obtained from analysis I were generally found to be higher

than those from analysis II and hence will not be on safe

side if used in. practice.	 It may be seen that these

tables are drawn for high values of 'n', which in practice

will be involved only if the excitation frequencies en-

countered are very high. 	 This has been done for the

sake of illustration.

III.C.1 : Comparisons with previous work

Results of	 obtained from (60) and the present

work were compared. The percentage differences calculated

over the results of analysis II of Chapter II, are given

in table T-5. There is significant difference for long

beams and low order modes. The difference is seen to

increase as	 increases. The values of 'it' obtained

from analysis I and II for the cases quoted were nearly

same. The discrepancy in results obtained from [60) may

be attributed to certain assumptions made therein, which

are not included in the present work.	 In [60 eqn.19

page 58], a stress strain law for the core is assumed

which is not strictly correct when the extensional effect

of the core is taken into account..	 Other approximations

involved in (60 eqns. 15 page 60) are:
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E2t 2 << E3t3

(E1t1)2<< (E3t3 2)

Thus, results for thick rigid cored unsymmetrical sand-

wich may be in error if results of t60] are employed.

Another assumption made in [603 involves the calcu-

lation of resonance frequencies of layered beam, treating

it as a single solid one, w1en frequencies vs 	 plots

are drawn. This has been justified for a taped

structure in which the tape is very thin compared to the

base plate, and the resonance frequencies of the taped

structure may be taken equal to those of the base plate.

This effect has been determined in table T-6 for a

chosen 3 layered unsymmetrical case. 	 'k' is the rigidity

ratio of sandwich, with respect to the reference system,

which is E	 E$	 3

and t	 = t + t3 in this case.S	 I

12

5

k	 o.66k4

TABLE T-6

1	 a13 = 1

	= 0.1305	 =0.87

	

iO...2	 10_i

	

0.697
	

0.9237	 1.161

L



Value of 'k', if' only solid base plate (layer 3) is con-

sidered as in [60] isX 3 - 0.658.	 Fromt table T-6,

k 1.1963 when- 1.	 Since frequencies are proportional

to /IZ, in such a situation, the ratio of corresponding

resonant frequencies will be approximately 1.35 (neglect-

ing the mass of the thin viscoelastic layer) giving an

error of' 35% if frequencies of solid base plate are

employed as in [60].

III.D	 Resonance curves due to sinusoidal motion of

end supports

The solution for a simply supported sandwich beam

subjected to harmonic loading of intensity fix) sin pt,

is given by eqn. 11.18 (for analysis I), wherein the

various coefficients f, g 1 , f3 etc., are complex, because

the moduli for viscoelastic layer 2 are taken as complex.

If the beam is subjected to sinusoidal transverse

motion of amplitude	 sin pt at each end (motion at

each end being in phase), it is shown in t8i and 99]
that the relative transverse motion of' any point on the

beam, with respect to the ends, is obtained by taking

a loading of uniform intensity f(x) = pp2x0 , where p is
the mass density of beam per unit length and f(x) is the

amplitude of loading intensity which varies sinusoidally.

This 10 explained in [99] from the theory of relative



motion that the equations of' motion relative to a moving

coordinate system may be obtained by employing additional

forces equal to mass X acceleration of system of

reference.

In Section II.C.2, 1(x) has been taken as

Do

flEx
1(x)	 i f'	

Ln-i

Multiplying both sides by sin 	 and integrating from

0 to L, it is seen that

I	 =	 J' 1(x) sin	 dx	 (III.20a)

Taking 1(x) = F, a uniform intensity of loading, it is

seen that

I	 -	 when n = 1, 3, 5 etc.

= 0 when ii = 2, Li, 6 etc.

i.e. the motion of a point on the beam, with

respect to ends may be obtained from

W	 sin flEX , 
where w is obtained

from eqn. (11.20) viz.

bw tRT + i	
= In

w in phase with excitation =	 rn RTU	 n
2	 2

and out of phase component of w being
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-f
n

b(RT 2 + IT2)

For drawing the resonance curves (or W, the values

of	 are calculated at a number of frequencies, the

number of terms in the series taken being large enough

till the w terms corresponding to high values of 'n'

are negligible. For high frequencies, more terms in the

series would be required.

The series employed is convergent. This may be

verified easily in any particular problem when the terms

are calculated on a digital computer, where it may be

seen that the increase of terms beyond a certain number

in the series may hardly affect the answer. However, for

the simplified case of Section II.C.&, this may be seen

as below.

nlrx
W	 -	 WSJ.fl 

Ln-i,3

00	
nx

=	 2	 2 ;for
n=1,3 nlC(rt + 1

n	 U

end-displacement excit at ion.

Using expressions for tkl and 'ki 5 ' as defined in

Section III.A.1,
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U7tc

	

00	 4Fsin

	

= 2;	 (111.2Gb)
bE tn-1,3	

nlc[()	 12	
(k+ik'll- pp23

From [100], it is seen that a series of the type

1(n) =	 is convergent if P >1.	 From

Figs. 111-11 and 111-12, it is seen that with the increase

of the shear parameter,. 'k' increases or remains constant.

Also from figs. 111-5, 111-il and 111-12, it may be

observed that*change of shear parameter causes a linear

variation in 'ki', in regions away from optimum values,

where the curves are flatter.	 Since the shear parameter

involves only 'n2 ', the power of 'n' in the denominator

of eqn. (III.20b) is always expected to be greater than

unity, making the series convergent.	 It is desirable,

however, that at any frequency of excitation pt, the

number of terms in the series should be sufficiently large

so that in the nth term of the series, 1r ' is much

2greater than pp

Since equs. 11.20 and 11.67 are similar, the above

procedure for obtaining resonance curves from analysis I,

also holds for analysis II.

For illustration, resonance curves have been drawn for

a chosen case in Fig. 111-15. 	 In the Fig., the absolute

value of transverse displacement amplitude at the middle

of the beam is plotted, the absolute transverse motion
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being	 -	 + x	 (vectorial addition)

is absolute motion

and	 is motion with respect to the ends.

In the Fig., the amplitude atLowest mode is seen to be

highest and at firSt decreases for higher modes but

gradually increases later, because of low damping at

higher modes, for the configuration chosen.

In practice, values of G 2 v	 and 
2 
vary with

frequency and for each frequency, the corresponding

properties should be used.	 In above illustration,

however,constant values are employed since it is not

drawn for any specific core material.

III.E : Correlating Damping Effectiveness and Resonant

Response Analysis nnd Application of These Studies

The validity of damping effectiveness studies of

previous sections will be discussed. 	 It will be deter-

mined whether these have any relation with the displace-

ment resonant response due to any harmonic excitation,

and in particular to the end displacement type of excita-

tion, employed iii Section III.D.	 Results for peak dis-

placement amplitude and corresponding frequencies will

be given in dimensionless form for the above mentioned

displacement type of excitation and finally application

and use of these studies will, be discussed.
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III.E.1. : Correlating damping effectiveness and resonant

response analysis

In Chapter II, it has been shown that the expression

for transverse displacement response can be written as

_	 f
w =	 sin	 sin pt	 (111.21)

n=1 RT	
L

n	 n

Expressions for RT and	 are given in Section II.C.3
n	 xi

for analysis I and II.D..4 for analysis II. 	 Definitions

of i and ku (or DRE) for each mode, corresponding to

each single term in the series, are given in Section III.A.

If it is assumed that by a suitable application of

dynamic loading (generalized loading), the response 'w'

is due to only one term in the series say nth, then at

frequency given by	 = 0, all points on the beam will

be in phase, such a frequency may be called the nth mode

frequency i.e.

At nth mode frequency, transverse displacement res-

pone is inversely proportional to I, since	 - 0.

is proportional to ku 5 representing the displacement
n

response effectiveness for the corresponding mode.	 In

practice, with any general type of dynamic loading, at

a frequency corresponding to nth mode, there may be con-

tribution to total dynamic response from other terms in

the series.	 Under these conditions, k 5 may not adequately
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sin ----	 (111.22)

4	 2.

i itn

4
nr

i ri s - (111.23)

T33

represent the displacement response effectiveness.

hen the excitation is of the type given in Section

III.D i.e. both ends of the simply supported beam are sub-.

jected to sinusoidal displacement exci 4 3tion of same

magnitude and phase,

is given in Section III.D as =	 ,

= 0,	 n=2,4,6,
2where £ = pp x0 , x0 being amplitude of vibration

of beam ends.

Taking x0 = 1 and the displacement amplitude at centre

of beam relative to the ends as TR,

-
4	 2

n1,3 r +1 
i -pp2n	 n

For simplified case of analysis I, r and 	 are given
n	 n

in eqn. (11.25) and do not involve any frequency terms.

It only tran W i1,1terrns are included, eqns. (11.20) and

(11.67) can be reduced to a form similar to eqn. (111.22);
±

1) according to Section III.A for nth mode - ___
rt
n

It may be seen from equ. (111.22) that at nth mode

frequency,

Contribution of nth te'm in series to
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(Since at nth mode frequency, r

At nth mode frequency, nth term in the series given

by eqn. 111.23 is expected to be predominant in T' and so

i, in. this case would be an adequate measure for dis-

placement response effectiveness.	 To verify this, figs.

111.16 to 111.18 are drawn for first 5 resonances encounter-

ed in the end displacement type of excitation chosen.

The values plotted are: modal frequency, corresponding

modal loss factor and TR at the model frequency.	 These

are plotted against core shear modulus 62.	 Each of the

Figs. shows that T becomes minimum at almost the same

value of G as the one at which	 becomes maximum.	 For2	 s
Low order modes, TR is inversely proportional to

while this is only approximately true for high order modes

e.g. when n	 7 or 9.

III.E.2 : The peak displacement response

For any general type of excitation, the modal Ire-

quencies as defined in Section III.E .1 may be different

from the frequencies curresponding to peak dispiscement

amplitudes (called peak frequencies hereafter). 	 Also,

peak r1 , 'r' and stresses will occur at different frequencies,

TA is the ratio of amplitude of absolute motion of middle

of the beam to end amplitude, for the end displacement type

of excitation, TR being as defined in Sectionlll.E.1. 	 For
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a chosen case, with parameters, are listed in Fig.III-16,

peak frequencies for TA , TR corresponding to the first

five peaks are listed in Tables T-7 to T-11, together

with the corresponding modal frequencies for various modes.

Each table refers to a single peak and a mode and the

value of core shear modulus is varied. 	 It may be seen

that in all these tables, peak frequencies for TA and

modal frequencies are nearly same, while peak frequency

for T is different from these, for higher modes. 	 In

practice, it is tedious to determine peak frequencies,

while modal frequencies may be calculated easily. 	 So,

it is particularly useful to find that peak frequencies

for TA and modal frequencies are nearly same.

In order to plot peak TA and corresponding frequencies

for various values of shear parameter, a new shear factor

'S' will be defined, which unlike	 in Chapter II,

does not include the modal number 'n
Q

Taking shear factor S = 	 2	 (111.24)

E	 2(Tr)233 L
and dimensionless frequency factor

U 2
if	 P

Y -j/	 (III.2)
I, 1Tt4	 3
I	 E3t3

From equ. (111.22), displacement of any point on the beam

with respect to the ends, 'when each end is ezcited with a
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TABLE T-7

Frequency	 G2 lb/in2

c.p.a.	 10	 25	 1*0	 50	 75	 100

Nodal frequency
corresponding to	 11.725 5.1*831 5.91101 6.11185 6.1*861* 6.681*6
n=1

X Peak frequency

for T	 1&.8	 5.7	 6.1	 6,3	 6.6	 6.8

_______________________________________._________________ 	
- -	 ..	 -.-	 ______________

I Peak frequency

for TA 	4.7	 5.5	 6.0	 6.2	 6.5	 6.7

TABLE T-8

Frequency	 G2 lb/in

c.p.a.	 - I	 1
100 I 300 I 500 I 1000 1 2000

Nodal frequency 1
corresponding to 113.161* 51.87 56.179 60.731* 63.0

LL-.-- 1 •	 -

II Peak frequency

for	 415 1196 54.5	 59•7	 63.0
1-•	 --	 I

II Peak frequency

for TA	 4j.6	 52.5 56.5	 61.0	 6.6
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TABLE T-9

Frequency	 G lb/in2
c.p.s.	 100	 300	 1000	 2000

t	 ____________ _____________ ______________ ______________
1 }lodal frequency
corresponding 107.3 121.27 i48.i	 163.36
to n=3

lLtIpeak fre-
I qnency for TR	 111.	 132.5	 161	 1.72

peak fre-
qencyforTA	 107122.2	 150	 163.4

TABLE T-10

	

-r	 .

Frequency	 G2 lb/in2 -
c.p.s.	 100	 300	 1000	 2000

-	 .-.	 -,	 -
Modal frequency
corresponding 202.46k 218.3 259.31	 292.02
to n=7
IV peak fre-
quency for T1	 199.54 206 1 232 -	 268-- 4	 ..-.

IV peak fre-

	

202	 220	 261	 £94cuency 1 for TA

10000

180.05

181

180

10000

344.4

"9

345

TABLE T-11

Frequency	
J	

G2 lb/in2

c:	 ,y100	

300	
1000 r 2000

Modal frequency
corresponding 329.12 345.74 394.61 44.i8
ton-9	 ____ _____ __________

forTR 331.5	 363	 497 521.2

ror TA [9.5 
l'
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displacement x0 sin pt (x0 - 1 here is

i	 2	 nitx
=	

Y Sill	
sin pt	 (111.26)

n=1,3	 'l•	
Y2)^I(it 

'k
(ii rt -

n	 n

The expressions for rt and	 are given below,
U	 fl

from the analysis I of Chapter II, hen longitudinal and

rotational inertia terms are not included.

r	 (R1R2+1112)-(R3R2+1312)
(111.27)r - h3

U

1t	
(11n2-12R1)-(13rt2-12n3)	

(111.28
U	 R22^122

Expressions for R2, 12P R1 , I, R3 , I3 A, B, C, D are as

	

given in eqn.	 11.20.	 However,

	

Sk	 a23823

	

r 2	 _____B	 +1.3 1.3	 3

5k2	 a23e23 
2

- -	 3- 
2.3

5k	 Br	 2	 2323
= 02.3 -	 6

= Sic2	 2.302.3
6	 '2	 62.3

r	 Sk2	 a23023
g2 = 1 

+ 0 23 +	 3
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112

14

I	 Sk2	 a23823
- t126	 32.3

1+6	 26	 6

	

1.3	 2.3) - 2. 3(1 20	 )a- Sic2	 28	 12	 - 1.3 2.32.3

1323	 62.3
- Sk2(	 28	 2	 12 (12613z232

2.3

1+6	 26
Sk (	 1.3	 2.,)a2.,62.3(2 _013

2	 262.3	 1

1+0 13 +26 2 ,	 a23023	
013) 2h 2 ' = Sk2(	 26	 2 +	 122.3

1+a1 , 3 	Sk	 I)
3	 2 (1+6 3+2823)hr -
	 1.2	 1

	

a23e23 
(e 1 2	 1)12

Sk
h31	 2	 _________

11623 1+0l,+2e23)2y2+ 
a232.3 (0 2

For a chosen case with parameters as given in Fig.

111-19, srapis of peak value of TA and corresponding frequency

factor 'V are drawn using the above equations, for

various values of shear factor 'S'. 	 For each value of S,

frequency factor Y is varied in eqn. (111.26) and the value

givin, a peak value to TA is noted. 4r&pbs corresponding

to the first two peas are given in Fig.III-19 and Fig.III-

21.	 Also,9rapkg for I corresponding to n=1 and n-3 are
drawn in Fig . 111-20 and Fig.III-22 respectively.	 It is
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seen from the above figs. that values of	 for first peak

are almost inversely proportional to	 for n=1, as S is

varied.	 Similarly1 values of TA for second peak are

inversely proportional to	 for n=3.	 Because of the

symmetrical type of excitation used here 1 resonances occur

only for the odd numbered modes.	 Application of these

Figs. is discussed in the next Section.

III.E.3	 Application of optimum damping studies

As discussed in Section III.A, the damping in a 3

layered sandwich with viscoelastic core is optimum at a

certain value of shear parameter only. This can be

seen from Figs. 111-4, 111-5, 111-li and 111-12. 	 The

peak displacement response also becomes minimum at a

certain value of shear factor, as shown in Figs. XI1-19

and 111-21.	 If the excitation of the system is such

that a generalized mode is excited or the contribution

of other modes at resonance is negligible, Figs. similar

to Figs. 111-4, 111-5 or 111-11 and 111-12 are useful

at design stage.	 However, if the excitation is such

that it is likely to involve contribution of many modes

at any resonance, 'aphs for peak response e.g.	 Figs.

111-19 and Fig.III-21,are desirable.

The Figs. mentioned above have not been drawn for

any particular viscoelastic material.	 An actual visco-

elastic material has frequency dependent properties, i.e.



148

values of both G2 and T12 are dependent on the frequency

of oscillation.	 In order to use these curveS for an

actual material, a number of trials have to be made e.g.

to determine the resonant frequency for any mode for a

given sandwich beam, using Figs. similar to Figs. 111-11

and 111-12, shear parameter may be calculated from suitably

assumed viscoelastic material properties and corresponding

value of 'k' determined from the appropriate curves. Modal

frequency can be calculated from 'k'. Then, it may be

checked from the material properties whether the properties

assumed initially, correspond to this frequency. 	 If not,

new starting values of material properties, which correspond

to this frequency, may be assumed and the procedure repeated

till it is found that the values of material properties

used correspond to the modal frequency determined. Know-

ing this, loss factor 't' can also be got from these Figs,

and it may be seen whether the damping obtainable at that

mode is the optimum one. 	 If not, the properties of the

-ideal material required for optimum conditions may be

determined from these curves. This may be done for all

possible modes of the sandwich beam, likely to be encoun-

tered in a given frequency range and the viscoelastic

material properties desired at each model frequency for

optimum conditions, may be specified.	 Thus, one can

specify the type of frequency dependence of the material
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properties required in order to attain optimum damping

conditions, throughout a given frequency range.

A simple example of obtaining the type of frequency

dependence of material properties Is given as follows.

If it is assumed that loss factor 	 is constant at all

frequencies and it is desired that optimum damping should

occur at all modes, shear parameter 'P or *23 must corres-

pond to the optimum conditions and should remain constant

at that value.	 This will be constant if G2 is<n2 (111.29)

(all other parameters of the system reamining uuhanged).

Using notations of Section III.A.1,

• flExsin 
L sin pt (111.30)

Keeping in view the definition of modal frequency as

given in Section III.E.1, it is seen from equation (111.30)

that the various modal frequencies are proportional to

IL2 , since KR isocn'.	 Using eqn. (111.29), it is found

then that G2 should vary linearly with frequency.

If the space distribution of excitation is known,

Figs. corresponding to 111-19 to 111-22 may be drawn,

giving peak response and corresponding frequencies. Here,

the desired conditions are the minimum values of peak

response and these plots can be used in a manner similar

to the optimum damping plots explained above.
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III.?: High Frequency Effects

If only transverse inertia terms are included in the

equations of motion, the solution for elastic case (i.e.

when all layers are elastic) involves only square of the

frequency terms e.g. equations (11.22) in analysis I,

which is the solution for simply supported sandwich

beam, involves only p 2 terms.	 In this case, corresponding

to each modal number, a frequency can be calculated, this

being the natural frequency of flexural vibration. 	 If

translational and rotational inertia terms are also in-

cluded then the solution involves higher powers of fre-

quency terms and for each modal number, a family of modes

exists, e.g. eqns. (11.19) for analysis I and eqns. (11.53)
for analysis II.	 In eqn. (11-19), corresponding to any

value of ii , values for natural frequencies can be

obtained by putting right hand side equal to zero. 	 The

mode corresponding to the lowest frequency will be pre-

dominantly flexural, while those occurring at higher fre-

quencies will be of thickness shear type. 	 In [20-22, 28],

the various families of modes thus obtained are discussed.

At a thickness shear frequency, for an infinite beam,

there is no transverse displacement and longitudinal die-

placements are independent of x' [21, 69].	 Above this
frequency, the modes get coupled (70).	 Such a frequency

known as cut-off frequency occurs at a very high frequency
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for a homogeneous beam.	 For a sandwich structure, however,

it may occur at quite low frequencies [26), making it

desirable to study the effect, which may be of importance,

in practice. The behaviour of sandwich beams at these

high frequencies does not appear to have been studied.

It may be seen that thickness-shear frequency (i.e.

cut-off frequency) of an infinite sandwich beam with

p 1 = p3 = 0.000259 lb insec2

p2 - 0.0001295 lb ii4sec2

a13- e13 = i

e	 =4
2.3

-	 lb/in2, t 3 = 0 .25" and Q2	100 lb/in2

is as low as 300 c.p.a.

If L = 50",for a simply supported case, corresponding

tht
to n=1, the frequency of A mode belonging to the second

family, which is predominantly of the thickness-shear

type, is around 1400 c.p.s. 	 These values are calculated

from the frequency equations of symmetrical sandwich

cases given in [22).	 Hence if the excitations are likely

to occur at frequencies around this value, the exclusion

of translational and rotational inertia terms is likely

to involve error in results.

Resonance curves have been drawn for a particular

case, parameters chosen being given on Fig.III-23,

with the ends of simply supported laminated beam, subjected

to stnusoidal displacement of amplitude x sin pt. 	 The0
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core is made of plasticized P.V.C. and the dynamic pro-

perties of the material used in this section for each

frequency are taken from £7 1 ]. Curve5 of longitudinal

stress amplitude at the middle of the beam, occurring on

the outer fibre of layer 3 and its phase with respect to

the ends, shear strain amplitude in the core at ends of

the beam and its phase relative to end-displacement,and

R-plots of P , the amplitude of displacement at middle of

beam relative, to ends for x0 = 1 are given in Figs. 111-23

to 111-26.	 These are drawn for analysis I in Section

Il-C, when all inertia terms are included in the equations

and also when only transverse inertia terms are included,

in order to indicate the importance of longitudinal and

rotational inertia terms.

Longitudinal stress at the outer fibre of layer 3

is given as
t

- E3 (u' 3 -	 2

nitxE (—(i) u	 ^()w	 -Jsin L sin ptu=1,3

(111.31)

Simultaneous solution of eqris. (11.18 , taking the co-

efficients involving moduli of layer 2 as complex, deter-

mine u31 and w and hence the stress in eqn. 111.31).
Expression for shear strain 'y2' is given by eqn.

(11.2) and the solution to be substituted by eqn. (11.17
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Similar expressions are derivable from Section II.D

for analysis II.	 However, for plotting the Figs. 111-23

to 111-26, analysis I was emplovc'd.

It is seen from Figs. 111-23, that at higher fre-

quencies, the longitudinal and rotational inertia terms

change the value of longitudinal stress amplitude con-

siderably.	 A peak around 8500 R.P.S. which occurs in

thccurve, for which all inertia terms are included, appears

to be due to the mode of thickness-shear type. 	 The phase

angle in Pig. 111-24 is also considerably affected due to

the neglect of longitudinal and rotational inertia terms.

Similar situation holds for shear strain amplitude in

Fig. 111-25.	 However, the transverse displacements ere

not seen, to be affected to any degree of significance by

the inclusion of longitudinal and rotational inertia terms

and hence only one curve is drawn in Pig.III-26. 	 Only

the longitudinal displacements appear to be affected and

hence stresses and strains in Figs. 111-23 to 111-23 are

changed at high freouencies.

It may be not .. irom the above mentioned grapiB that

the corresponding peaks for stress and displacement amplitude

occur at different frequencies.	 Also, some bumps are

seen to occur in thecurves (e.g. around 100 R.P.S. in

Figs. 111-26), which are not due to the nearness of a

resonant mode, but are due to abrupt change in material pro-

perties with frequency, which occur in the properties
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given in [71].

III.G Inclusion of Effect of Non-Linearity Due to

Amplitude Dependence of Viscoelastic Material

Properties

The dynamic properties of viscoelastic materials

viz, the in-phase shear modulus and the loss factor have

been taken to be independent of strain amplitude in

Chapter II and in other sections of the present Chapter.

In practice, some viscoelastic materials have their pro-

perties dependent on the strain amplitude, to a signi-

ficant extent.	 The flexural vibrations of a sandwich

beam result in shear strain in the core. 	 If a visco-

elastic iraterial having strain dependent properties forms

the core of a 3 layered sandwich beam, the effective

dynamic properties of the core will vary along the beam

length.	 This effect will be taken .ccount of, in the

present section.

III.Q.i	 Approximate solution for dyndmi response,

with assumed non-linearity

Here, the amplitude dependence of dynamic properties

of the core material in shear, will be taken into account

for an assumed stress strain law.	 The stress strain law

taken is

- (A1+A2 -k y + (c 1 +c 2fr) y3	 (111.32)
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cY = shear stress

y = shear strain.

An approximate solution is attempted £'rom the variational

integral using Ritz method.

The stationary value of functional ', according to

Hamilton's principle, is equivalent to the equilibrium

problem [80, p.221), where

-	 t2

= 5t (T-U+v) dt (111.33),

'T' is kinetic energy, 'U' is strain energy and 'V' Is

potential energy of time dependent forces.

The last mentioned forces make the system non-

conservative.	 The admissible motion must be compatible

with constraints and must coincide with actual motion at

t = t 1 and t2.

0 gives
t2

S (6T-5u-&v)dt = 0
ti

(IiI.)

The stress strain law used for the core material is

given in Eqn. (111.32), where the terms C 1 and C2 are due

to non-linearity of the system.

The strain energy expression U is got from Section

II.C.1 for the simplified case of Section II.C.&,
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L	 L	 L	 2
r A1y

u =qf (wt)2dx+r$ (uj)2dx+bt2J	 2	 dx0	 0	 0

L

+ bt2 J	 dx	 (111.35)
0

where q - ç E 1t 13 +	 E3t33

bE 1 t 1	bE12t12
r-	 +

2	 2E3t3

y	 ue - w'f

E1t1
e t2 + E3t3t2

f = 1 +	 3

2t
2

Subscript 1 in	 will be dropped from now on, for con-

venience. 5U is got by the procedure as before 1 by giving

increments ix and W to the terms .z and w respectively,

eliminating all higher powers of these increments and

converting all the derivatives of ew and	 , by integrating

by parts.

bU is got as -	 $ [2qw""	 - 2ru"

^bt 2A 1e(ue-w f)5ui-bt 2A 1f(u l e-w"f) j

+bt 2c 1e(ue-w'f) 3 o

^3bt 2cf U'e-w"f)(Ue-w f) 2 r] dx (111.36)
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ÔT is same as in Chapter II, being

wdx	 (111.37)

where p b,p1t1^p2t2+p3t3)

L

by 
= I $ (Fsinpt bw-bt 2 (A2;)Oy-bt 2 (3C2y2;)5y] dx

	
(111.38)

where F is the intensity of external dynamic loading

2per unit length, and is equal to pp x 0 , if the ends of

the beam are subjected to a displacement excitation of

x0 sin pt.

In eqn. (111.38), -ye sign is used for virtual work

of damping forces (79 p.277].

Substituting for y in eqn. (111.38) and reducing

Ow' to Ow by integration by parts,

= ILS[(F sin pt)&w -bt 2A2 (e - *'f) eOu

- bt 2A2 (ii'e - "f) fOw -3bc 2t 2 (ue-w'f) 2 (i'te-'f) ebu

- 3bc2t2ff(ue.w'f)(A'e...*"f)

+2(ue-w'f)(u'e-w"f)(iie-*'f)) Ow] dx	 (111.39)

The equations of motion can be written down, by using

Ow= 0 and grouping the terms separately for arbitrary

displacements Ow and bu.	 But,below an approximate solu-

tion will be found for the problem, using Ritzs variational

method.	 In this method, a solution, which is consistent
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withxterna]. geometric constraints 1 is assumed and the

variational integral is minimized with respect to the

unlaiown parameters involved in solution. No direct use

of equations of motion iø made.

Only a periodic solution of the same frequency as

excitation is considered.	 The solution assumed is:

w4 sin pt + w cos ptic
(III.40)

tLU sinpt +u cos pt
is	 ic

where w , w , u and u are functions of x. These
is	 ic	 is	 ic

are assumed so that the required geometrical boundary

conditions are satisfied

w	 =
is

w	 =
ic

U	 =
is

U	 =
Ic

nTtx

	

4, 
sn	 L

n
ntx

1 w sin

	

cii	 L

usn cos

n
nitx

1 U COB
	cii	 L

(111.41)

This corresponds to the linear solution of Chapter II.

It is taken that the non-linearity of the system changes

only the vatues of the parameters w , w , U , u
Sfl CU Sn CU

without changing the form of the solution given by eqn.

(111.41).	 This might not hold for highly non-linear



systems, but for those in which the contribution of non-

linear terms in stress strain law is small (as is true

for common materials), this assumption should be satis-

factory.	 A similar form of solution has been assumed

by Sethna [83), while analysing the free vibrations of

homogeneous beams with a non-linear viscoelastic law.

However in t83), after substituting the assumed solution

in the differential equations of motion, the resulting

equations are treated by the method of averaging due to

Kryloff and Bogoliuboff. The use of approximate varia-

tional methods for non-linear vibration problems is dis-

cussed in [79-82, 84-86, 93].

Equations (111.40) are substituted in eqns. for 5U,

oP and OV and integration is performed over the time

period of motion viz. t and t are taken as 0 and1	 2	 p
respectively. After performing the integration w.r.t. t,

and combining terms of 8U, OT and ÔV according to equation

(111.34), we get

J' [(2q w	 +bt2A1f ! m 1 +3bt2c1f()

3an1 2m +m m ^2m1m2m' 2 )-pp2	w1

-	 - (bt 2A2fpm Z )+(3fbt 2c 2p)(F)(2mimj m2

- m22m -3m12m'2) 6fbt2c2p(F)(m12m2 -m22m!,-2m 1m1 m210w18

+(2q	 Wr +bt 2Af	 m +3bt2Cif(.)(2in1nm?+m2we+3m2m
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- pp	 w +bt A 1pm'	 3fbt2c2p() (mzn -
ic	 22	 ip

2m1m2m +3mm)

7t	 2	 2	+(6fbt2c2p,(',)(m 1	-	 +2m in in ')) 5w

	

122	 ic

u 1t 5 +bt 2 A 1e . in +bt c e	
2

	

p 1	 2 1 
( 7j. )( m1 +m1m2

p

-pbt2A2en. (ZE.) -3bt 2c 2ep()(m12m2 +m23 )) u15

4
	u" bt A e	 in ^bt c	 3t	 3	 2

p ic	 2 1 p 2	 2 
1e(—)(m2 +m1 m2

	

3	 2
pbt 2A2e(m	 ) (3ebt 2c 2p)()(m1 +zn2 ni1)3 bu1) dx =

ip

(111.42)

where m = eu -lw' ,	 m = eu -1w'ic	 ic1	 is	 is	 2

- eu' -lw" ,	 in' = eu' ff=
1	 is	 Is	 2	 Ic	 ic

Taking only 3 terms in the series assumed in equ.

(111.41), substituting these in eqn. (111.42), performing

integration with respect to x, we get 12 non-linear

imUltaneous algebraic equations, for arbitrary values

of Sw 1 , Sw 2 etc.	 These equations were solved on the

Atlas digital computer, in which use is made of the

Newton-Raphson iterative procedure.

It is possible to show from the simultaneous alge-

braic equationsobtained that if the terms involving c1

and c 2 are eliminated, the equations obtained resemble

those derived in simplified analysis I of Section II.C.1k



if the assumed solution is substituted in the latter.

An alternative approach for solution is to solve

directly by finite differences, the 4 simultaneous non-

linear ordinary differential equations, which can be

obtained from parenthesis f 3 in eqn. 111.42, for

arbitrary values of 8w , 	 $ 5u and uis	 ic	 is	 ic

In the Newton-Raphson iterative method t87,88) for

solution of simultaneous non-linear algebraic equations,

the iteration process is started with an assumed solution.

If x 1 , x2 ... x is the assumed solution and if the

required solution is at (x + , x i-c ... x +6 ), for11	 22
'n' simultaneous equations, then the n' variable form

of Taylor's theorem [873 gives:

x -s-c	 .... , x +622	 nii

n	 at
= f(xi , x2 ... x)^	 6r ax1 

+ 0(62)	 (111.43)
r-1	 r

(i - 1 ... n)

whence for a second order process, we take ( c 1 ... c)

to be the solution of a set of linear simultaneous

equations,

	

at.	 ef.	 f.

	

1	 1 + 
•••••	 c	

1 -
	 (III.!i4)1	 2 ox2	nOx	 1.

1 ... n).

The process is repeated with the new solution, till the

solution to the desired degree of accuracy is obtained.
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This method is used in Mercury library programme No.557

(Institute of Computer Science, University of London),

hich has been used in the present work. The solution

for the corresponding linear problem (i.e. neglecting non-

linear terms) is used as the starting solution and the

non-linear solution is obtained after a number of itera-

tions when residues are reduced to a negligible value.

With this approach in the illustration given below, the

final solution converged in each calculation, to a value

which gave negligible residues.

III.G.2 : Illustration

For a beam, the ends of which are subjected to a

displacement excitation x0 sin pt, with the parameters

given in Fig.III-27, a resonance curve is drawn for the

first resonance, 	 it may be seen that only 3 terms are

used in the assumed series solution (Eqn. IiI.ii) and

so the solution is expected to be accurate only near the

first resonance. 	 For higher frequencies, more terms

are required in eqn. (111.41), the rest of (he procedure

being the same as explained.

The stress strain law used is

+ C 1..= (A + A2 _)Y	 (C1	 2 at1

where y is shear strain and c is shear stress.
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If	 =	 sin pt,

then,

3	 2	 .	 3	 2-v sin pt (A2^ . c 2y0 )py0cos pt-	 i; Ci-Y0 lo

+ terms involving sin 5 pt and cos 3 pt

(III.i 5)

It has been seen that in most viscoelastic materials t89],

the non-linearity exhibited is to such an extent thattall

the shear strain amplitudes, the a-y plot remains an

ellipse or the sin 3 pt and cos 3 pt in eqn. III.i5 can

be taken to be negligible. The solution given in

Section III.G.1 also has been restricted only to the

period which is the same as that of the excitation fre-

quency.	

3	 2	 Iin phase with	
= A + .. 10So,	

1	
( (III.l&6)

	

_______________	 3— 21-	 in quadrature with ' 
=	

. 20

where A2 = pA2 and c 2 - pc2

The various material constants are frequency dependent

and their values should be taken accordingly hen the

dynamic response at each frequency is computed.

At any frequency Ip' radians/second and	 = 0,

G1 =	 and G2 - A2 .	 For the sake of illustration, the

material properties of the core will be taken as follows,
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for all values of 'p'.

A	 = 1000 lb/in2 ,	 c2 = 666.67 lb/in2

c 1 =-5000 lb/in2,	
2	 -2466.7 lb/in2

In practice, G1 and G2 can be experimentally obtained

at any value of p' and 'y0 ' and then it can be found

it' the assumed stress strain law is obeyed at each Ire-

quency.	 If so, A 1 , A2 , c 1 and c 2 can be determined

at each frequency, using eqn. (111.46).

Figs. 111-27 to 111-29 give	 of amplitude and

phase of transverse and longitudinal displacements for

non-linear stressstrain law (Curve No.1) and also for

linear stress strain law (in Curve No.2), with values

corresponding to	 = 0.	 It is seen that the non-

linearity changes the peak response and corresponding

frequency.	 It was found from the computations for

Curve No.2 that the maximum shear strain at beam ends

is around 0.3, in the linear case considred and is zero

at the middle of the beam. 	 So, Curve No.3 is drawn in

Figs. 111-27 and 111-28, using equations for linear stress

strain law, with. material properties correspondingto

0 .3.	 The curve for the non-linear case is seen

to be in between the two curves corresponding to the two

curves for linear cases, as might be expected.

In practice, the stress strain law used in this
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section may not hold accurately for a given viscoelastic

material at all frequencies.	 In that case, one has to

include more terms of different order in the eqn. (111.32)

and obtain the material constants by curve fitting.

Also, for higher frequencies, more terms in the assumed

series solution (eqn. iII.ki ) have to be included.
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CHAPTCR IV: FIJItTIIER MULTILAYERED CONFIGURATIONS HAVING

ALTEJIN&TE ELASTIC AND VISCOELASTIC LAYERS

Further cases of laminated beams will be analysed

in this Chapter.	 The laminates or layers are arranged

in such a ay that the viscoelastic and elastic layers

occur alternately.	 The properties of each layer are

different from those of any other layer in the sandwich,

i.e. all cases are of unsymmetrical type.	 Complete

analysis of the 5 and 7 layered unsymmetrical cases will

be done in this Chapter, though by the application of

similar procedure 1 a sandwich with any number of layers

can be analysed.	 For each case, firstly the equations

of flexural vibrations of sandwich beams will be derived,

their solution given for simply supported beams and then

the effect of important physical parameters, occurring

in the equations, on the damping of sandwich and the

applicability of each case will be discussed.

IV.A.1: 5 layered Case - Equations of Motion

Fig. IV-1(a shows the configuration, together with

the notations used in the derivation.	 Layers 2 and Lk

are viscoelastic.	 The following assumptions have been

made.

1)

	

	 Layers 1, 3 and 5 are assumed to bend according to

Bernoulli-Euler's theory, and shear effect in these
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is not of importance.

2)	 In layers 2 and 4, the shear effect is of importance

and in these layers, the normals to the longitudinal

fibres rotate through angles and j respectively.

Layer 2 takes up only shear and effect of direct

stresses is not of importance in that layer, whilst

both effects of shear and direct stresses are in-

cluded in layer 4, which may be a stiff viscoelastic

layer.

3	 All displacements are assumed small, as in linear

elasticity theory.

4	 section, the transverse displacement w remains

constant throughout the thickness of the laminated

be m.

5	 There is perfect continuity at all interfaces and no

slip occurs there hi1e the sandwich is bending.

6) The longitudinal displacements vary linearly in each

layer, though with different slopes as shown in

Fig.IV-1(a).	 The longitudinal displacement of

middle of one of the layers (taken layer 3 in this

case) is taken as 'us.

7) The strain dependence of viscoelastic material pro-

perties is not taken into account in these derivations.

8) Only transverse inertia terms are included.

The assumptions made above are almost similar to those
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for analysis I of the 3 layered laminate analysed in

Section II.C,except assumption 8.	 The studies made on

the 3 layered sandwich in Chapter II ac.t as a guide for

showing the effect of any of the assumptions, e.g. effect

of shear in non-viscoelastic layers (metals in practice),

effect of inertia terms other than transverse ones and

non-linearity due to strain dependence of viscoelastic

materials.	 These studies justify the neglect of the

above mentioned effects for subsequent derivations, unless

applied to situations in which

(i) very thick metal faces are employed

(ii) very high frequencies are involved and one is

concerned with stress-resonances in the system

(iii) large strain variations are likely to occur in

the system.

If required, however, the effect of any of these may

be includeby the same procedure as used for 3 Layered

beams in previous Chapters.

Using notations as In Fig.IV-1(a) and sign conven-

tion, similar to that in Fig. 11-2(a), shear strain of

layer 2 - a. - w'

where w is the transverse displacement.

Shear strain of layer }	 - w'.

The normal to the longitudinal fibres in lasers 3, 2, 1,

11,5 rotates through angles of , (= flexural angle ='',
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in the absence of shear effect), , , T,	 respectively.

The longitudinal displacements of middle of these

layers, are:

For layer 3	 u

For layer 1	 u	 +	 .i

t	 -pt1i
For layer I : u -	 - __

For layer 5 : u -	 -(.2	 .2)

As shown in Section II.D.1, strain energy due to

direct strain in a layer I , having the longitudinal

displacement of the middle fibre as U1 and rotation of its

normal as	 , is given by
L

i

f b 5	 [(ui ^z.)23 dz. dx
0 -t 1

L
12!.V (u'2t —2 1
tJ	 i 1 uj j-)dx

0

Total Strain Energy U' of sytem is given by
L	 I

	

U - (12 5 (-w') 2 dx +	 $ (W -w') 2 dx
o	 0

L	 2
132 

+(w"2 ..	 )3r 1 [	 [(ii' cL't2^w"	
20

2
r3	

rL 
[u' 2 ^w" 2 ---i dx]120



2t	 3)2 _24-W 2	 +	 12 3 dx]+ rk '

+ r [

2t +t
[(u'.-j' t-w"	 2 

5)2	
3 dx]

178

-	 i1i	
rtt,

2	 +r5(tt3+t1t5)) = 0 (Iv.2)

where q2 = k bQ2t2

q4 = bkG4t, k being shear coefficient

r1 =	 bE1t	 (i = 1,3,&,5)

Kinetic Energy 'T' due to transverse displacement

=	 p $ (w' )2 dx , where p is the mass

density of sandwich per unit length.
Potential Energy 'V' due to external forces

= g(t)	 f(x) W dx,

f(x) g(t) is intensity of loading as in Fig.II-2(c).

Application of Hamilton s Principle gives the follow-

ing equations of motion and boundary conditions, the

details of derivation are given in Appendix 3.

t +t
2q2 ( -w')-2r1t2(u"-i-"t2+w'''	 3 =	 (iv.i)

2q4(r_wt)+uT(rt+2r5t4)_ '1 (4 rjkt42+2r5t42)

2(r1+r3+r-fr5)u"+2r1t2"- T"(r4tk+2r5t4)

+ w' ' Er1 (t1 +t3 )-r4 t3 -r (t3 +t5-)) - 0
	

(iv.



w=

u=

=

479

	2q2 1 	w")+2q,(3'-w")+2r1t(u'''+cL''t2+W" 13 _____2

	

2.	
t2	 t4	 t_

21	 rt3{(u''' - r''	 - - w" .2.))
12.

t+t	 t t
+2r5 (w" 	-(u'' ' -.1'' 't - w"	 5))

2	 2

(Iv. Li)+ g(t) 1(x)

Boundary conditions for simply supported ends tre

Atx=O, x=L,

w. = w" = 0

=	 ,	 _I =
(Iv.5)

IV.A.2	 Solution

For sinusoidal excitations and simply supported ends,

assuming the solution jn the form of series

Z w L siupt
n= 1

00

E u Cn Os L sinpt
n=1

00 n,t ,cE -	 L ainpt
n=1

00
- v-	 1171x
= L	 cos	 sin pt

n=1

Also, expanding the loading 1(x) sin pt

(iv.6)

2 n Lu-i
sin pt

It is seen from eqns. (IV.6) , 	 that boundary

conditions IV.5 are satisfied and on substitution, equa-
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tions IV.1 - Iv.4 are reduced to algebraic equations as

given below

A+TJB+WC =0
n	 fl	 n

D—UF+WH =0
n	 U

-J+WK-UL-WN =0
U	 U	 U	 U

(Iv.7)

QkY rP^UQ+WcI—pp2J =fn" n	 U	 U	 U

i' here A - (Ut)2 E5t53P25025+cz15615 2.5

B = J = (flit)2 E5 t 5 2 (cz15015825)

C	 N = ()3 E5t 53 	 25+3cL15e15e25(e+e	 ))1.3 3.5

3 e 2D = (fl7t)2 E5 t 53 ($ 45045k + 5at58,15	 4.5

F = K = (Ut)2 E5 t 52 fz5e152+e45)

H = P = (!!E) 3 E5 t 53 f_$, 5 645k,1 + .cx Ij r 64 5 035

^

L = ()2 E5t	 e	 ^	 e	 +L1 5 04 5+13
5	 1.5 1.5 3.5 3.5

N	 Q 
= (iE) 3 E5t 52 (a	 0	 (0	 +0 5 ) 4Z 4 ,0, 50351.5 1.5 1.5 :3.

- 
•	 (1. 035)

a15015 0
	 +0= (!E) 4 E5t5	 2.S02.S+4I4.SO4.SkI.	 4	 5 3

1	 1 a	 0	 3T	 1.5 1.5	 T	 3.5 3.5

o	 1	
(1	 24.5 4.5 3.5	

+	 3.	 I



E.1aj5 =
	

; i - 1,3,4

j	 1,2,3,4e j.5 =

G
=	 p

E t 2(nt)255 L

In order to get the solution when layers 2 and 4 are visco-

elastic, the moduli of these layers have to be replaced

by their complex values viz.

shear modulus G 2 by	 2(1'f i2),

G4 by G4 ('1 i,i,)

and E4 by E4 (1 i)

2 and	 are loss factors in shear for layers 2

and 4 respectively and	 is that in direct stress condi-.

tions for layer 4.

By the above mentioned substitution, the various con-

stants A, 13, C etc. in eqn. (IV.7) become complex. 	 The

solution to the problem is obtained by solving 4 simul-

taneous complex algebraic equations as given by eqn.

(Iv.7).	 These equations may be coverted to 8 simultaneous

algebraic equations, with real coefficients by substitu-

t ing

r.
W - W +1Wn	 n	 n

=	 + i u', with similar OXJ)resSiOfl.S for

andy.n	 n
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The ii equations in equ. (IV.7) may be reduced to a

single equation in w. This equationafter replacing

the various elastic moduli by complex moduli, takes the

form

n1tt	 3
bw(t_) E5t5 [z	 + iz ) - pp2w = f	 (iv.8)

rn	 in	 n	 n

The expressions for 	 and	 are easily obtainable by

the algebraic process as explained above and are not

given here.	 In the present work, the algebraic compu-

tations involved were done on the Atlas digital computer.

The sandwich loss factor for nth mode is defined

according to Section III.A.1, whereby

z- rn
- z.in

=	 b(?)4E5t5'(z1

88(!1E.)k b E t 3
12

E t	 (z.55	 in
Et
88

12

(Iv.9)

(Iv.io)

and t, as in Section III.A.1 are the parameters of the

reference solid beam chosen for comparison of dynamic

rigidity with that of the sandwich. This gives k'i or
S

the displacement response effectiveness as a dimensionless

quantity.	 In subsequent studies, only the numerator in

eqn. (IV.iO) is taken as representing the Displacement

Response Effectiveness (denoted by DRE) without referring
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to any reference system. This is only for reasons of

convenience;	 with respect to any reference system

may be got from these values of DR.E, using eqn. (iV.i0).

If both ends of sandwich beam are excited by sinu-

soidal transverse displacement x 0sin pt, both ends being

in phase, then the displacements everywhere in the beam

may be determined as in Section III.D.

2Loading intensity f(x) in this case is = pp x0

and f is given by eqn. (111.20).

Writing eqn. (iv.8) as

w tz' + iz! - pp2) = f

	

fl rn.	 in	 fl

,nit4	 3	 /where	 z'	 -	 E t

	

ru	 L	 55	 rn

(Iv.ii)

zt	 = (!?.)'h	 t53in	 L

As in Section III.D,

(z.1-n

(wa) in phase with excitation

(wa ) out of phase (or in

qua.drature with excitation)

f ZI
n rn

:;; ;:::

(IV. 12)

The transverse displacement of any point on the beam

(relative to the ends) can be got from eqn. (iv.6) viz

Ti	. nitx
W =	 W	 L sin pt	 (IV.13)

n=1



IV.A.3 : Effect of various system parameters on damping

effectiveness and comparisons with other

arrangements

Values of modal loss factor 	 and displacement

response effectiveness, D R E) according to the definitions

given in previous section, will be plotted for sandwich

beams, varying certain important parameters. 	 The per-

formance of 5 layered beams will be compared with that

of a 3 layered one, over a wide frequency range of exci-

tation.	 The value of shear coefficient	 for layer Ii

has been taken equal to unity which is reasonable as

determined from the analysis oC 3 layered case, unless the

layer is very thick and rigid.

(i	 In Figs. P1-2 to IV-5, performance of 3 layered un-

symmetrical beams will be compared with two possible 5

layered arrangements.	 In Fig. IV-2, taking layer c' as

the solid beam to be damped, layers 'b' and 'a' are added

for damping in the 3 layered beam, whilst in the 5 layered

one, two cases are possible.	 In case I, layers	 d' and

'e are added on the side opposite to the one on which 'b'

and 'a' are arranged, but in case II, layers 'd' and 'e'

are added on the same side.

In Figs. P1-2 and IV-3, layers 'd' and 'e' are similar

to 'b' and 'a' respectively.	 Values of sandwich loss

factor 'i' are plotted against	 where b =
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b being shear modulus of layer b. Only shear damping

in various layers is included.	 The difference between

Fig. IV-2 and IV-3 is in the value of tb taken.	 It

is seen from these that in both cases I and II, 5 layered

beam gives considerably higher damping than the 3 layered

one, at all frequencies, the peak value of damping obtain-

able in case II is higher than that from case I. 	 Some

of the conclusions given in [60) for multi taped beams

are not seen to hold •	 In [60], it is stated that a

constraining tape used on each side of a solid plate

doubles the damping, which would be obtainable from a

single tape, at all frequencies (corresponding to case I

of the 3 layered arrangement) and that if multi-tapes

are used on one side (corresponding to case II), there is

increase in damping at low frequencies but not appreciably

at high frequencies.	 Also, if in a 3 layered case 'ta'

is doubled, keeping tb and 't' constant, the damping

obtained is the same as that given by case II of the 5

layered arrangement.	 From Figs. IV-2 and IV-3, none

of the above mentioned conclusions are seen to hold

strictly.

In Figs. P1-4 to IV-5, the layer 'd' added to the

3 layered case is taken to have its shear modulus different

from that of layer 'b • The value of 
d'b is taken =

in these Figs.	 In layer 'd', only shear damping is
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taken into account while in layer b , both shear and

extensional damping effects are included since it is 100

times as stiff as layer 'd'. 	 Value of Eb is taken

as for an incompressible material.	 It is known from

a 3 layered case that the decrease of core shear modulus

will shift the optimum damping peak to a lower value of

'n' i.e. higher b and lower frequency.	 So, it may be

imagined that the addition of a less rigid layer d'

to the 3 layered sandwich, might give an additional peak

at a higher value of Q.	 This is seen to be true in
Figs. IV-4 to IV-5.	 In Fig. IV-k, at low values of

T obtained in 3 layered and both the 5 layered cases

are nearly same, but in the latter configurations, damping

is more, at higher values of	 (i.e. lower frequencies).

Case II is seen to give higher damping than case I.

Same situation is seen to hold for D R E in Fig. iv-4.

Thus, the frequency response of 5 layered configurations,

having layers of different viscoelastic materials tends

to be flatter than that for the 3 layered one i.e. high

damping is possible at a number of modes or in a large

frequency range.	 It was observed that the double peaks

in the dampinw graphs occur only for high ratios of Gb/Gd.

For the case analysed in Fig.IV-4, it was seen that this

t
ratio must be higher than 40 for double peaks to occur.

Qk
(ii)	 In Figs. iV-G and IV-7, effect of - and	 on

2
and DRE is studied for a chosen 5 layered configuation.
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Only shear damping is included in layers 2 and 4.	 For

the system chosen, optimum value of t	 is seen to occur

'for a certain ratio Q/Q2	 This ratio increases for

higher values of

The sme is true for DRE.

Too high a value of Q4 /Q2 might make the system very

stiff, reducing the deformation of the viscoelastic

layer and the energy dissipated and hence the system

damping might be reduced. 	 Again, points z 1 and	 in

Figs. IV-6 and XV-7 respectively correspond to the case
Q4 	 t

when	 = 1 and •- = 1, i.e. when both viscoelastic layers
2

are of the same material and thickness. 	 It may be seen

that for a given situation, a considerable increase in

damping is possible, by making the two viscoelastic

layers different and by a careful choice of their thickness
t,

and shear moduli ratio.	 Usually, an increase of	 would
2

increase the ' and DRE, except for very high or low
Q	

S

values of -

(iii)	 In Fig. IV-8, the values of	 and DRE are

plotted for a chosen set of parameters of a 5 layered sand-

wich beam. Shear damping due to layers 2 and 4 is included

and Figs. are drawn with and without the extensional

damping of layer 4.	 it is seen that the influence of
extensional damping is considerable, at higher values of
Q	 t4
- and	 •	 In these figs, E ç/E - 1.	 One might expect

2
a higher contribution of extensional damping to the total
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one, if	 is lob.

(iv)	 In Figs. IV-9 to IV-11,	 and DRE are plotted

for varying ratios of E5/E3 and G,/G2 againt

For higher values of G4/Q2 as in Figs. IV-9 and IV-11,

layer 4 is rigid and extensional damping in that layer

contributes to the total damping significantly. 	 For

lower values of E 5/E31 the curve for 'fl' is flatter,

i.e. y is high at a number of modes which may be excited.

E5/E3 = 0 means that the layer 5 is eliminated and layer

4 contributes mostly the extensional and not the shear

damping.	 Low values of E5/E3 result in decreased dynamic

rigidity and so improvement in TI is offset by decrease

in 'k', thereby giving poor displacement response effect-

iv eno 88.

For low values of G4/G2 e.g. in Fig. IV-1O, where

this ratio is 1, there is one peak occurring in the curve

for	 and the contribution due to extensional damping in

layer 4 is small, and so the frequency response (or the

damping expected at a number of modes is poor, when

compared to that in Fig.IV-9.

It may be seen that in Fig.IV-9 when G4/G2 = 1000,

E5/E3 = 1 and t 4/t 2 = 1, 2 peaks occur in the curves for

T 8 and DRE.	 Now in Fig. IV-11, for the same values of

parameters except t 4/t 2 , which is 10 here, only one of the

peaks is significant. 	 This is as a result of thicker
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viscoelastic layer 4 which appears to have suppressed

the peak that might have resulted as a result of layer 2.

IV.B.1.	 7 Layered Configuration - Equations of Notion

Fig. IV-2 shows the configuration, in which all

the seven layers are different from one another.	 Layers

2, 4 and 6 are made of viscoelastic materials. 	 Also,

the configuration may be considered as a conventional

sandwich (with honeycomb core for instance), damped by

additional constrained viscoelastic layers on each side.

The assumptions made for derivations are almost

similar to those for 5 layered case, discussed in Section

IV.'t.l and will not be repeated here.	 The only difference

is that here all viscoelastic layers take up only shear

( and no direct stresses). 	 The longitudinal displace-

merit of' middle fibre of layer 4 is denoted by u, and

these displacements vary with slopes of , , 	 in visco-

elastic layers 2, 4 and 6 respectively.

Using notations as in Fig. IV-1 (bi and sign con-

vention as in Fig.II-2(a),

Shear strain of layer 2 =	 - w'

here w is the transverse displacement,

Shear strain of layer 4 = I - w'

Shear strain of layer 6 =	 - w'

The normals to the longitudinal fibres in layers 1, 3, 5

and 7 rotate through	 ( = w' in the absence of shear
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effect), whilst the angles in layers 2,4 and 6 are

a,	 and y respectively.

Following the procedure of Section IV.\.1, the

expression for total strain energy 'U' of sandwich is

U = q2 J (-w ) 2dx q fC_w ) 2dx	 q6 $ V-w')Jx

+r3	

+	

+w" 3 ) 2d 	 w"2' -rdx	

2

+	 t:w " t31)2dx	
:12 12 

dx]

rr C (u'- W'	 - w" 2)2dx	
Jc 

w"	 dx]

r7 [J'(u'_	 -	 t6-w"t57)2dx + 
$	

,,2 t72 dx]

where	 is thickness of laminate (k), k = 1, 2 ... 7

ti
t 3 - t 3 +--

t
t 57 = t 5 +

b
q3	;	 j=2,

b
r	 =	 = 1,3,5,7

	

for layer ILa and	 for layer 'j' are Young's modulus

and shear modulus respectively, b is width of the beam.

Kinetic Energy T due to transverse displacements

=	 2 dx,
0

p is mass density per unit lenttb of sandwich.
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Potential Energy V due to external dynamic loading

ofintensity 1(x) g(t) is

L
= g(t)	 1(x) w dx

0
By the application of Hamilton's Principle, as before,

the following equations of motion and boundary conditions

(Details given in ppendix U.regotEquation9 of motion are:

t
2q2 (cL-w')-2r 1 t 2 (u"+"	 +"t2+w''' t 31 )	 0	 (nr.i4

2q4 (-w )-r3t4(u"	 .	 +w' ' 1.2.) r 5 t 1 (u"-"	 . -WI '

t Li	 t4 -
+O't +W' I 't

2	
r7t4(u"" - -y"t6--w 1't57,

0
	

(IV. 15)

2q6 (y-w') 2' 7 t 6 (u"-r" .	 —V"t6—w'''t57) - 0	 (Iv.iG)

- t li	 t	 t4

2	 .i)...2r1(u"+j"	 w'' t 31 )2r3(u" " - w'

— _Vh1t6_wIt1t57)_2r5(u?1_it - 	 -WI'' -2. ) = o

2q2(a.	 '

2	 2r 3 t 3 +r 1 t 1 ^r5t52+r7t72

6	 w"—r5t5(u '-.

(Iv. 17

t	 • '

t t	 tr
_itie ....2.

2	 2
t4 -Ju

2r1t31(u'''+''' --. +at2i-w""t31)

—	 tli -
"t ) - -	 +g(t 1(x)-2r7 t 57 (u	 -	 --- -Y ''t6—w

(Iv. 18

Boundary conditions for simply supported ends are.
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w =' -0

u= $ -	 z	 -o
	

(Iv.19)

IV.132	 Solution

For sinusoidal excitations, and both ends of the

sandwich beam simply supported, the solution can be

assumed as:

00	 nTrx

	

-	
L sin pt

n-i

00
fl7tX	u -	 U COS L sill pt

n-i

00
flTCx

	

O. -	 XflCOS L sinpt
n- 1

00
nitx

	

=	 /COs 
L 

sinpt
n-i

00

	

-	 L sinpt
ni

(Iv.2o)

This assumed solution satisfies the boundary condition; of

eqn. (IV.19) and after substitution in eqns. iv.i4 -
iv.i8, the latter equations are reduced to algebraic
equations. Naking G2 , G and G6 complex, i.e. Replacing

G2 by G2 (1+i1 2 ), G4 by G4 (1+iT) 4 ) and G6 by Q6(1 1Y6) gives

the solution when these layers are viscoelastic.

Below the solution will be given for the simplified

case when layers 1 and 7 are similar, and layers 3 and 5

are similar, i.e. it is a 7 layered symmetrical case.

Here - =	 and u - 0.	 Eqns. (1V.14) and (iv.i6 are



I

k.1 =
E1t12()2

E.
a.j.1	 E1

k - 2.4

, j - 1,3and
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similar and equation (IV.17) will not be present if the

variable u is not included in the derivation. Substi-

tution of eqn. (IV.20) gives:

ctA	 B+wC	 On	 U	 fl

aB+D+wF	 On	 '-n	 n

jF wI_,2i = f

shere 1(x)	 n'1 1 sin flltX as before

( flt 2 E1t13 (2$2 10 2 1

ni2B =	 E1t13 (021041)

(Iv. 21)

c =	 Et13 _ 2 2 1 0 2 1 126 2 1 (6, 1+3)1

nit2D	 E1t13 [P41e414 c ie:3. i e ii	 i 62)

F - ()3 E 1 t 1 3 [-41e41+3a	 e2	 e	 041(0,1+33.1	 3.1 4.1

I =	 E1t13 f242l621 • 446 41 +3cx	 63.1 3.1

1 a	 .i)+2(	 031)33.1 3

t/	
;	 m = 2,3,4
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Substituting G0 by Q2(1+i12) and G by

in eqn. (IV.21), elimination and algebraic simplification,

gives a single equation in w1 as

nitit	 3	 •	 .	 2b(— E t	 w	 +1 z. j-pp w	 = 1'L	 1 1 n rn	 in	 n	 n (IV.22)

p being = bti(2P1+2p2e2i+2P3S3i^o4O,i),

1' '2	 3 
and	 are the mass densities per unit Volume

of layers 1, 2, 3 and t respectively.	 The expressions

for z	 and z. are not given here but are easily obtain-i-n	 in

able as explained above.

Reriting eqn. (lV.22) as

w [z	 +1 z	 - pp 2 ] = fn rn	 in	 ii

where

- b() 4 E 1 t 1 3 (Z )rn rn

z'	 = b(2.)" E 1 t 1 3 (z.in in

(I\r.23)

The expressions for	 and DRE for this configuration

are similar to those for the 5 layered case given in

Section IV.A.2,

i for nth modeS

kt being

ZI.in
= ZI rn

z1.in
=	 Et34	 ssb()	 12

= E 1 t 1 3 (z )in

EtS

12

(P1.24)

(IV.23)
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As in Section IV.A.2, no reference system has been. chosen

for comparison of dynamic rigidity with that of the

sandwich and the numerator in eqn. (Iv.Z5) is designated

as DRE and evaluated in Section IV.B.3 for studying effect

of various parameters.

the
If both ends ofAsandwich beam are excited by sinusoidal

transverse displacement x0 sin pt, both ends being in

phase, then the displacements elsewhere in the beam may

be determined using eqns. (IV.12) and (IV.13) since eqns

(iv.ii) and (IV.23) are similar.

IV.B.3 : Effect of various system parameters on damping

effectiveness and comparisons with other

arrangement s

In this section, the effect of parameters of a sym-

etrical 7 layered sandwich is studied. The numbering

of various layers is given in Figs. IV-12.

(i) Fig. 1V -12 gives graphs of 	 and DRE,

as affected by the thickness of layer k.	 Naterial loss

factor of layer 'k' is taken as zero. The arrangement

is equivalent to a conventional sandwich, damped by

using constrained viscoelastic layers on each side.

It is generally known that increase of t would increase

the damping of such a sandwich construction [91j ], since

the distance of viscoelastic layers from the ulexural

axis of sandwich is increased as t 1 increases.
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however, in Fig. IV-12, this is not seen to hold, since

an optimum 't' occurs at a certain value of t 1 , as

shown in the Fig.	 This may be explained by the fact

that an increase in thickness t would increase the total

strain energy of the system and may not correspondingly

increase the energy dissipation, which is merely due to

he constraining action of met]. layers I and 3.

however, in Pig.IV-12, a graph of DRE shows that for
t 4	 Q

higher values of	 and .-, the displacement response
2

effectiveness increases.	 This is due to the fact that,
t 4 	 Q4

at these high values of	 and -, the increase in 'k'
2

compensates for the decrease 	 thus increasing

k1 or DRE of the system.

(ii) In Figs. IV-13 and IV-1 1i, a comparison is made

between a 7 layered sandtich and a 3 layered one.	 In

the 7 layered case, viscoelastic layers 2 and 1i are taken

to be ofame material while the core thickness in the

3 layered case is taken as equal to 2t 2 + t, i.e. same

total thickness of viscoelastic material is used in the

two configuration'. 	 Alternatively, it may be said that

the elimination of metal layers 3 in' layered case would

give, the corresponding 3 layered configuration.

Fig. P1-13 shows that when t 4/t 2	0.1, the 7 layered

r se is better than the corresponding 3 layered one, from

r nt of view of damping at low values of Q 2 i.e. when 'n'

i high or frequency is high. The behaviour for higher
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t,
values of	 is nearly the same in both cases.	 For	 =10,

2
the curves for the two cases are similar except for a

shift between the two curves. 	 Fig. iv-i4 for DR vs.

shows the values for 7 layered case are always higher

than those of corresponding 3 layered configuration.

This might be explained by the fact that in the cases

analysed, 7 layered case is dynamically more stiff, because

of additional layers 3, hence k and	 are more.

'iii) Fig. IV-15 illustrates the effect of using visco-

elastic layers 2 and 1 in the seven layered case with

shear moduli values different from each other, i.e. for

varying values of ratio —.	 Both layers 2 and Ij are

assumed to have the same material loss factor.	 Two peaks

are seen to occur for the loss factor y , when plotted

against the dimensionless shear parameter , 
2 1' for

values of	 = 100 and 0.01, while a single peak occurs
Q

for - = 1.	 It may also be seen that curves drawn for
Q1 "2

- 100 and 0.01 indicate high damping for a much larger

range of	 1' the shear parameter, than the curve for —3-1

However, the peak values of 	 when	 and Q2 are unequal,

are less than the corresponding peak value when Q and Q2

are equal.	 But, unequal values of Q and 	 should be

preferred in practice,if reasonable amount of

damping is required over awide range of4, 21 .	 In practice,

may vary, due to variation of ' n ' i.e. at different
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modes in a large frequency range, and also Q2 might

vary due to temperature or frequency dependence of visco-

elastic material properties.

IV.0	 Any Number of Layers

In Section IV.A, analysis has been shown for a 5

layered sandwich, while in IV.13., this has been done for

a 7 layered configuration.	 In each case, the elastic

(metals generally) and viscoelastic layers are arranged

alternately, with the elastic layers on the outside.

If the number of layers is more, a similar procedure

should give the equations of motion.	 If there are 'N'

viscoelastic layers and 'N+l' elastic layers arranged

alternately, the number of equations of motion obtained

by a purely elastic analysis will be: N+2, according to

the assumptions of previous sections, viz, same transverse

displacement at each section and the longitudinal dis-

placements varying with different slopes throughout

thickness in each layer.	 In order to define longitudinal

displacement of each fibre at a section, the entire section

is assumed to move with a displacement '1.1' and then varia-

tion assumed in each layer through its thickness, slopes

being	
....	 in the viscoelastic layers and	 i.e.

flexural angle (-w') in the metal layers.

Withthe cnversion of the above elastic analysis to visco-

elastic one under sinusoidal excitation, the number of equa-
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tions is doubled, since each 'displacement or slope

parameter' defining the system (e.g. u, w, , etc.) has

inphase and out of phase components.

However, if the shear effect in all the layers is

included, the number of equations Obt&neJfOr purely elastic

analysis will be. 2N+3. (Parameters defining the

system being u, w and slopes in '2N+1' layers.)
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CHAPTEfl V MWTICORED CONFIGURATIONS

The laminated beams analysed in this Chapter,are

those in which two different types of 'viscoelastic layers

may occur adjacently, instead of occurring alternately

as in Chapter IV.	 Such configurations have been called

* the multicored ones', in the present work. 	 This

designation appears appropriate when these are compared

with a 3 layered configuration, which involves a single

core.

Two such configurations are analysed. These are

shown in Figs. V-1(a) and V-1(b), the former is a 1 layered

unsymmetrical case and the latter is a 5 layered symmetrical

one.

V.A.1 : k Layered Unsymmetrical Cse - Equations of Motion

Fig. V-1(a) shows the configuration, together with

the notation used in the analysis.	 Layers 2 and 3 are

viscoelastic.	 The following assumptions are made for

the analysis.

1) Layers 1 and & are assumed to bend according to

Bernoulli-Euler's theory and shear effect in these layers

is not of importance.

2) In layers 2 and 3, shear effect is of importance

and in these layers, the normals to the longitudinal fibres

rotate through angles a and respectively. 	 Layer 2 takes

up shear and effect of direct stresses is not of importance
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in that layer, while both these effects are included in

layer 3.	 It is necessary to include the effect of

direct stresses in addition to shear in layer 3 if it

is rigid and thick.

3) The longitudinal displacements vary linearly through

each layer, though with different slopes, as shown in

Fig.V-1(a), being , the flexural angle in the outer

layers 1 and & and a. and	 in layers 2 and 3 respectively.

The longitudinal displacement at the interface of layers

2 and 3 is taken as 'U'.

The remaining assumptions are same as assumption 3,

&, 5, 7 and 8 as discussed in Section IV.A.1 and the

discussion about the limitations applies to this case as

sell.

Taking w' as the transverse displacement at a

section, and using sign convention according to Fig.II-2

(a), we have,

Shear strain of layer 2	 a. - w'

and that of'	 layer 3 - 1 - w'.
The normal to the longitudinal fibres in layers 1 and 4

rotates through	 - w in the absence of shear effect

in these layers, as assumed) and such angles in layers

2 and 3 are a. and p respectively.

The longitudinal displacements of mid-fibres of

these layers are.
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ti
Forlayerl :

Forlayer3 :

For layer

Expression for total strain Energy 'U'

q2	dx +q3 J(r _w,)2 dx

+ r1 Jt(u'J't2+w" 1)2 + w"2	 dx

+ r4 $[(u'_'t3_w1t 4)2^fl: 	 dx

+r, f((u'_i' 3)2	 i ]dx

where q, = a bk,t?,

/ q2 = bt2G2

rj =	 btE	 (j = 1,3,1t)

k3 is shear coefficient, an expression for this is

derived in Appendix 6.	 I.

Kinetic Energy 'r'	 , $2 dx

p = mass density/unit length of the sandwich.

Potential Energy 'V due to external loading of intensity

f(x)g(t)	 L

= g(t) $ f(x) wdx0

Application of Hamilton s principle gives the equations of
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motion and boundary conditions. Details are given in

Appendix 5.

Equations of motion are:

2q2 (_w')_2r 1t 2 (u ll ^ tt t 2^w t1I .J..)

2q,(-w')+2r4t3(u"-"t3-w'''

ta
_2r (i"	 -	 u")	 = 0

2r 1 (u"+"t 2 +w' ' I	 -)+2r4(u""t, WI

t
+2r3 (u"-i" _i)	 = 02

(V.1)

(V.2)

(V. 3)

t
II,,	 1)2q2(a_w)+2q3(_wJt)+r1t1(uI11+11t2+w	 -r

2r t 2	 t1
+ 161 w'11Ir4t,(u1t'-'1tt3_w1?!t	 6	 -pw+g(t)f(x)

(V.4)

Boundary- conditions for simply supported ends are

AtxO,L;	 w=w"=O
(v.5)

a. ' = I = 0

V.A.2 : Solution

For sinusoidal excitation, assuming the solution in

the form of series.
0

W = 2 w 
8fl7tx siupt

4 n	 Ln= j.

U =	 COB nx sin pt	
1	

(v.6)

n=1
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—	 flTVO8 L Sifl pt

fllVx
p COS L sin pt

00
nitxAlso expanding f(x) sin pt *	 , f	 L sin pt.

n=1

Substitution of the above solution in eqns. (v.1) to (v.4)

shows that boundary conditions ar satisfied and the equa-

tions of motion are reduced to algebraic equatious,nawely

A+uB+wCn	 n	 n

+wHa	 n	 a
(v7)

B-1F+uJ^wKO11	 Ii	 a	 fl

C + H + u K + w [I-pp2 )	 fa	 n	 a	 a	 a

where

A = ()2 E4 t 43 f4 24 024+a14 6 14 & 	 32.4

n7t2B = (j;—) E4t 42 (a14e1110241

C = ()3 E4t 43 .$	 ê
2.4

nir2
D	 i:-	 E4t43 (* 3 40 4+ 023 

+ :;- 
a3404)

F = (flTt)2 E4 t42 10 3 4+fa3402343

H = (2.) 3 E4t 43 ($3 40 4.48 4)

n= 1

n=1
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J = (fl7t)2 Et fa1401+i+a34e3,3

K = (!!) 3 E4t42(lkle2l_fl

I =	 Et3 •2 11 62 I+O3	 + a1	 + 3

a.

8.
.3.11

k. 11

El
i= 1,3

t.
=	 ; j = 1,23

Ii

=	 k	 ; k=2,3
2 fl7C 2E11t11 'L'

To get the solution when layers 2 and 3 are viscoelastic,

the elastic moduli of these layers have to be replaced by

their complex values, i.e. 2 by G2 (i+iT 2 ), G3 by G3(1+iT3)

and E3 by E3 (1+i 3 ), where 2 and	 are the loss factors
of layers 2 and 3 respectively in shear while	 is the
lose factor of layer 3 in direct stress case.	 Substituting
the complex moduli into equations (V.7) makes the various

coefficients A, B, C etc. complex, and the solution to the

problem is obtained by solving the & simultaneous complex

algebriac equations. These may be reduced to 8 simultan-

eous algebraic equations with real coefficients as explained

in Section IV.A.2.

After elimiiiatioii and simplification, it is possible

to get a single equation in w , from eqn. (V.7), after sub-n
stitution of complex moduli. 	 It takes the form
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nit 4	 + iZ. ]	
2w =f	 (v.8)wb (—) Etn L	 44 rn	 in	 ii	 n

The expressions for and are not given here, but

may be obtained as explained above. The computations,

in the present work, were done on the Atlas digital

computer.

Eqn. (V.8) may be written in the form,

tz'	 ^ iz'. - pp2 ]	 fU rn	 in	 U

where Z'	 = b()4 E4t 43 (z )1-nrn

Z I . = b()4 E4t 43 (z )in jfl

As in Section IV.B.2,

ZI.infor nth mode 
= rn

z,
k	 -	 in

'is - b(hht)4 
Et3

12

(v.9)

(v.10)

= z(E4t43)	
(v.11)

Et55
12

and t 5 being the parameters of a solid beam which might

be chosen for comparison with the dynamic rigidity of the

sandwich.	 In the next section, the numerator in equ.

(V.11) is designated as DRE (Displacement response effect-

iveness) and evaluated for studying influence of various

parameters.
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For the case of the sandwich beam being excited at

e.c1 end by transverse displacements of amplitude x 0 sin pt,

transverse displacement at

other locations may be determined using eqns. (IV.12) and

(IV.13).	 This is due to the fact that eqns. (IV.ii) and

(V.9) are similar.

V.A.3	 Effect of various system parameters on damping

effectiveness and compari5ons with other arrangements

(i):	 Figs. V-2 to V- 1 are meant to illustrate the effect

of properties of layer '3' on the overall damping of the

system.	 Only layer '2' is taken to be the damping layer

and material loss faètors Y) and	 for layer 3 are taken
-,	 t

to be zero. The parameters varied are 	 and	 .	 In
2

fact, layer 3 can be regarded as a spacer' in this case.

It is seen from the above mentioned Figs. that optimum
t,

damping occurs at certain values of	 and ç'.	 The spacer
2

should not be as stiff as possible as might appear from

t60] but for optimum damping, the corresponding value has

to be determined for the given set of parameters 1 the reason

being that a very stiff layer 3 will no doubt increase the

shear motion of layer 2 but the overall system damping might•

decrease due to increased contribution of strain energy

due to layer 3.
G

In t60), it is recommended that for high damping,
3
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G
should be > 10 - .	 It may be seen that for the situation

2
given in Fig. V. -4, for optimum damping, the corresponding

factor has the values given as under.

t2	 t3/

I	 ......	 20

4	 ......	 25

16	 ......	 6

100 	......	 0.3

(ii):	 Figs. V-5 to '1-8 are drawn for 5 a,DRE against

•2 4 
the shear parameter involving G 2 , E,1 , t, and

G
These are drawn for various valuee of -. when both layers

2
2 and 3 are the damping layers.	 It may be seen from

G
Figs. V-5 and V-6 that the curves for higher ratios of

2
are much flatter than those with low values of the ratio,

e.g. in Fig. '1-5, t' is above the value of 0.1, for a con-S	 G
siderably larger range of 

2	
when	 = 1000 than when

G	 •	 2
- 10.	 In practice, if the shear parameter $	 changes

2	
2.

due to a change of modal number 'n', i.e. for various

modes of vibration or due to change of G2 because of tem-

perature or frequency change, a flatter curve which implies

better frequency response, should be preferable. The ratio
G

should remain high for all values of frequency and tern-
2

peratuse encountered. 	 The reasons for flatter curves at
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higher ratios of G3/G2 are:

a)	 At higher values of the shear parameter, the damping

in the system is due to shear in layer 2, the effect is

enhanced by the rigid layer 3.

b)	 Because of increased stiffness and thickness 01 layer

5, extensional damping contributes significantly to the

total damping of the system. This is especially true at

lower values of the shear parameter.	 In Figs. V-5 and

V-6, the dotted graphs are drawn by taking into account
Q

the damping due to layer 2 only. For higher ratios of

the contribution of damping due to layer 3 is evident,

resulting in flatter damping graphs.

Fig.V-7 illustrates the same points as in Figs. V-5

and V-6, but for different values of system parameters.

In Fig. V-B, various graphs are shown for same total thick-
t

ness of viscoelastic layers (i.e. t 2 +t 1 ) but the ratio
2

is varied.	 For the same total thickness, a higher ratio
t

is seen to be preferable, from point of view of in-.
2

creased damping at most values of • 	 , when a higher value
G /	 2.-i

2 (i.e.	 '2 is used.	 In case of low values of

the effect of using different ratios 	 keeping the

total thickness same, is merely to shift the position of

peak in the damping graph.

(iii): In Fig. V-9, a comparison is done between a 3 layered

and a 4 layered arrangement, layer 2 is same in both cases
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and damping in layer 3 is assumed to be negligible. 	 Layer

3 is more rigid than layer 2 in shear. This may be regard-

ed as a comparison of' the two configurations with and with-

out a spacer.	 The maximum damping is increased by the

addition of layer 3, even though it material loss factor

is zero.	 Also, the frequency response is better in the

4 layered case (i.e. there is higher damping for a larger

range of' 
•24' which involves 'u', the modal number).

However, as shown in Fig.V-9, for optimum damping the ratio

has to be chosen suitably, depending on the remaining

system parameters.

(iv): In Fig. V-lO, a comparison between the performance

of 2, 3 and 4 layered configurations is done. 	 The con-

figurations chosen are such that the total thickness of

viscoelastic materials used is same, as shown on the Fig.

It may be seen that, for the situation considered, a rigid

layer '3' gives high damping in 2 and 4 layered cases.

For the 2 layered case, 
'is has been calculated from [60],

the damping in the system being due to extensional effect.

For most values of G3 (except very high values), 4 layered

case is superior to the 2 layered on. 	 From practical

viewpoint, the 4 layered configuation is preferable to the

2 layered one since in the former, the viscoelastic layers

are concealed and not exposed to outside environments.
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(v): In Fig.V-11, the performance of 3 and * layered con-

figurations is compared, the outer metal layers being

same and the total thickness of viscoelastic materials

used being equal in the two configurations. 	 Results for

are plotted against dimensionless shear parameter

which involves 'n , the modal number, in addition to other

parameters and thus the graph gives the behaviour at various

modes of vibration. The 11 layered configuration gives

a flatter curve than that obtained for the 3 layered one.

V.B.1 5 Layered Multicored Configuration

Equations of Motion: The configuration is shown in Pig.

V-1(b). The outer layers or faces are of metal while

the inner layers are made of viscoelastic materials.

A symmetrical case will be analysed in this section.

The assumptions made for derivation are almost similar

to those of Section V.A.1, except that, here all the visco-

elastic layers take up only shear, being much less rigid

than the metal layers.	 As before, assumptions 3, 4, 5,

7 and 8 of IV.A.1 hold. 	 The outer metal layers are

assumed to bend like Bernoulli-Euler beams.

The longitudinAl displacements vary with slopes of

a,	 and	 through the thzckness of layers 2, 3 and 1

respectively.

= w', according to our assumption of no shedr intke



3?

outer layers, w being the transverse displacement.

Shear strain in layer 2 = - -w' 1 while that in layer

3- 1-w'.

The longitudinal displacement of middle fibre of

"3 -
	 ti

layer us	 2 ^at2+—.

Total 8train energy 'U' =

q3 
jJi (_w)2dx;q	

(_w1 )2dx+r ES 
fWi -2^2+w" ....!) 2 +

+ W	 12	 dx)
	

(v.12)
bt G

q	 2

q2 = bt2G2	 (v.13)

= bt1E

Kinetic Energy 'P' =	 p$Cii2 dx
	 (v.14)

p being the mass density of the sandwich per unit length.
Potential Energy 'V' due to loading of intensity f(x)g(t)

= g(t) 5 f(x)w dx	 (V.15)

Application of Hamilton a principle gives the çollowing

equations of motion and boundary conditions. 	 Details are

given in Appendix 7.

2q3 (-w' )-t 3r 1 (1" .2. + "t 2 ^w' ''	 -	 (v.16)



w = w" = 0

a =	 = 0
(v.19

38

(1"	
t

2q2(cL-w')-2t2r1	 2 +& 1t t 2 +w tI ._) = 0 (v.17)

2q3(P'-w")+2q2('-w")+r1t1(' I '	 tt2+w"" ..i.)

+ 1 6 1 w t	- pr +g(t)f(x)	 (v.18)

Boundary conditions for both ends 8imply supported are:

At x - 0, L,

V.B.2: Solution

As before, the solution will be assumed in the form

of series as below, for sinusoidal excitation.
00 nnxw - L w sin	 sin pt

ni

-	 ntxa cos L sin pt
ni

00	 flTCX2 r	 L sinpt
nn=1

(v.20)

Also expanding f(x) sin pt	 I sin	 in pt.

With the above solution, the boundary conditions for simply

supported ends are satisfied and equations (v.16) to (V.18)

are reduced to algebraic equitions:

I
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aA +B +wC= 0n	 U	 U

D+JA+wF=On	 n	 n

2,a F + I C + w [H-pp	 fa	 n	 a	 n

where

A	 (fllt)2 E 1 t 13 fe31o21)

B	 (fllt)2 E1 t 1 3 [*3.183.1 +

nit)c	 i:—	 1i' [_*318 31 + fe31)

n2D	
t— E1t13 [2*21021 202213

F	 (1L) ) E1t1' ( 2*2 10 2 1+02

H = (iE.)'k E1t13 t*,.10 ,.1 2* 2.1 02.1 +

t.
0	 =	 ; j=2,3 and $	 =isi	 t1	

E1t 2(nit)2
IL

(V.21)

J=2,3

In order to get theequations for the viscoelastic

case, the elastic rnoduli 	 and	 have to be replaced by

complex ones, viz. Q(1+ii 2 ) and G3 (1^ifl 3 ) respectively.

The solution is obtained by solving simultaneously eqns.

(V.21), with the various coefficients A, B etc. being complex.

After elimination and simplification, it is possible

to get a single equation in 'w 3 ' as follows.



w [z' +iZ'. -pp2]n rn	 in (V.23)

where V	 =ru

in

As in Section V.A.2,

for nth mode
S

k 1

240

b(l.) 4 E1t13 tZrn + iZ.) - pp 2w = f	 (v.22)

p being = bt1(2p1+2p2021i-p3031)

2 and p3 are the mass densities per unit volume, of

layers 1, 2 and 3 respectively.

Expressions for rn and	 are not given here but

may be obtained by the algebraic procedure of elimination

and simplificatin from equ. (V.21).

Eqn. (V.22) may be written in the form

b()k E1 t 13 (zrn

b(1E.)' E 1t 13 (z.in

2in	
(V.21i)= rn

z,

E t
=

S S
- 12

E1t13(Z11)

=	 Et3
5$
12	

(v.25)

E 8 and t are the parameters of a solid beam iihich might

be chosen for comparison with the dynamic rigidity of the

sandwich.	 In the next section, only the numerator in

eqn. (V.25) is designated as DRE (Displacement response

effectiveness) and evaluated.
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Again, because of similarity of eqns. (V.23) and

(111.11), the displacement response of the beam, due to ends

of the beam being excited by similar harmonic displacement,

may be determined using eqns. (IV.12) and (1V.13).

V.13.5 : Effect of various system parameters on damping

effectiveness and comparisons with other arrangements

(1)	 Figs. V-12 and V-13 may be regarded as graphs of the

system damping for various modes of the system.	 As for a

3 layered configuration, involving a single core, the

system damping is optimum at one value of modal number 'n'
Q')/

The use of various values of	 Q2 appears to cause

only a shift in the position of the peak 1 with the maximum

damping remaining unchanged.

In Fig.V-13, graphs are plotted both for single cored

and multicored configurations, the total thickness of the

vicoelastic materials used, remaining the same. 	 The

curves are seen to be similar in each case, except that

the optimum value of i occurs at different values of 'n'.

In practice, if it is desired to have the optimum damping

conditions for a specified value of 'ii' , it is possible to

attain these conditions by suitably dhoosing the core shear

modulus in a 3 layered case, as given in Section III.A.

However, it may not be possible to get a material having

exactly the desired value of shear modulus, at the frequency

of the mode under consideration.	 In this case, as seen
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from Fig.V-13, the use of a multicored sandwich, employing

viscoelastic materials with different shear moduli and the

same total thickness of core as in the 3 layered case,

would assist in attaining optimum damping conditions. 	 The

thickness ratio of the two viscoelastic materials used

would have to be suitably chosen.

(ii) Fig. V-14 shows a comparison of a 3 layered case

with a multicored 5 layered one, the former configuration

may be obtained from the latter by eliminating the central

core '3'.	 For varying values of t,/t 2 ,	 is chosen equal

to 1 and 0.	 Since, the graph is drawn against Q2 , it may

be regarded as representing the behaviour of the sandwich

beam at various modes i.e. the frequency response. 	 In
Q

Fi&.V-14, which is drawn for 	 = 100, the multicored

configurations, (both when	 = 1 and 0) show improved

frequency response, when compared to the 3 layered case.

It may be seen that layer 3 need not have a high material
Q

loss factor for the chosen parameters, i.e. when

	

	 = 100.
Q2

For L - 1 in Fig. V-15, the introduction of an undamped
core 3 in the 3 layered case, makes the frequency response

worse.
Q

Fig. V-16 is drawn for	 = 20 for 2 multicored cases
t

with different

	

	 having the same total thickness.	 The
2

3 layered case used for comparison has its core thickness

- 2t 2 as in Figs. V-i 1! arid V-15.	 A before, the multicored
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configurations h y e better frequency response than the
t

3layered ones.	 Also it is evident that if 	 in the multi-p
3

cored case is increased beyond a certain value, the

material loss factor of layer 3 i.e.	 has little effect

on the sytm damping.	 This has also been seen to hold
Q.

when	 is high.

(iii) Fig. '1-17 is drawn for a multicored configuration,
Q

in which	 is very small.	 It is seen that if - is

high i.e. layer 2 has low &hear modulus compared to that

of layer 3, the maximum damping achieved in the system

is considerably reduced if the material loss factor of

layer	 i.e. 1)2 is less, as in curve No.k in Fig. '1-17.

So, if in a 3 layered case, one uses a soft adhesive which

has comparatively less damping, the maximum damping which

can be otherwise obtained (say by using a rigid adhesive)

is considerably reduced.

(iv) From Fig. v-i8, it is seen that the maximum damping

obtainable from a thin layer 3 may be increased by the use

of layers t21, which are more rigid, even though the material

loss factor of the latter is negligible. 	 The rigid layers

2 amplify the shearing motion induced in the thin and soft

viscoelastic layer 3.	 For a given total thickness of the

sandwich, the increase is more pronounced for smaller value of

t3
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CHAPTER VI : EXPERIMENTAL WORK

This is divided into two sections. Firstly, the

dynamic properties in shear were measured for a number of

viscoelastic materials.	 Next, dynamic response tests were

carried out on a few multilayered beams, of different types.

These laminated beams employed some of the viscoelastic

materials tested earlier.

VI.A: Determining Dynamic Properties of Viscoelastic

Materials

The dynamic properties of viscoelastic materials in

shear, will be denoted by the veiues of in-phase shear

modulus and loss factor.	 If a viecoelastic material is

in pure Shear varying sinusoidally, then there is a phase

difference between the shearing force and strain, the tan-

gent of which is denoted by the term loss factor. 	 In-

phase shear modulus is the ratio of shear stress

in phase with the strain, to the value of the strain

amplitude. These values will be determined for a few

viscoelastic materials, in dynamic shear test.

VI.A.1	 Description of Set-Up

The set-up used for determining dynamic shear properties

of viscoelastic materials was developed earlier (59) at the

Department of Mechanical Engineering, Imperial College,

London and was used with minor alterations. Complete
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details are given in [59).
	 However, a brief description

will be given below:

In this arrangement, two similar rectangular visco-

elastic specimens are subjected to sinusoidal shearing force,

which is applied by an electromagnetic exciter through a

push rod.	 One side of each specimen is glued to the moving

block by an adhesive and the other side of each is glued

to rectangular blocks, which are fixed to a base plate,

which in turn is attached to the body of the exciter, as

shown in the Photograph.	 In (59J, the set-up was designed

for mounting on the Goodman exciter, which could deliver

a maximum thrust of around 15 lbs.	 In the present work,

it was modified for use on a Derritron Exciter (Model VP5),

delivering a maximum thrust of 50 lbs so that stiff visco-

elastic materials can be tested and also higher strain

amplitudes may be employed. This necessitated changes

in base plate dimensions, from point of view of its stiff-

ness and the ometrical dimensions of the exciter.	 Also,

the rectangular blocks were reduced in size for correct

assembly, according to the new dimensions of the base-plate.

The force amplitude was measured by bonding strain

gauges on to the push rod, the latter being screwed into

the moving block.	 The strain in viecoelastic material was

obtained from the displacement of the push rod. The in-

strumentation used for testing i shown in Fig. VI-1 and
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Q\	 /cJ//®

r

1	 Vibrator.

2	 Base-plate.

3 Push rod with strain gauge.

k	 Viscoelastic specimens.

5	 Inductance pick up for displacement signal.

6 Moving block - screwed on to the push rod.

7 Fixed rectangular blocks - bolted to the base plate

Se1-up for measuring dynamic properties of viscoelastic

materials in shear
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described below.

2 phase L.F. decade oscillator (Model 880-A)

was used to drive the Derritron Electromagnetic vibrator

(Model VP5) through a 250 W.L.F. power amplifier.	 For

measuring the sinusoidal displacement of the push rod,

proximity vibration pick up of' inductance type (G.211-

Southern Instruments Ltd.) was employed. This is of

mutual inductance type and signal is proportional to dis-

placement.	 The signal was passed through a radio frequency

gauge oscillator (Model N 700 L - Southern Instruments Ltd.),

which in turn was connected to an F.M. amplifier (Southern

Instruments Ltd.). The signal from the F.M. amplifier was

fed to one channel of a double beam oscilloscope. 	 For

measuring sinusoidal stress, the strain gauge formed one

of the arms of a strain gauge bridge (Model MR 353 Resistance

gauge bridge - Southern Instruments Ltd.). The output from

the bridge was amplified by D.C. amplifiers (Type MR	 -

Southern Instruments Ltd.) or Fenlow transistor amplifiers

and then fed to the second channel of the oscilloscope.

IV.A.2 : Experimental Procedure

Firstly, the specimens were glued to the moving block

and fixed rectangular blocks, using adhesives like Araldite

(Resin AY 100 together with hardener HY 100) and allowin

these to set. Before gluing, the surfaces had to be

thoroughly cleaned, degreased and roughened by sand blasting
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aid etching.	 The etching agent used for steel was

2% Nitric acid and for aluminium alloy was 5% Hydrofluoric

acid. The degreasing chemicals used were carbon tetra-

chloride and acetone.

During assembly of the set-up, care had to be taken

to ensure that the push rod moved vertically up and down1

without bending and causing only pure shearing in the

specimens.	 Since the material properties are dependent

on temperature, frequency and strain amplitude, the

experimental procedure had to take account of all these

factors.	 During the experiment, only one of these factors

was varied, while others were kept constant, e.g. in order

to get frequency dependence, temperature and strain ampli-

tudes were kept constant, and readings were taken for

different frequencies.	 The quantities to be measured were:

Temperature, amplitude of direct force in push rod, dis-

placement amplitude of the rod and phase difference between

the force and displacement signals.

Measurement of Force The direct force amplitude in the

push rod was measured by strain gauges fixed on to it.

Two similar strain gauges in series were fixed, one on

each side of the push rod, so that any bending of push rod

does not cause any error in force measurement. These

formed one arm of a strain gauge bridge 1 as shown in Fig.

vI-1..	 Initial balancing of the bridge was obtained by

changing the resistance of one of the arms, having decade
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dials. When the push rod was subjected to a direct

strain due to the force exerted	 the vibrator, a change

in the resistance of strain gauge caused unbalance in the

bridge circuit and the output signal was displayed on the

oscilloscope,after being amplified. The calibration for

strain gauge was done statically and the values were

checked dynamically too. 	 In each case, the calibrating

factor was obtained in terms of the change in apex resis-

tance in the bridge, which is a 10 turn helical potentio-

meter, each divided into 100 divisions. 	 Application of

a known direct load to the push rod, changed the strain

gauge resistance and caused unbalance in an initially

balanced bridge. By changing the apex resistance by a

knon value, the circuit could be balanced again, thus

giving a calibrating factor as force per unit division

ofapex resistance scale. 	 For static calibration, the

load was applied directly to the push rod by hanging it
I

freely. For dynamic calibration, the push rod carrying

a known weight was screwed on to the exciter. The inertia

force at any frequency may be easily computed, knowing the

amplitude of vibration of the known weight.

During actual experimentation while measuring the

properties of viscoelastic samples, for a given setting on

the oscilloscope, a known change in apex resistance could

be related to the shift on the oscilloscope. 	 Since the

calibrating factor is known, the shift on the oscilloscope



28

is thus related to the force applied.

Measurement of Displacement: The sinusoidally varying

displacement of the push rod was measured 1 using an induc-

tance pick-up together with a gauge oscillator and an F.M.

amplifier. The principle of operation is frequency modu-

lation of the oscillator, which runs at about 2 m.c.p.s.

and has in its tuned circuit, the variable inductance

gauge performing the measurement. Due to change of

inductance, the frequency of oscillator is altered. The

radio frequency signal is transmitted back to the ampli-

fier, passes through an amplifying stage and is applied

to a frequency discriminator circuit, before being fed

to the oscilloscope.	 Calibration of the displacement

signal was done by a reading microscope, provided with

the objectives of various magnifications. The microscope

for any setting was itself calibrated against a standard

scale, supplied with the microscope. 	 For very stiff

viscoelastic materials, the displacement signal was very

small and the calibration was carried out statically by

dial gauge type attachment supplied with the inductance

pick-up, which could read up to 1O in displacement.

Measurement of Phase: The phase angle between sinusoidal

displacement and sinusoidal stress signals was obtained

by one of the two methods described below. 	 In the first

one, the phase angle was got directly from the ellipse
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obtained by feeding one signal to Y plates of oscilloscope

and the other one to X plates.	 In the other method, the

2 phase supply from the signal generator was used, one

signal lagging beyond the other by 90°.	 In order to vary

0
the phase from 0 to 180 , a 1 : 1 transformer having two

equal secondary windings, connected in opposition was used

on one of the ends, as shown in Pig. VI-1.	 This provided

the
signals ofAsame amplitude but opposite phase. The two

ends of a calibrating resistance were connected to the

supply terminals of the signal generators, one end being

connected through the transformer, the supply to the ends

being adjusted to the same voltage.	 It resulted in the

phase drop from 0 to	 from one end of resistance to the

other end for one setting of the transformer and 900 to

0
180 for the other setting. The resistance was calibrated

for phase angle, using a Beckman Universal Eput Timer

(Model 8360 IN), in which smallest unit of time measured

is one microsecond.	 The phase was calculated, knowing

time difference between the two signals and their frequency.

The calibration was done at different frequencies, for

each setting of the transformer.

During the actual use of the above arrangement for

measuring the phase angle between the displacement and force

signals, these signals were fed to the 1 plates of a double

beam oscilloscope and the supply from a variable point in

the calibrating resistance was fed to X plates, the voltage
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to each end of the resistance being adjusted to the same

value. Two ellipses were obtained 	 The variable point

on the calibrating resistance was moved till each ellise

in turn appeared as a straight line and the reading of

phase angle on the calibrated resistance was noted in each

case, along with the corresponding setting of the trana

former, With this, the relative phase between the two

signals could be easily computed. This method appeared

to be more convenient and accurate than direct calculation

from a plotted ellipse.

Temperature Measurement; The temperature of the visco-

elastic material, during testing, was measured by using

copper-constantan thermocouples, the hot end being embedded

in the material and the cold end kept at 0°C. The voltage

was measured by using an accurate portable potentiometer

(?ype 3184 D, H. Tinsley & Co., Ltd.) and reference tables

used for calculation of temperature were B.S, 1828; 1961

for copper constantan thermocouples. Checks were made on

these values, using an accurate thermometer in which the

smallest division on the scale was 0.2°C.

VI.AI3 : Calclation of Material Properties

The quantities measured experimentally are

Amplitude of sinusoidal displacement of push rod say

'a0 ', amplitude of sinusoidal force transmitted by the rod
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'P0 ' and the phase diff'erence between the two signals '0 '

(Fig. VI-2a).

If 'm' is the mass of the push rod and specimen

width, length and thickness are W, D and h respectively,
a

then shear strain, amplitude y0 =

If 'S I is the amplitude of the lu-phase component of

force, resisting shear in the specimens 1 then

S - P0 co g O + mp2a0 (Fig. VI-2b), p being the

circular frequency of oscillation.	 The term mp2a0 is

due to the inertia force of the push rod and the moving

block.	 Inertia effect of the specimen is neglected since

it is expected to be very small.

The out of phase component of force = P0 i0

P cos 0+ mp2a
or in phase shear modulus = 0

	

	 0

2WDy0

Area in shear being = 2WD

i'
Material loss factor I. =	 0

1	 p cose + mpa0	 0

VI.A.4 : Experimental Results for Materials Tested

Experimental values for the in-phase shear modulus

and the loss factor of the following viscoelastic materials,

were determined.

a)	 Velbex P.V.C. Formula 629/0900, made by B.X.Plastics

Ltd., was tested at 3 values of temperatures 1 at a constant

shear strain amplitude for various frequencies and also
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effect of shear strain amplitude was determined at a

number of frequencies.	 The results are given in Figs.

VI-3 and VI-i.	 The in-phase shear modulus and loss

factor increase with frequency and are seen to decrease

with temperature. The shear strain amplitude appears to

have no effect on material loss factor but an increase in

the strain amplitude decreases the in-phase shear modulus,
4

the effect being more pronounced at higher frequencies.

Sheet B of the above material was tested and results were

found to be different from those of' another sheet (desig-

nated as sheet A in the present work) given in [59) by

up to 35%.	 Sheet A was also tested and results were found

to be almost similar to those in (59] and hence are not

given in the present work.

Properties of Velbex P.V.C. for any strain, temperature

and frequency were determined from Figs. VI-3 and VI-11,

using the following procedure.	 From Fig. VI-3, a graph

of in-phase shear modulus 'G' and material loss factor

'i' vs. temperature, was drawn for a number of0-equencies

tahowu only for 50 and 200 c.p.s. in Fig. VI-5) and the

values of these properties were read by interpolation from
these graphs for a number of values of temperature and

these values are plotted in Fig. VI-6.	 The variation of

in-phase shear modulus during each interval of' temperature

shown in Fig. Vt-6 was assumed linear, in order to determine
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its value at any temperature.	 From Fig.VI-5, the loss

factor is seen to vary linearly over a wide interval and

so its value at any temperature, within the range of tem-

peratures employed, could be directly obtained from Fig.

VI-3.	 All these values correspond to 	 3.18 x i0.

In Fig. VI-4, graphs of G1 and	 against 'r are given.

is seen to be strain independent while G. decreases

with strain y0 .	 Relation G. = A 1 ^Cy02 was employed for

each frequency, to represent the variation of 	 with

and was seen to hold within an accuracy of !j%	 The

values of A 1 and C thus determined are given in Fig.VI-7.

Using these values, G 1 at	 = 3.18 x 10 was evaluated

and was found to check reasonably with the values of Fig.

VI-3, at all frequenci1es.	 Since experimental results

in Fig. VI-4 are obtained only for a temperature of 22.1°C,

it was taken that the variation of Q 1 with	 is similar

at all temperatures at a constant frequency or C was taken

to be independent of temperature. With this assumption

it is possible to determine A 1 at any temperature since G1

corresponding to any temperature at T	 3.18 x 10 is

known from Fig. Vi.-6.

b)	 Properties of Vel.bex P.V.C. (Formula 521/2127),

Admiralty Plastic Yellow compound and Butakon 40:60 modi-

fled with carbon black (40% of Butadiene Acrylonitrile

Copolymer and 60% of P.V.C. blended with carbon black) were
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determined experimentally and are given in Figs. VI-8 to

VI-13.	 Velbex P.V.C. (formula 521/2127), made by B.X.

Plastics Ltd. was found to be somewhat stiffer and to save

less damping than the earlier variety (a..e. formulae 629/

0900).	 Admiralty Plastic Yellow Compound, made by A.E.I.

Ltd., has very high damping and .s verr soft. Nodified

Butakon 40:60, supplied by I.C.I. is a very stiff damping

material.

c)	 In order to find the suitability of certain visco-

elastic materials for use in the dynamic response tests

on sandwich beams, the dynamic properties of these

materials were determined and are given in Appendix 8.

The materials are Butakoñ 80/20, 60/40 and 40/60 With

the increase ofpercentage of Butadiene.Acrylonitri1e

in the mixture,'G.' decreases and so it may be seen that

a suitably chosen variety may give any desired properties.

The difference in results of the two samples of Butakon

40/60 given in Figs. AP8-:3 and AP8-4 might be due to

different thermal history of the samples during manufacture.

Vibrating reed tests, a theory of which is given in

(66), were carried out on samples of Velbex P.V.C. (formula

629/0900 ), modified Butakon 40/60 and Butakon 40/60 and

results for dynamic Young's modulus E1 and loss factor

were determined.	 Taking	 = E1/3 as for an incompressible

material and	 = P., the values were checked with those



obtained during shear test and were found to be in agree-

ment within	 10%.	 Limitations of the vibrating reed

method are discussed in Section VI.C.

VI.B : Vibration Response Tests on Laminated Beams

VI.13.i : Introduction

The object of dynamic response tests on various con-

figurations of laminated beams, is to compare the results

obtained from actual tests, with those obtained from the

theoretical analysis of previous chapters, under experi-

mental conditions.	 The theoretical analysis is based on

several assumptions and hence a comparison with experi-

mental work is desirable 1 in order to confirm their

validity.

As given under 'Literature Survey in Chapter I,

experiments were done on. simply supported symmetrical 3

layered sandwich beams in [5 23, where the modal loss fac-

tor and dynamic stiffness were determined experimentally,

for comparison with the theoretical values.	 In [59],

experiments on multilayered symmetrical cantilevers have

been carried out, in order to measure the displacement

response at various frequencies, by subjecting the root

of cantilever beams to sinusoidal motion and comparisons

were done withheoretical values. 	 In the present work,

experiments have been carried out on simply supported
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multilayered configurations - 3 layered unsymmetrical,

5 layered unsymmetrical and 4 layered double cored types.

The ends of the beam were subjected to sinusoidal dis-

placements of same amplitude and phase and frequency

response of the beam'was determined, for comparison with

theoretical values.	 The dynamic properties of visco-

elastic materials employed in making laminated beams,

have been determined earlier in Section VI.A.

For comparison of theoretical and experimental results,

the values used are the displacement response (both

amplitude and phase) at the middle of the beam over as

wide a frequency range as possible and the distribution

of the displacement response over the length of the beam

at a frequency close to the peak displapement frequency.

Alternatively, the Kerinedy-Pancu polar graphs {95, 96]

could have been employed to determine the modal loss factor

from experimental results and compared with theoretical

values.	 This has not been done in the present work since

the excitation chosen being a s 1	one, is unlikely to

excite a generalized mode only esecially a higher one

in a heavily damped system. Because of the contribution

of off resonant modes at a resonance and the variation of

viscoelastic material properties with frequency, an error

is likely to occur in results 1 obtained from such graphs.

Another factor which is likely to affect the results

obtdlned from polar graphs is the accuracy with which
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a circle nay b.i made to pass through experimental points.

These points are illustrated later 	 Appendix 10.

VI.B.2	 Development of Test-Rig

The test-rig consist of an arrangement for applying

sinusoidal displacement excitation of same magnitude and

phase to each end of a simply supported sandwich beam

and to measure the amplitude and phase of transverse motion

of any point on the beam at various frequencies of excitation.

Excitation Arrangement. A possible approach to give same

motion at each end of the beam is to use two similar ex-

citers, one at each end.	 For such a case, one can anti-

cipate the difficulty of getting the two end displacements

exactly in phase at all frequencies since in practice no

two exciters are likely to be exactly identical. 	 Also,

such an arrangement would be cumbersome to work with
V

during the response tests. 	 So this arrangement was not

employed.	 Instead, a single exciter was used to drive

at the middle of a rigid I-beam, on which the specimen

sandwich was mounted.

The Aluminium alloy I-beam was chosen because of its

light weight and high stiffness.	 The dimensions of the

I-beam were suitable chosen so that the motion imparted

to the I-beam was sufficient enough to be measured accurately.

This was found out from the maximum thrust of the exciter

which was equated to the total inertia force of the beam.
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A check was made to see that the I-beam was stiff enough

so that the frequency corresponding to its own fundamental

mode of bending vibrations is much higher than the high

frequency limit of the tests intended. This was seen to

hold good if the I-beam was treated asa free free beam

or a double cantilever with root at the middle,

The section chosen for the I-beam was	 x	 and

the length was taken slightly more than that of the specimen

length. The specimen length was fixed at 30" and width

at i4". The total weight of the arrangement was around
6 lbs.	 This weight could not be carried directly by the

mounting table of' the 50 lb thrust Derritron VP 5 exciter

and hence the I-beam was supported on very soft spring cords

at each end and driven at its middle by the exciter through

a drive rod. The arrangement is shown in the photograph,

without the exciter. 	 Later, when the 250 lb thrust

Derritron VP 25 exciter became available, the I-beam was

directly mounted at its middle on to the exciter, since

its weight could be carried by the exciter table. 	 Speci-

mens D 1 and D2 , the details of which are given in Table

T-13 were tested on the latter arrangement which was used

till &00	 while the remaining specimens were t*sted

on the earlier one, which was employed till 300 c.p.s.

Obtaining desired end-supports The end supports desired

are the simply supported ones, i.e. when transverse displace-
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i1i
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I

L1H
I.

I Laminated beam specimen.

2 Inductance pick up.

:3
	

Soft spring cords.

4 Aluminium alley I-beam.

5 Drive rod.

6 Inductance pick up.

Arrangement for vibration response test - using 50 lb.
thrust vibrator
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ment is zero and there is no constraint at the ends,

the ends being free to rotate. In order to achieve con-

ditions as close as possible to the above mentioned ones,

the sandwich test beam was mounted on spring steel strips,

which were attached to the I-beam, as shown in Fig.VI-1l&.

The other ends of these strips were connected to Aluminium

Tee sections, having a Vee groove at the top. 	 An

square rod fits in the Vee grooves and presses against

the sandwich beam, both at the top and bottom of the beam,

tightening being done by B.A. bolts, as shown in the

figure.	 There is line contact at the ends of the sandwich

beam specimen, due to the square rods and anti-c].astic

bending is prevented.

In order to provide least restraint at the ends, the

spring steel strips chosen were as flexible as possible

and consistent with other static and dynamic requirements.

Two types of strips (thickness .0108" and .015") were

tried, the higher thickness being used for heavy spec4mens.

For chosen dimensions of a strip, approximate calcultions

were carried out as described below in order to check that

the effects due to rotational inertia of eads and flexibility

of supports were not of any significant consequence. For

a few sandwich specimens intended to be supported by the

strips, calculations were done in order to determine the

natural. frequencies of vibrations of spring steel strips,
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the fundamental frequency in transverse direction of

strips was below 15 c.p.a.	 The vibrations along the longi-

tudinal directions of strips were not of any consequence

below 2000 c.p.a., so that the motion of each end of the

sandwich beam could be taken as equal to that of the I-beam

for frequencies below this value. Taking the rotation

of the strips to be the same as that of beam ends, the

stresses induced in the spring steel strips were checked

to be below the elastic limit of the material, at reso-

nance for a given sandwich specimen. 	 Further, the rota-

tional moment due to the inertia of end supports, was

computed for high frequencies, taking the expected value

of end roation of a chosen specimen by the application of

maximum thrust of the exciter. The rotational moment so

obtained was seen to be less than 1% of the maximum bending

moment at the middle of the beam specimens under those

conditions.

In order to check whether the ends actually corres-

ponded to the simplyipported ones as desired, the natural

frequencies of vibrations of a solid aluminium beam were

experimentally determined and compared with the theoretical

values.	 The results are given in table T-12 and there is

seen to be good agreement between the theoretical and ex-

perirnental values of natural frequencies. 	 Also, high

values of Q factors obtained, indicated that damping due to
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possible friction at the ends was negligible. 	 It was

also checked whether any extraneous vibrations due to

flexibility of drive rod, or soft spring cord supporting

arrangement of the I-beam etc., existed.	 Either these

existed below or above the frequency range of testing or

these occurred at frequencies (e.g. at 100 c.p.s.) at

which resonances of sandwich specimens were not likely to

occur.	 It was also checked whether both the sandwich

beam ends receive the same motion at various frequencies.

This motion was seen to be same as that of the I-beam

ends in the frequency ranges cGnsidered.

TABLE T-12

Resonant Frequencies of Aluminium Alloy Bar

Size: 30" x	 x 0.1875"

Theoretical values
	

18.55 c.p.s.	 166.5

Experimental values
	 18.70	 166.6

Percentage difference
of experimental values ^0.809 	 +0.0601
over theoretical ones

462.5 1
456.71

-1.252

i) Q-factor:	 at 18.70 c.p.s.	 936 approxiinaèely.

ii) Q-factor:	 at 166.6 c.p.s. = 1150 approximately.

N.B.:- The Q factor was very high and hence an exact value

was rather difficult to determine.
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Preparation of Spec imene

In the multilayered sandwich configurations, the var-

iou. elastic and viscoelastic layer. were joined together

by using adhesives. Araldite (Ay 100 together with

hardener 1W 100) was used for this purpose. Before apply-

ing the adhesives, the layers were thoroughly cleaned

and degreased by using Acetone and carbon tetrachiorid..

Th. metal layers were roughened by sand blasting and

etching. The etching agents were same asin Section VI.A.2.

After applying the layer of adhesive on each layer, these

were Joined and the sandwich specimen was kept under load,

uniformly distributed along its length for 24 hours, allow..

ing the adhesive to set. The load was applied by placing
I
	 8

the sandwich under a thick jil steel bar and using a Denison

universal machine for loading or by using 'C' clamp, and

dead weights. During loading, slipping of layers started

to occur, because of the slippery adhesive. This was

prevented by locating the various layers with respect to

one another by using guiding metal pins or strips at each

end. The ends of a few thermocouples were inserted in

the viscoelastic layer so that these remained in position

after the setting of the adhesive.

VI.B.4 : Testing Procedure

Vibration response tests on sandwich beams involved
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the following measurements at various frequencies of

excitation.

1) End displacement amplitude of the sandwich beam.

2) Absolute values of displacement amplitudes at various

locations on the sandwich beam.

) Phase difference between motion at any point of the

beam and that at the ends.

1k) Measurement of temperature of the viscoelastic layers.

A block diagram of the testing equipment is shown in

Fig. VI-15.	 A Muirhead 2 phase debade oscillator was

used to drive the Derritron vibrator through a power ampli-

fier.	 A 250 w. power amplifier was used for 50 lb.

thrust exciter and 1 Kw one for the 250 lb. thrust exciter

in the alternative arrangement. The instrumentation used

for the measurement of displacement amplitude was same as

in Section VI.A, viz, inductance pick up, along with the

gauge oscillator and F.M. amplifier.	 A description of

these is given in SectionVI.A.1 and VI.A.2.	 The cali-

bration for these pick ups was done optically by the use

of reading microscopes. 	 The phase measurement between

the two displacement signals, was done by the use of the

phase calibrated resistance or directly from an ellipse,

as described in Section VI.A.2. The temperature was mea-

sured as described in Section VI.A.2 by the use of copper

constantan thermocouples.
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The tests were carried out by first calibrating the

inductance pick ups for the given setting of the gap

between the pick up and vibrating object. 	 A given height

of signal on the oscilloscope was calibrated against the

reading on a reading microscope. Next, the resonant

frequency corresponding to a mode was approximately

detected. Near this frequency, the change in phase

between the end displacement and any other point on the

beam say the middle of the beam, was rapid. This was seen

to occur around a phase angle of 900 in most specimens.

Around this frequency, the frequency was varied in small

steps and the end displacement amplitude was kept constant
4

at each. The absolute value of the amplitude of vibra-

tion of middle of the beam and the phase angle relative

to the ends were measured. Near each resonant frequency

( j .e. when the amplitude at middle of beam was maximum),

the amplitudes of various points on the beam were mea-

sured by shifting the central pick up. The temperatures

of the viscoelastic layers were measured along the length

of the beam at every step.

VI.B.5	 Test results on Specimens

The details of various specimens tested are given in

Table T-13. The specimens were chosen in such a way that

all the layers were different from one another and the



290

parameters were different in the various specimens.

Also, the system damping expected at resonances of the

specimens was checked in order to ensure that it was the

optimum in some cases while far from the optimum in the

others.	 Three layered specimens S 3 , S and S 5 have nearly

the same total thickness but different layer thicknesses.

Specimen N2 was made from specimen S2 by adding 2 layers,

one being viscoleastic and the other being elastic.

5 three layered, 2 five layered and 2 four layered speci-

mens have been tested experimentally.

The experimental results for 3 layered specimens S1

to S5 are given in Figs. vI-16 to Fig. '(1-20, for 5 layered

specimens N1 and N2 in Figs. VI-21 and VI-22 and for k

layered specimens D 1 and D2 in Figs. VI..-24 and VI-25.

For each specimen, the results corresponding to first two

resonances have been given.	 Since the excitation is of

symmetrical type, resonances corresponding to only odd

numbered modes (i.e. n1,3) were excited. The results

are given in the form of resonance graphs, i.e. graphs

of ratio TA of the amplitude of vibration of middle of beam

to the end amplitude against frequency and its phase (O')N

with respect to beam ends.	 Also, the amplitude distribu-

tion along the beam length at a frequency close to the peak

displacement frequency, are plotted. The experimental

results are plotted as points in the above mentioned Figs.,



Specimen Layer Layer Thickness (in.)
No.	 No.	 and Material

0.099 Al.Alloy
0.1424 PVC-Sheet A
0.1875 Al. Alloy

0.065 M.S.
0.131 PVC-Sheet A
0.127 Al. Alloy

0.099 14.5.
0.126 PVC-Sheet B
0.125 Al. Alloy

0.035 Al. Alloy
0.13	 PVC-Sheet B
0.1875 Al. Alloy
0.099 Al. Alloy
0.130 PVC-Sheet B
0.125 Al. Alloy

0.099 M.S.
0.13 PVC-Sheet B
0.099 M.S.
0.13 PVC-Sheet B
0.099 Al. Alloy
0.065 M.S.
0.131 PVC-Sheet A
0.127 Al. Alloy
0.130 PVC-Sheet B
0.035 Al. Alloy

SI

S2

S3

S4

S5

1
2
3
1.
2
3
I
2
3
1
2
3
1
2
3

1
2
3

5
1
2
3
4
5
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TABLE T-13

Details of Specimens

1
2

D1

1*

1
2

D2

3

4

0.064 Al. Alloy
0.027 Admiralty

Yellow Compound
0.189 Modified

Butakon 40:60
0.188 Al. Alloy
0.128 Al. Alloy
0.02 Velbex PVC

(formulae
521/2127)

0.191 Modified
Butakon 40:60

0.064 Al. Alloy

Remarks

i) The layer arrange-
ment for specimen
S1 to S5 corres-
ponds to that in
Fig.II-2(a), for
N1 and 2 to Fig.
IV-i(a), and for
Dj and D2 to Fig.
V-i(s).

ii) Al. Alloy used
is SIC H.

iii) PVC-Sheets A
and B are made of
Velbex PVC formula
629/0900.
Material properties
for sheet B are
given in section
VI.A while tho8e
for sheet A,
which are somewhat
different, are
taken from t59].

iv) Length of
each specimen
= 30"
Breadth = iF'
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for comparison with theoretical values, which are plotted

as continuous curves.

Further experimental testing details regarding 'x0

anç temperature at each resonance are given in Table T-16

in Appendix 9.

VI.B.6 : Calculations of Theoretical Values and Comparison

with Experimental Results

After carrying out experimental test on each specimen,

the corresponding theoretical values were computed on the

Atlas digital computer, using equations of previous

Chapters.	 These values were plotted in Figs. VI-. 16 to

VI-25.	 Corresponding to the temperature of testing, as

given in appendix 9, and each frequency, the properties

of viscoelastic layers used, were read from the properties

graphs given in Section VI.A. Using these properties

and equations of previous Chapters, the displacement ampli-

tude and phase angle at the middle of the beam at various

frequencies were computed. 	 Also, the amplitudes of

vibration of various points along the beam length at

frequencies close to the peak &splacement frequencies were

calculated.	 These frequencies generally were taken to

bd the experimental frequencies, at which measurements

were taken during the response tests. However for specimen

D2 , a slight shift in the frequencies near the peak dis-

placements, changed the displacement amplitudes considerably



because of low system damping and hence frequencies

employed for theoretical computation of amplitude distri-

bution along the beam length were taken to be different

from the corresponding experimental frequencies. 	 Similarly,

the distribution of phase along the beam length was

plotted but this was done only for the higher resonance,

since at the first resonance, there was no appreciable

change in phase along the beam length except in the

vicinity of the ends.

For 3 layered beams, equations given in Section III.D

corresponding to analysis I were used, for 5 layered ones,

equations of Section XV.A.2 and for k Layered specimens,

equations of Section V.A.2 were employed for the theoretical

computations.

It may be observed from the graphs of the material

properties of the viscoelastic materials tested that these

materials are reasonably linear exeept at higher fre-

quencies.	 In most theoretical computations, the linear

theory was employed wherein the stress strain law is taken

as linear or amplitude independent. This appeared to

be reasonable, since in the experimental testing, the

end displacement amplitudes involved were small and resulted

in small shearing strains. This could be checked quan-

titatively for the specimens. The properties graphs are

seen to be reasonably flat in the region of small strains.
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At higher frequencies especially, the maximum shear strain

amplitude in the viscoelastic layers were found to be small

since end displacement amplitude 'x0 ' is small.	 In

general, the procedure adopted was as follows:
	

Values

of material shear modulus and loss factor corresponding

to	 = 0 were read in at various frequencies and tem-

perature, according to the experimental conditions. 	 After

computing theoretically for the sandwich specimen, the

maximum shear strain at beam ends was noted. 	 The proper-

ties corresponding to an average value (half the maximum)

the
were finally used forAtheoretical computations.	 In

most cases, this value of strain was found to lie in the

flat portion of the properties graphs.

The values of Young s modulus for metal layers were

determined on a Universal testing machine usi.ng Huggenberger

Extensometer 5027. The values were found to be as under:

For Aluminium alloy sheet, 	 - 0.99 x 10' lb/in

For M.S. sheet,	 E1	 2.995 x 1O lb/in2

For viscoelastic materials 1 the value of E. was taken

= 3G., as for an incompressible material and loss factor

in extension P, was taken equal to that in shear

A comparison of theoretical and experimental values

in Figs. vI-16 to VI-25, in general shows reasonable agree-

ment hetieen the two.	 The difference between the peak

displacement amplitudes is less than 10 percent and for
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the corresponding frequencies, it i. around 1-2 percent.

Moreover, both the resonance piots for the middle of the
along The length

beam and amplitude distribution at frequencies close to

peak amplitudes, are seen to be similar. This appears

to be reasonably satisfactory agreemept, keeping in view

the various sources of error, which are possible in the

experimental testing.

In most cases, the experimental points for maximum

TA., i.e. the amplitude ratio at middle of beam, are above

the theoretical points, except in low frequency resonance

of specimens S, S and N1 , and the experimental resonant

frequencies are higher than the theoretical ones. The

speciiens made by gluing various layers together, if not

perfectly made, as assumed in the theory, may result in

less damping actually than theoretically anticipated and

may account for the experimental points to be above the

theoretical ones.	 Since the damping due to end-supports

was found to be negligible, as discussed in Section VI.B.2,

the error at low frequency resonance of specimens S, S5

and N1 may be due to some other reasons discussed later.

The experimental resonant frequencies may bemcpected

to be higher than the corresponding theoretical values,

because of possible end restraint. A shift in frequency

might also occur if the oscillator scale shows wrong read-

ings or the temperature has not been accurately measured,



306

by the use of thermocouples.	 The oscillator frequency

was checked by measuring time period accurately up to

lo_6 second on a Beckman Digital Counter. The thermo-

couple readings were checked by an accurate thermometer,

which could, read up to 0.2°C.	 Both these were found to

be satisfactory.

For very low displacement amplitudes below 0.5x103

in., the optical calibration may be in error by up to 5%.

Also, the accuracy with which the viscoelastic material

properties have been determined in the shear test, will

also be reflected in the comparisons between experimental

and theoretical values of virbation response.	 Table T-lk

shows the effect of changing G 2 and t 2 separately by

± 10% from the standard values, for one of the specimens.

The percentage change in the peak value of 	 and corres-

ponding frequency are given.	 In. fact, an appreciable

change in peak	 occurs due to change in i and frequency

is affected considerably by a change in. G2.

The non-linearity in viscoelastic material propetties

can be a source of error, though in the present case, as

discussed earlier, the results for vibration response are

not expected to be affected significantly. 	 This was

checked for the low frequency resonance of specimen S3 and

results are given in Table T-15.	 The theoretical results

of Section III.Q were employed and the non-linear constants
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TABLE T-15

Comparison of Non-linear and Linear Solutions for

Specimen S3

Linear solution	 Non-linear solution

Frequency	 at middle I e'	 A at middle
c.p.a.	 of beam	 degrees	 of beam	 degrees

53. 527

71. 862

94.111

104.668

ii3.110i

28

29

30

30.5

31

1.244 xlO2

i.4i 1* xlO2

1. 1i2i xlO2

1.358 xlO2

1.267 xlo2

1.247x10'2	 53.80

1. t117x10 2	 72.379

1.1121x10 2	95.01

1.353x10 2 	105.189

1,262x10 2	113.817

N.B.	 I	 In above, x	 1.9k x I0	 in.

2) For linear solution, properties corresponding

to y = 0 have been used.

0A is the phase difference between motion

at the middle of the beam and the end motion.
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for Velbex P.V.C. were taken from Fig. VI.7. 	 It is seen

from Table T-15, that the results for the amplitude and

the phase obtained from non-linear theory are different

from the linear solution by less than 1 percent.

In actual specimens, the adhesive for joining various

layers, has finite thickness and might have an effect

on experimental results.	 This effect is expected to be

more pronounced for specimens M 1 , M2 , D 1 and D2 , in which

more layers are involved,

VI.C: Discussion

It may be seen from the foregoing sections that the

theoretical results of previous Chapters, for vibration

response of 3 layered, 5 and 1i layered unsymmetrical beam

configurations, have been in reasonable agreement with

experimental tests, which were carried out at low fre-

quencies. The properties of the various viscoelastic

materials were separately determined in shear in the fre-

quency range of interest, taking due account of frequency,

temperature and strain.	 These properties were subse-

quently employed in the theoretical evaluation of vibra-

tion response underl experimental conditions of vibration

response tests.

The properties of the viscoelastic materials are very

susceptible to change, by a variation in the thermal history
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of the materials, during manufacture, as could be seen by

the difference in results of sheets A and B of Velbex P.V.C.

and 2 samples of Butakon '*0/60. 	 A factor whici could

not be taken account of in the present work, is the size

effect of the specimens. 	 The viscoelastic samples used

in the properties test were smaller than those used in

making the sandwich beams.

The shear set up is reasonably convenient to work

with and accurate Cor common viscoelastic materials but

for very stiff and low damping ones it tends to be diffi-

cult to obtain very accurate results, because of the

difficulty in measuring very small displacement amplitudes

and very low values of phase difference between displace-

ment and force signals, to the desired accuracy. 	 A

further limitation is at the higher frequencies when the

material tends to be considerably stiff and a large force

is required to cause shear in the specimens. 	 Under these

conditions, it becomes difficult to keep the fixing device

for the fixed end of the specimens perfectly stationary,

because of its flexibility.	 In such cases, some other

method of measuring properties like the vibrating reed

method may be employed.	 The vibrating reed method does

not require as elaborate a testing equipment as is required

in the shear test but has its own limitations. 	 It is not

possible to specify the strain dependence of material
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properties since the strain varies throughout the sample

of the vibrating reed. 	 Also, it cannot be used for very

sort materials. The calculation procedure is tedious

as given in f66] .	 Error might occur in the resonant

frequency of the sample because of' the practical diffi-

culty of obtaining a fixed root for the cantilever specimens.

For materials with heavy damping, it is difficult to

detect the resonant frequency exactly and determine the

damping. The use of a number of specimens of different

lengths, giving properties at resonance frequency of each
4

is tedious and likely to give scatter in results.

The vibration response tests on laminated beams

were intended for comparison of theoretical and experimental

results of displacement response.	 Although the specimens

were selected so that the various physical parameters

were different and the system damping could be varied

from optimum to non-optimum conditions, the variation was

restricted due to the practical difficulty of obtaining

visioelastic materials of any desired properties. 	 The

set-up for vibration response test was used between 20

to 400 c.p.s.	 For higher frequencies, the thrust required

to vibrate the I-beam with measurable amplitudes, is large.

The supporting spring steel strips have to be designed

accordingly to carry a large thrust.	 This may necessitate

the use of thicker springs, which may c4e large end restraint
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In the present work, only odd numbered resonances

were encountered since the excitation was a symmetrical

one.	 By moving the ends in antiphase, it will be possible

to excite the even numbered resonances.	 But that would

require changes in the arrangement of the present set-up.

Only- the first two dd numbered resonances were included

in testing the specimens since the higher ones occurred

at higher frequencies, at which properties of viscoelastic

materials were not known.

For various specimens, the graphs of amplitude dis-

tribution along beam length for the first and second

resonance (corresponding to n=1 and 3 respectively) have

been drawn.. For the higher resonance, there are rapid

chdnges in the values of amplitude and phase along beam

length and phase changes from leading to lagging at some

points along the length, and hence the curves for phase

angle are shown discontinuous in the various graphs.

At various locations on the beam, the maximum values

of displacements occur at different instants, because of

high damping in each system.	 The theoretical values

of instantaneous displacements at various instants for

specimen S3 were plotted in Fig.VI-23, for the second

resonance in order to indicate the nodes in the beam.

Taking the node as the point having same motion as the

beam ends, the number of nodes in the beam is seen to vary

from instant to instant.
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CHAPTER VII

VII.A : General Discussion and Conclusions

3 layered configuration: The equations describing

the flexural vibrations of 3 layered rectangular sandwich

beams, with the parameters of each layer different from

those of other layers, have been derived in Chapter II.

These equations may be employed for determining the

dynamic response of any 3 layered sandwich beam, with

a viecoelastic core. The solution has been determined

for simply supported end conditions and the procedure is

outlined for beams with other types of boundary conditions.

Different assumptions have been employed for analysis I

and II, the oter faces in analysis I being taken to bend

like Bernoulli-Euler beams, while analysis II is more

general.	 For sinusoidal vibrations, the solution for

analysis II may be used for a layered beam in which any

of the three layers may be viscoelastic, by taking the

appropriate elastic moduli as complex.	 In each analysis,

there is no limitation on the stiffness of the core and

longitudinal and rotary inertia effects have been included,

in addition to the transverse inertia effect.

The above mentioned equations have been used in

Chapter III for studying the dynamic behaviour of the 3

layered configuration.	 The damping effectiveness of the
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configuration has bean analysed by studying the influence

of various parameters of the system. The damping is seen

to be optimum only at a certain value of the shear para-

meter, which is a dimensionless parameter involving core

shear modulus, modal number of vibrations and physical

parameters of one of the faces. The shear parameter has

been defined from the point of view of convenience, so

that the parameters of each layer could be separated and

their influence studied separately. The optimum value

of ?Pa1mete, as given in Section III.A.2 depends

on the core thickness ratio (e 23 ), face thickness ratio

ratio of Young a modulus of the faces (cx 13 ) and

core material loss factor (12).	 In practice, the damp-

ing of the system might vary considerably due to change

in the value of shear modulus, because of frequency

dependence and also at various modes of vibration due to

changes in the modal number n'. The iurves of modal

damping against the shear parameter are useful in the

choice of core viscoelastic material, and in indicating

the range of effective damping for a chosen design of

sandwich beam, under specified environmental, conditions

of frequency of excitation and temperature. Suitable

choice of relative thickness and stiffness of the outer

layers might also be done in order to satisfy the static

requirements and also to achieve reasonable damping under

dynamic conditions.	 It might also be possible to specify
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the frequency dependence of 'viscoelastic material required

to keep the system damping unchanged at all modes, which

are likely to be excited. 	 Assuming, for instance that

2 does not vary with frequency, it is seen that

should vary linearly with frequency, in order to achieve

constant system damping at all modes.

There are different criteria for minimising displace.'

mont, acceleration or stress response etc in the system

and the choice depends upon the application intended.

If the amplitude of the exciting force is constant with

frequency, the displacement response depends on

whilst it the amplitude of the exciting force is propor

tional to the square of frequency, it is	 which deter-

mines the displacement response effectiveness. The

various criteria for damping effectiveness are meant to

designate the damping at a generalized mode. Depending

on the spce distribution of excitation, the peak system

response may not occur at the frequency corresponding to

a generalized mode, this being due to high damping in

the system. Due to the same reasons, the change in a

system parameter may not influence the peak response in

the same way as indicated by the damping effectiveness

criteria.	 In such a situation, the graphs of peak res-

ponse and corresponding frequencies are desirable. This

was not found to be necessary for the type of loading
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employed in the present work viz. the end displacement

excitation.

In a 3 layered sandwich beam with viscoelastic core,

the shear effect is generally predominant En the core.

But for a stiff and thick core, the extensional effect

becomes significant, especially in an unsymmetrical sand-

wich beam.	 At high frequencies, the stress response

is considerably affected by the inclusion of longitudinal

and rotary inertia terms in the equations of motion.

This is due to the fact that for each modal number, a

family of modes exists due to the inclusion of rotary and

longitudinal inertia terms.	 Some of these modes are of

the thickness shear type and occur at very high frequencies

for a homogeneous beam but may occur at intermediate

frequencies for a sandwich beam. This was illustrated

by an example for which the effect of longitudinal and

rotary Inertia terms became pronounced at frequencies

around 1400 c.p.a.

To take account of non-linearity in stress strain

relations, which is exhibited by some viscoelastic

materials, an approximate solution has been developed

using the Ritz method, resulting in non-linear algebraic

equations.	 An alternative approach Is to solve the equa-

tions of motion by finite difference technique, which is

expected to be highly tedious and time consuming, because

of large number of high order differential equations.
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The method given in the present work is simpler for low

frequencies but is likely to be tedious as well, for

higher frequencies, because of a large number of terms

requi'd 'u the assumed series which would increase the

number 0.. simultaneous algebraic equations.	 As indicated

in the illustration given in Section III.Q, it is possible

to estimate the effect of non-linearity on the peak

response and corresponding frequency, by the use of linear

solution.	 Since the shear strain in the viscoelaetic

core varies from zero to maximum along the beam length,

a linear solution employing viscoelastic material, with

properties corresponding to an intermediate value of

shear strain, might give nearly the same results as

obtained from the solution based on a non-linear stress

strain law.	 This is seen to be true for the illustra-

tion given.	 It might be seen that the effect of the

non-linearity in stress strain relations, has not been

taken account of, in the various curves of damping against

the shear parameter in the present work, since these

plots are not drawn for any specified material.

Configurations with higher number of layers.

The work described in Chapters IV end V is devoted

to further multilayfred configurations - 5 and 7 layered

ones with alternate elastic and viscoelastic layers and

& and 5 layered multicored sandwich configurations, ith
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different viscoelastic layers placed adjacent to each

other.	 The use of increased number of viscoelastic

layers, with different properties is attempted in order

to increase the system damping at a number of modes.

In each case, it has been possible to define a shear

parameter, in a manner similar to that in the 3 layered

configuration. The various damping effectiveness cri-

teria as employed for the 3 layered case have also been

applied in all those configurations.	 In Chapter IV,

an anaj.ysis of the two possible arrangements in 5 layered

configuration employing different viscoelastic materials,

shows that two peaks in the curve of damping against

shear parameter occur - a situation which is to be pre-

ferred.	 A single peak would occur if both the visco-

elastic layers are of the same material.	 The value of
Of t1e two

the shear parameter at which each peaks in a 5 layered

sandwich beam employing two layers of different visco-

elastic materials, occurs is approximately the same at

ihich a single peak would occur if both the layers were

of the same material.	 However, in the former case (of

layers of different viscoelastic materials), the maximum

value of damping corresponding to each	 is less than

the maximum value of the peak in the latter case.

Further studies on the 5 layered configuration in

Ch apter IV indicate the need of determining the correct
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ratio of stiffness of the two viscoelastic layers used,

in a given situation, for optimum damping. Mostly,

the damping results due to shear in this arrangement but
decrease of constraining effect on one of the layers,

would result in the contribution of extensional damping

to the system damping. In such a case, the system

damping does not vary appreciably for various modes.

Thick and stiff viscoelastic layers are required for

attaining these conditiois.

The 7 layered configuration analysed in Chapter IV

employs 3 viscoelastic layers or it might also be taken

to correspond to a conventional honey-comb sandwich,

damped by two 'viscoelastic layers, one on each side.

In this configuration too, the use of suitably chosen

different viscoelastic layers gives increased damping

over a wider range of shear parameter values than would

othersise be possible if only one type of viscoelastic

material is employed either in a 3 layered or 7 layered

configuration.

In the li layered double cored configuration analysed

in Chapter V, one of the viscoelastic layers is taken

to be considerably stiffer than the other one. 	 A parti-

cularly useful result is the fact that the graphs of

system loss factor or displacement response effectiveness

against the shear parameter, are considerably flatter than

those obtained from a 3 layered sandwich employing a singi.
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core.	 Since the shear parameter involves the modal

number and the shear modulus amongèt other parameters,

a change of modal number, frequency and temperature value1

would not be as detrimental in a suitably designed k

layered configuration, as in a 3 layered one.	 At lower

modes, the system damping is mostly due to shearing in

the softer viscoelastic layer while at higher modes,

the extensional damping due to the stiffer layer is seen

to play an important role. The arrangement is parti-

cularly useful if the stiff layer is at least 100 times

as stiff as the other viscoelastic layer.	 The 1i layered

_arrangement may also be taken to correspond to the one,

employing a viscoelastic layer over a spacer t layer.

By the analysis of a 5 layered multicored confi;uration,

it has been observed that the desired characteristics of

a sandwich beam may be attained by a proper choice of the

relative thickness of the viscoelastic layers. 	 Also,

only one of the viscoelastic layers need have a high

material loss factOr if a suitable stiffness ratio is

maintained between the two viscoelastic materials, 	 It

may be 1seen from the results of this analysis that the

adhesive joining the metal to viscoelastic layer in a

3 layered configuration should be of the rigid type.

The behaviour of the above mentioned configurations,

has been indicated by studying the effect of certain
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important parameters.	 A complete study of the influence

of all the parameters in a sandwich employing a large

number of layers is highly tedious and has not been

attempted.	 It is suggested that the curves of modal

damping effectiveness against shear parameter, might

be used at the design stage to give an idea of the damp-

ing expected over a specified frequency range. 	 Once a

design has been chosen, an accurate response analysis

may be done by using the solution to the equations of

motion, with the actual space distribution of excitation.

Experimental Work:	 The vibration response tests

on laminated beams were meant for verifying the results

obtained from the theoretical analysis.	 In order to

compute the theoretical values of vibration response

corresponding to the experimental conditions of vibration

response tests, the dynamic properties of the visco-

elastic layer materials were required to be known

accurately in advance.	 So, the viscoelastic materials

were tested in shear at various values of frequency,

temperature and strain amplitudes and the shear apparatus

was found to be useful for the purpose. The results of

vibration response experiments on a few specimens of

3 layered, 5 layered (alternate elastic and viscoelastic

layers) and & layered double cored configurations have

shown reasonable agreement with the theoretical results.
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The maximum difference between the theoretical and

experimental values of the peak amplitudes was around

10 percent and that between the values of frequencies

corresponding to the peak amplitudes was 1-2 percent.

Details of these comparisons and the sources of error

are discussed in Section VI.B.6. 	 A detailed discussion

of experimental work is given in Section VI.0 and is

not repeated here.

It may be expected that the analysis of the remain-

ing configurations for which experimental verification

has not been attempted, is also likely to hold since it

is based on assumptions which are similar to those for

the analysis of the configurations which have been

tested experimentally.

Finally, it appears that a careful consideration of

various factors involved, would make it possible to

achieve suitable design of laminated structures, involving

viscoelastic layers, for use in severe vibration environ-

ments in a wide frequency range and to satisfy both the

dynamic azd static requirements.	 The use of a digital

computer is necessary for the theoretical analysis.

The development of new high damping viscoelastic materials

n bide range of stiffuessitb the properties not appre-

ciably affected by temperature and other environments,

is desirable.	 Also the development of suitable adhesives



for Joining various layers is of importance.

VII.B.	 Further Work

The present work has been confined to the harmonic

vibrations of a few types of sandwich beam configurations

and the results are analysed for simply supported end

conditions,	 Though the equations are stated for other

boundary conditions, further work is desirable for solving

these numerically for application to sandwich beams with

other types of end conditions for variou configurations.

The adequacy of approximate methods e.g. the variational

ones, has to be verified for beams with various end

conditions, by comparing the results obtained with those

obtained from an exact solution.

In the present work, a limited number of graphs

relating to optimum damping have been drawn for illus-

tration.	 Since these are useful at the design stage,

further work is required in order to draw complete set

of' these graphs, with the various system parameters

chosen in a wide range so as to include any sandwich beam

parameters, likely to be encountered. Of' course, this

is expected to be tedious especially when the number of

layers is high and all layers are different from one

another.	 In addition, detailed investigations are nec-

essary, to be of ready use at design stage regarding the
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choice of any particular configuration viz, the number

of layers and their properties, to be effectively useful

under dynamic and static conditions.

Further analysis might deal with other types of

structures, viz, sandwich plates, circular bars, shells

and with structures carrying concentrated masses.

The effectiveness of damping in a sandwich structure

employing viscoelastic layers and subjected to impact

excitation, may be different from that determined Vor

sinusoidal excitation conditions. 	 This is due to the

fact that the operating stress strain law is different in

the two cases.	 Theoretical and experimental work is

desirable on the analysis during and after an application

of impact and the part played by viscoelastic damping.

ork on the random vibration of sandwich structures, with

viscoelastic damping was initiated in 2) and subsequent

work would be of interest.

Further experimental worc is required at high Ire-

quencies, lioth for the measurement of dynamic properties

of damping materials and also for stress and displacement

response measurements on sandwich specimens, the latter

being meant for comparison with theoretical results.

Experimental work on sandwich structures employing highly

non-linear materials, will also be of interest and in such

cases, anilytical solution for higher mode3 has to be

derived.
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APPENDIX I Details of derivation in II.C.I

The details involed in obtaining equations of

motion and boundary conditions in section II.Clar. given

here.

The variations of U, the strain energy, T, the kinetic

energy and V, the polential energy expressions are carried

out and the derivatives of 6w, 6u, and 6U are eliminated,

giving

.L UI-u	 ___2s	 ____
bU	 - j C	 -	

) budx + (2r 1u+2c2u+c2u +
20	 2	 2

t
+ c 2 ( 2- t 1 )w"	 6u1

'0

- f' 2r 1u+2c2u+c2u+c2 ( . - t 1 )w''')5u 1 dx
0

2s 
L	 13 - w'a)- ç
	 t2 

e*i3dx+ f2r,u+2c2u;+c2u+

t	 II,

	

+ c 2 (t,- J-)w" )6u	
'0

L	 t
- I (2r u"+2c u"+c u"+c Ct - .1-)w''') ôu dx

33	 23 21 2 3	 30
u-u2sa 4i (UI__u - w"a 

bwdx- 2saj 1 3 w'a
-	

6w1+tj2 0	 t2	 t2 (. 2	
2	 to

+

L

	

+ c 2 (t,- .i.)u) 6w	 I
'0

-[2q1w ''+2q,w ' ' i-i. (t+t-t 1t 3 )w' ''+c 2 ( .2- -t1)u	
L

t
+ c 2 (t 3 - ,5!)91 6 w
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+ t f2q 1w""+2q3w""+ .(t+t-t 1t 3 )w"+c 2 ( 3- ..t1)u'
0

+ c 2 (t 5 !) u'')6w dx.

L
6T	 5"prô*dx + ,f (bp1t	 + bp2t 2 _ 1 3

1 j	 2	 2

bP2t2 (1_3_*'12) 6 1dx+

L	 bpt A+i	 bpt

	

+ J[bP,t, + 2	 1	 L 2
3	 2	 2	 1	 12

- JJb ( P1 1 ,	 1•+1•1I	 p2t2t2
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3	 *,+p t	 (_i__i.2 2 1	 2
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(i•i — i _* t c ))6.

13	 2

6 V -	 f(x)g(t)bwdx.

Applying Hamilton's Principle and noting that
1ft2 

J	 dxdt t(*6wL2 - f2 jiL 6wdxdt
ti 0	 0	 1

virtual displacement 6 w- vanishes for t*t 1 and tt 2 (86]
t2

Hence, above - - $ w• 6 wdxdt
ti

Also applying this for u 1 and u3 , we get the equations of

motion, and the terminal point conditions. 	 The equations

of motion are:



340
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- u (2r3 +2c 2 ) = _bcP,t,;+P2t2ri. 4_1	 12

The terminal point conditions are:

For simply supported ends:

For fixed ends:

w-o

w ,' 0

U;:: 0

9= 0

w*0

W'= 0

U 1 = 0

U,_ 0
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Por free end:	 WI'	 0
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APPENDIX 2 Details of derivation in II.D1

thi
The total strain energy U ofAsandwich, after elimina-

ting u 1 , it3 , w 1 and wj as explained in IID.1 is

2	 2

j (.-tt1(u2+2 2
	 ,2	 -u''t -u't	 12)1

2222 211 12
0

t3
+ 12t 1 )+ 1 (u-i	 -	 !) 1t1

	t 	 t
+k11f12t +I +21t1(w-'1 1 12

	

22	 12

7 _w t2_wFjtj^j2))

Z3 (u + -4 +1 -j.)3

+k3	(2t+t3(w'^' - +	 ^;;	
12

+ 21, t 3 (w +	 -	 +	 .2.) 3] bdx

+ $Lfiu2t2+2	 +2:t2) ^z2(u2t2)

2 2(ta2 t 2+wt 2 +w	 +22wt2)3 bdx

Total Kinetic Energy 'V oft '.andwich, after eliminating

U1 , u,, w1 and	 as explained in II.D.1 is given as.
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0

t2 - ti
Substituting w 1 = w2- 2 - - w1 -

L	 - t2
V	 s(t)	 f(x) tw2 - w2 •- - 1t 1 ) b dx.

0

In order to apply Hamilton's principle, variations of

U, V, P have to be carried out as done in Appendix I.

Following the same procedure,we get the following equations

of motion.

bE

2	 t13111?1t - t12u 
+ 12	 - I11

2	 2	 2
tt

- bG1k1 (ti1 + tw - 1 2 ;, - 12	 2	 2	 2



344

p b •• t1	
•' 

2 t1t2 :	 t1' •'
2 -u2t1+ 2

bE
2 1 2 2	

2,, 
+2 (2t 1u"-t t i" - t

bE
+ __

2	 2t3u+t23Z+t32') + bE3(t3)

bE
+ 2 (2ut 2 ) + bi2(t2)

t2t 1 	 tjt2u2t1ui.1] + -r2t,+t3t22^t,,]

+ 
2 f2t2u2]

bEt1t 2	 tt2	 t1t2
___	 2	 - bZ2	 2	 2 122	 2	 1

bE*tt 2 	t2t	 tt
+ 3 (_3 2	 _____	 ____

2	 2	 2 t2t3u+	 2 2
	 + b3	 '

bE t
+ 2	 - bG2t2k2(w+2)

bp .. . . 2	 t	 bP t	 2	 t= 1— 12	 ____ __ ___	 ___

2 Eu2	 2	 -t1t2u2i 2 2 J 1 2 C 	 ;+t,t2	 3

___	

t2
+ 2	 2 6

bE2 
,_	

tt2	 t2
23 (t, u+t, 2u+ 2 23 i) +

bGk-	
3(2t33+2t3w^t2t3+t32;)

tt 2	t'bp3 t3	
+ 23 

12 +2 12



bE	 t	 t
- _(2t 11 )-bE1 (u-i .	 - ij .-)t1

bGk t3	 t3	 t2t
11 1—— 2 1—	 2	 12-

+	 2	
6 w'ujt1 

+ 2 W 1 -t1	 2	
w)

bp 1 1••	
2..'	

l22 •-'	 t13
a 

2	 2 w
1 t 1 W2 +
	 2 W2 + 6 W 1 ) +t 1 g(t) f(x)

bGk
'(2t 1+2t 1w'-t t w"-t

122

bG3k, -
2 (2ut,^2t3w'+t2t3+t32)

bG2k2	bP1
=

+	
2 (2t2w-i2t2I2)	 2 (2t1-t1t22-t1w1)

bP	 ..	 ..	 bP

+ 
2 (2t3*+t2t 32+t,2 3 ) + 22 (2t 2')- g(t) f(x)

bGk	 t2t	 t2t
1 t-t 1 t 2 ij^ 22	 w"ttw'+ 12 2

	

bE	 -
2 (2t2w2)

2bQk	 t
+	 (t2t3i.j^	 +t2t3w+ 2 2

bGk t322,2 -- b2(t2u) 
+	 2	 w)

b	 2	 2p 1 t 1t 2 ..	 t t
___ ____	 1 2-
2	 2 w2-t1t2w2+	 2 w1)

	

tt	 t3..+	
3 (32	 ^ .	 + 2 1	 2	 2 ••

2	 2	 2 2 , 2	 2	 + 2 ' 6

t
+ g(t) 1(x)



L

= 0 or

0

L

-	 =013

0

346

bE
23 (2t33 )-bt 3Z3 (u+	 .+

bG,k, t	 t

+	 2	 +	 + -	 +t32w+	 2

3	 2	 3___ ___	 t2t	 S. tbp, t, •	 2.. _____	 ___
2 2 

w3+t, 2 + 2 W2+ -

The terminal point conditions obtained are:
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For simply supported ends, the boundary conditions

deduced frotw above are:

W2 =	 =	 -	
= 0

=	 =	 = u = 0
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APPENDIX 3 Details of derivation in IV.A.i

The details involved for obtaining Equations of

motion and boundary conditions from energy integrals in

section IV.A.t for 5 layered case are given here.

From section IV.A.1, expression for TJ can be

written, for small displacements as:

6U = q2	2(a-w')(bcz..bw')dx+2q11

-	 t+t	 -	 t+t
+ 2r 1 Jfu'+t2+wu 12 3 3(u ; + lx t2+6w"	 2 3)dx

+ 2r1 
jJ4 

w" 1 bwdx+2r Juu'dx+2r3 t' t32 
bWdX

^ 2r	 u'- P'!L w".3(6u'_6'
°	

t2	 L	 t2
+ 2r4	dx +2r5 j' w'	 6 w"dx

L	 t+t	 t+t
+ 2r5 f (u'-'t4-w"(_2 5 )3( 6u '-o t-w" -	 5)dx

6 f J14 Tdxdt	 J	 '* 6 iv dx dt
t I 0	 ti 0

tt2 r"
-J	 j p w bwdxdt

t i 0

(as in Appendix 1)

411 
=	 f(x)g(t) 6i dx.

Eliminating derivatives of bw, bu etc. in expression

for btj by integration by parts and applying Ramilton's
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fit
PrinctPlej 2 (6T-oU-oV)dt 	 0

ti

gives equations or motion viz. eqns. (IV.1) to (IV.ti).

The terminal point conditions are obtained as.

i) f2r1(u'+z t 2 +w" l 3)+2ruhl^2r(u_

t +t
+2r5(u'-'t4-w" 2 5)	 = 0

Lt +t
ii) (2r 1 t 2 (u'+a 't 2+w t' 1 2	 a

2	 L
iii) fr4?	 -

t +t
iv) f_2q2(cL_wt)_2q4(_w)_r1(t1+3)(ul1	 't2+w"

r 1t 12w"'	 r t 2	 t,	 t	 r t 2
-	 6	 -	 w+rt,(uft_JtLr -w'''2-)-	 6 W

ILt+t	 I'''	 W I	 = o2
10

t +t t +t
v) t2r1(u'+'t2+w"_12 3 )	 u,t12+1 t,2w"

t	 t	 rt2

	

-r1t3(u'-'--.. -w".)i •6	 w'

	

t +t	 L

	

-r5(t3+t,)(u'-'t4-w" 2	
1 -

From these, the boundary conditions for various ends

may be written down as below:
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For simply supported end, botindary conditions are:

W= 0
-

w,l =	'	 3' = U' = 0

For fixed end, boundary conditions are:

w 0 a	 u

For free end, ''= u'=	 0

and the term included in parenthesis( 3 in (iv) above z 0.
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I

APPENDIX t.	 Details of derivation in IV.B.1

The details invold for obtaining equations of motion

and boundary conditions from energy integrals in section

IV.B.1 for 7 layered case are given here.

U can be written from section IV.B.t, for small

displacements as

2q2 j"_w')o dx+2q jL(_w,) & dx

+2q ,f' (_w t ) 6 dx

L

- $ (2q2(a_w')+2q,_w')+2q6(y_w')) ôw'dx0

ft
tEl -

2r 1t 2 (u'-ifr-.-. +4't2+w"t3ôc&'dx
0

+ $L

	 t	 t1
[r,tElu'+'._.	 )_r5t,1(u'_.r _w"1)

_t Ll -
't2+w"t,

t El	 -
-r7t11(u'-'--. -4 't6 -w"t57 )) ô 'dx

- $1 2r7 t 6 (u'_'.it _'r't6_w"t57)eY'dx

+ $C2r3 su'^' .	+w'L2.)+2r5(u'_'i _'t2.)

^2r1(u'+'+'t2^w"t31)+2r7(u'-P' 	 j?'t6_wnt57))6u'dx

2
+ jL(r,t,(u++w1,..) r3t3^r1t^r5t+r7t wt'

6
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-rt 5 (u'-'	 -w" .)^2r1t13(u'+'-	 .i 't2+w"t31)

t
-2r7t 57 (u'- '- -'t6 -w"t57 )J bw"dx

ÔT and ÔV are same as in Appendix 3.

Eliminating derivatives of bw,ô etc. by integration

by parts and applying Hamilton's Principle gives equations

of motion (1V.1i) to (IV.18).

The terminal point conditions are:

i) f2r1t2(u'.'.!& +'t2+w"t,1)) o4' = o

ii) (r,t,(u'+'.	 +w" )-r5t 4 (u'-	 .ILi)

+r1t,(u'+'-. +t2+w"t31)

t
-r7t4(u'-'--- lt6-w"t57))b

iii) t(u'-'--?t6-w"t57)) oV	 = 0

iv) 12r3(u'+	 +w')+2r5(u''.. —w")	 Ill
tzk

^2r 1 (u'4D'- +'t2+w"t,1)	 I
t4

+2r7(u'-'-- -.'r't6—w"t57))b u

r t 2+r 1 t 12+r 5t 2+r	 2	 L
" Fv) (r3t3(u'+	 -. 6	 I

t
-r,t5(u'-'.i -w".)+2r1t13(u'J'.. +°'t2+w"t,1)

t' -
	 I-2r7t57(u'-'.— -Y 't6w'tt57)ô
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vi) [_22(_w')_2q4(_w')_2q6G_w)

t	 r t 2+r l t l +r,t , +r?7 233_r3t 3 (u t1 _ 1L_ -w	 2	 6

	

t (u"+P"	 +at2+w	
3'''t	 )2	 131

1L
+2r7t 57 (ufl_ a tL!.t -Y"t6-w	

57	
W] I	 = 0'''t	 )	 b

For simply supported end, boundary conditions are seentob

=	 =	 =	 = w" 0

w0

For fixed end,

Y	 u -	 -	 =w' =w=O

For free end,

= U	 = I =	 = 0

and terms enclosed in parenthesis t 3 in (vi) above = 0.
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APPENDIX 5	 Details of derivation in V.A.1

In this, the details for obtaining equations of

motion and boundary conditions in section V.A.1 for 1*

layered unsymmetrical case are given.

From section V.A.1, bU can be written as below, for

small displacements.	 -

OU	 2q2 J(_w') 2 badx+2q3 J"(..w1)2bP dx

-2q2 	_wf)6w'dx_2q3 t(-wb)*w'dx

t	 tk
+

+2r3(u'-P'.2.))bu'

+ j" ( 2z- 1t 2 (u'+c't 2+wfl..1. )) bcI'dx

- Jt2rt3(u'-P't3_w"+r3t3(u''
a
rt 2

- '_3 P']6'dx
6

+ J	
t	 r1t 2	 r4t2

(u'+a't +w"-1-)+ 	 W"+	
6 -	2 2	 6

-	 t
- r4t4 (u'	 't3_wt*._)) 6

Expressions for ÔV and ÔT are similar to those in

Appendix 3.

Eliminating derivatives ofôw, 6 etc. in expression

for 6u, by integration by parts and applying Hamilton's
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Principle, equations of motion and terminal point con-

ditions are obtained. 	 Equations of moton are written

as eqns. (V.1) to (Y.li).

The terminal point conditions are:

t	 -	 t
i) J2rl(u+cIIt2+w11.!)+2rk(u_Ptt)_w??.i_ 

J	
bu

t	 I
L+2r3(u''.2.)

t	 L

	

2	 L

--I

iv) r1t1(u'+c't2+w".!)+	 w'1+	 w" bw'

-	 t4
-r4t(u'-f3 't_wtf.1._)

t
v) {_2,(.wh1)_2q,(_wt)_r1t1(u1t+t2+w'is 1)

r t 1 2	r4t42	 L

16	
6 -	 I s 0

L
For simply supported end, the boundary conditions

are seen to be:	 wwt1s a' = '	 u'	 = 0

Forfixedend,	 =u	 0

For free end,	 w"=a'	 P' = ii' = 0

and expression enclosed in parenthesis	 in (v) in above

= 0.
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APPENDIX 6: Shear Coefficient	 in 4 layered

configuration

In the derivation given in section V.A.1 for 4

layered case, both shear and extensional efteets of

layer 3 are included. This makes the shear coefficient

k3 ' for that layer, to have a value different from unity.

Its expression may be derived in a manner similar to

that for 3 layered case, given in section II.D.3.

FigV-1(a) gives a sketch of the 4 layered configuration,

with	 and z3 as the dummy coordinates in layer 3.

The shear stress	 at any distance say 	 from the

interface of layers 2 and 3, ii got by euilibriuin of

forces in 'x' direction for an element of length dx,

comprising layer 4 and part of layer 3 of thickness

(t3-z3).

T	 bdx	 bE4t4[uht-jI,t_w1,h1dxzx
-	 t3

+ bE3dx S (u"-z i") dz0	 0

t4
I,,E4t 4 [u'-"t3 -w	 -jzx

2	 2+ E3 [u"(t 3 -z3 )- . (t 3 -z, )]

Taking shear force due to layer '5' as

b

and k	 3
bt3tzx)at middle of layer 3



= 100 lb/in2

* 3Q3

= 0.125"

357

we get

t2 -
'I	 t

k = 
E4tt,t3(u"-P"t3-w'''.)J+E3Eu 2 - 3	 3

E,1 [t,1 t 3 (u"-P" t3-w"' .!)]+E3guttt3zJ_PItt,3J

The solution given by eqn. (v.6) may be substituted in

above. The value of IC) in any given situation may be

determined by initially taking it equal to unity and then

determining the solution from Chapter V. This may be

substituted in the above expression for k3 . This new

value may be used again and the procedure repeated till

two consecutive values of k3 obtained, are nearly same.

For a given Li layered sandwich, the following values

of IC3 were obtained. These are nearly equal to unity

except when layer 3 is thick and rigid.

Parameters used:

- lO lb/in2	'

ELi i3x1071b/in2

* 0.0625"	 tLi

TV'
0.05 per in.
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APPENDIX 7	 Details of derivation in V.13.1

In this, the details of derivation of equations of

motion and boundary conditions for 5 layered, multi-cored

case analysed in section V.B.1, will be given.

6 U is got from equ. (V.12), for small displacement as

2q3 (-w')	 dx^ 
Jl4q2(_,)	

dx

2r 1t 2 ('IfZ't2+w".!) 6c' dx

r 1t 3 ( 1.2. +	 t2+w".!) 6'i,c

t2q3(-w')^2q2(-w')) w'dx

t	 t	 rt2
(r 1t 1 (P '.3.+''t2+w'L!)+ 161 w") 6w"

Expressions for bT and bV are same as in Appendix 3.

Eliminating derivatives of 6w,5	 etc. in above expression,

by integrating by parts and applying Hamilton's principle,
t2

5 (6T_6U_b y) dt = 0
ti

Equations of motion are obtained and are given as aqua-

tions v.16 to v.j8.

The terminal point conditions are obtained as:

1)	 2r1t2'	 +'t2^w".!36 to = o
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t -	 L

ii)	 r1 3 t.2 +a't	 02	 2 '0

. 
_ , t 3 	 t	 rt2

'i	 .- +a't2^w".)+ 1 6 1 w") Ow'	 0

0

t
iv)	 [_2q2(cL_wt)_2q3(_w')_r1t1(".. + a!'t2+w	

2

rt2	 1L

- 1 6 1 w') 6w
a0

From above, the boundary conditions for various types

of end conditions are:

For simp3y supported w =' = P'	 w" 0

For fixed end:	 w=w'

For free end:	 a'='	 w"	 0

and expression enclosed in {J in (iv) above	 0.
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Appendix 8	 Dynamic shear properties of a

few varieties of Butakon.
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APPENDIX 9

Table T-16

Experimental testing details

"x0 'x10' in.	 Average Temperature

	

Beam end displace-	 C	 Remark5pec imen ment amplitude
First	 Second	 First	 Second

Resonancej Resonance Resonance 1 Resonance

S2

S3

SI!

S5

N1

N2

D2

2.4

1.488

1.9/!

0.57

1.21

2.77

2.79

1.701

0.45

0.634

0.718

0.661

0.485

0.52

0.547

0.557

2.05

1.498

22.3

21.1

21.0

21.9

20.9

20.8

20.5

23.6

23.8

21.7

21.0

21.8

20.8

21.6

21.8

25.1

25.3

Speci-
mens Sj
to
and
N2 were
t e s ted
using
the
50 lb
thrust
exciter,
while
speci-
mens
and D2
were
tested
on the
250 lb
thrust
exciter.
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APPENDIX 10: Polar plots for specimen S5

Polar plots will be drawn for two resonances

(corresponding to n=1 and 3) for the experimental results

of vibration response,Iobtained for specimen S5.

An examination of eqn. (111.22) indicates that the

expression for contribution of nth term in the series to

T12 resembles that of a single degree freedom system,

ml
the polar plot of which is a circle.	 The value of,system

loss factor may be determined using eqn. 111.23. 	 As

explained in (95 and 961, the polar plots for a continuous

system may also be expected to be a circle near any

resonance, if near the resonant frequency, the contribution

of off resotiant jnodes is negligible or effectively con-

stant.	 For specimen S5 , the values of	 and its phase

angle have been determined experimentally from which value

of 
R 

and corresponding phase were calculated by sub-

tracting x0 (equal to unity) vectorially. 	 The values of

T/p2 and corresponding phase angle have been plotted

here.

In Fig. AP.10-a, the values corresponding to u=1

(i.e. first resonance) have been plotted and a circle

is made to pass through the experimental points. 	 A

reasonably accurate value for system loss factor 'i

is obtained, when compared with the theoretical value.

However, for the plot of Fig. \P.l0-2, which corresponds
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