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SUMMARY

A U~tube water tank and drive mechanism were designed,
which produced stable sinusoidal oscillations of the water
in the tank; these oscillations were capable of attaining a
maximum amplitude of about 12", A force measuring system,
capable of measuring both in-line and transverse forces
was designed. This was used to measure the forces on a
circular cylinder, a diamond section cylinder, and a square
section cylinder, in the Keulegan and Carpenter number range
from 3 to 70. Flow visualisation revealed the presence of
large discrete vortices on three of the sections; but these
were not observed on the square section cylinder. On these
sections where large vortices were formed, they set up clearly
defined flow patterns which were generally similar. The ’
similarity in flow pattern on the three sections leads to
some similarity in the in-line force. The transverse force
on the circular cylinder and diamond section is also similar
in its variation during a cycle, for the same Keulegan and
Carpenter number. On the square section cylinder, the absence
of any clearly defined vortex patternfor values of the Keulegan
and Carpenter number less than about 25, leads to a different
behaviour of both the in-line and transverse forces. Howvever
for values of the Keulegan and Carpenter number greater than
about 25, the flows past all the sections are similar as they
become quasi-steady and a Karman vortex street is formed. 1In
-thisregion therefore the behaviour of both the in-line and
transverse forces on the square section cylinder is more or
less similar to that observed on the other sections, except
that some turbulence is produced by the s@uare section. On
all these sections, for small values of the Keulegan and
Carpenter number, their inertia coefficients tend:. towards
their corresponding attached flow values For large values of
the Keulegan and Carpenter number the tendency of the flcw to
become quasi-steady is reflected in the drag coefficients all
tending towards their corresponding steady flow values,
except on the sguare section cylinder where the presence of
turbulence results in a drag coefficient lower than the smooth,

steady flow value. Both the in-line and transverse forces are



ii

related to the vortex strengths and pusitions, and since these
tend to show some variation from cycle to cycle, both forces
show some cycle to cycle variation. However the variation

is more pronounced on the transverse force since this force

is entirely due to the vortices; as a matter of fact the
transverse force on all the sections occurs in irregular
bursts. The transverse force also occurs over a wide band

of frequencies which in general increases with NKC, though the
Strouhal number formed from the centre freguency appears to
tend towards a constant value as NKC increases. Blockage

has been shown to be important in oscillatory flows, causing
a marked increase in the in-line force for values of the
Keulegan and Carpenter number greater than about 5. Finally
Morison's equation has been shown to result in poor prediction
for sharp-edged bodies and for circular éylinderswhen large.
vortices are present which remains close to the body. However
for values of the Keulegan and Carpenter number greater than
about 25 to 30 a fairly gocd prediction by Morison's eguation
is obtained for all the sections tested.
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CHAPTER: 1
INTRODUCTION
l.1. REVIEW OF THE PROBLEM

In recent years, the rapid development of the offshore
industry has provided a major impetus to the study 6f fluid
loading on offshore structures. However, rafter substantial
research, both the designer and researcher still face
considerable problems in the prediction of loads on these
structures. These problems arise for a number of reasons,
but probably the most fundamental of all is a lack of
understanding of the fluid meéhanics associated with these
complex unsteady flows generated in the sea. A brief
description of the commonly used fluid loading regimes, and
the prediction methods used therein will help to illustrate
some typical problems Detailed accounts may be found in a
rather comprehensive review paper by Hogben (1974) and also
in another paper by Milgram (1976).

These regimes may be broadly classified under the
headings of, pure reflection, diffraction, inertia, and drag;
the importance of which will depend on two parameters relating
to the size of the structure and to the flow conditicns. The
first of these parameters is the ratio of the diameter of the
body (D) to the wavelength () of the wave; which serves as
a measure of the disturbance of the incident wave. The
second is the Keulegan and Carpenter number (NKC), which by
definition is UmT/D; where U, = Amptitude of the orbital
velocity, T = period of the motion, and D is the diameter of
the body. This was first introduced by Keulegan and Carpenter
(1958), who used it to correlate their force data. The
Keulegan and Carpenter number may be viewed as a parameter
which compares the path length of an orbiting fluid particle,
with the body diameter and gives an indication of the flow

development. It thus gives a measure of the relative



importance of drag and inertia fcrces, (see Appendix:1l of
Hogben et al (1977)). There are no distinct boundaries
separating these loading regimes and quite often a structure
experiences loads of different types. However within
certain ranges of flow conditions one type of loading may

prevail over another.

Pure reflection of waves occur when D/A> 1, and is of
more significance in the design of coastal:structures such
as sea walls and breakwaters rather than in the design of

offshore structures.

Diffraction forces arise when D417-0.2; then, the
presence of the body causes significant scattering of the
incident wave, (a condition which usually occurs on gravity
- type platform structures) and this effect must be taken into
account in the calculation of the loads. In this analysis,
viscous effects and hence drag is usually neglected; in a
typical analysis the structure is represented mathematically
by a series of grids or elements, over which there are a
distribution of sources, the nature of which depends on the
type of structure and sea conditions. The velocity potential
obtained from this source distribution must satisfy the
boundary conditions on the body, at the sea surface, at the
sea-bed and at large distances from the body. Further, the
velocity potential includes a contribution due to the
undisturbed incident wave (i.e. in the absence of the body),
which gives rise to the Froude - Krylov force. The remaining
part is the disturbance potential which includes the effect
of wave scattering and a part which includes the local flow
disturbance caused by the body, giving rise to the added mass
effect. Further details and applications of this method are
found in the works of Garrison and Chow (1972), Hogben and
Standing (1974), Hogben (1976) and more recently by Isaacson
(1978). Since its inception, considerable progress has been
made in the diffraction analysis technique, and programs are
now available which calculate the loads on and responses of



both fixed and floating structurecs, e.g. Stancing (1978),
and usually good agreement with experimental results is
achieved. One of the problems in using this analysis is
that quite often, parts of a structure may be in different
loading regimes, and experiencing forces of different types,
also the flow is locally modified. 1In general such analyses
are done numerically on a large computer and are rather
costly. Considerable care must therefore be taken, which
includes the above mentioned effeéts, if adequate modelling

is to be achieved.

The diffraction analysis technique can also be used to
calculate inertia coefficients of bodies of arbitrary
cross-sectional shapes, e.g. Hogben, Standing and Osborne
(1974). When the body is no longer large compared with the-
"wave lengti, wave scattering may be neglected, and in the
absence of the body, the pressure gradient due to the
undisturbed flow, and hence the acceleration may be assumed
uniform over the body. The calculated force is then all
inertial from which the inertia coefficient may be obtained.

Inertial loads are dominant when D/} < 0.2, and NKC less
than about 15, then the above two assumptions are justified.
These loads are composed of two parts, the Froude Krylov force
(Fk) and an added mass effect. The Froude-Krylov force is
the force that the fluid would exert on the body, had the
presence of the body not disturbed the flow, i.e. due to the
pressure gradient of the undisturbed flow which maintains
the fluid acceleration in the absence of the body. Thus
the Froude-Krylcv force is given as:

F, =pV0 ) ' (1.1)
wherelP = density of fluid, V = volume of fluid displaced
by the body, and U is the acceleration of the fluid; an
infinitesimally thin flat plate will therefore experience
no such force. The added mass effect however, is caused by
the presence of the body which locally disturbs the fluid
and gives rise to increased fluid accelerations. These
resulting local fluid accelerations causes the body to



experience an extra force (F ) which may be considered as
equivalent to an extra or added mass afm) with the ambient
fluid acceleration. Thus the added mass force is given as:
F, =6m U = kpvu (1.2)
where k is usually referred to as the added mass coefficient,
and it is usual to define V as the volume of fluid displaced
by a notional circular cylinder circumscribing the body,
i.e. V= W’D2/4 where D is the maximum body width. The
total inertial force (FI) is then: '
Fp = F, +F_ =pYu + ]g.P‘VI} = (.g;k) pVT

= Cmf7VU (1.3)
As stated earlier, the predominance of inertia over drag at
small values of NKC, leads to prediction methods which
usually neglect viscous effects. However Graham (1978) has
shown that for sharp edged bodies this assumption may not
be justified, due to the formation of vortices. Graham also
states that the effect of the growing vortices may be i
significant even in the diffraction regime. Here he showed
that at low NKC, the vortex induced drag component of the
force is related to the internal angle of the shedding edge of
the body and to NKC. For NKC less than about 5 however, viscous
forces, i.e. drag arising from separation and vortex formation,
though significant for sharp edged bodies are not as important as
inertial forces. As NKC increases, these effects become more
important, vortex formation and shedding occurs which leads
to asymmetry in the flow which generates 1lift and torque on
the body. In the regionr5<NKC<25 both inertia and drag are
important and for this reason, it is comnnnly referred to as
the drag/inertia regime. As NKC increases above about 25, the
flow approaches a quasi-steady situation, and inertial effects
are less important.

The drag/inertia regime is very important as numerous
offshore structures, e.g. jacket type platforms, are in this
fluid loading region. For this reason, considerable attention
and studies have been focussed on fluid loadinc and prediction
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methods in this regime. Unfortunately, however this region
presents the greatest problems, as there is no clear
understanding of the fluid mechanics associated with flow
reversal, together with the numerous other effects which

occur; these effects will be mentioned later.

Most prediction methods currently used rely heavily on
Morisonk equation proposed by Morison et al (1950). Here
" it is assumed that the force.on a fixed body in unsteady
flow can be represented by the sum of two independent
components; one in phase with the velocity, the drag force
and the other in phase with the acceleration known as the
inertia force. Estimation of the forces is then possible by
using empirically obtained values of the drag coefficient (CD)
and the inertia coefficient (Cm) in the equation. Morison's
equation has been used extensively, in predictions of loads
on structures, in field experiments and in controlled
laboratory experiments, resulting in an abundance of available
drag and inertia coefficients. However, in spite of the
wide experience gained from the use of Morison's equation,
considerable disagreement and uncertainties still exist about
its applicability as a tool for prediction, and on the
reliability of the coefficients to be used with it. One of
the problems arises from the fact that the coefficients for
full scale use cannot be obtained from laboratory tests, as
these are usually at a lower Reynolds number. In addition,
the incident flow duringilaboratory tests is not usually
representative of real sea conditions as these tests are
commonly done in regular waves or in planar oscillatory flow.
Oscillatory flow represents a simpler case where the orbit
is flat as opposed to elliptical,in waves. Field tests are
therefore éarried out to determine these coefficients and
unfortunately, but not surprisingly, the data exhikits
considerable scatter. This scatter is amply demonstrated in
figures 1l.la, 1l.1b and 1.2 taken from Wiegel (1964). Figures



l.1la and 1l.1lb show the scatter in the drag and inertia
coefficients, obtained from field tests and are compared with
Keulegan and Carpenter's data. 1In figure 1.2, which was
obtained from field experiments by Wiegel, Beebe and Moon
(1957), the drag coefficients were plotted as a function of
Reynolds number and still exhibit considerable scatter. They
attributed this scatter to the variation of turbulence in

the flow, cylinder roughness, interference -from other
cylinders and the effect of the vortices sweeping back against
the cylinder. Another reason ‘for the scatter in the data of
Wiegel et al is that the Keulegan and Carpenter number
variation was not taken into account; it is now widely accepted
that both the drag and inertia coefficients are functions of
Reynolds number and NKC. Scatter in field data and
laboratory experiments is also discussed by Dean (1976) and
by Hogben et al (1977).

In addition to the effects mentioned above, other factors
such as irregularity of the incident wave, three dimensionality
of the flow and different spanwise correlation all contribute
to the scatter in field data. The methods used in data
analysis, both, in field tests and laboratory studies could
also induce scatter in the available data. This is particularly
relevant to experiments where water particle velocities and
accelerations are calculated from measurements of surface
elevations coupled with some wave theory. The accuracy of the
data thus obtained will depend on the choice of the wave
theory, (Dean (1970)) and even if the best available theory
is used, there is no guarantee that the wave structure will
be the same from cycle to cycle, especially in field tests.

Most of the available data, in field tests and laboratory
experiments were obtained on circular cylinders as it is the -
most commonly used shape in offshore structures. Unfortunately,
however the circular cylinder, as compared with sharp-edged
bodies, is extremely sensitive to most of the above mentioned
factors, especially tvrbulence, roughness and Reynolds number.



'In steady flow, results obtained from experiments by Fage
and Warsap (1929), up to Reynolds numbers of 2.5 x lO5 showed
a distinct effect of both free stream turbulence and roughness
on the drag of circular cylinders. The effect of free stream
turbulence is to promote transition of the &hear layers, at
a Reynolds number lower than that which would occur in smooth
flow; the resulting shear layers remain attached longer at
'g¢amritical Reynolds number, and gives a narrower wake width
and hence a lower drag. Roughness on circular cylinders was
also studied by Achenbach (1971), in steady flow at Reynolds
numbers of up to 3 x 106. The work of Fage and Warsap and
Achenbach, viewed together shows that, in steady flow, in the
subcritical Reynolds number range, the local surface roughness,
promotes early transition in the shear layers, and as before
enables them to remain attached longer, resulfing in a lower
drag. As the Reynolds number is increased, in the supercritical
range, roughness results in earlier separation of the turbulent
shear layers, leading to an increased drag, compared with smooth
cylinders. In steady flow, therefore, roughness may be seen
to result in an earlier critical region, so the drag drops
earlier to a value below the corresponding smooth cylinder
value and then rises above this, as the Reynolds number is

increased.

In planar oscillatory flow Sarpkaya (1976a, 1976b and
1977a), examined the effect of surface roughness on several
circular cylinders and at high Reynolds numbers. In this
study considerable effects of roughness on the in line force
coefficients were observed; the transverse or lift force d4diad
not reflect any significant influence. As in steady flow,
the drag coefficient exhibited a similar drop below its
equivalent smooth cylinder value, then rose to an asymptotic
value well above the smooth cylinder value as the Reynolds
number was increased. Sarpkaya noted that this asymptotic
value was larger than its corresponding equivalent, with the
same roughness in steady flow, and was a function of the
relative roughness ana Keulegan and Carpenter number. This
effect was observed for Keulegan and Carpenter numbers as low

as 20, and in the range of Reynolds number of 104 to 10°.



The inertia coefficient also shows considerable influence of
roughness, and changes in the opposite direction to the drag
coefficient. This coefficient first rises and then drops,
again to an asymptotic value below the corresponding smooth
cylinder value. Here again the aéymptotic value depends on
the relative roughness and NKC. Although no significant
effect of roughness on the transverse force was observed,
probably because of the large scatter that .occurs anyway,
Sarpkaya reported that for Reynolds numbers greater than about
2 x 104, the strouhal number remained constant at about 0.22,
whereas for smooth cylinders it was a function of NKC and
Reynolds number.

Tests on the effect of roughness on cylinders in waves
have also been carried out by Matten (1977), who found ‘
considerable increase in the total force on rough cylinders
for the larger NKC values. The increase in drag due to surface
roughness in these unsteady flow situations can be accounted
for by two main effects. Firstly, the increased roughness
results in a physical increase in the size of the cylinder,
which results in a higher drag force. The second reason lies
in the effect of roughness on the boundary layer of the
cylinder. 1In these unsteady flows the incident stream is
usually turbulent with the degree of turbulence increasing
as NKC increases. A rough cylinder in such a flow will
therefore experience a higher drag because, both turbulence
in the free stream and local surface roughness promotes
earlier separation of the boundary layer leading to a larger
wake and hence higher drag.

Another possible reason for the scatter in field data,
and incidentally also a problem experienced in predicting
loads on offshore structures, is the influence of neighbouring
elements. In steady flow, because of the numerous practical
applications, such as in condenser tubes and cooling towers,
this interference effect on circular cylinders has been
extensively studied . Some of these effects, ‘1ave been
highligted in a review of flow interference between two
circular cylinders in several possible arrangements by Zdravkovich

(1977). 1Interference effects on other shapes have received



much less attention, but a recent paper by Ball and Cox (1978)
showed that interference effects are just as important on

flat plates.

By oscillating several cylinders in various arrangements,
Laird, Johnson and Walker (1960) observed siénigicant
influence of neighbouring cylinders on a test cylinder. Both
the drag and transverse forces were affected to an extent
depending on the spacing of the cylinders, but for a spacing
of 10 diameters little influence was noted. For a group of
24 cylinders oscillating in still water, Laird and Warren
(1963) , observed that the overall drag on the group was less
than the sum of the individual drags of the cylinders in a
uniform stream of the same maximum velocity as the group.

. They also found that the drag of the group was a function of
the spacing; fluctuations of both the drag and transverse
forces which were functions of the Reynolds number were also
reported. 1In an oscillating flow, Sarpkaya (1978) examined

the variation of the drag and inertia coefficients on two
groups of c¢ylinders, and found that these coefficients were
independent of Reynolds numbers. However these tests were
conducted for a limited Reynolds number range. Further he
noted that these coefficients approached a terminal value at
NKC of about 150. Bushnell (1977) also examined interference
effecfs of two circular cylinders and of a group in oscillating
flow. Here the angle of the configuration, relative to the
flow was also varied and he examined the effect of interference
on cylinders with and without trip wires. His results show
considerable effect on both the drag and transverse force,
which increases with the Keulegan and Carpenter number. He
also observed that the magnitude of the interference varied -
with the orientation of the configugration and that no
dependence of Reynolds number on the interference was noted.
Reynolds number dependence was examined in this case by
attaching trip wires to the cylinders. For the array of
cylinders tested, Bushnell's results showed that the transverse
force interference was much higher when trip wires were used
compared with the smooth cylinders. However he had reason to
doubt the validity of this technique to simulate high Reynolds



number flow situation; and his conclusion on the Reynolds
number dependence was based on results of the two cylinder

arrangement.

Examination of the above-mentioned studies reveal that
interference can be considered as the result of two separate
effects. For moderately large spacing ratios, the wakes of
the upstream cylinders are more or less fully developed at
large NKC, -with vortices being shed, and tﬁese considerably
influence the flow development on the remaining cylinders.
For smaller spacing ratios, the group acts almost like a
single porous body, and the wake development of the

upstream cylinders is inhibited.

Further problems in the prediction of loads on offshore’
structures arise because of cylinder orientation, and variation of
flow conditions along the length of the cylinder. In waves,
the incident flow is usually orbital with the type of orbit
depending on the ratio of the wavelengifi to the depth;
the orbit tvpically being near-circular for deep water waves
towards the surface and elliptical lower down. A vertical
cylinder will therefore be subjected to different flow
conditions including a spanwise velocity component if it is
long enough. A horizontal cylinder on the other hand may have
the same incident flow along its span but the wake interaction
would be different to that of a vertical cylinder; unless the
orbit is flat. For the vertical cylinder, regardless of the
orbit, the wake will be swept back against the cylinder; but
for the horizontal cylinder the wake will in general follow
the orbital path. Depending on the orbit, the vortices shed
from the previous half cycle on a horizontal cylinder may be
swept far enough away from the cylinder, so that when the
flow reverses they may not significantly aeffect the forces on
the cylinder. The horizontal and wvertical cylinder in waves
therefore represent two different flow situations. For -
cylinders inclined and yawed, the situation is even more complex,
with wake interactions that are totally different to either
of the two casesmentioned above.

These factors together with the very complex sea state,
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makes fluid loading prediction on offshore structures a

very complex problem. In oxder tuerefore to achieve a

better understanding of the fluid mechanics associated with
these flows, these factors must be separated, and individually
studied under laboratory conditions. Unfortunately, however
experiments and investigations in laboratories are usually
carried out at Reynolds numbers too low to be representative
of real conditions. Information thus obtained cannot usually
be confidently extrapolated to real sea conditions. The
present study will therefore mainly concentrate on bodies

with fixed separation points,.i.e. sharp edged bodies, where
much less an effect of Reynolds number, as compared with a
circular cylinder, is expected, and in the drag/inertia regime.
The circular cylinder will also be studied, mainly as a basis

~ for comparison. Flow reversal and its consequences, i.e. the
return of the wake usually consisting of rather large vortices,
and its interaction with the body was mentioned in the previous
paragraph. This feature which is one of the more important
characteristics of wave flows is always present in real
situations, and will be examined by studying the relatively
simpler case of planar oscillatory flow past various bluff
bodies. Such a study, although not immediately useful to
designers, will help to explain some features of the more complex
real sea conditions. It also represents a simpler situation
which can be treated mathematically, e.g. Stansby (1878) and

therefore provides data for comparison with such computer models.

1.2 SOME PREVIOUS STUDIES IN THE DRAG/INERTIA REGIME

Probably the most singular significant contribution to
the prediction of wave forces has been the proposal by Morison
et al that the force may be represented by a summation of two

independent components, the drag and the inertia.

In its usual form this equation is written as:

_ _ 2
F—%/DCD DU/Y +C x D av (1.4)
A dt
where F = force per unit length acting normal to the axis of
the body and in the direction of the incident wave,/9 = fluid




density, CD = drag coefficient, D = diameter of the body,
U = water particle velocity, dU/dt = pzrticle acceleration,

Cm = inertia coefficient. In their original work Morison

and his co-workers measured the force on a vertical pile,

and the wave profile; by solving equation (1.4) for zero

water particle velocity Cm was obtained and at zero
acceleration CD was found. These coefficients were then
assumed ccnstant over a wave cycle and this input to equations
1.4 to predict the force. Values of Cm and CD thus obtained

by Morison et al showed no dependence on Reynolds number.

An alternative method of ‘representing the force was
proposed by Iversen and Balent (1951) who stated that the
added mass should not be constant, but is a variable and
depended on the state of the motion. Thus, they proposed
that the force be represent by:

F=cC4fus (1.5)
where F = total force, S = frontal area of body, and from
similarity arguments they showed that:

C = function (Reynolds No., Froude No., body geometry, U D/UZ)

(1.6)

where the parameter ﬁ D/U2 is the acceleration modulus,
sometimes referred to as Iversen's Modulus. They conducted
experiments on flat disks at Reynolds number high enough so
that this effect was secondary and in accelerated motion,and
found good correlation between the coefficient C and the
acceleration modulus; (see figure 1.3 taken from Crooke (1955)).
However in estimating the added mass coefficient, they assumed
CD constant and independent of Iversen's modulus, an assumption
which is strictly only justified at small values of the modulus
where the force is likely to be drag dominated. Nevertheless
they found that at large vyalues of the modulus the added mass
coefficient did approach the potential flow value and was
fairly well correlated, however at smaller values of ﬁ D/U2
rather poor correlation was obtained. Iversen and Balent
attributed this lack of correlation between the added mass
coefficient and the acceleration modulus at small values
of the latter, to wall interference effects, and that in
their analysis technigue at small U D/Uz, the procedure
involved taking the difference betwecen two terms of the same

crder, i.e. the actual added mass or inertia force was very
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small. The acceleration modulus can be iegarded as a parameter
which compares acceleration dependent forces, i.e. inertia,
with velocity dependent forces, i.e. drag, and therefore
implies some dependence between drag and inertia. It is

thus very similar to the Keulegan and Carpenter number, and

for a harmonically varying flow is related to NKC through

the relation:-

Iversen's modulus = 2%
NKC

This method of representing the force by a single coefficient
was also used by Crooke (1955) who re-analysed some existing
wave force data and found good correlation with the
acceleration modulus. Keim (1956) used basically the same
experimental arrangement as Iversen and Balent, but tested
circular cylinders; his results expressed as a single
coefficient also correlated well with Iversen's modulus and
illustrated Reynolds number dependence. More recently
Karanfilian and Kotas (1978), on experiments on spheres
oscillating in still water noted that the force, again when
expressed in terms of a single coefficient was a function

of both Reynolds number and the acceleration modulus. It

is worth noting that when the force was expressed in terms

of a drag, an inertia and a history coefficient, a term
included to represent the history of the motion; the inertia
(Cm) and history coefficients (Ch) exhibited a certain amount
of scatter, when plotted to show variation with the Reynolds
number and acceleration modulus. In determining the two
above mentioned coefficients, the drag coefficient was
derived from available data; Cm and Ch were then obtained
from points in the cycle where the inertia and history term
respectively became zero. It is very interesting to note
that in experiments on a sphere in harmonic flow, Sarpkaya
(1975) did not find any Reynolds number dependence of the
force coefficients Cm, and CD obtained through the use of
Morison's equation. However experiments on cylinders by
Laird, Johnson and Walker (1$59), led them to the conclusion
that the resistance, or forc: coefficient did not correlate
well with the acceleration mclulu. at small values of the
parameter. As mentioned earlier,.at emall U D/U2, the

force is likely to be drag dominated, and the force cocff{icient
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will tend towards a constant guasi-steady flow value, thus
independent of the acceleration modulus. This constant
value will in general, however, be dependent on the flow
conditions and in particular, for cylinders,a function of
Reynolds number.

The variability of the added mass coefficient was noted
by Keulegan and Carpenter (1958), but they used Morison's
equation to represent the force and absorbed any variation
of the added mass in the inertia coefficient. Here forces
were measured on several flat plates and circular cylinders,
placed at the node of a standing wave. By comparing
Morison's equation with a Fourier series representation of
the measured force, they obtained a series solution for
Cm and CD’ thus time dependent values of these coefficients
could be obtained. However they used only the first term
of these series and obtained constant values averaged over
the cycle for the drag and inertia coefficients, which they
found, correlated well with the parameter now called the
Keulegan and Carpenter number (NKC), defined earlier. Other
measured quantities, namely the maxiaum force and the phase
of the maximum force also correlated well with NKC. As
mentioned previously, this parameter gives an indication of
the f;ow development, which Keulegan and Carpenter established
by noting that the growth and motion of the vortices were
also related to NKC. The predicted force, obtained by
substituting the calculated values of Cm and CD in Morison's
equation agreed fairly well with the measured force on the
circular cylinder, except in the vicinity of NKC about 15.
In general the agreement on plates was not as good. One of
the most surprising results that was reported by Keulegan
and Carpenter, is that no correlation with Reynolds number
was obtained, neither for the flat plates nor the circular
cylinders.

Subsequent replotting of Keulegan and Carpenter's data
both by Sarpkaya (1976a) and by Garrison, Field and May (1977)
showed some dependence: of both drag and inertia coefficients

on Reynolds number. This lack of Reynolds number dependence

~



was also overlooked earlier by Sarpkaya and Tuter (1974) and
by Sarpkaya (1975). A probable reacon for this was that the
apparatus used both by Keulegan and Carpenter and by the above
mentioned authors did not allow a systematic variation of
Reynolds number, as changing NKC resulted in a corresponding
change in Reynolds number. However, for any given body

size at the same relative oscillation frequency, the ratio

of the Reynolds number to NKC is constant. This constant,
termed ﬁ’ by Sarpkaya is defined as Dz/w T, where D = diameter
of the body, ¥ = kinematic viscosity, T = period of oscillation.
This parameter therefore giveé a measure of the importance of
Reynolds number and Yamamoto and Nath (1976) related it to
the boundary layer thickness. It was by plotting Keulegan

and Carpenter's data for different/g values that Sarpkaya

was able to observe trends with Reynolds number. Sarpkaya
(1976a, 1976b) has carried out extensive measurements of both
in-line and transverse forces on smooth and rough circular
cylinders at high Reynolds numbers in a rather large U-tube
water tunnel. Theseresults show significant influence of
Reynolds number on both the in-line and transverse force.
Figures l.4a, and 1l.4b, taken from Sarpkaya (1976b) demonstrate
the influence of Reynolds number, (by showing the results for
different/g values), on the drag and inertia coefficients.
Sarpkaya (1976b) also reported that for Reynolds numbers less
than 2 x lO4 these coeffieients do not vary appreciably with
Reynolds number and that this explains why this dependence

was overlooked in previous studies by Keulegan and Carpenter,
Sarpkaya and Tuter (1974) and by Sarpkaya (1975). However

the work of the last two authors covered a range offg values
from 220 to 1380 approximately and Reynolds numbers as high

as 5 x lO4 were obtained; but the results presented did not
reflect this variation ofﬁ and instead showed very little
scatter when correlated with NKC. Further, the results of
Sarpkaya (1976b), (figures 1l.4a,l.4b) show significant

difference in the Cm and CD variation, for beta values of
497 and 1107.

Sarpkaya also observed that when Keulegan and Carpenter's
data was replotted for differentﬁ*values, Cm appeared to

decrease with increasing/g  whereas his showed opposite trends.
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Further, Sarpkaya (1975) noted that for NKC greater than
about 15; Keulegan and Carpenter's data exhibited a different
trend. This anomaly may be explained if Keulegan and
Carpenter's wave analysis is re-examined. In the theory for
the water particle velocities at the node of the standing wave,
(where the model was tested), they represent the horizontal
velocity by:

U= —Um Cos e« t (1.7)
and for the dimensions of the tank and under the conditions
tested, i .

U, = 3.43a ) (1.8)
where Um = maximum horizontal velocity, «w = cyclic wave
frequency, and a = semiwave height. The vertical velocity at

the same position then reduces to:

v = =-0.0054 Um a Sin 2wt (1.9)
replacing Um by 3.43a then gives
v = -0.019 a’ Sin 2.w? (1.10)

The vertical velocity then increases rapidly as the wave
e
hight is increased, whereas the horizontal velocity increases

/
linearly. At the instant when v becomes maximum, i.e. atwt :fﬂﬂ

(.‘_’) = Ymax = 0.019 a2/5= 0.0076 a
wt=

v 4 T0) 3
' wi=%/4 I (1.11)

From Keulegan and Carpenter's tabulated values of Um' using
equation (1.8) results in values of the semi-wave height, which

range from 2.9 to 21.4 cms., This gives values of (V/UL7t=7f74

from 0.02 to 0.16. (note that the above equations are
dimensionally correct, because the constants are not dimension-
less, but were cbtained for the dimensions of the tank used

by Keulegan and Carpenter). Instantaneously therefore, the
vertical velocity can be quite significant; further both v

and U are functions of depth, and will therefore vary along

the width of the body; this variation is in general small and
will depend on wave height. The vertical velocity is in

itself quite significant'though, as the results of Maull and
Norman (1978) show.

Maull and Norman (1978) examined the effect of different

orbits, i.e. different v/U, on a horizontal circular cylinder

Y
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in waves. They noted that the primary cffect cf vertical velocity
was to alter the trajectory of the vortices. By writing the

" force in terms of the vortex strengths and positions, using
Blasius equation, this can be seen to affect both the in-line
and transverse forces; the effect being more pronounced on the
latter. Thus Keulegan and Carpenter's results probably
represent a flow situation different from Sarpkaya's. The
"opposing trends between these two sets of results are then
quite possibly due to the effect of the vertical velocity in
modifying the vortex positions. However, at small enough

wave heights and so at small NKC, the vertical velocity may

be less significant, and the situation approximates to

harmonic flow.

The effect of transverse or lift forces on circular
.cylinders, both in steady flow and in unsteady motion is

well recognised. 1In a study of 1lift forces on vertical piles
in waves, Bidde (1971) observed that these forces can sometimes
be as much as 60% of the longitudinal force. Here, however
there was a substantial gap between the end of the pile and

the test bed, thus leading to some three dimensional end effects,
which may reduce the lift. Isaacson and Maull (1976) also
measured transverse forces on vertical cylinders in waves; this
work was similar to Bidde's but root mean square and maximum
values which showed a peak at NKC about 10 were presented.
Spectral analysis showed that in this range of Keulegan and
Carpenter number the dominant lift frequency was twice the wave
frequency. They also explain the 1lift generation in terms

of the vortex patterns. Sarpkaya and Tuter (1974) and
Sarpkaya (1975) also measured lift on circular cylinders, but
in a harmonically oscillating flow. They observed that the
maximum lift force can sometimes even exceed the maximum in-line
force. They found good correlation of the maximum lift force
with NKC, as did Bidde; and Isaacson and Maull; however, the
lift curve also showed peaks at NKC = 10 and 17 and a trougﬁ

at about NKC = 15. These results also exhibited remarkably
little scatter, except in the region of NKC between 20 and 25.
These tests were conducted for Reynolds numbers up to about

5 x 104 and as previously mentioned no Reynolds number dependence

.'t
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was observed. Sarpkaya (1976a,197€b) extended the Reynolds
_number range to about 10% and tested both smooth and rough
cylinders in an oscillatory flow. Results presented show

that the 1lift force on smooth cylinders was dependent on
Reynolds number for Re> 2 x 104, and on NKC, reaching a single
peak at NKC between 10 and 15. As the Reynolds number
increased the 1ift dropped, and at about Re '~"=lO6 it was
almost constant at about 0.2. The 1lift frequency and

Strouhal numbers were also dependent on NKC and Reynolds
number.

Both in-line and transverse forces were also measured
by Maull and Milliner (1978a) on a circular cylinder in a
sinusoidal flow generated in a U-tube water tunnel. 2An
alternative method of describing the in-line force, in terms
- of the root mean square (R.M.S) of the measured force.was

presented. Good correlation between the R.M.S. force coefficient
t ]

C F ,and NKC was achieved; where C F was defined as:
rms rms
' -y 2 3
¢ = JFF .27 Je?
rms (1.12)

Non~dimensionalising the force by /9D3/2T2, has the advantage
that for a particular body size in a given U-tube, this
quantity is constant. Using Morison's equation to represent
the force and non-dimensionalising by /’D3/£3T2, it can be
shown (see for example Appendix:4) that the R.M.S. force

coefficient is given by:
2
2 2 2 & 2
cro — {Nkc (% G WKC + K Cy, )}
rms

(1.13)
Maull and Milliner then showed that the force could be
adequately predicted, using equation (1.13) with potential
flow value of Cm and a fixed value for the drag coefficient.
For their data, at ajg value of 200, using Cm = 2,0 and CD
= 1.45 in equation (1.13) resulted in very good agreement with
the measured force, in the range of NKC= O to 30. Recently
Maull (1978) showed that using an inertia coeffiecient of 2.0,
and a fixed value of the drag coefficient which depended on the
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Beta value, equation (1.13) obtained from Morison's
equation could adequately predict the R.M.S. force for a
range of Beta values. Further Maull and Milliner also used
Blasius equation to obtain the force, again using the

potential flow value of 2.0 for Cm’ gives the in-line force

as:
Fe5 LU0, pcs? du |
2 ae (1.14)
and the transverse or 1lift force as:-
L= &0
' . (1.15)

where I’ = vortex strength; Y and X are the vertical and
horizontal distances, respectively, between a vortex and its
image, and the summation is taken over all vortices in the
flow field. This method of representing the force, used

also by Maull and Norman (1978), has the advantage that it
enables a description of both in-line and transverse forces
in terms of the motion and strength of the vortices. Maull
and Milliner also found that 1lift generation was not c&%tant,
and traces of the lift force showed that lift generation
occurs in uneven bursts . his resulted in scatter of the
R.M.S. and maximum lift force. Spectral analysis showed that
the lift forces occué?d at multiples of the water oscillation
frequency and weye related to vortex shedding; the latter being
related to the Keulegan and Carpenter number.

;By considering a cylinder undergoing motion of the form
a = mZ__}a,,, Sin(wmt +é'), where a = amplitude, Maull and
Milliner (1978b) were able to extend their previous work to
examine the effect of such a motion on the forces. Even
relatively small deviations from a sinusocidal flow, produced
notidébie changes both in the magnitude and frequency
composition of the in-line force; the main effect being to
amplify the harmonic that was introduced. At small values
of 42/&, spectra of the lift force revealed a frequency
composition similar to that usually obtained for harmonic
flow, with peaks occurring at the harmonics. s 4&/&,, was
increased and at moderate NKC, they observed that peaks in
the spectra moved away from the ha;monics, until at NKC = 32.2,



the peaks were at balf-harmonis of the main oscillation
frequency. Similar effects were also noticed when a third
harmonic was introduced in the cylinder motion, but at a
larger value of“i/a,, they observed that the peaks were

once again occuring at harmonics of the oscillation
frequency. Mercier (1973) in tests on circular cylinders
which he oscillated, in still water, transverse to a stream
and in-line with a stream, also noted that ‘spectra of the
transverse force obtained for oscillations in-line with

the stream, showed peaks at half harmonics. The common
feature in these two situations, i.e. oscillations in-1line
with a stream, and oscillations with harmonics is that

the two halves of a cycle are almost unrelated. During one
half of the cycle- in Mercier's case, the cylinder is

moving into a relatively undisturrbed field as the stream
has swept the vortices away, but on the next half it moves
back into its wake. In Maull and Milliner's case, the
situation is slightly different; during one part of the
cycle the cylinder moves into a distuvybed field due to the
presence of vortices from the previous part of the motion,
and as it moves the cylinder sheds more vortices. 1In the
next part of the cycle the cylinder siows down, and approaches
zero velocity at a rate depending on a2/al, the vortices
already shed move further away from the cylinder during

this time. The velocity increases slowly at first and then
quite rapidly, but during the time the vortices previously
formed have moved further away and have diffused to some
extent; the cylinder thus moves into a relatively less
disturbed field. 1In both cases a situation arises where,
during a part of the cylinder motion, it moves into a rather
undistuy-rbed fluid, and for another part the wake previously
formed interacts with the cylinder. Bushnell (1977) has
shown that for a pair of cylinders in tandem arrangement,

in oscillating flow, at a spacing of three diameters,
significant transverse force fluctuations arise only when
the instrumented cylinder was in the wake of the dummy cylinder.
This would suggest that the sweeping back of the vortices
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plays an important part in lift generation. The frequency
of transverse fluctuations may therefore be based, not only
on the number of vortices shed during a cycle, but also

on the number of vortices swept back against the cylinder
and the time during which this happens. As vortex shedding
is related to the Keulegan and Carpenter number, the
frequency of the lift fluctuations will also depend on

this parameter. Peaks in the lift spectrum, can therefore
" occur at half-harmonics, or intermediate frequencies, but

will depend on the conditions .of the motion and flow.

Other effects which have been studied in relative
oscillatory flow includes the effect of cylinders close
to a wall. This has been examined by Norman and Maull (1978),
and for higher Reynolds numbers by Yamamoto and Nath (1976)
and Sarpkaya (1977b). Significant effects on the in-liane
force coefficients, drag and inertia are obtained only when
the gap ratio e/D is less than 1, (e = distance from the
wall to cylinder). The transverse force is more sensitive
to the gap ratio and may be affected for e/D slightly
greater than 1. The most significant effect on the lift
force, ié that for small gap ratios, the cylinder experiences
a non~zero time mean force, which increases as the gap

decreases and is directed away from the wall.

Other recent studies in this field include the work
of Dalton, Hunt and Hussain (1976) which is a follow up
of thet;nlqal work of Hamman and Dalton (1971), and that of
Mattenx(l978) Dalton et al did not use Morison's equation
but instead plotted the instantaneous force variation with
the corresponding Reynolds number for several values of the
viscous parameter J%V/? ==ﬂ0g— , and NKC. They showed that
for increasing NKC, the force approached its equivalent
steady flow value, as the instantaneous Reynolds number
approached its maximum.

Matten, Hogben and Ashley (1978), measured the instantan-
eous pressure distribution around a circular cylinder oscillating
in still water, at high Reynolds numbers. hey noted that
end effects can be important, and used end plates during their
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study. Instantaneous pressure measurements are very useful

in building up information on the flow development.

Most of the available studies in this field, some of
which are mentioned here, are concerned strictly with
circular cylinders. Besides the work of Keulegan and
Carpenter, another more recent work on flat plates has been
carried out by Shih and Buchanan (1977). This study was
done in the very low Reynolds number range of 1.0 to 1.06 x 103,
and the maximum force was assumed to be due to the drag only.
This assumption is questionable especially as they were dealing
with low NKC, where inertia is known to be important. Their
results show, however that the drag coefficient, thus defined

~was independent of Reynolds number when Re >250.

1.3 AIMS OF PRESENT STUDY

In the foregoing discussion some of the problems
associated with the prediction of loads on offshore
structures, especially in the drag/inertia regime, and some
relevant studies were mentioned. In this study an attempt
will be made, not to repeat any of the previous work, where
possible but rather to understand and explain some of the

features present in the more complex situations.

Probably one of the more significant features in wave
studies, is the formation and shedding of strong vortices
which are swept back aéainst the body as the flow reverses.
This feature can be simply studied by considering relative
harmonic motion past the test body. 1In view of the current
problem of laboratory experiments, i.e. the lack of Reynolds
number similarity, this problem will be minimised by
concentrating on sharp-edged bodies. The main effect of
Reynolds number on circular cylinders, both in steady flow
and in waves, is due to changes in the development and
separation of the boundary layer. It is appreciated that
Reynolds number also affects the forces through the rate of
diffusion of the shed vortices, however this effect is of
less importance for flat plates, and Shih and Buchanan (1971)
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showed that the forcc was more or less independent of

Reynolds number for Reynolds number > 250. ‘Thus, the above
assumption that by considering sharp-edged, (fixed separation
points) bodies, Reynolds number will have a lesser effect,

is justified. Qualitative results of tests thus obtained
will be applicable to higher Reynolds number flow situations.
Furthermore, the circular cylinder has been studied extensively,
so a detailed study of this will only'be a repeat of work
already done. Nevertheless, the circular cylinder will not

be completely abandoned, and will be tested mainly as a basis
for comparison with other workers, and to compare with results
on other shapes, both in a qualitative and a quantitative

manner.

Another guestion that often arises in laboratory
experiments, is blockage; in oscillatory flow no systematic
attempt has been made to examine this, as far as the author is
aware. This will be examined here, using flat plates,
geometrically similar, but of different sizes, and assuming
little effect of Reynolds number.

Besides the work on circular cylinders, spheres and
flat plates, very little has been done on the fluid loading on
other bluff bodies in waves. Some work, however has been done
on large square sections in waves, e.g. Isaacson (1978),
Mogridge and Jamieson (1976), but these were of more relevance
to the loading at very small values of NKC, i.e. in the

inertia/diffraction regime.

The square section represents another sharp-edged body,
with fixed separation points where, as with other high aspect
ratio bluff bodies, the forces are associafed with the
formation and shedding of vortices. 1In a study of this nature,
where the primary aim is to examine the effect of the vortices
sweeping back against the body as the flow reverses; the
square section therefore represents another body on which this
effect could be studied. On square sections, as with flat
plates, in steady flow, Reynolds number has little effect,
€.g. Delany and Sorensen (1953). However square sections,

especially at low incidence are sensitive to turbulence in
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the free stream, e.g. Bearman (1978), Laneville et al (1975).
Here turbulence results in a thickening of the shear layers
and in an increase in the curvature, which can cause
reattachment; the net effect is therefore to reduce the

overall drag.

The bodies to be tested will therefore be three flat
plates, a circular cylinder and a square at o° incidence,
i.e. normal to the flow, and at 45° incidence i.e. with
a diagonal in-line with the flow (a diamond'section). These
tests will all be conducted iq the drag/inertia regime,
where measurements of the in-line and transverse force will

be made.

Detailed flow visualisation studies will be made, partly
with the help of cine films, to examine the flow development,
especially the formation and shedding of vortices; their
positions and their fate as the flow reverses will also be
examined. By comparing the flow development on the various
shapes, together with the results of force measurements,
the effect of free and fixed separation points, and bluffness
in oscillatory motion could be assessed. Although direct
measurements of the vortex strengths and positions will not
be made, rough estimates can be made from flow visualisation.
These results coupled with force measurements will help to
establish the effect of flow reversal.

Another major aim of this study is the assessment of
Morison's equation, in this simpler case of harmonic flow.
'This will be achieved by representing the in-sline force as
suggested by this equation. On all shapes tested therefore
inertia and drag coefficients will be obtained and predicted
forces will be compared with those measured. For comparisons
between measured and predicted force, the inertia and drag
coefficients along with other relevant quantities such as
root ream square (R.M.S.) force, maximum fcrce, and the phase
of the maximum force, will be obtained by averaging the
measured force over several cycles. The variation of these
quantities with the Keulegan and Carpenter will also be
examinéd. The above mentioned coefficients will also be
evaluated for individual cycles. ﬁy examining the variation

of these coefficients from the cycle to cycle, the constancy
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of the force coefrficients can be assessed.

In light of the current knowledge of the importance of
transverse forces, these will be measured on the square and
diamond sections, and on the circular cylinder. Examinations
and comparison of these results will also help to establish
the significance of geometry of the body in oscillatory flow.

The other part of this study, discussed in Chapter: 2,
is the initial phase, which was the design.of suitable
apparatus and equipment with which the above mentioned
tests could be undertaken. The major part is the design
of a tank to produce relative harmonic motion, together
with associated drive and control mechanism which must be
capable of sustaining stable amplitudes over lon9 periods.
~ A force measuring system, capable of detecting both in-line’
and transverse forces, together with a set of associated
computer programs to assist data evolution, must also be
devised. The tank must also allow adequate flow visualisation

studies to be carried out.
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CHAPTER: 2
EXPERIMENTAL EQUIPMENT AND TECHNIQUE
2.1 THE 'U' TUBE WATER TANK

2.1.1 PRELIMINARY CONSIDERATIONS

A survey of the availabié literature on fluid loading on
offshore structures reveals that the types of rigs used in
laboratory investigations fall into two main categories.
these are:- )

(1) those in which the body under test is made to move
in some predetermined manner in a fluid otherwise
at rest;
ana (2) those where the bedy is kept stationary and the
fluid is made to move.
Case (2) may further be classified into those where:
(a) the body is subjected to a train of waves, generated
in a wave tank, e.g. Matten (1977), Maull and Norman
(1978) ;
(b) the body is placed at the node of a standing wave,
e.g. Keulegan and Carpenter (19858).
(c) the body is tested in a 'U' shaped tank, where the
fluid is made to oscillate at its natural frequency,
e.g. Sarpkaya and Tuter (1974), Sarpkaya (1976),
Maull and Milliner (1978a).

Examples of the use of apparatus classified here as case(l) may
be found in the works of Hamman and Dalton (1971), Garrison,
Field and May (1977), Maull and Milliner (1978b). Case (2a),
represents a situation where the incident flow is slightly more
complex, with the velocity field being orbital. As mentioned
earlier, this study is concerned with the more fundamental
feature of flow reversal and its consequences in the simpler
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case of planar relative harmonic motion. Case (2a) will
therefore not be considered as,in waves ancther variable,

the vertical velocity is present. It should be added however
that qualitative results in planar oscillatory motion can be

applied to the case of waves.

Kinematically, case (1) and case (2) for the same
relative motion, with the exception of case (2a) are identical,
but when measuring forces or pressures, expected and hence
accountable differences arise. This difference is due to the
fact that, when the fluid is moving relative to the body, the
body experiences an additional force due to the pressure
gradient that would exist in the fluid in the absence of the
body. This pressure gradient is proportional to the fluid
acceleration, and hence in this case the inertial part of the
force is increased. This additional force is usuglly referred
to as the Froude Krylov force and is equal to /’\/ dU , where
V = volume of displaced fluid, %g = fluid acceleratggn.

In practical terms, substantial difference exist between
these two cases, therefore the selection of experimental
apparatus must be based on careful considerations which include
the design requirements. Based on the aims of this study, these
requirements are that the tank should be capable of producing
relative harmonic flow with a wide range of stable amplitudes.
Flow visualisation and force measurements must also be possible
and other factors such as available space and construction time

are also important.

The differences between these two cases, mentioned above,
can be considered by examining the advantages and disadvantages
of the two types of rig. )

Case (1) : OSCILLATING THE BODY IN A FLUID OTHERWISE AT REST.

One of the main advantages of this system is that the
amplitude and frequency may be varied independently. The
implication of this is that the effect of Reynolds number (Re)
can be studied separately, by fixing the Keulegan and Carpenter
(NKC) ; or by fixing Re, the effect of NKC can be examined.
Usually, also a higher Reynolds number can be achieved, compared
to when the fluid is oscillated, e.g. in a U tube. This



28

increased Reynolds number can be achieved, quite simply by
increasing the frequency of the oscillating body, and hence
the velocity. In such a system also, by careful design, if
desired, a more complex motion could be studied, e.g. Maull
and Milliner (1978b). In this system however, the inertial
force due to the mass of the oscillating body must be
subtracted from the total force; this is usually achieved by
mounting a second identical instrumented cylinder above the
test body such that it performs the same motion in air; the
aerodymanic forces on this imgge cylinder however are ignored
as the forces on the test cylinder are about 1000 times
greater. Alternatively, another method for correcting for the
inertia due to the mass of the oscillating body, is to carry
out tests, once in air and once in water. Turther consequences
of the use of this system is the inevitable vibration problemn,
leading to noise which may be of sufficiently low frequencies
to interfere with the measuring signal. This noise is
relatively common when water is used as the working fluid, as
the added mass becomes important and thus lowers the overall
frequency response, and shifts the noise to a lower frequency
band. Such systems also usually employ open tanks where free
surface effects, caused by surface waves induced by the oscillatinc
model or support system may be important. When testing
horizontal cylinders, the effect of a free surface is not so
significant, provided the cylinder is tested well beneath the
surface. However, for horizontal cylinders, the support
system must be carefully designed, to minimise any disturbance
that this might introduce. If struts are used, this can
seriously affect the two dimensionality of the flow, by shedding
wrtices which will result in artificially reduced spanwise
coherence. Vertical cylinders, on the other hand do not
suffer from the support problems ; here however end effects
and surface effects can be important. The cylinder must
therefore either be of a length such that there is only a very
small gap between itself and the fl0o7., or have an end plate.
Another way of elimirating any surface effects or end effects
is to test only an element of the cylinder. Surface
disturbances are also usually lessened by the introduction of

a sheetover the surface which then damps out any irregularities.
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Case (2): OSCILLATING THE FLUID PAST A STATIONARY BODY.

The main €isadvantage of this system is that irrespective
of whether the fluid is being oscillated in a 'U'-Tube or in
a tank, the oscillations are usually at the natural frequency
of the system. Forced oscillations, off the resonant frequency
could be perxrformed, but the power required to do so would be
greater compared to where the fluid is oscillating at its
natural frequency. It is also generally much more convenient
and reliable to have the fluid oscillating at its natural
frequency. Unfortunately, hdﬁever this means that the only
two variables are the body diameter and oscillation. amplitude;
the Reynolds number cannot therefore be yaried independently
of the Keulegan and Carpenter number. Even though the natural
frequency of the system can be changed, substantial changes can
be made only if large changes in the amount of fluid are made.
However for a given body size, the viscous parameter, /9 '
is constant and therefore a test on several bodies cf different
sizes can illustrate any Reynolds number effects. As in the
previous system, if the fluid oscillations are ¢generated
through the use of a standing wave, in a wave tank, free surface
effects will again be important. The main advantage is that
in this system, there is likely to be less mechanically
generated noise, as fewer moving parts are present. Based on
these advantages and disadvantages, a 'U' tube type tank was
chésen and designed to satisfy the present requirements. It
should be noted that the main limitation of this apparatas,
in that Re cannot be significantly varied independently of
NKC, is not serious in this study, as emphasis is placed on
sharp edged bodies where much less an effect of Reynolds
number is expected compared with say circular cylinders.

2.1.2 DESIGN OF THE TANK

Although conceptually simple, careful considerations
must be made before a final design of the 'U' tube shaped tank
is produced. Important factors to be considered are, the
geomeﬁry of the corners, the length of the working section
and the height of the uvpright arms. The overall size of the
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tank and in particular the gize of the working section is also
very important. From theoretical consideretions of the liquid
in a'U tube undergoing oscillations it can be shown that the

natural frequency is given by:

f=/’_<'?i
m 22X VvV L

where %{ = natural frequency in cycles/second, and L =
overall length, g = gravitational acceleration. Therefore as
the overall tank size is inéreased, so is L, and the frequency
drops, and hence the stream Qelocity is decreased, resulting
in a lower Reynolds number. Thus the corners, upright arms,
and the working section (which make up the overall tank length)
are important collectively as well as singularly. The corners
are important, in that if they are too tight, flow separation
can occur, which will introduce disturbances to the stream,
and higher damping of the oscillations will result. If the
corner is too gentle, the tank will be unnecessarily lorng, thus
causing problems of leﬁgh mentioned above, The upright arms
are of interest as the length of these will also affact the
natural frequency of the system. However the most important
part of the tank is the working section. A wider working
section enables a larger body to be tested, and hence a higher

Reynolds number to be achieved.

There is not enough available information to make a
confident decision on all of these parameters; a small scale
model of a 'U' shéped tank was therefore built to test these
parameters. This was made of perspex anld in five modular
sections, thus allowing either di fferent corners, working
section. lengths or upright arms or combinations of these to
be tested. As the effect of blockage and of aspect ratio in
oscillatofy flow is not known, the cross-section was made
square. After testing various corners, it was decided to use
one which had a mean radius of 1.5 times the cross-sectional
height. This corner was tight enough to make the tank compact,
but still gentle enough to avoid any flow separation. By
injecting a filament of dye in to the working section, the
effect of the corner on the uniformity of the flow was checked.
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These observations, together with a rough idea of the
desired maximum aplitude led to the criterion that a working
section of length roughly 2.5 times the cross-sectional
height was adequate. The height of the upright arms was
based on the still water level and maximum amplitude, such
that when the water was at its lowest operating level, it

was still above the entry to the corners.

The final design is shown in plate (1) and with some
later improvements in figure 2.1. For ease of construction
and assembly, the tank was built in five modular sections,
three of which were made of %" thick aluminium alloy welded
together and with 2" flanges. The upright arms however were
made of %" thick alumunium, but were reinforced using channel
section stiffeners. The modules were assembled, using a rubber
seal between adjacent flanges which were then bolted together
using 2%" aluminium bolts, placed 2" apart. It should be noted
that when assembled, no misalignment or discontinuity of more
than about 1/32" of the inner surface of the tank was observed.
The workinu section was 1.52 metres long, the cross-section
uniform and of 0.6l metres square, and the corners had a mean
radii of 0.91 metres. Finally, the upright arms were of
length 1.22 metres.

Channel section stifq;ers were later bolted on (three
on each face) to the corners of the tank. This was done to
stop these faces from flexing and th4s to improve the fatigue
life of the weld. When pressure measurements were attempted,
low frequency fluctuations were observed in the signal, these
were later traced to the walls of the corners; reinforcement

thus also helped to reduce these fluctuations.

One of the upright arms had two small perspex windows one
on either side of the mean water level; these were used to
monitor the oscillations and also helped in calibrating the
capacitance probe which was used to measure the water level.

The working section had a 1id which fitted a 0.61 metre
square opening, centrally located on the top surface. This
lid was 0.76 metre square and was secured by a series of bolts

placed roughly 2" apart; removal of this was necessary when



changing models or when cleaning the tank. A narrow slit,

into which a perspex window fitted, was also cut into the 1id;
this gave a 0.41 m x 0.08 metre area through which the flow
could be vertically illuminated for flow visualisation. On
either side of the working section, again centrally located,
there was a 0.6l m x 0.46 m opening into which windows could

be fitted. When measuring forces, a %" thick aluminium alloy
plate, reinforced with 'T' sections stiffners was used as the
window. For flow visualisation, however, %" thick perspex
windows were used. Regardléss of the windows used, construction
was such that when correctly mounted, they were flush with the
inside of the tank. Two types of windows were thought necessary
because when measuring forces, flexure caused by less stiff
windows could cause spurious force signals. Unfortunately ,
therefore flow visualisaticn and force measurements could not

be undertaken simultaneously. Finally to prevent corrosion

and so maintain a uniform inner surface texture, the inside of

the tank was painted.
2.1.3 DRIVING MECHANISM AND WATER DISPLACEMENT GAUGE

A capacitance probe was used both to measure the
instantaneous water level and to control the tunnel drive system.
This was just over 1.22 metres long and consisted of a stainless
steel rod which acted as one plate of a capacitance, and a long
length of insulated wire doubled back on itself, as the second
plate. A small fixed capacitor was connected in parallel with
the probe so that when the water was oscillating at large
amplitudes, the change in capacitance expressed as a fraction
of the capacitance at still water level, was within the working
range of the associated instrumentation. "That is, the linearity
of the prchke output was maintained. Connected to the probe was"
a Disa oscillator, type 51E@1l, the output of which was fed into
a Disa reactance converter type 51E¢gl. The final output was
noise free (R.M.S. cf noise about 0.3 mv with water stationary)
and the probe was sensitive enough to detect even small ripples
on the water surface. This probe was fixed in the upright arm
of the tank which has the small perspex windows (see fig.2.1)
and with graduations at 1" intervals. The still water level

was chosen to be coincident with one of these graduvations,
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located 0.61 metres above the corner. Calibration of the
probe was then achieved by recording the water level

signal and measuring the peak to peak amplitude. Because

of the very low frequency of the oscillations, measurement of
the amplitude was possible with a ruler, placed side-on in the
inside of the tank for small amplitudes, and by measuring

the position between the graduations (observed through the
windows), for the larger amplitudes. This could be done to
an accuracy of better than 1/16", however small errors could
be introduced by surface tension. A typical calibration of
the probe is given in figure 2.2, where the linearity of the

output within the range may be observed.

In order to achieve contindous oscillations of the water
in the tank with stable amplitudes, a fan mounted on the
other upright arm of the tank and controlled by the following
feedback system was used. The output from the probe via
oscillator and reactance converter, hereafter referred to as
-he displacement signal, was fed first into a fixed gain
amplifier (PHI (Patchable Hybrid Instruments) analogue module M19),
set to have a gain of ten,.and then into a voltage comparator
(PHI Hybrid modale M21). The output from this was then used
as input to a relay switch which controlled the switching
on or off, of the fan. A variac connected in series with the
fan was used to control the power to the fan and hence, the
amplitude of oscillations. By suitable adjustment of the
voltage comparator, the fan could be made to switch on and off
at the 'best' time giving stable oscillations with a maximum
amplitude of about 0.3 metres. The fan itself was of a very
low power rating, and was mounted on a cover plate; when
switched off therefore, air escapes through the blades of the
fan, which incidentally was free to rotate in eithedirection.
This method increases the damping considerably, but other
methods which included a butterfly valve assembly did not
produce very stable oscillations, and introduced spurious

vibrations into the system.

2.1.4 CHARACTERISTICS OF THE TANK

In all the experiments, the gtill water level chosen was



0.61 metres above the top . of the corner, at ithis level the
oscillations had a period of 3.33 seconds. Theoretical
calculations give. the natural frequency of the system as
in equation 2.1, from which a period of 3.36 seconds is

obtained.

The damping of the oscillations of the water in the
tank is shown in figure 2. 3a, where the fan and cover plate
is removed, (so that both ends are open); here it takes
 about 35 cycles for the amplitude to fall to half its
maximum value. Obviously, fhe damping arises from the drag
on the model and friction at the walls and is therefore not
constant, but will be smaller at the lower amplitudes. With
the cover plate and fan mounted, but with the fan switched
off (so that one end is now closed), the damping is naturally
much greater, (figure (2.3b)), and it takes just 15 cycles
for the amplitude to fall to half its maximum value.

In order to examine the quality of the displacement
signal several checks were carried out. The stability of
the cscillations of the water, generated by the fan is
illustrated in figure 2.4a, where a typical trace of the
displacement signal over a number of cycles is presented. In
figure 2.4b a sample of the unfiltered displacement signal is
presented to show that this is noise free. The harmonic
component of the signal is also analysed, firstly as in
figure 2.5 where the displacement signal, averaged over about
50 cycles was compared with a sine wave. Two amplitude cases
are presented and very slight deviations from a sine wave
are observed in the region of 6 = 2700; which corresponds to
the water at its highest level. This deviation from a perfect
sine wave could be due to non-linearity of the probe or be
representative of the flow, but in any case it is very small.
Another way of examining the frequency content of the
displacement signal is to spectrally analyse the signal. 1In
figures 2.6a and 2.6b, spectra of the displacement signal over
two different frequency ranges are presented. Figure 2.6a
shows that the displacement is primarily at the water oscillation
frequency with a very small amount of energy at twice this

frequency. The peak at about 2.5 Hz and the other pcaks which
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appear at higher frequencies, as in figure 2.6b were originally
thought to be due to vibrations of the walls of the tank.
However, it was later found that these peaks were introduced

by the tape recorder during data recording. In figure 2.7a,

a spectrum of the noise due to the tape recorder, (obtained

by recording with the input shorted), is presented to show

that the peaks at higher frequencies in the displacement

signal were indeed introduced by the tape recorder. The
vibrations of the tank, obtained from the -output of an
accelerometer placed on a side wall, was also spectrally
analysed. This is presented’'in figure 2.7b, where it can be
seen that any peaks in the vibration spectrum are due to the
noise of the tape recorder; thus the walls of the tank are not
expected to introduce any spurious signals. It should be noted
that all the spectra presented were nondimensionadised by the
mean square of the signal, and that the root mean square of the

noise of the tape recorder was about 11 millivolts.

Finally, by introducing particles into the flow and
observing the motion of these, the uniformity of the flow was
examined. This was observed to be uniform and one-dimensional
(in the absence of any test model) throughout the width and
height of the observed part of the working section, except for
very small regions close to the wall, i.e. the boundary layer.
There was no direct way of measuring this; suffice to say that
the influence of this appeared to be confined to a region of
about a centimetre from the wall. A theoretical estimate of
the influence of viscosity in periodic flow can be found from
an exact solution of the equation of motion (Schlichting (1968)).
The relevant parameter is the depth of penetration, and gives
a measure of the extent to which the oscillating boundary

2V
layer will penetrate into the fluid, and is defined as _A =5
where Y = kinematic vis cosityand ¢ = frequency of oscillations.

In the present case this corresponds to about 0.7 cm.
2.2 FORCE MEASURING SYSTEM
2.2.1 THE DESIGN.

In order to enable reliable measurement of the in-line

and transverse forces, a complete force measuring system was
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designed. This consisted of a pair of special windows for
the working section, two pairs of strain gauged load cells and

complementary models.

The design of the load cells must incdrporate such
features as, high enough natural frequency (with the model
connected), linearity, sensitivity, and a maximum strength
in excess of any expected loads. Because different sized
bodies were to be tested in this study, the requirements of
maximum load and sensitivity varied; this necessitated the
construction of two pairs of -load cells, the basic design
of which was identical. The difference between the two pairs
were such that one pair, used in conjunction with the
largest model tested, a 3 inch diameter flat plate, had
slightly stiffer measuring elements, resulting in a greater
maximum strength. The remaining models were tested using
the less stiff pair of load cells. Further, a pair of cells
were necessary, one at either end of the model, so that the
total force could be measured, independent of the point of

application, by simply summing the outputs from the two celis.

The final design of one of the load cells is shown in
figure 2.8, with the strain measuring elements of dimensions
1" x %" x 1/16" ; the stiffer cells mentioned apove were
similar, but with the measuring elements of dimensions
1" x ¥" x ¥". These cells were machined from a %" thick
block of stainless steel, with two measuring elements per cell;
strain gauges were mounted, one on each %" face of the element,
giving a total of four gauges per load cell. The two cells
making up a pair were also slightly different in design, one
as shown in figure 2.8, had a 3/16" hole centrally positioned;
the other had instead a 5/16" clearance hole. This was chosen
such that: the model would be fixed to one load cell at one
end, but free to move, in the axial direction only, at the
other end connected to the other load cell. It was
necessary to do this because, had the model been fixed at
both ends to the load cells, when filling ther tank the
effect of the very large static pressure on the windows would

set up lateral bending strains in.the load cells which could
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possibly cause damage to them. This system was therefore
insensitive to axial loads on the model. Further, the

sliding end of the model was such that no torque could be
transmitted to the load cell at this end; in any case the

gauges were connected as to be insensitive to torque.

The models were all constructed with similar end
fittings, the end to be fixed had a 3/16" tapped hole
through which a screw fixed the model to the cell; a boss
prevented any axialvmovement of the model{ The assembly
of the other end, free to move in the axial direction is
shown in figure 2.9, where the model is made with a 5/16"
stud machined to a fine tolerance, which fits snugly into

the clearance hole of the other cell.

As previously mentioned, when measuring forces, a
different pair of windows, made of %" thick aluminium alloy
and reinforced with 'T' section stiffeners were used. These
windows also had a special housing for the load cells, and a
1" diameter clearance hole, through which the model was
connected to the.load cell; both the clearance hole and the
load cell housing were centrally nositioned. As can be seen
in figure 2.9, the housing for the cell Was outside the tank;
during operation this was completely full of water, which
totally covered the load cell. Any air was bled out through
the cover plate which was then tightened to seal in the
water. The wires for the strain gauges on the load cells
passed through a sealed hole in the cover plate. When the
models were connected to the load cells, the gap between
the model and wall was usually not more than 1/16" on either

side.

The models tested consisted of three geometrically
similar flat plates of wdlis 3", 1.5" and 1" with a
thickness to diameter ratio of 0.208, and an edge angle of
60°, made of aluminium alloy, brass and stainless steel
respectively. A circular cylinder made of perspex, thus
very smooth, of 1 9/16" diameter was also tested. Finally,
a square section, again of perspex with a diareter of 1.5"
was tested at 0° cncidence (called a sguare normal) and at

45° incidence (called a diamond section).
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When measuring in-line forces, the cells were positioned
such that the axes of the measuring elements were vertical;
for measurement of transverse forces the cells were rotated

until these axes were horizontal.

The strain gauges used were Techni Measure Limited type
FLK6, with gauge dimensions 6mm x lmm, and resistance of
nominally 120 ohms. After bonding to their respective
surfaces, using the apprépriate adhesive, they were coated
with a layer of microcrystalline wax and then overcoated with
adhesive, to make them waterproof. The gauges were then
connected to a Strainstall two channel strain conditioning
unit, one channel per load cell, to form a full bridge. A
later improvement was to add two external resistors in the
form of 360 ohms rosette strain gauges, in series with the
strain bridge to further reduce the effective bridge voltage,
one rosette being used per bridge. This being necessary after
initial tests showed that the gauge life wés too short and
probably due to too high operating currents. The Strainstall
unit was modular in design and consisted primarily of a pair
of amplifiers, one for each channel, a power supply, a switch
selector, and a meter. By selecting the appropriate channel
on the switch selector unit, the output from that channel
can be displayed on the meter and then balanced if necessary.
A continuous 0-1 volt output was also available for each
channel, and this was then the'raw' load cell output. The
two outputs corresponding to the two load cells were summed
usuing an operational amplifier (PhI analogue module M16),
this was then used in the calibration and in subsequent

measurements.

Prior to a set of experiments on a model, the load cells
were carefully aligned and then calibrated with the model
connected. Calibration was achieved through the use of a
simple pulley and weights sysfem, which consisted of a
near-frictionless pulley mounted on a small vertical traverse.
By adjustment of the traverse a horizontal load was applied
to the model and hence to the cells, when calibrating for
in-line force measurement. Calibration was carried out for
loads acting in both directions, i.e. from left to right, or

from right to left, for in-line force measurements; these
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were done in air, but initial tests showed that there was
no difference when calibrated in water. For transverse
force measurements, calibration was easier; loads acting
vertically downwards were applied simply by hanging weights
from the model, whereas for loads acting upwards, the pulley
was again used. A typical calibration is shown in figure
2.10; similar calibration constants were obtained for all
combinations of load cells and models (except for the large
plate and stiffer cells) tested, 'even though this involved
removal of the cells and re-aligning them, when a different
model was fitted.

2.2.2 DYNAMIC RESPONSE OF LOAD CELLS AND MODELS

A dynamic calibration of the load cell and model was
not undertaken, as this needed to be done with the model
in the water and thus presented certain practical
difficulties. The following is therefore a theoretical

estimate of the responseof the various models and load cells.

The load cell and model used for force measurement may

be represented diagramatically by the sketch below.
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The mass M includes the actual mass of the model and the

added mass, due to the unsteady flow past the model. This
system may be idealised as a beam, clamped at both ends

with a concentrated mass at the centre, as shown below.

Ay
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For this system the natural frequency is given byv:

//72 £ L - 4 8L
w = (”72)-(2,5)3 L3 2.2

where EI is the flexured stiffness of the beamqébz is the length

of the beam, andﬁgﬂis the concentrated mass.

In practice however, damping will be present thus
modifying the system's response. Consider thefefore a
damped system whose motion may be represented by:

mi +ct + hx = F
2.3
where m = mass of the model, ¢ = structural damping, £ =
structural stiffness, F = forcing function, and x is the
displacement of the model. 1In the present case, the forcing
function F, may be obtained from Morison's equation,
modified to take account of the assumed oscillating model

(see e.g. Verley and Moe (1978)). Thus, F is given by:
. . 2 - 2 .o

=L pC - - - A
) T AV A=V R S

where L is the length, and D is the diameter of the model,
L]
U and U are the velocity and acceleration, respectively of
the incident flow, and Ca is the added mass coefficient.
Substituting equation 2.4 into equation 2.3 and denoting
2
the added mass by m, =Z%?/” C,r and neglecting terms of

order higher than x , results in:

mi v ek ke =k pLOD(Uf -2k )+ ZE i, 0

re-arranging gives:

(m o)+ (€ +PLG )i+ kx =k pLG Ul +ED LG, G 5.5

Equation 2.5, in its present form, is not easily solvable

as it contains certain unknowns, the following assumptions
will therefore be made. Assuming that the damping is mostly
due to drag, then the structural damping C, can be neglected
in comparison withf’l« Cp D' /Uf. Further, let the damping

be constant over a cycle, then C, can be the drag coefficient
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averaged over a cycle, and ]Uf can be replaced by Um’ the
maximum velocity, ihus giving the maximum fluid damping.
Finally, the right hand side of equation 2.5 may be Fourier
analysed into components of the form efi@tvf'. Therefore,
for the purpose of determining the responseof the system,
different values of v, the forcing frequency, can be
substituted in to A Sin ¥T , the term used to represent
the R.H.S. of equation 2.5.

This analysis is obviously not exact, but it provides
the worst possible response of the system, and at discrete
values of the forcing frequency. Although it is interesting
to determine the response over a wide frequency range, it
should be noted that the inertia and drag coefficients, Ch
and CD as derived in the analysis by Keulegan and Carpenter
(1958), are dependent only on the component of the force

at the fundamental oscillation frequency.

Equation 2.5 may be written, after making the above

assumptions, as:

X +pLCDUnX . p  x =7 Sin »T

(m+mg) (77 47, ) (4mg) 2.6
For the idealisation used, m » 77, = ”Qé, then by
writing: _
PLS DYy = 2 )
(7/2)
2
g - = 0 }
(7/2) .
P oy ~ ‘
R 5
(") /
equation 2.6 becomes:
X r2wi o+ ox =p S vC
2.8

The solution of equation 2.8 yields two parts; the complimentary
solution which gives the transient response, and the particular.
integral which gives the steady state response. 1In this

analysis, the steady state response is @f more relevance.



Rewriting equation 2.8 as:

(1)2+ 2y r ) = p St

where D = d then gives the steady state solution (Xp) as:
dt
X/, = / P \gvaf = Jz-;"a;'—Z)’.D fgmvt
($2+2X~D+wa) e (-77sz2)2.—4¢)/2$2 ?

using the shift rule, this results in:

X, = qje——vz'—ZX.D A Syt
p (wz_»z 2.*4),23):. .

= A

(F30% 24y 57

[ (w2?) Syt —2yy Gsvff

2.9
Equation 2.9 can also be written as:
Xy = A Sn (vt - @)
2 2 2 2
where A = /?,»\/(w~y)z¢—-4¢yz)
2
(w,z__v) "'6072)/2
but /é,, -‘—'__/2___ = -7’3_ a}’z
") %
B
A = /z = —— 2.10
-2 () [ )"
¢//( cv‘) 'f-4Léu) éu}
-/
: fd/rv ZXV
d = .
an ¢ PCEINE 2.11
Since 2;42 = K; , the static deflection, then Xp may

further be written as:

Sin (vt - B)

- )(5.‘/(“5)2;4%)2(%)1 2.12

Xp



The dynamic résponse of the system is therefore given by

equation 2.12, where the gquantity,

7/
2 \2 2/93\2
SO-2) + £V R
is the dynamic magnification factor (D.M.F.), and ¢ is

the phase lag. Note that )%& is commonly written as c/c
©

the ratio of the damping of the system to the critical
damping. '

Before the response of the system can be determined,
the natural frequency «r, and the damping coefficient Y must
be found. In the design of the load cells, potential flow
values for the inertia coefficient are used, from this the
added mass is found. As the actual mass of the model, and -
the flexural stiffness of the lead cell is also known,
equation 2.2 is used to find «r . From equation 2.7, the

damping coefficeint, ¥ is given as:

2.13

Yy = LLGIUn = fLSD Uy _ [P )c.,vxc
2(") M Vka

2
~ where the quantity,/qaf; is fixed for a given model. For

the tank being used, there is a maximum possible velocity,
(and hence, a maximum value of NKC, depending on the size

of the model) that could be achieved. Assuming quasi-steady
flow at the maximum possible NKC, then the steady flow .
value for the drag coefficient, together with the maximum
velocity is used in equation 2.13 to give the maximum

damping coefficient. Having obtained the frequency w,

and the damping coefficient, Y , equation 2.11 and 2.12 are
used to obtain the phase lag and the magnification factor,
thus the response of the system is determined.

Obviously, choosing an added mass from potential flow,
and a damping coefficient based on the steady flow drag
coefficient, givesonly a rough estimate of the response of the
system. In order to check the response of the system,
measured values of the inertia coefficient, (from which the
added mass could be determined) were used to find the



frequency «r . Measured values of the drag coefficient
were also used to find the damping coefficient ¥ . Using
Y and «, thus determined, the response of the system was

again found, but now it was based on actual measured values.

The detailed calculations of the response of the various
models, with the load cell connectedave given in Appendix: 1.
Here, calculations of the response based on potential flow
Ch and steady flow Cpr are compared with those obtained

using measured values of Cm.and CD. These results are

given in figures 2.lla to 2.11f, and the responsesobtained
using the two methods are coﬁpared. As can be seen from the
calcﬁlations in Appendix: 1 or in figures 2.1lla - 2.11f, the
response of all combination of models and load cells is more
or less flat up to about 10 timesthe oscillation frequency,
i.e. up to about 3 Hz . The phase lag, however drops very
guickly as the frequency increases, and this is particularly
notiééble for the 1%" diameter flat plate.. Nevertheless, as
stated before, in the calculations cof Cm and CD using the
method derived by Keulegan and Carpenter (1958), these
coefficients were related only to tue component of the force
at the fundamental frequency. At this frequency, for all the
models and load cells used, the phase lag was less than lo.
However, an analysis was carried out to examine the effect of
a phase shift between the velocity and the force. This
analysis is presented in Appendix: 2, where the effect of a
phase shift, € on the inertia and drag coefficients is

shown to be given by:

C = 8 C, NKC e C  Gs ¢
g 3 Tt x3 o 7 2.14
and
3
Cc = C (e — 27T G SimE
Ds 2 8 wkc 2.15

where subscript 's' refers to the shifted value of the
coefficients. Thus for large values of NKC, i.e. as
NKC—+= 2, C;, —* Cj Cs € , and in this region,
substantial pﬁase shift will be required to make a

significant change in the drag coefficient.

L4
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Finally, in order to check the quality cf the force
signal, it was spectrally analysed. Some of these spectra
are presented in figures 2.12a -2.124; here it can be seen
that no contribution to the force exists above about 3 Hz.
The peaks above this frequency, all arise from spurious notise
introduced by the tape recorder, as discussed earlier. 1In -
addition, figure 2.13 is presented to show, a typical
force and displacement signal; both signals presented here
were filtered at low pass 20 Hz and were obtained on tests on
a flat plate. ‘

2 ,3 DATA LOGGING

For the purposes of analysis , thé force and displacement
signals were simultaneously recorded on two channels of a
fourteen track analogue tape using an Ampex analogue tape
recorder, model FR 1300. This recorder had a flat frequency
response up to 204;’ KHz at a speed of 6045“ inches per
second, where N = 0, 1,2.....5, Before recording both signals
were filtered using a Rockland dual filter, set usually at low
pass 10 H, for NKC greater than about 15 and at low péss 5 B,
for the smaller values of NKC. From spectral analysis (see
e.g. figures 2.12a-2.12d) it was observed that these filter
settings were adequate, in that no significant component of
the signal that would have been attenuated or cut off was
present. From tests of the filter response, (figure 2.14),
it was observed that at a setting of low pass 10 HZ only
frequencies above about 6 HZ were attenuated; at low pass
5 H,, only signals with frequencies above 3 H, were affected.
By passing signals of various frequencies through both parts
of the dual filter, and comparing the outputs, the phase shift,
between the two parts of the filter was examined, and found
to be zero, i.e. the two halfs of the dual filter were closely
matched. Thus, by passing both the force and the displacement
signal through the dual filter, the component of the force
at the water oscillatibpn frequency was unaffected. It is
however appreciated that the higher frequency components of the
force signal, will be slightly shifted. Nevertheless, as
mentioned earlier, the higher frequency components do not
contribute to the inertia and drag coefficients as defined by
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Keulegan and Carpenter. Finally, as the higher frequencies
are only slightly shifted, and not attenuated, this will

not affect the root mean square of the force.

After filtering both signals wére then amplified
using operational amplifiers to a value roughly : 1 volt;
this being necessary to improve the signal to noise ratio,
as the tape recorder introduces some noise to the signal.
By shorting the input and recording, the noise level of the
tape recorder was found to be about 0.01l volts, r.m.s.
The signal conditioning process is shown in figure 2.16.
Recording was usﬁally carried out for about 5-6 minutes,
for in-line forces and for over 10 minutes for transverse
forces; corresponding roughly to about 100 and 200 cycles
respectively. For spectral analysis longer recordings wereé
made. After each run, a sine wave of higher frequency
obtained from a sine wave generator, was recorded, being input
at position A of figure 2.15, and on both the displacement
and force channels. This was used both as a calibration
signal, from which the gain set on the operational amplifiers
and any gain introduced by the recording or reproduction
modules, could be calculated; it also served to distinguish

individual runs.

This data was subsequently digitised, prior to analysis,
on to digital magnetic tape using an analogue to digital
convertor, controlled by a PDP-8 computer. When digitising
the signals were again filtered, the setting corresponding
to that at which they were recorded. The effective sampling
rate was 250 samples/second/channel, which corresponded to
about 835 points per cycle of data, however only half this
amount was finally used; the choice of this will be discussed
in Chapter:3. Suffice to say here that as unwanted higher
frequency noise was filtered off before digitising, aliasing

or folding could not occur, (Bendat & Piersol).
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CHAPTER: 3

DATA ANALYSIS

3.1. DATA REDUCTION.

As the flow is harmonically varying, the horizontal
velocity, U, can be represented by:
U=- U, Cos & . 3.1

€
where U = maximum velocity, 6 = 21’//T . T being the
period of oscillations. The force per unit length, acting

on the body can be represented by:
Fo= 4,7, 4,32 P #)

and dimensional reasoning results in C_,, the nondimensional

F
force being given by:

Cr =t§f;é;32> = 7!(%; ) Q%L[' Q%LQ,)
TG = f(e %I, B2)

3.2
where Um T/D = Keulegan and Carpenter number (NKC) =L2fﬁyb

for sinusoidal oscillations in a U-Tube with amplitude A;
U, D/y = Reynolds number. Morison's equation in its usual

form is written as:

=45 pC,D VUV sz\:.:fdz/
F=%pC62 vl B2 Y p -

and subsituting for U and dU from 3.1 into 3.3 results in

&

: 2
" :;717"22 = @;)&9"6(”9/(“9/ 3.4
Representing the measured force by a Fourier series and
comparing with equation 3.4 yields expressions for Cnland CD,
the inertia and drag coefficients. This analysis was firct
carried out by Keulegan and Carpenter (1958), but is
repeated in Appendix:3, from which equations A3.12 and A3. J

give :

™
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cC - J_ (M) FS’MG ade
" x ZPUZD

3.5
and c. = -3 Ffose ds
D g JErY
3.6

The inertia and drag coefficients, C and Cp can therefore
be obtained by direct substitution of the total measured
force, Fmeas' ( =F x L, where L = length of cylinder)

into equations 3.5 and 3.6 respectively, as the other
guantities are known. This yields constant values, averaged
over a cycle. However, equations 3.5 and 3.6 are obtained
from the first term of series solutions for Cm and CD
respectively, (see equation A3.10 and A3,1l1l), therefore

time dependent values of Cm and CD if needed could be
obtained. In this study only constant averaged values will

be presented.

In their original analysis used to derive the-Iorce.
coefficients, Keulegan and Carpenter (1958), assumed that
since the incident flow is symmetric, the force will also
be symmetric. This assumption isn't necessary, nor is it
strictly true. If the force is assumed periodic but not
necessarily symmetrical, equation A3.14 and A3.,15 show that
the solutions obtained for Cm and CD are similar to those
obtained assuming symmetry in the force. The only difference
is that the even harmonics are now present; however the
commonly used averaged values of Cm and CD are-exactly the
same as those given in equations 3.5 and 3.6, Further any
assumption that the force is symmetric is more likely to
hold at véry small values of NKC, say less than about 5,
where the flow is almost potential. In this region
vortices are just being symmetrically formed and the flow
pattern is the same during each half cycle. Here also the
growing vortices are very weak, and the force is therefore
controlled by the symmetric incident flow. At larger values

of NKC, strong vortices which are formed and shed are
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subsequently swept back against the body. This wake
reversal and subsequentlnteractlon with the body is not the
same during each half cycle. Further, the actual paths

of the yprtices during each half cycleare not symmetrical.
The force is therefore not quite symmetric, however the
degree of asymmetry will in general not be substantial as
the force is still dominated by the incident velocity field
which is symmetric in the far field. The degree of
asymmetry is not only small but variable,.and since it is
due to a random process, i.e. wake/body interaction as the
flow reverses, must itself be random, with a small, if not
zero mean over a humber of cycles. Averaging theforce over a
large number of cycles will therefore tend to make the

signal symmetric.

Another method of obtaining Cm and CD is by minimisation
of the error between the measured force and that predicted
by Morison's equation, i.e. a least squares method.
Defining the error (E) between the measured force per unit
length (F) and calculated force (Fc) as:
E=F-F ) 3.7
then Cnland CD are calculated such that the quantity

-
f Ezc(f: is a minimum. This results in:
o

r
fgélf = 0
o 2 Com

3.8

which yields;

__/_ Upne F§m9 _
C;ﬂLS x3 (/ /) J/r /’C/ 2 de M 3.9

The corrésponding result for Cp is:

7
& )6: = O

3.10
2 °%
which gives: '
FLe
C = "4— ;? Cor 0 /(&79[{ c{b

where the subscript 'L S' refers to least squares. Thus the



Fourier series analysis and the method of least squares
results in identical values for the inertia coefficient,

and the results for the drag coefficients appear to be

only slightly different. The Fourier analysis method is
still more commonly used; of the available data therefore,
more is obtained through the use of this method than by
using the least squares method. In this study therefore,
for easier comparison with other workers, qnd because of the
small difference between the two methods, the Fourier

analysis method was used.

Having obtained Cm and CD through the use of equations
3.5 and 3.6, these can then be substituted in to Morison's
equation (3.4) to give the nondimensionalised predicted
force CFc' The error between the measured force and that
predicted by Morison's equation, hereafter referred to as

the remainder term is then:

C.. =C, - C
Frem F Fc 3.12

By examining the variation of C over a cycle and for

Frem
different Keulegan and Carpenter numbers, the accuracy of
Morison's equation, in this simple case of planar oscillatory

motion, can be assessed.

Another method of representing the force is in terms
of its root mean square (r.m.s) value; which for the

measured total force is given by:
2K 2 i
| ,ou DL

This calculated r.m.s can be compared with that predicted

3.13

by Morison's equation which can be shown (see Appendix: 4)
to be given by:

_ i 2 2 e 2z
Corms = ., {_3_ % NKC +% C )
¢ 2 NKC™ (4 e

o 3.14



A similar approach was adopted by Maull and Milliner (1978a)

3_3 2
who nondimensionalised the force by ;’.Z/égr‘ ; the representa-
tive velocity being taken as D/T' Nondimensionalising in this

manner, gives the r.m.s. of the predicted force as:

/
C =

2 2 2 2
Frms g NKC (_3, ¢ wrc sxtc )
3.15
’ 2
thus CFrms = NKC CFrms
c c
3.16

However as can e seen from equation 3,15, nondimensionalising
3 /
2 Py e —p oo
by /aiaééT results in: CFrmsc —> oo as NKC '

whereas equation 3.14 gives CFrmS~—P 0.61 CD as NKC —» o= ,

but now CFrmsc —> e as NKC — O,
In all results presented here, the forces were therefore always
nondimensionalised by %f’Usz. It should however be noted

that nondimensionalising by / D3/2T2 has the advantage that

for a given U-tube for a particular body size, this quantity

1s constant over all amplitudes.

Other quantities used to describe the in-line force are

the maximum measured force, C , defined as:

Fmax
CFmax = Maximum measured force during a cycle
%/’UmZ D
3.17
and the position where this occurs; i.e. the phase of the
maximum force éf , defined here as: '
' j; = 180° - position where maximum force occurs.
3.18

These five coefficients, Cm' CD' C and 15 were

Frms’ CFmax’
then used to describe the in-line force on all the models.
Here, these quantities were obtained both for an averaged
cycle: of force data (obtained by averaging the force over
about 50 cycles) and for individual cycles. Evaluating these’

\
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coefficients for individual cycles ancé plotting the
variation of these over a aumber of cycles, enabled the
constancy of these gquantities to be examined. However

the comparison between the measured force and that obtained
using Morison's equation was made using the averaged force
data. Coefficients obtained from the averaged force data
were also used to examine the wariation cf these with the
Keulegan and Carpenter number, and to compare with similar

results on other models.

The in-line force is in general regular, however, the
transverse or lift force is not, and occurs in irregular
bursts of uneven length. Thus the transverse force is
non-stationary, and its description presents a problem.
Nevertheless it is usual to present this data in the form
of an r.m.s. of the entirerecord of data as:

2
measured total transverse force c{t
P UzDL

3.19
Another commonly used method of defining this force is in
terms of its maximum value defined as:
CLmax = maximum total transverse force measured
during a cycle
/ Z
% P Uy 9t
3.20

In addition, because of the greater asymmetry present in the
transverse force, another useful quantity is the minimum
transverse force defined in a similar manner to equation 3.20.
However, because the data, at larger values of NKC is somewhat
non~-stationary these quantities defined above could be
functions.of the length of the data record. Another method

of presenting this data is in terms of the distribution of
these coefficients about their mean or maximum value; here
however a very long record of data is needed for this
distribution to be accurate. Further, because of the

nature of the 1lift force, the question arises as to which is
the best way to describe it. In this study, because of the

S
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very low frequency of oscillationcs of the water, it was

very time consuming to obtain a very long record of data
with a large number of cycles. For this reason, only

10 minutes of data (corresponding to about 180 cycles) were
recorded. Of this, because of the way in which the data was
processed, only about 100 cycles were finally used, and this
was not sufficient to give an accurate distribution plot

of the coefficients. The transverse force was therefore
described by equation 3.19 and 3.20. The r.m.,s. force was
obtained for the complete record of data used and for
individual cycles, from whicH the variation of this
coefficient from cyéle to cycle was obtained. Also, the
maximum r.m.s. force was found. The maximum transverse force
was also obtained at individual cycles and its variation
examined, here also the maximum value of this force
instantaneously recorded was also determined.

Finally some spectral analysis was done on both the
in-line and transverse forces, but more effort was
concentrated on the latter, as the in-~line force is rather
regular and mostly concentrated at the fundamental frequency.
Further some information on the frequency content of the
in-line force could be determined from the remainder term.
The transverse force on the other hand contains information
over a wider frequency band, due to the shedding of vortices
and the interaction between these and the body as the flow
reverses. However, again because the transverse force is
somewhat non-stationary, spectra thus obtained will also
depend on the length of data record. These spectra are
therefore only meant for a qualitative assessment. Finally,
the dominant frequency of the transverse force (f; ) can also
be obtained by visually inspecting the force trace and
noting the zero crossings. This can be used to define a

Strouhal number as:

s £2 _ £

U £ NKC 3.21

where £ = frequency of water oscillations.

Y



3.2 BLOCKAGE CORRECTION

There are no established methods to correct for
blockage in oscillatory flows; thus the results presented

are in general uncorrected for blockage.

However, one of the aims of this study, as previously
mentioned, is to examine the effect of blockage in
oscillatory flow by testing three different sized flat
plates. Differences in results from these'experiments can
then be attributed to either Reynolds number, aspect ratio or
blockage effects. The results of Shih and Buchanan (1971) for
flat plates in oscillatory flow show that for Reynolds
numbers greater than about 250, this has little effect on
the forces. Further, as the flow is closely two dimensional
aspect ratio is not considered very important, thus any
differences in results on different sized flat plates is
expected to be due primarily to blockage. To test this
assumption therefore a blockage correction ought to be
applied to see whether any collapse of the results could
be achieved.

In the absence of any known blockage correction methods,
for oscillatory separated flow (i.e. for NKC not tending to
zero), Maskell's (1963) method was used. It is appreciated
that the use of this method is not justified, especially at
low values of NKC. However, it is used only to test whether
or not differences arising from results on different sized
plates can be accounted for by taking into account the wake

and tunnel dimensions.

The drag on a plate may be written as:

C. = C - C
D = Py
3.22
where CPF = average pressure on the front face, and
Cﬁ, = base pressure. The corrected drag coefficient
is then:
C = C. I ) = C.. -
De (jp% TL T}. + kb |
C c -.‘C_ 3-23



where suffix 'c' refers to corrected values and k is the

base pressure parameter given by:

2
C = /- R
P
Maskell's blockage correction analysis gives:
2
S . 4L - 1+¢ .8
Y — '

c

where § = area of plate and ¢ = area of tunnel.

_Re-write equation 3.25 as:

2 Z -
o (L) = {6 E)G

3.25

then by substituting CDc from equation 3.23 and rearranging

the result becames:

[

4 2 ,— -
b +4 {67,’%*63% —¢ -z)+ (175 G ~% Y +6

It is known from steady flow results that over a wide range

of base pressures, the average front face pressure on a flat

plate remains remarkably constant, with very little

variation. Choosing a mean value of 0.77 the average front

face pressure, would therefore be reasonable for a wide

range of base pressures. Equation 3.26 can then be solved

. 2
to yield a value for é¢ which when substituted into
equation 3.23 gives a 'corrected' drag coefficient.

The root mean square of the force can then be similarly

corrected by first removing the inertial part, and correcting

only the remaining drag part.

3.3 THE COMPUTER PROGRAMS

Several computer programs were written butthe bulk of

the data analysis was done using only two of these.

first program was used to average the data ov~er a number of

cycles, usually about 50, and then store this for subsequent

analysis, whereas the second program was used to evaluate the
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force coefficients for individual cycles. 1In both programs,
the data was analysed directly from the digital tape
obtained from the analogue to digital converter, and the
first step was to read and 'unpack' the data. Unpacking of
the data was necessary to take account of the difference in
word lengths between the PDP computer which controlled the
digitising process, and the CDC 6500 on which the programs
were compiled and executed. As two channels' of information,
(the force signal and the displacement signal), were
simultaneously recorded, ana so digitised, it was also
necessary to recover, and sort out the information on the
digital tape. Standard routines are available which

performs these functions, and were incorporated into both

programs.

These programs operated on blocks of data of about 1000
points each, and on two arrays, one representing the force
and the other, the displacement signal. The number of points
used to represent a cycle of data is controlled by the sampling
rate when digitising, and in the programs, where a selection
parameter ( n) could be used to reduce the number of data points.
Sampling was done usually at 250 samples/sec, which for a
period of 3.33 seconds results in about 832 points per cycle.
Initial tests using various values of the selection parameter
( n) revealed that using 832 points was needlessly
extravagant, and that for n = 4, i.e. using about 416 points,
adequate results could be obtained. It should be added that
for n =4, i.e. ﬁsing 208 points/cycle, results obtained
were within 1% of those obtained using 416 points/cycle.
Nevertheless results presented here were obtained using a
representation of 416 points per cycle. As the data consists
of fairly low frequency information, at first sight it would
seem that ﬁsing 416 points/cycle is an over representation and
unnecessary. However, in both programs, a cycle of data must
be located; this is done by scanning the displacement signal
for zero crossings. As the data is digitally represented,
this means that in practice, the true zero crossing will not
be found, unless some interpolation between points on either

side of the zero is performed. The location of a cycle in
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this manner will therefore suffer from a random phase

shift, the amount of which will depend on the number of
points used to represent a cycle. In this study,
representation of 416 points/cycle corresponds to a change of
0.87° between adjacent data points. If there is some D.C
offset in the displacement signal, location of zero points
would not give the starting point of a cycle. Thus, in

the routine used to locate a cycle, both positive going
(i.e. positive gradients) and negative going crossings

were found. The position of the first positive going and
negative going crossings were then used to find the positive
peak of the displacement signal; the positions of this and

a knowledge of the cycle length (Obtained from the distance
between sucessive positive going crossings), then made it
possible to find the true starting point of the cycle. This
routine which located a cycle also had several checks which
included a test to determine whether the number of points

in a cycle were within a small band centred on the expected

value; any cycle of data outside this range was discarded.

The averaging program then worked by finding the useful
cycles of data within every block; from the position of
the start and end points of each cycle of displacement
signal, the corresponding cycles of force datqjggtained.
Each cycle .of data was' then added to the previous ones, with
"great care being taken to ensure that corresponding points of
a cycle are added, i.e. any mismatch is prevented. The data
is then averaged over the total number of cycles used, and
the averaged length of the cycle is also determined. From the
averaged data (which contains more points than the average
cycle length), an averaged cycle of data, of length equal to
the average cycle length is extracted, and stored. This
stored data is then analysed by a smaller subsidiary program,
which reads in this data, together with the period and
amplitude of oscillation, body diameter and length, gain
factors and load cell calibration constant. The force signal
is then corrected. fcr gains and offsets and converted from
volts to force by the calibration factor; inertia and drag
cocfficients are then calculated as in equations 3.5 and 3.6
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respectively. Cm and C, are subsituted intc Morison's
equation to yield the predicted force, and the remainder term

is also evaluated. The root mean square force C the

Frus’
maximum force Crmax and its phase, § are also evaluated.
Finally the measured force, predicted force and the

remainder term are plotted to show their variation over a cycle.

In the second program, the constants read in by the
sméller program mentioned above are also read here. Having
located the force cycle, (by first locating a cycle of
displacement signal), the data is corrected as above and
using a routine, which is a modified form of the smaller
program mentioned, the quantities, le, CD' CFrms,CFmax and

& are evaluated. These quantities are evaluated for every
cycle of force data and are also stored; they are later
plotted to show their variation from one cycle to another.

The transverse force data is analysed using a modification

of the second program. Here only the coefficients C

Clmin’
for every cycle of data. 1In analys:- ing this force the

’
Imax

and Cers are evaluated, but as befo re this is done

coefficients were first evaluated assuming there was no
offset, but were stored into three arrays. By summing

the force data over the complete data record, and dividing

by the total number of points, the D.C offset was obtained,
and was used to correct the previously evaluated coefficients.
All the intergrations performed relied on a routine which used

Simpson's rule.
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CHAPTER: 4
FORCE MEASUREMENTS

4,1 IN-LINE FORCE

4.1.1 THE CIRCULAR CYLINDER

As mentioned earlier, there is a substantial amount 6f
data available on force measurements on circular cylinders
in waves and in oscillatory. flow. However measurements of
the forces on a circular cylinder were repeated for two
reasons. Firstly, since the experimental facility was being
used for the first time, a comparison with results obtained
by other workers served as an ideal method of testing not
only the apparatus, but also the experimental technique
and data analysis programs. Secondly results of the forces
on the circular cylinder were also needed to compare with
results obtained on other sections. '

The circular cylinder used was made of Perspex and thus
was smooth; it had a diameter of 1 9/16" (0.0397 m) and
measured just under 2' (0.61 m) in-length. Forces were
measured using the force measuring system as described in
Chapter:2, and the data presented, unless otherwise specified
was obtained for an averaged cycle of the in-line force.

This averaged cycle, as described in Chapter:3, was obtained
by averaging the force data, usually over about 50 cycles.
Finally, both the displacement and force signals were low
pass filtered at 10 H, for NKC above about 15 and at 5Hz for
smaller values of NKC. For an oscillation period of 3.33
seconds, the A value for this cylinder is 451 and the blockage
(diameter of cylinder to width of tank) is 6.51%.

The results obtained are presented in table:l of Appendix:S'
and represent data from two sets of experiments, performed on
separate days. It should be added that all the in-line force
data presented for all sections tested represent data from
at least two separate series of experiments; this being done

to check the consistency of data. As with the circular
b
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cylinder, the data on all the sections was found to be
consistent, even though this involved re-aligning and
recalibration of the model and load cells. These results

for the circular cylinder are plotted in figures 4.1 to 4.9

" to show the variation of the force coefficients with the
Keulegan and Carpenter number and to compare with other
workers in this field. The variation of the inertia and

drag coefficients with NKC are plotted in figures 4.1 and 4.2
respectively and are compared with results of other workers
using apparatus similar to that used in this study. For NKC
less than about 10, where iﬁcidentally inertia is likely to
be most important, the results for the inertia variation

with NKC, as shown in figure 4.1 are in fairly good agreement.
However beyond this value of NKC considerable scatter exists.
The results of Milliner (1978) are much larger than those
obtained here and do not even follow the trend which the |
present results and those of other workers exhibit. This
difference cannot be accounted for, but it should be noted that
Milliner's results were obtained for a ﬂ value of 200, i.e.
a lower Reynolds number range. Further, as NKC increases

the force becomes more drag dominated, so that the inertial
part is smaller; thus, results for Cm at larger values of NKC
are more likely to be in error. Figure 4.1 also shows that
the present results are more or less in agreement with those
of Sarpkaya-~(1976a) at a g value of 497, except in the regibn
of NKC between 10 and 20, where Sarpkaya's results tend to be
somewhat lower than those obtained here. Also plotted in
figure 4.1, are the results of Sarpkaya and Tuter (1974) taken
from the mean line through their data, which incidentally
exhibited very little scatter even though their results
covered a range of g values from about 250 to 1500. These
results, which appear to be the same as those used by
Sarpkaya (1975), are greater than those obtained in the
present study, for NKC greater than about 15. 1In view of the
fact that at larger values of NKC inertia is less important,
this difference in results is not serious, and as mentioned
above may be due to errors in determining Cm' This is quite
possible in Sarpkaya and Tuter's case as their results were
obtained by recording the force on a pen recorder, and using
- this trace in their analysis.
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Further comparisons with other workers, in particular
with those obtained by Mercier (1973) show egven greater
scatter in the variation of the inertia coeffiecient with
NKC, as can be seen in figure 4.3. Mercier's results show
that at NKC = 12,6, Cm varies from about 0.5 to 1.0.

However, his results were obtained by oscillating the

cylinder, and he reported certain difficulties in obtaining
values for the inertia coefficient, Nevertheless, figure 4.3
shows that Mercier's results (which covered a / range from
about 200-600) are in fairly good agreement with those of
Milliner (1978), for NKC gréater than about 20. The present
results, when compared with those of Keulegan and Carpenter
(1958) as in figure 4.4, are in good agreement for NKC less

than about 20. Beyond this value of NKC, their results tend

to be higher and show an increase in C with decreasing #; an .
effect which might help to explain why Milliner s (1978) results
for Cm tend to be higher than the present ones. However,

both Sarpkaya (1976a, 1976b) and Garrison, Field and May (1977),
show that as g decreases C also decreases. Nevertheless, as
stated in Chapter: 1, this difference in trends between the
results of Keulegan and Carpenter and those mentioned above
could quite possibly be due to the effect of a vertical
velocity which washpresent in Keulegan and Carpenter's case,

The variation of the drag coefficient with NKC, when
compared with other workers who also used 'U'-tube type
apparatus. as in figure 4.2, shows considerable disagreement.
This lack of agreement is more noticeable between the present
results and those of Sarpkaya (1976a), even though the‘ﬂ values
were similar. Good agreement however, is found between the
present results and those of Milliner (1978), even though
his‘5 value was lower, being equal to 200 as compared with 457
in the present case. This is not unexpected though, as Sarpkaya
(1976a) reports that for Reynolds number less than 2 x lO4 the
effect of Reynolds number in planar oscillatory motion is
small. However, this does not explain why the results of
Sarpkaya and Tuter (1974) should exhibit such little scatter,
(even though the values ranged from about 250 to 1500)

3 4

because the Reynolds number range was about 2.5 x 10~ to 5 x 10°.

N
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Further, Sarpkaya and Tuter's (1974) results are not in
complete agreement with either those of Sarpkaya (1976a)

or with those presented here, but do tend to agree with the
present results at larger values of NKC. This scatter in

the drag coefficient obtained by different workers is
emphasised by further comparisons with other workers as in
figures 4.5 and 4.6. In figure 4.5, it can be seen that of

the recent available data on drag coefficients of circular
cylinders in oscillatory flow, the results of Sarpkaya (1976a)
represent an upper bound, whereas those obtained here and those
of Milliner (1978) represent the lower bound. Figure 4.5 also
shows fhat Mercier's results exhibit some scatter and at NKC =
12.6, several valuesfor the drag coefficient are given; this
coqld be due to difficulties associated with the apparatus

used by Mercier., Here also, results of another recent work

by Verley and Moe (1978) is shown. These results were

obtained for decaying motion of a cylinder allowed to oscillate
freely in still water; the drag was then calculated by recording
the damping of the cylinder motion., Verley and Moe's results
were for a limited NKC range, (less than 20) and in this

range agree fairly well with the results of Sarpkaya and Tuter
(1974), however such an indirect method of determining the
drag force is more likely to lead to errors. Returnming to the
difference in results obtained by Sarpkaya and those obtained
here, one possible reason could be due to differences in the
data analysis techniques used. It is very interesting to

note that the present results and those of Milliner (1978)

were obtained by averaging the force over several cycles, and
in this case good agreement was obtained. Sarpkaya's (1976a)
results, on the other hand were obtained by analysing only a
few cycles of data, obtained for decaying oscillations. He
reported (1976a) that this data was treated in an analogue
manner with data being read from a trace 'every O.l seconds
which corresponded to every 6.8285 degrees in a cycle'.
'Further, it appears that some digital analysis of the data

was also carried out 'to check the consistency of the data
acquisition system'; however the digital sampling rate was

set at either 10 samples/second/channel or at 20 samples/second/
channel. Sampling at these rates. implies that the distance
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between adjacent data points corresponded to either 6.8285°
or 3.414° respectively, for an oscillation period of 5,272
seconds. As mentioned in Chapter: 3, if Sarpkaya in his
digital analysis located a cycle of data by noting zero
‘crossings in the displacement signal, the use of such a
small number of points to represent a cycle could lead to
errors caused by the introduction of a phase shift, unless
he interpolated between points either side of the zero '
crossing. Further, analysis of data by analogue methods
which involves recording the data on a pen recorder is
limited by the sensitivity of the recorder, the scale on
which data is recorded, and to how precisely the data can be
read. However these errors should only result in a random
scatter, and not in the large consistent difference in results

observed in figure 4.5.

;Ahother possible reasons for this difference could be the
use of filters in the present case, which could introduce a
phase shift in the force signal., As mentioned before, both
the force and displacement signals were low pass filtered
usually at 10 Hz for NKC greater than 15 and at 5 Hz for
smaller values of NKC. These settings were determined by
examining spectra of the unfiltered force together with the
filter response and were chosen such that no attenuation of
the force was possible as this was concentrated mainly at the
fundamental oscillation frequency. However, filtering does
cause phase shifts, but because both the force and displacement
signals were filtered simultaneously with matched filters at
the same setting, only components of the force above the
oscillation frequency are affected. It should be added that
harmonics in the in-line -force are always less than about 1/50
of the component at the fundamental frequency. Further, the
method used in evaluating the drag and inertia coefficients
rely on equations 3.5 and 3.6 which use only the component
of the force at the oscillation frequency. Another possibility
for the difference in results could lie in the response of
the load cells. However the analysis given in Chapter: 2
showed that the response of the load cells was more than

adequate with an extremely small phase lag occurring at the
Y



oscillation frequency. The analysis in Appendix: 2 shows

that although a shift in the phase of the force relative to
the displacement results in some exchange between inertia

and drag, such a shift must be considerable to result in the
20% difference in results seen in figure 4.5. As an example,
at NKC =50, it would require a shift in phase about 25° to
explain the difference in results obtained by Sarpkaya (1976a)
and those obtained here. However such a bhase shift gives a
value for the inertia coefficient which is clearly in error,
Thus it is quite unlikely that the difference in results

could have been caused by a phase shift. Finally, the present
data was compared with the results of Keulegan and Carpenter
(1958) , as in figure 4.6. Although Keulegan and Carpenter's
results may have been influenced by the presence of a vertical
velocity, fairly good agreement is observed, except for NKC
about 10 and 15. '

Further comparisons with available data on other
relevant coefficients are presented in figures 4.7 to 4.9.
In figure 4.7, the variation of the r.m.s of the weasured force
with NKC, is compared with results from other workers. Good
agreement between the present results and those of Milliner
and Maull (1978a) is observed, but here again Sarpkaya's’
(1976a) results are about 10-15% greater. It should however
be noted that, of the results shown in figure 4.7, only those
obtained in this study and those of Milliner and Maull (1978a)
are actual measured values of the r.m.s. of the force. The
others were obtained from measured values of the inertia and
drag_coefficients, substituted into Morison's equation, as
shown in Appendix: 4. Nevertheless the r.m.s. force
calculated through the use of Morison's equation is generally
in very good agreement with measured results, because as
stated earlier, the in-line force is almost all at the water
oscillation frequency. This difference in the results
observed in figure 4.7 also discounts any possibility of a
simple phase shift which would have resulted in an exchange
between inertia and drag, but would have kept the r.m.s more
or less constant.

64
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In figure 4.8, the available data for the maximum
in-line force during a cycle is compared with other available
data. The present results, obtained on an averaged cycle are
in agreement with the mean of the results obtained by
Keulegan and Carpenter (1958) except in the region of NKC
between 10 and 20, Here also there is disagreement between
the present results and those of Sarpkaya (1976a); the latter
again tend to be higher. Finally, the phase of the maximum
force (i.e. the position of occurrence of the maximum force)
was compared with available data. This comparison, presented
in figure 4.9 show the results to be in fairly good agreement,
and also suggests that the measuring system used here did not

suffer from any gross phase lag.

The results and comparisons presented in figures 4.1 to
4.9 show that even when similar apparatus is used,vthe
available data on in-line force coefficients on circular
cylinders in oscillatory flow exhibit considerable scatter,
This lack of agreement which is especially noticeable on the
drag coefficient, is also reflected in the r.m.s. force and
seems unaccountable for, as the likely errors cannot explain
the large differences observed. However although similar
apparatus were uséé, small differences in experimental and
data analysis techniques still existed and may explain the
variation in results. Both in the present case and in
Milliner's work, the oscillations were forced and data
obtained by averaging the force over many cycles,and here good
agreement was obtained. However Sarpkaya (1976a) examined a
case of free oscillations with the motion decaying, and
analysed only a few cycles. Earlier though, Sarpkaya and
Tuter (1974) did use forced oscillations, but examined only
a few cycles, however more important was the fact that the
cylinder was tested in an arm of the U-tube. Even though
the model was well below the surface, when the oscillation
was in its downward stroke the effect of the free surface
could possibly have influenced the results. Thus it would
seen that this range of expermental results for the drag
coefficient on circular cylinders in planar oscillatory motion
could be due to the fact that the experimental conditions and
"analysis techniques differed in each set of data.



66

The notion that small differences in experimental
conditions can produce significant differences in results is
supported by the fact that Sarpkaya (1976a) reports that in
his case of free oscillations the in-line force is repeatable
to a large extent, and results of coefficients evaluated on
successive cycles agree very well, It would seem that as
Sarpkaya (1976a) used oscillations which were decaying he'
could not have analysed many cycles, nevertheless it is
remarkable that in the case of free oscillations the in-line
force is as repeatable as reported. However, in the present
case, where the oscillations were forced, the in-line force
is not exactly repeatable, and figure 4.10 shows that although
the displacement is regular, small vyariations do exist in the
in-line force. Further when the coefficients are evaluated
for individual cycles and for a number of cycles, considerable
variation in the force coefficients are observed. This is
amply demonstrated in figures 4.11 to 4.13, and exists
fhroughout the range of NKC tested. As expected, these plots -
show that at small values of NKC, Cm exhibits less variation
than CD while at large values of NKC the reverse is true;.the
r.m.s. force coefficient however suffers from much less
variation throughout the range of NKC., This variation in the
force coefficients, evaluated for individual cycles, but for
several cycles of data is summarised in the plots presented
in figures 4.14 to 4.18. Here, the maximum and minimum values
of the coefficients, obtained from analysis on many individual
.cycles are shown with the value obtained by averaging these
coefficients. It should be noted that when results were
obtained by evaluating the coefficients at individual cycles,
and then averaging these coefficients over a number of cycles,
they agreed to within 5% of those obtained by evaluating the
coefficients on an averaged cycle of data. In fiqure 4.14
considerable variation is seen to exist in the inertia
coefficient; however at the lower values of NKC such scatter
is unexpected as the force is dominated by the potential flow
inertia component. At large values of NKC, because the drag
is now the dominant force, the determination of Cm is more
likely to be in error and thus the scatter in the Cm value is
expected. This suggests the possibility of noise in the force.
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It is known that the unfiltered output of the load cells
suffers from some spurious high frequency noise of about

10 mv r.m.s., however due to an‘oversight, the noise level

at the filter settings used was not checked as the filtered
signals appeared noise free when viewed on an oscilloscope.

In addition, some noise was introduced by the tape recorder
(~11 mv r.m.s), but because the signals were amplified to
about pa 1 volt before recording, this was not considered a
problem. One way of testing whether the scatter in these
coefficients was due to nois.e or whether it was genuine, is

to examine the magnitude of the scatter. Now, it would seem
plausible that if the scatter was indeed due to noise alone,
the amount of scatter, when converted in volts should be more
or less constant. Such a test showed that this was definitely
not the case, as the amount of scatter in the inertial part

of the force ranged from about 2 mv at small values of NKC

to about 25 mv at the largest values of NKC. Nevertheless,
for NKC <15, as the scatter was equivalent'to only about 5 mv,
it is possible that in this range some of this may be due to
noise, Figure 4.15 shows the variation of the drag coefficient
with NKC, and there it can be seen that as NKC increases the
scatter decreases.. In this case, the scatter is equivalent

to a variation of about 3 mv in the drag force at small values
of NKC, and of about 30 mv at the lérger values of NKC.
Although this variation is larger at higherwvalues of NKC, it
does not appear so in figure 4.15 because the actual drag
_fofce is very large in this region, so the scatter represents
only a small percentage of the total force. As a matter of
fact the maximum variation in <h is only about ¥ 6% of the
average value at larger values of NKC. Variations in the r.m.s.
force coefficient are also obtained and as figure 4.16 shows
“thisvariation also decreases with NKC., Here the scatter
corresponds to a variation in the r.m.s. force of about 2 mv
r.m.é. at small value of NKC and increasing to about 18 mv r.m.s
at large values of NKC. The maximum force also exhibits some
scatter which also decreases as NKC increases. This scatter
shown in figure 4,17 corresponds to a variation in the

maximum force of about 3 mv at small values of NKC increasing
to about 58 mv at large values of:- NKC. These coefficients all
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exhibit considerable variation, which is not due to noise,
except possibly at sﬁall value of NKC where the force itself
is very small and so small amounts of spurious noise can
produce a significant signal to noise ratio. Nevertheless

of all the coefficients the r.m.s of the force seems the most
constant or repeatable. This is not really unexpected as
small variations in the flow development from cycle to cycle
can cause significant changes in the phase of the force and
hence in the drag and inertia without signigicantly affecting
the r.m.s. force. The fact -that changes in the flow development
can signigicantly affect the force coefficients is demonstrated
in figure 4.18. Here the phase of the maximum force (i.e the
position of occurence) is plotted and it can be inferred from
this that for NKC between about 9 and 16 the flow development
during every cycle is repeatable to a large extent. This
repeatability in the flow development is reflected in the small
variations in all the force coefficients during this range of
NKC. On the other hand for NKC just less than 9, figure 4.18
shows that considerable scatter in the phase of the maximum
force exists and implies that the flow pattern in this region
is not constant during every cycle ; (this fact is verified

in Chapter:5, where it can be seen that for NKC just less than
9 the flow is about to change from one regime to another).
This changing of the flow pattern causes the large variation
in the force coefficients in this region. However for very
small values of NKC, say less than 5, as the variation in
coefficients is oniy very small, some but not all of this
scatter may quite possibly be due to noise. Most of this
scatter is genuine even at NKC less than 5 because even here,
as mentioned in Chapter: 5, during some cycles the flow
development can be different to that of previous cycles. By
Plotting maximum and minimum values the possible band of
values are shown; strictly a statistical description of the
data would have been more revealing but for reasons mentioned
in Chapter: 3 this was not presented. Nevertheless, thoughout
the range of NKC, the percentage variation in the r.m.s., force
about its average value rarely exceeded 6% except for NKC < 8

where some of this variation may have been caused by noise,
b
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The other coefficients on the other hand, suffered from
larger variations, being about 8% on average for CD and

" about 18% on average for Che Thus contrary to the results of
Sarpkaya (1976a), although the bulk of the incident flow is
repetitive, neither the force nor the coefficients evaluated
through the use of Morison's equation are similarly repetitive
for the case of forced oscillations past a circular cylinder.

Next, the measured force, averaged over about 50 cycles
was compared with that predicted by Morison's equation using
values of Cm'and CD evaluated from the averaged measured
force. These comparisons are presented in figures 4,19a to
4.19h, where it can be seen that except in the region of NKC
between about 8 and 20, good agreement between the predicted
and measured force is obtained. This agreement improves
raéidly as NKC increases beyond about 20, and at NKC =48,
figure 4.19h shows that Morison's equation predicts both the
magnitude and the phase of the force well. For NKC between
8 and 20, the motion of the large vortices present results in
a poorer prediction and neither the magnitude nor the phase
of the force is well estimated. This results in an error term
or remainder function which is quite large (as can be seen in
figure 4.19d) and reaches a maximum at NKC between 14 and 15.
In this range, the remainder function instantaneously attains
a value of approximately 20% of the maximum force. At smaller
values of NKC, the flow has just separated and only weak
vortices are present, and here again Morison's equation
predicts the force quite accurately as in figure 4.19a, where
both the phase and magnitude of the force are accurately
predicted. -7

Throughout the range of NKC tested, as can be seen in
figures 4.19a to 4.19h, the remainder term is periodic, and
for most of the range occurs at three times the oscillation
frequency with a mixture of other frequencies superimposed.
Although Morison's equation contains odd harmonics of the force
because of the Cos @ /Cos 9 /term, errors still occur at these
narmonics because the values of Cm and CD used were constant

values averaged over the cycle. Had values of Cm and CD
h)
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which included the higher odd harmonics, as in equations

10 and 11 of Appendix: 3, been calculated and used in

" Morison's equation the agreement would be vastly improved.
This was verified by calculating values for Cm and CD which
contained up to the fifth harmonic of the force, i.e. the
expression for the coefficients contained three terms (all
odd harmonics). Using these values of Ch and CD in Morisop's
equation the prediction was vastly improved, even in the
region of NKC between 8 and 20; a typical comparison is
shown in figure 4.20 for NKCax1ll. However this only proves
that the force can be well represented by a Fourier Series
containing three terms, and that in this case because the
force has only a small component at even harmonics, these
need not be represented. This also serves to illustrate the
point that although Morison's equation contains only odd
harmonics, these are not fully represented when constant,
gveraged values of Cm and CD are used, and so results in a
poorer prediction of the force during some ranges of NKC,
Further, the force on the circular cylinder is concentrated
at the fundamental frequency and significant components
occur only at odd harmonics of the fundamental, thus for
this case the assumption about the symmetry in the force made
by Keulegan and Carpenter (1958) is more or less justified.

These results for the in-line force on the circular
cylinder show that the apparatus and data analysis techniques
used workéd well, for although good agreement with results of
other workers was not always obtained, this was due not to any
fault in the present technique and apparatus but possibly to
slightly different experimental conditions.

4.12 THE FLAT PLATES

A: THE 1.5"(3.81 cm ) DIAMETER FLAT PLATE

This plate like the circular cylinder was about 2' (0.61m )
long, and 5/16" ( 0,79 cm thick with chamfered edges of internal
angles 600; the beta value was 427.5, and the blockage was
6.25%. These results, again obtained for averaged cycles of
the force are presented in table:_? of Appendix: 5,



The only known works on flat plates in oscillatory
flow are those by Shih and Buchanan (1971) and by Keulegan
and Carpenter (1958). However the work of Shih and Buchanan
‘was at low Reynolds numbers and results were analysed in a
different manner, and thus not suitable for comparison,
The present results were therefore compared with those
obtained by Keulegan and Carpenter (1958), in figures 4.21
to 4.25. Figure 4.21 shows the variation of the inertia '
coefficient with NKC, and also shows that the present results
do not agree with those of Keulegan and Carpenter. This
difference in results is considerable, and occurs throughout
the range of NKC. Similarly, when results for the variation
of the drag coefficient with NKC are compared with those of
Keulegan and Carpenter as in figure 4.22 there is again
considerable differences, with the present results being lower
than those of Keulegan and Carpenter. Figures 4.23 and 4.24,
also show differences in results for the r.m.s. and maximum
force respectively when compared with Keulegan and Carpenter's
results., It should be noted that Keulegan and Carpenter did
not present r.m.s. measurements, and the r.m.s force used to
. compare with the present results was that obtained through the
use of Morison's equation as shown in Appendix: 4. Figure 4,25,
on the other hand shows fairly good agreement between the
present results and those of Keulegan and Carpenter, for the
phase of the maximum force. The lack of agreement, in general
between the present results and thoss of Keulegan and Carpenter
is surprising, at least on this scale particularly when for
the circular cylinder fairly good agreement was observed. As
stated before there are a number of possible reasons why good
argeement between the present results and those of Keulegan
and Carpenter is not expected. For instance, the effect of
vertical velocity, or the effect of a free surface which may
have influenced Keulegan and Carpenter's results. However
these effects would have been present when they tested both
the circular cylinders and the flat plates, and since fair
‘agreement was obtained on the cylinder then a similar
agreement would be expected on the plates. Further it is
very doubtful whether such large difference observed in figures
4 .21 to 4.24 could be due to the ‘above mentioned effects, as
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the vertical velocity was small, and the free surface was not
close to the model. A more likely reason lies in the geometry
" of the plates; in the present case these had an internal edge
angle of about 600, and were of a diameter to thickness ratio
of 0.21. Although Keulegan and Carpenter did not specify the
precise shape of their plates, flow visualisation photographs
show that the plates they used were thinner and without sharp-
pointed edges. ' This difference would certainly result in
differences in the angle of the separating shear layers and
would therefore influence the growth and strength of the
vortices and hence the forces. Thus it is believed that the
difference between the present results and thos obtained by
Keulegan and Carpenter (1958) are due to slight differences
in experimental conditions, including the differences in
plate geometry. Finally it should be noted that Keulegan and
Carpen;er's results show no conclusive influence of Reynolds
number on either the drag coefficient or the r.m.s force
coefficient. The inertia coefficient does show some scatter
when plotted for different values, but because enough data
is not available, no concrete conclusions on the effect of
Reynolds number on Cm can be made. However, since both the
r.m.s. and drag force coefficients show no Reynolds number
dependence, and since the r.m.s force is made up of both the
inertial and drag parts, it seems unlikely that Cm on the
flat plate will be Reynolds number dependent,

As wifh the circular cylinder, the in-line force
coefficients on the flat plate were also evaluated for a number
of individual cycles. These results, some of which are
presented in figures 4.26 to 4.28, show that here again
considerable cycle to cycle variation exists in the force
coefficients, even though the incident flow is repetitive,

This random variation in the coefficients exists throughout
the range of NKC, but appears to be less at large values of
NKC for Cp and cFrms‘
cycles are also used to determine the maximum, minimum and

These results, of analysis on individual

average values, and 50 help to establish the degree of
variation of these coefficients., This variation is summarised
in figures 4.29 to 4.33. These plots all show substantial
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variation in these coefficients; figure 4.29 for instance

shows that the scatter in the inertia coefficient is large
- throughout the range of NKC. Figures 4.30, 4.31 and 4,32,
on the other hand, shows that the scatter in CD' C

C
Fmax
in the phase of the maximum force appears to be quite large

Frms and

decreases with increasing NKC. However, the variation

and random throughout the range of NKC. As with the circular
cylinder, because of the large variation in these coefficients,
particularly at small values of NKC, where the force is small,
“but is expected to be more repeatable than at higher values

of NKC as only weak vortices are present, the question of noise
in the signal again arises. Again, by relating this scatter
to the actual force, in volts, it can be seen that the variation
in inertia coefficient corresponds to about 6 mv variation

in the inertial force at the lower range of NKC and increases
to about 40 mv at larger values of NKC. Thus had this .
scattér been due to instrument noise, whether from the load
cells or from the tape recorder, this noise would have been
more or less constant throughout the range of NKC, Similarly
the scatter in the drag coefficient corresponds to about 6 mv
varliation in the drag force at small values of NKC and increases
to about 75 mv at the higher values of NKX. The corresponding
variation in the r.m.s force is 3 mv r.m.s at small NKC and
increasing to about 40 mv r.m.s,6 at large yalues of NKC. It
should be noted that although'the variation corresponds to

a large value in volts at the higher values of NKC the scatter
in the drag and r.m.s force coefficients‘in this region is less
(percentage wise) as these forces are quite large, whereas

the inertia force is small and hence the scatter is greater.
The scatter in the maximum force is also not constant but
ranges from about 10 mv variation at low values of NKC to

about 100 mv at larger values. Although it does not seem
likely that this scatter is solely due to noise, because the
amount of scatter is not constant, the very small variation

(in volts) present in these coefficients at the smaller values
of NKC suggests that some (but not all) of thisscatter might

be due to noise. Of course it is possible that as this

scatter (in volts) increases with NKC, it may be due to
vibration of the tank or model. However spectra presented in
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figures 2.7a, 2.7b and 2.12b, show that any peaks in the
spectrum for the wibration of the side walls of the tank

were introduced by the tape recorder noise. Similarly the
spectrum of the force on the flat plate showed no evidence of
‘vibration as here again all the peaks, with the exception

of higher harmonics in the force arose from noise introduced
by the tape recorder. It should also be noted that the level
of the scatter is greater on the flat platé than on the circular
cylinder. Further examination of figures 4.29 to 4.33 shows
thaﬁ the amount of variation is not just decreasing steadily
with NKC, but changes non-uniformly during certain bands of
NKC. This further suggests that the observed scatter is
definitely not primarily due to noise. Finally it should be
noted that of all the coefficienﬁs, CFrms exhibited the least
amount of scatter and rarely exceeded about - 10% variation.
".about'its average value except at low values of NKC, where

this was most likely caused by noise,

In figure 4.34a to 4.34h, the measured force,‘averaged
over about 50 cycles is compared with that predicted by
Morison's equation using values of Ch and ¢ obtained from
analysis on the averaged measured force., These results show
‘that throughout the range of NKC, Morison's equation fails
to predict the force accurately. Even at low values of NKC,
the prediction, as shown in figure 4.34a is poor; even more
remarkable is the fact that for NKC as low as 3.08, figure
4.35a shows that the prediction is still poor. This result
was obtained on a larger plate and hence for a largerlg ¢
namely 1686. Returning to figure 4.34, it can be seen that
as NKC increases the prediction becomes worse, as the
remainder function increases and reaches a maximum at NKC
approximately 15. Beyond this the prediction improves, but
slowly, and at NKC=® 48, fairly good agreementis obtained. At
even larger values of NKC as in figure 4.34h, taken from
measurements on a smaller flat plate, with a beta value of 188,
the agreement between the measured force and Morison's equation
is still not very good, only improving slightly on the
agreement at NKC=~ 48, The remainder function instantaneously
reaches a value of about 20% of th maximum force at NKC=« 3
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and increases slowly to a maximum of about 30% of the
maximum force at NKC=15. Thus, compared to the circular

. cylinder, the prediction of the force on the flat plate is
very poor, Further it can be seen that throughout the

range of NKC the remainder force is clearly periodic and at
three times the fundamental oscillation frequency. Thus
suggesting that this error was caused by the presence of a
third harmonic in the force, which although present in the
Cos € /Cos &/term is not well represented. The presence of
the third harmonic in the force is evident in spectra of the
in-line force and can be seén even at large values of NKC as
in figu}e 2,.12b. On the flat plate therefore Morison's
equation fails to predict the force with any sufficient

degree of accuracy.

B. BLOCKAGE

By measuring the forces on two other plates, similar in
geometry to the 1.5" (3.8l cm ) diameter plate, but of
different sizes, the effect of blockage in oscillatory flow
was examined. As the flow is two dimensional and because
little effect of Reynolds number on these plates is expecteq,
the primary effect obtained by testing plates of different
sizes is that of biockage. The fact that Reynolds number has
little effect on the forces on flat plates was confirmed by
measurements of Shih and Buchanan (1971) who noted that for
Reynolds numbers above about 250, this effect was secondary.
Thi's is also evidenced by the results of Keulegan and
Carpenter (1958) which show no discernible effect of,5 ag’
either the drag or r.m.s force coefficients as was seen in
figures 4.22 and 4.23. Three plates were therefore used
with diameters of 1.0"(2.54 cm ), 1.5" (3.81 cm ) and 3"

( 7.62 cm, thus having B values of 188.0, 421.5, and 1685.8,
and blockage ratios of 4,17%, 6.25% and 12.5% respectively.
The results obtained are tabulated and presented in tables:
2 to 4 of Appendix: 5, and were obtained from analysis on an
averaged cycle of force data. In figure 4.36, the results of
the inertia coefficients obtained on the thre: plates are
compared} good agreement is obtained except for the results
on the 1" ( 2.54 cm diameter plate which tend to be larger

" for NKC greater than about 15, This effect is unlikely to

/
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have been caused by blockage, because had this been the case,
the large difference in blockage between the 1.5" (3,81 cm )
"and 3" (7.62 cm ) plates would have resulted in differences

in results between these two plates. Tne other possibility

is that this difference could be due to the effect of Reynolds
number, such that asﬁ decreases Cm increases. This notion

of Reynolds number having an effect on the inertia coefficient
would seem to explain some of the scatter in Keulegan and '
Cafpenter's results, as shown in figure 4.21, but as explained
earlier this is highly unlikely., Further as the results of
Keulegan and Carpenter (1958) and Shih and Buchanan (1971) both
show little or at least no discernible effect of Reynolds
number on the drag coefficient in this Reynolds number range;
it is therefore odd that only the inertia coefficient would
be affected. The effect of Reynolds number on the flow around
the flat plates is primarily in the diffusion of the vortices,
and this should also affect the drag forces. The data is
however insufficient to be totally conclusive, Of course it
is quite possible that the differences in results of the small
plate could be due to the fact that in the region where the
disagreement exists, inertia is not an important part of the
force; it is therefore likely to represent a very small
portion of the force and therefore be difficult to measure,
However, as previously stated all results presented were
obtained from two separate sets of experiments, carried out

to check the consistency of the data. The data for the small
plate do show a small amount of scatter and reflect: the fact
that because the forces ére indeed smaller on this plate they are
a bit more difficult to measure, but this does not explain

the difference in results seen in figure 4.36. However figure
4.37 does show a definite effect of blockage on the drag
coefficient. As was mentioned above, the work of others
particularly that of Keulegan and Carpenter (1958) plotted in
figure 4.22, show no effect of Reynolds number on Cphe Thus
figure 4.37 does indeed demonstrate an effect of blockage in
oscillatory flow; this effect is quite clear on the largest
plate, with u blockage ratio of 12.,5%. However, both because
there is a small difference in blockage between the two

N



remaining plates and because of the scatter in the data for
the small plate, differences between these results are
obscured. Figure 4.37 also demonstrates that for a small
values of NKC, say less than about 5, blockage is unimportant.
A similar effect of blockage on the root mean square of the
force is observed in figure 4.38, where results for the
larger plate are clearly increased. Here again for NKC less
than about 5 no effect is observed. The results for the
maximum force, presented in figure 4.39 also show this effect
of blockage. In this case however particularly at larger
values of NKC, it can be seen that the results for the 1" plate
do lie below those obtained on the 1.5" diameter plate.

Figure 4.40, on the other hand shows that results for the
phase of the maximum force on the three plates are more or
less in agreement but with some scatter. Thus blockage seems
to affect only the magnitude of the force and does not ‘
significantly alter the variation of the force during a cycle.
This is evidenced in the plot of 4.35b which shows that the
variation of the force on the 3" plate during a cycle is
similar to that on the 1.5" diameter plate shown as in figure
4.34e.

Finally in order to ensure that the observed effect was
indeed due to blockage, a correction method was used, not with
a view to obtaining truly corrected results but to demonstrate
that some collapse of data could be achieved if the blockage
ratios were included. The correction method used was Maskell's,
and details are given in Chapter:3. Both the drag and the
r.m.s force were corrected, and these results presented in
fiqures 4.41 and 4.42 respectively. Here it can be seen that
some collapse of data is indeed achieved,'thus demonstrating
that the observed effect is one of blockage. It can therefore
be concluded that blockage in oscillatory flow is just as
important as in steady flow, except for very small values of
NKC where this effect can be ignored., It should however be
noted that although Maskell's blockage correction gives good
collapse of data, there is no real justification for the use
of this method in oscillatory flow, except perhaps at very

large values of NKC where a quasi-steady flow is approached.
A
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Incidentally great care must be taken if similar blockage
experiments on circular cylinders are carried out, because
‘a simple increase in size of the cylinder also increases

the Reynolds number. Thus the effect of blockage and
Reynolds number can be confused and at worst may cancel thus

leading to erroneous results.,

4.1.3 THE DIAMOND SECTION

This section is really a square section cylinder placed
at 45° incidence. It is therefore sometimes referred to as
a square section with a diagonal in-line with the flow. The
diagonal was 1.5" (3.81 cm) and this dimension was used to
non-dimensionalise the force coefficients. The B8 value was
422.7 and the blockage was 6.25%. Results, again for analysis

- on the averaged cycle of force data are presented in table: 5

of Appendix: 5. As no other studies on this section were
available no comparison could be made so the results of these
measurements are presented on their own in figures 4.43 to
4,47, These results will be discussed later. Suffice to say
here that as with the other sections the results presented were
obtained from two sets of experiments which as can be seen

are consistent, -

Next, the variation of the coefficients from cycle to
cycle was examined by evaluating the force coefficients for
many individual cycles of data. Here again, as with the
flat plate and circular cylinder considerable variation in
the force coefficients is observed. This variation is
random and quite large but with the exception of the inertia
coefficient and phase of the maximum force, becomes less as
NKC increases., Figures 4.48 to 4.51 demonstrate this cycle
to cycle variation. Here also, these results of analysis
on individual cycles are used to obtain the maximum, minimum
and average values, which are plotted in figures 4.52 to
4.56 to show the degree of variation of these coefficients.
In figure 4.52, large variations in the inertia coefficient
are observed; this scatter seems to decrease for NKC between
15 and 24, but then increases again as NKC increases. The

N
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large scatter at higher values of NKC is expected as the
force is then drag dominated, however the scatter at small
values of NKC is not really expected as the force in this

" region is inertia dominated, thus the question of noise again
arises, As before, by converting this scatter into volts,
the degree of variation can be examined. For the inertia

" coefficientthis variation corresponds to about 6 mv at

small values of NKC and increases to about 20 mv at NKC about
50. The fact that the amount of scatter is not constant
therefore suggests that this scatter is not all due to noise.
Figure 4.53 also shows considerable variation in the drag
coefficient; again this scatter decreases for NKC between
about 15 and 24, and as NKC increases beyond about 24 this
scatter first increases and then decreases., By converting
this scatter in terms of an actual force variation, but
expressing this in volts, the scatter is found to range from
about 7 mv at small values of NKC and increasing to about

50 af the larger values of NKC, Thys here again it is very
unlikely that the scatter is due to any noise. The r.m.s force
coefficient showed in figure 4.54 suffers from much less
scatter, and for NKC below about 10, less than about 10%
variation about the average value is obtained. Here again the
scatter reduces for NKC between about 15 and 24, and it is
obvious that the scatter is not constant and thus unlikely

to be due to noise. Incidentally this scatter ranged from
about 3 mv r.m.s at small values of NKC to about 30 mv r.m.s
at large NKC values. A similar behaviour is observed for

the variation of the maximum force, shown in figure 4.55
where the scatter is particularly small at NKC about 20, and
in general decgeasiﬁi as NKC increases above this value. As
with the other{the large scatter at small valuegof NKC is
probably not all genuine and may be influenced by noise. 1In
this case the variation is equivalent to about 12 mv at small
values of NKC and increasing to about 90 mv at NKC = 50. It
may be concluded therefore that for small values of NKC say
less than about 10, the variation in the force coefficients
may not all be genuine but may be influenced by some noise.:
However at larger values of NKC the variatior. is primarily

a genuine consequence of the type of flow; i.e. the variation
occurs because the flow development during every cycle is not
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repetitive. This conculusion is founded on the supposition
that noise alone would have resulted in a more or less
constant variation in these coefficients. The fact that this
variation is a genuine effect may be supported by examination
'of figure 4.56, which shows the variation in the phase of the
maximum force. Here, the variation is clearly seen to decrease
toa minimum at NKC=% 22, demonstrating that in this vicinity
the flow is extremely regular. The regularity of the floﬁ in
this region of NKC is reflected in the variation of the
coefficients, which all show a smaller amount of scatter in
this region.

Finally, the measured force, averaged over about 50 cycles
was compared with that predicted by Morison's equation. These
comparisons, presented in figures 4.57a to 4.57h, show that
as NKC increases beyond about 25, the predicted force agrees
fairly well with the measured force but the agreement is still
not as good as that obtained on the circular cylinder. Figure
4.57a shows that even for NKC as low as 4.8, the agreement
between the measured force and that predicted by Morison's
equation is not good, with neither the maximum force nor the
phase of the maximum force being well predicted. Here, the
remainder function is at three times the oscillation frequency
and instantaneouslyattains a value of about 20% of the maximum
measured force. As NKC increases the prediction gets worse
and for NKC between about 7 and 10, the remainder function
instantaneously attains a value of almost 30% of the
maximum force. Here also the remainder function begins to
show evidence of other harmonics besides the third., For NKC
above about 10 the agreement between Morison's equation and
the measured force begins to improve and by NKC =15, the
agreement is good. This can be seen in figure 4.57d4 for
NKC =15.7. Here also harmonics higher than the third can be
observed in the remainder function. As NKC increases beyond
about 15 the agreement once again deteriorates and the remainder
function can then instantaneously attain a value of about 20%
of the maximum measured force. However as NKC increases beyond
about 25, the predicted force once again agrees quite well with
the measured force and by NKC~ 50, figure 4.57h shows good
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agreement. On the whole however the agreement is not as
good as that obtained on the circular cylinder except in
the vicinity of NKC approximately 15 where the agreement on
the diamond is very good, whereas on the ci:cular cylinder

"the prediction is poor.
4.1.4 THE SQUARE SECTION

The model was the same as the diamond section but now
placed at zero degrees incidence. The characteristic
dimension used to non-dimensionalise the forces was the
length of a face, which for a diagonal of 1.5", measured
1.06" (2.69 cm). Thus the B value based on this dimension
was 208 and the blockage ratio equal to 4,42%, The results
obtained, again for averaged cycles of force data are
presented in table: 6 of Appendix: 5. As with the diamond
section, no other data is available on this section; the |
results are therefore presented on their own in figures 4.58
to 4.62. These will not be discussed here, except to say
that here again these were obtained from two separate
experiments and figures 4.58 to 4.62 show that the data is

consistent.

Results obtained by analysing individual cycles of data
show that throughout the range of NKC, the coefficients
exhibit considerable scatter. This scatter, as demonstrated
in figures 4.63 to 4,65 is quiteAlarge and random, but with
the exception of the inertia coefficient and phase of the
maximum force decreases as NKC increases. This is more clearly
evident in figures 4.66 to 4.70, where these results for
individual cycles were used to obtain maximum, minimum and
average values of the coefficients and these then presented.
These plots show that Cpr Crrms and Crmax exh;bit much less
variation for NKC greater than about 20; this is especially
so for CFrms as can be seen in figure 4.68. The inertia
coefficient, on the other hand, exhibits a large scatter
throughout the range of NKC as can be seen in figure 4,66,
This figure also clearly shows that the amount of variation
in Cm increases as NKC decreases, a fact which is not expected
as inertia dominance is expected at low values of NKC. Thus
the question of noise again arisés. This section presents a
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smaller face to the flow, than any of the other sections
tested, and the overall forces were smaller; thus it is more
- likely that results on this section at small NKC values

would be affected by noise. By converting this scatter to

a force, but expressed as a voltage, it was found that for
the inertia coefficient, the scatter was equivalent to about
4 mv variation in the force at low NKC and increased to abou;
12 mv at NKC 70. Similarly the scatter in CD ranged from
about 5 mv to about 16 mv, whereas that in CFrms
about 3 mv r.m.s at low values of NKC to about 10 mv r.m.s
at the larger NKC values. ft seems therefore that some of

ranged from

the scatter for NKC less than about 20 may have been influenced
by noise. However it should be noted that although the scatter
in these coefficients appears to be large, the average values
agree to within less than 5% of those obtained when the force
itself was averaged. As stated earlier, presentation: of the
results of analysis on individual cycles in terms of the
maximum and minimum reflects the worst situation and gives a
possible band of values. Finally, for NKC > 20 the variation

in the r.m.s. and drag coefficients is less than 10% of the
average value and by NKC 270, it decreases to about 5%; the
corresponding var@ition in Cm is about 20% of the average
value.

Next, the averaged measured force is compared with that
predicted by Morison's equation. This comparison is
presented in figures 4.71a to 4.71h. ‘It should be noted that
although it was concluded above that for NKC < 20, the results
were possibly influenced by noise, figures 4.7la to 4.71h show
that the averaged force is unaffected as any random noise is
removed by averaging. Thus, the results for the average cycle
of force on this and all the other models are not influenced
by noise. . Returning to the comparison between the measured
force and that predicted by Morison's equation, it can be seen
(figure 4.71a) that at NKC=~ 8 and also for smaller NKC values,
the prediction is quite good. Here also, and throughout most
of the range of NKC the remainder function occurs at three
times the oscillation frequency. As NKC increases beyond 8

the prédiction becomes increasingly poor, and for NKC between
: A
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about 10 and 30, the remainder function instantaneously
attains a value of about 20-30% of the maximum measured
.force. The agreement between the measured force and
Morison's equation is particularly poor for NKC between

20 and 25. Again throughout this range the remainder
function is periodic and at three timesthe oscillation
frequency. As NKC increases beyond 30 the prediction slowly
improves, but by NKC~ 71, figure 4.71lh shows good agreement,
with both the magnitude and phase of the force being fairly
accurately predicted.

4.2 TRANSVERSE FORCE

4.2.1 THE CIRCULAR CYLINDER

1

By rotating the load cells through 900, such that the
measuring elements were in a horizontal plane, the 1lift
force on the circular cylinder, the diamond section and the
square section was measured. Incidentally, calibration of
the load cells in this position yielded calibration constants
similar to those obtained when the cells were positioned to
measure the in-line force. This was the same circular
cylinder as that used in the measurement of the in-line force

and so the p value was again 451,

Measurement of the transverse force on the circular
cylinder revealed that this force was non-stationary, with
periods of very little lift followed by bursts of high lift.
The length of the bursts was uneven and occurred throughout
the range of NKC, except forNKC equal to 14,20, where the
lift appeared to be regular. This non-stationarity of the
transverse force data, which incidentally was also observed
by Maull and Milliner (1978a), makes it difficult to describe
quantitites such as r.m.s, spectral content, and any others
obtained by an averaging process since they will be a function
of the length of data used. In the analysis of the lift
force on these models, the force data was therefore not
averaged (as was done for the in-line force); instead the data
was analysed for individual cycles to yield such quantities
as r.m.s force and maximum force. As would be expected from
such a'cycle by cycle' analysis the force coefficients exhibited
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considerable scatter as the data was not regular. These
~were not presented as they only serve to demonstrate the
now established fact that the 1lift force is not regqular.
Therefore only the maximum measured transverse force and
the r.m.s of the total block of data are presented. These
results were obtained on analysis of 100 cycles of data

. but tests showed that results obtained for many more cycles
(=¥ 200) were in close agreement, usually within 5% of those
obtained from analysis on 100 cycles. '

" The irregularity of the transverse force on the circular
cylinder is clearly demonstrated in figures 4.72a to 4.72h,
where it can be seen that with the exception of figure 4.72c,
for NKC-=14,20, lift occurs in uneven bursts even though the
displacement is regular, This non-stationarity in the
transverse force data probably explains the large scatter in
results observed when similar data from other workers also
using 'U-tube' type apparatus are compared, as in figure 4,73,
Here the results for the variation of the maximum transverse
force with NKC are compared with those of other workers, With
the exception of the results of Sarpkaya and Tuter (1974),
these results, including the present ones shoW considerable
scatter, but the general trend is the same. Sarpkaya and Tuter's
results were obtained for a range of ;2 yalues (250-1500), but
these results showed Very little scatter except in the range
of NKC between 20 and 25; their results are therefore presented
as a mean line with a branch at NKC between 20 and 25, Figure
4.73 also shows that all the results presented do tend towards
a peak at NKC =18, and a trough at NKC= 15, as the results of
Sarpkaya and Tuter (1974) clearly show. However, Sarpkaya and
Tuter's results show another peak at NKC =10 and for NKC< 10
their results are shown decreasing to zero. This behaviour
is not repeated by any of the remaining results in figure 4.73;
instead they show CLmax increasing as NKC decreases. This is

surprising as C must eventually+0 as NKC-~O, but because

Lmax
the force was non-dimensionalised by % f’UI: DL if Um-"o faster
than the measured transverse force then CLmax would become

very large as NKC decreases.
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In figure 4.74, the variation of the root mean square
of the lift force with NKC, is compared with the results of
- Milliner and Maull (1978a). Because of the nature of the
1ift force, the results show considerable scatter and reflect
the difficulty in describing this force. However figure 4.74
shows that the present results follow the trend indicated by
those of Maull and Milliner. Figure 4.74 also shows that

C tends towards a constant at large values of NKC.

Lr.m.s

Unlike the in-line force, the tfansverse force does not
occur mainly at the water oscillation frequency; instead, it
occurs at multiples of the fundamental frequency which is
related to the vortex shedding frequehcy which in turn is
dependent on NKC. However when speaking of the frequency of
the transverse force, some ambiguity arises as the transverse
force contains information at different frequencies, caused
by the number of vortices shed, and the number of distinct
vortices swépt back past the body. In figure 4.75a to 4.753,
the variation of the 1lift force during two cycles of water
oscillation are shown; here it can be clearly seen that as NKC
increases the transverse force occurs at higher frequencies.
Further, figures 4.75g to 4.75i also shows very clearly that
this force occurs at a mixture of frequencies. It should be
noted that in these figures, 4.75e and 4.75j show the
corresponding variation of the water displacement; these
figures therefore show where the 1lift is developed during
each cycle. However a single frequency of the transverse
force could be defined by counting the number of zero
crossings; such a frequency is not a true frequency but does
take into account peaks in the 1lift force'caused both by
vortex shediing and by the passage of vortices past the
cylinder. Because more vortices may be shed during certain
cycles, particularly at large values of NKC, and also because
the interaction between the vortices and the body may not be
t he same during each cycle, such a frequency can sometimes
adopt more than one value for the same NKC. Nevertheless,
defining the frequency of the transverse force (f;) by the
number of zero crossings during a cycle of oscillétion, enables
a Strouhal number to be defined as in equation 3,21, where

S
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St = £ , where f = frequency of water oscillation.

/" £ NKC
It is appreciated that it is usual to define the Strouhal
number based on the vortex shedding frequency, but in this
_case where lift is developed both by the shedding of
vortices and by their interaction with the body it seemed
reasonable to include this. This Strouhal number, defined
thus, then gives an indication of the frequency content of
the transverse force, in a suitable non-dimensional form.
Figure 4.76 shows the variation of this Strouhal number,
and the frequency of the transverse force, with NKC. Here
as expected, because the number of vortices increases with
NKC, fT also increases, however the Strouhal appears to
approach a constant value of approximately O.15. More data
at larger values of NKC is needed to justify any certain
conclusion about this tendency to a constant value as NKC
increases. Figures 4.75a to 4.75] also show the form of the
lift variation changes with the flow pattern. The flow past
the circular cylinder was observed to adopt certain flow
patterns as described in Chapter: 5, and for the different
patterns lift on the cylinder was developed in different ways.
For NKC greater than about 25 the form of the lift variation
was similar except that the frequency content was higher for
the larger values of NKC. In these larger ranges of NKC the
flow approaches a quasi-steady situation, and 1lift is then
primarily due to the shedding of vortices which causes a wake
oscillation. For NKC between about 15 and 25 figures 4,754
and 4.75f show that lift variation during a cycle is similar,
now being caused both by vortex shedding and by their passage
past the cylinder as the flow reverses. Figure 4.75c shows
that for NKC between about 10 to 15, the 1ift variation adopts
another form as here another flow pattern is set up. For NKC
between about 5 and 10, yet another form of 1lift generation
is observed corresponding to another flow pattern. In this
region vortices are rarely shed; 1lift is then due to the
asymmetry in the flow development and by the passage of the
forming vortices back over the cylinder as the flow reverses.

Finally, the transverse force was spectrally analysed to.
examine the frequency content in a qualitative manner. Some
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of these spectra, presented in figures 4.77a to 4.77h show

" that the transverse force does indeed occur at a number of
frequencies, all of which are multiples of the water
oscillation frequency. Even at NKC-=14.20, where the 1lift
was observed to be the most regular, figure 4.77c shows that
the 1lift force occurred at several discrete frequencies.
More interesting is the fact that as NKC increases, the 1lift
force occurs over a wider band of frequencies, but still all
multiples of the water oscillation frequency.

!
4.,2.2 THE DIAMOND SECTION

This section was also the same as that on which the in-
line force was measured, and as the conditions were more or
less the same the A value was again 422,7. Data was measured
and analysed in exactly the same manner as on the circular
cylinder. Here however,measurements of the transverse force
revealed that unlike the circular cylinder, for NKC less than
about 20, the lift was much more regular. Beyond this the
lift force did show a behaviour similar to that obtained on
the circular cylinder. This fact is demonstrated in figures
4.78a to 4.78h; here it can be seen that for NKC < 20, although
some cycle to cycle variation is observed, this is much less
than that observed on the circular cylinder. For NKC > 20,
figures 4.78f and 4.78g show that here again 1lift generation
occurs in uneven bursts. It should also be noted that figures
4,784 and 4.78h show the corresponding displacement signal
recorded at the same speed (as the lift force) and matched to
give the correct phase. Here again the maximum force observed
in 100 cycles of data and the root mean séuare of this record
were evaluated. 1In view of the fact that no other data was
available. for comparison, the results were compared with those
obtained on the other models. In figure 4.79 the results for
the maximum force are compared; here it can be seen that the
force on this, the diamond section is smaller than that
obtained on the circular cylinder throughout the range of NKC.
Careful inspection of figure 4.79 reveals that as with the
circular cylinder the results tend to form a peak at NKC

. between 15 and 20. A similar comparison for the r.m.s of the
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force, as presented in figure 4,80 shows that here again

for NKC > 20 the diamond section experiences a smallerforce

- than the other sections. However for NKC< 20 the root

mean square force on the diamond secticn appears to be greater
than that on the cylinder. This is probably due to the fact
that in this range the force on the diamond section is more
regular than that on the circular cylinder. Figures 4.79 and
4.80 also show that both C; .. and C; . _ . tends to very large
values as NKC becomes smaller. As mentioned before however,
this could be a consequence of the manner in which the force
was non-dimensionalised. Another possibility is that for
small values of NKC the signal is more likely to be influenced
by noise, as the magnitude of lift generated is only very

small,

% As with the circular cylinder, figures 4.8la to 4.81li
show that the 1lift force on the diamond section also occurs
at several frequencies which increase. with NKC. Using traces
similar to these, to determine the frequency (fT) of the
transverse force as defined earlier, enabled a Strouhal
number to be calculated. The variation of this Strouhal
number and the frequency of the transverse force with NKC is
as shown in figure 4.82. Here again the results presented show
that the Strouhal number appears to tend towards a constant
at large values of NKC, but more results at higher values of
NKC are needed to establish this observation as a fact.
Figures 4.8la to 4.811 also show that the form of the lift
variation during a eycle varies during certain bands of NKC.
For NKC above 25, the flow approaches a quasi-steady situation
and the 1lift generation is similar to that observed in steady
flow where lift is due primarily to vortex shedding which
‘resultsin a wake oscillation. For NKC about 15 to 25 a
different flow pattern is observed and this is reflected in
the lift variation during a cycle as shown in figures 4.81d
and 4.81f. Figures 4.8la to 4.8lc are however similar to
each other but different to the others and again reflect
another change in flcw pattern. These flow patterns are
described in some detail in Chapter: 5, but it should be
mentioned that there are no rigid\boundaries of NKC which
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separate the types of flow pattern. As a matter of fact
during one value of NKC two flow patterns may be adopted and
this can result in different forms of the lift variation
~during a cycle.

Finally,.spectra presented in figures 4.83a to 4.83f, show
that on the diamond section also lift occurs over a band of
frequencies, again all multiples of the water oscillation
frequency. Here it can be seen that during some values of
NKC the dominant part of the transverse force occurs at odd
multiples of the oscillation frequency, whereas at other
values it occurs at even multiples of the oscillation
frequency. At values of NKC between these, the transverse
force occurs over a wide band of frequencies, both odd and
even multiples of the oscillation frequency. As an example,
figure 4.83a shows the force to occur mainly at 2,4,6 and 8
times the oscillation frequency, with minor contributions at
1,3, and 5 times. Figure 4.83c, on the other hand, clearly
shows that the transverse force in this case occurs mostly at
the odd harmonics namely at 1,3,5,7, 9 and 11 times the
oscillation frequency. However figure 4.83b shows that here
the force occurs both at odd and even harmonics of the
fundamental frequency. The question as to whether the lift
frequency will be at odd or even harmonics of the fundamental
depends on the flow péttern; further if the flow pattern is
repeatable to a large extent then spectra shows that either
odd or even harmonics will dominate. If on the other hand
the flow pattern changes during the record of data analysed
the spectra will tend to be more broad band with contributions
at even and odd harmonics of the fundamental frequency.

4.2.3 THE SQUARE SECTION

The ﬂ value for this section was again 208, and the
results were processed as for the cylinder and diamond sections.
On this section, the 1lift again occurred in bursts throughout
the range of NKC as shown in figures 4.84a to 4.84i. Figure
4.84a also shows that at smaller values of NKC, the mean lift
is not constant but varies irregularly, bu? here the actual
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amount of lift force generated is small, For NKC above about
25, figures 4.84d to 4.84h show that 1lift generation on this
" section was similar to that observed on the other sections,

The results for the maximum and r.m.s force were presented
in figures 4.79 and 4.80 respectively, where they were compared
with results on other sections., This comparison, for the
variation of the maximum force with NKC, presented in figure
4.79, reveals that the square section experiences a greater
lift force than on the cylinder or diamond sections for most
of the range of NKC. A similar comparison, presented in
figure A.BO, reveals that the root mean square 1lift force on
the square section is also greater than that experienced by
the other two sections. In both these plots, for NKC less than
about 20, the results on the square section are shown
increasing rapidly as NKC decreases, As mentioned before éhis
is most likely due to the fact that non-dimensionalising by
%f’UZ DL results in the coefficients becoming very large :§
NKC tends to zero, if the force tends to zero slower than Um .
Of course, in this region the forces could also be influenced by
spurious noise which could result in errors. For this reasou
lift results for values of NKC less than about 15 are not
presented as these were thought to have contained some noise.

In figure 4.85a to 4,85i the variation of the lift force
over two cycles is presented. Here it can be seen that for
NKC above about 30 lift is generated in a manner similar to
that observed on the other two sections. This is not due to
a coincidence but instead, because here the flow also approaches
a quasi-steady situation with a number of vortices being shed
which result in the lift variation shown. For NKC less than
30, no definite differences in the form of the l1lift variation
is observed and this is due to the fact that in this region
the flow pattern is more or less the same as described in
Chapter: 5.

Again using traces similar to those in figure 4.85, a
frequency of the transverse force was estimated and this used
to form a Strouhal number. Figure 4.86 shows the variation

of this Strouhal number and the frequency of the transverse
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force with NKC. As with the cylinder and diamond section
these results tend to show the Strouhal number approaching a
constant value of about 0.1, but this might be a slow
variation instead and more results are needed to justify a

conclusion.

Finally, the transverse force was spectrally -analysed
and these results are presented in figures 4.87a to 4.87f.
These results show that at NKC greater than about 25, 1lift
occurs over a number of frequencies, both odd and even
harmonics of the fundamental. Here also it can be seen that
as NKC increases the band of frequencies increases. At the
smaller values of NKC, figures 4.87a and 4.87b show that
the transverse force occurs at singular discrete frequencies.
These results agree with visual observations of the flow
which show that for NKC less thah about 25 no distinct changes
of the flow pattern occurs. As mentioned earlier only when
definite changes in the flow pattern take place, do« . the
spectra become.” more broad band. It should however be noted
that although no definite changes in the flow pattern occur
minor changes do take place and these result in irregularity
of the lift.



CHAPTER: 5
FLOW VISUALISATION

5.1 INTRODUCTION .

The following is an account of detailed, but mainly
qualitative, flow visualisation studies carried out on
.all the models tested during this program of research. As
stated earlier,'the models include flat plates, a circular
cylinder, and a square section at 0° incidence and at 45°
incidence, i.e a diamond section. Visualisation studies
were undertaken to examine the structure of the wake and
the interaction between this and the body as the flow
reversed, and revealed some very interesting and previously
unreported flow patterns.

The flow about circular cylinders in relative oscillatory
motion has been visualised and studied by several workers,
e.g Grass and Kemp (1978), and Maull and Milliner (1978).
Similar studies have been made by Zdravkovich and Namork
(1977) and by Isaacson and Maull (1976) for cylinders in
waves, Keulegan and Carpenter (1958) also did flow visualisation
on circular cylinders and on flat plates, placed at the node
of a standing wave. Unfortunately however, most of these
studies tend to be either brief or were limited to a small
Keulegan and Carpenter number range, In this study therefore
the flow over a wide range of NKC, ( up to about 70 for the
square section and up to about 50 for the other sections )
was visualised and examined. -7

5.2 VISUALISATION TECHNIQUE

The flow around the model and indeed in the entire tank
was made visible by the introduction of white polystyrene
particles into the water. These particles were of diameters
ranging from O.1 mm to 0.3 mm, and of density only very slightly
greater than that of the water. In flow visualisation studies,
the choise of particle size and densify is very important for ‘
a number of reasons. Obviously %f the particle is of
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different density to thetambient fluid, buoyancy forces will
act on the particle andjwill tend to sink or float¢Size of

the particle al§0 creates additional problems as pressure
.differences across the particle can cause forces on the
particle which could result in particle - trajectories which

do not follow the flow. This is especially important in
regions of high velocity gradients and hence pressure gradients,
such as in the vicinity of vortices and separated regions.
Selection of particle type and the problems associated with
using particles to track the flow are adequately discussed by
Merzkirch (1974). In this study only a qualitative analysis

of the results of flow visualisation studies were attempted,
thus the particle size and density chosen was considered
adequate, especially as they were small enough and more or less

neutrally buoyant.

Smaller particles, namely aluminium powder were also
tried during inital tests, however these particles when in
suspension tended to coagulate resulting in a very patchy or
non~-uniform distribution of particles. Polystyrene particles
on the other hand seemed to be much more uniformly distributed.
. It should however be added that in order to obtain a uniform
distribution of polystyrene particles these were first mixed
with a little soap solution; this prevented the particles from
clinging together, though the same technique applied to the
aluminium powder was not very successful.

The flow was illuminated from above through a slit in
the top of the working section of the tank. Thus, only a narrow
vertical plane, perpendicular to the axis of the model was
illuminated. Only a section of the flow was illuminated and
results for this were analysed. However, because the flow
was nominally two dimensional, the flow in any one perpendiéular
plane was typical of the flow field anywhere along the span
of the model. The two dimensionality of the flow was verified
by illuminating horizontal planes of the flow field and viewing
this from above; in all the cases looked at,the upstream (or
incident flow) and the wake was well correlated along the span.

There was however some evidence of three dimensionality in the
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wake 6f the square section during some parts of the cycle at
large values of NKC. Illumination was achieved by means of
two light sources, each containing a 1000 watt bulb and a lens
arrangement to produce a parallel beam of light. A reflector
strip placed on the floor of the working section (i.e. inside
the tank), and directly below the light sources helped to
intensify the illumination. Unfortunately however, the finite
thickness of the models resulted in small shadows on the lower
portion of the flow. Finally, the inside of the working section
was painted black, thus giving good contrast between the
illuminatedparticles and the black background.

For all the models studied, the flow patterns, i.e. the
growth and formation of vortices and their subsequent motion
occurred fairly quickly. Direct visual observations of the
flow past these models was therefore limited to examining the
large scale motion of the vortices or to the flow at very
small values of NKC, where the events occur at a muéh slower
pace. Still photography, using a 35 mm camera, and ciné films
of the flow around the models over a wide range of NKC were
t herefore necessary for detailed analysis. Here again, still
photographs of the flow are of limited use, unless the position
during a cycle is known, however they serve to illustrate
or highlight certain features of the flow. Thus, the bulk of
the analysis was made with the aid of ciné films.

4
Photography of oscillatory flows is not straight forward,

as the velocity is not constant, but varies sinusoidally from
zero to a maximum value. Great care must therefore be taken
with the exposure time, if adequate particle streak lengths
are to be obtained. Too long an exposure time results in very
long streak lengths, which give rise to a confusing picture
and are difficult to interpret. On the other hand, a short
exposure time results in particles which appear stationary,
i.e. frozen, so that a single shot or a single frame of a
cine” film is meaningless. The ideal exposure time should
really be different for different parts of a cycle and also

be dependent on NKC, because as NKC increases, (for the same
model) the velocity increases., Further problems arise because
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the amount of light reaching the camera, depends on the number
of particles present (to ‘reflectthe incident light) and also
on the exposure time; the longer the exposure time the more
light will reach the film. In order to establish the 'best':
exposure times and particle density, intial tests using still
photography were conducted. These tests revealed the

optimum exposure settings and the variation of this with the
incident velocity. The exposure time was kept constant
throughout a.cycle, for the still shots; this had the advantage
that by comparing different-photdgraphs during a cycie and
examining the streak lengths immediate comparisons of the
velocities could be made. It should be noted that the 'best'
exposure time also depended on the nature of the wake. When
large vortices are present, ie, with strong circulation and
hence high velocities, a shorter exposure time was used, as
compared with cases where, for the same incident velocity
weaker vortices were present. The ciné films weére shot at

12 frames per second and this-obviously‘sef a limit on the
longest exposure time. After carrying out initial tests with
the cin€ film also, it was decided from the exposure range
limitation and other factors mentioned above to 'shoot the films
for all the models and at all values of NKC with a fixed
exposﬁre setting. In a typical sequence therefore, at higher
velocities streaks are present, and the lengths of these are
proportional to the velocity, whereas at lower velocities the
particles appear as dots. Analysis was pessible by projecting
the cin€ film slowly or by examining each frame individually.
By finding the frame in which the particles far from the

model appeared stationary; the zero velocity position in each
cycle was found; this was used to determine the number of
frames per cycle and the position of each frame during a cycle.
In all the films about 43 frames repesented a cycle. Frame

by frame analysis was also used to determine the movement of
the vortices during a cycle; some of the positions are tabulated
in tables 1-5 of Appendix: 6, and should be particular interest
to mathematical modellers. The positions thus tabulated are
not extremely accurate; one of the main inaccuracies resulting

from difficulties in determining the exact centres of the
N
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vortices, especially when the vortices become weak or when

they are swept back against the body. Further, in order

to get as much detail as possible of the wake interaction,

the field of view of the camera was chosen so as to concentrate
on the region close to the model, and therefore, occasionally
the vortices moved out of view. Nevertheless the positions
tabulated in Appendix: 6 are fairly accurate and certain
comments are also presented to inform likely users of any

inaccuracies or any peculiarities observed..

Throughout this thesis, the velocity of the fluid in
the tank is defined by: U =-U Cos ® , where U, = maximum
velocity,f = 28t/ , and T is the period of ‘oscillations.
Thus in order to get from the zero velocity position, observed
on the ciné filim to the start of the cycle as defined above
a simple correction.was necessary. Defining the zero velogity
position as that position when the flow was about to go from
the left to the right, and denoting velocity in this direction
as positive, this means that the zero velocity position
corresponds to t/T = 0.25. Successive frames therefore
corresponded to t/T = 0.25 + (n/43), where n is the number of -
frames after the zero velocity frame and 43 is the number
of frames per cycle. In figure 5.1 the notation is specified
and a sketch of the velocity variation, together with the
frame number at certain positions is presented. The relation
between the frame number and t/qp is given in the tables '
presented in Appendix: 6.

5.3 THE CIRCULAR CYLINDER

The circular cylinder used during flow visualisation
was the same as that used for force measurements, i.e. made
of perspex, thus smooth and with a diameter of 1.56" (3.96 cm)
giving a ﬁ value of 451. The flow was observed to follow
certain distinct patterns, which were dependent on the
Keulegan and Carpenter number. These patterns were not
defined by any strict values of NKC, however between certain
ranges of NKC one particular pattern was most likely to
develop. -
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SYMMETRICAL REGION: NKC < 4

In this region the flow around the cylinder is just
beginning to develop; the velocity and the Reynolds number
are both very low (the maximum Re No.=1800) and the
boundary layer appears laminar. The exact separation point
and its movement throughout a cycle could not accurately be
determined but for most of the cycle, in particular when the
velocity approaches maximum, the flow separates approximately
in the 90° region., A pair of weak vortices are formed
symmetrically, one on either side of the cylinder; as the flow
decelerates they remain very close to the cylinder, then just
as the flow reverses they begin to move back over the cylinder.
The recirculating flow within the vortices moves fairly
rapidly over the cylinder generating vorticity of opposite
sign which then goes into the formation of another pair of
weak vortices on the other side of the cylinder. Throughout
this region no interaction between the vortices was observed.
This process is sketched iﬁ : fiéure 5.2a., Although
a symmetrical pair of vortices were observed in this region,
it is possible to have some asymmetry at NKC say about 3.0,
or on the other hand, a symmetric pair of growing vortices at
NKC say of 5 is possible though not very likely and depends
on the history of the motion. '

ASYMMETRICAL REGION: 8> NKC > 4

Now the separated shear layers begin to interact and one
vortex begins to grow quicker and stronger than the other,
but no shedding occurs. The history of the motion determines
which vortex grows larger, but if the top one grows on the
left hand side of the cylinder, then as tﬁe flow reverses the
bottom vortex will dominate. A typical sequence of events
during this region is sketched in figure 5.2b, where at t/Tzso,
Ll is the dominant vortex. As the flow reverses L2 moves
back over the top of the cylinder, creating as it does vorticity
of opposite sign which first cancels out L2 and then goes into
the formation of new vortex Rl. In the meantime L1 is squashed
against the cylinder and high velocities are generated in this
region. Most of the vorticity in L1 is lost through
cancellation by vorticity of oppééite sign created by the
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passage of Ll very close to the cylinder. This vorticity

(of sign opposite to that contained in Ll), not only cancels
some of L1 but also goes into the formation of a weak
secondary vortex, which together with L1 convect away quite
rapidly due to the velocity they induce on each other.

However while moving away they also cancel out each other and
very soon both decay. As the flow develops further Rl grows
quite large and another smaller vortex R2 also begins to Qrow
from the lower surface. As the flow reverses Rl (like L1 in
the half cycle before) is squashed against the top of the -
cylinder and loses some of its vorticity again by cancellation
with opposite signed vorticity created by the high velocity
fluid moving back over the top of the cylinder. As before,
this opposite signed vorticity also forms a weak secondary
vortex, which together with a much weaker Rl convect away quite
rapidly, decaying as the do.R2 on the other hand moves under
the cylinder, losing all of its vorticity, and as the flow .
develops further another vortex L1'forms and grows gquite
rapidly. A weaker vortex L2' is also formed at the top of the
cylinder and the pattern then repeats itself., During this region
the separation positions varies almost constantly throughout
the cycle. Towards the upper limit of this ranges, i.e. as
NKC approaches a value of about 8, the larger vortices formed
during each half cycle are almost shed. When these vortices
are shed a different flow pattern is set up.

SIDEWAYS VORTEX STREET: 15>NKC > 8

This pattern is very unusual, with a series of vortices
alternating in sign going off more or less vertically above
or below the model; for this reason this fegime has been
termed the sidewajs vortex street. Strictly, a vortex street
is not formed, but instead during each half cycle a vortex
of different sign is formed and convects away from the
cylinder. Whether the vortices go off to the top or the
bottom depends on the history of the motion. However when
"this pattern is set up, one is quite likely to observe a
switching from vortices going to the top to vortices going

{ to thebottom or vice versa. On this, the circular cylinder
.the ability of the flow pattern to switch undoubiedlylinks
in with the arbitrariness of the separation points. 2



typical sequence during a cycle is sketched in figure 5.2c,
where the vortices are shown moving off to the top of the
cylinder. At about t/T=‘O, two previously shed vortices,

‘A (shed a half cycle earlier) and B (just shed) together

with two growing vortices L1 and L2 are present. B remains
fairly close to the cylinder and induces the shear layer

from the lower surface to curve upwards, thus assisting in
thegrowth of L1 while inhibiting L2, - As the flow is about

to reverse, B starts moving to the right and L1 is pressed
against the cylinder, but the high velocities induced by the
presence of B, moves most of L1 around to the top of the
cylinder. The movement of L1 over the top of the cylinder
creates more vorticity of the same sign of L1, thus this
vortex is strengthened and as the flow progresses L1l is soon
shed. During this time L2 also moves back over the cylindei‘
but is cancelled out by vorticity of opposite sign caused by
this movement over the cylinder. Part of L1 also goes under

the cylinder but this too is cancelled out. In the meanwhile

A and B, being of opposite sign are interacting and slowly
diffusing moving more or less slowly away from the cylinder.
After L1 is shed, it remains close to the cylinder and again
the shear layer from the lower surface of the c¢ylinder is pulled
across resulting in some assistance to the growth of Rl while
R2 is again inhibited. As the flow reverses at t/T25 0.75

most of Rl is pulled over the top of the cylinder, where its
growth is accelerated and it is soon shed. Thus the development
during each half cycle is similar with one vortex being shed
-‘'soon after it goes over the top of the cylinder. 1In each

half cycle therefore a vortex of different sign is shed and
slowly goes off to the top. However only the last two vortices
shed are of any signigicant strength as others previously

shed soon lose their circulation by cancellation with others

of copposite sign and by slowly diffusing. In figure 5.3a a
still photograph, at t/Tss 0.7 for NKC = 11.0 is presented to
show this behaviour. Here the vortices are again moving off

to the top; note that there is little activity on the lower
half of the picture. Here again, as can be seen in figure 5.3a
the separation points are different on the upper and lower
surfaces and definitely not at thé 90° point., It is probably
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the fixing of the separation position at 90° which result
in Stansby (1977, 1978) predicting vortex positions that are
totally different to those observed here.

"CYCLIC REGION: 25> NKC>15

In this region thevortices appear to rotate about the
body, with the direction of rotation again depending on the
history of the motion. Figure 5.2d shows a sequence of sketches
illustrating this effect; here the rotation is shown an;i- ’
clockwise. Between t/Tz‘O.O and 0.1, vortex L1 is shed and
remains in the lower half of the flow; this vortex encourages
L2 to grow very close to the cylinder. At about t/T:v 0.25,
the velocity of L1 induced on L2 causes the latter to become
squashed against the cylinder, with some of the vorticity from
L2 going under the cylinder. As the flow reverses; most of
L2 and Ll goes under the cylinder and as the flow progresses
they move rapidly away from the cylinder. The rest of L2
moves back over the top: of the cylinder and is cancelled out
in the process. A new vortex, Rl is formed on the top surface
as Ll and L2 move away from the cylinder and decays, L2
decaying before L1. R] is soon shed and remains in the upper
half of the flow, where it induces a velocity on the growing
vortex R2 and pulls it slightly upwards and close to the
cylinder. As the flow reverses R2 is first squashed against
the cylinder then as the flow develops, both R2 and Rl go over
the top of the cylinder and again depart rapidly. As they
depart a new vortex L1' forms at the lower half of the cylinder,

-this is soon shed and the process is repeated. This behaviour
is shown in figure 5.3b, where for NKCx 17, and at t/Tﬁ=O.75,
a pair of vortices is about to go under the cylinder; here the
rotation is clockwise. For anti-clockwise rotation, as in the
sketches in figure 5.2d, the vortex positions, for NKC=20.42,
are presented in table: 1 of Appendix:6. These positions are
also plotted in figure 5.4, with the appropriate notation in
figure 5.1. Here again it would be unwise to use fixed
separation points to model this behaviour, as the separation
.points vary substantially during a cycle.
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PSEUDO - KARMAN STREET: NKC > 25

As the amplitude of oscillation, and hence for the same
body, the Keulegan and Carpenter number increases, the wake
becomes more fully developed with a number of vortices being
shed during each half cycle. The actual number of vortices
shed depends on the value of NKC, and increases with it. 1In
this region of NKC the wake therefore bears some resemblance
to a Karman vortex street with vortices of opposite signs
being shed alternately from the top and bottom of the |
cylinder. As the flow is about to reverse, the vortices are
squashed together and become distorted; they also interact
with each other,thus as the flow reverses the incident flow
contains vorticity in the form of small eddies. Here however
there is only 1itf1e evidence of any three dimensional
motion, The last vortex shed and the dominant growing one
during each half cycle are usually swept back past the
cylinder as distinct vortices but these soon interact and decay.
Figure 5.3c shows the wake of the cylinder at t/T=50.7 for
NKC = 52.9, to be composed of several distinct vortices,
which are just starting to get squashed together., At this
stage these vortices still retain most of their circulation
but as mentioned above, the definite vortex structure soon

breaks down into smaller eddies.as the flow is about to reverse.
5.4 THE FLAT PLATES

As with the circular cylinder, flat plates in oscillatory
flow tend to exhibit certain flow patterns which varied with
the Keulegan and Carpenter number. Here, however, for most
of the range of NKC, the flow was dominated by larger vortices,
than those observed on the circular cylinder. These patterns
again fall into several regimes classified below,

SYMMETRIC REGION: NKC<3

At these very low values of NKC, the flow is barely
developed; the separating shear layers roll up symmetrically
at both edges to form very weak vortices. No interaction

between the opposing shear layers -takes place, thus each edge
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acts independently. As the flow reverses, the fluid in the
recirculating region darts over to the other side where it
again separates and rolls up weakly to form another pair of
vortices. This process is sketched in figure 5.5a. Here
again the boundaries defining these regions are not strict,
so it is possible to have a symmetric pair of vortices
forming at say NKC= 4.

ASYMMETRIC REGION: 7> NKC?> 4

In this region the separated shear layers emanating from
the opposite edges of the plate begin to interéct, resulting
in one vortex growing quicker and larger than the other, but
is not shed. This process is sketched in figure 5.5b, where
the top vortex is shown as the larger; as before the history
of the motion determines which vortex dominates. At t/Ta=O,
two vortices L1 and L2 are present, L1 being the larger and
occupies more than half of the plate at about NKC say of 6.
As the flow reverses direction some of L1 and L2 goes under
the plate and as the velocity increases they emerge in the form
of a disturbance which appears as a weak jet. The rehainder
of Ll goes over the top and appears to be cancelled out, and
a new vortex Rl begins to form at the top edge. As the flow
develops further, the disturbance produced by L1 and L2 going
under the plate dies out, and a new vortex R2 starts to form
at the lower edge. The flow reverses again and part of Rl
together with R2 moves under the plate and one more emerges
as a weak jet of fluid. The remaining part of Rl goes over
the top and is cancelled out by vorticity of opposite sign
"which concentrates in a new vortex L1l'., This pattern then
repeats itself as L1' grows larger and andther smaller
vortex L2' begins to form. Thus, in this regime a disturbance
is produced in the lower half of the flow everytime the flow

reverses.

CYCLIC REGION: 25> NKC>» 7

’

For NKC just greater than about 7, a cyclic region,
simila; to that observed on the circular cylinder is set up.
This pattern is extremely stable and once set up will continue
for hours. As with the circular cylinder the vortices tend to
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' rotate around the plate, with the direction of rotation
depending on the starting conditions, Unlike the circular
cylinder, however, very strong vortices, sometime occupying
the width of the plate, are formed. It appears that a
necessary prerequisite for this motion to develop is that at
least one vortex must be fully developed or shed during each
half cycle. At the upper limit of this region two vortices
are shed during each half cycle, and the pattern begins to
break down. A typical sequence, say at NKC of about 15, with
one vortex shed during each half cycle is sketched in figure
5.5c; here the rotation is clockwise. This region is a
natural extension of the asymmetric region where at t/Tﬁﬁo,
the vortex Ll is shed. This vortex induces a velocity on the
growing vortex L2 which moves slightly upwards and close to
the plate; L1 also moves slightly upwards, but to the left
after being shed. As the flow comes to rest at t/T==O.25/
L1 moves slightly upwards and to the right; the very large
velocities induced by this on L2 results in it being squashed
against the plate with some of it going over the top. As the
flow develops further, between t/T=-0.25, and 0.3, L2 is
squashed even closer to the plate and more of it goes over
the top where it is enhanced by vorticity of the same sign.
This vorticity seems to concentrate in a secondary vortex RO
which is quickly shed and together with L1, they depart
rapidly away from the plate. Vortex RO, appears to be formed
by some of the vorticity from L2, and also by the separating
shear layer at the top edge which results from the high
velocities caused by the presence of Ll. As L1 and RO move
away towards the top right hand segment of the flow, a new

" vortex Rl forms at the lower edge. By abgut t/T==O.5 Rl is’
just shed and another vortex R2 grows quite close to the plate
under the influence of Rl; at this time L1 and RO have almost
decayed. .Between t/T2=0.6 and 0.7, the shed vortex Rl moves
slightly to the right and downwards, pulling R2 slightly
downwards as it does so; R2 remains in this position until
about t/T2‘0.75. At this time Rl moves further downwards and
slightly to the left, and R2 is squashed against the plate.
As in the previous half cycle some transfer of vorticity from
R2 to LO takes place, and the latter is quickly shed, and pairs
. off with Rl to move quickly away from the plate as the flow
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develops. Further development leads to the formation of two
new vortices L1' and L2', with the former being shed and the
pattern repeated. In figures 5.6a to 5.6e a sequence of
photographs are presented to demonstrate this behaviour, with
the rotation clockwise and at NKC = 14.8., Rotation in the
anti-clockwise direction and at NKC=8.0, is shown in figures
5.7a and 5.7b. Figures 5.6 and 5.7 were obtained for the
larger flat plate, (ﬂ = 1685.8) because the larger vortices
were easier to photograph; similar patterns were observed for
the smaller plate (f = 421.5). By analysing each frame of the
c iné film, the vortex positions during this cyclic‘region were
obtained for a few values of NKC, these positions are presented
in tables 2-4 of Appendix: 6. Figures 5.8a and 5.8b show
plots of these vortex positions for the larger flat plate

(A = 1685.8) at NKC=15.13, rotating anti-clockwise and for
the 1.5" diameter plate (/6 = 421.5), at NKC=15.2, rotating
clockwise.

Although the flow pattern throughout the range of NKC in
this region is basically the same, small &ifferences do occur
at the upper and lower limits. At smaller values of NKC say
about 7 or 8, vortex L1 is just shed or about to be shed, and
L2 is not quite so strong. As the flow reverses, some of L2
besides going over the top, goes under the plate and is
cancelled out; the vortex RO is then usually much weaker. A
similar behaviour occurs in the next half cycle, so the 'pairing
off', of the vortices are much weaker. Towards the upper limit
of this region, NKC say about 22, L2 is very strong and a third
vortex starts to form at the top edge. As the flow reverses
Ll and RO 'pairs off' and moves away, except that now they are
quickly followed by another weaker vortex of the same sign as
RO. A similar behaviour is observed during the next half cycle.
Finally, as NKC increases the angle at which the pair of vortices
depart becomes less steep and approaches the horizontal plane.
As NKC approaches a value of about 25, L2 and R2 almost shed;
when L2 and R2 are shed the rotation continues for a little

while longer, then the pattern becomes unstable.
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PSEUDO - KARMAN STREET: NKC > 25

As with the circular cylinder, at the higher values of
NKC the wake is much more fully developed, with vortices of
opposite signs being shed alternately from the top and bottom
edges. The wake again resembles a Karman vortex street,
however as the flow reverses the vortices are squashed
together and the strain field makes them become elliptical:
before finally breaking down into smallerLgao dimensional
eddies. Thus the incident flow in the subsequent half cycle
ini%?lly contains some vorticity of the previous half cycle.
It should however be noted that during each half cycle,
usually the last vortex shed and the dominant growing one
retain most of their vorticity just as the flow reverses,
but as the flow reverses and develops these soon decay.

5.5 THE DIAMOND SECTION

The flow about this section also exhibited certain
distinct flow patterns with fairly stong vortices being
formed. These patterns were very stable once set up and
here again depended on the Keulegan and Carpenter number. These
results were obtained for alé value of 423.

SYMMETRIC REGION NKC < 4

At very low values of NKC, a pair of vortices were observed
to grow symmetrically from the edges B and D of the model, as
sketched in figure 5.9a. The flow remains attached on the
faces BC and CD, but separates from the edges B and D to form
rather weak vortices. As the flow reverces, the fluid in the
circulating ;egion moves back over the model and again separates
from the edges B and D, forming a new pair of weak vortices.

The shear layers from the opposite edges of the model do not
interact at this stage.

ASYMMETRIC REGION: 8 >NKC > 4

In this region, the shear layers from the opposite edges
of thg model interact and a pair of vortices grow asymmetrically
from the edges, as sketched in fiqure 5.9b. At t/Tﬁ’O, vortex
Ll is the larger of the two vortices, but at this stage is not
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yet shed. As the flow reverses, both vortices move back over
.the edges from which they were formed; the recirculating flow
in the smaller vortex L2 moves rapidly over the edge D and a
new vortex Rl begins to grow. During this time, the larger
vortex Ll moves quickly over the face AB, and the passage of
thisresults in the formation of a weak secondary vortex RO,

of sign opposite to L1l. RO and L1, now much weaker due to
cancellation by vorticity of opposite sign created as it

moved over the face AB, then depart rapidly away from the model
as a weak vortex pair, and soon decays. Note that it is some
of the vorticity formed as L1 moves over AB that also goes

into the formation of RO. As the flow develops further Rl
grows larger and a new vortex R2 forms at edge B, When the
flow reverses R2 goes over the top and a new vortex L1' starts
to form. Meanwhile Rl moves back along the face CD, losing
some of its vorticity as it does so, but inducing high enough
velocites along CD to result in the creation of enough
vorticity which goes into the formation of another weak secondary
vortex LO. These two vortices IO, and a much weaker Rl then
convect away under the velocity they induce on each other
quitei?ﬁpidly, but soon decay. Further development of the

flow leads to the growth of L1' and the formation of L2' at

D which then behave as before. Towards the upper limit of this
region, L2 and R2 become larger; as the flow revefses these
vortices then move back over their respective edges and secondary
vortices are formed at both edges.

'SIDEWAYS' VORTEX STREET: 17> NKC> 8

The 'sideways' vortex street observed on the circular
cylinder was also observed here, except that the vortices were
stronger. This pattern was the most stable pattern observed
on this section and unlike the circular cylinder, once set up,
it remained in this configuration. Here again, whether
the vortices go off towards the top or thebottom of the model,
depends on the starting coridition. This process is sketched
in figure 5.9c, where the vortices are shown moving off to the
top of the model. The flow development in this region is
much the same as that described for the similar region on the
'circular cylinder., Here however the larger of the growing
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vortices during each half cylce interact with the edges A and
C. At t/T=-0 two previously shed vortices, R (shed during the
previous half cycle) and LO (just shed), together with the
growing vortices L1 and L2 are present. Some of the
recirculating flow in L1 is incident on A as the flow decelerates.
As the flow decelerapes to about t/T=v 0.2, LO pulls L1 across,
and L2 moves back over the edge B where it is cancelled out.
Further development of the flow leads to the transfer of
vorticity from L1 to RO which grows rapidly and is soon shed.
At this time L1 is pressed close to the model and the fluid
that was incident on edge A moves along AD to form a new
vortex Rl. During this time LO moves more or less in a
direction parallel to AB and R moves slightly upwards, but

R is rather weak by about t/T==0.5. At this stage RO is still
very close to the body and pulls up the shear layer from D,
thus Rl moves slightly upwards. As the flow develops further
RO moves more to the right and slightly upwards, pulling Rl
upwards as it does so; at this time also a new vortex R2
begins to form at edge B. As the flow reverses most of Rl
goes over the top resulting in the formation of LO' and RO
moves upwards and to the left. The reciruclating flow in R1,
that was incident on C as Rl was pressed against the model,
then travels along the edge CD to form a new vortex Ll1l'. As
the flow progresses LO' is shed and L1' grows quite large,

and the patternis repeated. Figure 5.10a demonstrates this
behaviour, again with the vortices moving off to the top of
the model, at t/Tﬁ=O.68 for a value of NKC= 13,61, 1In table

5 of Appendix: 6, the vortex positions during a cycle of
motion, in this region are presented for NKC=15.18; these
positions are also plotted in figure 5.11. It should be added
that in this region, when the shed vortices move they appear
to roll on each other, thus interacting and cancelling out
eventually; the dominant vortices are therefore the growing
ones and the last two shed.

CYCLIC REGION: 25> NKC> 17

In this region the rotation of the vortices around the
body similar to that found with the plates and the circular
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cylinders was observed. Here however the vortices were

weaker than those formed on the plate, and again some
interaction between the vortices and edges A and C was observed.
A typical sequence of events is as sketched in figure 5.9d
where at t/Tﬁ=0.l, L1 is shed and the growing vortex L2
interacts with edge A, As the flow reverses Ll pulls most

of L2 under the model and these rapidly depart; in the meantime
the remaining part of L2 goes over the top and is cancelled

out. A new vortex Rl forms at edge B and by about t/T==O.5,

Ll and L2 have moved some distance from the model; at this

time also another vortex R2 forms at edge D. Further development
of the flow leads to the shedding of Rl and the interaction
between edge C and R2. As the flow reverses Rl and R2 then

go over the top of the model and move quickly away. The
pattern repeats itself as a new pair of vortices L1' and L2'
forms. As with the flat plates, towards the upper limit of
this regime as L1 and L2 move away from the cylinder, they

are quickly followed by a weaker vortex formed by the higher
velocities at edge D caused by the passage of L1 and L2. A
similar effect occurs during the subsequent half cycle.

PSEUDO - KARMAN STREET: NKC > 25

As NKC approaches a value of about 25, two vortices are
shed during each half cycle and the cyclic rotation breaks
down. For larger values of NKC more vortices are shed )
alternately from either side of the model; the wake then resembles
a Karman vortex street. In figure 5.10b, for NKC=52.1 at
t/Tz 0.25, the wake is shown to be composed of several distinct
vortices. These vortices, as with the flat plates and
circular cylinder are squashed together as the flow is about to
reverse and so become very distorted before finally breaking
down into smaller eddies., As the flow reverses, the model is
therefore exposed to an incident flow containing vorticity from
the previous half cycle. It should be noted that this initial
incident flow appears turbulent, but in fact there is very
little evidence of three-dimensionality. Thus as the flow
reverses only the last shed vortex and the dominant growing
ones retain most of théir vorticity, but these quickly decay

- as the flow develops. ®
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5.6 THE SQUARE SECTION

The flow about this section did not exhibit any distinct
pattern, and the vortices formed were in general quite weak,
Photography of the flow around this section was not very
successful as the weak vortices had very little circulation,
leading to very low velocities in the vortex core. Thus
adequaﬁe steak lines could only‘be achieved with long exposure
times. The patterns observed were a symmetric region for
NKC < 5, an asymmetric region for 25 > NKC > 5, and a pseudo-
Karman street for NKC > 25. The asymmetric region can .

|
however be subdivided into smaller regions where slight
differences appeared.

SYMMETRIC REGION: NKC < 5

The flow development around the model in this region is
as sketched in figure 5.12a, where at about t/Tﬁso, the flow
has separated from edges B and C, resulting in recirculating
fluid on the upper and lower surfaces. As the flow reverses
the recirculating fluid on the upper and lower surfaces moves
back along these faces, creating new vorticity of opposite
sign. This results in weak local disturbances, as the flow
between the recirculating region and the growing vortex along
the upper and lower surfaces departs rapidly (compared with
the ambient velocity, which is almost zero) away from the
model. As the flow develops- further, separation occurs at
the edges A and D as shown; no reattachment of the separated
shear layers takes place, but some interaction between these
and the edges B and C occurs. The flow then develops as in
the previou; half cycle. ' '

ASYMMETRIC REGION 25 > NKC > 5

REGION(1) 12 > NKC>5

. In the lower end of the asymmetric region, sketched as

‘in figure 5.11b, the flow is separated at edges B and C, at
about t/TﬁvO. Here, the shear layers roll up behind the face
AD; a little interaction takes place and results in asymmetrical

N
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growth of a pair of wortices. As the flow reverses the
vortices move back over the model and lose most of their
vorticity, because this movement results in vorticity of
opposite sign being created. These weaker vortices,

together with the recirculating flow on the upper and lower
surfaces, results in quite large velocities in the vicinity

of AB and CD which appears to 'shoot' off just as the flow

has reversed. As the flow develops further, shear layers

from the edges A and D grow slowly and eventually interact
behind the face BC, resulting in the asymmetrical growth of
another pair of vortices. By this time the disturbance caused
earlier by the return of vorticity across the model has died
out. The flow then behaves in a manner similar to that
described for the previous half cycle. It should be noted that,
if during one half cycle the top vortex grows larger than the
bottom, then during the next half cycle the reverse is true.

REGION (2) : 17 > NKC > 12

Within this region (sketched in figure 5.12c), greater
interaction between the shear layers takes place and the
vortices though not completely shed during each half cycle,
are stronger than those formed in the previous region. This
pattern is more or less the same as before except that now,
some of the vorticity contained in the opposite shear layer
is pulled across by the stronger vortex as the flow reverses.
In figure 5.12¢, L1 pulls some of L2 across and over the top
of the model and these two vortices convect away quite rapidly
from the model, but soon break down into smaller scale eddies
which decay shortly. On the lower surface, a similar
behaviour is observed with the remaining part of L2 pairing
of with a weaker vortex formed by the passage of L2 under the
model., The following half cycle is similar except that the
vortex formed at the lower edge, Rl, is now the stronger of
the two growing vortices.

REGION (3) : 25 > NKC > 17

This region is the obvious extension to region 2, where
the wake is more developed and at least one vortex is completely
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shed during each half cycle. This pattern is much the same

as that described above, as can be seen in figure 5.124.

The main difference is that now, as the flow reverses the
"palring of vortices is more clearly evident, but here again
these also very soon lose their distinct structure and break
down into smaller eddies. The flow is thus more locally
disturbed than before. This behaviour occurs on both the

upper and lower surfaces, but as figure 5.12d shows, the surface
with the larger vortex results in a more disturbed flow near
that surface. Towards the ﬁpper NKC limit of this region a
second vortex is about to shed during each half cycle, and the
interaction between the model and the wake as the flow reverses
is stronger leading to flow which is even more disturbed
locally. In other words there is more evidence of smaller
scale eddies in the vicinity of the model; in addition at
the upper limit of this region there is also some evidence of
three dimensionality in the wake, This appears in the form
of a few weak eddies, i.e. the wake is becoming turbulent but
with very low intensity in the spanwise direction of the model.

PSEUDO - KARMAN STREET: NKC > 25

As NKC increases beyond about 25, the wake becomes more
developed and a number of vortices of different sign are shed
alternately from opposite edges of the model during each half
cycle. The wake then resembles the usual Karman vortex street.
Here again, the number of vortices formed and shed depends on
the Keulegan and Carpenter number, and increases with it. As
the flow is about to reverse, the velocity field induced by
the vortices on each other causes them to be squashed together
resulting in considerable distortion of these vortices. As
the flow reverses most of the vortices bkreak down under this
unfavourable strain field . = resulting in smaller eddies,

The flow is very disturbed during the initial motion in the
reversed flow direction and there is evidence of some three
dimensional motion, Thus in this region of NKC, the wake
interaction with the body results in an initially turbulent
incident flow, with apparently high intensities in the
vertical plane, but a somewhat weaker intensity in the



112

horizontal plane (i.e. in the spanwise or axial direction of
the model). A typical flow pattern at large NKC is presented
in figure 5.13, with figure 5:13a representing the flow at
t/Tﬁ*O.lS, while figure 5.13b shows the pattern at t/,= 0.3,
the Keulegan and Carpenter number was 60.72.

5.7 CONCLUSIONS

These flow visualisation studies revealed the presence
of large discrete vortices throughout most of the range of
NKC, except on the square section. The square section proved
to be a unique body, as here the presence of an afterbody
delayed the separated shear layers from interacting and the
vortices formed were therefore weaker. On the remaining
sections much larger vortices were formed, particularly on
the flat plate. These vortices set up certain distinct
motions which are in general similar on these three models.
On all the models for NKC less than about 4, the pattern is
very similar with the flow being more or less symmetric. At
larger values o§ NKC, say above about 25, the pattern on all
the sections are again similar; here the wake has had time to
develop during each half cycle and a series of vortices of
opposite signs are.formed, thus resémbling a Karman vortex
street. For NKC between about 4 and 8 the flow past the three
sections, namely the circular cylinder, flat plate and
d;amond are similar with large vortices being formed but
not shed; instead they remain close to the sections. For NKC
between about 8 and 15, the flow past the circular cylinder
and diamond section are similar and set up a pattern termed
a sideways vortex street. In this regime .the vortices tend
to go either above or below the body, but this pattern was
observed only on these two sections. For NKC above about 15,
the pattern on all three sections are again similar, and the
vortices set up a cyclic motion about the sections. This regime "
is the most dominant on the flat plate and occurs for a wide
range of NKC, from about 8 to 25. Finally, on all the
sections the strongest vortices were formed during the cyclic
region; in other words, for a given section (except on the
square ), when the strongest vortices are formed they set
up a cyclic motion around the section.
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CHAPTER: 6
- DISCUSSION

6.1 IN-LINE FORCE

In Chapter: 4 results of measurements of the in-line .
force on the four sections tested, i.e. a circular cylinder,
flat plate, diamond section and square section, were
presented using three different methods of describing the
force. Of these methods of representing the in-line force,
namely:=- in terms of a drag and an inertia coefficient
obtained through the use of Morison's equation, in terms of
the root mean square of the force, and lastly in terms of
the maximum force and its phase, the first method is the most
widely used and thus results obtained using this method are
discussed first,

Using Morison's equation therefore to represent the
in-line force, results in values of fhe inertia coefficient
(Cm), which tend to the potential or attached flow value as
NKC tends to zero,- for all the sections tested. This is
demonstrated in figure 6.1, where the variation of Cm with
NKC is shown for the four sections tested. It should however
be noted that the potential flow value of Ch for the flat-
plate was taken as 1.2 instead of the usual value of 1.0.

This was done to take account of the finite thickness of

the plate used in these experiments; i.e. in this case the
flat plate was assumed to experience an additional force,

the Froude Krylov force due to the pressure gradient that
existed in the fluid in the absence of the body. Further,

the forces on all the sections were yjondimensionalised using
the maximum transverse dimension of these bodies, and the
inertia coefficents were based on the volume of a hypothetical
circular cylinder of diameter equal to this transverse
dimension. Thus, the relevant dimension for the square section
was the length of a face, whereas the length of the diagonal

was used for the diamond section. This then resulted in the
N



gotential flow value of the inertia coefficent for the sguare

section (2.78) being twice that on the diamond section (1.39).

%As figure 6.1 shows, by about NKC=5, the inertia
coefficients on all the sections tested, gradually approach
theif corresponding potential flow values. This is expected
for'fhe circular cylinder and square section because flow
visualisation reveals the tendency towards an attached flow
situation as NKC is decreased beyond about 5. On the flat
plates and diamond section however at NKC =~ 5, and at lower
values of NKC large areas of separated flow are visible together
with weak symmetrical vortices, i.e. the flow does not appear
to approach towards an attached flow situation. It is therefore
surprising that figure 6.1 shows that at NKC = 5, the inertia
60¢fficients should closely approach the potential flow values,
on’'these two sections. Obviously as NKC becomes ektremely
smali, the vortex strengths must tend to zero and the potential
f}qw result will be obtained. Evidently therefore for NKC = 5,
6nfthe flat plates and diamond section the large area of
$eéparated flow and the weak vortices do not significantly
contribute towards the acceleration dependent forces. On these
two sections however the vortices present and the large
séparated flow do give rise to a drag which as figure 6.2 shows
Tesults in very large drag coefficients, whereas on the square
éection and circular cylinder the tendency towards attached
flow leads to a much smaller drag force.

f. Returning to the variation of the inertia coefficient
fwith NKC for the sections tested, figure 6.1 shows that on all
these sections good correlation with NKC is obtained. Further
.With the exception of the square section, the result on all
'€pe sections show similar trends with NKC; in particular for
' NKC between 10 and 20 they all experience a minimum in Cm.
tﬁe results for the square section on the other hand are almost’
. constant at the potential flow value for NKC less than about
' 25, and then gradually decreases as NKC increases beyond this.
This difference between results obtained on the square section
and those obtained on the reﬁaining sections are associated

with differences in flow patterns as described in Chapter: 5.

N
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For the cylinder, flat plates, and diamond section, throughout
the entire range of NKC, (with the exception of small values
of NKC, say < 5), the wake is composed of rather large
distinct vortices, and in particular for NKC in the region of
.15, these vortices are very strong and set up clearly defined
motions around the body. The considerable vortex activity,
associated with the growth and motion of these vortices results
in the flow pattern, and particularly the wake, varying '
considerably during a cycle as described in Chapter: 5. This
variation in wake characteristics, for values of NKC in the
region of 15 results in the minima in inertia coefficients
observed on the circular cylinder, diamond section and flat
plate. The square section, on the other hand dosnot produce
any distinct vortex structure for NKC less than about 25.
Vortices do form, but as described in Chapter: 5 they are weak
and do not go into any clearly defined motions about the body;
instead they interact with each other and with the body and
soon decay. On the square section therefore, dramatic changes
in the wake do not take place, as the long afterbody (i.e.

the upper and lower surfaces) cause some delay in interaction
between the separated shear layers, (often with some partial
reattachment or at least interference by the rear edges) and
produces only weak vortices., The result is therefore to
produce an inertia coefficient which is almost constant at

its potential flow value even for NKC of up to about 25.

The minima in the inertia coefficients of the other three
sections are such that in some cases they represent values of
the added mass coefficient on these sections which are negative.
The concept of an added mass arises from the fact that when a
body is immersed in an unsteady flow, it locally disturbs
the flow and results in increased fluid accelerations which
causes the body to experience an extra force. This extra
force is then conveniently expressed as being equivalent to
an extra or added mass, which experiences the undisturbed fluid
acceleration. The notion of negative added mass .is therefore
not a physical reality, and arises because the growth and
motion of the vortices in this region alter the phase of the
force. The fact that a shift in the phase of the force could
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result in an exchange between inertia and drag is demonstrated
in Appendix: 2. In this region where negative added masses
were obtained, the strong vortex activity results in rapid
changes in the velocity and accelerations in the vicinity

of the body during a cycle, thus the added mass strictly as
defined should be a time dependent quantity. This fact that
the added mass from a strict interpretation of the definition,
should vary during a cycle was noted by Keulegan and Carpenter
(1958) , but was absorbed into the variation of Cm' However
although they derived time dependent solutions for Cm' constant
averaged values were presented and here again for NKC in the
region of 15, some of these represent negative added masses.
Time varying added masses were also proposed by McNown and
Keulegan (1959) and more recently by McNown and Learned (1978).
In the latter study, it was suggested that for cases where
vortex activity was particularly strong, representation of the
added mass coefficient by a single fixed quantity can be
misleading; and negative values may be obtained. These results
seem to support this fact, except here the vortex activity

is viewed as causing a shift in the phase,

The behaviour of the inertia coefficients with NKC, for
the circular cylinder, flat plate and diamond section are
therefore associated with changes in the flow pattern, and as
these are similar on the three sections, similar behaviour in
the Cmvariation is obtained. On the square section however,
as mentioned briefly above, no distinct vortex patterns are
observed and as such no dramatic behaviour in the Cm
variation is obtained. The vortices that do form are so weak
that their influence on the in-line force is not very important.
This lack of any distinct vortex structure for values of NKC
less than about 20 is due to the effect of an afterbody; a
consequence of the geometry of this section. As described in
Chapter: 5, the flow separates on the front face of the square;
interaction between the shear layers is therefore prevented
by the presence of the afterbody, and must take place downstream
of the rear face, thus the vortices eventuallv formed are
weaker than those that would have formed say on a flat plate.
This éffect on afterbody in delaying the interaction between

SN
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the separated shear layers has been studied in steady flow by
using splitter plates. Several authors, including Bearman
(1965), Gerrard (1966) and Roshko (1954) have shcwn that by
delaying the interaction between the separated shear layers,
vortex formation can be inhibited leading to a reduced base
suction and hence to a lower drag. The vortex shedding

frequency also drops.

This fact that by delaying the shear layer interaction
results in weaker vortices being formed and a lower drag
being felt is demonstrated in figure 6.2, for the drag on the
square section. Here again by using Morison's equation, the
drag on the four sections was obtained and its variation with
NKC compared in figure 6.2. This plot shows that for NKC
between about 8 and 20, the drag on the square section is lower
than that obtained on any of the other sections, but for NKC
above 20 the smaller wake width on the circular cylinder results
in this section experiencing the lowest drag. The smaller
wake width present on the circular cylinder throughout the
range of NKC, should have resulted in this section experiencing
the smallest drag throughout the range of NKC. However for
NKC between 10 and 20, the large vortices formed on this section
remain close to the cylinder and results in very low base
presures and hence a large drag. It should also be noticed
that for the circular cylinder, the orientation of the vortices
&S, such that the largest drag is experienced in this region
of NKC, i.e. between about 8 and 15, Figure 6.2 also shows
that for NKC greater than about 10, the results on the three
sections, i.e. the circular cylinder, flat plate and diamond,
are similar, with the plate experiencing the highest drag and
the cylinder, the lowest. Further, as is evident in this
figure and as shown also by Bearman, Graham and Singh (1978),
besides béhaving in a similar manner, the drag on these three
sections all tend towards their steady flow value as NKC is
increased, and at NKC = 50, the CD's are only slightly above
their steady flow value at the corresponding Reynolds number
value (subcritical in this case). However tlLe results for
the square section are different to those observed on the
other sections, being more or less constant for NKC less than
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about 20 and increasing slowly but gradually with NKC,

Further, unlike the other sections, at large values of NKC

the drag coefficient on the square is well below its steady,
smooth flow value. As mentioned in Chapter: 5, the wake

of the square section cylinder was noticeably turbulent,

(but with a weaker spanwise intensity than in the other two
directions); this is the most likely reason for the lower

drag at high NKC, as it is well known that in steady flow
turbulence in the free stream reduces the drag on square
section cylinders. It should bé noted that as described in
Chapter: 5, at high values of NKC (in excess of about 30) where
a Karman vortex street was observed, the break down of the
large two dimensional vortices as the flow reversed and
interacted with the body 1l€d generally to very little or no
three dimensionality, except for the square section. On the
square also, in general the scale of turbulence generated seemed
smaller, apparently due to the fact that the vortices formed
were actually smaller, and that considerable small scale

motion was introduced from the recirculating flow on the

upper and lower surfaces. Note also that of the sections
tested, the square section presented the smallest face to the
flow, thus this is also a reason for producing smaller vortices.

Results of studies in steady flow, especially those of
Vickery (1966), and Laneville, Gartshore and Parkinson (1975),
show quite clearly that the square section is very sensitive
to turbulence in the free stream. The presence of free stream
turbulence seems to accelerate the growth of the separated
shear layers, to such an extent that some reattachment, or
at least some interference between the shear layers and the
rear edges takes place, and thus results in a drag coefficient
smaller than that for smooth flow. The other sections are
much less sensitive to free stream turbulence, as discussed
by Bearman (1978), with very little if any effect on the
flat plate. On the diamond section, i.e. a square section at
45° incidence, results again of Vickery (1966) show very 1little
effect of turbulence. The circular cylinder, on the other
hand is sensitive to free stream turbulence, but as the early
. results of Fage and Warsap (1929) show this is only noticable
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for values of the Reynolds number approaching the critical,
as here the main effect is to promote earlier transition in
the shear layers. Returning to figure 6.2, as stated earlier

for NKC above 10 the drag on all the sections with the

exception of the square are all similar, however for NKC < 10,
the drag on the circular cylinder drops and decreases further
as NKC is reduced. This effect is again associated with the
presence of vortices; for NKC greater than about 10 these
vortices are quite large and do exert considerable influence
on the in-line force on the .cylinder, diamond and plate. As
NKC 1is decreased below 10, the effect of vortices on the
circular cylinder is much less, as now they are not very
strong, and do not produce as great a disturbance to the flow.
The force on the cylinder is thérefore more inertia dominated
for NKC less than about 10, whereas on the square section .
inertia plays an important part throughout a large range of
NKC. This fact may be evidenced in figure 6.5 which shows
that as the force becomes more inertia dominated,the phase of
the maximum force approaches 90°. On the circular cylinder
this is observed as quite a rapid variation in phase for

NKC between about 8 and 10, For the square the results are
quite different and show a slow tendency towards inertia
dominance as NKC is decreased. The results for the drag
coefficient of the flat plate and diamond section, however
show an increase in CD as NKC decreases and suggests that for
these sections even at these low values of NKC, the drag

part of the force is still very important. Examination of
figure 6.5 also reveals that the phase of the maximum force
on these sections, even at small values of NKC show no signs.
of tending towards 90°, Thus body geometry clearly has an
effect on the drag coefficient. This effect is associated
with the formation of vortices, which play an important part
even at low values of NKC on the diamond section and flat
plate; on the square and circular cylinder at the low values
of NKC no discernible vortices are formed and the force is
then almost all inertial. The importance of vortex formation
on sharp edged bodies at low values of NKC was also recognised
by Graham (1978) who noted that thiseffect might be important
even in the diffraction regime. -
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Using the second method of representing the in-line
force, i.e. in terms of root mean square force coefficient,
results in values of CFrms which correlate well with NKC
for all-the sections tested, as shown in figure 6.3. Here
it can be seen that throughout the range of NKC the circular
cylinder experiences the lowest force. These results also

show that as NKC increases, C on all the sections tends

Frms
towards a constant value, but as NKC tends to zero CF

rms

becomes very large. This is an unfortunate consequence of
2

nondimensionalising by éyp[%l D, where the presence of

a finite force at small values of NKC leads to very large

values of the coefficient. Figure 6.3 also shows that as

NKC decreases below about 20, CFrms

increases rapidly and for NKC less than about 10, the root

on the square section

mean square force on the square is comparable with that on -
the flat plate. This happens because the inertial force is
very large on the square section, so that although the drag
is small the r.m.s force, composed of the drag and inertia

is still quite large.

Using the third method of describing the. in-line force
i.e in terms of its maximum value and phase, results in
values of Crmax and f.which are plotted in figures 6.4 and
6.5 respectively. This method of description of the force
much favoured by designers, is also very useful in gaining
an insight to the more important features of the flow. The
results for CFmax and é'are in agreement in principle with
the results of other coefficients. Figure 6.4 shows that
throughout the range of NKC, the flat plate experiences the
largest force, and the cylinder, the lowest. Here again the
results for the square section disagree with the trends
observed by the results on the other sections. For NKC < 20
where inertial forces are large on the square section, it
experiences a large maximum force, second only to that on
the flat plate., At larger values of NKC where drag becomes
more important, the maximum force on the square section is
only just greater than that on the cylinder, and this drop
in force is related to the decrease in drag caused by
turbulence, as mentioned above. It is also worth noting that
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.figure 6.4 also shows the strong effect of the vortices on the
cylinder and diamond section in the region of NKC between about
10 and 15 where the flow pattern changes from one flow regime
to another. On the flat plate no change in flow regime takes
place, hence the curve is smooth. Note also that although

the change in flow pattern was clearly reflected in C

Fmax'’
figure 6.3 shows that the r.m.s. is almost unaffected. '

Changes in the flow pattern are also clearly reflected
in the phase of the maximum force as figure 6.5 shows, Also
as mentioned early such a plot gives a clear idea of the
importance of drag and inertia on the various sections and
how this varies with NKC. This figure shows that at about
NKC = 50, the flow past all the sections is drag dominated.
Forthe diamond section, flat plate and circular cylinder,'
figure 6.5 shows that inertia is relatively unimportant
for NKC greater than about 20. This figure also shows that
although the flow past the cylinder and square section is
inertia dominated by about NKC = 5, the flat plate and diamond
section are not. Here also it can be seen that for NKC less
than about 25 inertia is the dominant force on the square
section. o

In the foregoing sections the results presented and
discussed were those obtained from data evQluated on average
cycles of the force. However results were presented in
Chapter 4 to show that the in-line force on all the sections,
when described by any of the three methods discussed above,
is not constant from cycle to cycle. hese results show that,
although whgn recorded on a pen recorder or on an oscilloscope
the force shows only a little variation from cycle to cycle
(figure 4.10 being a typical example), when the force is
represented by coefficients substantial variation from cycle
to cycle is observed. As mentioned in Chapter: 4, some of
this variation particularly at low values of NKC and on the
square section may be due to noise., It should however be
stressed that this variation is definitely not all due to noise,
and at higher values of NKC the signal to noise ratio was
high enough to discount noise as ‘a contributing factor. These
results show that of all the coefficients used to describe the
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force, and on all the sections the variation in the r.m.s is
the least being always less than about % 10% of the average
except for very small values of NKC where some of this
variation is probably due to noise., It is also noticeable that
on all the sections tested the variation is neither the same
for every section, nor is it constant and independent of NKC.
Further, the variation changes with NKC and not always in an
orderly manner, so that during certain ranges of NKC the
variation may be definitely smaller than that observed at
other values of NKC. The most striking example of this is
shown in figure 4.52 to 4.56 for the coefficients on the
diamond section. Here it is quite clear that for NKC between
20 and 25 the variation in all the coefficients is markedly
less; figure 4.56 also shows clearly that the phase of the
maximum force is also quite repeatable and exhibits the least
variation in this range of NKC. This without doubt shows that
this variation is not all due to noise but instead reflects

a genuine behaviour of the force, i.e that it is not as
repeatable as was first thought. Such variation in the in-line
force from cycle to cycle is not at first thought plausible
because the incident flow is extermely repetitive. However
during a cycle vortices formed and possibly shed (depending

on the value of NKC) are swept back against the body where
some cancellation with vorticity of opposite sign takes place.
In any case a complex interaction between the vortices and

the body occurs, and this interaction also affects the strength
and later the motion of the vortices subsequently formed.

Thus in order for the force to be exactly repeatable these
processes, i.e, interacgion between the vortices and the body,
interaction between vortices of opposite éign, the strength
and the motion of the vortices, must all be precisely the

same from cycle to cycle. It is the differences in these
processes, mainly in vortex strength and motion, which result
in changes in the in-line force from cycle to cycle., First
experiments, on the circular cylinder led to the possibility
that a contributing factor may have been the arbitrariness

of the separation point. Though this in another factor, for
the circular cylinder, it is not the important fact as later
~experiments revealed that the force on sharp-edged bodies also
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the variation was most on the flat plate, where the largest
and most dominant vortices were observed. On this section
‘also during flow reversal the most dramatic interaction

with the body took place, and resulted in vortex paths
differing noticeably from cycle to c&cle. These vortex paths
some of which are presented in Chapter: 5 were obtained from
studies of ciné film. Visual observations cannot reveal the
small variation in the vortex paths. These variation in the
vortex strengths and positions, result in changes of the force
which then causes substantial changes in the force coefficients
obtained from Morison's equation, i.e. Cm and Cp. However,
only much smaller variations occur in~cFrmsaS this is more

or less independent of phase changes. This therefore suggests
that the r.m.s. method of representing the in-line force as
proposed by Maull and Milliner (1978a) is possibly a suitable

alternative to Morison's equation.
6.2 MORISON'S EQUATION

The equation proposed by Morison et al (1950) now known
as Morison's equation is widely used in the field of offshore
ehgineering. However some controversy and doubts still exist
-on its applicability and reliability. This equation was
therefore examined by applying it to several body shapes. On
the circular cylinder the work of Sarpkaya (1976) suggests
that Morison's equation does indeed work admirably well
except in the range of NKC between about 10 to 20. On flat
plates however, the early work of Keulegan and Carpenter (1958)
suggests that when applied to such sharp-edged sections
Morison's equation fails to predict the force with any
acceptable degree of accuracy. In this study Morison's
equation was applied to the measured in-line force not only
on a cylinder and plate but also onquuare and on a diamond
section. This application led to values of Ch and Ch which
were then used to predict the force as given by Morison's
equation. The bulk of these results were presented in
Chapter: 4, however in figures 6.1 and 6.2 values of the
~inertia and drag coefficients obtained on the various sections
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are compared. These coefficients, obtained through the use

of Morison's equation are very sensitiVve to changes in the
flow pattern. Apparently, the presence of large vortices
which remain close to the body and interact with it as the
flow reverses, resﬁlts in noticeable changes in the variation
of the force coefficients with NKC. This is especially
noticeable for the Cm variation with NKC, where the presence
of these vortices close to the body result in values of Cm
which can correspond to negative added masses. As discussed
above this is not physically possible, and therefore suggests
a failing of Morison's equation when applied in this manner.
With the absence of any clearly defined vortex structure, as
on the square section, the coefficients then show a gradual
variation with NKC. Representing the force by means of an
inertial and a drag component as determined by Morison's
equation also suffers from the drawback that these coefficients
are very sensitive to changes in the phase of the force, as
shown in Appendix: 2. It has also been shown that even in
this relatively simpler case of planar oscillatory motion,
where the incident flow is without doubt extremely regular and
two dimensional in the far field, the interaction between
vortices and the body and/or with others of opposite sign
results in a slight random variation in the in-line force.
This small variation, shows up quite clearly in Cm and CD as -
these are phase sensitive but only a small variation in Corms
is observed, thus suggesting that this might be a better
method of describing the force.

Using meazured values of the inertia and drag coefficients
in Morison's equation, also yielded the predicted force
variation during a cycle. These results, presented in
Chapter: 4 shows that, as was previously found by Sarpkaya
(1976) , Morison's equation does indeed predict the force on
the circular cylinder remarkably well for values of NKC outside
the range 10 < NKC < 20. In the range of NKC between 10 and
20, the strong vortices present remain in motion close to the
body as described in Chapter: 5. At low values of NKC,
however the flow is almost attached, no vortices of any

significance are formed and the force is almost all inertizal,
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with the maximum force occuring at around 900, and here
figure 4.19%9a shows that Morison's equation works quite well,
As NKC increases the flow is now asymmetric with vortices
"being formed but not shed, the pattern being as shown in
figure 5.2b. 1In this region during each half cycle, one
vortex grows quite large which results in a second maximum in
the force which occurs at about 1800; the real maximum in the
force still occurs at about 90° as shown in figure 4.19b.
However the growth of this vortex results in the predicted
force being wrong at the peaks. As NKC increases further the
vortices grow stronger and the flow pattern changes. The
pattern is now as shown as in figure 5.2c for NKC about 10,
and here these stronger vortices result in a shift of the
maximum force from about 90° to around 180° (note that the
phase of maximum force (& ) is defined as 180° - position of
maximum force) which corresponds to a change in & from about
90° to approximately 0° as can be seen in figure 6.5 for NKC
just below 10. This pattern exists for NKC up to about 15
and during this regime Morison's equation fails to predict
the force accurately because the effect of the voritices is
not propertly accounted for. This behaviour of the vorticies

in this region also accounts for the peak in CFm and in CD '

as tne dramatic change in phase results in an in2§ease in the
drag part of the force and a decrease in the inertial part.
The variation of the measured and predicted force during this
région is given in figures 4.19c and 4.19d; in this region

as can be seen the prediction by Morison's equation is the
poorest being especially bad at NKC = 15, As NKC increases
beyond this a different flow pattemis observed, with the
vortices now tending to rotate around the cylinder as shown

in figure 5.2d. Here the agreement between the predicted
force and Morison's equation begins to improve and by NKC = 20,
quite a good prediction is obtained from Morison's equation.
Apparently, although quite large vortices are present,

because of the configuration and motion about the cylinder no
dramatic instantaneous effects are produced and Morison's
equation therefore works fairly well. As NKC increases beyond
about 20 more vortices are formeq, and by about NKC =~ 25 some

semblance of a vortex street is observed. Here however, and for
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larger values of NKC, Morison's equation predicts the force

very accurately.

On the flat plate however results presented in figures
4.34 and 4.35 show that the force predicted by Morison's
equation is in poor agreement with the measured force for most
of the range of NKC. Figure #.35a shows that even for NKC as
low as 3 the force predicted by Morison's equation is not
very accurate. However for NKC greater than about 20 the
agreement between the measured force and Morison's equation
improves, slowly. By NKC = 50, the agreement is fair but not
as good as that obtained for the cylinder. This lack of agree-
ment between the predicted force and that measured on the flat
plate, is directly attributable to the influence of the stronger
vortices formed on this section on the force, even at low
values of NKC where they result in a large drag. The greatest
influence of these vortices is possibly during flow reversal,
where strong interactions between them and the plate occurs.
For larger values of NKC, say above 20, a number of vortices
are formed and shed (depending on the value of NKC) and the
overall effect on the force is not as dramatic resulting in
a better agreement between the predicted and measured force.

On the diamond section results presented in figure 4.47a
to 4.47h show that here also the predicted force is not very
accurate for NKC less than about 2 5, Even for NKC as low as
4.8,figure 4.57 shows that the presence of growing vortices
results in a poor prediction. As NKC increases the prediction
first becomes wors€, but between NKC = 13 to 16, the prediction
1s quite good; beyond this the prediction again depreciates
and then slowly improves so that by about NKC= 25 and for
larger'values of NKC the prediction is fairly good. Throughout
the range of NKC vortices are formed, but for NKC between about
20 and 10 these are particularly strong and set up clearly
defined motions close to the body. The fact that for NKC = 15,
fairly good agreement is obtained between the measured and
predicted forces is therefore surprising, However this is
justqoihcidentaland occurs because in this region the force
is influenced by a series of vortices, with the pattern as
shown in figures 5.9c¢ and 5.10a. ﬁAs with the other sections,
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it appears that if the cumulative effect of the vortices is
such that a gradual change in the force occurs throughout

a cycle, then Morison's equation works well.

For the sguare section, results presented in figure
S5.71la to 5.71h show that for NKC less than 8 the prediction
starts to improve, but for NKC between about 10 and 30 the
prediction is poor. As NKC increases above about 30 the
prediction gradually improves and by NKC = 50, the predicted
force is in fair agreement with the measured force. 1In the
range of NKC between 10 and 30, although strong dominant
vortices are not present, nevertheless it appears that the
interaction between the body and these wvortices are enough
to result in the poor prediction abserved.

|
!

Thus, it seems that of all the sections, Morison's
equation is more suitbale to the prediction of the force on
the circular cylinder except for value of NKC between about
10 and 20. The reason for this failure has been suggested
by otner workers, e.g. Sarpkaya (1976a) as due to the fact
that Morison's equation contains only odd harmonics and
therefore assumes symmetry in the in-line force. This poor
prediction it is claimed, then results because in this
region (10 <NKC <20) the presence of large vortices close to
the body results in a force which is not symmetrical; the
large error then reflects this asymmetry in the force which
is absent in Morison's equation. It should be noted that since

the values of Cm and C commonly used are constant averaged

’
values, (i.e. obtainederom the first term of equation A3.10
and A3,.11), assumption about the symmetry of the in-line force
does not affect these values. However it has been shown in
Chapter: 4 the poor agreement between Morison's equation and
the measured force is not due to the assumption of symmetry
implied by Morison's equation. This was proved by showing that
the agreement between the predicted and measured forces could
be vastly improved by using values of Cm and CD in Morison's
equation which were not constant, but instead were time
dependent, i.e. varied during a cycle. The expresions for

Cm and CD were therefore modified-to include the third and
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fifth harmonics of the force, (i.e only odd harmonics, so
that the assumption of symmetry was still implied). Using
these value of Cm and CD in Morison's equation resulted in
extremely good agreement between the predicted and measured
force, as seen in figure 4.20. This improvement in prediction
was obtained throughout the range of NKC, on the cylinder
though at larger values of NKC it appeared that better
agreement could be obtained if higher odd harmonics were
included. Therefore, without doubt this shows that the poor
prediction by Morison's equétion is not primarily due to the
fact that it assumes that the force is symmetrical. This is
not really surprising as the measured force, at least when
averaged over a number of cycles shows no signs of gross
asymmetry. One way of looking at the failure of Morison's
equation to predict the force accurately on the circular
cylinder for NKC between about 10 and 20, is that even though
it does contain odd harmonics of the force, these are not

adequately modelled.

On the sharp-edged sections the prediction by Morison's
equation is notably worse with the remainder function
instantaneously attaining values of between 20 - 30% of the
maximum measured force for NKC less than about 25. This is
especially evident on results obtained for the flat plate.

On the circular cylinder, however poor agreement between
Morison's equation and the measured force was obtained only
for a limited range of NKC, say between 10 and 20, and it was
shown that the error was due to incorrect modelling of the
higher odd harmonics in the force. The presence of odd
harmonics is also evident in the remainder function obtained
on the sharp-edged sections, and it would seem that here again
the reason for the poor prediction is due to these not being
properly represented by Morison's equation. Thus, on all the
sections tested poor agreement was not primarily due to the
assumption of symmetry implied in Morison's equation. However
two important questions remain unanswered; firstly, why are
the odd harmonics not properly modelled and secondly why
should the agreement be better on the cylinder. Before these
questions can be answered, Morison's equation must be closely



129

examined. Mcrison's equation was not founded on any firm
theoretical evidence, but instead was a result of empiricism,
where the force was assumed to be equal to the linear
summation of two terms, one in phase with the accelerat<¢om

and the other in phase with the velocity. It should be noted
that for the simpler case of uni-directional accelerat&d.
flow, Sarpkaya and Garrison (1963) showed that, in this case
the force could indeed be represented as suggested by Morison's
equation, i.e. by the summgation of an inertia and a drag term.
No evidence however is available which suggests that for the
relatively more complex case of planar oscillatory flow,

where the acceleration is not just variable but periodic,
Morison's equation might still be applicable. Morison's
equation takes no account of the history of the motion, which
must play an important part as the flow development is
definitely influenced by the previous half cycle. Further this
equation uses constant coefficients averaged over a cycle and
then uses these to artifically introduce some time dependence
into the force. It is therefore remarkable that Morison's
equation should work at all., From the reason above it would
seem that Morison's equation would tend to work better when
the assumptions it“makes becomes valid or at least justified.
These assumptionsg, the most important being that the inertia
and drag coefficients are constant during a cycle, and that
the history effect of the flow can be ignored, would in
pfactice never be fully valid. However when the form of the
wake is not varying dramatically during a cycle, i.e. when the
wake width and the flow pattern around the body does not change
by large amounts, and when the effect of the previous half
cycle is also not expected to be of primary importance, these
assumptions can be made. Thus, for values of NKC where large
vortices are »>resent which interact strongly with the body,
these assumptions will not hold and this explains the poor
prediction by Morison's equation. Strong vortices close to
the body have the effect of producing large variations in the
wake, thus constant alues of Cm and CD will produce errors

in thne predicted force. These vortices, as they are swept
back against the body, also directly affect the growth of the
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vortices and subsequent flow development. Therefore both
assumptions are totally invalid., At low values of NKC, if
the flow tends towards attached flow, as on the circular
cylinder these assumptions are more likely to be plausible,
‘and therefore explains the fair prediction by Morison's
equation of the force on the cylinder in this region. For
the sharp-edged bodies however attached flow is not present
even at low values of NKC, instead vortices though weak are
present, and the interaction as the flow reverses is enough
to render the assumptions invalid and result in poor
prediction. The presence of the sharp edges always causes a
more sudden or violent interaction between the vortices and
the body, but on the circular cylinder the interaction is
more gentle with the vortices allowed to move more easily
across the surface as the flow reverses. It should be
remembered that Morison's equation predicts a force which
gives an average variation during a cycle, and rapid changes
in the force cannot therefore be modelled and result in an
error. On the cylinder therefore the prediction by Morison's
equation is always better than on the sharp-edged sections,
At large values of NKC, a number of vortices are formed and
shed, however altﬁbugh the wake changes rapidly, these
variations argugot large, heré also the effect of the vortices
sweeping backAthe cylinder is limited to only a very small
portion of the cycle. Therefore for very large values of

NKC these assumptions seem to be justified and Morison's
equation again works fairly well. The reason for the poor
prediction by Morison's equation can therefore be summarised
by noting that this equation tries to predict the force which
varies during a cycle, using constant averaged force coefficients
which do not take account of the history of the motion or

the rapid changes in the flow which produce components at
higher frequencies, mainly at odd harmonics of the basic.
Another way of viewing this, is in terms of the frequency
content of the force. Thus, for situations where the form of
the vortices and the. manner in which they interact with the
body are such that higher harmonics of notable energy are
produced, Morisons's equation would not hold.
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6.3 TRANSVERSE FORCE

Following the work of Isaacson and Maull (1976),
Maull and Milliner (1978a) and Sarpkaya (1975,1976a,1976b),
on circular cylinders, it is now well recognised that the
lift force or transverse force is very important on circular
cylinders in waves and oscillatory flow. With this knowledge
in hand, the transverse forces on three of the sections '
namely, the cylinder, diamond and square section, were measured.
These measurements revealed that on all the sections, for most
of the range of NKC lift generation was not the same for every
cycle, but instead occurred in uneven or irregular bursts.
This irregularity in the transverse force data was especially
noticeable for values of NKC abéve 25, for all the sections.
For lower values of NKC (< 25), certain regions exist where-
the irregqularity may cease, and the 1lift is then more'well-
behaved', but still varying from cycle to cycle though by only
smaller amounts. This is clearly seen in figure 4.72c for
NKC =14.20 on the circular cylinders, where 1lift is generated
almost regularly every cycle. On the diamond section, for
NKC less than about 20, the 1lift is generally much more regular
than on the cylinder, however at certain values of NKC irregular
lift generation is observed on this section. The square
section also experiences a lift force which is irregular;
here however this irregularity is observed throughout the entire
range of NKC. The reason for this irregularity in the lift
force can be best understood if the mechanism responsible

for 1lift generation is examined.

Lift forces result from asymmetry in the flow which is
produced by the growth and motion of vortices. However in
oscillating flow, the return of vortices against the body
also plays an important role in 1ift generation. This is
particularly important at values of NKC less than about 20,
where large growing vortices generate substantial lift as
they move back over the body when the flow reverses. At
larger values of NKC, greater than about 25, the flow then
becomes guasi-steady and here lift generation is maily due
to the shedding of a series of vortices which result in the
oscillation of the wake. Irregularity of the 1lift force
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therefore results because of a number of reasons depending on
the Keulegan and Carpenter number range. At low values of

NKC say less than about 8, only weak vortices are formed and
at even lower values of NKC (< 5) sometimes no distinct

vortex pattern is observed. 1In this region therefore irregular-
ity in the 1lift force occurs because during some cycles little
or no vortex structure is formed and therefore little or no
1lift is produced. This is especially noticable on the
circular cylinder and square section, however on the diamond
section, because of the sharp edges distinct vortices are
formed even at low values of NKC. On this section therefore
any irregularity in the lift at low values of NKC is due to
the fact that sometimes the vortices may form almost
symmetrically thus creating little 1lift. At other times,

the vortex from one edge may dominate with more lift being
generated. At the intermediate range of NKC, between about

10 and 20, irregularity in the 1lift is produced because, the
strengths, positions, and the manner in which these stronger
vortices now interact with the body is not the same during
every cycle. It is worth noting that in this range the
strongest vortices appear to be formed, and the interaction
between these and.the body is therefore the strongest during
this region. However the lift in this region, on the diamond
section is generally much more regular because the sharp
edges, tended to dictaﬁe the motion of the vortices as the flow
reversed. These sharp edges were responsible also for flow
patterns which were repeatable (in general) over long periods.,
On the circular cylinder, the arbitrary nature of the
separation point resulted in flow patterns which generally
were not very regular, though the overall motion was more or
less the same., On this section, as the flow reversed the
vortices were free to move either above or below the cylinder
and this produced very irregular 1lift., At certain values of
NKC however, the position and strengths of the vortices were
such that a more regular pattern was produced, as was the case
for NKC = 14.20 as figure 4.72c shows. At this value of

NKC, the vortices induce strong enough velocities on each
other to make the paths of each other more or less fixed.
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On the square section during the intermediate range of NKC,

as described in Chapter: 5, no distinct vortex pattern was
produced, instead vortices formed were weak and even then the
amount of vorticity seemed to vary considerably from cycle

to cycle, thus leading to very irregular 1ift generation.
At.the larger values of NKC where lift is now caused by the
reqular shedding of vortices, 1lift is produced every cycle

but the amount of lift produced varies cohsiderably and
irregularly as figure 4.72, 4.78, and 4.84 shows. Visual
examination of the flow in this region, reveals that precisely
the same conditions do not exist during every cycle. The way
in which the vortices interact with the body as the flow
reverses is not the same during every cycle, and since this
interaction determines how the flow develops then the flow
development is not the same. Further,during certain cycles
noticeably weaker vortices are formed, whereas in some cycles
more vortices may be formed than in others (though the difference
is usually by 1). Therefore a considerable number of variables
are present, and it appears that differences in these processes
result in the cycle to cycle variation in the 1lift. 1In
addition, during certain cycles the growth and motion of the
vortices are such as to favour lift generation (i.e. stronger
vortices with a much smaller cancellation), and the lift is
noticeably large. During other cycles however, weaker vortices
interacting with each other result.- in a much lower 1lift, It
should be remembered that since the sole mechanism responsible
for 1lift generation is the growth and motion of the vortices,
and since these are very sensitive to éhanges in the flow
conditions, then the lift will be very sensitive to small
variations in the flow pattern. The in-line force on the

other hand is not all due to the effect of the vortices, and -
although it does vary from cycle to cycle this variation is
small compared with that on the transverse force.

This irregulatity in lift generation results in the
data being non-stationary. Description of this force was
therefore a problem, as quantities such as r.m.s and maximum
force would be a function of the length of data recorded. It
would seem more suitable to describe the data in a statistical
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manner, however such a description requires a considerable
quantity of data to give fairly accurate results. In this
case, since the data obtained was not applicable, at least

not in a quantitative manner, to any real situation and
because of the large amount of data needed, the time and effort
involved was enormous, the statistical approach was not used.
Instead, using a 100 cycles of data, the root mean square and
the maximum lift force were obtained and these used to describe
the magnitude of this force. Results obtained in this manner

were presented in figures 4.79 and 4.80.
|

For NKC above about 25, figure 4.80 shows that the root
mean square lift force on all three sections appear§to tend
towards constant values. In this region also the results
exhibit very little scatter even though the lift appeared to
be highly irregqular; this therefore suggests that the amount
of data used in the analysis (100 cycles) was a representative
sample. In this region also it appears that the square section
experiences the largest r.m.s force, and the diamond section
the lowest. At first sight this seems odd because the vortices
formed on the square section are the weakest while those on
the diamond are the strongest (of those formed on these three
sections), especially since the growth and motion of vortices
are responsible for the lift. However no contradiction arises;
it is just that the asymmetry caused by the vortices acts over
a greater area on the square section than on the diamond section.
In other words a greater portion of the square is in the wake,
where the pressure differences between the lower and upper
surfaces caused by the vortices give rise to large lift forces.
On the diamond section however a smaller portion of the body is
subjected fovthe pressure differences., The circular cylinder
as can be seen in figure 4.80, from a combination of the area
of separated flow and strength of vortices experiences only a
slightly larger r.m.s force than the diamond section., As NKC
is decreased to less than 25 the data on all the sections
exhibit considerable scatter, with the square section behaving
the most erratic and the diamond, the least. Also for NKC
less than about 20 the results on the diamond section are now
noticeably greater than those on the circular cylinder. This
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jump in the results on the diamond section and the wide

scatter observed in this region of NKC occurs because of the
regularity or irregularity of the lift force. On the

diamond section because of the general regularity in the 1lift
data for NKC less than about 20, a higher root mean square
force is obtained, whereas on the circular cylinder lower and
generally more scattered results are obtained. This fact that
the increase in regularity of the lift force causes an increase
in the r.m.s is clearly demonstrated for NKC=14.20 on the
circular cylinder, where a large r.m.s value is obtained for

a fairly regular lift signal (figure 4.72c). On the square
section the large scatter in Cers is also due to the
irregularity or regularity in the 1lift signal. However here
also at certain values of NKC some mean lift is also generated,
but the direction in which this mean acts is arbitrary, '
therefore for more or less the same value of NKC largely

" differences in results may be obtained as for NKC =15, in
figure 4.80. This scatter in data resulting from the peculiar
nature of lift generation is clearly demonstrated in figure
4.74. Here, comparison with other data for the r.m.s lift force
on the circular cylinder reveals that for NKC < 25, the force
can adopt a range of values, for the same value of NKC. The
upper bound represents regular lift generation, as for NKC=14.20,
and the lower bound to very uneven or irregular liftgeneration.
This plot (figure 4.74) also shows that the present data on

its own could be misleading because insufficient measurements
were made, and not at low enough valueé of NKC to give the
complete picture. The present data, for the results on the
three sections tested, as presented in figure 4.80 appears to

show CL increasing rapidly at low values of NKC, however

rms
for the circular cylinder figure 4.74 shows that. as expected

CLrn{E-'b QO as NKC+0O. Thus the present results quite simply

do not show measurements at low enough values of NKC where

Cers
extrapolated. Measurements were not made at very small values

will tend to zero, and therefore should not be

of NKC because of the difficulty associated with measuring
such small quantities. It is probably noticeable that on

the séuare section, measurements for NKC below about 12 were
hY
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not presented, because this section experienced very small
forces up to this value of NKC. Ideally because the
transverse force is smaller than the in-line force, a more
.sensitive pair of load cells should have been designed to
measure this force. Further, because of the wide range of
NKC tested, two pairs of load cells, one more sensitive than
the other would have been better, however time and cost did

not permit this,

‘
Data for the maximum 1ift force in general shows much
more scatter, and throughout the entire range of NKC. This
is demonstrated in figure 4.73, where results for the maximum
lift force on the circular cylinder is compared with data
obtained by other workers also using 'U-tube' shaped water
tanks. With the exception of data obtained by Sarpkaya and-
Tuter (1974), figure 4.73 exhibits considerable scatter.
-In this figure, the mean line through Sarpkaya and Tuter's
data is shown. However in their paper, results presented
showed very little scatter except in the range of NKC between
20 and 25; this is represented in figure 4.73 by a branch in
the mean line. Sarpkaya and Tuter's data also show the
maximum lift tending to zero with NKC as would be expected,
but this fact is not shown by any of the other data including
the present results. Obviously, had these experiments been
"conducted at low enough values of NKC the results would show
CLmax tending to zero with NKC. However the fact that
Sarpkaya and Tuter's results show tend to zero earlier
together with the small overall scatter suggests that in their
case lift generation was probably more orderly and regulér,
and with the flow becoming symmetric at earlier values of
NKC. However they did not present root mean square values so
no definite conclusions about the difference in behaviour of
their results, can be made. Nevertheless it is interesting
to note that in their experiments, the cylinders were placed
in an upright arm of the tank, whereas all the other data
were obtained with the cylinder in the horizontal sections of
the tanks. It is possible therefore that positioning the
cylinder in the arm of the tank results in more repeatable
’flow patterns and hence more regular 1ift generation. It
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should be remembered that the maximum lift force is a very
sensitive quantity, and it requires strong lift generation
only for a few cycles, to give a large maximum 1lift force,
and this may explain why the present results and those of
other workers (with the exception of Sarpkaya and Tuter)
show large values of CLmax at fairly small values of NKC.
.Similar behaviour of the maximum 1lift on the other two

sections were observed as shown in figure 4.79 where the
results for the square and diamond sections are shown compared
with those on the circular éylinder. Here again as with the
r.m.s force, for NKC > 25 the square section again experiences
the greatest force, and the diamond section, the smallest,

for reasons already mentioned. Figure 4.79 also shows that
the scatter in the data is the greatest on the square section
and again for similar reasons as for the scatter on the r.ﬁ.s
force. This figure also shows that for NKC between about

15 and 20, the maximum lift on the diamond section is lower
than that on the circular cylinder, but as was mentioned
earlier in this region the r.m.s on the diamond is greater than
that on the circular cylinder. This point thus validates

the claim that it is the regularity of the lift that is
responsible for large r.m.s forces.

Both figures4.79 and 4.80 show some similarity in the
behaviour of the lift forces on all three sections for NKC
greater than about 25, This similarity, in trends is a direct
result of the similarity in the flow. As described in .
Chapter: 5, for NKC greater than about 25, the flow past all
these sections approach a quasi-steady situation with a series
of vortices being shed. This causes an oscillation of the
wake and a lift generation, which is similar on these sections,
as demonstrated in figures 4.75, 4.81 and 4.85, for the larger
values of NKC. However for NKC < 25, figure 4.75 and 4.81 show
that the 1lift on the circular cylinder and diamond section
are very much alike whereas figure 4.85 shows that in this
region 1lift generated on the square section is of a different
form. This behaviour is again due to the fact that on the

diamond section and circular cylinder similar patterns are
b}
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produced, where 1lift is produced both by the growth of the
vortices and their motion, especially as they are swept back
against the body. On the square section however, the growth
-and motion of the vortices are completely different, with

only weak vortices being formed and the motion being ill-
defined. The fact that the similar flow patterns produce
similar lift generation can be seen in figures 4.75a, 4.75b
ahd 4.8la where on both sections the flow pattern was similar
with a pair of asymmetric growing vortices being formed

during each half cycle. By'examining the sketches in figures
5.2b and 5.9b the variation in 1lift during a cycle can be
predicted from the motion of these vortices. On the circular
cylinder and diamond section, figures 5.2c and 5.9c show

that during certain ranges of NKC a 'sideways vortex street'

is produced; this pattern produces lift as shown in figure '
4,.75c (for the circular cylinder), and in figures 4.81b and
4.81lc for the diamond section. This distribution in 1lift

over a cycle during the 'sideways vortex street' can be
verified by examining the position of the vortices as sketched
in figure 3.2c and 5.9c. For slightly higher values of NKC,
figures 5.2d and 5.94 show that similar patterns are again
produced; the pattern now being a cyclic rotation of the
vortices about the body. In this region the 1ift generation
over a cycle is as shown in figures 4,754, 4.75f, 4.8l1d and
4.81f, and can be verified by examining the position of the
vortices as sketched in figures 5.2d and 3.9d. Thus on the
circular cylinder and diamond section similar 1lift is generated
throughout the entire range of NKC; here also lift is gen.ratéd
both by the formation of vortices and the passage of these over
or undef the body as the flow reverses. On the square section
however, lift variation over a cycle for NKC < 25 is different
because the flow pattern is different. Here, although strong
vortices are not formed considerable 1lift is generated because
a large area of the body is in the wake and is therefore
subjected to large pressure differences arising from the
presence of the weak vortices, On this section therefore 1lift
is generated more through the formation and shedding of vortices,

than by the return of vortices past the body as the flow reverses.
" .
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This happens because as mentioned in Chapter: 5, the weak
vortices formed, quickly break down as the flow reverses, so
no definite vortex structure is swept back past the body.
Instead, an apparently turbulent (with weak spanwise intensity)
flow is incident on the model as the flow reverses and this

itself does not produce much 1lift.

Figures 4.75, 4.81 and 4.85 also show that throughout
the range of NKC, lift is not generated at a constant
frequency; this is easily verified by examining spectra of the
lift force presented in figures 4.77, 4.83 and 4.87. Here it
can be seen that lift is generated over a band of frequencies,
all multiples of the water oscillation frequency, and the
range of frequencies increases with NKC. This fact that the
transverse force occurs over a band of frequencies makes it
difficult to define a dominant frequency of the transverse
force. As vortex shedding plays an important part in 1lift
generation, the vortex shedding frequency would seem a useful
parameter in the description of the transverse force. However
for some regions, although considerable lift is generated, no
vortex is completely shed, and lift is generated from the
growth and movement of the growing vortices as the flow
reverses. Further, even at larger values of NKC the vortex
shedding frequency is not constant, as the first vortex shed
is usually influenced by other vortices interacting with the
body. In addition, as considerable 1lift is generated by the
interaction between previously formed vortices and the body,

a vortex shedding frequency to describe the transverse force
was therefore not used. Instead a more crepresentative but not
precise frequency description of the forcé was based on a
frequency obtained by cbecking the number of zero crossings.
This frequency is thus a sort of averaged frequency, and was
used to define a Strouhal number. These results presented
in figures 4.76, 4.82 and 4.86, show this Strouhal number
appearing to tend towards a constant value as NKC increases,
Here also it can be seen that for NKC less than about 25,
similar results are obtained on the circular cylinder and
diamond section, whereas the square section again show a

N
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different behaviour. Further,as expected the Strouhal

number on the square section is also the lowest, due to the
fact that the afterbody in delaying the interaction between
the separated shear layers also reduce the number of vortices
shed. A fact which is evident in steady flow.

~

As mentioned above, spectra presented in figqures 4.77,
4.83 and 4.87 clearly reveal that the transverse force occurs
at several frequencies all multiples of the fundamental frequency.
It should be noted that the peak shown in these spectra at
just over 3 Hz is not genuine but instead due to noise
introduced by the tape recorder. For NKC > 25, these plots
show that 1lift is produced over a wide band of frequencies,
which increases with NKC. The wide band nature of the 1lift
force occurs because the vortex shedding frequency is not
constant, and also because lift produced by the return of
‘vortices is not the same for every cycle. At smaller values
of NKC (< 25), the lift spectra is generally not so broad
band and 1lift tends to occur at discrete frequencies, either
odd or even multiples of the oscillation frequency. The
nature of the spectrum however depends on the flow pattern,
and changes with it.

These results demonstrate that as on the circular cylinder,
the transverse force on the two other bluff sections are also
very important, both in magnitude and frequency. For NKC
greater than about 25, results presented show that lift on all
the sections occurs in uneven bursts of significant notable
magnitude and over a wide range of frequencies increasing with
NKC. For NKC< 25 lift forces can adopt a range of values
depending on the regularity of the flow, here the frequency
content is less broad band depending on the nature of the flow
pattern. It also appears that the maximum lift force, root
mean square force and the Strouhal number appear to tend towards
constant values. Finally it appears that, as would be expected,
the range of frequencies over which the transverse force acts,
at larger values of NKC, is centred on the Strouhal frequency.
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6.4 SOME IMPORTANT EFFECTS
6.4.1 BODY GEOMETRY

These results show that the singularly most important
feature in oscillatory flow is the production and interaction
of vortices. Providing the formation process is not inhibited,
vortices are formed which set up similar motions around all
the sections. The similar behaviour of these vortices
result in similar variation -of the forces, both in-line and
transverse. The primary effect of the body shape is therefore
in the production of vortices. However the angle of the
separating shear layers is also very important as this
generally determines the strength of the vortices formed,
which in turn determines the magnitude of the drag. This
incidentally is one explanation for the larger forces
experienced by Keulegan and Carpenter (1958), during their
experiments on thin untapered flat plates,.where the angle of
the separating shear layers was higher than in the present
case where the flat plates were tapered to give an internal
edge angle of 60°. Bodies with free separation points,
usually have weaker vortices and hence a smaller drag. In an
oscillating flow also the separation points on such a body
vary considerably during a cycle, particula;ly at
intermediate values of NKC, This variation in separation point
during a cycle results in a more gradual development of the
flow. However the most important consequence of free
separation points, is that the interaction process between
vortices and the body is usually more gentle, with the vortex
free to move either above or below the body, Further, unlike
sharp edged bodies less stretching of the previously shed
vortices occurs. This gentler process of intéraction and
formation of vortices leads to less randomness in the in-line
force, but more in the transverse force (as paths of vortices
are not dictated). Body geometry also plays an important
role in determing the nature of the force at small values of
NKC. On the sharp-edged bodies, even at low values of NKC
vortices are formed and the force is still influenced by drag.
.On bodies where reattachment is possible however, this effect
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may cause the force to be considerably influenced by inertia
even at substantially large values of NKC. The larger wake
and the wider variation in wake characteristics, together with
‘the more complicated interaction between vortices and body
result in a poorer prediction by Morison's equation of the
in~line force on sharp-edged bodies. Lift forces or
transverse forces, being related to the vortex growth and '
movement is also affected by geometry. The magnitude of the
1lift besides being affected by the strength of vortices, also
depends on the area of body in the separated region, thus on
the square, even though weaker vortices are formed larger 1lift

forces are obtained.
6.4.2 BLOCKAGE

By examining the force on different sized flat plates
blockage in oscillatory flow was examined. Results presented
in figures 4.37, 4.38 and 4.39, show distinct effects of
blockage on the drag, r.m.s and maximum force on flat plates.
These effects are primarily due to blockage.because as
mentioned in Chapter: 4 Reynolds number is not expected to have
much an effect, (a fact demonstrated by the works of Keulegan
and Carpenter (1958) and Shih and Buchanan (1971». Aspect
ratio is not considered very important as the flow is more or
less two dimensional, with L/D large enough so as not to be
influenced by the very small gap flow, that must exist at the
ends of the models. In any event, figures 4.41 and 4.42 show
that good collapse of results can be achieved if Maskell's
blockage correction method is used. This correction method
was not strictly applicable and was used 6nly to show that
collapse of results could be achieved by taking the blockage
ratio into account. These results clearly indicate that
blockage is important intgteady flow for blockage ratios more
than about 5%, However it should be noted that the importance
of blockage de creases as NKC decreases, and for NKC less than
about 5 blockage is not very important. These conclusions
are definitely in disagreement with those of Sarpkaya (1976a)

where his experiments on the blockage on circular cylinders
A
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in oscillating flow led him to the conclusion that 'blockage
effect in harmonic flows is negligible at least for D/W

ratios less than 0.18.' Sarpkaya's method of examining block=-
.age was by means of pressure tappings on the surface of the
tank, where he compared the acceleration in the vicinity of
the model with that elswhere in the tank. The fact that

he found little difference is therefore is disagreement with
the present results which showed a definite effect of blockage.
However his study was on circular cylinders whereas the present
experiments were on flat plates. The present. experiments
were based on'force measurements on a series of plates,
however a similar set of experiments on circular Cylinders
could have been misleading as a.simple.” increase in dimension
also increases the Reynolds number., This was not a problem

on the flat plates where as already mentioned Reynolds

number has little effect.On the circular cylinder however an
increase in Reynolds number causes a decrease in drag, whereas
blockage is expected to increase the drag. Nevertheless these
experiments reveal that blockage is important in oscillatory
flows, at least on flat plates, and possibly bodies where

the angle of the separating shear layers is large, i.e. with
large wake widths, for values of NKC in excess of about 5.

The fact that Sarpkaya (1976a) did not notice any measurable
change in the acceleration, as observed in his surface pressure
measurements is probably due to the wake width being much
smaller on the circular cylinder.

6.5. REPRESENTATION OF THE FORCES

The results and discussion presented above show that even
in this relatively simpler case of planar oscillatory flow,
representing the in-line force by Morison's equation is not
very accurate, except at largé values of NKC where fairly
good agreement is generally achieved. Of course on the circular
cylinder the agreement between the force predicted by Morison's
equation and the measured force is better than on the other
sections. The main disadvantage of using Morison's eguation
is that the coefficients used with it are averaged values,
which are then used to represent forces which vary considerably
during a cycle; time dependence being introduced by multiplying
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these coefficients by the appropriate velocities or accelera-
tions. Such coefficients tend to be misleading and for the
inertia coefficient can represent values which are not
physically possible. The Morison coefficients are also
extremely sensitive to changes in the phase of the force which
can result from changes in the flow pattern. This causes
noticable variations in these coefficients from cycle to cycle
even though the incident flow is repetitive. In a real situation
the use of Morison's equation to derive coefficients is very
suspect as a wide variation of results is expected since the
incident flow is not regular.

A suitable alternative approach was suggested by Maull
and Milliner (1978a), where a single coefficient, the r.m.s
was used to describe the force. Such a method of describing
the force is attractive, because although substantial cycle
to cycle variations were observed in the Morison coefficients; -
much less variation was observed in CFrms' In addition the
behaviour of CFrms is not as sensitive as_the other coefficients,
" tochanges in the flow pattern. The variation of this
c‘oefficient with NKC is therefore more orderly and gently
tends towards a constant value at large values of NKC. The
idea of a single coefficient to represent the force was
earlier used very successfully for the case of uni-directional
accelerated motion by Iversen and Balent (1951) and by
Keim (1956). More recently, Karanfilian and Kotas (1978),
showed that the force on a sphere oscillating in still water
can also be adequately . described by a single coefficient.
Further, Maull (1978), showed that the force on a circular
cylinder can be well represented using constant values of
Cm and CD in Morison's equation to give CFrms(see Appendix: 4),
for a range of ,3 values provided the appropriate .CD'S are
used. Thus it seems that the in-line force can be adequately
described in terms of a single r.m.s force coefficient which
may be predicted using constant.values of Cm and CD in Morison's
equation. Using this approach Morison's equation was used to
predict the r.m.s of the in-line force on the four sections
D The inertia
coefficient used was the appropriate potential flow value,

tested, again using constant values of Cm and C
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and the drag coefficient was the steady, smcoth flow value in
the corresponding Reynolds number range. These results presented
in figures 6.6 to 6.9 show that on all the sections except the
squaré section the predicted value is in good agreement with
;‘themeasured values at large values of NKC. On the square
section this behaviour is due to the fact that the flow about
this section is somewhat turbulent, thus the drag experienced
and the r.m.s force is lower. thagv'that for smooth flow.
Obviously such a prediction, i.e. using potential flow value
Cm and steady flow CD' is only really justified at the extreme
ranges of NKC, i.e. at small or large values. However on

the circular cylinder the prediction is good throughout most

of the range of NKC. On the other sections the prediction is
not so good. Nevertheless figures 6.6 to 6.9 show that on all
the sections the in-line force data can be represented by a
single r.m.s force coefficient. Prediction of this coefficient
on all but the circular cylinder, using constant values of Cm
and CD in Morison's equation is however not very accurate.

A family of such curves could however be presented which
would be valid in certain ranges of NKC and under certain
conditions, but this idea needs to be supported by further study.
It should be noted though that although presentation of the
force in this manner is attractive for the reasons mentioned
above, Morison's equation has the advantage that the force
distribution could be predicted, and this information is
usually needed by designers.

Measurements of the transverse force, reveal that on all
the sections this force is gen¢yrated in irregular bursts
leading to a large band of values-. for NKC < 25. In a real
situation, the more complex incident flow is likely to result
in even more irregularity in the transverse force, however in
this case the correlation along the span of the body would
most probably be less than in the corresponding two-dimensional
flow. Therefore in the 2-D case, the higher correlation
together with the flow being more regular would lead to a
highe; lift force. Relevant experiments i.e. at the

appropriate conditons but in two dimensional flow could be used
Y



to obtain an upper bound of data for design purposes. This
irregularity in the lift force, even for the simplér case of
planar oscillatory motion is due to changes in the vortex
growth, motion and interaction; 1lift forces are therefore very
difficult to predict, and at this stage impossible for the
more complex real situations. However research is being done,
to model oscillatory flow using discrete vortices, and then

to use Blasius equation as in equation 1.14 and 1.15 to yield
both the in-line and transverse forces. Some of these studies
are currently being carried out at Imperial College, and

some attempts have been made in the past, e.g Stansby (1978)
but these are still in the initial stages. The other important
point as regards the transverse force is its frequency
composition; again prediction of this is not possible from any
present theoretical knowledge and data must be obtained from
experiments, These experiments suggest that the transverse
force occurs over a wide band of frequencies, centred on a
Strouhal frequency as defined earlier, with the lowest
component at the main water oscillation frequency. Obviously
the situation is more complex in real life and the data

presented here is to be treated only in a qualitative manner.



CHAPTER: 7

I CONCLUSIONS

A 'U-tube' type water tank and associated drive

mechanism wense designed which produced stable sinusoidal
oscillations; these oscillations attained a maximum

amplitude of about 12", A force measuring system was also

designed and both in-line and transverse forces on four
bluff sections were measured. The flow past these sections
was also visualised. The following conclusions were drawn

from these results.

(1)

(2)

(3)

Comparison of the in-line force data on the circular
cylinder with similar data obtained by other workers

also using U-tube type apparatus: reveals a considerable
amount of disagreement. No obvious explanation for this
large difference exists but it appears that it might

be due to different data analysis techniques and to the

manner in which the oscillations are produced.

Flowvisualisation reveals that with the exception of the
square section, similar flow patterns are observed on all
the models. For NKC between about 10 and 25, (with the
exception of the square section) large vortices are
formed which set up clearly defined motions around the
sections. On these sections the strongest vortices are
formed during this region. For NKC above 25, the flow
pattern on all sections is similar; here quasi- steady
flow is approached as a series of vortices are shed. At
small values of NKC, below about 5, the pattern on all
the sections is more or less symmetrical, but on the
flat plate and diamond section weak vortices are clearly
observed. On the circular cylinder the flow remains
attached over most of its surface, and on the square
section the flow separates on the front face and weak
recirculation is evident on the upper and lower surfaces.

The similarity in flow patterns observed on the diamond
section, flat plate and circular cylinder results in the
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in-line force being similar on these sections. The
behaviour of the force is directly related to the

growth and motion of the vortices, and it is because these
~are similar on the three sections, that the behaviour of
forces is similar. These results also show that on all
the sections, as NKC decreases the inertia coefficients
all approach their attached flow values, even though
attached flow is not observedon all these sections,
notably on the flat plate and diamond section. This
therefore suggests that the weak vortices present at low
values of NKC do not signigicantly influence acceleration
dependent forces. However the presence of weak vortices
at low values of NKC on the flat plate and diamond section
result in a drag force which is still important even at
these small values of NKC. At large values of NKC, the
drag on all these sections approach their steady flow
values at the appropriate Reynolds number; on the square
section though,the presence of turbulence in the flow
(caused by the wake/body interaction) results in a drag
coefficient lower than the steady flow value. The behaviour
of the square section throughout the range of NKC is
different because the afterbody results in weaker vortices
being formed, and these do not set up any clearly defined
motions. These weak vortices present on this section
result in a very low drag (the lowest of all the sections
tested) for NKC less than about 25, and at the same time
the inertia coefficient is almost constant at its attached
flow value.. The more dominant vortices present on the
other sections result in considerable variation in the
Morison coefficients particularly,in’cm. However the
r.m.s of the in-line force is not noticeably affected by
changes in the flow pattern. These results show that

cPrms
circular cylinder; the same results was obtained for the

is largest on the flat plate and lowest on the

maximum force. For NKC less than about 20, on the square
section, although the drag coefficient was small, quite
large values of CFrms and CFmax were obtained, as the
square then experienced forces lower than the flat plate
only; the reason for this being the large contribution
from inertia. For NKC above 20, the forces on the
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diamond section were larger than those on the square.

(4) Unlike previously reported conclusions, results presented
here clearly show that blockage is important in oscillatory
flows, at least on flat plates where blockage ratios
larger than about 5% result in increased forces. This
effect increases with NKC, but for NKC less than about 5,
little effect of blockage is observed. It also appears
that the importance of blockage varies with the body

' geometry, and that bodies with larger wake widths, resulting
from large angles of the separating shear layers may be
more affected by blockage.

(5) These results also show that even though the incident flow
is repetitive, the in-line force is not, and substantial
cycle to cycle variations are observed in the force
coefficients, This variation in the in-line force occurs
because the strengths and positions of the vortices are
not the same during each cycle; another reason is that
the interaction process is not the same during every
cycle. Because Cm and CD' the Morison coefficients are
very sensitive to slight changes in phase, the slight

- variation in the form of the in-line force, results in
quite large random variation in these coefficients from
cycle to cycle. However the r.m.s force varies by a
smaller amount. The Morison coefficients, Cm and CD’ are
also very sensitive to changes in the flow pattern, and
Cm in particular varies noticeably with NKC, This
variation in Cm, is such that for certain values of NKC,
a minimum is produced which corresponds to negative
added mass, and is a direét result of changes in the
phase of the force brought about by the motion of vortices
close to the body.

(6) The use of averaged values for Cm and CD in Morison's
equation also results in a poor prediction of the force
on the sharp-edced bodies and on the circular cylinder
during certain ranges of NKC where large vortices are
formed and remain in motion close to the body. This
poor prediction results becauée Morison's equation tries
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to represent a time varying force with constant averaged
coefficients; time dependence being introduced by
multiplication by the velocity or acceleration, both
functions of time. At times where the flow pattern
changes rapidly and by large amounts, due to the presence
of large vortices close to the body and/or to their
interaction with the body, Morison's equation therefore
fails to predict the force accurately. The problems
associated with using Morison's equation both to predict
the force and to derive values of Cm and CD suggests the
need for an alternative approach to the description and,
prediction of the in-line force. Such an alternative
method exists. This method is based on the use of a
single r.m.s force coefficient and is attrative because
of its relative insensitivity to slight phase changes.and
therefore to changes in the flow pattern. This method
however suffers from the drawback that the complete
force history cannot be predicted, though the r.m.s force
may be predicted using constant values of Cm and CD in
Morison's equation. The value of Ch however ought to be
chosen to be_fepresentative of the conditions.

The transverse force on all the sections tested show
considerable irregularity with 1lift being generated in
bursts of irregular lengths. This irregularity in the
1ift force occurs because lift is produced solely by the
growth and motion of vortices and it is therefore very
sensitive to changes in the strengths and positions of
these. The interaction mechanism also produces 1lift and
as this is not always the same duriné every cycle, it adds
to the irregularity of the lift. Similar vortex patterns
on the circular cylinder and diamond section results in
similar formation of 1lift throughout the range of NKC;
obviously the detailed variation of the 1lift during a cycle
depends on the precise flow pattern, so similar patterns
produce similar lift variation. At larger values of

NKC (> 25) the flow pattern is similar so on all the
sections at these values of NKC the formation of lift is
similar, due primarily to the wake oscillation caused by
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the shedding of vortices,

This irregularity of the lift results in a band of

values both for the r.m.s and maximum forces for NKC less
than about 25, the scatter being larger for CLmax' The
more regular the lift generation, the higher the r.m.s,
such that at the same value of NKC, several values of
the r.m.s may be obtained, the largest corresponding to
extremely regular lift generation. The maximum force
also exhibits a band of values, again related to the flow
pattern; during certain periods the body may experience
a mean .1ift, and this mean lift varies with the flow
pattern. The frequency of the transverse force in this

‘case of planar oscillatory motion, is not a constant,

but varies with NKC. At any particular value of NKC lift
is not produced at a single frequency but at a number of
discrete frequéncies all multiples of the water oscillation
frequency. The nature of the frequency distribution is
such that for NKC above about 25, the spectrum is more
wide band and centred on a Strouhal frequency. This
Strouhal frequency, as defined earlier appears to approach
a constant value as NKC increases. Finally of the three
sections on which lift was measured, for NKC greater

than about 20 the square experienced the largest lift

and the diamond the lowest. This occurred because on

the square section a larger area of the body was in the
wake and subjected to the pressure differences.

Of the four sections, tested therefo;e, the flat plates
experienced the larges forces as would be expected.

These experiments also show that for the purposes of
design the circular cylinder is the best shape as it
experiences the smallest overall in-line forces. Although
the diamond section experienced smaller transverse forces
than the circular cylinder overzpertain band of NKC,

such a section will be very sensitive to angle of
incidence and'for some angles of incidence (such that it
appears as a square) forces larger than those on the
cylinder will be experienced:
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APPENDIX : 1

'~ RESPONSE OF LOAD CELLS AND MOLELS

In Section 2.2.2. the equations goveming the respanse of the load
cell and model are given. These are :-

48 £ _
the frequency & =S pm L3 al.l
. ) N 2 .
the danping Y =LLGD Y - ﬁLZ)g./v« Al.2
Yk 77
the dynamic magnificatia& factc;’r, ,
2:.MF = / Al.3
VA
1-Z) 4 () (@
and the phase lag,
- fm—, ;2_?:-)—7— Al.4
¢ - wi-v* C

where M = mass of fhe model and added mass, EI = flexural stiffness,
" L = length of the model.

THE CIRCULAR CYLINLCER

Potential flow gives an adied mass coefficient of 1.0; therefore
the added mass = 1.0 xfwi x L . The drcular cylinder used had a
diameter of 1-9/16" and was made of perspex,
« ' mass of cylinder = 0.58 lbs.
and added mass = 1.66 1lbs.
.+ Total mass = 2.24 lbs.

The flexural stiffness of the load cell used with the circular cylinder is
0.53 Ibf ft?, and the length, 1, of the measuring element is 1.0".

Bquation Al.1l therefore gives :
o = 140.09 rads/sec, or £ = 22.3 Hz,

The steady flow drag coefficient, G, , for a circular cylinder is

1.2, and the maximum velocity in the tank is about 1.96 f.p.s. Using these
values in equation Al.2 gives a danping coefficient J = 17.06;." ¥,y = 0.12
The respmse of the circular cylinder and load cell, using the potential flow
for G, , and the steady state drag coefficient is therefore fownd from
equations Al.3, and Al.4, and is as tabulated below.
WHy) o3| 4 | 2 | 3 4 5| 6 T (¢ |9 10
>.m-F | -0 |1m2( /008|102 | jo03 [1-05 | /.08 | LM big ) a9 | 124

¢. 0190063726 | 191 | 2:59 13:29 1.0 | -85 5-#3] ¢-70 | +#9
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Experiments at a Keulegan and Carpenter nunber of 50.4, gives the
measured inertia coefficient, G, = 1.04, and the drag ccefficient, C1>= 1.32.
Thus the added mass coefficient = 0.04, .- the added mass = 0.07 1lbs; as

before, the actual mass of the cylinder is 0.58 lbs.

+ . Total mass, M = 0.65 1bs.
.”. the frequency,w , using equation Al.l is .
e = 260.06 rads/sec, or £ = 41.39 Hz.
The damping coefficient, Y , from equation Al.2, with NKC = 50.4, -
CD =1.32 is :

7 = 65003, ‘.'. )7“}' = 0.25
The respanse of the circular cylinder and load cell, using measured

results for G, and CZD , o determine, the added mass and damping respectiwvely
is therefore as tabulated below :—

vz) | 0.3 ) 2 3 I3 s 3 7 g 7| s0
D.4.F ]:0 /.00 | 7.002 ).pof 1008 | 7007 1202 | 1026 | /-034 | /043 | /-053
?5 0:2] |p:t? 11.29 | 209 2.79 | 357 | n-23 | 498 | 573 | ¢-57 | #:3)

In figure 2.11 a, these respases are plotted.

™E 3" DIAMETER FLAT PIATE

- From potential flo;;, the inertia coefficient for a flat plate,Cn
is 1.0. Defining C, as : '

| Gn=Cy+r | Al.5
where C, = added mass coefficient, and r the wolume ratio given by :
r = volume of plate Al.6
volume of circular cylinder based cn the same
diameter,
then, for the flat plates used, r = 0.22 L
c, =0.78 '

the added mass = C3 /L 7(‘1?/5‘ = 4.78 lbs.
The actual mass of the plate, which is made of Aluminium alloy is, 3.63 lbs;
. . the total mass, M = 8.41 lbs. '
This model was used in conjunction with the stiffer load cell, where the
flexural stiffness is 4.24 1bf ft?, thus equation Al.l gives :

w = 204.49 rads/sec j or f = 32.55 Hz.

In this case, using a steady flow value for the drag coefficient is
not quite justifiable, because ‘the size of the plate is such that the Keulegan
and Carpenter nunber is too low. Further, the maximum velocity in the tank



would be less, because of the greater resistance offered by the large

plate.

Nevertheless, using a steady state value for the drag coefficient

of 2.1 and a maximm value, still of 1.96 f.p.s. gives, J =15.27.

¥ =0.075

Therefore the response of the 3" diameter plate and load cell, using
potential flow to derive Cp , and a steady flow value for the drag co-
efficient is as tabulated below :-

y[Hz) | -3 I 2| 3 # | 5 6 7| ¢ 9 | /0
2.7-F | 100 |1-001 | 1ooon| 1008| 1015 | 10244 | 1-035]| I-04g| 1-064] 1:082 | I-103
¢ 0:0F%2| p:26 ]| 0°53 | 0:850 | 1-0¢ 1235 | 1063 |93 | 2:24 | 2-5% 2.9

Experimental results at NKC = 20.7, give an inertia coefficient,
Cp = 0.46, and a drag ccefficient, CD of 3.17. The added mass is therefore
= 1.47 lbs, and thus the total mass is 5.1 lbs. '

~ rads/sec, or £ = 41.79 Hz.
_ gives a danping coefficient, ¥ = 30.14: -

This gives, & = 262.6

this plate and the load cell, using measured values for the inertia and
drag ccefficients, to determine the frequency and the danping respectively
is therefore ac tabulated below :-

vi3)| 3 ! 2 3 4 5 6 # g 2 | 1
DHF | |.D 1roo1| 1002 | o005 1:00¢} 1074 | 1'D2| [-03 | 04| (05 | /06
9‘ 0:094| 031 | 062 | 095 1.22 |1-60 | 192 2.22 | 2:67| 297 ] 3-33

These results are plotted in figure 2.11 b.

THE 1.5" DIAMETER FIAT PLATE

As in equation Al.5, and Al.6, for the 3" diameter flat plate, the
added mass ococefficient, from potential flow is 0.78.
The added mass = 0.78 x f’xtbz xL
Total mass, M = 4.0 lbs.
This plate was used with the load cell of flexural stiffness, EI = 0.53
1bf £82, therefore equation Al.l gives :
e = 104.83 rads/sec or £ = 16.68 Hz.

The steady flow drag coefficient of a flat plate is 2.1, using this
and a maximum velocity of 1.96 f.p.s. in equation Al.2 gives the damping

coefficient as :

Y =16.05,

.o r/ar =0.15

= 1.2 lbs.
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Using a drag ocoefficient of 3.17 at NKC = 20.7
- Y/ar = 0.11. The response of

Therefore the respanse of the 1.5" diamter flat plate and load cell, using
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potential value G, and steady flow C_D is as tabulated.

vy | 3 / 2 z 4 5 6 # g 9 (| 70
o.me [1°0 |1-003) 1-01%) .03 | 1-06 | [-09) 14| +20| 28] [-3%| IS

95 0:3) 105 | 2:/3 | 326 weus |5F6 | F-20]| 3-8b | 10-30 13-11 15-98

Experimental results give Ch = 1.49, and C:D = 2.18 at NKC = 48.04.

Using this value for the inertia coefficient gives an added mass coefficient =
1.49 - 0.22 = 1.27. |

., The added mass = 1.95 lbs; the actual mass of the model, as above, is
2.8 1bs, .’. The total mass, M = 4.75 lbs.
This gives, ar =96.2 rads/sec, or £ = 15.31 Hz.
Using the drag coefficient of 2.18, at NKC = 48.04, in equation Al.2 gives,

y =12.91; .°. ¥y =0.13.

The response of this plate and load cell, using measured values of Cm qu C N
to determine the frequency and damping respectiwvely is as tabulated :-

V(H3)| 3 I 2 3 L s A # 8 ? 10
>mE | 1.0 | 1ro0o% | 102 ) 1rog | 1-0F] 11| 20F| 125 135 | 149 1T

¢ | 03| 1008 | 2.08| 2.3 | 4-30] 5-¢0| 7.08|3g-52] 1092 |13.55| 17.0
These results are plotted in figure 2.11 c.

THE 1" DIAMETER FLAT PLATE

As with the other two plates above, potential flow gives an inertia co-
efficient of 1.0, and for the geometry of this plate, the volume ratio r, as
defined in equation Al.6 is again 0.22.

The added mass coefficient = 0.78.

.". the added mass = 0.53 lbs,

the actual mass of this plate, made of stainless steel is 1.16 lbs.

.°. Total mass, M = 1.69 lbs. -

Equation Al.l then gives the natural frequency of this plate and the load
cell, of flexural stiffness, 0.53 1bf ft? as :

w. = 161.28 rads/sec or f = 25.67 Hz.

As before,the steady state value for the drag coefficient is 2.1, using
this and a maximum velocity of 1.96 f.p.s. in equation Al.2 gives :
y =25.33, . Yy =0.16
The response of this plate and load cell, with potential flow used to determine
the added mass, and hence frequency, and with the damping coefficient cbtained

N
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from the steady flow drag ooefficient is therefore as tabulated :

Vi los | ! 2 |3 y |5 ¢ s |9 |

one | 1.0 | 1o00)) 1006l 1e0r (1002 104 | 105 108 | /o1 | 113 | 117
[

¢ 021 \o-20 | 1nt | 213 | 2-87| 364 | 444|529 679 | 7-76 | 8-2¢

Experimental results at NKC = 73, give Cm = 1,98, and C.D =2.1.
Using this measured value of the inertia coefficient, gives an added
mass oocefficient of 1.98 - 0.22 = 1.76, and hence the added mass = 1.2 lbs.
Thus the total mass = 2.36 lbs.

Equation Al.l gives, zr = 136.48 rads/sec; or £ = 21.72 Hz. Using a
measured Cy of 2.1 at NKC = 73 in equation Al.2 gives the danping coefficient

Y =16.91  ; .". Y =0.12. _

The response of this plate and load cell, using measured values of Cm and
C.D is therefore as tabulated. :

v -3 / 2 3 4 s 6 | # b4 9 /0
2.nF | /-0 ropz | 1.008| 1002 1-03| /05| 1:08 | 11| 1185 | [L20] I'28

14

¢ 02 065 | 132 | 200 270 345| 423 509 ¢-03| #-02|8-2¢%
These results are plotted in figure 2.11d.

THE SQUARE SECTION NORMAL TO THE FLOW

This model is made of perspex with each face 1.0607", thus, the mass
of the model is 0.81 lbs. Fram potential flow, the inertia coefficient, Cm
is 2.78, whereas in equation Al.S, Cm = C'a‘ + r, and r is as defined in equation
Al.6. Thus in this case, r = 1.27,
o C, = 2.78 - 1.27 = 1.51 ; .". the added mass = 1.16 ]bs).

the total mass, M = 1.97 lbs.
The frequency,er, of this model and the load cell is therefore given by :

o = 145.38 rads/sec, or £ = 23.77.

Using the steady flow value for the drag coefficient, C, = 2.2 and at the
maximum velocity of the tank of 1.96 f.p.s., equation Al.2 gives, Y = 24.14,

. Y =0.16.

The response of this system, using these values, is therefore as tabulated.

y)| 0.3 / 2 | 3 v | 5 (A ¥ g 9 | r0
mFE | 0 1002 | J-00#H 1-02} 1-03| 1oy | 10} [-OQ| 02| 116 | 12

o
¢ 023 | 0-78 | /52| 2-37]| 3-20| 4£:07] 4-97| 5-95]| 6-99] 8-13 | 9-3%

Experiments on this section at NKC = 70.5, give an inertia coefficient, C
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= 1,63, and a drag coefficient, C:D = 1.74. Using this value for Cm gives

Ca=Cm-r,whereris the same as above, « Ca=0.36.

The added mass = 0.28 lbs.

As before the mass of the model is 0.81 lbs, thus giving the total mass
as : M=1.09 lbs.
This gives the frequency of the system,&r, as

@’ = 200.82 rads/sec or £ = 31.96 Hz, -
Using the measured value of 1.74 for the drag coefficient at NKC = 70.5,
in equation Al.2 gives :

Y = 32.95 rads/sec, - ¥ = 0.16
The responsé of this model and load cell, using measured values of Cm and
Cp is therefore as tabulated.

v(H3)| 03 ! 2 3 Yy s 6 ¥ g qQ 10
D.mME | 1D 1:00/ | ook /008 1ol 1-024| 1-034| 1-o4¥| /063 1-081| Fl0/ }

_ ¢ 013 | 0591 8 | 126 | 2:39] 30/ | 365 4-32|5-0] | 5:73] 649
These results are plotted in figure 2.1le.

THE DIAMOND SECTION

This is the same model that was used above for the square section, but
now it is at 45° incidence, the actual mass of the model is thus still 0.81 1lbs.
The potential flow valwe for the inertia coefficient is now 1.39; here the
volume of fluid is based on a circular cylinder of diameter equal to the length
of a disgmet.Thus r, as defined in equation Al.6 is 0.64, and the added mass
ccefficient, Ca = 0.75 giving :

added mass = 1.15 1bs.

Total mass, M = 1.96 lbs. ‘
Thus the frequency of the model and load cell conbiration, as given by equation
Al.lis : o = 149.76 rads/sec, or £ = 23.84 Hz. Using the steady flow
value for the drag coefficient, C~2> =1.71, and the maximm valwue of 1.96 f.p.s.
for the velocity in the tank gives,
_ Y =26.68;-" Y =0.18
The respanse of this system, using potential flow to find Cm and a steady flow
value for the drag coefficient is therefore as tabulated.

vi3)| 03 | 1 2 | 3 w st e | ) 8] 9 |10

>-MF | I'0 1002 | 1-00%| 1-015) ;-02% 1-043| 1-063| 1-0§H /12| 105 | 1-19

? 026) 036 ) 173} 2-L1 | 3-52 | 4-4F] S-43]| 6:53| 2?:48) 8-92 )| r0-28
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Experiments on this section at NKC = 50.3, give an inertia coefficient ,
Cu of 1.26, and a drag coefficient, C_p = 1.86. Using this value for c, ad
a valwe of r = 0.64 as above, gives :

C,=C,-r=0.62 '

Thus the added mass = 0.95 1lbs, and the total mass, M = 1.76 lbs.
and - . the frequency «r = 158.04 rads/sec, or £ = 25.15 Hz.
Using a drag ccefficient of 1.86, at NKC = 50.3 in equation Al.2, gives the
damping coefficient, ¥ = 31.13, -% %,— 0.2.
‘11qu respcanse of this system, using measured values of Cm and CD to derive

the frequency and damping respectively is therefore as tabulated.

)| o3 | | 2l 3 | e ] 5| ¢ |2 |8 19| 10
dMmF | 1-0 1-00!| |-006 /-p/? 1-024 1-038| 1-055] 1076} 1-102] 1132 1168

[ 4
4 022109 | 187 | 293 | 345| w-ee| 569 (678 | 7:9¢| 979 | 10-5

These results are plotted in figure 2.11f.
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APPENDIX : 2

PHASE SHIFT ANALYSIS

Using Morison's equation, the force may be written as :

Frn _1 pC v U/.p 2 c. dvu
T = + XD ay A2.1
where FT is now the total force.

Iet the velocity be givenby U=- U Cos & , where 9=2K'%_, and
T is the period of oscillations, then equation A2.1 becomes :

2 k™
mo=-1p oL Y, Gofaefiad pC Lok u, So
| 2 Sy T
From Keulegan and Carpenter's analysis :
) 2%
. E S’ .
! U T J T i@ de .
c - —— ﬁ —— A2.3
m 3 % +
T ) 2Fq"$L -
2K o,
.and Cy = -% ] Frloe  Jo - 2.4
5 EPUZDL
Now let a phase shift occur between the welocity and the force, such
that 0 —> bO+¢€ ¢ SO U is now given by :
U=-Uy s (&6+t€) A2,5

Swbstituting equation A2.5 into equation A2.1 results in an equation
similar to equation A2.2, but now with @ replaced by ( @ + € ). Denoting,
this new total force shifted in relation to the velocity, by F_, then
this is given by :

Fg A: - ¢ ( 95/(0(91-5)) ‘Kz) ¢ S;Jv»G £)
3P4, d¢L > @00) ' 6’:”)“ o+

A2.6
Then, by substituting for the force but now using equation A2.6, into
equations A2.3, and A2.4, the effect of a phase shift on the inertia and
drag coefficients, respectively, may be assessed.

Thus, for the inertia coefficient :

2K . o
Com, = Ly - NKC f[.c) Cn(9+£)lfa(9+£)}+ © C Suiorey| Simwo de
3 1,9 —_— m )
A NKC A2.7

where Cm refers to the inertia coefficient cbtained whem the force
s
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is shifted in relation to the velocity, and Cm is the inertia ocoefficient
with no phase shift.

The integration in equation A2.7 can be carried out by considering
the two separate parts. Therefore, let :

I = f Cn (6 +€) le(e+£)] Sowe de ' A2.8
ad J = j S’W {e +e) S’“G ‘{,9 A2.9
Equation A2. 8may furtherbewntta‘x as :

A
_[ 9(0) do I 3(o>&a + f 90 d6 = a-b+c A2.10
K+

where A is givenby Cos (dt€ ) =0 ; or & =’S; - €
k3
and 9(6) = Co (6+€) Siw ©

= St 8 (,+ Co a(en))
2

=1
2

Sin & + Sin 38 +2¢) - Sin (p+2¢ ) )
2
&

-— ’ *
Therefore, a = Lg(e)de = -}_—’_L.—a Cose-4 Ca 3o+2¢€) + Co3 (D +2 e)]
[ o]

a=1 =-Cosd -1 Cos (3¢+2€) +1 Cos(d+r€) — 1 Cos 2€
2 V3 3 6
and b=1 [—z Coa(rm)—sLCn(zrﬂuze)szx (wﬂu—ze)]
4
+Cosd +1 Cos (34 + 2&8) = Qos _(4+2€)
2 12 4
and c=-1 l Cos (6K + 2€) +1 (Cos (2K+ 2¢€)
2 12 4
+1 Oos (K+d) +1 Cos (3X +3&A+2€ ) -1 Cos (x +« + 2¢€
2 12 4

'Ihus,I=.a-b+-c

= -2(bs(§-i_)-% Qs (3f —e) +0s (X +¢)

I= -8 Sing 2.1

3
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S 2
From equation A2.9, J = f Sin(p+€ ) Sin6 de
J=—;|__ J.\-t‘ o
2 ) (Cos(20t€) - Cos ) d@

J=K Cos ¢ - o . A2,12

Substituting for I, and J in equation A2.7 gives
Cn =NE(Cd x8 sine + x? C .x Cose}

s K3 3 NKC
. C, =8 CyNKC Sine +C Cose A2.13
) S 3. —7(,—'5'

Similarly for the drag coefficient the effect of a phase shift results
in : K

c. =-3( [~cicosere ) foos (¢+€ )| +x2 C_ Sin(e +€) Coss do
9 EJ l. d / e A2.14

4

As before, let I

' WK
[cOs O+€ ) [cbs (6 +€)f cose de

and J

N
f Sin (P+€ ) Cose de.
[}

However, by writing € as 6'— 77:. , I and J can be easily solwved, being
related to I and J as defined earlier.

Thus I =8/3 Cos € andJ = X Sin¢ .

Substituting for I and J into equation A2.14 gives :

c, =-3/f-C,x8 Cose + x> C :rsme}
d 8{ 473 e "
c, =Cy Cse¢ -3 ®m  sine
a a 2 I A2.15

Further, as can be seen in equation A2.15, as NKC —» =©
Cds—’ Cd Cos &



168

A3.1
APPENDIX : 3
IN LINE FORCE QOEFFICIENTS
mpr%ent:ing'the horizmt;al wvelocity by :
U= -Um Cos 0O . A3.1
where § = 2% %, and swstituting into Morison's equation
results in : . \
F_ =4 cm( D ) sine -C, Cos [fosef - A3.2
2
%PUZD u T

vwhere F = force per wnit length acting on the body. In the analysis by
Keulegan and Carpenter (1958), they assumed that since the force is periodic
and the incident flow is symmetric, then F(&) = - F(9 +7); an assunption
that is not quite true or necessary. If this assumption is not made, the
results for C and C, as can be seen later are only slightly different.
Nevertheless, whether or not this assumption is made, the analysis is basically
the same, however assuming for the time being F (6) =- F(6 +x) slichtly
simplifies the algebra, and F can then be represented by :

%

= F =AlSin9+ A3 Sin 3& +A5 Sin 58 + sceee..
ngm!D , ;
+ Bl mse + B3 ms 39 + B5 ms 59 + ® 000000 A3.3

The coefficients A” and B, are then given by :

2K
An = l FS']'.n'ng de
x ¥pU’ D
0 | A3.4
B, = 1 fFCbs'ne 4o
2
K ¥P U, D
(2]
Since the drag term, Cos @ fCos & |/ in equaticn A3.2 is an even functimn
of 0 , this may also be represented by a Fourier Series as : A3.5
Cos 6 [Coso | = a, + a Cos® + a, Cos 26 + a5 Cos 30 +....

where the cocefficients a, are given by :

o) A .
a,,f Z .LCOSB lcos 6| Cosme de A3.6
) M=o [ro:s’ma de
BEquation A3.6 reduces to : a, = 0 for m even
B
a = ()* 8 ‘ for n odd,

~—z
m(m - 4)%
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thus equation A3.5 may be written as :
Cos o |Cos 6| =a, Cos@ + a; os 38+ag Cos 56 +..... a3.7

Equation A3.3 may be re-written as :

CF=Al Sin9+A381n 36 + Ag Sin 580 + ..evee.

+Bl (a )

— 1Cos® + a, Cos 360 + ag C0S 58 feeeer)
a, 3

- B

_l a3 Cw 39 -Bl a5 C(B 59 = eecccccoe

3 - al

+B3 Cos 36+ B5 COS 50 + ceveeee

=8in6 (A, +A, Sin 38 .
I Al _'%-—e— +A5 Sm 59 + o..oooo-)
n Sine
+ﬁ Cos € foos @ + (By - B, a3 )Oos36+(B5-Bla5)Ooss
a ———————
1 ay g |
+..'l..l. ) ’ ) A3l8
et B, _.* _
L =B By -Bjag _p’
a, 5 3
1

a
. 1
then equation A3.8 becomes :

CF =Sin9(Al +I-\3 Sin 30 +A55in53 . ) )

SIme Tsme
. 4 7
+B, Cos@foosef+By Cos 30 + B; S 50 + ceuees A3.9

Conparing equation A3.9 with A3.2 results in :

2 - . .
© Cm (UDT ) = Al +A3 Sin 36 +A5 Sin 58
m Sin 6 Sin ©

+.0..'. A3.10

and / /] ’ /

CD = = Bl' - B3' Cos 360 - BS' Cos 590 = ecesses A3.11
Cos 9 [Cos 6 ) Cos 8 [Cos 6

Byquations A3.10 and A3.11 are the basis for calculation of the drag and

inertia coefficients, but in general enly the first term of these series
are used, resulting in :

1<

Cm=(_U T)' B {UT) (FSinG ae A3.12

b ™
Al S R T
(7
\
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1K

/
and CD = -Bl =—Bl = =3 F Cos 26 de A3.13
—al—' 8 %fUmD
[}

Thus Cm and CD ) calculated in this manner, represents the weighted

averages over a cycle.

Had the assumption that ¥ () =-F (6 +X), not been made
then equations A3.10 and A3.11 would have become respectively

‘D _ . .
7€ cm(u—) -A1 + A, Sin 26 +A3sin36 + A4S:|.n49

mT Sm 6‘ Sin o Sj_rla +. ...M.l4

' / V4 Vi
and CD } =-Bl -B200529-B300539 -B4Cos46-B5('a;5-e

Cos#[Cosé/ Cos 6 fCos &)  Cosefcossf CoséfCosef

A3.15

Thus the commnly used expressions for Cm and CD ¢ 1.e. the first term
of the series as in equations A3.12 and A3.13 remain unchanged.



171

APPENDIX : 4
R.M.S. FORCE FROM MORISON'S BEQUATION
Substituting U= U Cos € into Morison's equation, where @ = JK{T/T
L (] .
results in : ‘
2
= - + in ©
-r Gy X %fz DU Cos¢[cos e/ c. TIZ'/D%_I'U”"Sm

2.1
= PCsé [Cos¢] + QSino
= - 2 = 2
where P CDx%€D'Um,Q.Cm KD 2 U
27T
The means square of equaticn 24.1 is :
) T
¥ =1 f(p? Cos?e [Cos e,"ZA+Q" Sin? & + 2PQ Sin. & (a1 O, ]cbse/)a{f:
' T
o 24.2
Now ; Cos’&fCoso,f”=Cos4a=l (Cos 4 +1 + 4 Cos 26+ 2)
o 8
. _[Cos40 = 37
o 4
Sin? 20= 1 - Cos 26
- 2
I.. .[SJ.-II2 20— —A—'—
o -
and 2 Sin6Cos 6 [Cos & =Sin 26 [Cos 6|
- -
fSin 26 foos | =0
o
Therefore Equation 24.2 may be re-written as :
I
o= 21 (@ wss +0 sinfo+POSIn 26 [wse]|) T at
T 2x
0 P
= 1 (P> 3K +KQ ) o
2K 4
=3 PL  A4.3

Swbstituting for P> and @ gives

4 4

F = 3 2xlp*prud+l crxinp2 2
3 D *3 m g m G



S Lute (e esie))

8 uT
_ 4 4 z
= /; U, D? ( % CD’ +r sz NKC)
8
= 2
,o U D ( c’ e+ 12 C ) Ad.4
Non-dimensionalising by 1 (0 Um’ D then gives :
: 2
’ '
(Lpw D) = 2 = 1 3 c2 NKC +xc2
Al (CFR[VS) 2 NRC {E D *
_ | 4
b N e =/ 3¢ e + 02
2k | ¢

2 2
( 2fU D A4.5

Non-dimensionalising by 1 f D> results in :
2 =
’ :
% )2 = F = 2 4
( RS 175 )L NKC (% CD NKC* + 7 sz) 2.6

2
Th =
us 'CF CFRMS NKC 2.7

114



APPENDIX : 5

LINE FORCE CCEFFICIENTS - DATA
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TABLE : CIRCULAR CYLINCER
451 D=1.5625" : Cm =6.513
: o
NKC FE No.x 10 = G, o % s CF o P
4.78 2.13 1.72 1.42 2.65 3.74 65.1
6.79 3.03 1.58 1.53 1.87 2,55 70.8
7.67 3.42 1.41 1.72 1.66 2.18 71.7
8.55 3.82 1.28 1.75 1.50 1.94 9.4
8.92 3.98 1.12 1.93 1.49 2.15 0.4
9.17 4.10 1.13 2,01 1.52 2.15 - 0.4
10.05 4.49 1.03 1.89 1.36 2.01 4.3
10.05 4.49 1.08 1.99 1.44 2,21 0.2
10.43 4.66 1.03 2.02 1.43 2.20 - 1.3
11.06 4.94 c.98 2.02 1.39 2.17 0.2
11.18 4.99 0.90 1.92 1.32 2.04 0.4
11.44° 5.11 0.89 2.00 1.35 2.15 1.3
12.32 5.50 - 0.97 1.91 1.30 1.99 1.3
12.57 5.61 0.81 1.97 1.30 2.12 0.4
13.19 5.89 0.89 1.90 1.27 2.04 1.3
14.07 6.29 0.99 1.81 1.22 1.93 1.3
14.33 6.40 0.84 1.78 1.18 1.90 - 1.3
14.83 6.62 0.99 1.70 1.15 1.82 2.2
14.95 6.68 0.85 1.80 1.19 1.97 - 2.2
16.46 7.35 0.93 1.63 1.07 1.63 2.2
16.71 7.46 0.90 1.58 1.04 1.64 - 1.3
19.35 8.64 0.97 1.67 1.08 1.65 20.2
19.98 8.92 0.97 1.62 1.05 1.66 17.6
20.11 8.98 1.09 1.57 1.03 _1.61 20.2
25. 89 11.56 1.06 1.49 0.95 1.51 . 8.2
26.64 11.90 1.03 1.48 0.94 1.48 7.7
31.92 14.26 1.09 1.40 - 0.89 1.39 3.7
32.42 14.48 1.11 1.43 0.91 1.41 7.8
32.92 14.70 1.10 1.39 0.88 1.36 2.2
37.82 16.89 1.02 1.41 0.88 1.36 5.6
38.45 17.17 1.03 1.38 0.86 1.33 8.2
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NKC Re No. x 10 Cm CD CFRMS CFMAX 5
43.73 19.53 0.98 1.36 0.85 1.31 6.4
43.86 19.59 1.07 1.34 0.84 1.71 4.7
44.61 19.92 0.97 1.33 0.83 1.27 - 0.4
47.12 21.05 - 1.07 1.35 0.84 1.33 2.2
47.88 21.38 0.99 1.35 0.84 1.30 1.7
50. 39 22.51 1.04 1.32 0.82 1.26 0.0
TABLE 1.5"D  FLAT PLATE
, 421.5 D/w = 6.25%
NKC Re No x 10 c, o q%m qhw go.
3.80 1.60 1.46 5.19 4.20 7.23 30.0
6.02 2.50 1.35 3.77 2.80 4.58 28.7
6.15 2.59 1.35 3.91 2.84 4.66 35.7
7.33 3.09 1.43 3.86 2.73 4.78 27.4
7.98 3.37 1.41 3.62 2.56 4,14 40.0
9.03 3.81 1.28 3.23 2.22 3.50 37.7
9.16 3.86 1.36 3.22 2.23 3.83 28.3
9.69 4.08 1.29 3.19 2.17 3.59 39.1
10.08 4.25 1.24 3.07 2.06 3.41 31.4
10.47 4,41 —1.26 3.04 2.05 3.51 34.3
10.60 4.47 1.31 3.11 2.10 3.62 37.9
11.26 4.74 1.16 3.03 1.99 3.27 32.2
11.52 4.85 1.17 3.00 1.98 3.17 39.4
11.91 5.02 1.08 2.92 1.91 3.32 33.1
12.70 5.35 0.91 2.83 1.82 2.83 39.1
12.83 5.41 0.92 2.98 1.90 3.06 35.7
14. 40 6.07 0.69 2.74 1.72 2.72 35.7
14.66 6.18 0.70 2.82 1.76 2.84 33.1
14.79 6.23 0.62 2.86 1.78 2.84 31.4
16. 89 7.12 0.51 2.79 1.72 2.75 29.6
17.15 7.23 0.48 2.66 1.64 2.65 28.8
21.07 8.88 0.48 2.70 1.65 2.64 20.2
21. 34 8.99 0.57 2.62 1.61 2.56 23.6
23.95 10.09 0.72 2.54 1.56 2.43 18.5
26.05 10.98 1.05 2.62 1.61 2.43 5.6
28.27 11.92 1.29 2.42 - 1.50 2.28 9.9
32.07 13.52 1.34 2.48 1.52 2.31 12.9
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NKC ReNo. x10 C_ c, G G 2
32.72 13.79 1.39 2.41 1.49 2.24 13.3
34.82 14.67 1.41 2.36 1.45 2.21 12.9
37.83 15.95 1.40 2.35 1.45 2,20 0.4
38. 48 16.22 1.45 2.26 1.39 2.10 9.0
41.23 17.38 1.49 2,23 1.37 2.07 6.0
42,94 18.10 1.49 2.30 1.41 2.13 3.9
43.33 18.26 1.43 2.22 1.36 2.07 4.7
44.77 18.87 1.52 2,22 1.36 2.05 6.0
46.21 19. 48 1.58 2.19 1.34 2.04 6.9
46.47 19,59 1.45 . 2.21 1.35 2.03 2.6
46.60 19.64 1.47 2.23 1.36 2.09 3.9
48.04 20.25 1.49 2,18 1.33 2.02 3.4
48.43 20,41 1.71 2.16 1.33 2,01 3.0

TABLE 3 3"D FIAT PLATE

3 1685.8 : D/w =12.5 )

NKC R No.x 10 C_ c, G %, 3
3.08 5.19 1.46 6.52 5.25 8.76 24.4
3.34 5.63 1.46 5.85 4.75 7.96 27.1
3.80 6.40 1.50 5.41 4.35 7.54 28.3
3.86 6.51  1.53 5.38 4.35 7.66 32,2
4.19 7.06 1.51 5.03 4.01 7.00 28.8
4.39 7.39 1.47 4.97 3.86 6.63 32,2
4.45 7.50 1.55 5.06 3.96 6.72 28.3
4.65 7.83 1.60 4.87 3.86 6.74 34,8
4.91 8.28 1.64 4.90 3.82 6.46 32,2
4.97 8.39 1.56 4.87 3.72 6.34 31,7
5.17 8.72 1.65 4.74 3.68 6.24 33.9
5.50 9.27 1.61 4.66 3.52 5.91 33.6
5.56 9.38 1.59 4.56 3.44 5.70 34,3
5.83 9.82 1.64 4.39 3.34 5.63 34,8
6.28 10.58 1.63 4.34 3.22 5.33 38.2
6.28 10.58 1.67 4.40 3.27 5.45 33,1
6.81 11.48 1.59 4.14 3.02 5.13 33.1
7.33 12.36 1.69 4.11 2,99 5.10 33.6
7.40 12.47 1.59 4.08 2.93 5.20 29.1
8.12 13.69 1.57 3.91 2.76 4.52 38.5
8.97 15.12 1.55 3.81 2.63 4.37 36.9
9.23 1.48 3.77 2.58 4.60 27.0

15.56
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NKC Re No x 10 Cﬁ\ QD CFRMS C%}gn( iro
11.52 19. 42 1.26 3.52 2.30 3.81 34.3
11.52 19.42 1.45 3.45 2.30 3.88 34,8
12.89 21.73 0.92 3.39 2.16 3,62 31.5
13.16 22.19 0.93 3.45 2.18 3.59 33,1
14.20 23.94 0.82 3,31 ©2.07 3.57 22.4
14.27 24.06 0.77 3.38 2,11 3.49 30.5
16.23 27.36 0.60 3.30 2.03 3.37 29.3
.16.95 28.57 0.47 3.30 2.03 3.37°  25.4
17.28 29,13 0.48 3.23 1.98 . 3.31 19.0
17.93 30.23 0.53 . 3.24 1.99 3.28 16.4
18. 85  31.78 0.40 3,23 1.97 3,22 21.5
18.98 32.00 0.41 3,18 1.94 3.17 19.8
19.90 33.55 0.41 3.30 2,01 3.25 19.0
19.96 33.65 0.49 3.24 1.97 3.14 16.8
20.68 34,86 0.46 3,17 1.93 03,13 . 14.0
.3 WBIE:4 1"DHEATEAME : A=/850 : %J = 417!
NKC Re No x 10 Cm CD CFmvs CFMAX fa
5.50 1.04 1.51 4.61 3.42 5.76 30.0
8.84 1.67 1.28 3.26 2,24 3.76 31.7
9,42 1.79 1.28 3.38 2,27 3.79 30.9
9.72 1.84 1.24 3.14 2,13 3.56 37.7
10. 80 2.04 1.20 2.96 1.97 3.11 30.0
11.78 2,24 1.13 3.15 2.04 3.41 32.9
11.88 2.25 1.23 2.89 1.91 3.19 36.9
13.35 2.52 0.94 2.74 1.75 2.87 32.2
14.14 2.67 0.87 2.81 1.77 2.94 31.4
14.14 2.68 0.90 2.97 1.88 3,17 30.0
15.12 . 2.86 0.74 2.73 1.70 2.75 25.4
16.10 3.04 0.78 2.68 1.67 2.74 . 29.6
16.30 3.09 0.73 2,78 1.73 2.89 27.4
16. 89 3.19 0.85 2.64 1.65 . 2.62 27.9
17.87 3.38 0.70 2,57 1.59 2.56 26.2
18.26 3.47 0.78 2.76 1.71 2.81 25,7
18.65 . 3.52 0.73 2.63 1.63 2.57 17.6
20,22 . 3.82 0.73 2.51 1.55 2,52 21,9

20.42 3.86 0.87 2.52 . 1.56 2.46 21,1
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-3 g
- e
NKC Re.No. x 10 Cm CD CFR\G CFMAX E
20.42 3.88 0.83 2.65 1.64 2.60 18.0
21.40 4.05 0.95 2.45 1.52 2.38 20.2
22,78 4.32 - 0.98 2.57 1.59 2.48 20.2
22,97 4.34 0.95 2.47 1.52 2.35 21.9°
24.45 4.62 1.11 2.48 1.54 2.28 9.9
25.72 4.88 1.36 2.59 1.61 2.42 15.9
©.26.51 5.01 1.21 2.43 1.51 2.25 ' 12.5
29.45 5.57 1.46 2.26 1.41 2.13 13.3
32.01 6.08 1.58 _2.46 1.53 2.30 13.3
33.38 . 6.31 1.47 2.23 1.39 2.08 11.6
37.21 7.03 1.58 2.19 1.36 2,01 11.6
39.47 7.49 1.65 2.30 - 1.42 2.09 9.0
42,80 8.09  1.45 2.09 1.28 1.92 5.6
46.53 8.80 1.55 2.08 1.28 1.8 5.6
49.68 9.43 1.86 2.21 1.36 1.98 9.0
52.62 9.95 1.60 . 2.04 1.26 1.84 - 1.3
57.92 11.00 1.73 2.12 1.30 1.93 6.4
59. 89 11.30 1.65 1.96 1.20 1.79 5.6
66.17 12.60 1.78 2.10 1.28 1.93 8.2
73.43 13.90 1.98 2.04 1.25 1.86 3.0
TABIE : 5 DIAMOND SECTION
p =422,7 : D=L15" : Df, =6.25
- 3 o
NKC Re.No. x 10 Cm CD CFRVS CFMAX [
4.84 2.05 1.18 3.65 2.81 4.51 35.1
6.15 2.60 1.08 3.24 2.32 3.64 32.0
6.54 2.77 1.04 3.21 2.25 3.62 24.9
7.46 3.15 0.99 3.21 2.18 3.54 38.2
7.85 - 3.32 1.02 2.88 1.99 3.28 41.1
8.25 3.49 0.98 2.99 2.01 3.26 36.5
8.90 3.76 0.89 2.99 1.96 3.22 36.5
9.69 4.09 0.88 2.89 1.88 3.06 35,7
10.21 4.32 0.77 2.81 1.80 2.82 27.9
10.47 4.43 0.73 2.79 1.78 2.78 30.5
10.86 4,59 0.71 2.73 1.74 2.59 25.4
11.52 T 4.87 0.64 2.69 1.70 2.39 23.7
11.91 5.04 0.62 2.60 1.65 2.37 15.0

12,17 5.15 0.66 2.59 1.64 2.31 24,5
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NKC FeNo. x10 G c CFRIVS Cme fo
13.09 5.53 0.54 2.46 1.55 2.23 6.9
13.09 5.53 0.55 2.51 1.58 2.31 3.9
13.74 5.81 0.68 2.46 1.56 2.25 12.1
14.79 6.25 0.81 2,32 1.47 2.21 25.8
15.18 6.42 0.75 2.25 1.43 2.12 15.0
15.71 6.64 0.85 2.37 1.50 2,53 6.0
17.28 7.30 0.88 2.31 1.46 2.40 12.1
17.80 7.53 0.75 2,34 1.46 2.47 16.8
18.98 8.02 0.72 2,30 1.44 2.46 15.5
21.86 9.24 0.80 2.23 1.39 2.47 15.9
23,95 10.13 0.94 2.11 o132 2.22 17.6
26.83 11.34 1.01 2.12 1.32 2.08 14.6
- 27.10 11.45 1.04 2.18 1.35 2.11 17.1
27.88 11.79 1.01 2.20 1.36 2.25 20.2
28.14 11.90 1.10 2.10 1.31 2.04 18.5
. 29.45 12.45 1.20 2.16 1.34 2.15 24.1
-32.46 13.72 1.25 1.99 1.24 1.89 5.2
33.25 14.05 1.23 2,06 1.27 1.92 5.2
35.74 15.11 1.20 2.03 1.25 1.93 8.5
39.01 15.49 1.14 1.98 1.21 1.82 8.6
39.14 16.54 1.18 2.02 1.24 1.84 7.3
41.76 17.65  1.24 1.95 121 1.87 2.9
43,85 18.53 1.29 1.91 1.17 1.77 0.9
45.81 19.37 1.21 1.98 1.22 1.94 2.1
47.39 20.03 1.16 1.89 1.16 1.75 0.9
47.78 20.20 1.36 1.94 1.19 1.79 1.7
50.27 21.25 1.26 1.86 1.14 1.75 2.6
TABIE : 6  SQUARE SECTION

_3 B =2086 : D= 106" 4.42% .

NKC R.No. x10 C_ o CFH/S Cme f
5.92 1.22 2,51 1.68 3.14 4.48 55,7
7.59 1.60 2.75 1.45 2.68 4.00 63.4
8.15 1.68 2.70 1.86 2.57 3.69 60.6
9.44 " 2.00 2.64 1.51 2.16 3,22 61.7
9.81 2.02 2.65 1.67 2.14 3.20 53.7
10.18 2.10 2.56 1.60 2.01 2.93 55.4
10.92 2.25 2.50 1.60" 1.87 2.74 64.6
11.11 2.35 2.63 1.55 1.90 2.97 64.9
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NKC Re.No. x 10 Cm CD CFRJS CFMAX é—
11.85 2,44 2,57 1.59 1.80 2.71 59.4
12.03 2.54 2.63 1.46 1.76 2.66 54.6
12.77 2.63 2.65 1.59 1.74 2.61 56.0
12.96 2.67 2,71 1.51 1.72 2.50 62.3
13.33 2.74 2.71 1.55 1.70 2.61 58.6
15.18 3.12 2.80 1.57 1.60 2.34 66.6
16.11 3.40 2.62 1.41 1.42 2.07 62.3
16.48 3.39 2.75 1.54 1.49 2.18 66.0
17.03 3.60 2.62 1.38 1.36 1.99 55.1
17.59 3.62 2.77 1.58 1.45 2.20 63.5
17.77 3.76 2,72 1.47 1.39 2.03 58.5
18.98 3.91 2.71- 1.57 1.37 1.99 64.0
19.99 4.23 2.56 1.42 1.24 1.81 59,7
20.55 4.23 2.73 1.51 1.30 1.87 59.4
22,40 4.61 2.66 1.47 1.21 1.71 48.7
22.96 4.85 2.65 1.43 1.18 1.65 41.3
23.23 4.78 2.72 1.49 1.21 1.74 50.0
25.55  5.26 2.56 1.48 1.13 1.59 54.3
26.47 © 5,60 2.69 1.49 1.14 1.58 47.4
27.95 5.75 2.54 1.52 1.11 1.54 43.9
29.99 6.17 2.56 1.53 1.10 1.53 43.1
32.40 6.85 ~2.51 1.56 1.09 1.49 37.4
37.02 7.62 2.19 1.57 1.03 1.44 27.5
38, 88 8.22 2.25 1.64 1.07 1.50 20.2
40.73 8.38 2.25 1.60 1.04 1.42 19.8
45.35 9.33 2.07 1.65 1.05 1.48 10.3
50. 35 10. 36 2.00 1.65 1.03 1.51 6.0
55.17 11.35 1.75 1.69 11.04 1.58 4.3
58.13 11.96 1.83 1.69 1.05 1.59 3.4
58. 31 12.32 1.99 1.70 1.06 1.59 3.4
62.02 12.76 1.61 1.70 1.04 1.62 3.4
64.98 13.37 1.68 1.74 1.07 1.68 - 1.7
68.12 14.02 1.53 1.73 1.06 1.69 1.7
69.61 14.71 1.79 1.73 1.07 1.68 1.7
70.53 14.52 1.63 1.74 1.07 1.72 2.6



APPENDIX : 6

VORTEX POSITIONS DURING A (YCLE
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TABLE : 1 THE CIRCULAR CYLINDER, BETA (8 ) = 451
CYCLIC REGION, NKC = 20.42 ROTATION ANTI-CIOCKWISE.
p = DIAMETER OF CYLINCER.
FRAME| TIME VORIEX POSTTION
No. t/T x/D y/D SIQN | EDGE COMMENTS
1 0.99 | -1.90| 0.8 |- wve| Top IH (This vortex is now very weak)
1 0.99 - 1.10 0.15 | + ve| Bottam IH
1 0.99 - 0.40 0.50 | - ve| Top IH (This vortex is just starting
to grow)
2 0.02 - 0.50 0.40 | - ve| Top IH
2 0.02 - 1.10 0.15 | + ve| Bottom IH |(This is shed about now)
3 0.04 | - 1.40| - 0.25 | + ve| Bottom IH
3 0.04 | -0.60] 0.30 |- we| Top1H
4 0.06 - 1.65] - 0.30 | + w| Bottom IH
4 0.06 - 0.65 0.10 | - w]| Top IH
5 0.09 - 1.90{ - 0.35 | + v | Bottam IH
5 0.09 - 0.75 0.0 - ve| Top IH
6 0.11 - 2.05| - 0.55 | + ve| Bottom IH
6 0.11 | - 0.85| - 0.05 | - ve| Top IH
7 0.13 - 2.25] - 0.75 | + ve] Bottom IH
7 0.13 - 0.70f{ - 0.10 | - ve| Top IH
8 0.16 - 2.40| - 0.8 | + wve| Bottom IH
8 0.16 - 0.8 0.15 | = ve| Top IH
9 0.18 - 2,35| = 0.95 | + ve| Bottom IH
9 0.18 - 0.70 0.35 | = ve| Top IH
10 0.20 - 2.55{ - 0.90 | + ve| Bottom IH
10 0.20 - 0.70 0.40 | - ve| Top IH ~ (Starts to split up.and goes
11 | 0.23| -2.3]-1.1 | +ve| Bottam1a ﬂmu;gi?ne;u}}?ae cylinder to th
n 0.23 Vortex fram Top IH no’ squashed
aqainst cylinder.
12 0.25 - 2,05 - 0.8 + ve| Bottom IH [(The top R.H. vortex still
12 0.25 (squashed against the cylinder
(as flow about to reverse.
(Position on other side of
(cylinder indeterminate)
13 0.27 - 1.95] - 0.90 | + ve| Bottom IH
14 0.30 - 1.60] - 1.05 | + ve| Bottom IH
15 0.32 - 1.45] - 1.50 | + ve| Bottom IH
16 0.34 - 1.20] - 1.35 | + we] Bottom IH
17 0.37 - 0.85] - 2.05 | + ve| Bottom IH




TABLE :

181

-~

1, Cntinued..
FRAME| TIME VORTEX POSITION
No. (t/T) x/D v /D SIN| ED&E QOMMENTS
18 0.39 - 0.45]| - 2.35 | + ve| Bottom IH
19 0.41 0.00| - 2.8 | + ve| Bottom IH| ((This vortex started growing
(some time before, but only
19 0.4% 0.70 0.15 | + ve|] Top K /{(now is its position clear) }
20 0.44 0.75 0.25 | + ve| Top R
20 0.44 (This vortex from th¢ Bottom Ri|  out of view, but exists wp
now goes-| t/T = 0.5)
21 0.46 0.85 0.20 | + ve| Top HH
22 0.48 0.95 0.10 | + ve| Top K
23 0.51 1.15 0.20 | + ve| Top M (This vortex is now shed)
24 0.53 1.50 0.20 | + ve| Top HH
24 0.53 0.60] = 0.10 | - ve| Bottom Ri| (Just beginning to grow)
25 0.55 1.70 0.20 | + ve| Top W
25 0.55 0.75 0.00 | - ve| Bottom K
26 0.58 2.10 0.50 | + ve| Top K
26 0.58 0.95 0.50 | - ve| Bottom K
27 0.60 2.55 0.50 | + ve| Top R
27 0.60 0.75 0.50 | - ve| Bottom RI
28 0.52 2.70f 0.75 | + ve] Top Ri
28 0.62 1.05 0.40 | - ve| Bottam R
29 0.65 2.90 0.85 | + ve| Top M
29 0.65 1.15 0.35 | = ve| Bottom R
30 0.67 2.85 1.05 | + ve| Top K
30 0.67 0.95 0.25 | - ve| Bottom RH
31 0.69 3.05 1.00 | + ve| Top K
31 0.69 0.90 0.40 | - ve| Bottom Ri]) (This is the same vortex whid
31 0.69 0.35 0.75 | - ve| Bottam K } (appears to split up)
32 0.72 2.90 0.95 | + w| Top M .
32 0.72 0.35 0.80 | = ve| Bottom FH
32 0.72 1.05| - 0.20 | - ve| Top IH {(Sone of this vorticity came
(from the Bottom RH.)
33 0.74 - 0.10 0.90 | - ve| Top IH
33 0.74 3.00 1.20 | + ve| Top K
34 0.76 3.05 1.50 | + ve| Top K
34 0.76 - 0.30 0.80 | - ve| Top IH
35 0.78 2.70 1.65 | + ve| Top K
35 0.78 The yortex from the top IH is no longer distinct,it is very

weak.
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TABIE : 1, Oontinued...
FRAME | TIME | VORTEX POSITICN
No. (t/1| x/D _y/D SIGN |EDGE COMMENTS
36 0.81 2.95| 1.75 |+ve [Top M
37 0.83 2.20 | 2.00 {+ve [Top R
38 0.85 1.95| 2.25 |+ w |Top I
39 0.88 1.40 2,60 |+ wve [Top HH (This vortex then disappears
from view)
40 0.90 | -0.65) 0.15 |+ ve |Bottom IH | (New vortex forming)
41 0.92| -0.8 | 0.10 |+ ve |BottamIa
41 0.92| -0.8] 0.70 |- ve |Top IH
42 0.95| ~-1.30{ 0.8 |- ve |Top 1H
42 0.95| =-0.80) 0.10 |+ ve |Bottom IH
43 | 0.97| -1.75| 0.90 |- ve |Top 1
43 0.97 | -0.90 | 0.15 |+ ve |Bottom IH
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TABLE : 2 THE 3" DIAMETER FLAT PLATE, f = 1685.8
CYCLIC REGION - NKC = 15.13,
FOTATION ANTI-CLOCKWISE
"D = DIAMETER OF PLATE
FRAME | TIME VORTEX POSITION
No. (£/T) x/D v /D SIN | EDGE COMMENTS
1 |0.99 [-0.75 | -0.18 |+w | Bottom1IH
2 0.02 |- 0.84 |-0.31 |+ve | Bottom1n
3 0.04 |- 1.06 - 0.22 . |+ ve Bottom LH This vortex is now shed
3 0.04 |- 0.49 0.40 |- ve Top IH New vortex growing
4 0.06 |- 1.15 | -0.35 |+w | BottomIn
4 0.06 |- 0.58 0.31 |- ve |'Top1H
5 0.09 |[-1.33 | -0.44 |+ve | Bottom1im
5 0.09 |-0.62 | -0.40 [-ve | Top1n
6 0.11 |- 1.15 | - 0.58 |+ ve - | Bottom IH
6 0.11 |- 0.62 0.13 {- w | TopIH
7 0.13 |- 1.15 | - 0.80 |[+ve | BottomIH
7 0.13 |- 0.58 0.04 |-ve | Top1H
8 0.16 |-1.33 | -0.84 |+ve | BottomIH
8 0.16 [- 0.66 0.00 {-ve | Top1d
9 0.18 |- 1.46 | - 0.89 |[+ve | Bottom1In
9 0.18 |- 0.58 - 0.09 |- ve Top IH
10 0.20 |- 1.64 | - 0.89 [+ Bottom IH
10 0.20 |- 0.40 0.13 |- ve | Top 1A
11 | 0.23 [-1.55 | -1.33 |+ve | Bottam1IH
11 0.23 |-0.66 | -0.09 |-ve | Too 1H
12 | 0.25 |-1.37 | -1.33 |+ve | BottomIx
12 0.25 |-0.53 | 0.00 |-wvwe | Top1n
13 0.27 |-1.68 | - 1.29 |+ve | Bottom 1H
13 | 0.27 |-0.53 | -0.18 |-ve | Top1n
14 0.30 |-1.42 | - 1.42 |+ve | BottomIH
14 | 0.3 |-0.40 | -0.18 |-ve | Top 1H
15 0.32 |-1.29 | -1.51 {+ve { BottomIH
15 | 0.32 [-0.27 [ -0.35 |-v | Top1in
16 0.3 |-1.02 | -1.73 {+ve | BottomIH
16 | 0.34 |The vorttx from the top IH edge is ngw squashed against the pli
17 | 0.37 |-0.66 | -1.91 |+ve [ Bottem u'{\{(and its position is not
18 0.39 |-0.40 | - 2.08 |+ ve- | Bottom IH ||(identifiable) }




TABIE : 2, Continued..
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FRAME TIME | VORTEX POSITION

No. (t/T) x/D v/D SIN| EDGE COMMENTS

18 0.39 |- 0.44| - 0.66 | - ve| Bottom R{,\ f('lhis vortex appears to
18 0.3 | 0.18| 0.35 |+ve| Top R, é‘;‘;‘ﬁesg; ;’H"re%;;t%’}

* (New vortey growing here)

19 0.41 }|-0,31| - 2.22 | + ve| Bottom IH

19 0.41 0.58{ - 0.58 | - ve| Bottom RKH

19 0.41 0.31] 0.27 | +ve| Too W

20 0.44 0.18{ - 2.26 | + ve|{ Bottam IH

20 0.44 | Vortex|from BottTom Rl ledge is weak |and its position is not
20 0.44 | 0.4 0.22 [ +ve| Top m clear)
21 0.46 0.71{ - 2.35 | + ve| Bottam IH |(This wvortex now goes out ¢

(view but decays by about
(t/T =~ 0,55)

21 0.46 1.55) = 0.62 } = ve| Bottom R |(Weak vortex - position
21 0.46 | 0.58] 0.18 | + ve| Top m approximate)
22 0.48 0.71 0.09 | + ve| Top HH (Vortex about to be shed)
22 0.48 1.68] - 0.62 | - ve| Bottam R | (Approximate position)

23 0.51 0.8 0.13 | + ve| Top HH

23 0.51 1.86 0.53 | - ve| Bottom R |(Vortex almost totally
24 0.53 | 0.98] 0.18 | +ve| T m diffused)
24 0.53 0.31f - 0.40 | - ve| Bottom K (Né;v vortex growing heré)
25 0.55 1.06 0.22 | + v Top

25 0.55 0.31] - 0.18 | - v} Bottom R

26 0.58 1.11 0.40 | + ve| Top M

26 0.58 0.27] - 0.22 { - ve| Bottom HH

27 0.60 1.24 0.49 | + ve|] Top K1

27 0.60 0.44] - 0.18 | = ve| Bottom K

28 0.62 1.33 0.53 | +ve| Top HH

28 0.62 0.40) - 0.13 | - ve| Bottom KH

29 0.65 1.46 0.62 | +ve| Top Ri

29 0.65 0.44{ - 0.04 { - ve| Bottom Ri

30 0.67 1.64] 0.66 | + ve| Top R

30 0.67 0.53{ 0.09 | - ve| Bottom FH

31 0.69 1.51 0.89 | +vw| Top M

31 0.69 | 0.58] - 0.04 | - ve| Bottam RH

32 0.72 1.68 0.93 | +we| Top K

32 0.72 0.53 0.00 | — ve] Bottom RH .
33 . 0.74 1.86] 1.02 | +ve| Top M

33 0.74 0.40 0.09 | - ve|] Bottam M4

34 0.76 1.64] 0.98 | + vel Top W

34 0.76 0.49] - 0.13 | = ve| Bottom R




TABIE : 2, Continued..
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FRAME TIME| VORTEX POSITICN
No. (t/T) x/D | y/D SIN | EDGE COMMENTS
35 0.78 1.68 1.06 |+ v | Top K
35 0.78 0.31 0.00 |~ wve | Bottom RI| (Zbout to go over the top
L.H. edge)
36 0.81 1.42 1.06 | + ve| Top HH
36. 0.81] - 0.22 0.44 |- ve| Top IH (This vortex contains
_ (vorticity from the vortex
37 0.83] 1.15] 1.24 |+ve|Tmop ma | (@t the Bottom Ri edge)
37 0.83] -~ 0.35 0.53 | - ve| Top IH
38 0.85 0.84 1.51 | +we | Top K
39 0.88 0.62 1.73 | + ve| Top K
39 0.88f - 0.84 0.53 | - ve| Top IH
40 0,90 0.22 1.95 | + ve| Top K1 (This wortex then moves out
. (of view but decays by t/T
. (=1.0)
40 0.90] - 1.02 0.66 |- wve| Top IH (This vortex almost conplet
(ly diffused)
40 0.90| - 0.18f - 0.35 | + ve| Bottam IH| (New vortex forming)
41 0.92| - 0.35] - 0.09 | + ve| Bottom IH
42 0.95| - 0.44| - 0.22 | + ve| Bottom IH
43 0.97} - 0.53] - 0.27 | + ve| Bottom IH
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TABLE : 3 THE 1.5" DIAMETER FLAT PLATE, £ = 421.5
CYCLIC REGION - NKC = 15.18
ROTATION CLOCKWISE
D = DIAMETER OF PLATE
FRAME TIME VORTEX POSITION
No. (t/T x/D v/D SI&N| EDGE COMMENTS
1 0,99 | -0.71] 0.22 |- ve| Top IH
1l 0.99 - 1.90| - 0.69 | + ve| Top HH (Vortex now very weak,positim
approximate)
2 0.22 - 0.51] - 0.54 | + ve| Bottom IH|( New vortex forming)
2 0.22 | -0.83] 0.20 | - ve| Top IH
3 0.04 | -0.97| 0.14 | - ve| Top 1H
3 0.04 | - 0.49] - 0.41 | + ve| Bottom IH
4 0.06 | - 0.43| - 0.43 | + ve| Bottom IH
4 0.06 | - 0.94] 0.31 | - ve| Top IH
5 0.09 { - 1.05 0.32 |- ve| Top 1H
5 0.09 | - 0.43] - 0.30 | + ve| Bottom IH
6 0.11 - 0.43] - 0.35 | + ve| Bottom IH
6 0.11 | - 1.08 0.43 | - ve| Top IH
7 0.13 | -1.16] 0.57 { - ve| Top IH
7 0.13 | - 0.49] - 0.20 | + ve| Bottom IH
8 0.16 | - 0.45| - 0.24 | + ve| Bottom IH
8 0.6 { - 1.17| 0.69 | - ve| Top IH
9 0.18 { - 1.20] 0.80 | - ve| Top 1H
9 0.18 | - 0.45| - 0.04 | + ve| Bottom IH
10 0.20 | - 0.45| - 0.09 | + ve| Bottom 1H
10 0.20 -1.12 0.8 | - ve| Top IH
11 0.23 | -1.13] 0.94 | - we| Top 11
11 The vyortex nog starts {to gojover to the {:op R.H. edge of the plate.
. ' Position unclear.
12 0.25 | - 0.68] - 0.43 | + ve| Bottom 1a |
12 0.25 | . 0.30] 0.46 | +ve| Top B |(This vortex contains vorticity
_ (from the Bottom IH edge)
12 0.25 | -1.19] 0.91 { - ve| Top IH ’
13 0.27 | - 1.08] - 0.97 | - ve| Top 1H
14 0.30 | -0.94] 1.15 | - ve| Top 1A
15 0.32 | -0.73} 131 |-ve|Tpm |
15 0.32 |~ 0.38] 0.66 | + ve] Top ”  |(The position of this vortex
i ) (was not clear in frames 13 & ]
16 0.34 0.66] 0.74 | + ve| Top RI
16 0.3 | -0.56| 1.47 | - ve| Top 11
17 0.37 | -0.29] 1.79 | - ve

Top 1IH
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TABIE : 3, Continued..
FRAME | TIME | VORTEX POSITION

No. (t/T) x/D v /D SIGN| EDGE COMMENTS

17 0.37 0.83) 0.74 | +ve| Top R

18 0.39 1.07| 0.8 | + ve| Top

18 0.39 0.04] 2.03 | - ve| Top IH

18 0.39 0.35| - 0.35 | = w| Bottaom Ri |New Vortex growing here.
19 0.41 0.52| - 0.32 | - ve| Bottom R ' :

19 0.41 0.44| 2.14 | - ve| Top 1H

19 0.41 1.46/ 0.85 | +ve| Top M

20 0.44 1.70| 0.86 | + ve| Top ®i

20 0.44 1.01 2.33 | - ve| Top 1H

20 0.44 0.58| - 0.26 | - ve| Bottom mi

21 0.46 0.68] - 0.30 | - ve| Bottom ma

21 0.46 1.24| 2.35 | - ve| Top 1H

21 0.46 2.32| 1.24 | +ve| Top ® |fimhis vortex is now weak and i
22 0.48 2.470  1.01 | +we| Top mu /{Eggsiﬁggn;hféliﬁfcgﬁm
22 0.48 1.74 2,50 | - we| Top IH « ('Ii}is vortex then goes.out of

(view but by t/T=~0.5 is alnmos

22 0.48 0.89| - 0.31 | - ve| Bottam R |\(diffused)

22 0.48 0.61 0.43 | + ve| Top RH New vortex forming.

23 0.51 1.01| - 0.38 | - ve| Bottom ®I '

23 0.51 0.63] 0.35 | + ve| Top M

24 0.53 0.67] 0.22 | + ve| Top m

24 0.53 1.12| - 0.46 | - ve| Bottom Ri

25 0.55 1.16 - 0.61 | = ve| Bottom Ra

25 0.55 | "0.71} 0.14 | + ve| Top R

26 0.58 0.69] 0.04 | + ve| Top mu

26 0.58 1.31] - 0.68 | - ve| Bottom mi

27 0.60 1.45| - 0.87 | - ve| Bottom i

27 0.60 0.72] 0.00 | + ve| Top ®

28, 0.62 0.64] - 0.05 | + ve| Top R

28 0.62 1.55| - 0.90 | - ve| Bottom mi

29 0.65 1.60| - 1.04 | - ve| Bottom m

29 0.65 0.76f - 0.20 | + ve| Top HH

k) 0.67 0.76| - 0.20 | + ve| Top R

30 0.67 1.70| - 1.10 | - ve| Bottom R

31 0.69 1.84] - 1.19 | - ve| Bottom m

31 |- 0.69 0.76] - 0.20 | + ve| Top

2 0.72 0.76] 0.02 | +ve| Top ®

32 0.72 1.8 - 1.30 - ve Bottom Ri



TABLE: 3, Continued..
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FRAME | TIME VORTEX POSTTION :

No. (t/T) | %/D v /D SIGN | EDGE COMMENTS

33 0.74 1.82 | - 1.42 |- we | Bottom K

33 0.74 0.79 |- 0.02 |+ ve|Top KH

34 0.76 0.69 |- 0.04 | +ve|Top HH

34 0.76 1.66 | - 1.47 | - ve | Bottom R

35 0.78 1.59 | - 1.64 | - v | Bottom RH .

35 0.78 0.57| - 0.09 [+ ve|Top R1 _ [(This vortex then goes e

AN (the plate and is enhanced by

. (vorticity from the bottom LH

36 0.81 1.41| - 1.83 | - ve | Bottom RH |(edge)

37 0.83 1.07| - 1.96 | - ve| Bottom RH

38 0.85 0.79| - 2.06 |- ve| Bottom RH

38 0.85 - 0.38| - 0.36 | + v | Bottom IH |(This vortex contains same

(vorticity fram the top RH edge

39 0.88 -0.51{~- 0.3 | + v | Bottom IH .

39 0.88 0.49]| - 2.11 | - ve | Bottom RH

40 0.90 0.30 ]| - 2.20 | - ve| Bottom RH

40 0.90 - 0.21 0.44 | - ve| Top IH New vortex forming here.

40 0.90 - 0.58){ - 0.44 | + ve| Bottom IH

41 0.92 - 1.00| - 0.60 | + ve| Bottom IH

41 0.92 - 0.02( - 2.27 | - ve{ Bottom RH

41 0.92 - 0.36 0.34 | - ve| Top IH

42 0.95 - 0.48 0.30 | - ve| Top IH

42 0.95 - 0.46] - 2,27 | - ve| Bottom RH

42 0.95 - 1.33] - 0.57 | + ve| Top HH

43 0.97 -1.42) - 0.60 | + ve| Top M

43 0.97 - 0.58 0.26 | = ve| Top IH

43 0.97 - 0.8 - 2.30 | - ve| Bottom RH
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TABLE ; 4 THE 1.5" DIAMETER FLAT PLATE, ,4 = 421.5
' CYCLIC REGION : NKC = 18.6 : ROTATION ANTI~CLOCKWISE

FRAME TIME | VORTEX POSITION
No. (t/T) | x/D y/D SIN | EDGE COMMENTS
1 0.99 | - 0.59 0.47) - ve| Top IH
1 0.99 | - 0.99| - 0.37| + ve| Bottom IH
2 0.02 | - 1.14}) - 0.43! + ve| Bottom IH
2 0.02 | - 0.59 0.33] - ve| Top IH
3 0.04 | - 0.65 0.17| - ve| Top 1IH
3 0.04 | - 1.34| - 0.56| + ve| Bottom IH
4 0.06 | - 1.46] - 0.71| + ve| Bottom IH
4 0.06 { - 0.69 0.13{ - v | Top IH
5 0.09 | - 0.80 0.00] - ve| Top IH
5 0.09 | - 1.68] - 0.8 | + we| Bottom LH
6 0.1 |- 1.91|] - 1.04| + ve| Bottom IH
6 0.11 | -0.89} -0.09| - wve| Top ILH
7 0.13 { - 0.93| -0.04| - w| Top IH
7 0.13 | - 2.13| - 1.07| + ve| Bottom IH
8 0.16 | - 2.25| - 1.32] + ve| Bottom IH
8 0.16 | - 1.04| - 0.14] - ve| Top IH
9 0.18 | - 1.17| - 0.18| = ve| Top IH
9 0.18 { - 2,39 - 1.33| + ve| Bottom IH
10 0.20 | - 2.41] - 1.46| + we| Bottom IH
10 0.20 | - 1.24| - 0.17| - ve| Top IH
11 0.23 | - 1.20| -0.32] - ve| Top IH
11 0.23 | - 2.30| - 1.42| + we|Bottom1n
12 0.25 | - 1.09 0.03| - ve| Top IH
12 0.25 | - 2,36| - 1.37| + ve| Bottom IH
13 0.27 | - 2,21 - 1.67| + ve| Bottom IH
13 0.27 | - 1.02 0.03| - ve| Top IH
14 0.30 | -0.76| -0.11} - ve| Top IH
14 0.30 |- 1.65| - 1.71| + ve| Bottom IH
15 0.32 | - 1.54| - 1.70| + ve| Bottaom LH
15 0.32 | -0.54| -0.32|] - we| Top IH
16 0.34 | The vortex from the Top IH edge is now squashed against the
plate and some of it starts to go under the plate.
16 0.34 {-0.90| -1.76| + ve | Bottom IH
17 0.37 | -0.69] -1.78{ + ve| Bottom IH
N




190

TABLE : 4, Continued..
FRAME | TIME VORTEX POSITIN
No. | (/D) x/D v/D SIN | EDGE COMMENTS
17 0.37 0.44]| - 0.45 | - ve | Bottom R | (This vortex contains nost of
(the vorticity fram the vorecex
(that was at the top IH edge,-
(but which transferred to the
18 0.39 0.60 |- 0.43 | -~ ve [ Bottom R | (Bottom Ri edge)
18 0.39 -0.30}|-1.81 | + ve| Bottam IH _
18 0.39 0.36 0.41 | + ve | Top K New vortex fomming here.
19 0.41 0.41 0.37 | +ve| Top M
19 0.41 - 0.14] - 1.87 | + ve | Bottom IH
19 0.41 0.85] - 0.51 | - v | Bottom RH
20 0.44 1.13| - 0.66 | - v | Bottom RH
20 0.44 + ve| Bottam IH | Position not clear.
20 0.44 0.47 0.23 | + ve| Top R
21 0.46 0.54 0.19 | + ve| Top K
21 0.46 1.26| - 1.91 | + ve| Bottom IH | This vortex then mowves oui.: of
21 |o0.46 1.57| - 0.52 | - ve| Bottom ®i | (This vortex is nov very
(weak and insignificant)
22 0.48 0.75 0.17 | + ve| Top HH
22 0.48 0.40} - 0.63 | - ve| Bottom Ri | New vortex forming here.
23 0.51 0.89 0.17 | + ve| Top M
23 0.51 0.50| - 0.62 | - ve| Bottom RH
24 0.53 0.54{ - 0.48 | - ve| Bottam R4
24 0.53 0.92 0.23 | + ve| Top K
25 0.55 1.12 0.31 { + ve| Top RH
25 0.55 0.52f - 0.39 { - w| Bottam K
26 0.58 0.44]{ - 0.22 | - ve| Bottaom RH
26 0.58 1.26 0.39 | +ve| Top K
27 0.60 1.45 0.52 | + ve| Top M
27 0.60 0.55f{ - 0.13 | - ve| Bottom RH
28 0.62 0.56f -~ 0.09 | - ve| Bottom RiJ
28 0.62 1.68 0.61 | +ve| Top HH
29 | 0.65 1.80f 0.8 | + ve| Top M
29 0.65 0.63] - 0.03 | - ve| Bottaom RH
30 0.67 0.64 0.03 | - ve| Bottam K
30 0.67 2,02 0.8 | + ve| Top K
31 0.69 2.10 0.8 { +ve| Top K
31 | 0.69 0.68) 0.10 | - ve| Bottom ®H
K 0.72 0.63] ~ 0.10 | - ve| Bottom RH
32 0.72 2.02 1.00 | + ve| Top HH.
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4, Cantinued..
FRAME | TIME VORTEX POSITION
No. | (t/T) x/D v/D SIGN | EDGE COMMENTS
33 0.74 1.97 1.13 | + ve| Top B
33 0.74 0.59 0.12 | - v | Bottam RH
34 0.76 0.61 0.09 | - ve| Bottom Ri
34 0.76 1.88 1.30 | + ve| Top B
35 |o0.78 1.68 | 1.56 | + ve| Top R
35 0.78 0.45 0.13 | - v | Bottom R
36 0.81 Vortex from the Bottom R.H. edge goes ower the top of the
plate,but its position is not
36 0.81 1.36 1.70 | + ve| Top RH clear)
37 0.83 0.92 1.89 | + w| Top K
37 0.83 | -10.44 0.71 | - ve| Top IH (This vortex oontains vorticit
(fram the bottom Ri vortex
(which went over the top of th
(plate) - :
38 0.85 - 0.72 0.69 | - ve| Top IH (Position wnclear, and wncerta
(after this frame)
38 0.85 0.68 1.94 | + v | Top W
39 0.88 0.20 2,05 | +wvwe| Top K (This vortex then moves out of
view)
39 0.88 - 0.30 |- 0.34 | + v | Bottom IH | (New vortex forming)
40 0.90 - 0.37 |- 0.35 | + v | Bottom IH
41 0.92 - 0.52 |- 0.38 | + w| Bottom IH
42 0.95 - 0.69 |- 0.30 | + w| Bottam IH
43 0.97 - 0.85 |- 0.35 | + ve| Bottom IH
43 0.97 - ve| Top IH (New vortex forming)

- 0.48 0.56
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TABIE : 5 THE DIAVOND SECTION ( /F = 422.7)
SITEWAY VORTEX STREET. NKC = 15.18
FRAME TIME VORIEX POSITION
No. x/D SIXN | EDGE COMMENTS
1 0.99 -1.21 0.71 | - ve| Top IH
1l 0.99 0.36 2.64 | + ve| Top M
2 0.02 0.07 | 2.86 |+ ve| Top R
2 0.02 | -1.50 | 0.64 | - ve| Top 1H
3 0.04 -1.79 0.79 | - ve| Top 1IH
3 0.04 - 0.50 2.93 | + v | Top K
4 0.06 | - 1.00 | 3.07 | + ve| Top W
4 0.06 -2.14 0.93 | - ve| Top 1IH
4 0.06 | -=0.71 | 0.00 | + ve| Bottom IH | (This vortex began growing
(sooner, at about t/T=0, but
(only now is its position cles
5 0.09 - 0.86 0.00 | + v | Bottam IH :
5 0.09 | -2.43 | 0.93 |- ve| Top 1H
5 0.09 - 1.36 3.50 | + ve| Top RH (This wvortex then goes out of
(view, but it is quite weak)
6 0.11 | -2.79 | 1.07 | - ve| Top 1H
6 0.11 - 0.86 0.00 }| + ve| Bottom IH
7 0.13 - 1.00 0.00 | + ve| Bottom IH
7 0.13 - 3.07 1.14 | - we| Top IH
8 0.16 | -3.21| 1.29 | - ve| Top 18
8 | 0.16 | -1.14 | 0.14 | + ve| Bottom IH
9’ 0.18 - 1.07 |- 0.07 | + ve| Bottom IH
9 0.18 | -3.29 | 1.71 | - ve| Top 1H
10 0.20 - 3.50 2.00 | - ve| Top IH
10 0.20 - 1.14 |- 0.21 { + ve| Bottom IH
11 0.23 -1.29 |- 0.21 | + ve| Bottom IH
11 0.23 - 3.57 2.14 | - w| Top 1IH
12 0.25 - 1.14 |- 0.21 | + v | Bottom IH
12 0.25 | -3.79 | 2.14 | - ve| Top 1
13 0.27 - 1.07 |- 0.07 | + ve| Bottom IH
13 0.27 - 3.71 2.36 | - ve| Top IH
14 0.30 = 1.00 |- 0.21 | + ve| Bottom IH | (This vortex starts to split t
14 0.30 0.29 0.50 | + ve| Top M (This vortex contains some of
(the vorticity from the botton
14 0.30 | -3.50 | 2.43 | - ve| Top 14 w
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TARLE : 5, Continwed..
FRAME TIME VORTEX POSITION
No. (t/T) | x/m v/D SIGN | EDGE COMMENTS
15 0.32 | -1.00|- 0.43 |+ ve | Bottom IH
15 0.32 0.57 0.36 |+ we |Top R
.15 0.32 - 3.57 2.57 |- ve |Top IH -
16 0.3 | -3.43] 2.79 |- v [Top 1n
16 0.34 - 0.8 |- 0.43 |+ ve | Bottom IH
16 0.34 0.43 0.36 |+ ve|Top R
17 0.37 0.71 0.36 |+ ve|Top M
17 0.37 - 0.57 |- 0.43 |+ ve | Bottom IH | (This vortex then goes under
(the model and is cancelled ou
17 0.37 - 3.21 3.00 |- ve|Top IH
18 0.39 - 3.07 2.86 |- wve | Top IH
18 0. 39 0.79 0.14 |+ we [Top (This vortex is now shed)
19 0.41 0.86 0.29 |+ ve |Top M
19 0.41 - 2.86 3.14 |- ve | Top IH
20 0.44 - 2.64 3.21 |- ve | Top IH
20 0.44 0.93 0.14 |+ ve |Top M
21 0.46 1.14 0.14 |+wve |Top M
21 0.46 0.64 |- 0.43 |- ve |Bottom R | (Vortex growing here)
21 0.46 - 2.43 3.29 |- ve |Top IH
22 0.48 - 2.14 3.07 |- ve |Top IH
22 0.48 0.64 |- 0.21 |- ve |Bottom R
22 0.48 1.36 0.21 |+ ve |Top M
23 0.51 1.43 0.21 |+ ve |Top R
23 0.51 0.71 |- 0.14 |- ve |Bottom M
23 0.51 | -1.86] 3.21 |- we |TopIH
24 0.53 - 1.64 3.21 |- wve |Top IH
24 0.53 1.64 0.29 (+w |Top M
24 0.53 V.71 0.00 |- ve |Bottam Rd
25 0.55 0.86 |- 0.14 |- wve |Bottam RH
25 0.55 1.93 0.36 |+ ve |Top RH
25 0.55 - 1.29 3.21 |- ve |Top IH
26 0.58 - 0.86 3.21 |- we |Top IH -
26 0.58 2.14 0.29 |+ ve |Top HH
26 0.58 0.86 0.00 |- ve |Bottom HH
27 0.60 1.00 |- 0.14 |- ve |Bottom R{
27 0.60 2.14 0.64 |+ ve |Top RH
27 0.60 - 0.36 3.29 |- wve |Top IH (This vortex then goes 01'1t of
28 0.62 2,36 0.57 |+ ve |Top R vien
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TABIE : 5, Continued...
FRAME TIME VORTEX POSITION
No. (t/7) | x/D v/D SIXN | EDGE COMMENTS
28 0.62 1.00 0.07 {- ve|Bottom RH
29 0.65 1.00| - 0.14 |- ve | Bottom R
29 0.65 2.36 0.7 | +ve|Top
30 0.67 2.57 0.7 |+we|Top M
30 0.67 1.14 0.14 | - ve | Bottam RH
31 0.69 1.29 0.00 | - ve{ Bottom RH
31 0.69 2.7 0.86 | +wve| Top R
32 0.72 2,93 1.07 | + ve| Top HH
32 0.72 1.14] - 0.07 | - ve | Bottam RH
33 0.74 1.14| - 0.07 | - ve | Bottom RH
33 0.74 3.00 1.21 | +wve | Top M
34 0.76 2.79 1,36 | + ve| Top K
34 0.76 1.14| - 0.07 | - ve | Bottam
35 0.78 3.00 1.43 | + v | Top K
35 0.78 1.00 0.07 | - ve| Bottom RH
36 0.81 0.79 0.14 | - ve | Bottom RH
36 0.81 2,64 1.57 | + ve| Top HH
37 0.83 2.43 1.79 | + ve| Top RH
37 0.83 0.50 0.14 | - ve| Bottom Ri| (This vortex then goes over t
e (top and a new wvortex begins
(to form at Top 1H)
38 0.85 Vortex from Bottom FH squashed as it goes over the top.
38 0.85 2,29 1.93 | + ve| Top K
39 0.88 2.00 2.07 | + ve| Top HH
39 0.88 | -0.29] 0.43 |- ve| Top 1
40 0.90 - 0.43 0.43 | = ve| Top IH
40 0.90 1.64 2.14 | + ve| Top K
41 0.92 1.36 2.36 | + ve| Top RI
41 0.92 - 0.50 0.21 | - ve| Top IH
42 0.95 -0.71 0.50 | - ve| Top IH
42 0.95 1.07 2.43 | + ve| Top M
43 0.97 0.64 2.50 | + ve| Top B
43 0.97 - 1.00 0.57 | - ve| Top IH
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RUN 39 NKC =6.15

».00 16,00  24.00

32,00
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1.5 IN DIAMETER FLAT PLATE :,4456/2/‘{

€ NO.

cycL
43.0°  40.00  $S.00  €4.00  TR.OD  BN.00  B8.00  98.00

I-D(c" 1.8

.
%

.CFRHS’
>

2o
[
[

2.92

SEORX o oy
[ ]
[ )

L

52.49

24.49
L]
°
a

PHASE

-9.61

N

d"! -3¢

1€.00  24.00

—— ¥ -

72.00 80.00  83.00

FIG: 426

40.00 48,00 56.00  64.00

CYCLE NO.



xx 1.5 IN FLAT PLATE NKC = 14.79 xx Z2¢2/S

c K
.00 .00 18.00 24,00 32,00  40.00 43,30 68,00  €4.00  72.00  80.09

'y N A A

Lt

88.0¢

0.43
x

9.10
*

A

2.74 €0 2.92
*
*

1.58
[ ]

) .'FSFR"S 1.98
»
]
>
[
[
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1.6
|
I

9.40

X 9.0
[ J
[ J
[ J

CFUR
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®
.
.
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[ ]
®
.
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[
[ ]
[
[ J
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[
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L
]
]
]
]

a

]
o

.

V.—s.00 16.00~  24.00— 32,00  40.00 _ 48.00  68.00~ 8400  72.00——$0.00
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FIG : 427
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Y
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RUN 23 NKC =43.33 1.5 IN DIAMETER FLAT PLATE

NO.
h.00 8.00 18.C0  24.00 32,00 49.n§ YCL‘(:;'W 66.00  64.00  72.00

0.00

243

%,, y2/-s"

58.00

98.00
—_—

1.31
”
»n
3
®
]
t 3

1.0t

2.60
.

2.21 co 2.40
*
*
*
*
*
*

'
3
*
*
L
*
L 4
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*
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]
]
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=111
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<00 .00 18.00 24.00  32.00 40.00 4h.00 §6.00  64.00 72.00
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20.00
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RUN 7 </€=422-?— NKC= 8.25

CYCLE NO.
8.00 16.00 24,00  32.00 40,00 _ ¢8.00  65.'0  €4.00  72.00 80,00  ©6.00

Py i Peiled

0.48

€0 o es

2.58

2.0%5

2.60

RS o

[
oS
v

$.40

4

4,00

9y CFMAX
*

[ ] [ S

Y

%.00 16.3C 24.00 32.00 40.00 +8.00 §6.00 $4.00  72.00 80.00 8.00

CYCLE NO. F/G . 6{,0#8
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RUN 25 /5’5422- # NKC=14.79 IN SQUARE (DIAGONAL IN LIN
q. CYC.E NO.
.00 8.00 18.00 24.00 32,00 40,00 43.00 §8.00  64.00  72.00  ©0.00 $3.00 88.00
e k4 x
" = X x
x
S ux x x * x * x "
o] x %
x x x x
= x x x x x x
ug x x X x ) ¥ x . *
2 x x
x x x x x
x
2 x
e
b4
o ¢
-
2 M et .
1 o, e .+, . . *+
* * L 2R 4 *
b * o ¢ . ¢ ¢ «* * +* .
@ . . * *
ale - N + . .
¢ . .
.
e +
o
. .
s
Py
&
2 & &
o] s . 'y s [y a
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[T 4 4 . ¢ s . aas , a 4
u'g'.q b s L] a
- L o —_— s s o
© o
3
[ ]
.
(-] ® Y
o.'-‘ s 4 ° . *
E e ® L] POy [
c * e o *e y . 'y ° ¢ hd °°
ole_ o L ° °
B * oo %
' o .
*e
2 .
-
H
e,
e
. (] - as g
See s® . ™ s
é* L .« * * o . ‘ 8 g .
I . 8 e s
2 e - ] . .
s s . o * * e N .
-] s [ L
gl - L N
: .
'0.00 .00 16.00  24.00  32.00. 40.00 _ 48.00  6a.00  84.00  78.00  80.00  ©8.00  86.00
CYCLE

e 4 d
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0.70 ch 0.98

RUN 33 /’" Lez- F# NKC=21.86 I[N SQUARE (DIAGONAL IN LINE
S.00 0.00 18.00  24.00  32.00 tp.onCYCLF_a.gg' 65.00  €4.00  72.00  ©0.00 88.00 06.00
x x - x ) x x . x X
X oy '3 x® N x “ . x . x x x
x x x x
x X x * x x x x x x ¥
x x X x x x
B x x x x
2
¥ . .
.
& * e . o . . * " * ¢
] ¢ . ¢ ¢ - *
. + . e * . . LN o . . ¢ .
ug o ' e, .? ¢ + .t +
.

1.80

1.%0

CFRNS
[ ]
’
.
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»
»
|
[ 4

»
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»
»
»
[
»
»
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2.40
\

2.20
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<
re| ® a 99

105
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]
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.

24.00 32.00 40.00 49.00 56.00 €4.00 72.00 $0.00 88.00 98.00
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]
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=
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RUN 3

.00
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NKC=47.39 IN SQUARE (OIAGONAL IN LIN

/A=422-$

CYCLE NO.

40.00  48.00 98.00

24.00 37,00 §5.00  64.0C  72.00 0.0 _ ©3.00

-
n

co

1,96 1,80
L

KRS, oy

1.

1.1¢

,‘. ‘ .

‘ .hrnnx ’.."

Iy

1.70

29.00

10.00
z

&fﬁSE

.1

2¢.00  32.00 +0.00
[ ]
L] [

§6.00  84.00

FIG: 45/

18.00 48.00 72.00

CLE NO.
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