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SUMMARY

A U-tube water tank and drive mechanism were designed,

which produced stable sinusoidal oscillations of the water

in the tank; these oscillations were capable of attaining a

maximum amplitude of about 12". A force measuring system,

capable of measuring both in-line and transverse forces

was designed. This was used to measure the forces on a

circular cylinder, a diamond section cylinder, and a square

section cylinder, in the Keulegan and Carpenter number range

from 3 to 70. Flow visualisation revealed the presence of

large discrete vortices on three of the sections; but these

were not observed on the square section cylinder. On these

sections where large vortices were formed, they set up clearly

. defined flow patterns which were generally similar. The

similarity in flow pattern on the three sections leads to

some similarity in the in-line force. The transverse force

on the circular cylinder and diamond section is also similar

in its variation during a cycle, for the same Keulegan and

Carpenter number. On the square section cylinder, the absence

of any clearly defined vortex patternfor values of the Keulegan

and Carpenter number less than about 25, leads to 'a different

behaviour of both the in-line and transverse forces. However

for values of the Keulegan and Carpenter number greater than

about 25, the flows past all the sections are similar as they

become quasi-steady and a Karman vortex street is formed. In

-thisregion therefore the behaviour of both the in-line and

transverse forces on the square section cylinder is more or

less similar to that observed on the other sections, except

that some turbulence is produced by the square section. On

all these sections, for small values of the Keulegan and

Carpenter number, their inertia coefficients tencL towards

their corresponding attached flow value For large values of

the Keulegan and Carpenter number the tendency of the flow to

become quasi-steady is reflected in the drag coefficients all

tending towards their corresponding steady flow values,

except on the square section cylinder where the presence of

turbulence results in a drag coefficient lower than the smooth,

steady flow value. Both the in-line and transverse forces are
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related to the vortex strengths and pusitions, and since these

tend to show some variation from cycle to cycle, both forces

show some cycle to cycle variation. However the variation

is more pronounced on the transverse force since this force

is entirely due to the vortices; as a matter of fact the

transverse force on all the sections occurs in irregular

bursts. The transverse force also occurs over a wide band

of frequencies which in general increases with NKC, though the

Strouhal number formed from the centre frequency appears to

tend towards a constant value as NKC increases. Blockage

has been shown to be important in oscillatory flows, causing

a marked increase in the in-line force for values of the

Keulegan and Carpenter number greater than about 5. 	 Finally

Morison's equation has been shown to result in poor prediction

• for sharp-edged bodies and for circular cylinders when large

vortices are present which remains close to the body. However

for values of the Keulegan and Carpenter number greater than

about 25 to 30 a fairly good prediction by Morison's equation

is obtained for all the sections tested.
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CHAPTER: 1

INTRODUCTION

1.1. REVIEW OF THE PROBLEM

In recent years, the rapid development of the offshore

industry has provided a major impetus to the study of fluid

loading on offshore structures.	 However, after substantial

research, both the designer and researcher still face

considerable problems in the prediction of loads on these

structures.	 These problems arise for a number of reasons,

but probably the most fundamental of all is a lack of

understanding of the fluid mechanics associated with these

complex unsteady flows generated in the sea. 	 A brief

description of the commonly used fluid loading regimes, and

the prediction methods used therein will help to illustrate

some typical problems Detailed accounts may be found in a

rather comprehensive review paper by Hogben (1974) and also

in another paper by Milgram (1976).

These regimes may be broadly classified under the

headings of, pure reflection, diffraction, inertia, and drag;

the importance of which will depend on two parameters relating

to the size of the structure and to the flow conditions. The

first of these parameters is the ratio of the diameter of the

body (D) to the wavelength (X) of the wave; which serves as

a measure of the disturbance of the incident wave. The

second is the Keulegan and Carpenter number (NKC), which by

definition is UT/D; where Um = Amptitude of the orbital

velocity, T = period of the motion, and D is the diameter of

the body. This was first introduced by Keulegan and Carpenter

(1958), who used it to correlate their force data. The

Keulegan and Carpenter number may be viewed as a parameter

which compares the path length of an orbiting fluid particle,

with the body diameter and gives an indication of the flow

development. It thus gives a measure of the relative
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importance of drag and inertia forces, (see Appendix:1 of

Hogben et al (1977)). There are no distinct boundaries

separating these loading regimes and quite often a structure

experiences loads of different types. 	 However within

certain ranges of flow conditions one type of loading may

prevail over another.

Pure reflection of waves occur when D/,3. 1, and is of

more significance in the design of coastal . structures such

as sea walls and breakwaters rather than in the design of

offshore structures.

Diffraction forces arise when D47 0.2; then, the

presence of the body causes significant scattering of the

incident wave, (a condition which usually occurs on gravity .

- type platform structures) and this effect must be taken into

account in the calculation of the loads. In this analysis,

viscous effects and hence drag is usually neglected; in a

typical analysis the structure is represented mathematically

by a series of grids or elements, over which there are a

distribution of sources, the nature of which depends on the

type of structure and sea conditions. The velocity potential

obtained from this source distribution must satisfy the

boundary conditions on the body, at the sea surface, at the

sea-bed and at large distances from the body. Further, the

velocity potential includes a contribution due to the

undisturbed incident wave (i.e. in the absence of the body),

which gives rise to the Froude - Krylov force. Ttie remaining

part is the disturbance potential which includes the effect

of wave scattering and a part which includes the local flow

disturbance caused by the body, giving rise to the added mass

effect. Further details and applications of this method are

found in the works of Garrison and Chow (1972), Hogben and

Standing (1974), Hogben (1976) and more recently by Isaacson

(1978). Since its inception, considerable progress has been

made in the diffraction analysis technique, and programs are

now available which calculate the loads on and responses of
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both fixed and floating structures, e.g. Stanaing (1978),

and usually good agreement with experimental results is

achieved. One of the problems in using this analysis is

that quite often, parts of a structure may be in different

loading regimes, and experiencing forces of different types,

also the flow is locally modified. In general such analyses

are done numerically on a large computer and are rather

costly. Considerable care must therefore be taken, which

includes the above mentioned effects, if adequate modelling

is to be achieved.

The diffraction analysis technique can also be used to

calculate inertia coefficients of bodies of arbitrary

cross-sectional shapes, e.g. Hogben, Standing and Osborne

(1974).	 When the body is no longer large compared with the

wave lengtk_, wave scattering may be neglected, and in the

absence of the body, the pressure gradient due to the

undisturbed flow, and hence the acceleration may be assumed

uniform over the body. The calculated force is then all

inertial from which the inertia coefficient may be obtained.

Inertial loads are dominant when Da< 0.2, and NKC less

than about 15, then the above two assumptions are justified.

These loads are composed of two parts, the Froude Krylov force

(Fk ) and an added mass effect. The Froude-Krylov force is

the force that the fluid would exert on the body, had the

presence of the body not disturbed the flow, i.e. due to the

pressure gradient of the undisturbed flow which maintains

the fluid acceleration in the absence of the body. 	 Thus

the Fmude-Krylcv force is given as:

Fk -/'VU	 (1.1)

where? = density of fluid, V = volume of fluid displaced

by the body, and 6 is the acceleration of the fluid; an
infinitesimally thin flat plate will therefore experience

no such force. The added mass effect however, is caused by

the presence of the body which locally disturbs the fluid

and gives rise to increased fluid accelerations. These

resulting local fluid accelerations causes the body to
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experience an extra force (Fa ) which may be considered as

equivalent to an extra or added mass (Cm) with the ambient

fluid acceleration. Thus the added mass force is given as:

Fa ..gm 6	 kjeVU	 (1.2)

where k is usually referred to as the added mass coefficient,

and it is usual to define V as the volume of fluid displaced

by a notional circular cylinder circumscribing the body,

i.e. V = N D2 /4 where D is the maximum body width. The

total inertial force (F1 ) is then:

F1 = Fk + Fa =p*I3 -I- 190\76 = (pk)/9VU

= Cm /o V15	 (1.3)

As stated earlier, the predominance of inertia over drag at

small values of NKC, leads to prediction methods which

usually neglect viscous effects. However Graham (1978) has

shown that for sharp edged bodies this assumption may not

be justified, due to the formation of vortices. Graham also

states that the effect of the growing vortices may be

significant even in the diffraction regime. 	 Here he showed

that at low NKC, the vortex induced drag component of the

force is related to the internal angle of the shedding edge of

the body and to NKC. For NKC less than about 5 however, viscous

forces, i.e. drag arising from separation and vortex formation,

though significant for sharp edged bodies are not as important as

inertial forces. As NKC increases, these effects become more

important, vortex formation and shedding occurs which leads

to asymmetry in the flow which generates lift and torque on

the body. In the region 5<NKC<25 both inertia and drag are

important and for this reason, it is commonly referred to as

the drag/inertia regime. 	 As NKC increases above about 25, the

flow approaches a quasi-steady situation, and inertial effects

are less important.

The drag/inertia regime is very important as numerous

offshore structures, e.g. jacket type platforms, are in this

fluid loading region. For this reason, considerable attention

and studies have been focussed on fluid loadinq and prediction
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methods in this regime. Unfortunately, howev.Ir this region

presents the greatest problems, as there is no clear

understanding of the fluid mechanics associated with flow

reversal, together with the numerous other effects which

occur; these effects will be mentioned later.

Most prediction methods currently used rely heavily on

Morison b equation proposed by Morison et al (1950).	 Here

it is assumed that the force. on a fixed body in unsteady

flow can be represented by the sum of two independent

components; one in phase with the velocity, the drag force

and the other in phase with the acceleration known as the

inertia force. Estimation of the forces is then possible by

using empirically obtained values of the drag coefficient (CD)

and the inertia coefficient (C
m
) in the equation. Morison's

equation has been used extensively, in predictions of loads

on structures, in field experiments and in controlled

laboratory experiments, resulting in an abundance of available

drag and inertia coefficients. However, in spite of the

wide experience gained from the use of Morison's equation,

considerable disagreement and uncertainties still exist about

its applicability as a tool for prediction, and on the

reliability of the coefficients to be used with it. One of

the problems arises from the fact that the coefficients for

full scale use cannot be obtained from laboratory tests, as

these are usually at a lower Reynolds number. In addition,

the incident flow during laboratory tests is not usually

representative of real sea conditions as i:hese tests are

commonly done in regular waves or in planar oscillatory flow.

Oscillatory flow represents a simpler case where the orbit

is flat as opposed to elliptical,in waves. Field tests are

therefore carried out to determine these coefficients and

unfortunately, but not surprisingly, the data exhibits

considerable scatter. This scatter is amply demonstrated in

figures 1.1a, 1.1b and 1.2 taken from Wiegel (1964).	 Figures
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1.1a and 1.1b show the scatter in the drag and inertia

coefficients, obtained from field tests and are compared with

Keolegan and Carpenter's data. In figure 1.2, which was

obtained from field experiments by Wiegel, Beebe and Moon

(1957), the drag coefficients were plotted as a function of

Reynolds number and still exhibit considerable scatter. They

attributed this scatter to the variation of turbulence in

the flow, cylinder roughness, interference from other

cylinders and the effect of the vortices sweeping back against

the cylinder. Another reason for the scatter in the data of

Wiegel et al is that the Keulegan and Carpenter number

variation was not taken into account; it is now widely accepted

that both the drag and inertia coefficients are functions of

Reynolds number and NKC.	 Scatter in field data and

laboratory experiments is also discussed by Dean (1976) and

by Hogben et al (1977).

In addition to the effects mentioned above, other factors

such as irregularity of the incident wave, three dimensionality

of the flow and different spanwise correlation all contribute

to the scatter in field data.	 The methods used in data

analysis, both, in field tests and laboratory studies could

also induce scatter in the available data. 	 This is particularly

relevant to experiments where water particle velocities and

accelerations are calculated from measurements of surface

elevations coupled with some wave theory. The accuracy of the

data thus obtained will depend on the choice of the wave

theory, (Dean (1970)) and even if the best available theory

is used, there is no guarantee that the wave structure will

be the same from cycle to cycle, especially in field tests.

Most of the available data, in field tests and laboratory

experiments were obtained on circular cylinders as it is the -

most commonly used shape in offshore structures. Unfortunately,

however the circular cylinder, as compared with sharp-edged

bodies, is extremely sensitive to most of the above mentioned

factors, especially turbulence, roughness and Reynolds number.
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In steady flow, results obtained from experiments by Fage

and Warsap (1929), up to Reynolds numbers of 2.5 x 10 5 showed

a distinct effect of both free stream turbulence and roughness

on the drag of circular cylinders. The effect of free stream

turbulence is to promote transition of the ghear layers, at

a Reynolds number lower than that which would occur in smooth

flow; the resulting shear layers remain attached longer at

Noercritical Reynolds number, and gives a narrower wake width

and hence a lower drag. Roughness on circular cylinders was

also studied by Achenbach (1971), in steady flow at Reynolds

numbers of up to 3 x 10 6 . The work of Page and Warsap and

Achenbach, viewed together shows that, in steady flow, in the

subcritical Reynolds number range, the local surface roughness,

promotes early transition in the shear layers, and as before

enables them to remain attached longer, resulting in a lower

drag. As the Reynolds number is increased, in the supercritical

range, roughness results in earlier separation of the turbulent

shear layers, leading to an increased drag, compared with smooth

cylinders. In steady flow, therefore, roughness may be seen

to result in an earlier critical region, so the drag drops

earlier to a value below the corresponding smooth cylinder

value and then rises above this, as the Reynolds number is

increased.

In planar oscillatory flow Sarpkaya (1976a, 1976b and

1977a), examined the effect of surface roughness on several

circular cylinders and at high Reynolds numbers. In this

study considerable effects of roughness on the in line force

coefficients were observed; the transverse or lift force did

not reflect any significant influence. As in steady flow,

the drag coefficient exhibited a similar drop below its

equivalent smooth cylinder value, then rose to an asymptotic

value well above the smooth cylinder value as the Reynolds

number was increased. Sarpkaya noted that this asymptotic

value was larger than its corresponding equivalent, with the

same roughness in steady flow, and was a function of the

relative roughness and Keulegan and Carpenter number. This

effect was observed for Keulegan and Carpenter numbers as low

as 20, and in the range of Reynolds number of 10 4 to 106.
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The inertia coefficient also shows considerable influence of

roughness, and changes in the opposite direction to the drag

coefficient.	 This coefficient first rises and then drops,

again to an asymptotic value below the corresponding smooth

cylinder value. Here again the asymptotic value depends on

the relative roughness and NKC. Although no significant

effect of roughness on the transverse force was observed,

probably because of the large scatter that .occurs anyway,

Sarpkaya reported that for Reynolds numbers greater than about

2 x 10 4 , the strouhal number remained constant at about 0.22,

whereas for smooth cylinders it was a function of NKC and

Reynolds number.

Tests on the effect of roughness on cylinders in waves .

have also been carried out by Matten (1977), who found

considerable increase in the total force on rough cylinders

for the larger NKC values. The increase in drag due to surface

roughness in these unsteady flow situations can be accounted

for by two main effects. Firstly, the increased roughness

results in a physical increase in the size of the cylinder,

which results in a higher drag force. The second reason lies

in the effect of roughness on the boundary layer of the

cylinder. In these unsteady flows the incident stream is

usually turbulent with the degree of turbulence increasing

as NKC increases. A rough cylinder in such a flow will

therefore experience a higher drag because, both turbulence

in the free stream and local surface roughness promotes

earlier separation of the boundary layer leading to a larger

wake and hence higher drag.

Another possible reason for the scatter in field data,

and incidentally also a problem experienced in predicting

loads on offshore structures, is the influence of neighbouring

elements. In steady flow, because of the numerous practical

applications, such as in condenser tubes and cooling towers,

this interference effect on circular cylinders has been

extensively studied . Some of these effects, :lave been

highli*ed in a review of flow interference between two

circular cylinders in several possible arrangements by Zdravkovich

(1977). Interference effects on other shapes have received
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much less attention, but a recent paper by Ball and Cox (1978)

showed that interference effects are just as important on

flat plates.

By oscillating several cylinders in various arrangements,

Laird, Johnson and Walker (1960) observed signigicant

influence of neighbouring cylinders on a test cylinder. Botn

the drag and transverse forces were affected to an extent

depending on the spacing of the cylinders, but for a spacing

of 10 diameters little influence was noted. For a group of

24 cylinders oscillating in still water, Laird and Warren

(1963), observed that the overall drag on the group was less

than the sum of the individual drags of the cylinders in a

uniform stream of the same maximum velocity as the group.

They also found that the drag of the group was a function of

the spacing; fluctuations of both the drag and transverse

forces which were functions of the Reynolds number were also

reported. In an oscillating flow, Sarpkaya (1978) examined

the variation of the drag and inertia coefficients on two

groups of cylinders, and found that these coefficients were

independent of Reynolds numbers. However these tests were

conducted for a limited Reynolds number range. Further he

noted that these coefficients approached a terminal value at

NKC of about 150. Bushnell (1977) also examined interference

effects of two circular cylinders and of a group in oscillating

flow. Here the angle of the configuration, relative to the

flow was also varied and he examined the effect of interference

on cylinders with and without trip wires. His results show

considerable effect on both the drag and transverse force,

which increases with the Keulegan and Carpenter number. He

also observed that the magnitude of the interference varied

with the orientation of the configuration and that no

dependence of Reynolds number on the interference was noted.

Reynolds number dependence was examined in this case by

attaching trip wires to the cylinders. For the array of

cylinders tested, Bushnell's results showed that the transverse

force interference was much higher when trip wires were used

compared with the smooth cylinders. However he had reason to

doubt the validity of this technique to simulate high Reynolds
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number flow situation; and his conclusion on the Reynolds

number dependence was based on results of the two cylinder

arrangement.

Examination of the above-mentioned studies reveal that

interference can be considered as the result of two separate

effects. For moderately large spacing ratios, the wakes of

the upstream cylinders are more or less fully developed at

large NKC,.with vortices being shed, and these considerably

influence the flow development on the remaining cylinders.

For smaller spacing ratios, the group acts almost like a

single porous body, and the wake development of the

upstream cylinders is inhibited.

Further problems in the prediction of loads on offshore"

structures arise because of cylinder orientation, and variation of

flow conditions along the length of the cylinder. In waves,

the incident flow is usually orbital with the type of orbit

depending on the ratio of the wavelengtq to the depth;

the orbit typically being near-circular for deep water waves

towards the surface and elliptical lower down. A vertical

cylinder will therefore be subjected to different flow

conditions including a spanwise velocity component if it is

long enough. A horizontal cylinder on the other hand may have

the same incident flow along its span but the wake interaction

would be different to that of a vertical cylinder; unless the

orbit is flat. For the vertical cylinder,.regardless of the

orbit, the wake will be swept back against the cylinder; but

for the horizontal cylinder the wake will in general follow

the orbital path. Depending on the orbit, ' the vortices shed

from the previous half cycle on a horizontal cylinder may be

swept far enough away from the cylinder, so that when the

flow reverses they may not significantly affect the forces on

the cylinder. The horizontal and vertical cylinder in waves

therefore represent two different flow situations. For

cylinders inclined and yawed, the situation is even more complex,

with wake interactions that are totally different to either

of the two caseSmentioned above.

These factors together with the very complex sea state,
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makes fluid loading predIction on offshore structures a

very complex problem. In order tilerefore to achieve a

better understanding of the fluid mechanics associated with

these flows, these factors must be separated, and individually

studied under laboratory conditions. Unfortunately, however

experiments and investigations in laboratories are usually

carried out at Reynolds numbers too low to be representative

of real conditions. Information thus obtained cannot usually

be confidently extrapolated to real sea conditions. The

present study will therefore mainly concentrate on bodies

with fixed separation points,.i.e. sharp edged bodies, where

much less an effect of Reynolds number, as compared with a

circular cylinder, is expected, and in the drag/inertia regime.

The circular cylinder will also be studied, mainly as a basis

for comparison. Flow reversal and its consequences, i.e. the

return of the wake usually consisting of rather large vortices,

and its interaction with the body was mentioned in the previous

paragraph. This feature which is one of the more important

characteristics of wave flows is always present in real

situations, and will be examined by studying the relatively

simpler case of planar oscillatory flow past various bluff

bodies. Such a study, although not immediately useful to

designers, will help to explain some features of the more complex

real sea conditions. It also represents a simpler situation

which can be treated mathematically, e.g. Stansby (1978) and

therefore provides data for comparison with such computer models.

1.2 SOME PREVIOUS STUDIES IN THE DRAG/INERTIA REGIME

Probably the most singular significant contribution to

the prediction of wave forces has been the proposal by Morison

et al that the force may be represented by a summation of two

independent components, the drag and the inertia.

In its usual form this equation i4 written as:

F = 1/2, cp DU./V'+C 7c D2 d U
1J-r	 dt

where F = force per unit length acting normal to the axis of

the body and in the direction of the incident wave, p = fluid

(1.4)



12

density, CD = drag coefficient, D = diameter of the body,

U = water particle velocity, dU/dt = particle acceleration,

Cm = inertia coefficient. In their original work Morison

and his co-workers measured the force on a vertical pile,

and the wave profile; by solving equation (1.4) for zero

water particle velocity Cm was obtained and at zero

acceleration CD was found. These coefficients were then

assumed constant over a wave cycle and this input to equations

1.4 to predict the force. Values of Cm and CD thus obtained

by Morison et al showed no dependence on Reynolds number.

An alternative method of representing the force was

proposed by Iversen and Balent (1951) who stated that the

added mass should not be constant, but is a variable and

depended on the state of the motion. Thus, they proposed

that the force be represent by:
'AF = C kr u 2 S	 (1.5)

where F = total force, S = frontal area of body, and from

similarity arguments they showed that:

C = function (Reynolds No., Froude No., body geometry, U D/U2)

(1.6)
•

where the parameter U D/U 2 is the acceleration modulus,

sometimes referred to as Iversen's Modulus. They conducted

experiments on flat disks at Reynolds number high enough so

that this effect was secondary and in accelerated motion,and

found good correlation between the coefficient C and the

acceleration modulus; (see figure 1.3 taken from Crooke (1955)).

However in estimating the added mass coefficient, they assumed

CD constant and independent of Iversen's modulus, an assumption

which is strictly only justified at small values of the modulus

where the force is likely to be drag dominated. Nevertheless

they found that at - large values of the modulus the added mass

coefficient did approach the potential flow value and was
•

fairly well correlated, however at smaller values of U D/U 2

rather poor correlation was obtained. Iversen and Balent

attributed this lack of correlation between the added mass

coefficient and the acceleration modulus at small values

of the latter, to wall interference effects, and that in

their analysis technique at small 11 D/U2 , the procedure

involved taking the difference betwaen two terms of the same

order, i.e. the actual added mass or inertia force was very
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small. The acceleration modulus can be regarded as a parameter

which compares acceleration dependent forces, i.e. inertia,

with velocity dependent forces, i.e. drag, and therefore

implies some dependence between drag and inertia. It is

thus very similar to the Keulegan and Carpenter number, and

for a harmonically varying flow is related to NKC through

the relation:-

Iversen's modulus =	 2 K-
NKC	 •

This method of representing the force by a single coefficient

was also used by Crooke (1955) who re-analysed some existing

wave force data and found good correlation with the

acceleration modulus. Keim (1956) used basically the same

experimental arrangement as Iversen and Balent, but tested

circular cylinders; his results expressed as a single

coefficient also correlated well with Iversen's modulus and

illustrated Reynolds number dependence. More recently

Karanfilian and Kotas (1978), on experiments on spheres

oscillating in still water noted that the force, again when

expressed in terms of a single coefficient was a function

of both Reynolds number and the acceleration modulus. It

is worth noting that when the force was expressed in terms

of a drag, an inertia and a history coefficient, a term

included to represent the history of the motion; the inertia

(Cm) and history coefficients (C h) exhibited a certain amount

of scatter, when plotted to show variation with the Reynolds

number and acceleration modulus. In determining the two

above mentioned coefficients, the drag coefficient was

derived from available data; Cm and Ch were then obtained

from points in the cycle where the inertia and history term

respectively became zero. It is very interesting to note

that in experiments on a sphere in harmonic flow, Sarpkaya

(1975) did not find any Reynolds number dependence of the

force coefficients Cm, and CD obtained through the use of

Morison's equation. However experiments on cylinders by

Laird, Johnson and Walker (1959), led them to the conclusion

that the resistance, or forc- coefficient did not correlate

well with the acceleration mululu:_ at small values of the

parameter. As mentioned earlier, at small 6 D/U2 , the
force is likely to be drag dominated, and the force cocfficient
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will tend towards a constant quasi-steady flow value, thus

independent of the acceleration modulus. This constant

value will in general, however, be dependent on the flow

conditions and in particular, for cylinders/ a function of

Reynolds number.

• The variability of the added mass coefficient was noted

by Keulegan and Carpenter (1958), but they used Morison's

equation to represent the force and absorbed any variation

of the added mass in the inertia coefficient. Here forces

were measured on several flat plates and circular cylinders,

placed at the node of a standing wave. By comparing

Morison's equation with a Fourier series representation of

the measured force, they obtained a series solution for

Cm and CD' thus time dependent values of these coefficients

could be obtained. However they used only the first term

of these series and obtained constant values averaged over

the cycle for the drag and inertia coefficients, which they

found, correlated well with the parameter now called the

Keulegan and Carpenter number (NKC), defined earlier. Other

measured quantities, namely the maximum force and the phase

of the maximum force also correlated well with NKC. 	 As

mentioned previously, this parameter gives an indication of

the flow development, which Keulegan and Carpenter established

by noting that the growth and motion of the vortices were

also related to NKC. The predicted force, obtained by

substituting the calculated values of Cm and CD in Morison's

equation agreed fairly well with the measured force on the

circular cylinder, except in the vicinity of NKC about 15.

In general the agreement on plates was not as good. One of

the most surprising results that was reported by Keulegan

and Carpenter, is that no correlation with Reynolds number

was obtained, neither for the flat plates nor the circular

cylinders.

Subsequent replotting of Keulegan and Carpenter's data

both by Sarpkaya (1976a) and by Garrison, Field and May (1977)

showed some dependencu of both drag and inertia coefficients

on Reynolds number. This lack of Reynolds number dependence
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was also overlooked earlier by Sarpkaya and Tuter (1974) and

by Sarpkaya (1975). A probable reason for this was that the

apparatus used both by Keulegan and Carpenter and by the above

mentioned authors did not allow a systematic variation of

Reynolds number, as changing NKC resulted in a corresponding

change in Reyno]ds number. However, for any given body

size at the same relative oscillation frequency, the ratio

of the Reynolds number to NKC is constant. This constant,

termed le by Sarpkaya is defined as D 2A, T, where D = diameter

of the body,	 = kinematic viscosity, T = period of oscillation.

This parameter therefore gives a measure of the importance of

Reynolds number and Yamamoto and Nath (1976) related it to

the boundary layer thickness. It was by plotting Keulegan

and Carpenter's data for different ig values that Sarpkaya

was able to observe trends with Reynolds number. Sarpkaya

(1976a, 1976b) has carried out extensive measurements of both

in-line and transverse forces on smooth and rough circular

cylinders at high Reynolds numbers in a rather large U-tube

water tunnel. The.seresults show significant influence of

Reynolds number on both the in-line and transverse force.

Figures 1.4a, and 1.4b, taken from Sarpkaya (1976b) demonstrate

the influence of Reynolds number, (by showing the results for

different /4 values), on the drag and inertia coefficients.

Sarpkaya (1976b) also reported that for Reynolds numbers less

than 2 x 104 these coeffieients do not vary appreciably with

Reynolds number and that this explains why this dependence

was overlooked in previous studies by Keulegan and Carpenter,

Sarpkaya and Tuter (1974) and by Sarpkaya (1975). However

the work of the last two authors covered a range of values

from 220 to 1380 approximately and Reynolds numbers as high

as 5 x 104 were obtained; but the results presented did not

reflect this variation of and instead showed very little

scatter when correlated with NKC. Further, the results of

Sarpkaya (1976b), (figures 1.4a,1.4b) show significant

difference in the Cm and CD variation, for beta values of
497 and 1107.

Sarpkaya also observed that when Keulegan and Carpenter's

data was replotted for different/3 values, Cm appeared to

decrease with increasing" , whereas his showed opposite trends.



16

Further, Sarpkaya (1975) noted that for NKC greater than

about 15, Keulegan and Carpenter's data exhibited a different

trend. This anomaly may be explained if Keulegan and

Carpenter's wave analysis is re-examined. In the theory for

the water particle velocities at the node of the standing wave,

(where the model was tested), they represent the horizontal

velocity by:

U = - U Cos co t	 (1.7)

and for the dimensions of the tank and under the conditions

tested,

Um = 3.43a	 (1.8)

where Um = maximum horizontal velocity, c0 = cyclic wave

frequency, and a = semiwave height. The vertical velocity at

the same position then reduces to:

v = -0.0054 Um a Sin 2t	 (1.9)

replacing Um by 3.43a then gives

v = -0.019 a2 Sin 2 tol="	 (1.10)

The vertical velocity then increases rapidly as the wave

*ght is increased, whereas the horizontal velocity increases

linearly. At the instant when v becomes maximum, i.e. atcot =VA

Irmax	 = 0.019 a2b7 = 0.0076 a
(U)40t=14 	 Um (1.11)

From Keulegan and Carpenter's tabulated values of U m , using

equation (1.8) results in values of the semi-wave height, which

range from 2.9 to 21.4 cms. This gives values of (v/U)
t= </4

from 0.02 to 0.16. (note that the above equations are

dimensionally correct, because the constants are not dimension-

less, but were obtained for the dimensions of the tank used

by Keulegan and Carpenter). Instantaneously therefore, the

vertical velocity can be quite significant; further both v

and U are functions of depth, and will therefore vary along

the width of the body; this variation is in general small and

will depend on wave height. The vertical velocity is in

itself quite significant though, as the results of Maull and

Norman (1978) show.

Maull and Norman (1978) examined the effect of different

orbits, i.e. different v/U, on a horizontal circular cylinder

(J 41t=
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in waves. They noted that the prinary effect of vertical velocity

was to alter the trajectory of the vortices. By writing the

force in terms of the vortex strengths and positions, using

Blasius equation, this can be seen to affect both the in-line

and transverse forces; the effect being more pronounced on the

latter. Thus Keulegan and Carpenter's results probably

represent a flow situation different from Sarpkaya's. The

'opposing trends between these two sets of results are then

quite possibly due to the effect of the vertical velocity in

modifying the vortex positions. However, at small enough

wave heights and so at small NKC, the vertical velocity may

be less significant, and the situation approximates to

harmonic flow.

The effect of transverse or lift forces on circular

_cylinders, both in steady flow and in unsteady motion is

well recognised. In a study of lift forces on vertical piles

in waves, Bidde (1971) observed that these forces can sometimes

be as much as 60% of the longitudinal force. Here, however

there was a substantial gap between the end of the pile and

the test bed, thus leading to some three dimensionalend effects,

which may reduce the lift. Isaacson and Maull (1976) also

measured transverse forces on vertical cylinders in waves; this

work was similar to Bidde l s but root mean square and maximum

values which showed a peak at NKC about 10 were presented.

Spectral analysis showed that in this range of Keulegan and

Carpenter number the dominant lift frequency was twice the wave

frequency. They also explain the lift generation in terms

of the vortex patterns. 	 Sarpkaya and Tuter (1974) and

Sarpkaya (1975) also measured lift on circular cylinders, but

in a harmonically oscillating flow. They observed that the

maximum lift force can sometimes even exceed the maximum in-line

force. They found good correlation of the maximum lift force

with NKC, as did Bidde4 and Isaacson and Maull; however, the

lift curve also showed peaks at NKC = 10 and 17 and a trough

at about NKC = 15. These results also exhibited remarkably

little scatter, except in the region of NKC between 20 and 25.

These tests were conducted for Reynolds numbers up to about

5 x 104 
and as previously mentioned no Reynolds number dependence



18

was observed. Sarpkaya l_976a,1976b) extended the Reynolds

number range to about 10 6 and tested both smooth and rough

cylinders in an oscillatory flow. Results presented show

that the lift force on smooth cylinders was dependent on

Reynolds number for Re:'" 2 x 10 4 , and on NKC, reaching a single

peak at NKC between 10 and 15. As the Reynolds number

increased the lift dropped, and at about Re 106 it was

almost constant at about 0.2. The lift frequency and

Strouhal numbers were also dependent on NKC and Reynolds

number.

Both in-line and transvei.se forces were also measured

by Maull and Milliner (1978a) on a circular cylinder in a

sinusoidal flow generated in a U-tube water tunnel. An

alternative method of describing the in-line force, in terms.

of the root mean square (R.M.S) of the measured force .was

presented. Good correlation between the R.M.S. force coefficient
1

C	 ,and NKC was achieved; where C 	 was defined as:
.L rms rms

CF	

2 / 3

pa-b
rms	 (1.12)

Non-dimensionalising the force by /2 1)3AT2
, has the advantage

that for a particular body size in a given U-tube, this

quantity is constant. Using Morison's equation to represent

the force and non-dimensionalising by PD 3/2 T 2 , it can be

shown (see for example Appendix:4) that the R.M.S. force

coefficient is given by:

C' F
1111S

2	 2	 ) //2

AMC (-3--	 AiKC	 C
J71"

(1.13)

Maull and Milliner then showed that the force could be

adequately predicted, using equation (1.13) with potential

flow value of Cm and a fixed value for the drag coefficient.

For their data, at ail value of 200, using C m = 2.0 and CD

= 1.45 in equation (1.13) resulted in very good agreement with

the measured force, in the range of NKC 0 to 30. Recently

Maull (1978) showed that using an inertia coefficient of 2.0,

and a fixed value of the drag coefficient which depended on the
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as:

(1.14)
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Beta value, equation (1.13) obtained from Morison's

equation could adequately predict the R.M.S. force for a

range of Beta values. Further Maull and Milliner also used

Blasius equation to obtain the force, again using the

potential flow value of 2.0 for Cm , gives the in-line force

and the transverse or lift force as:-

L =	
d frigx)
dt'l

(1.15)

where r = vortex strength; y and X are the vertical and
horizontal distances, respectively, between a vortex and its

image, and the summation is taken over all vortices in the

flow field. This method of representing the force, used

also by Maull and Norman (1978), has the advantage that it

enables a description of both in-line and transverse forces

in terms of the motion and strength of the vortices. Maull

and Milliner also found that lift generation was not cistant,

and traces of the lift force showed that lift generation

occurs in Uneven bursts his resulted in scatter of the

R.M.S. and maximum lift force. Spectral analysis showed that

the lift forces occu24ed at multiples of the water oscillation

frequency and weycrelated to vortex shedding; the latter being

related to the Keulegan and Carpenter number.

By considering a cylinder undergoing motion of the form
3

a =	 sin(omt +0 ), where a = amplitude, Maull and-
Milliner (1978b) we able to extend their previous work to

examine the effect of such a motion on the forces. Even

relatively small deviations from a sinusoidal flow, produced

notiople changes both in the magnitude and frequency

composition of the in-line force; the main effect being to

amplify the harmonic that was introduced. At small values

of dzia, spectra of the lift force revealed a frequency
composition similar to that usually obtained for harmonic

flow, with peaks occurring at the harmonics. :s 	 , was

increased and at moderate NKC, they observed that peaks in

the spectra moved away from the harmonics, until at NKC = 32.2,
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the peaks were at p alf-harmonis of the main oscillation

frequency. Similar effects were also noticed when a third

harmonic was introduced in the cylinder motion, but at a

larger value of 2/a„ they observed that the peaks were

once again occuring at harmonics of the oscillation

frequency.	 Mercier (1973) in tests on circular cylinders

which he oscillated, in still water, transverse to a stream

and in-line with a stream, also noted that 'spectra of the

transverse force obtained for oscillations in-line with

the stream, showed peaks at half harmonics. The common

feature in these two situations, i.e. oscillations in-line

with a stream, and oscillations with harmonics is that

the two halves of a cycle are almost unrelated. During one

half of the cycle- in Mercier's case, the cylinder is

moving into a relatively undist.werbed field as the stream

has swept the vortices away, but on the next half it moves

back into its wake. In Maull and Milliner's case, the

situation is slightly different; during one part of the

cycle the cylinder moves into a distLmbed field due to the

presence of vortices from the previous part of the motion,

and as it moves the cylinder sheds more vortices. In the

next part of the cycle the cylinder slows down,. and approaches

zero velocity at a rate depending on a 2 /a1 , the vortices

already shed move further away from the cylinder during

this time. The velocity increases slowly at first and then

quite rapidly, but during the time the vortices previously

formed have moved further away and have diffused to some

extent; the cylinder thus moves into a relatively less

disturbed field. In both cases a situation arises where,

during a part of the cylinder motion, it moves into a rather

undistu-rbed fluid, and for another part the wake previously

formed interacts with the cylinder. Bushnell (1977) has

shown that for a pair of cylinders in tandem arrangement,

in oscillating flow, at a spacing of three diameters,

significant transverse-' force fluctuations arise only when

the instrumented cylinder was in the wake of the dummy cylinder.

This would suggest that the sweeping back of the vortices
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plays an important part in lift generation. The frequency

of transverse fluctuations may therefore be based, not only

on the number of vortices shed during a cycle, but also

on the number of vortices swept back against the cylinder

and the time during which this happens. As vortex shedding

is related to the Keulegan and Carpenter number, the

frequency of the lift fluctuations will also depend on

this parameter. Peaks in the lift spectrum, can therefore

occur at half-harmonics, or intermediate frequencies, but

will depend on the conditions .of the motion and flow.

Other effects which have been studied in relative

oscillatory flow includes the effect of cylinders close

to a wall. This has been examined by Norman and Maull (1978),

and for higher Reynolds numbers by Yamamoto and Nath (1976)

and Sarpkaya (1977b). Significant effects on the in-line

force coefficients, drag and inertia are obtained only when

the gap ratio e/D is less than 1, (e = distance from the

wall to cylinder). The transverse force is more sensitive

to the gap ratio and may be affected for e/D slightly

greater than 1. The most significant effect on the lift

force, is that for small gap ratios, the cylinder experiences

a non-zero time mean force, which increases as the gap

decreases and is directed away from the wall.

Other recent studies in this field include the work

of Dalton, Hunt and Hussain (1976) which is a follow up

of the init1 work of Hamman and Dalton (1971), and that ofet et
MattenX(1978). Dalton et al did not use Morison's equation

but instead plotted the instantaneous force variation with

the corresponding Reynolds number for several values of the

viscous parameter	 =Ag— , and NKC. They showed that

for increasing NKC, the force approached its equivalent

steady flow value, as the instantaneous Reynolds number

approached its maximum.

Matten, Hogben and Ashley (1978), measured the instantan-

eous pressure distribution around a circular cylinder oscillating

in still water, at high Reynolds numbers. They noted that

end effects can be important, and used end plates during their
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study. Instantaneous pressure measurements are very useful

in building up information on the flow development.

Most of the available studies in this field, some of

which are mentioned here, are concerned strictly with

circular cylinders. Besides the work of Keulegan and

Carpenter, another more recent work on flat plates has been

carried out by Shih and Buchanan (1977). This study was

done in the very low Reynolds number range of 1.0 to 1.06 x 10
3 ,

and the maximum force was assumed to be due to the drag only.

This assumption is questionable especially as they were dealing

with low NKC, where inertia is known to be important. Their

results show, however that the drag coefficient, thus defined

.was independent of Reynolds number when Re >250.

1.3 AIMS OF PRESENT STUDY

In the foregoing discussion some of the problems

associated with the prediction of loads on offshore

structures, especially in the drag/inertia regime, and some

relevant studies were mentioned. In this study an attempt

will be made, not to repeat any of the previous work, where

possible but rather to understand and explain some of the

features present in the more complex situations.

Probably one of the more significant features in wave

studies, is the formation and shedding of strong vortices

which are swept back against the body as the flow reverses.

This feature can be simply studied by considering relative

harmonic motion past the test body. In view of the current

problem of laboratory experiments, i.e. the lack of Reynolds

number similarity, this problem will be minimised by

concentrating on sharp-edged bodies.	 The main effect of

Reynolds number on circular cylinders, both in steady flow

and in waves, is due to changes in the development and

separation of the boundary layer. It is appreciated that

Reynolds number also affects the forces through the rate of

diffusion of the shed vortices, however this effect is of

less importance for flat plates, and Shih and Buchanan (1971)
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showed that the force was more or less independeni_ of

Reynolds number for Reynolds number 	 250. Thus, the above

assumption that by considering sharp-edged, (fixed separation

points) bodies, Reynolds number will have a lesser effect,

is justified.	 Qualitative results of tests thus obtained

will be applicable to higher Reynolds number flow situations.

Furthermore, the circular cylinder has been studied extensively,

so a detailed study of this will only be a repeat of work

already done. Nevertheless, the circular cylinder will not

be completely abandoned, and . will be tested mainly as a basis

for comparison with other workers, and to compare with results

on other shapes, both in a qualitative and a quantitative

manner.

Another question that often arises in laboratory

experiments, is blockage; in oscillatory flow no systematic

attempt has been made to examine this, as far as the author is

aware. This will be examined here, using flat plates,

geometrically similar, but of different sizes, and assuming

little effect of Reynolds number.

Besides the work on circular cylinders, spheres and

flat plates, Very little has been done on the fluid loading on

other bluff bodies in waves. Some work, however has been done

on large square sections in waves, e.g. Isaacson (1978),

Mogridge and Jamieson (1976), but these were of more relevance

to the loading at very small values of NKC, i.e. in the

inertia/diffraction regime.

The square section represents another sharp-edged body,

with fixed separation points where, as with other high aspect

ratio bluff bodies, the forces are associated with the

formation and shedding of vortices. In a study of this nature,

where the primary aim is to examine the effect of the vortices

sweeping back against the body as the flow reverses; the

square section therefore represents another body on which this

effect could be studied. On square sections, as with flat

plates, in steady flow, Reynolds number has little effect,

e.g. Delany and Sorensen (1953). However square sections,

especially at low incidence are sensitive to turbulence in
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the free stream, e.g. Beaman (1978), Laneville et al (1975).

Here turbulence results in a thickening of the shear layers

and in an increase in the curvattre, which can cause

reattachment; the net effect is therefore to reduce the

overall drag.

The bodies to be tested will therefore be three flat

plates, a circular cylinder and a square at 00 incidence,

i.e. normal to the flow, and at 45 0 incidence i.e. with

a diagonal in-line with the flow (a diamond section). These

tests will all be conducted in the drag/inertia regime,

where measurements of the in-line and transverse force will

be made.

Detailed flow visualisation studies will be made, partly

with the help of cine films, to examine the flow development,

especially the formation and shedding of vortices; their

positions and their fate as the flow reverses will also be

examined. By comparing the flow development on the various

shapes, together with the results of force measurements,

the effect of free and fixed separation points, and bluffness

in oscillatory motion could be assessed. Although direct

measurements of the vortex strengths and positions will not

be made, rough estimates can be made from flow visualisation.

These results coupled with force measurements will help to

establish the effect of flow reversal.

Another major aimof this study is the assessment of

.Morison's equation, in this simpler case of harmonic flow.

This will be achieved by representing the in7line force as

suggested by this equation. On all shapes tested therefore

inertia and drag coefficients will be obtained and predicted

forces will be compared with those measured. For comparisons

between measured and predicted force, the inertia and drag

coefficients along with other relevant quantities such as

root ream square (R.M.S.) force, maximum fcrce, and the phase

of the maximum force, will be obtained by averaging the

measured force over several cycles. The variation of these

quantities with the Keulegan and Carpenter will also be

examined. The above mentioned coefficients will also be

evaluated for individual cycles. By examining the variation

of these coefficients from the cycle to cycle, the constancy
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of the force coefficients can be assessed.

In light of the current knowledge of the importance of

transverse forces, these will be measured on the square and

diamond sections, and on the circular cylinder. Examinations

and comparison of these results will also help to establish

the significance of geometry of the body in oscillatory flow.

The other part of this study, discussed in Chapter: 2,

is the initial phase, which was the design.of suitable

apparatus and equipment with which the above mentioned

tests could be undertaken. The major part is the design

of a tank to produce relative harmonic motion, together

with associated drive and control mechanism which must be

capable of sustaining stable amplitudes over lon9 periods.

A force measuring system, capable of detecting both in-line"

and transverse forces, together with a set of associated

computer programs to assist data evolution, must also be

devised. The tank must also allow adequate flow visualisation

studies to be carried out.
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CHAPTER: 2

EXPERIMENTAL EQUIPMENT AND TECHNIQUE

2.1	 THE 'U' TUBE WATER TANK

2.1.1 PRELIMINARY CONSIDERATIONS

A survey of the available literature on fluid loading on

offshore structures reveals that the types of rigs used in

laboratory investigations fall into two main categories.

these are:-

(1) those in which the body under test is made to move

in some predetermined manner in a fluid otherwise

at rest;

and	 (2) those where the body is kept stationary and the

fluid is made to move.

Case  (2) may further be classified into those where:

(a) the body is subjected to a train of waves, generated

in a wave tank, e.g. Matten (1977), Maull and Norman

(1978);

(b) the body is placed at the node of a standing wave,

e.g. Keulegan and Carpenter (1958).

(c) the body is tested in a 'U' shaped tank, where the

fluid is made to oscillate at its natural frequency,

e.g. Sarpkaya and Tuter (1974), Sarpkaya (1976),

Maull and Milliner (1978a).

Examples of the use of apparatus classified here as case(1) may

be found in the works of Hamman and Dalton (1971), Garrison,

Field and May (1977), Maull and Milliner (1978b). 	 Case (2a),

represents a situation where the incident flow is slightly more

complex, with the velocity field being orbital. As mentioned

earlier, this study is concerned with the more fundamental

feature of flow reversal and its consequences in the simpler
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case of planar relative harmonic motion. Case (2a) will

therefore not be considered as,in waves another variable,

the vertical velocity is present. It should be added however

that qualitative results in planar oscillatory motion can be

applied to the case of waves.

Kinematically, case (1) and case (2) for the same

relative motion, with the exception of case (2a) are identical,

but when measuring forces or pressures, expected and hence

accountable differences arise. This difference is due to the

fact that, when the fluid is moving relative to the body, the

body experiences an additional force due to the pressure

gradient that would exist in the fluid in the absence of the

body. This pressure gradient is proportional to the fluid

acceleration, and hence in this case the inertial part of the

force is increased. This additional force is usually referred

to as the Froude Krylov force and is equal to /0 V dU , where
dtV = volume of displaced fluid, du = fluid acceleration.

UE
In practical terms, substantial difference exist between

these two cases, therefore the selection of experimental

apparatus must be based on careful considerations which include

the design requirements. Based on the aims of this study, these

requirements are that the tank should be capable of producing

relative harmonic flow with a wide range of stable amplitudes.

Flow visualisation and force measurements must also be possible

and other factors such as available space and construction time

are also important.

The differences between these two cases, mentioned above,

can be considered by examining the advantages and disadvantages
of the two types of rig.

Case (1) : OSCILLATING THE BODY IN A FLUID OTHERWISE AT REST.

One of the main advantages of this system is that the

amplitude and frequency may be varied independently. The

implication of this is that the effect of Reynolds number (Re)

can be studied separately, by fixing the Keulegan and Carpenter

(NKC); or by fixing Re, the effect of NKC can be examined.

Usually, also a higher Reynolds number can be achieved, compared

to when the fluid is oscillated, e.g. in a U tube. This
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increased Reynolds number can be achieved, quite simply by

increasing the frequency of the oscillating body, and hence

the velocity. In such a system also, by careful design, if

desired, a more complex motion could be studied, e.g. Maull

and Milliner (1978b). In this system however, the inertial

force due to the mass of the oscillating body must be

subtracted from the total force; this is usually achieved by

mounting a second identical instrumented cylinder above the

test body such that it performs the same motion in air; the

aerodymanic forces on this image cylinder however al. e ignored

as the forces on the test cylinder are about 1000 times

greater. Alternatively, another method for correcting for the

inertia due to the mass of the oscillating body, is to carry

out tests, once in air and once in water. Further consequences

of the use of this system is the inevitable vibration problem,

leading to noise which may be of sufficiently low frequencies

to interfere with the measuring signal. This noise is

relatively common when water is used as the working fluid, as

the added mass becomes important and thus lowers the overall

frequency response, and shifts the noise to a lower frequency

band. Such systems also usually employ open tanks where free

surface effects, caused by surface waves induced by the oscillatins

model or support system may be important. When testing

horizontal cylinders, the effect of a free surface is not so

significant, provided the cylinder is tested well beneath the

surface. However, for horizontal cylinders, the support

system must be carefully designed, to minimise any disturbance

that this might introduce. If struts are used, this can

seriously affect the two dimensionality of the flow, by shedding

vortices which will result in artificially reduced spanwise

coherence. Vertical cylinders, on the other hand do not

suffer from the support problems ; here however end effects

and surface effects can be important. The cylinder must

therefore either be of a length such that there is only a very

small gap between itself and the ft-Dolri, or have an end plate.

Another way of elimiLating any surface effects or end effects

is to test only an element of the cylinder. Surface

disturbances are also usually lessened by the introduction of

a sheetover the surface which then damps out any irregularities.
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Case (2): OSCILLATING THE FLUID PAST A STATIONARY BODY.

The main disadvantage of this system is that irrespective

of whether the fluid is being oscillated in a 'W-Tube or in

a tank, the oscillations are usually at the natural frequency

of the system. Forced oscillations, off the resonant frequency

could be performed, but the power required to do so would be

greater compared to where the fluid is oscillating at its

natural frequency. It is also generally much more convenient

and reliable to have the fluid oscillating at its natural

frequency. Unfortunately, however this means that the only

two variables are the body diameter and oscillation, amplitude;

the Reynolds number cannot therefore be varied independently

of the Keulegan and Carpenter number. Even though the natural

frequency of the system can be changed, substantial changes can

be made only if large changes in the amount of fluid are made.

However for a given body size, the viscous parameter, /g

is constant and therefore a Lest on several bodies of different

sizes can illustrate any Reynolds number effects. As in the

previous system, if the fluid oscillations are generated

through the use of a standing wave, in a wave tank, free surface

effects will again be important. The main advantage is that

in this system, there is likely to be less mechanically

generated noise, as fewer moving parts are present. Based on

these advantages and disadvantages, a 'U' tube type tank was

chosen and designed to satisfy the present requirements. It

should be noted that the main limitation of this apparatus,

in that Re cannot be significantly varied independently of

NKC, is not serious in this study, as emphasis is placed on

sharp edged bodies where much less an effect of Reynolds

number is expected compared with say circular cylinders.

2.1.2 DESIGN OF THE TANK

Although conceptually simple, careful considerations

must be made before a final design of the 'U' tube shaped tank

is produced. Important factors to be considered are, the

geometry of the corners, the length of the working section

and the height of the upright ants. 	 The overall size of the
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tank and in particular the size of the working section is also

very important. From theoretical considerations of the liquid

in a'U i tube undergoing oscillations it can be shown that the

natural frequency is given by:

/

2 7C	 L
2.1

where JC = natural frequency in cycles/second, and L =

overall length, g = gravitational acceleration. Therefore as

the overall tank size is increased, so is L, and the frequency

drops, and hence the stream velocity is decreased, resulting

in a lower Reynolds number. Thus the corners, upright arms,

and the working section (which make up the overall tank length)

are important collectively as well as singularly. The corners

are important, in that if they are too tight, flow separation

can occur, which will introduce disturbances to the stream,

and higher damping of the oscillations will result. If the

corner is too gentle, the tank will be unnecessarily long, thus

causing problems of lenp mentioned above, The upright arms

are of interest as the length of these will also affect the

natural frequency of the system. However the most important

part of the tank is the working section. A wider working

section enables a larger body to be tested, and hence a higher

Reynolds number to be achieved.

There is not enough available information to make a

confident decision on all of these parameters; a small scale

model of a 'U' shaped tank was therefore built to test these

parameters. This was made of perspex and in five modular

sections, thus allowing either different corners, working

section. lengths or upright arms or combinations of these to

be tested. As the effect of blockage and of aspect ratio in

oscillatory flow is not known, the cross-section was made

square. After testing various corners, it was decided to use

one which had a mean radius of 1.5 times the cross-sectional

height. This corner was tight enough to make the tank compact,

but still gentle enough to avoid any flow sepAration. By

injecting a filament of dye in to the working section, the

effect of the corner on the uniformity of the flow was checked.
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These observations, together with a robgh idea of the

desired maximum aplitude led to the criterion that a working

section of length roughly 2.5 times the cross-sectional

height was adequate. The height of the upright arms was

based on the still water level and maximum amplitude, such

that when the water was at its lowest operating level, it

was still above the entry to the corners.

The final design is shown in plate (1) and with some

later improvements in figure 2.1. For ease of construction

and assembly, the tank was built in five modular sections,

three of which were made of 1," thick aluminium alloy welded

together and with 2" flanges. The upright arms however were

made of 1/2" thick alumunium, but wen:reinforced using channel

section stiffeners. The modules were assembled, using a rubber

seal between adjacent flanges which were then bolted together

using 21/2" aluminium bolts, placed 2" apart. It should be noted

that when assembled, no misalignment or discontinuity of more

than about 1/32" of the inner surface of the tank was observed.

The working section was 1.52 metres long, the cross-section

uniform and of 0.61 metres square, and the corners had a mean

radii of 0.91 metres. Finally, the upright arms were of

length 1.22 metres.

Channel section stifRners were later bolted on (three

on each face) to the corners of the tank. This was done to

stop these faces from flexing and thts to improve the fatigue.

life of the weld. When pressure measurements were attempted,

low frequency fluctuations were observed in the signal, these

were later traced to the walls of the corners; reinforcement

thus also helped to reduce these fluctuations.

One of the upright arms had two small perspex windows one

on either side of the mean water level; these were used to

monitor the oscillations and also helped in calibrating the

capacitance probe which was used to measure the water level.

The working section had a lid which fitted a 0.61 metre

square opening, centrally located on the top surface. This

lid was 0.76 metre square and was secured by a series of bolts

placed roughly 2" apart; removal of this was necessary when
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changing models or when cleaning the tank. A narrow slit,

into which a perspex window fitted, was also cut into the lid;

this gave a 0.41 m x 0.08 metre area through which the flow

could be vertically illuminated for flow visualisation. On

either side of the working section, again centrally located,

there was a 0.61 m x 0.46 m opening into which windows could

be fitted. When measuring forces, a 3/4" thick aluminium alloy

plate, reinforced with 'T' sections stiffners was used as the

window. For flow visualisation, however, t" thick perspex

windows were used. Regardless of the windows used, construction

was such that when correctly 'mounted, they were flush with the

inside of the tank. Two types of windows were thought necessary

because when measuring forces, flexure caused by less stiff

windows could cause spurious force signals. Unfortunately ,

therefore flow visualisation and force measurements could not

be undertaken simultaneously. Finally to prevent corrosion

and so maintain a uniform inner surface texture, the inside of

the tank was painted.

2.1.3 DRIVING MECHANISM AND WATER DISPLACEMENT GAUGE

A capacitance probe was used both to measure the

instantaneous water level and to control the tunnel drive system.

This was just over 1.22 metres long and consisted of a stainless

steel rod which acted as one plate of a capacitance, and a long

length of insulated wire doubled back on itself, as the second

plate. A small fixed capacitor was connected in parallel with

the probe so that when the water was oscillating at large

amplitudes, the change in capacitance expressed as a fraction

of the capacitance at still water level, was within the working

range of the associated instrumentation. ' That is, the linearity

of the probe output was maintained. Connected to the probe was'

a Disa oscillator, type 51E01, the output of which was fed into

a Disa reactance converter type 51E01. The final output was

noise free (R.M.S. of noise about 0.3 my with water stationary)

and the probe was sensitive enough to detect even small ripples

on the water surface. This probe was fixed in the upright arm

of the tank which has the small perspex windows (see fig.2.1)

and with graduations at 1" intervals. The still water level

was chosen to be coincident with one of these graduations,
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probe was then achieved by recording the water level

signal and measuring the peak to peak amplitude. Because

of the very low frequency of the oscillations, measurement of

the amplitude was possible with a ruler, placed side-on in the

inside of the tank for small amplitudes, and by measuring

the position between the graduations (observed through the

windows), for the larger amplitudes. This could be done to

an accuracy of better than 1/16", however small errors could

be introduced by surface tension. A typical calibration of

the probe is given in figure •.2, where the linearity of the

output within the range may be observed.

In order to achieve contintous oscillations of the water

in the tank with stable amplitudes, a fan mounted on the

other upright arm of the tank and controlled by the following

feedback system was used. The output from the probe via

oscillator and reactance converter, hereafter referred to as

the displacement signal, was fed first into a fixed gain

amplifier (PHI (Patchable Hybrid Instruments)analogue module M19),

set to have a gain of ten,..and then into a voltage comparator

(PHI Hybrid module M21). The output from this was then used

as input to a relay switch which controlled the switching

on or off, of the fan. A variac connected in series with the

fan was used to control the power to the fan and hence, the

amplitude of oscillations. By suitable adjustment of the

voltage comparator, the fan could be made to switch on and off

at the 'best' time giving stable oscillations with a maximum

amplitude of about 0.3 metres. The fan itself was of a very

low power rating, and was mounted on a cover plate; when

switched off therefore, air escapes through the blades of the

fan, which incidentally was free to rotate in eithdirection.

This method increases the damping considerably, but other

methods which included a butterfly valve assembly did not

produce very stable oscillations, and introduced spurious

vibrations into the system.

2.1.4 CHARACTERISTICS OF THE TANK

In all the experiments, the still water level chosen was
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0.61 metres above the top of the corner, at this level the

oscillations had a period of 3.33 seconds. Theoretical

calculations give, the natural frequency of the system as

in equation 2.1, from which a period of 3.36 seconds is

obtained.

The damping of the oscillations of the water in the

tank is shown in figure 2.3a, where the fan and cover plate

is removed, (so that both ends are open); here it takes

about 35 cycles for the amplitude to fall 'to half its

maximum value. Obviously, the damping arises from the drag

on the model and friction at the walls and is therefore not

constant, but will be smaller at the lower amplitudes. With

the cover plate and fan mounted, but with the fan switched

off (so that one end is now closed), the damping is naturally

much greater, (fi gure C2.3b)), and it takes just 15 cycles

for the amplitude to fall to half its maximum value.

In order to examine the quality of the displacement

signal several checks were carried out. The stability of

the oscillations of the water, _generated by the fan is

illustrated in figure 2.4a, where a typical trace of the

displacement signal over a number of cycles is presented. In

figure 2.4b a sample of the unfiltered displacement signal is

presented to show that this is noise free. The harmonic

component of the signal is also analysed, firstly as in

figure 2.5 where the displacement signal, averaged over about

50 cycles was compared with a sine wave. Two amplitude cases

are presented and very slight deviations from a sine wave

are observed in the region of e 2700 ; which corresponds to
the water at its highest level. This deviation from a perfect

sine wave could be due to non-linearity of the probe or be

representative of the flow, but in any case it is very small.

Another way of examining the frequency content of the

displacement signal is to spectrally analyse the signal. In

figures 2.6a and 2.6b, spectra of the displacement signal over

two different frequency ranges are presented. Figure 2.6a

shows that the displacement is primarily at the water oscillation

frequency with a very small amount of energy at twice this

frequency. The peak at about 2.5 Hz and the other peaks which



appear at higher frequencies, as in figure 2.6b were originally

thought to be due to vibrations of the walls of the tank.

However, it was later found that these peaks were introduced

by the tape recorder during data recording. In figure 2.7a,

a spectrum of the noise due to the tape recorder, (obtained

by recording with the input shorted), is presented to show

that the peaks at higher frequencies in the displacement

signal were indeed introduced by the tape recorder. The

vibrations of the tank, obtained from the outputof an

accelerometer placed on a side wall, was also spectrally

analysed. This is presented'in figure 2.7b, where it can be

seen that any peaks in the vibration spectrum are due to the

noise of the tape recorder; thus the walls of the tank are not

expected to introduce any spurious signals. It should be noted

. that all the spectra presented were nondimensionalised by the

mean square of the signal, and that the root mean square of the

noise of the tape recorder was about 11 millivolts.

Finally, by introducing particles into the flow and

observing the motion of these, the uniformity of the flow was

examined. This was observed to be uniform and one-dimensional

(in the absence of any test model) throughout the width and

height of the observed part of the working section, except for

very small regions close to the wall, i.e. the boundary layer.

There was no direct way of measuring this; suffice to say that

the influence of this appeared to be confined to a region of

about a centimetre from the wall. A theoretical estimate of

the influence of viscosity in periodic flow can be found from

an exact solution of the equation of motion (Schlichting (1968)).

The relevant parameter is the depth of penetration, and gives

a measure of the extent to which the oscillating boundary

layer will penetrate into the fluid, and is defined as RX (Ay

where)) = kinematic viscosityand eJ = frequency of oscillations.

In the present case this corresponds to about 0.7 cm.

2.2 FORCE MEASURING SYSTEM

2.2.1 THE DESIGN.

In order to enable reliable measurement of the in-line

and transverse forces, a complete . force measuring system was

21)
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designed. This consisted of a pair o f special windows for

the working section, two pairs of strain gauged load cells and

complementary models.

The design of the load cells must incorporate such

features as, high enough natural frequency (with the model

connected), linearity, sensitivity, and a maximum strength

in excess of any expected loads. Because different sized

bodies were to be tested in this study, the requirements of

maximum load and sensitivity varied; this necessitated the

construction of two pairs of .load cells, the basic design

of which was identical. The difference between the two pairs

were such that one pair, used in conjunction with the

largest model tested, a 3 inch diameter flat plate, had

slightly stiffer measuring elements, resulting in a greater

maximum strength. The remaining models were tested using

the less stiff pair of load cells. Further, a pair of cells

were necessary, one at either end of the model, so that the

total force could be measured, independent of the point of

application, by simply summing the outputs from the two ceris.

The final design of one of the load cells is shown in

figure 2.8, with the strain measuring elements of dimensions

1" x ki" x 1/16" ; the stiffer cells mentioned above were

similar, but with the measuring elements of dimensions

1" x 1/2" x V. These cells were machined from a 3/4" thick

block of stainless steel, with two measuring elements per cell;

strain gauges were mounted, one on each le" face of the element,

giving a total of four gauges per load cell. The two cells

making up a pair were also slightly different in design, one

as shown in figure 2.8, had a 3/16" hole centrally positioned;

the other, had instead a 5/16" clearance hole. This was chosen

such that . the model would be fixed to one load cell at one

end, but free to move, in the axial direction only, at the

other end connected to the other load cell. It was

necessary to do this because, had the model been fixed at

both ends to the load cells, when filling the tank the

effect of the very large static pressure on the windows would

set up lateral bending strains in the load cells which could
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possibly cause damage to them. This system was therefore
insensitive to axial loads on the model. Further, the

sliding end of the model was such that no torque could be

transmitted to the load cell at this end; in any case the

gauges were connected as to be insensitive to torque.

The models were all constructed with similar end

fittings, the end to be fixed had a 3/16" tapped hole

through which a screw fixed the model to the cell; a boss

prevented any axial movement of the model.. The assembly

of the other end, free to move in the axial direction is

shown in figure 2.9, where the model is made with a 5/16"

stud machined to a fine tolerance, which fits snugly into

the clearance hole of the other cell.

As previously mentioned, when measuring forces, a

different pair of windows, made of 3/4" thick aluminium alloy

and reinforced with 'T' section stiffeners were used. These

windows also had a special housing for the load cells, and a

1" diameter clearance hole, through which the model was

connected to the load cell; both the clearance hole and the

load cell housing were centrally positioned. As can be seen

in figure 2.9, the housing for the cell was outside the tank;

during operation this was completely full of water, which

totally covered the load cell. Any air was bled out through

the cover plate which was then tightened to seal in the

water. The wires for the strain gauges on the load cells

passed through a sealed hole in the cover plate. When the

models were connected to the load cells, the gap between

the model and wall was usually not more than 1/16" on either

side.

The models tested consisted of three geometrically

similar flat plates of lAr(diS	 3", 1.5" and 1" with a

thickness . to diameter ratio of 0.208, and an edge angle of

600 , made of aluminium alloy, brass and stainless steel

respectively. A circular cylinder made of perspex, thus

very smooth, of 1 9/16" diameter was also tested. Finally,

a square section, again of perspex with a dia-Leter of 1.5"

was tested at 00 blcidence (called a square normal) and at

45° incidence (called a diamond section).



When measuring in-line forces, the cells were positioned

such that the axes of the measuring elements were vertical;

for measurement of transverse forces the cells were rotated

until these axes were horizontal.

The strain gauges used were Techni Measure Limited type

FLK6, with gauge dimensions 6mm x lmm, and resistance of

nominally 120 ohms. After bonding to their respective

surfaces, using the appropriate adhesive, they were coated

with a layer of microcrystalline wax and then overcoated with

adhesive, to make them waterproof. The gauges were then

connected to a Strainstall two channel strain conditioning

unit, one channel per load cell, to form a full bridge. A

later improvement was to add two external resistors in the

form of 360 ohms rosette strain gauges, in series with the

strain bridge to further reduce the effective bridge voltage,

one rosette being used per bridge. This being necessary after.

initial tests showed that the gauge life was too short and

probably due to too high operating currents.	 The Strainstall

unit was modular in design and consisted primarily of a pair

of amplifiers, one for each channel, a power supply, a switch

selector, and a meter. By selecting the appropriate channel

on the switch selector unit, the output from that channel

can be displayed on the meter and then balanced if necessary.

A continuous 0-1 volt output was also available for each

chsannel, and this was then the 'raw' load cell output. The

two outputs corresponding to the two load cells were summed

usuing an operational amplifier ( p Ea analogue module M16),

this was then used in the calibration and in subsequent

measurements.

Prior to a set of experiments on a model, the load cells

were carefully aligned and then calibrated with the model

connected. Calibration was achieved through the use of a

simple pulley and weights system, which consisted of a

near-frictionless pulley mounted on a small vertical traverse.

By adjustment of the traverse a horizontal load was applied

to the model and hence to the cells, when calibrating for

in-line force measurement. Calibration was carried out for

loads acting in both directions, i.e. from left to right, or

from right to left, for in-line force measurements; these
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were done in air, but initial tests showed that there was

no difference when calibrated in water. For transverse

force measurements, calibration was easier; loads acting

vertically downwards were applied simply by hanging weights

from the model, whereas for loads acting upwards, the pulley

was again used. A typical calibration is shown in figure

2.10; similar calibration constants were obtained for all

combinations of load cells and models (except for the large

plate and stiffer cells) tested, • even though this involved

removal of the cells and re ;-aligning them, when a different

model was fitted.

2.2.2 DYNAMIC RESPONSE OF LOAD CELLS AND MODELS

A dynamic calibration of the load cell and model was

not undertaken, as this needed to be done with the model

in the water and thus presented certain practical

difficulties. The following is therefore a theoretical

estimate of the responseof the various models and load cells.

The load cell and model used for force measurement may

be represented diagramatically by the sketch below.

////////

Measuring Elements

•\\\-\\.\

The mass M includes the actual mass of the model and the

added mass, due to the unsteady flow past the model. This

system may be idealised as a beam, clamped at both ends

with a concentrated mass at the centre, as shJwn below.

	 =.1
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For this system the natural frequency is given by:

(/ EL92 _ 

W =I * ). (2, 3 	 3

where El is the flexured stiffness of the beam,21 is the length

of the beam, and% is the concentrated mass.

In practice however, damping will be present thus

modifying the system's response. Consider therefore a

damped system whose motion may be represented by:

• .	
4.- if- z	 f7

2.3

where m = mass of the model, c = structural damping,k

structural stiffness, F = forcing function, and X. is the

displacement of the model. In the present case, the forcing

function F, may be obtained from Morison's equation,

modified to take account of the assumed oscillating model

(see e.g. Verley and Moe (1978)). Thus, F is given by:

= ,Dcz 	 70)2-	 32- ,0 C X:

wher L is the length, and D is the diameter of the model,

U and U are the velocity and acceleration, respectively of

the incident flow, and Ca is the added mass coefficient.

Substituting equation 2.4 into equation 2.3 and denoting

the added mass by Ina =?E-2/° Ca , and neglecting terms of
*

order higher than Z , results in:

pLCD3(U/ul --2quI)1,- dcfc —ffn
46	 '7	 a

re-arranging gives:

/	
2

k x	 EL G up/ * EA Z./0C c)

Equation 2.5, in its present form, is not easily solvable

as it contains certain unknowns, the following assumptions

will therefore be made. Assuming that the damping is mostly

due to drag, then the structural damping C, can be neglected

in comparison withp 4- CD ID /Ur. Further, let the damping

be constant over a cycle, then CD can be the drag coefficient
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averaged over a cycle, and jUl can be replaced by U m, the

maximum velocity, thus giving the maximum fluid damping.

Finally, the right hand side of equation 2.5 may be Fourier

analysed into components of the form 7,),S'im-pt. Therefore,

for the purpose of determining the responsaof the system,

different values of V, the forcing frequency, can be

substituted in to ??	 vt, the term used to represent
the R.H.S. of equation 2.5.

This analysis is obviously not exact, but it provides

the worst possible response of the system, and at discrete

values of the forcing freqUency. Although it is interesting

to determine the response over a wide frequency range, it

should be noted that the inertia and drag coefficients, Cm

and C
D
 as derived in the analysis by Keulegan and Carpenter

(1958), are dependent only on the component of the force

at the fundamental oscillation frequency.

Equation 2.5 may be written, after making the above

assumptions, as:

X 1- /0 I- Co 	 _AL__ x

./. 4124. )	 (4,7*/07,0

For the idealisation used, fin fins_

writing: s

=  /1/, -574;11' ))-.6
(i777-e Ala )

= /Pik then by

2.6

equation 2.6 becomes:

••
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2.8

The solution of equation 2.8 yields two parts; the complimentary

solution which gives the transient response, and the particular.

integral which gives the steady state response. In this

analysis, the steady state response is df more relevance.
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Rewriting equation 2.8 as:
ZN

( *	 t

where D = d then gives the steady state solution (X ) as:
dt

= 	  13,	 v t = 	 .2 Y3 	 A 5.1%F. t
0

(a/Z 7,- Y.1",- L472 	 °	 (22 co.2)	 y 202

using the shift rule, this results in:

4)2- vz- - YO 
p	 2._ 2)9 at. 4,7V.

	 	 ( (v2- 1)4) -5;4i,vt 2YV CDS Vti
	 .3,2)Z	 y Z))2..

Equation 2.9 can also be written as:

xft =
g S'AA-L,"	 (v-6- - 0)

where	 /2	 6 ,t/ (47 2-v2)1- Y 221
21 2	 zy v

but	 4 =	 44,-

(ilh)
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z.

g=
1)/(; ._ v2. )2.-1_41,/y)2/v,Z

(kJ) (ar)

and	 teup:-/ (.21_2-)-
ar Z._ v2)

2.10

2.11

Since eA = Xs , the static deflection, then X may

further be written as:

	  Se4i. (Vt —
)(A	 ei

v2.)z( * (1)2094/ v � 

2.12
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The dynamic response of the system is therefore given by

equation 2.12, where the quantity,

4/ _	 2	 ('6) Z (g)

V ter /

is the dynamic magnification factor (D.M.F.), and 0 is

the phase lag. Note that Yu,- is commonly written as c/

the ratio of the damping of the system to the critical

damping.

Before the response of the system can be determined,

the natural frequency 47, and the damping coefficient Y must

be found. In the design of the load cells, potential flow

values for the inertia coefficient are used, from this the

added mass is found. As the actual mass of the model, and

the flexural stiffness of the load cell is also known,

equation 2.2 is used to find a r . From equation 2.7, the

damping coefficeint, y is given as:

= 	 c.3.„1	 	  _ 7/Z114  )(%/Wc

(72 )	 //	 i/	 -3	
2.13

where the quantity, /61Z-P 	 is fixed for a given model. For
/Y7

the tank being used, there is a maximum possible velocity,

(and hence, a maximum value of NKC, depending on the size

of the model) that could be achieved. Assuming quasi-steady

flow at the maximum possible NKC, then the steady flow

value for the drag coefficient, together with the maximum

velocity is used in equation 2.13 to give the maximum

damping coefficient. Having obtained the frequency AY,

and the damping coefficient, y , equation 2.11 and 2.12 are

used to obtain the phase lag and the magnification factor,

thus the response of the system is determined.

Obviously, choosing an added mass from potential flow,

and a damping coefficient based on the steady flow drag

coefficient, gives only a rough estimate of the response of the

system. In order to check the response of the system,

measured values of the inertia coefficient, (from which the

added mass could be determined) were used to find the

co
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frequency 4,7 . Measured values of the drag coefficient

were also used to find the damping coefficient Y . Using

Y and co-, thus determined, the response of the system was

again found, but now it was based on actual measured values.

The detailed calculations of the response of the various

models, with the load cell connecteda ve given in Appendix: 1.

Here, calculations of the response based on potential flow

Cm and steady flow Co, are compared with those obtained

using measured values of Cm and CD .	 These results are

given in figures 2.11a to 2.11f, and the responsesobtained

using the two methods are compared. As can be seen from the

calculations in Appendix: 1 or in figures 2.11a - 2.11f, the

response of all combination of models and load cells is more

or less flat up to about 10 times the oscillation frequency,

i.e. up to about 3 H z .	 The phase lag, however drops very

quickly as the frequency increases, and this is particularly

notiqable for the 11/2" diameter flat plate. Nevertheless, as

stated before, in the calculations of Cm and CD using the

method derived by Keulegan and Carpenter (1958), these

coefficients were related only to tile component of the force

at the fundamental frequency. At this frequency, for all the

models and load cells used, the phase lag was less than 10.

However, an analysis was carried out to examine the effect of

a phase shift between the velocity and the force. This

analysis is presented in Appendix: 2, where the effect of a

phase shift, E on the inertia and drag coefficients is

shown to be given by:

8	 c	 e C'ft, Car 8111
3	 1C 3	 2.14

where subscript 's' refers to the shifted value of the

coefficients. Thus for large values of NKC, i.e. as

NKC--n 	CD	 CD Cos e , and in this region,

substantial pease shift will be required to make a

significant change in the drag coefficient.



45

Finally,'in order to check the quality of the force

signal, it was spectrally analysed. Some of these spectra

are presented in figures 2.12a -2.12d; here it can be seen

that no contribution to the force exists above about 3 H.

The peaks above this frequency, all arise from spurious noLs.e

introduced by the tape recorder, as discussed earlier. In

addition, figure 2.13 is presented to show, a typical

force and displacement signal; both signals presented here

were filtered at low pass 20 H z and were obtained on tests on

a flat plate.

2,3 DATA LOGGING

For the purposes of analysis , the force and displacement

signals were simultaneously recorded on two channels of a

fourteen track analogue tape using an Ampex analogue tape

recorder, model FR 1300. This recorder had a flat frequency

response up to 20/27 KHz at a speed of 60/Z1 inches per

second, where N = 0, 1,2 	 5. Before recording both signals

were filtered using a Rockland dual filter, set usually at low

pass 10 H z for NKC greater than about 15 and at low pass 5 Hz

for the smaller values of NKC. From spectral analysis (see

e.g. figures 2.12a-2.12d) it was observed that these filter

settings were adequate, in that no significant component of

the signal that would have been attenuated or cut off was

present. From tests of the filter response, (figure 2.14),

it was observed that at a setting of low pass 10 H z only

frequencies above about 6 Hz were attenuated; at low pass

5 Hz , only signals with frequencies above 3 H z were affected.

By passing signals of various frequencies through both parts

of the dual filter, and comparing the outputs, the phase shift,

between the two parts of the filter was examined, and found

to be zero, i.e. the two halfs of the dual filter were closely

matched. Thus, by passing both the force and the displacement

signal through the dual filter, the component of the force

at the water oscillation frequency was unaffected. It is

however appreciated that the higher frequency components of the

force signal, will be slightly shifted. Nevertheless, as

mentioned earlier, the higher frequency components do not

contribute to the inertia and drag coefficients as defined by
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Keulegan and Carpenter. Finally, as the higher frequencies

are only slightly shifted, and not attenuated, this will

not affect the root mean square of the force.

After filtering both signals were then amplified

using operational amplifiers to a value roughly - 1 volt;

this being necessary to improve the signal to noise ratio,

as the tape recorder introduces some noise to the signal.

By shorting the input and recording, the noise level of the

tape recorder was found to be about 0.011 volts, r.m.s.

The signal conditioning process is shown in figure 2.15.

Recording was usually carried out for about 5-6 minutes,

for in-line forces and for over 10 minutes for transverse

forces; corresponding roughly to about 100 and 200 cycles

respectively. For spectral analysis longer recordings were

made. After each run, a sine wave of higher frequency

obtained from a sine wave generator, was recorded, being input

at position A of figure 2.15, and on both the displacement

and force channels. This was used both as a calibration

signal, from which the gain set on the operational amplifiers

and any gain introduced by the recording or reproduction

modules, could be calculated; it also served to distinguish

individual runs.

This data was subsequently digitised, prior to analysis,

on to digital magnetic tape using an analogue to digital

convertor, controlled by a PDP-8 computer. When digitising

the signals were again filtered, the setting corresponding

to that at which they were recorded. The effective sampling

rate was 250 samples/second/channel, which corresponded to

about 835 points per cycle of data, however only half this

amount Was finally used; the choice of this will be discussed

in Chapter:3. Suffice to say here that as unwanted higher

frequency noise was filtered off before digitising, aliasing

or folding could not occur, (Bendat & Piersol).
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3.1

CHAPTER: 3

DATA ANALYSIS

3.1. DATA REDUCTION.

As the flow is harmonically varying, the horizontal

velocity, U, can be represented by:

U = - Um Cos 8
zr

where Um = maximum velocity, 8 =	 / T
	 , T being the

period of oscillations. The force per unit length, acting

on the body can be represented by:

F	 1 rt T e4,7

and dimensional reasoning results in C F , the nondimensional

force being given by:

67 = 	 1 (T-	 '

or
(	 1--‘2)F

3.2
where Um T/D = Keulegan and Carpenter number MC) =22C-11/7)

for sinusoidal oscillations in a U-Tube with amplitude A;

Um Dh) = Reynolds number. Morison's equation in its usual

form is written as:

2r	 /0 c'o 	 ZE2.
'- at

and subsituting for U and du from 3.1 into 3.3 results in
dt

c	 r7c-z c p•—)	 g — (cm, /col 9/F
	

,01 6,4„ 7	 3.4

Representing the measured force by a Fourier series and

comparing with equation 3.4 yields expressions for C m and CD'
the inertia and drag coefficients. This analysis was first

carried out by Keulegan and Carpenter (1958), but is

repeated in Appendix:3, from which equations A3.12 and A3.

give :

3.3
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c e d_ 3
3.5

2—

Cm	
(1,LL	 F .C7. 	al 6.

ig

3.6

The inertia and drag coefficients, Cm and pp can therefore

be obtained by direct substitution of the total measured

force, Fmeas ( 
= F x L, where L = length of cylinder)

into equations 3.5 and 3.6 respectively, as the other

quantities are known. This yields constant values, averaged

over a cycle. However, equations 3.5 and 3.6 are obtained

from the first term of series solutions for C m and CD
respectively, (see equation A3.10 and A3.11), therefore

time dependent values of C m and CD if needed could be

obtained. In this study only constant averaged values will

be presented.

In their original analysis used to derive the.force.

coefficients, Keulegan and Carpenter (1958), assumed that

since the incident flow is symmetric, the force will also

be symmetric. This assumption isn't necessary, nor it it

strictly true. If the force is assumed periodic but not

necessarily symmetrical, equation A3.14 and A3.15 show that

the solutions obtained for Cm and CD are similar to those

obtained assuming. symmetry in the force. The only difference

is that the even harmonics are now present; however the

commonly used averaged values of C m and CD are . exactly the

same as those given in equations 3.5 and 3.6. Further any

assumption that the force is symmetric is more likely to

hold at very small values of NKC, say less than about 5,

where the flow is almost potential.	 In this region

vortices are just being symmetrically formed and the flow

pattern is the same during each half cycle. Here also the

growing vortices are very weak, and the force is therefore

controlled by the symmetric incident flow. At larger values

of NKC, strong vortices which are formed and shed are
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subsequently swept back against the body. This wake

reversal and subsequentinteraction with the body is not the

same during each half cycle. Further, the actual paths

of the vortices during each half cyclect.re not symmetrical.

The force is therefore not quite symmetric, however the

degree of asymmetry will in general not be substantial as

the force is still dominated by the incident velocity field

which is symmetric in the far field. The degree of

asymmetry is not only small but variable,.and since it is

due to a random process, i.e. wake/body interaction as the

flow reverses, must itself be random, with a small, if not

zero mean over a number of cycles. Averaging theforce over a

large number of cycles will therefore tend to make the

signal symmetric.

Another method of obtaining C m and CD is by minimisation

of the error between the measured force and that predicted

by Morison's equation, i.e. a least squares method.

Defining the error (E) between the measured force per unit

length (F) and calculated force (Fe ) as:

E = F - Fc
	 3.7

then C m and CD are calculated such that the quantity

Jerk t d_t	 is a minimum. This results in:

which yields;

c/ni - , (14n 7) 
f

57t;IA. 0 do
3.9CS	 -,0v2

The corresponding result for C D is:

f
0	 $4.;

which gives:
27C

F Cole IC0791 
LS	 f goia 3

3.10

3.11

where the subscript 'L.S' refers to least squares. Thus the
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Fourier series analysis and the method of least squares

results in identical values for the inertia coefficient,

and the results for the drag coefficients appear to be

only slightly different. The Fourier analysis method is

still more commonly used; of the available data therefore,

more is obtained through the use of this method than by

using the least squares method. In this study therefore,

for easier comparison with other workers, and because of the

small difference between the two methods, the Fourier

analysis method was used.

Having obtained Cm and CD through the use of equations

3.5 and 3.6, these can then be substituted in to Morison's

equation (3.4) to give the nondimensionalised predicted

force C
Fc

. The error between the measured force and that

predicted by Morison's equation, hereafter referred to as

the remainder term is then:

CFrem =CF - C
Fc	 3.12

By examining the variation of CFrem over a cycle and for

different Keulegan and Carpenter numbers, the accuracy of

Morison's equation, in this simple case of planar oscillatory

motion, can be assessed.

Another method of representing the force is in terms

of its root mean square (r.m. ․ ) value; which for the
measured total force is given by:

f2N-(1, u204)2
citEmects 

I 2 mi

3.13

This calculated r.m.s can be compared with that predicted

by Morison's equation which can be shown (see Appendix: 4)
to be given by:

(3_ C
2 

A/ C
2
 -f-	 Czz	 An(c. 2 xi, z

3.14
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A similar approach was adopted by Maull and Milliner (1978a)
5 3/ 2

who nondimensionalised the force by /9 0 zr ; the representa-
tive velocity being taken as D/ T . Nondimensionalising in this

manner, gives the r.m.s. of the predicted force as:

CFrms c
2	 2

2 	
2

NA-c	 A/Kc 1- X- It

2	
*1)

3.15

thus C
c
 = NKC

2 
CFrmsFrms	 c

3.16

However as can ;Lie seen from equation 3.15, nondimensionalising

by /02)Z5 7.2 results in: CFrmsc	 as NKC	 c4-°

whereas equation 3.14 gives CFrms —4- 0.61 CD as NKC---4"-°.!'

but now CFrms	 4.0c. as NKC	 0.

In all results presented here, the forces were therefore always

nondimensionalised by 1/2U
m
2
D. It should however be noted

that nondimensionalising by f D
3
/2T

2
 has the advantage that

for a given U-tube for a particular body size, this quantity

is constant over all amplitudes.

Other quantities used to describe the in-line force are

the maximum measured force, CFmax , defined as:

CFmax
	 Maximum measured force during a cycle 

krUm2 D

3.17

and the position where this occurs; i.e. the phase of the

maximum force f , defined here as:

• f = 1800 - position where maximum force occurs.

3.18

These five coefficients, Cm , CD , CF	and .f weres CFmax'

then used to describe the in-line force on all the models.

Here, these quantities were obtained both for an averaged

cycle of force data (obtained by averaging the force over

about 50 cycles) aid for individual cycles. Evaluating these.
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coefficients for individual cycles and plotting the

variation of these over a number of cycles, enabled the

constancy of these quantities to be examined. However

the comparison between the measured force and that obtained

using Morison's equation was made using the averaged force

data. Coefficients obtained from the averaged force data

were also used to examine the variation of these with the

Keulegan and Carpenter number, and to compare with similar

results on other models.

The in-line force is in general regular, however, the

transverse or lift force is not, and occurs in irregular

bursts of uneven length. Thus the transverse force is

non-stationary, and its description presents a problem.

Nevertheless it is usual to present this data in the form

of an r.m.s. of the entirerecord of data as:

LrIlls

T	 2

( 

measured total transverse force dt
}- f U z N.2	 04 ,

3.19

Another commonly used method of defining this force is in

terms of its maximum value defined as:

CLmax	 maximum total transverse force measured

P ic) U 2 az.
3.20

In addition, because of the greater asymmetry present in the

transverse force, another useful quantity is the minimum

transverse force defined in a similar manner to equation 3.20.

However, because the data, at larger values of NKC is somewhat

non-stationary these quantities defined above could be

functions.of the length of the data record. Another method

of presenting this data is in terms of the distribution of

these coefficients about their mean or maximum value; here

however a very long record of data is needed for this

distribution to be accurate. Further, because of the

nature of the lift force, the question arises as to which is
the best way to describe it. In this study, because of the

during a cycle
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very low freqüency of oscillations of the water, it was

very time consuming to obtain a very long record of data

with a large number of cycles. For this reason, only

10 minutes of data (corresponding to about 180 cycles) were

recorded. Of this, because of the way in which the data was

processed, only about 100 cycles were finally used, and this

was not sufficient to give an accurate distribution plot

of the coefficients. The transverse force was therefore

described by equation 3.19 and 3.20. The . r.m.s. force was

obtained for the complete record of data used and for

individual cycles, from which the variation of this

coefficient from cycle to cycle was obtained. Also, the

maximum "r.m.s. force was found. The maximum transverse force

was also obtained at individual cycles and its variation

. examined, here also the maximum value of this force

instantaneously recorded was also determined.

Finally some spectral analysis was done on both the

in-line and transverse forces, but more effort was

concentrated on the latter, as the in-line force is rather

regular and mostly concentrated at the fundamental frequency.

Further some information on the frequency content of the

in-line force could be determined from the remainder term.

The transverse force on the other hand contains information

over a wider frequency band, due to the shedding of vortices

and the interaction between these and the body as the flow

reverses. However, again because the transverse force is

somewhat non-stationary, spectra thus obtained will also

depend on the length of data record. These spectra are

therefore only meant for a qualitative assessment. Finally,

the dominant frequency of the transverse force (f T ) can also

be obtained by visually inspecting the force trace and

noting the zero crossings. 	 This can be used to define a

Strouhal number as:

Uni 1 N KC
	

3.21

where f = frequency of water oscillations.
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3.2 BLOCKAGE CORRECTION

There are no established methods to correct for

blockage in oscillatory flows; thus the results presented

are in general uncorrected for blockage.

However, one of the aims of this study, as previously

mentioned, is to examine the effect of blockage in

oscillatory flow by testing three different sized flat

plates. Differences in results from these experiments can

then be attributed to either Reynolds number, aspect ratio or

blockage effects. The results of Shih and Buchanan (1971) for

flat plates in oscillatory flow show that for Reynolds

numbers greater than about 250, this has little effect on

the forces. Further, as the flow is closely two dimensional

aspect ratio is not considered very important, thus any

differences in results on different sized flat plates is

expected to be due primarily to blockage. To test this

assumption therefore a blockage correction ought to be

applied to see whether any collapse of the results could

be achieved.

In the absence of any known blockage correction methods,

for oscillatory separated flow (i.e. for NKC not tending to

zero), Maskell's (1963) method was used. It is appreciated

that the use of this method is not justified, especially at

low values of NKC. However, it is used only to test whether

or not differences arising from results on different sized

plates can be accounted for by taking into account the wake

and tunnel dimensions.

The drag on a plate may be written as:

3.22

where Cyr = average pressure on the front face, and

C? 	= base pressure. The corrected drag coefficient

is then:

C =
Dc Cp	 — Cp=	 —izzc,

CP
Fbc	c

C	 CD

3.23
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where suffix 'c' refers to corrected values and k is the

base pressure parameter given by:
z

Mask.ell's blockage correction analysis gives:

C
= / -f- c	 s

.0
CDC -	 kz	 cc	 k 2_,

3.25

where = area of plate and c = area of tunnel.

Re-write equation 3.25 as:
2

CD (tc
z
-	 f( kc 	 CD

c

then by substituting CDC from equation 3.23 and rearranging

the result becomes:

4

	

k	 (C,	 c	 c - z -t-	 -cp - c	 ct, s.

	

c	 c	 F/C	 c	 c
3.26

It is known from steady flow results that over a wide range

of base pressures, the average front face pressure on a flat

plate remains remarkably constant, with very little

variation. Choosing a mean value of 0.77 the average front

face pressure, would therefore be reasonable for a wide

range of base pressures. Equation 3.26 can then be solved
/z

to yield a value for R, which when substituted into

equation 3.23 gives a 'corrected' drag coefficient.

The root mean square of the force can then be similarly

corrected by first removing the inertial part, and correcting

only the remaining drag part.

3.3 THE COMPUTER PROGRAMS

Several computer programs were written butthe bulk of

the data analysis was done using only two of these. The

first program was used to average the data ov ,!r a number of

cycles, usually about 50, and then store this for subsequent

analysis, whereas the second program was used to evaluate the
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force coefficients for individual cycles. In both programs,

the data was analysed directly from the digital tape

obtained from the analogue to digital converter, and the

first step was to read and 'unpack' the data. Unpacking of

the data was necessary to take account of the difference in

word lengths between the PDP computer which controlled the

digitising process, and the CDC 6500 on which the programs

were compiled and executed. As two channels of information,

(the force signal and the displacement signal), were

simultaneously recorded, and so digitised, it was also

necessary to recover, and sort out the information on the

digital tape. Standard routines are available which

performs these functions, and were incorporated into both

programs.

These programs operated on blocks of data of about 1000

points each, and on two arrays, one representing the force

and the other, the displacement signal. The number of points

used to represent a cycle of data is controlled by the sampling

rate when digitising, and in the programs, where a selection

parameter ( n) could be used to reduce the number of data points.

Sampling was done usually at 250 samples/sec, which for a

period of 3.33 seconds results in about 832 points per cycle.

Initial tests using various values of the selection parameter

( n) revealed that using 832 points was needlessly

extravagant, and that for n = 4, i.e. using about 416 points,

adequate results Could be obtained. It should be added that

for n = 4, i.e. using 208 points/cycle, results obtained

were within 1% of those obtained using 416 points/cycle.

Nevertheless results presented here were obtained using a

representation of 416 points per cycle. As the data consists

of fairly low frequency information, at first sight it would

seem that using 416 points/cycle is an over representation and

unnecessary. However, in both programs, a cycle of data must

be located; this is done by scanning the displacement signal

for zero crossings. As the data is digitally represented,

this means that in practice, the true zero crossing will not

be found, unless some interpolation between points on either

side of the zero is performed. The location of a cycle in
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this manner will therefore suffer from a random phase

shift, the amount of which will depend on the number of

points used to represent a cycle. In this study,

representation of 416 points/cycle corresponds to a change of

0.87° between adjacent data points. If there is some D.0

offset in the displacement signal, location of zero points

would not give the starting point of a cycle. Thus, in

the routine used to locate a cycle, both positive going

(i.e. positive gradients) and negative going crossings

were found. The position of the first positive going and

negative going crossings were then used to find the positive

peak of the displacement signal; the positions of this and

a knowledge of the cycle length (Obtained from the distance

between sucessive positive going crossings), then made it

possible to find the true starting point of the cycle. This

routine which located a cycle also had several checks which

included a test to determine whether the number of points

in a cycle were within a small band centred on the expected

value; any cycle of data outside this range was discarded.

The averaging program then worked by finding the useful

cycles of data within every block; from the position of

the start and end points of each cycle of displacement
44.7CLS

signal, the corresponding cycles of force datapbtained.

Each cycle of data was then added to the previous ones, with

great care being taken to ensure that corresponding points of

a cycle are added, i.e. any mismatch is prevented. The data

is then averaged over the total number of cycles used, and

the averaged length of the cycle is also determined. From the

averaged data (which contains more points than the average

cycle length), an averaged cycle of data, of length equal to

the average cycle length is extracted, and stored. This

stored data is then analysed by a smaller subsidiary program,

which reads in this data, together with the period and

amplitude of oscillation, body diameter and length, gain

factors and load cell calibration constant. The force signal

is then corrected. fcr gains and offsets and converted from

volts to force by the calibration factor; inertia and drag

coefficients are then calculated as in equations 3.5 and 3.6



5 8

respectively. C m and CD are subsituted into Morison's

equation to yield the predicted force, and the remainder term

is also evaluated. The root mean square force C Frms , the

maximum force CFmax and its phase,	 are also evaluated.

Finally the measured force, predicted force and the

remainder term are plotted to show their variation over a cycle.

In the second program, the constants read in by the

smaller program mentioned above are also read here. Having

located the force cycle, (by first locating a cycle of

displacement signal), the data is corrected as above and

using a routine, which is a modified form of the smaller

program mentioned, the quantities, C:m , CD , CFrms, CFmax and

are evaluated. These quantities are evaluated for every

cycle of force data and are also stored; they are later .

plotted to show their variation from one cycle to another.

The transverse force data is analysed using a modification

of the second program. Here only the coefficients Crmax

CLmin , and C	 are evaluated, but as befo.re this is done
Lrms

for every cycle of data. In analys.-ing this force the

coefficients were first evaluated assuming there was no

offset, but were stored into three arrays. By summing

the force data over the complete data record, and dividing

by the total number of points, the D.0 offset was obtained,

and was used to correct the previously evaluated coefficients.

All the intergrations performed relied on a routine which used

Simpson's rule. .
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CHAPTER: 4

FORCE MEASUREMENTS

4.1 IN-LINE FORCE

4.1.1 THE CIRCULAR CYLINDER

As mentioned earlier, there is a substantial amount of

data available on force measurements on circular cylinders

in waves and in oscillatory, flow. However measurements of

the forces on a circular cylinder were repeated for two

reasons. Firstly, since the experimental facility was being

used for the first time, a comparison with results obtained

by other workers served as an ideal method of testing not

only the apparatus, but also the experimental technique

and data analysis programs. Secondly results of the forces

on the circular cylinder were also needed to compare with

results obtained on other sections.

The circular cylinder used was made of Perspex and thus

was smooth; it had a diameter of 1 9/16" (0.0397 m) and

measured just under 2' (0.61 m) in-length. Forces were

measured using the force measuring system as described in

Chapter:2, and the data presented, unless otherwise specified

was obtained for an averaged cycle of the in-line force.

This averaged cycle, as described in Chapter:3, was obtained

by averaging the force data, usually over about 50 cycles.

Finally, both the displacement and force signals were low

pass filtered at 10 H z for NKC above about 15 and at 5Hz for

smaller values of NKC. For an oscillation period of 3.33

seconds, the A value for this cylinder is 451 and the blockage

(diameter of cylinder to width of tank) is 6.51%.

The results obtained are presented in table:1 of Appendix:5

and represent data from two sets of experiments, performed on

separate days. It should be added that all the in-line force

data presented for all sections tested represent data from

at least two separate series of experiments; this being done

to check the consistency of data. As with the circular
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cylinder, the data on all the sections was found to be

consistent, even though this involved re-aligning and

recalibration of the model and load cells. These results

for the circular cylinder are plotted in figures 4.1 to 4.9

to show the variation of the force coefficients with the

Keulegan and Carpenter number and to compare with other

workers in this field. The variation of the inertia and

drag coefficients with NKC are plotted in figures 4.1 and 4.2

respectively and are compared with results of other workers

using apparatus similar to that used in this study. For NKC

less than about 10, where incidentally inertia is likely to

be most important, the results for the inertia variation

with NKC I as shown in figure 4.1 are in fairly good agreement.

However beyond this value of NKC considerable scatter exists.

The results of Milliner (1978) are much larger than those

obtained here and do not even follow the trend which the

present results and those of other workers exhibit. This

difference cannot be accounted for, but it should be noted that

Milliner's results were obtained for a 1 value of 200, i.e.

a lower Reynolds number range. Further, as NKC increases

the force becomes more drag dominated, so that the inertial

part is smaller; thus, results for Cm at larger values of NKC

are more likely to be in error. Figure 4.1 also shows that

the present results are more or less in agreement with those

of Sarpkaya-(1976a) at a g value of 497, except in the region

of NKC between 10 and 20, where Sarpkaya's results tend to be

somewhat lower than those obtained here. Also plotted in

figure 4.1, are the results of Sarpkaya and Tuter (1974) taken

from the mean line through their data, which incidentally

exhibited very little scatter even though their results

covered a range ofp values from about 250 to 1500. These

results, which appear to be the same as those used by

Sarpkaya (1975), are greater than those obtained in the

present study, for NKC greater than about 15. In view of the

fact that at larger values of NKC inertia is less important,

this difference in results is not serious, and as mentioned

above may be due to errors in determining Cm. This is quite

possible in Sarpkaya and Tuter's case as their results were

obtained by recording the force on a pen recorder, and using

this trace in their analysis.
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Further comparisons with other workers, in particular

with those obtained by Mercier (1973) show even greater

scatter in the variation of the inertia coefficient with

NKC, as can be seen in figure 4.3. Mercier's results show

that at NKC = 12.6, C
m
 varies from about 0.5 to 1.0.

However, his results were obtained by oscillating the

cylinder, and he reported certain difficulties in obtaining

values for the inertia coefficient. Nevertheless, figure 4.3

shows that Mercier's results (which covered a fi range from

about 200-600) are in fairly good agreement with those of

Milliner (1978), for NKC greater than about 20. The present

results, when compared with those of Keulegan and Carpenter

(1958) as in figure 4.4, are in good agreement for NKC less

than about 20. Beyond this value of NKC, their results tend

to be higher and show an increase in Cm with decreasing,: an

- effect which might help to explain why Milliner's (1978) results

for C
m 
tend to be higher than the present ones. However,

both Sarpkaya (1976a, 1976b) and Garrison, Field and May (1977),

show that as decreases C
m
 also decreases. Nevertheless, as

stated in Chapter: 1, this difference in trends between the

results of Keulegan and Carpenter and those mentioned above

could quite possibly be due to the effect of a vertical

velocity which was present in Keulegan and Carpenter's case.

The variation of the drag coefficient with NKC, when

compared with other workers who also used 'U'-tube type

apparatus. as in figure 4.2, shows considerable disagreement.

This lack of agreement is more noticeable between the present

results and those of Sarpkaya (1976a), even though the g values
were similar. Good agreement however, is found between the

present results and those of Milliner (1978), even though

his 111 value was lower, being equal to 200 as compared with 457

in the present case. This is not unexpected though, as Sarpkaya

(1976a) reports that for Reynolds number less than 2 x 10 4 the

effect of Reynolds number in planar oscillatory motion is

small. However, this does not explain why the results of

Sarpkaya and Tuter (1974) should exhibit such little scatter,

(even though the values ranged from about 250 to 1500)

because the Reynolds number range was about 2.5 x 10 3 to 5 x 10
4 .
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Further, Sarpkaya and Tuter's (1974) results are not in

complete agreement with either those of Sarpkaya (1976a)

or with those presented here, but do tend to agree with the

present results at larger values of NKC. This scatter in

the drag coefficient obtained by different workers is

emphasised by further comparisons with other workers as in

figures 4.5 and 4.6. In figure 4.5, it can be seen that of

the recent available data on drag coefficients of circular

cylinders in oscillatory flow, the results of Sarpkaya (1976a)

• represent an upper bound, whereas those obtained here and those

of Milliner (1978) represent the lower bound. Figure 4.5 also

shows that Mercier's results exhibit some scatter and at NKC =

12.6, several valuesfor the drag coefficient are given; this

could be due to difficulties associated with the apparatus

used by Mercier. Here also, results of another recent work

by Verley and Moe (1978) is shown. These results were

obtained for decaying motion of a cylinder allowed to oscillate

freely in still water; the drag was then calculated by recording

the damping of the cylinder motion. Verley and Moe's results

were for a limited NKC range, (less than 20) and in this

range agree fairly well with the results of Sarpkaya and Tuter

(1974), however such an indirect method of determining the

drag force is more likely to lead to errors. Returning to the

difference in results obtained by Sarpkaya and those obtained

here, one possible reason,could be due to differences in the

data analysis techniques used. It is very interesting to

note that the present results and those of Milliner (1978)

were obtained by averaging the force over several cycles, and

in this case good agreement was obtained. Sarpkaya's (1976a)

results, on the other hand were obtained by analysing only a

few cycles of data, obtained for decaying oscillations. He

reported (1976a) that this data was treated in an analogue

manner with data being read from a trace 'every 0.1 seconds

which corresponded to every 6.8285 degrees in a cycle'.

Further, it appears that some digital analysis of the data

was also carried out 'to check the consistency of the data

acquisition system'; however the digital sampling rate was

set at either 10 samples/second/channel or at 20 samples/second/

channel. Sampling at these rates. , implies that the distance
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between adjacent data points corresponded to either 6.82850

or 3.414° respectively, for an oscillation period of 5.272

seconds. As mentioned in Chapter: 3, if Sarpkaya in his

digital analysis located a cycle of data by noting zero

crossings in the displacement signal, the use of such a

small number of points to represent a cycle could lead to

errors caused by the introduction of a phase shift, unless

he interpolated between points either side of the zero

crossing. Further, analysis of data by analogue methods

which involves recording the data on a pen recorder is

limited by the sensitivity of the recorder, the scale on

which data is recorded, and to how precisely the data can be

read. However these errors should only result in a random

scatter, and not in the large consistent difference in results

observed in figure 4.5.

Another possible reasons for this difference could be the

use of filters in the present case, which could introduce a

phase shift in the force signal. As mentioned before, both

the force and displacement signals were low pass filtered

usually at 10 Hz for NKC greater than 15 and at 5 Hz for

smaller values of NKC. These settings were determined by

examining spectra of the unfiltered force together with the

filter response and were chosen such that no attenuation of

the force was possible as this was concentrated mainly at the

fundamental oscillation frequency. However, filtering does

cause phase shifts, but because both the force and displacement

signals were filtered simultaneously with matched filters at

the same setting, only components of the force above the

oscillation frequency are affected. It should be added that

harmonics in the in-line force are always less than about 1/50

of the component at the fundamental frequency. Further, the

method used in evaluating the drag and inertia coefficients

rely on equations 3.5 and 3.6 which use only the component

of the force at the oscillation frequency. Another possibility

for the difference in results could lie in the response of

the load cells. However the analysis given in Chapter: 2

showed that the response of the load cells was more than

adequate with an extremely small phase lag occurring at the
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oscillation frequency. The analysis in Appendix: 2 shows

that although a shift in the phase of the force relative to

the displacement results in some exchange between inertia

and drag, such a shift must be considerable to result in the

20% difference in results seen in figure 4.5. As an example,

at NKCv%50, it would require a shift in phase about 25° to

explain the difference in results obtained by Sarpkaya (1976a)

and those obtained here. However such a phase shift gives a

value for the inertia coefficient which is clearly in error.

Thus it is quite unlikely that the difference in results

could have been caused by a phase shift. Finally, the present

data was compared with the results of Keulegan and Carpenter

(1958), as in figure 4.6. Although Keulegan and Carpenter's

results may have been influenced by the presence of a vertical

velocity, fairly good agreement is observed, except for NKC

about 10 and 15.

Further comparisons with available data on other

relevant coefficients are presented in figures 4.7 to 4.9.

In figure 4.7, the variation of the r.m.s of the measured force

with NKC, is compared with results from other workers. Good

agreement between the present results and those of Milliner

and Maull (1978a) is observed, but here again Sarpkaya's*

(1976a) results are about 10-15% greater. It should however

be noted that, of the results shown in figure 4.7, only those

obtained in this study and those of Milliner and Maull (1978a)

are actual measured values of the r.m.s. of the force. The

others were obtained from measured values of the inertia and

drag coefficients, substituted into Morison's equation, as

shown in Appendix: 4. Nevertheless the r.m.s. force

calculated through the use of Morison's equation is generally

in very good agreement with measured results, because as

stated earlier, the in-line force is almost all at the water

oscillation frequency. This difference in the results

observed in figure 4.7 also discounts any possibility of a

simple phase shift which would have resulted in an exchange

between inertia and drag, but would have kept the r.m.s more

or less constant.
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In figure 4.8, the available data for the maximum

in-line force during a cycle is compared with other available

data. The present results, obtained on an averaged cycle are

in agreement with the mean of the results obtained by

Keulegan and Carpenter (1958) except in the region of NKC

between 10 and 20. Here also there is disagreement between

the present results and those of Sarpkaya (1976a); the latter

again tend to be higher. Finally, the phase of the maximum

force (i.e. the position of occurrence of the maximum force)

was compared with available data. This comparison, presented

in figure 4.9 show the results to be in fairly good agreement,

and also suggests that the measuring system used here did not

suffer from any gross phase lag.

The results and comparisons presented in figures 4.1 to

4.9 show that even when similar apparatus is used, the

available data on in-line force coefficients on circular

cylinders in oscillatory flow exhibit considerable scatter.

This lack of agreement which is especially noticeable on the

drag coefficient, is also reflected in the r.m.s. force and

seems unaccountable for, as the likely errors cannot explain

the large differences observed. However although similar

apparatus were used, small differences in experimental and

data analysis techniques still existed and may explain the

variation in results. Both in the present case and in

Milliner's work, the oscillations were forced and data

obtained by averaging the force over many cycles l and here good

agreement was obtained. However Sarpkaya (1976a) examined a

case of free oscillations with the motion decaying, and

analysed only a few cycles. Earlier though, Sarpkaya and

Tuter (1974). 	 did use forced oscillations, but examined only

a few cycles, however more important was the fact that the
cylinder Was tested in an arm of the U-tube. Even though

the model was well below the surface, when the oscillation

was in its downward stroke the effect of the free surface

could possibly have influenced the results. Thus it would

seen that this range of expermental results La* the drag

coefficient on circular cylinders in planar oscillatory motion

could be due to the fact that the,experimental conditions and

analysis techniques differed in each set of data.
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The notion that small differences in experimental

conditions can produce significant differences in results is

supported by the fact that Sarpkaya (1976a) reports that in

his case of free oscillations the in-line force is repeatable

to a large extent, and results of coefficients evaluated on

successive cycles agree very well. It would seem that as

Sarpkaya (1976a) used oscillations which were decaying he

could not have analysed many cycles, nevertheless it is

remarkable that in the case of free oscillations the in-line

force is as repeatable as reported. However, in the present

case, where the oscillations were forced, the in-line force

is not exactly repeatable, and figure 4.10 shows that although

the displacement is regular, small variations do exist in the

in-line force. Further when the coefficients are evaluated

for individual cycles and for a number of cycles, considerable

variation in the force coefficients are observed. This is

amply demonstrated in figures 4.11 to 4.13, and exists

throughout the range of NKC tested. As expected, these plots

show that at small values of NKC, Cm exhibits less variation

than CD while at large values of NKC the reverse is true; the

r.m.s. force coefficient however suffers from much less

variation throughout the range of NKC. This variation in the

force coefficients, evaluated for individual cycles, but for

several cycles of data is summarised in the plots presented

in figures 4.14 to 4.18. Here, the maximum and minimum values

of the coefficients, obtained from analysis on many individual

cycles are shown with the value obtained by averaging these

coefficients. It should be noted that when results were

obtained by evaluating the coefficients at individual cycles,

and then averaging these coefficients over a number of cycles,

they agreed to within 5% of those obtained by evaluating the

coefficients on an averaged cycle of data. In figure 4.14

considerable variation is seen to exist in the inertia

coefficient; however at the lower values of NKC such scatter

is unexpected as the force is dominated by the potential flow

inertia component. At large values of NKC, because the drag

is now the dominant force, the determination of C m is more

likely to be in error and thus the scatter in the Cm value is

expected. This suggests the possibility of noise in the force.
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It is known that the unfiltered output of the load cells

suffers from some spurious high frequency noise of about

10 my r.m.s., however due to an oversight, the noise level

at the filter settings used was not checked as the filtered

signals appeared noise free when viewed on an oscilloscope.

In addition, some noise was introduced by the tape recorder

(2:11 my r.m. ․ ), but because the signals were amplified to

about - 1 volt before recording, this was not considered a

problem. One way of testing whether the scatter in these

coefficients was due to no(4,e or whether it was genuine, is

to examine the magnitude of the scatter. Now, it would seem

plausible that if the scatter was indeed due to noise alone,

the amount of scatter, when converted in volts should be more

or less constant. Such a test showed that this was definitely

not the case, as the amount of scatter in the inertial part

of the force ranged from about 2 my at small values of NKC

to about 25 my at the largest values of NKC. Nevertheless/

for NKC<15, as the scatter was equivalent to only about 5 my,

it is possible that in this range some of this may be due to

noise. Figure 4.15 shows the variation of the drag coefficient

with NKC, and there it can be seen that as NKC increases the

scatter decreases. In this case, the scatter is equivalent

to a variation of about 3 my in the drag force at stall values

of NKC, and of about 30 my at the larger values of NKC.

Although this variation is larger at highervalues of NKC, it

does not appear so in figure 4.15 because the actual drag

.force is very large in this region, so the scatter represents

only a small percentage of the total force. As a matter of

fact the maximum variation in C
D
 is only about - 6% of the

average value at larger values of NKC. Variations in the r.m.s.

force coefficient are also obtained and as figure 4.16 shows

:thisvariation also decreases with NKC. Here the scatter

corresponds to a variation in the r.m.s. force of about 2 my

r.m.s. at small value of NKC and increasing to about 18 my r.m.s

at large values of NKC. The maximum force also exhibits some

scatter which also decreases as NKC increases. This scatter

shown in figure 4.17 corresponds to a variation in the

maximum force of about 3 my at small values of NKC increasing

to about 58 my at large values of . NKC. These coefficients all
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exhibit considerable variation, which is not due to noise,

except possibly at small value of NKC where the force itself

is very small and so small amounts of spurious noise can

produce a significant signal to noise ratio. Nevertheless

of all the coefficients the r.m.s of the force seems the most

constant or repeatable. This is not really unexpected as

small variations in the flow development from cycle to cycle

can cause significant changes in the phase of the force and

hence in the drag and inertia without signigicantly affecting

the r.m.s. force. The fact -that changes in the flow development

can signigicantly affect the force coefficients is demonstrated

in figure 4.18. Here the phase of the maximum force (i.e the

position of occurence) is plotted and it can be inferred from

this that for NKC between about 9 and 16 the flow development

during every cycle is repeatable to a large extent. This

repeatability in the flow development is reflected in the small

variations in all the force coefficients during this range of

NKC. On the other hand for NKC just less than 9, figure 4.18

shows that considerable scatter in the phase of the maximum

force exists and implies that the flow pattern in this region

is not constant during every cycle ; (this fact is verified
in Chapter:5, where it can be seen that for NKC just less than

9 the flow is about to change from one regime to another).

This changing of the flow pattern causes the large variation
in the force coefficients in this region. However for very

small values of NKC, say less than 5, as the variation in

coefficients is only very small, some but not all of this

scatter may quite possibly be due to noise. Most of this

scatter is genuine even at NKC less than 5 because even here,

as mentioned in Chapter: 5, during some cycles the flow

development can be different to that of previous cycles. By

plotting maximum and minimum values the possible band of

values are shown; strictly a statistical description of the

data would have been more revealing but for reasons mentioned

in Chapter: 3 this was not presented. Nevertheless, thoughout

the range of NKC, the percentage variation in the r.m.s. force

about its average value rarely exceeded 6% except for NKC< 8

where some of this variation may have been caused by noise.
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The other coefficients on the other hand, suffered from

larger variations, being about 8% on average for C D and

about 18% on average for Cm. Thus contrary to the results of

Sarpkaya (1976a), although the bulk of the incident flow is

repetitive, neither the force nor the coefficients evaluated

through the use of Morison's equation are similarly repetitive

for the case of forced oscillations past a circular cylinder.

Next, the measured force, averaged over about 50 cycles

was compared with that predicted by Morison's equation using

values of Cm and CD evaluated from the averaged measured

force. These comparisons are presented in figures 4.19a to

4.19h, where it can be seen that except in the region of NKC

between about 8 and 20, good agreement between the predicted

and measured force is obtained. This agreement improves

rapidly as NKC increases beyond about 20, and at NKC=48,

figure 4.19h shows that Morison's equation predicts both the

magnitude and the phase of the force well. For NKC between

8 and 20, the motion of the large vortices present results in

a poorer prediction and neither the magnitude nor the phase

of the force is well estimated. This results in an error term

or remainder function which is quite large (as can be seen in

figure 4.19d) and reaches a maximum at NKC between 14 and 15.

In this range, the remainder function instantaneously attains

a value of approximately 20% of the maximum force. At smaller

values of NKC, the flow has just separated and only weak

vortices are present, and here again Morison's equation

predicts the force quite accurately as in figure 4.19a, where

both the phase and magnitude of the force are accurately

predicted.

Throughout the range of NKC tested, as can be seen in

figures 4.19a to 4.19h, the remainder term is periodic, and

for most of the range occurs at three times the oscillation

frequency with a mixture of other frequencies superimposed.

Although Morison's equation contains odd harmonics of the force

because of the Cos 49/Cos 0/term, errors still occur at these

harmonics because the values of Cm and CD used were constant

values averaged over the cycle. Had values of Cm and CD
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which included the higher odd harmonics, as in equations

10 and 11 of Appendix: 3, been calculated and used in

Morison's equation the agreement would be vastly improved.

This was verified by calculating values for Cm and CD which

contained up to the fifth harmonic of the force, i.e. the

expression for the coefficients contained three terms (all

odd harmonics). Using these values of C m and CD in Morison's

equation the prediction was vastly improved, even in the

region of NKC between 8 and 20; a typical comparison is
shown in figure 4.20 for NKcz11. However this only proves
that the force can be well represented by a Fourier Series

containing three terms, and that in this case because the
force has only a small component at even harmonics, these
need not be represented. This also serves to illustrate the

point that although Morison's equation contains only odd .
harmonics, these are not fully represented when constant,
averaged values of Cm and CD are used, and so results in a

poorer prediction of the force during some ranges of NKC.
Further, the force on the circular cylinder is concentrated

at the fundamental frequency and significant components
occur only at odd harmonics of the fundamental, thus for

this case the assumption about the symmetry in the force made

by Keulegan and Carpenter (1958) is more or less justified.

These results for the in-line force on the circular

cylinder show that the apparatus and data analysis techniques

used worked well, for although good agreement with results of

other workers was not always obtained, this was due not to any

fault in the present technique and apparatus but possibly to

slightly different experimental conditions.

4.12 THE FLAT PLATES

A: THE 1.5"(3.81 am) DIAMETER FLAT PLATE

This plate like the circular cylinder was about 2' (0.61m 	 )
long, and 5/16" ( 0.79 an) thick with chamfered edges of internal

angles 600 ; the beta value was 427.5, and the blockage was

6.2511.. These results, again obtained for averaged cycles of

the force are presented in table: ,2 of Appendix: 5.
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The only known works on flat plates in oscillatory

flow are those by Shih and Buchanan (1971) and by Keulegan

and Carpenter (1958). However the vork of Shih and Buchanan

was at low Reynolds numbers and results were analysed in a

different manner, and thus not suitable for comparison.

The present results were therefore compared with those

obtained by Keulegan and Carpenter (1958), in figures 4.21.

to 4.25. Figure 4.21 shows the variation of the inertia

coefficient with NKC, and also shows that the present results

do not agree with those of Keulegan and Carpenter. This

difference in results is considerable, and occurs throughout

the range of NKC. Similarly, when results for the variation

of the drag coefficient with NKC are compared with those of

Keulegan and Carpenter as in figure 4.22 there is again

considerable differences, with the present results being lower

than those of Keulegan and Carpenter. Figures 4.23 and 4.24,

also show differences in results for the r.m.s. and maximum

force respectively when compared with Keulegan and Carpenter's

results. It should be noted that Keulegan and Carpenter did

not present r.m.s. measurements, and the r.m.s force used to

• compare with the present results was that obtained through the

use of Morison's equation as shown in Appendix: 4. Figure 4.25,

on the other hand shows fairly good agreement between the

present results and those of Keulegan and Carpenter, for the

phase of the maximum force. The lack of agreement, in general

between the present results and thomof Keulegan and Carpenter

is surprising, at least on this scale particularly when for

the circular cylinder fairly good agreement was observed. As

stated before there are a number of possible reasons why good

argeement between the present results and those of Keulegan

and Carpenter is not expected. For instance, the effect of

vertical velocity, or the effect of a free surface which may

have influenced Keulegan and Carpenter's results. However

these effects would have been present when they tested both

the circular cylinders and the flat plates, and since fair

agreement was obtained on the cylinder then a similar

agreement would be expected on the plates. Further it is

very doubtful whether such large difference observed in figures

4 .21 to 4.24 could be due to the 'above mentioned effects, as
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the vertical velocity was small, and the free surface was not

close to the model. A more likely reason lies in the geometry

of the plates; in the present case these had an internal edge

angle of about 60°, and were of a diameter to thickness ratio

of 0.21. Although Keulegan and Carpenter did not specify the

precise shape of their plates, flow visualisation photographs

show that the plates they used were thinner and without sharp-

pointed edges. This difference would certainly result in

differences in the angle of the separating shear layers and

would therefore influence the growth and strength of the

vortices and hence the forces. Thus it is believed that the

difference between the present results and thos obtained by

Keulegan and Carpenter (1958) are due to slight differences

in experimental conditions, including the differences in

plate geometry. Finally it should be noted that Keulegan and

Carpenter's results show no conclusive influence of Reynolds

number on either the drag coefficient or the r.m.s force

coefficient. The inertia coefficient does show some scatter

when plotted for different values, but because enough data

is not available, no concrete conclusions on the effect of

Reynolds number on Cm can be made. However, since both the

r.m.s. and drag force coefficients show no Reynolds number

dependence, and since the r.m.s force is made up of both the

inertial and drag parts, it seems unlikely that C m on the

flat plate will be Reynolds number dependent.

• As with the circular cylinder, the in-line force

coefficients on the flat plate were also evaluated for a number

of individual cycles. These results, some of which are

presented in figures 4.26 to 4.28, show that here again

considerable cycle to cycle variation exists in the force

coefficients, even though the incident flow is repetitive.

This random variation in the coefficients exists throughout

the range of NKC, but appears to be less at large values of

NKC for CD and CFrms . These results, of analysis on individual

cycles are also used to determine the maximum, minimum and

average values, and no help to establish the degree of

variation of these coefficients. This variation is summarised

in figures 4.29 to 4.33. These plots all show substantial
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variation in these coefficients; figure 4.29 for instance

shows that the scatter in the inertia coefficient is large

throughout the range of NKC. Figures 4.30, 4.31 and 4.32,

on the other hand, shows that the scatter in CD' CFrms and

CFmax decreases with increasing NKC. However, the variation

in the phase of the maximum force appears to be quite large

and random throughout the range of NKC. As with the circular

cylinder, because of the large variation in these coefficients,

particularly at small values of NKC, where the force is small,

but is expected to be more repeatable than at higher values

of NKC as only weak vortices are present, the question of noise

in the signal again arises. Again, by relating this scatter

to the actual force, in volts, it can be seen that the variation

in inertia coefficient corresponds to about 6 my variation

in the inertial force at the lower range of NKC and increases

to about 40 my at larger values of NKC. Thus had this

scatter been due to instrument noise, whether from the load

cells or from the tape recorder, this noise would have been

more or less conttant throughout the range of NKC. Similarly

the scatter in the drag coefficient corresponds to about 6 my

variation in the drag force at small values of NKC and increases

to about 75 my at the higher values of NKX. The corresponding

variation in the r.m.s force is 3 my r.m.s at small NKC and

increasing to about 40 my r.rn.s at large Values of NKC. It

should be noted that although' the variation corresponds to

a large value in volts at the higher values of NKC the scatter

in the drag and r.m.s force coefficients in this region is less

(percentage wise) as these forces are quite large, whereas

the inertia force is small and hence the scatter is greater.

The scatter in the maximum force is also not constant but

ranges from about 10 my variation at low values of NKC to

about 100 my at larger values. Although it does not seem

likely that this scatter is solely due to noise, because the

amount of scatter is not constant, the very small variation

(in volts) present in these coefficients at the smaller values

of NKC suggests that some (but not all) of thisscatter might

be due to noise. Of course it is possible that as this

scatter (in volts) increases with NKC, it may be due to

vibration of the tank or model. However spectra presented in
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figures 2.7a, 2.7b and 2.12b, show that any peaks in the

spectrum for the vibration of the side walls of the tank

were introduced by the tape recorder noise. Similarly the

spectrum of the force on the flat plate showed no evidence of

vibration as here again all the peaks, with the exception

of higher harmonics in the force arose from noise introduced

by the tape recorder. It should also be noted that the level

of the scatter is greater on the flat plate than on the circular

cylinder. Further examination of figures 4.29 to 4.33 shows

that the amount of variation is not just decreasing steadily

with NKC, but changes non-uniformly during certain bands of

NKC. This further suggests that the observed scatter is

definitely not primarily due to noise. Finally it should be

noted that of all the coefficients, C Frms exhibited the least

amount of scatter and rarely exceeded about 10% variation.

about its average value except at low values of NKC, where

this was most likely caused by noise.

In figure 4.34a to 4.34h, the measured force, averaged

over about 50 cycles is compared with that predicted by

Morison's equation using values of Cm and CD obtained from

analysis on the averaged measured force. These results show

that throughout the range of NKC, Morison's equation fails

to predict the force accurately. Even at low values of NKC,

the prediction, as shown in figure 4.34a is poor; even more

remarkable is the fact that for NKC as low as 3.08, figure

4.35a shows that the prediction is still poor. This result

was obtained on a larger plate and hence for a larger

namely 1686. Returning to figure 4,34, it can be seen that

as NKC increases the prediction becomes worse, as the

remainder function increases and reaches a maximum at NKC

approximately 15. Beyond this the prediction improves, but

slowly, and at NKC2,- 48 1 fairly good agreementis obtained. At

even larger values of NKC as in figure 4.34h, taken from

measurements on a smaller flat plate, with a beta value of 188,

the agreement between the measured force and Morison's equation

is still not very good, only improving slightly on the

agreement at NKC .x.48. The remainder function instantaneously

reaches a value of about 20% of the maximum force at NKCIt'.3
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and increases slowly to a maximum of about 30% of the

maximum force at NKCz15. Thus, compared to the circular

cylinder, the prediction of the force on the flat plate is

very poor. Further it can be seen that throughout the

range of NKC the remainder force is clearly periodic and at

three times the fundamental oscillation frequency. Thus

suggesting that this error was caused by the presence of a

third harmonic in the force, which although present in the

Cos e/Cos 8/term is not well represented. The presence of

. the third harmonic in the force is evident in spectra of the

in-line force and can be seen even at large values of NKC as

in figure 2.12b. On the flat plate therefore Morison's

equation fails to predict the force with any sufficient

degree of accuracy.

B. BLOCKAGE

Ey measuring the forces on two other plates, similar in

geometry to the 1.5" (3.81 cm) diameter plate, but of

different sizes, the effect of blockage in oscillatory flow

was examined. As the flow is two dimensional and because

little effect of Reynolds number on these plates is expected)

the primary effect obtained by testing plates of different

sizes is that of blockage. The fact that Reynolds number has

little effect on the forces on flat plates was confirmed by

measurements of Shih and Buchanan (1971) who noted that for

Reynolds numbers Above about 250, this effect was secondary.

This is also evidenced by the results of Keulegan and
A	 ')

Carpenter (1958) which show no discernible effect off as

either the drag or rail.s force coefficients as was seen in

figures 4.22 and 4.23. Three plates were therefore used

with diameters of 1.0"(2.54 cm), 1.5" (3.81 cm) and 3"

( 7.62 crO, thus havingf values of 188,0, 421.5, and 1685.8,
and blockage ratios of 4.17%, 6.25% and 12.5% respectively.

The results obtained are tabulated and presented in tables: .

2 to 4 of Appendix: 5, and were obtained from analysis on an

averaged cycle of force data. In figure 4,36, the results of

the inertia coefficients obtained on the three plates are

compared; good agreement is obtained except for the results

on the 1" ( 2.54 cr0 diameter plate which tend to be larger

for NKC greater than about 15. This effect is unlikely to



76

have been caused by blockage, because had this been the case,

the large difference in blockage between the 1.5" (3.81 cm )

and 3" (7.62 cm ) plates would have resulted in differences

in results between these two plates. The other possibility

is that this difference could be due to the effect of Reynolds

number, such that as decreases Cm increases. This notion
of Reynolds number having an effect on the inertia coefficient

would seem to explain some of the scatter in Keulegan and

Carpenter's results, as shown in figure 4.21, but as explained

earlier this is highly unlikely. Further as the results of

Keulegan and Carpenter (1958) and Shih and Buchanan (1971) both

show little or at least no discernible effect of Reynolds

number on the drag coefficient in this Reynolds number range;

it is therefore odd that only the inertia coefficient would

be affected. The effect of Reynolds number on the flow around

the flat plates is primarily in the diffusion of the vortices,

and this should also affect the drag forces. The data is

however insufficient to be totally conclusive. Of course it

is quite possible that the differences in results of the small

plate could be due to the fact that in the region where the

disagreement exists, inertia is not an important part of the

force; it is therefore likely to represent a very small

portion of the force and therefore be difficult to measure.

However, as previously stated all results presented were

obtained from two separate sets of experiments, carried out

to check the consistency of the data. The data for the small
plate do show a small amount of scatter and reflect the fact

that because the forces are indeed smaller on this plate they are

a bit more difficult to measure, but this does not explain

the difference in results seen in figure 4.36. However figure

4.37 does show a definite effect of blockage on the drag

coefficient. As was mentioned above, the work of others

particularly that of Keulegan and Carpenter (1958) plotted in

figure 4.22, show no effect of Reynolds number on CD . Thus

figure 4.37 does indeed demonstrate an effect of blockage in

oscillatory flow; this effect is quite clear on the largest

plate, with "a blockage ratio of 12.5%. However, both because

there is a small difference in blockage between the two
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the small plate, differences between these results are

obscured. Figure 4.37 also demonstrates that for a small

values of UKC, say less than about 5, blockage is unimportant.

A similar effect of blockage on the root mean square of the

force is observed in figure 4.38, where results for the

larger plate are clearly increased. Here again for NKC less

than about 5 no effect is observed. The results for the

maximum force, presented in figure 4.39 also show this effect

of blockage. In this case however particularly at larger

values of NKC, it can be seen that the results for the 1" plate

do lie below those obtained on the 1.5" diameter plate.

Figure 4.40, on the other hand shows that results for the

phase of the maximum force on the three plates are more or

less in agreement but with some scatter. Thus blockage seems

- to affect only the magnitude of the force and does not

significantly alter the variation of the force during a cycle.

This is evidenced in the plot of 4.35b which shows that the

variation of the force on the 3" plate during a cycle is

similar to that on the 1.5" diameter plate shown as in figure

4.34e.

•
	 Finally in order to ensure that the observed effect was

indeed due to blockage, a correction method was used, not with

a view to obtaining truly corrected results but to demonstrate

that some collapse of data could be achieved if the blockage

ratios were included. The correction method used was Maskell's,

and details are given in Chapter:3. Both the drag and the

r.m.s force were corrected, and these results presented in

figures 4.41 and 4.42 respectively. Here it can be seen that

some collapse of data is indeed achieved, thus demonstrating

that the observed effect is one of blockage. It can therefore

be concluded that blockage in oscillatory flow is just as

important as in steady flow, except for very small values of

NKC where this effect can be ignored. It should however be

noted that although Maskell's blockage correction gives good

collapse of data, there is no real justification for the use

of this method in oscillatory flow, except perhaps at very

large values of NKC where a quasi-steady flow is approached.
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Incidentally great care must be taken if similar blockage

experiments on circular cylinders are carried out, because

a simple increase in size of the cylinder also increases

the Reynolds number. Thus the effect of blockage and

Reynolds number can be confused and at worst may cancel thus

leading to erroneous results.

4.1.3 THE DIAMOND SECTION

This section is really a square section cylinder placed

at 450 incidence. It is therefore sometimes referred to as

a square section with a diagonal in-line with the flow. The

diagonal was 1.5" (3.81 cm) and this dimension was used to

non-dimensionalise the force coefficients. The ft value was

422.7 and the blockage was 6.25%. Results, again for analysis

. on the averaged cycle of force data are presented in table: -5

of Appendix; 5. As no other studies on this section were

available no comparison could be made so the results of these

measurements are presented on their own in figures 4.43 to

4.47. These results will be discussed later. Suffice to say

here that as with the other sections the results presented were

obtained from two sets of experiments which as can be seen

are consistent.

Next, the variation of the coefficients from cycle to

cycle was examined by evaluating the force coefficients for

many individual cycles of data. Here again, as with the

flat plate and circular cylinder considerable variation in

the force coefficients is observed. This variation is

random and quite large but with the exception of the inertia

coefficient and phase of the maximum force, becomes less as

NKC increases. Figures 4.48 to 4.51 demonstrate this cycle

to cycle variation. Here also, these results of analysis

on individual cycles are used to obtain the maximum, minimum

and average values, which are plotted in figures 4.52 to

4.56 to show the degree of variation of these coefficients.

In figure 4.52, large variations in the inertia coefficient

are observed; this scatter seems to decrease for NKC between

15 and 24, but then increases again as NKC increases. The
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force is then drag dominated, however the scatter at small

values of NKC is not really expected as the force in this

region is inertia dominated, thus the question of noise again

arises. As before, by converting this scatter into volts,

the degree of variation can be examined. For the inertia

Ccoefficientthis variation corresponds to about 6 my at

small values of NKC and increases to about 20 my at NKC about

50. The fact that the amount of scatter is not constant

therefore suggests that this scatter is not all due to noise.

Figure 4.53 also shows considerable variation in the drag

coefficient; again this scatter decreases for NKC between

about 15 and 24, and as NKC increases beyond about 24 this

scatter first increases and then decreases. By converting

this scatter in terms of an actual force variation, but

expressing this in volts, the scatter is found to range from

about 7 my at small values of NKC and increasing to about

50 at the larger values of NKC. Th4s here again it is very

unlikely that the scatter is due to any noise. The rart.s force

coefficient showed in figure 4.54 suffers from much lesi

scatter, and for NKC below about 10, less than about 10%

variation about the average value is obtained. Here again the

scatter reduces for NKC between about 15 and 24, and it is

. obvious that the scatter is not constant and thus unlikely

to be due to noise. Incidentally this scatter ranged from

about 3 my r.m.s at small values of NKC to about 30 my r.m.s

at large NKC values. A similar behaviour is observed for

the variation of the maximum force, shown in figure 4.55

where the scatter is particularly small at NKC about 20, and

in general decreasing as NKC increases above this value. As
celitzpeAA.b

with the otherkthe large scatter at small valueof NKC is

probably not all genuine and may be influenced by noise. In

this case the variation is equivalent to about 12 m y at small

values of NKC and increasing to about 90 my at NKC z 50. It

may be concluded therefore that for small values of NKC say

less than about 10, the variation in the force coefficients

may not all be genuine but may be influenced by some noise.

However at larger values of NKC the variation is primarily

a genuine consequence of the type of flow; i.e. the variation

occurs because the flow development during every cycle is not
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repetitive. This conculusion is founded on the supposition

that noise alone would have resulted in a more or less

constant variation in these coefficients. The fact that this

variation is a genuine effect may be supported by examination

of figure 4.56, which shows the variation in the phase of the

maximum force. Here, the variation is clearly seen to decrease

toa minimum at NKC g:22, demonstrating that in this vicinity

the flow is extremely regular. The regularity of the flow in

this region of NKC is reflected in the variation of the

coefficients, which all show a smaller amount of scatter in

this region.

Finally, the measured force, averaged over about 50 cycles

was compared with that predicted by Morison's equation. These

comparisons, presented in figures 4.57a to 4.57h, show that.

as NKC increases beyond about 25, the predicted force agrees

fairly well with the measured force but the agreement is still

not as good as that obtained on the circular cylinder. Figure

4.57a shows that even for NKC as low as 4.8, the agreement

between the measured force and that predicted by Morison's

equation is not good, with neither the maximum force nor the

phase of the maximum force being well predicted. Here, the

remainder function is at three times the oscillation frequency

and instantaneouslyattains a value of about 20% of the maximum
measured force. As NKC increases the prediction gets worse

and for NKC between about 7 and 10, the remainder function

instantaneously attains a value of almost 30% of the

maximum force. Here also the remainder function begins to

show evidence of other harmonics besides the third. For NKC

above about 10 the agreement between Morison's equation and

the measured force begins to improve and by NKCI*15, the

agreement is good. This can be seen in figure 4.57d for

NKC =15.7. Here also harmonics higher than the third can be

observed in the remainder function. As NKC increases beyond

about 15 the agreement onde again deteriorates and the remainder

function can then instantaneously attain a value of about 20%

of the maximum measured force. However as NKC increases beyond

about 25, the predicted force once again agrees quite well with

the measured force and by NKC7-50 figure 4.57h shows good
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agreement. On the whole however the agreement is not as

good as that obtained on the circular cylinder except in

the vicinity of NKC approximately 15 where the agreement on

the diamond is very good, whereas on the circular cylinder

the prediction is poor.

4.1.4 THE SQUARE SECTION

The model was the same as the diamond section but now

placed at zero degrees incidence. The characteristic

dimension used to non-dimensionalise the forces was the

length of a face, which for a diagonal of 1.5", measured

1.06" (2.69 cm). Thus the g value based on this dimension

was 208 and the blockage ratio equal to 4.42%. The results

obtained, again for averaged cycles of force data are

presented in table: 6 of Appendix: 5. As with the diamond

section, no other data is available on this section; the

results are therefore presented on their own in figures 4.58

to 4.62. These will not be discussed here, except to say

that here again these were obtained from two separate

experiments and figures 4.58 to 4.62 show that the data is

consistent.

Results obtained by analysing individual cycles of data

show that throughout the range of NKC, the coefficients

exhibit considerable scatter. This scatter, as demonstrated

in figures 4.63 to 4.65 is quite large and random, but with

the exception of the inertia coefficient and phase of the

maximum force decreases as NKC increases. This is more clearly

evident in figures 4.66 to 4.70, where these results for

individual cycles were used to obtain maximum, minimum and

average values of the coefficients and these then presented.

These plots show that C D , CF s and CFmax exhibit much less

variation for NKC greater than about 20; this is especially

so for CFrms 
as can be seen in figure 4.68. The inertia

coefficient, on the other hand, exhibits a large scatter

throughout the range-of NKC as can be seen in figure 4.66.

This figure also clearly shows that the amount of variation

in Cm increases as NKC decreases, a fact which is not expected

as inertia dominance is expected at low values of NKC. Thus
%

the question of noise again arises. This section presents a
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smaller face to the flow, than any of the other sections

tested, and the overall forces were smaller; thus it is more

likely that results on this section at small NKC values

would be affected by noise. By converting this scatter to

a force, but expressed as a voltage, it was found that for

the inertia coefficient, the scatter was equivalent to about

4 my variation in the force at low NKC and increased to about

12 my at NKC 70. Similarly the scatter in CD ranged from

about 5 my to about 16 my , whereas that in CFrms ranged from

. about 3 my r.m.s at low values of NKC to about 10 m y r.m.s

at the larger NKC values. It seems therefore that some of

the scatter for NKC less than about 20 may have been influenced

by noise. However it should be noted that although the scatter

in these coefficients appears to be large, the average values

agree to within less than 5% of those obtained when the force

itself was averaged. As stated earlier, presentation of the

results of analysis on individual cycles in terms of the

maximum and minimum reflects the worst situation and gives a

possible band of values. Finally, for NKC 7. 20 the variation

in the r.m.s. and drag coefficients is less than 10% of the

average value and by NKC1L-.70, it decreases to about 5%; the

corresponding variation in C m is about 20% of the average

value.

Next, the averaged measured force is compared with that

predicted by Morison's equation. This comparison is

presented in figures 4.71a to 4.71h. It should be noted that

although it was concluded above that for NKC< 20, the results

were possibly influenced by noise, figures 4.71a to 4.71h show

that the averaged force is unaffected as any random noise is

removed by averaging. Thus, the results for the average cycle

of force on this and all the other models are not influenced

by noise. .Returning to the comparison between the measured

force and that predicted by Morison's equation, it can be seen

(figure 4.71a) that at NKCI:*8 and also for smaller NKC values,

the prediction is quite good. Here also, and throughout most

of the range of NKC the remainder function occurs at three

times the oscillation frequency. As NKC increases beyond 8

the prediction becomes increasingly poor, and for NKC between



about 10 and 30, the remainder function instantaneously
attains a value of about 20-30% of the maximum measured

• force. The agreement between the measured force and

Morison's equation is particularly poor for NKC between

20 and 25. Again throughout this range the remainder

function is periodic and at three times the oscillation
frequency. As NKC increases beyond 30 the prediction slowly

improves, but by NKCIL:71, figure 4.71h shows good agreement,

with both the magnitude and phase of the force being fairly

accurately predicted.

4.2 TRANSVERSE FORCE

4.2.1 THE CIRCULAR CYLINDER

By rotating the load cells through 90°, such that the

measuring elements were in a horizontal plane, the lift

force on the circular cylinder, the diamond section and the

square section was measured. Incidentally, calibration of

the load cells in this position yielded calibration constants

similar to those obtained when the cells were positioned to

measure the in-line force. This was the same circular

cylinder as that used in the measurement of the in-line force

and so thep value was again 451.

Measurement of the transverse force on the circular

cylinder revealed that this force was non-stationary, with
periods of very little lift followed by bursts of high lift.

The length of the bursts was uneven and occurred throughout

the range of NKC, except forNKC equal to 14.20, where the

lift appeared to be regular. This non-stationarity of the
transverse force data, which incidentally was also observed

by Maull and Milliner (1978a), makes it difficult to describe

quantitites such as r.m.s, spectral content, and any others

obtained by an averaging process since they will be a function
of the length of data used. In the analysis of the lift

force on these models, the force data was therefore not

averaged (as was done for the in-line force); instead the data

was analysed for individual cycles to yield such quantities

as r.m.s force and maximum force. As would be expected from

such a'cycle by cycle' analysis the force coefficients exhibited
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considerable scatter as the data was not regular. These

were not presented as they only serve to demonstrate the

now established fact that the lift force is not regular.

Therefore only the maximum measured transverse force and

the r.m.s of the total block of data are presented. These

results were obtained on analysis of 100 cycles of data

• but tests showed that results obtained for many more cycles

(2'200) were in close agreement, usually within 5% of those

obtained from analysis on 100 cycles.

The irregularity of the transverse force on the circular

cylinder is clearly demonstrated in figures 4.72a to 4.72h,

where it can be seen that with the exception of figure 4.72c,

for NKC-=14.20, lift occurs in uneven bursts even though the

displacement is regular. This non-stationarity in the

transverse force data probably explains the large scatter in

results observed when similar data from other workers also

using 'U-tube' type apparatus are compared, as in figure 4.73.

Here the results for the variation of the maximum transverse

force with NKC are compared with those of other workers. With

the exception of the results of Sarpkaya and Tuter (1974),

these results, including the present ones show considerable

scatter, but the general trend is the same. Sarpkaya and Tuter's

results were obtained for a range of A values (250-1500), but
these results showed Very little scatter except in the range

of NKC between 20 and 25; their results are therefore presented

as a mean line with a branch at NKC between 20 and 25. Figure

4.73 also shows that all the results presented do tend towards

a peak at NKC ::--18, and a trough at NKC=15, as the results of

Sarpkaya and Tuter (1974) clearly show. However, Sarpkaya and

Tuter's- results show another peak at NKCz10 and for NKC< 10

their results are shown decreasing to zero. This behaviour

is not repeated by any of the remaining results in figure 4.73;

instead they show Cimax increasing as NKC decreases. This is

surprising as Cimax must eventual1y-11. 0 as NKC-6. 0, but because
2

the force was non-dimensionalised by 1/2 pUrn DL if Uni-4n 0 faster

than the measured transverse force then 
CLmax would become

very large as NKC decreases.
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In figure 4.74, the variation of the root mean square

of the lift force with NKC, is compared with the results of

Milliner and Maull (1978a). Because of the nature of the

lift force, the results show considerable scatter and reflect

the difficulty in describing this force. However figure 4.74

shows that the present results follow the trend indicated by

those of Maull and Milliner. Figure 4.74 also shows that

CLr.m.s  tends towards a constant at large values of NKC.

Unlike the in-line force, the transverse force does not

occur mainly at the water oscillation frequency; instead, it

occurs at multiples of the fundamental frequency which is

related to the vortex shedding frequency which in turn is

dependent on NKC. However when speaking of the frequency of

the transverse force, some ambiguity arises as the transverse

force contains information at different frequencies, caused

by the number of vortices shed, and the number of distinct

vortices swept back past the body. In figure 4.75a to 4.75j,

the variation of the lift force during two cycles of water

oscillation are shown; here it can be clearly seen that as NKC

increases the transverse force occurs at higher frequencies.

Further, figures 4.75g to 4.75i also shows very clearly that

this force occurs ata mixture of frequencies. It should be

noted that in these figures, 4.75e and 4.75j show the

corresponding variation of the water displacement; these

figures therefore show where the lift is developed during

each cycle. However a single frequency of the transverse

force could be defined by counting the number of zero

crossings; such a frequency is not a true frequency but does

take into account peaks in the lift force caused both by

vortex shedding and by the passage of vortices past the

cylinder. Because more vortices may be shed during certain

cycles, particularly at large values of NKC, and also because

the interaction between the vortices and the body may not be

t he same during each cycle, such a frequency can sometimes

adopt more than one value for the same NKC. Nevertheless,

defining the frequency of the transverse force (fT ) by the

number of zero crossings during a cycle of oscillation, enables

a Strouhal number to be defined as in equation 3.21, where
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St = NKC 
where f = frequency of water oscillation.

f 

It is appreciated that it is usual to define the Strouhal
number based on the vortex shedding frequency, but in this

case where lift is developed both by the shedding of

vortices and by their interaction with the body it seemed

reasonable to include this. This Strouhal number, defined

thus, then gives an indication of the frequency content of

the transverse force, in a suitable non-dimensional form.

Figure 4.76 shows the variation of this Strouhal number,

and the frequency of the transverse force, with NKC. Here

as expected, because the number of vortices increases with

NKC, f T also increases, however the Strouhal appears to

approach a constant value of approximately 0.15. More data

at larger values of NKC is needed to justify any certain

conclusion about this tendency to a constant value as NKC

increases. Figures 4.75a to 4.75j also show the form of the

lift variation changes with the flow pattern. The flow past

the circular cylinder was observed to adopt certain flow

patterns as described in Chapter: 5, and for the different

patterns lift on the cylinder was developed in different ways.

For NKC greater than about 25 the form of the lift variation

was similar except that the frequency content was higher for

the larger values of NKC. In these larger ranges of NKC the

flow approaches a quasi-steady situation, and lift is then

primarily due to the shedding of vortices which causes a wake

oscillation. For NKC between about 15 and 25 figures 4.75d

and 4.75f show that lift variation during a cycle is similar,

now being caused both by vortex shedding and by their passage

past the cylinder as the flow reverses. Figure 4.75c shows

that for NKC between about 10 to 15, the lift variation adopts

another form as here another flow pattern is set up. For NKC

between about 5 and 10, yet another form of lift generation

is observed corresponding to another flow pattern. In this

region vortices are rarely shed; lift is then due to the

asymmetry in the flow development and by the passage of the

forming vortices back over the cylinder as the flow reverses.

Finally, the transverse force was spectrally analysed to

examine the frequency content in a qualitative manner. Some
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of these spectra, presented in figures 4.77a to 4.77h show

• that the transverse force does indeed occur at a number of .

frequencies, all of which are multiples of the water

oscillation frequency. Even at NKC-=14.20, where the lift

was observed to be the most regular, figure 4.77c shows that

the lift force occurred at several discrete frequencies.

More interesting is the fact that as NKC increases, the lift

force occurs over a wider band of frequencies, but still all

multiples of the water oscillation frequency.

4.2.2 THE DIAMOND SECTION

This section was also the same as that on which the in-

line force was measured, and as the conditions were more or

less the same the value was again 422.7. Data was measured

and analysed in exactly the same manner as on the circular

cylinder. Here however,measurements of the transverse force

revealed that unlike the circular cylinder, for NKC less than

about 20, the lift was much more regular. Beyond this the

lift force did show a behaviour similar to that obtained on

the circular cylinder. This fact is demonstrated in figures

4.78a to 4.78h; here it can be seen that for NKC <20, although

some cycle to cycle variation is observed, this is much less

than that observed on the circular cylinder. For NKC > 20,

figures 4.78f and 4.78g show that here again lift generation

occurs in uneven bursts. It should also be noted that figures

4.78d and 4.78h show the corresponding displacement signal

recorded at the same speed (as the lift force) and matched to

give the correct phase. Here again the maximum force observed

in 100 cycles of data and the root mean square of this record

were evaluated. In view of the fact that no other data was

available, for comparison, the results were compared with those

obtained on the other models. In figure 4.79 the results for

the maximum force are compared; here it can be seen that the

force on this, the diamond section is smaller than that

obtained on the circular cylinder throughout the range of NKC.

Careful inspection of figure 4.79 reveals that as with the

circular cylinder the results tend to form a peak at NKC

between 15 and 20. A similar comparison for the r.m.s of the
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force, as presented in figure 4.80 shows that here again

for NKC20 the diamond section experiences a smallerforce

than the other sections. However for NKC< 20 the root

mean square force on the diamond secticn appears to be greater

than that on the cylinder. This is probably due to the fact

that in this range the force on the diamond section is more

regular than that on the circular cylinder. Figures 4.79 and

4.80 also show that both CLmax and CLr.m.s tends to very large

values as NKC becomes smaller. As mentioned before however,

this could be a consequence of the manner in which the force
was non-dimensionalised. Another possibility is that for

small values of NKC the signal is more likely to be influenced

by noise, as the magnitude of lift generated is only very

small.

I As with the circular cylinder, figures 4.81a to 4.81i

show that the lift force on the diamond section also occurs

at several frequencies which increase. with NKC. Using traces

similar to these, to determine the frequency (f T) of the

transverse force as defined earlier, enabled a Strouhal

number to be calculated. The variation of this Strouhal

number and the frequency of the transverse force with NKC is

as shown in figure 4.82. Here again the results presented show

that the Strouhal number appears to tend towards a constant

at large values of NKC, but more results at higher values of

NKC are needed to establish this observation as a fact.

Figures 4.81a to 4.811 also show that the form of the lift

variation during a cycle varies during certain bands of NKC.

For NKC above 25, the flow approaches a quasi-steady situation

and the lift generation is similar to that observed in steady

flow where lift is due primarily to vortex shedding which

resultsin a wake oscillation. For NKC about 15 to 25 a

different flow pattern is observed and this is reflected in

the lift variation during a cycle as shown in figures 4.81d

and 4.81f. Figures 4.81a to 4.81c are however similar to

each other but different to the others and again reflect

another change in flcw pattern. These flow patterns are

described in some detail in Chapter: 5, but it should be

mentioned that there are no rigid boundaries of NKC which
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separate the types of flow pattern. As a matter of fact

during one value of NKC two flow patterns may be adopted and

this can result in different forms of the lift variation

during a cycle.

Finally, spectra presented in figures 4.83a to 4.83f, show

that on the diamond section also lift occurs over a band of

•frequencies, again all multiples of the water oscillation

frequency. Here it can be seen that during some values of

NKC the dominant part of the transverse force occurs at odd

multiples of the oscillation frequency, whereas at other

values it occurs at even multiples of the oscillation

frequency. At values of NKC between these, the transverse

force occurs over a wide band of frequencies, both odd and

even multiples of the oscillation frequency. As an example,

figure 4.83a shows the force to occur mainly at 2,4,6 and 8

times the oscillation frequency, with minor contributions at

1,3, and 5 times. Figure 4.83c, on the other hand, clearly

shows that the transverse force in this case occurs mostly at

the odd harmonics namely at 1,3,5,7, 9 and 11 times the

oscillation frequency. However figure 4.83b shows that here

the force occurs both at odd and even harmonics of the

fundamental frequency. The question as to whether the lift

frequency will be at odd or even harmonics of the fundamental

depends on the flow pattern; further if the flow pattern is

repeatable to a large extent then spectra shows that either

odd or even harmonics will dominate. If on the other hand

the flow pattern changes during the record of data analysed

the spectra will tend to be more broad band with contributions

at even and odd harmonics of the fundamental frequency.

4.2.3 THE SQUARE SECTION

The p value for this section was again 208, and the
results were processed as for the cylinder and diamond sections.

On this section, the lift again occurred in bursts throughout

the range of NKC as shown in figures 4.84a to 4.841. Figure

4.84a also shows that at smaller values of NKC, the mean lift

is not constant but varies irregularly, but here the actual
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amount of lift force generated is small. For NKC above about

25, figures 4.84d to 4.84h show that lift generation on this

section was similar to that observed on the other sections.

The results for the maximum and r.m.s force were presented

in figures 4.79 and 4.80 respectively, where they were compared

with results on other sections. This comparison, for the

variation of the maximum force with NKC, presented in figure

4.79, reveals that the square section experiences a greater

lift force than on the cylinder or diamond sections for most

of the range of NKC. A similar comparison, presented in

figure 4.80, reveals that the root mean square lift force on

the square section is also greater than that experienced by

the other two sections. In both these plots, for NKC less than

about 20, the results on the square section are shown

increasing rapidly as NKC decreases. As mentioned before this

is most likely due to the fact that non-dimensionalising by
m 2

1/2rUm DL results in the coefficients becoming very large as

NKC tends to zero, if the force tends to zero slower than U m .

Of course, in this region the forces could also be influenced bj

spurious noise which could result in errors. For this reasoll

lift results for values of NKC less than about 15 are not

presented as these were thought to have contained some noise.

In figure 4.85a to 4.851 the variation of the lift force

over two cycles is presented. Here it can be seen that for

NKC above about 30 lift is generated in a manner similar to

that observed on the other two sections. This is not due to

a coincidence but instead, because here the flow also approaches

a quasi-steady situation with a number of vortices being shed

which result in the lift variation shown. For NKC less than

30, no definite differences in the form of the lift variation

is observed and this is due to the fact that in this region

the flow pattern is more or less the same as described in

Chapter: 5.

Again using traces similar to those in figure 4.85, a

frequency of the transverse force was estimated and this used

to form a Strouhal number. Figure 4.86 shows the variation

of this Strouhal number and the frequency of the transverse
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force with NKC. As with the cylinder and diamond section

these results tend to show the Strouhal number approaching a

constant value of about 0.1, but this might be a slow
variation instead and more results are needed to justify a

conclusion.

Finally, the transverse force was spectrally analysed

and these results are presented in figures 4.87a to 4.87f.

These results show that at NKC greater than about 25, lift

occurs over a number of frequencies, both odd and even

harmonics of the fundamental. Here also it can be seen that

as NKC increases the band of frequencies increases. At the

smaller values of NKC, figures 4.87a and 4.87b show that

the transverse force occurs at singular discrete frequencies.

These results agree with visual observations of the flow

which show that for NKC less than about 25 no distinct changes

of the flow pattern occurs. As mentioned earlier only when

definite changes in the flow pattern take place, do, the

spectra become.- more broad band. ' It should however be noted

that although no definite changes in the flow pattern occur

minor changes do take place and these result in irregularity

of the lift.
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CHAPTER: 5

FLOW VISUALISATION

5.1 INTRODUCTION

The following is an account of detailed, but mainly

qualitative, flow visualisation studies carried out on

• all the models tested during this program of research. As

stated earlier, the models include flat plates, a circular

cylinder, and a square section at 00 incidence and at 450

incidence, i.e a diamond section. Visualisation studies

were undertaken to examine the structure of the wake and

the interaction between this and the body as the flow

reversed, and revealed some very interesting and previously

unreported flow patterns.

The flow about circular cylinders in relative oscillatory

motion has been visualised and studied by several workers,

e.g Grass and Kemp (1978), and Maull and Milliner (1978).

Similar studies have been made by Zdravkovich and Namork

(1977) and by Isaacson and Maull (1976) for cylinders in

waves. Keulegan and Carpenter (1958) also did flow visualisation

on circular cylinders and on flat plates, placed at the node

of a standing wave. Unfortunately however, most of these

studies tend to be either brief or were limited to a small

Keulegan and Carpenter number range. In this study therefore

the flow over a wide range of NKC, ( up to about 70 for the

square section and up to about 50 for the other sections )

was visualised and examined.

5.2 VISUALISATION TECHNIQUE

The flow around the model and indeed in the entire tank

was made visible by the introduction of white polystyrene

particles into the water. These particles were of diameters

ranging from 0.1 mm to 0.3 mm, and of density only very slightly

greater than that of the water. In flow visualisation studies,

the choise of particle size and density is very important for

a number of reasons. Obviously if the particle is of
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differentdensitytotilearabient fluid, buoyancy forces will
te

act on the particle andiwill tend to sink or float Size of

the particle alSO creates additional problems as pressure

.differences across the particle can cause forces on the

particle which could result in particle trajectories which

do not follow the flow. This is especially important in

regions of high velocity gradients and hence pressure gradients,

such as in the vicinity of vortices and separated regions.

Selection of particle type and the problems associated with

using particles to track the flow are adequately discussed by

Merzkirch (1974). In this study only a qualitative analysis

of the results of flow visualisation studies were attempted,

thus the particle size and density chosen was considered

adequate, especially as they were small enough and more or less

. neutrally buoyant.

Smaller particles, namely aluminium powder were also

tried during inital tests, however these particles when in

suspension tended to coagulate resulting in a very patchy or

non-uniform distribution of particles. Polystyrene particles

on the other hand seemed to be much more uniformly distributed.

It should however be added that in order to obtain a uniform

distribution of polystyrene particles these were first mixed

with a little soap solution; this prevented the particles from

clinging together, though the same technique applied to the

aluminium powder was not very successful.

The flow was illuminated from above through a slit in

the top of the working section of the tank. Thus, only a narrow

vertical plane, perpendicular to the axis of the model was

illuminated. Only a section of the flow was illuminated and

results for this were analysed. However, because the flow

was nominally two dimensional, the flow in any one perpendicular

plane was typical of the flow field anywhere along the span

of the model. The two dimensionality of the flow was verified

by illuminating horizontal planes of the flow field and viewing

this from above; in all the cases looked at 7 the upstream (or

incident flow) and the wake was well correlated along the span.

There was however some evidence of.„ three dimensionality in the
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wake of the square section during some parts of the cycle at

large values of NKC. Illumination was achieved by means of

two light sources, each containing a 1000 watt bulb and a lens

arrangement to produce a parallel beam of light. A reflector

strip placed on the floor of the working section (i.e. inside

the tank), and directly below the light sources helped to

intensify the illumination. Unfortunately however, the finite

thickness of the models resulted in small shadows on the lower

portion of the flow. Finally, the inside of the working section

was painted black, thus giving good contrast between the

illuminatedparticles and the black background.

For all the models studied, the flow patterns, i.e. the

growth and formation of vortices and their subsequent motion

occurred fairly quickly. Direct visual observations of the

flow past these models was therefore limited to examining the

large scale motion of the vortices or to the flow at very

small values of NKC, where the events occur at a much slower

pace. Still photography, using a 35 mm camera, and cine films

of the flow around the models over a wide range of NKC were

t herefore necessary for detailed analysis. Here again, still

photographs of the flow are of limited use, unless the position

during a cycle is known, however they serve to illustrate

or highlight certain features of the flow. Thus, the bulk of

the analysis was made with the aid of cine films.

4
Photography of oscillatory flows is not straight forward,

as the velocity is not constant, but varies sinusoidally from

zero to a maximum value. Great care must therefore be taken

with the exposure time, if adequate particle streak lengths

are to be obtained. Too long an exposure time results in very

long streak lengths, which give rise to a confusing picture

and are difficult to interpret. On the other hand, a short

exposure time results in particles which appear stationary,

i.e. frozen, so that a single shot or a single frame of a

cine' film is meaningless. The ideal exposure time should

really be different for different parts of a cycle and also

be dependent on NKC, because as NKC increases, (for the same

model) the velocity increases. Ftrther problems arise because
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the amount of light reaching the camera, depends on the number

of particles present (to . reflect the incident light) and also

on the exposure time; the longer the exposure time the more

light will reach the film. In order to establish the 'best'.

exposure times and particle density, intial tests using still

photography were conducted. These tests revealed the

optimum exposure settings and the variation of this with the

incident velocity. The exposure time was kept constant

throughout a. .cycle, for the still shots; this had the advantage

that by comparing different-photographs during a cycle and

examining the streak lengths immediate comparisons of the

velocities could be made. It should be noted that the 'best'

exposure time also depended on the nature of the wake. When

large vortices are present, ie. with strong circulation and

hence high velocities, a shorter exposure time was used, as

compared with cases where, for the same incident velocity

weaker vortices were present. The cine films were shot at

12 frames per second and this obviously set a limit on the

longest exposure time. After carrying out initial tests with

the cinefilm also, it was decided from the exposure range

limitation and other factors mentioned above to shoot the films

for all the models and at all values of NKC with a fixed

exposure setting. In a typical sequence therefore, at higher

velocities streaks are present, and the lengths of these are

.proportional to the velocity, whereas at lower velocities the

particles appear as dots. Analysis was possible by projecting

the cine film slowly or by examining each frame individually.

By finding the frame in which the particles far from the

model appeared stationary, the zero velocity position in each

cycle was found; this was used to determine the number of

frames per cycle and the position of each frame during a cycle.

In all the films about 43 frames repesented a cycle. Frame

by frame analysis was also used to determine the movement of

the vortices during a cycle; some of the positions are tabulated

in tables 1-5 of Appendix: 6, and should be particular interest

to mathematical modellers. The positions thus tabulated are

not extremely accurate; one of the main inaccuracies resulting

from difficulties in determining the exact centres of the
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vortices, especially when the vortices become weak or when

they are swept back against the body. Further, in order

to get as much detail as possible of the wake interaction,

the field of view of the camera was chosen so as to concentrate

on the region close to the model, and therefore, occasionally

the vortices moved out of view. Nevertheless the positions

tabulated in Appendix: 6 are fairly accurate and certain

comments are also presented to inform likely users of any

inaccuracies or any peculiarities observed.

Throughout this thesis, the velocity of the fluid in

the tank is defined by: U =Um Cost) , where Um = maximum

velocity,0 = 2xt/T , and T is the period of 'oscillations.

Thus in order to get from the zero velocity position, observed

on the cine film to the start of the cycle as defined above

a simple correction.was necessary. Defining the zero velocity

position as that position when the flow was about to go from

the left to the right, and denoting velocity in this direction

as positive, this means that the zero velocity position

corresponds to t/T = 0.25. Successive frames therefore

correspondelto t/T = 0.25 + (n/43), where n is the number o

frames after the zero velocity frame and 43 is the number

of frames per cycle. In figure 5.1 the notation is specified

and a sketch of the velocity variation, together with the

frame number at certain positions is presented'. The relation

between the frame number and t/ is given in the tables

presented in Appendix: 6.

5.3 THE CIRCULAR CYLINDER

The circular cylinder used during flow visualisation

was the same as that used for force measurements, i.e. made

of perspex, thus smooth and with a diameter of 1.56" (3.96 cm) .
giving a p value of 451. The flow was observed to follow
certain distinct patterns, which were dependent on the

Keulegan and Carpenter number. These patterns were not

defined by any strict values of NKC, however between certain

ranges of NKC one particular pattern was most likely to
develop.
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SYMMETRICAL REGION: NKC < 4

In this region the flow around the cylinder is just

beginning to develop; the velocity and the Reynolds number

are both very low (the maximum Re No.fl.800) and the

boundary layer appears laminar. The exact separation point

and its movement throughout a cycle could not accurately be

determined but for most of the cycle, in particular when the

velocity approaches maximum, the flow separates approximately

in the 900 region. A pair of weak vortices are formed

symmetrically, one on either side of the cylinder; as the flow

decelerates they remain very close to the cylinder, then just

as the flow reverses they begin to move back over the cylinder.

The recirculating flow within the vortices moves fairly

rapidly over the cylinder generating vorticity of opposite

sign which then goes into the formation of another pair of

weak vortices on the other side of the cylinder. Throughout

this region no interaction between the vortices was observed.

This process is sketched in	 figure 5.2a. Although

a symmetrical pair of vortices were observed in this region,

it is possible to have some asymmetry at NKC say about 3.0,

or on the other hand, a symmetric pair of growing vortices at

NKC say of 5 is possible though not very likely and depends

on the history of the motion.

ASYMMETRICAL REGION: 8 > NKC > 4

• Now the separated shear layers begin to interact and one

vortex begins to grow quicker and stronger than the other,

but no shedding occurs. The history of the motion determines

which vortex grows larger, but if the top one grows on the

left hand side of the cylinder, then as the flow reverses the

bottom vortex will dominate. A typical sequence of events

during this region is sketched in figure 5.2b, where at t/e0,

Ll is the dominant vortex. As the flow reverses L2 moves

back over the top of the cylinder, creating as it does vOrticity

of opposite sign which first cancels out L2 and then goes into

the formation of new vortex Rl. In the meantime Li is squashed

against the cylinder and high velocities are generated in this

region. MoSt of the vorticity in Li is lost through

cancellation by vorticity of opposite sign created by the
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passage of Li very close to the cylinder. This vorticity

(of sign opposite to that contained in L1), not only cancels

some of Li but also goes into the formation of a weak

secondary vortex, which together with Li convect away quite

rapidly due to the velocity they induce on each other.

However while moving away they also cancel out each other and

very soon both decay. As the flow develops further R1 grows

quite large and another smaller vortex R2 also begins to grow

from the lower surface. As the flow reverses R1 (like Li in

the half cycle before) is squashed against the top of the -

cylinder and loses some of its vorticity again by cancellation

withopposite signed vorticity created by the high velocity

fluid moving back over the top of the cylinder. As before,

this opposite signed vorticity also forms a weak secondary

vortex, which together with a much weaker R1 convect away quite

rapidly, decaying as the do.R2 on the other hand moves under

the cylinder, losing all of its vorticity, and as the flow.

develops further another vortex Ll'forms and grows quite

rapidly. A weaker vortex L2' is also formed at the top of the

cylinder and the pattern then repeats itself. During this region

the separation positions varies almost constantly throughout

the cycle. Towards the upper limit of this ranges, i.e. as

NKC approaches a value of about 8, the larger vortices formed

during each half cycle are almost shed. When these vortices

are shed a different flow pattern is set up.

SIDEWAYS VORTEX STREET: 15>NKC> 8

This pattern is very unusual, with a series of vortices

alternating in sign going off more or less vertically above

or below the model; for this reason this regime has been

termed the sideways vortex street. Strictly, a vortex street

is not formed, but instead during each half cycle a vortex

of different sign is formed and convects away from the

cylinder. Whether the vortices go off to the top or the

bottom depends on the history of the motion. However when

this pattern is set up, one is quite likely to observe a

switching from vortices going to the top to vortices going

-4. to thebottom or vice versa. On this, the circular cylinder

the ability of the flow pattern to switch undoubtedlylinks

in with the arbitrariness of the separation points. A
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typical sequence during a cycle is sketched in figure 5.2c,

where the vortices are shown moving off to the top of the

cylinder. At about t/T ve 0, two previously shed vortices,

A (shed a half cycle earlier) and B (just shed) together

with two growing vortices Li and L2 are present. B remains

fairly close to the cylinder and induces the shear layer

from the lower surface to curve upwards, thus assisting in

- thegrowth of Li while inhibiting L2. As the flow is about

to reverse, B starts moving to the right and Ll is pressed

against the cylinder, but the high velocities induced by the

presence of B, moves most of Li around to the top of the

cylinder. The movement of Ll over the top of the cylinder

creates more vorticity of the same sign of Li, thus this

vortex is strengthened and as the flow progresses Li is soon

• shed. During this time L2 also moves back over the cylinder

but is cancelled out by vorticity of opposite sign caused by

this movement over the cylinder. Part of Li also goes under

the cylinder but this too is cancelled out. In the meanwhile

A and B, being of opposite sign are interacting and slowly

diffusing moving more or less slowly away from the cylinder.

After Li is shed, it remains close to the cylinder and again

the shear layer from the lower surface of the cylinder is pulled

across resulting in some assistance to the growth of R1 while

R2 is again inhibited. As the flow reverses at t/e, 0.75

most of R1 is pulled over the top of the cylinder, where its

growth is accelerated and it is soon shed. Thus the development

during each half cycle is similar with one vortex being shed

'soon after it goes over the top of the cylinder. In each

half cycle therefore a vortex of different sign is shed and

slowly goes off to the top. However only the last two vortices

shed are of any signigicant strength as others previously

shed soon lose their circulation by cancellation with others

of opposite sign and by slowly diffusing. In figure 5.3a a

still photograph, at t/T z 0.7 for NKC = 11.0 is presented to

show this behaviour. Here the vortices are again moving off

to the top; note that there is little activity on the lower

half of the picture. Here again, as can be seen in figure 5.3a

the separation points are different on the upper and lower
'	 osurfaces and definitely not at the 90 point. It is probably
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the fixing of the separation position at 900 which result

in Stansby (1977, 1978) predicting vortex positions that are

totally different to those observed here.

CYCLIC REGION: 25> NKC>15

In this region thevortices appear to rotate about the

body, with the direction of rotation again depending on the

history of the motion. Figure 5.2d shows a sequence of sketches

illustrating this effect; here the rotation is shown anti-

clockwise. Between t/ T 0.0 and 0.1, vortex Li is shed and

remains in the lower half of the flow; this vortex encourages

L2 to grow very close to the cylinder. At about t/ T .%,' 0.25,

the velocity of Li induced on L2 causes the latter to become

squashed against the cylinder, with some of the vorticity from

. L2 going under the cylinder. As the flow reverses, most of

L2 and Li goes under the cylinder and as the flow progresses

they move rapidly away from the cylinder. The rest of L2

moves back over the top: of the cylinder and is cancelled out

in the process. A new vortex, RI is formed on the top surface

as Li and L2 move away from the cylinder and decays, L2

decaying before Ll. R1 is soon shed and remains in the upper

half of the flow, where it induces a velocity on the growing

vortex R2 and pulls it slightly upwards and close to the

cylinder. As the flow reverses R2 is first squashed against

the cylinder then as the flow develops, both R2 and R1 go over

the top of the cylinder and again depart rapidly. As they

depart a new vortex Li' forms at the lower half of the cylinder,

;this is soon shed and the process is repeated. This behaviour

is shown in figure 5.3b, where for NKCz17, and at t/T2=0.75,

a pair of vortices is about to go under the cylinder; here the

rotation is clockwise. For anti-clockwise rotation, as in the

sketches in figure 5.2d, the vortex positions, for NKC20.42,

are presented in table: 1 of Appendix:6. These positions are

also plotted in figure 5.4, with the appropriate notation in

figure 5.1. Here again it would be unwise to use fixed

separation points to model this behaviour, as the separation

.points vary substantially during a cycle.
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PSEUDO - KARMAN STREET: NKC > 25

As the amplitude of oscillation, and hence for the same

body, the Keulegan and Carpenter number increases, the wake

becomes more fully developed with a number of vortices being

shed during each half cycle. The actual number of vortices

shed depends on the value of NKC, and increases with it. In

this region of NKC the wake therefore bears some resemblance

to a Karman vortex street with vortices of opposite signs

being shed alternately from the top and bottom of the

cylinder. As the flow is about to reverse, the vortices are

squashed together and become distorted; they also interact

with each other,thus as the flow reverses the incident flow

contains vorticity in the form of small eddies. Here however

there is only little evidence of any'three dimensional

motion. The last vortex shed and the dominant growing one

during each half cycle are usually swept back past the

cylinder as distinct vortices but these soon interact and decay.

Figure 5.3c shows the wake of the cylinder at t/ T 2% 0.7 for

NKC = 52.9, to be composed of seve r.al distinct vortices,

which are just starting to get squashed together. At this

stage these vortices still retain most of their circulation

but as mentioned above, the definite vortex structure soon

breaks down into smaller eddies, as the flow is about to reverse.

5.4 THE FLAT PLATES
'•

As with the circular cylinder, flat plates in oscillatory

flow tend to exhibit certain flow patterns which varied with

the Keulegan and Carpenter number. Here, however, for most

of the range of NKC, the flow was dominated by larger vortices,

than those observed on the circular cylinder. These patterns

again fall into several regimes classified below.

SYMMETRIC REGION: NKC < 3

At these very low values of NKC, the flow is barely

developed; the separating shear layers roll up symmetrically

at both edges to form very weak vortices. No interaction

between the opposing shear layers-takes place, thus each edge
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acts independently. As the flow reverses, the fluid in the

recirculating region darts over to the other side where it

again separates and rolls up weakly to form another pair of

vortices. This process is sketched in figure 5.5a. Here

again the boundaries defining these regions are not strict,

so it is possible to have a symmetric pair of vortices

forming at say NKC=4.

ASYMMETRIC REGION: 7 > NKC 4

In this region the separated shear layers emanating from
the opposite edges of the plate begin to interact, resulting

in one vortex growing quicker and larger than the other, but

is not shed. This process is sketched in figure 5.5b, where

the top vortex is shown as the larger; as before the history

of the motion determines which vortex dominates. At t/ T
two vortices Li and L2 are present, Li being the larger and

occupies more than half of the plate at about NKC say of 6.

As the flow reverses direction some of Ll and L2 goes under

the plate and as the velocity increases they emerge in the form

of a disturbance which appears as a weak jet. The remainder

of Li goes over the top and appears to be cancelled out, and

a new vortex R1 begins to form at the top edge. As the flow

develops further, the disturbance produced by Li and L2 going

under the plate dies out, and a new vortex R2 starts to form

at the lower edge. The flow reverses again and part of R1

together with R2 moves under the plate and one more emerges

as a weak jet of fluid. The remaining part of R1 goes over

the top and is cancelled out by vorticity of opposite sign

'which concentrates in a new vortex L1'. This pattern then

repeats itself as Lit grows larger and another smaller

vortex L2' begins to form. Thus, in this regime a disturbance

is produced in the lower half of the flow everytime the flow

reverses.

CYCLIC REGION: 25> NKC > 7

For NKC just greater than about 7, a cyclic region,

similar to that observed on the circular cylinder is set up.

This pattern is extremely stable and once set up will continue

for hours. As with the circular cylinder the vortices tend to
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rotate around the plate, with the direction of rotation

depending on the starting conditions. Unlike the circular

cylinder, however, very strong vortices, sometime occupying

the width of the plate, are formed. It appears that a

necessary prerequisite for this motion to develop is that at

least one vortex muse be fully developed or shed during each

half cycle. At the upper limit of this region two vortices

are shed during each half cycle, and the pattern begins to

break down. A typical sequence, say at NKC of about 15, with

one vortex shed during each half cycle is sketched in figure

5.5c; here the rotation is clockwise. This region is a

natural extension of the asymmetric region where at t/T2=0,

the vortex Li is shed. This vortex induces a velocity on the

growing vortex L2 which moves slightly upwards and close to

the plate; Li also moves slightly upwards, but to the left

after being shed. As the flow comes to rest at VT = 0.25;

Li moves slightly upwards and to the right; the very large
velocities induced by this on L2 results in it being squashed

against the plate with some of it going over the top. As the

flow develops further, between t/T=0.25, and 0.3, L2 is

squashed even closer to the plate and more of it goes over

the top where it is enhanced by vorticity of the same sign.

This vorticity seems to concentrate in a secondary vortex RO

which is quickly shed and together with Li, they depart

rapidly away from the plate. Vortex RO, appears to be formed

by some of the vorticity from L2, and also by the separating

shear layer at the top edge which results from the high

velocities caused by the presence of Ll. As Li and RO move

away towards the top right hand segment of the flow, a new

vortex R1 forms at the lower edge. By about t/ T2=0.5 R1 is

just shed and another vortex R2 grows quite close to the plate
under the influence of R1; at this time Li and RO have almost
decayed. .Between t/T 1t1 0.6 and 0.7, the shed vortex R1 moves

slightly to the right and downwards, pulling R2 slightly
downwards as it does so; R2 remains in this position until
about t/T 0.75. At this time R1 moves further downwards and

slightly to the left, and R2 is squashed against the plate.

As in the previous half cycle some transfer of vorticity from

R2 to . L0 takes place, and the latter is quickly shed, and pairs
off with R1 to move quickly away krom the plate as the flow
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develops. Further development leads to the formation of two

new vortices Li' and L2', with the former being shed and the

pattern repeated. In figures 5.6a to 5.6e a sequence of

photographs are presented to demonstrate this behaviour, with

the rotation clockwise and at NKC = 14.8. Rotation in the

anti-clockwise direction and at NKC= 8.0, is shown in figures

5.7a and 5.7b. Figures 5.6 and 5.7 were obtained for the

larger flat plate, (f = 1685.8) because the larger vortices

were easier to photograph; similar patterns were observed for

• the smaller plate (13 = 421.5). By analysing each frame of the

cin‘ film, the vortex positions during this cyclic lregion were

obtained for a few values of NKC, these positions are presented

in tables 2-4 of Appendix: 6. Figures 5.8a and 5.8b show

plots of these vortex positions for the larger flat plate

( = 1685.8) at NKC = 15.13, rotating anti-clockwise and for

the 1.5" diameter plate (19 = 421.5), at NKC=15.2, rotating

clockwise.

Although the flow pattern throughout the range of NKC in

this region is basically the same, small differences do occur

at the upper and lower limits. At smaller values of NKC say

about 7 or 8, vortex Ll is just shed or about to be shed, and

L2 is not quite so strong. As the flow reverses, some of L2

besides going over the top, goes under the plate and is

cancelled out; the vortex RO is then usually much weaker. A

similar behaviour occurs in the next half cycle, so the 'pairing

off', of the vortices are much weaker. Towards the upper limit

of this region, NKC say about 22, L2 is very strong and a third

vortex starts to form at the top edge. As the flow reverses

Li and RO 'pairs off' and moves away, except that now they are

quickly followed by another weaker vortex of the same sign as

RO. A similar behaviour is observed during the next half cycle.

Finally, as NKC increases the angle at which the pair of vortices

depart becomes less steep and approaches the horizontal plane.

As NKC approaches a value of about 25, L2 and R2 almost shed;

when L2 and R2 are shed the rotation continues for a little

while longer, then the pattern becomes unstabJe.
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PSEUDO - 'CARMAN STREET: NKC >25

As with the circular cylinder, at the higher values of

NKC the wake is much more fully developed, with vortices of

opposite signs being shed alternately from the top and bottom

edges. The wake again resembles a Karman vortex street,

however as the flow reverses the vortices are squashed

together and the strain field makes them become ellipticalsta
before finally breaking down into smallerktwo dimensional

. eddies. Thus the incident flow in the subsequent half cycle

ini&lly contains some vortfcity of the previous half cycle.

It should however be noted that during each half cycle,

usually the last vortex shed and the dominant growing one

retain most of their vorticity just as the flow reverses,

but as the flow reverses and develops these soon decay.

5,5 THE DIAMOND SECTION

The flow about this section also exhibited certain

distinct flow patterns with fairly stong vortices being

formed. These patterns were very stable once set up and

here again depended on the Keulegan and Carpenter number. These

results were obtained for a "value of 423.

SYMMETRIC REGION NKC <4

At very low values of NKC, a pair of vortices were observed

to grow symmetrically from the edges B and D of the model, as

sketched in figure 5.9a. The flow remains attached on the

faces BC and CD, but separates from the edges B and D to form

rather weak vortices. As the flow reverces, the fluid in the

circulating region moves back over the model and again separates

from the edges B and D, forming a new pair of weak vortices.

The shear layers from the opposite edges of the model do not

interact at this stage.

ASYMMETRIC REGION: 8 >NKC> 4

• In this region, the shear layers from the opposite edges

of the model interact and a pair of vortices grow asymmetrically

from the edges, as sketched in figure 5.9b. At t/e*O, vortex

Li is the larger of the two vortices, but at this stage is not
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yet shed. As the flow reverses, both vortices move back over

the edges from which they were formed; the recirculating flow

in the smaller vortex L2 moves rapidly over the edge D and a

new vortex R1 begins to grow. During this time, the larger

vortex Ll moves quickly over the-face AB, and the passage of

thisresults in the formation of a weak secondary vortex RO,

of sign opposite to Ll. RO and Li, now much weaker due to

cancellation by vorticity of opposite sign created as it

moved over the face AB, then depart rapidly away from the model

as a weak vortex pair, and eoon decays. Note that it is some

of the vorticity formed as Li moves over AB that also goes

into the formation of RO. As the flow develops further R1

grows larger and a new vortex R2 forms at edge B. When the

flow reverses R2 goes over the top and a new vortex Lit starts

to form. Meanwhile R1 moves back along the face CD, losing

some of its vorticity as it does so, but inducing high enough

velocites along CD to result in the creation of enough

vorticity which goes into the formation of another weak secondary

vortex LO. These two vortices LO, and a much weaker R1 then

convect away under the velocity they induce on each other

quite , rapidly, but soon decay. Further development of the

flow leads to the growth of Li' and the formation of L2' at

D which then behave as before. Towards the upper limit of this
region, L2 and R2 become larger; as the flow reverses these

vortices then move back over their respective edges and secondary

vortices are formed at both edges.

'SIDEWAYS' VORTEX STREET: 17> NKC> 8

The 'sideways' vortex street observed on the circular

cylinder was also observed here, except that the vortices were

stronger. This pattern was the most stable pattern observed

on this section and unlike the circular cylinder, once set up,

it remained in this configuration. Here again, whether

the vortices go off towards the top or thebottom of the model,

depends on the starting condition. This process is sketched

in figure 5.9c, where the vortices are shown moving off to the

top of the model. The flow development in this region is

much the same as that described for the similar region on the

circular cylinder. Here however the larger of the growing
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C. At t/T a=0 two previously shed vortices, R (shed during the
previous half cycle) and LO (just shed), together with the

growing vortices Li and L2 are present. Some of the

recirculating flow in Li is incident on A as the flow decelerates.

As the flow decelerates to about t/T at% 0.2, LO pulls Li across,
and L2 moves back over the edge B where it is cancelled out.

Further development of the flow leads to the transfer of

vorticity from Li to RO which grows rapidly and is soon shed.

At this time Li is pressed close to the model and the fluid
that was incident on edge A moves along AD to form a new

vortex Rl. During this time LO moves more or less in a

direction parallel to AB and R moves slightly upwards, but

R is rather weak by about t/T=0.5. At this stage RO is still

very close to the body and pulls up the shear layer from D,

thus R1 moves slightly upwards. As the flow develops further

RO moves more to the right and slightly upwards, pulling R1

upwards as it does so; at this time also a new vortex R2

begins to form at edge B. As the flow reverses most of R1

goes over the top resulting in the formation of LO' and RO

moves upwards and to the left. The reciruclating flow in R1,

that was incident on C as R1 was pressed against the model,

then travels along the edge CD to form a new vortex L1'. As
the flow progresses LO' is shed and Li' grows quite large,

and the patternis repeated. Figure 5.10a demonstrates this

behaviour, again with the vortices moving off to the top of

the model, at t/T a= 0.68 for a value of NKC = 13.61. In table
5 of Appendix: 6, the vortex positions during a cycle of
motion, in this region are presented for NKC = 15.18; these

positions are also plotted in figure 5.11. It should be added
that in this region, when the shed vortices move they appear

to roll on each other, thus interacting and cancelling out

eventually; the dominant vortices are therefore the growing

ones and the last two shed.

CYCLIC REGION: 25> NKC> 17

In this region the rotation of the vortices around the

body similar to that found with the plates and the circular
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cylinders was observed. Here however the vortices were

weaker than those formed on the plate, and again some

interaction between the vortices and edges A and C was observed.

A typical sequence of events is as sketched in figure 5.9d

where at t/T =0.1, Li is shed and the growing vortex L2

interacts with edge A. As the flow reverses Ll pulls most

of L2 under the model and these rapidly depart; in the meantime

the remaining part of L2 goes over the top and is cancelled

out. A new vortex R1 forms at edge B and by about t/Tv..;0.5,

Li and L2 have moved some distance from the Model; at this

time also another vortex R2 forms at edge D. Further development

of the flow leads to the shedding of R1 and the interaction

between edge C and R2. As the flow reverses R1 and R2 then

go over the top of the model and move quickly away. The

pattern repeats itself as a new pair of vortices Ll' and L2'

forms. As with the flat plates, towards the upper limit of

this regime as Li and L2 move away from the cylinder, they

are quickly followed by a weaker vortex formed by the higher

velocities at edge D caused by the passage of Li and L2. A

similar effect occurs during the subsequent half cycle.

PSEUDO - KARMAN STREET: NKC >25

As NKC approaches a value of about 25, two vortices are

shed during each half cycle and the cyclic rotation breaks

down. For larger values of NKC more vortices are shed

alternately from either side of the model; the wake then resembles

a Karman vortex street. In figure 5.10b, for NKC"-- 52.1 at

t/T 0.25, the wake is shown to be composed of several distinct

vortices. These vortices, as with the flat plates and

circular cylinder are squashed together as the flow is about to

reverse and so become very distorted before finally breaking

down into smaller eddies. As the flow reverses, the model is

therefore exposed to an incident flow containing vorticity from

the previous half cycle. It should be noted that this initial

incident flow appears turbulent, but in fact there is very

little evidence of three-dimensionality. Thus as the flow

reverses only the last shed vortex and the dominant growing

ones retain most of their vorticity, but these quickly decay

• as the flow develops.
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5.6 THE SQUARE SECTION

The flow about this section did not exhibit any distinct

pattern, and the vortices formed were in general quite weak.

Photography of the flow around this section was not very

successful as the weak vortices had very little circulation,

leading to very low velocities in the vortex core. Thus

adequate steak lines could only be achieved with long exposure

times. The patterns observed were a symmetric region for

• NKC 5, an asymmetric region for 25 > NKC > 5, and a pseudo-

Karman street for NKC > 25. The asymmetric region can

however be subdivided into smaller regions where slight

differences appeared.

SYMMETRIC REGION: NKC .‹ 5

The flow development around the model in this region is

as sketched in figure 5.12a, where at about t/T 0, the flow

has separated from edges B and C, resulting in recirculating

fluid on the upper and lower surfaces. As the flow reverses

the recirculating fluid on the upper and lower surfaces moves

back along these faces, creating new vorticity of opposite

sign. This results in weak local disturbances, as the flow

between the recirculating region and the growing vortex along

the upper and lower surfaces departs rapidly (compared with

the ambient velocity, which is almost zero) away from the

model. As the flow develops- further, separation occurs at

the edges A and D as shown; no reattachment of the separated

shear layers takes place, but some interaction between these

and the edges B and C occurs. The flow then develops as in

the previous half cycle.

ASYMMETRIC REGION 25> NKC > 5

REGION( 1) 12 > NKC > 5

In the lower end of the asymmetric region, sketched as

in figure 5.11b, the flow is separated at edges B and C, at

about t/T 2r, O. Here, the shear layers roll up behind the face

AD; a little interaction takes place and results in asymmetrical



'110

growth of a pair of vortices. As the flow reverses the

vortices move back over the model and lose most of their

vorticity, because this movement results in vorticity of

opposite sign being created. These weaker vortices,

together with the recirculating flow on the upper and lower

surfaces, results in quite large velocities in the vicinity

of AB and CD which appears to 'shoot' off just as the flow

has reversed. As the flow develops further, shear layers

from the edges A and D grow slowly and eventually interact

behind the face BC, resulting in the asymmetrical growth of

another pair of vortices. By this time the disturbance caused

earlier by the return of vorticity across the model has died

out. The flow then behaves in a manner similar to that

described for the previous half cycle. It should be noted that,

if during one half cycle the top vortex grows larger than the

bottom, then during the next half cycle the reverse is true.

REGION (2) : 17	 NKC > 12

Within this region (sketched in figure 5.12c), greater

interaction between the shear layers takes place and the

vortices though not completely shed during each half cycle,

are stronger than those formed in the previous region. This

pattern is more or less the same as before except that now,

some of the vorticity contained in the opposite shear layer

is pulled across by the stronger vortex as the flow reverses.

In figure 5.12c, Li pulls some of L2 across and over the top

of the model and these two vortices convect away quite rapidly

from the model, but soon break down into smaller scale eddies

which decay shortly. On the lower surface, a similar

behaviour is observed with the remaining part of L2 pairing

of with a weaker vortex formed by the passage of L2 under the

model. The following half cycle is similar except that the

vortex formed at the lower edge, R1, is now the stronger of
the two growing vortices.

REGION (3) : 25 > NKC > 17

This region is the obvious extension to region 2, where

the wake is more developed and at least one vortex is completely



111

shed during each half cycle. This pattern is much the same

as that described above, as can be seen in figure 5.12d.

The main difference is that now, as the flow reverses the

pairing of vortices is more clearly evident, but here again

these also very soon lose their distinct structure and break

down into smaller eddies. The flow is thus more locally

disturbed than before. This behaviour occurs on both the

upper and lower surfaces, but as figure 5.12d shows, the surface

with the larger vortex results in a more disturbed flow near

that surface. Towards the upper NKC limit of this region a

second vortex is about to shed during each half cycle, and the

interaction between the model and the wake as the flow reverses

is stronger leading to flow which is even more disturbed

locally. In other words there is more evidence of smaller

- scale eddies in the vicinity of the model; in addition at

the upper limit of this region there is also some evidence of

three dimensionality in the wake. This appears in the form

of a few weak eddies, i.e. the wake is becoming turbulent but

with very low intensity in the spanwise direction of the model.

PSEUDO - KARMAN STREET: NKC > 25

As NKC increases beyond about 25, the wake becomes more

developed and a number of vortices of different sign are shed

alternately from opposite edges of the model during each half

cycle. The wake then resembles the usual Karman vortex street.

Here again, the number of vortices formed and shed depends on

the Keulegan and Carpenter number, and increases with it. As

the flow is about to reverse, the velocity field induced by

the vortices on each other causes them to be squashed together

resulting in considerable distortion of these vortices. As

the flow reverses most of the vortices break down under this

unfavourable strain field	 resulting in smaller eddies.

The flow is very disturbed during the initial motion in the

reversed flow direction and there is evidence of some three

dimensional motion, Thus in this region of NKC, the wake

interaction with the body results in an initially turbulent

incident flow, with apparently high intensities in the

vertical plane, but a somewhat weaker intensity in the
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horizontal plane (i.e. in the spanwise or axial direction of

the model). A typical flow pattern at large NKC is presented

in figure 5.13, with figure 5.13a representing the flow at

t/T2= 0.15, while figure 5.13b shows the pattern at t/?=0.3,

the Keulegan and Carpenter number was 60.72.

5.7 CONCLUSIONS

These flow visualisation studies revealed the presence

of large discrete vortices throughout most of the range of

NKC, except on the square section. The square section proved

to be a unique body, as here the presence of an afterbody

delayed the separated shear layers from interacting and the
vortices formed were therefore weaker. On the remaining
sections much larger vortices were formed, particularly on

the flat plate. These vortices set up certain distinct

motions which are in general similar on these three models.

On all the models for NKC less than about 4, the pattern is

very similar with the flow being more or less symmetric. At

larger values of NKC, say above about 25, the pattern on all

the sections are again similar; here the wake has had time to

develop during each half cycle and a series of vortices of

opposite signs are formed, thus resembling a Karman vortex

street. For NKC between about 4 and 8 the flow past the three

sections, namely the circular cylinder, flat plate and

diamond are similar with large vortices being formed but

not shed; instead they remain close to the sections. For NKC

between about 8 and 15, the flow past the circular cylinder

and diamond section are similar and set up a pattern termed

a sideways vortex street. In this regime the vortices tend

to go either above or below the body, but this pattern was

observed only on these two sections. For NKC above about 15,

the pattern on all three sections are again similar, and the

vortices set up a cyclic motion about the sections. This regime'

is the most dominant on the flat plate and occurs for a wide
range of NKC, from about 8 to 25. Finally, on all the

sections the strongest vortices were formed during the cyclic

region; in other words, for a given section (except on the

square ), when the strongest vortices are formed they set

up a cyclic motion around the section.
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CHAPTER: 6

DISCUSSION

6.1 IN-LINE FORCE

In Chapter: 4 results of measurements of the in-line

force on the four sections tested, i.e. a circular cylinder,

flat plate, diamond section and square section, were

presented using three different methods of describing the

force. Of these methods of representing the in-line force,

namely:- in terms of a drag and an inertia coefficient

obtained through the use of Morison's equation, in terms of

the root mean square of the force, and lastly in terms of

- the maximum force and its phase, the first method is the most

widely used and thus results obtained using this method are

discussed first.

Using Morison's equation therefore to represent the

in-line force, results in values of the inertia coefficient

(Cm), which tend to the potential or attached flow value as

NKC tends to zero,-for all the sections tested. This is

demonstrated in figure 6.1, where the variation of Cm with

NKC is shown for the four sections tested. It should however

be noted that the potential flow value of Cm for the flat•

plate was taken as 1.2 instead of the usual value of 1.0.

This was done to take account of the finite thickness of

the plate used in these experiments; i.e. in this case the

flat plate was assumed to experience an additional force,

the Froude Krylov force due to the pressure gradient that

existed in the fluid in the absence of the body. Further,

the forces on all the sections were Tiondimensionalised using

the maximum transverse dimension of these bodies, and the

inertia coefficents were based on the volume of a hypothetical

circular cylinder of diameter equal to this transverse

dimension. Thus, the relevant dimension for the square section

was the length of a face, whereas the length of the diagonal

was used for the diamond section. This then resulted in the



potential flow value of Lhe inertia -coefficent for the square

section (2.78) being twice that on the diamond section (1.39).

-As figure 6.1 shows, by about NKC2=5, the inertia

coefficients on all the sections tested, gradually approach

their corresponding potential flow values. This is expected

for the circular cylinder and square section because flow

visualisation reveals the tendency towards an attached flow

situation as NKC is decreased beyond about 5. On the flat

plates and diamond section however at NKC =.%5, and at lower

values of NKC large areas of separated flow are visible together

with weak symmetrical vortices, i.e. the flow does not appear

to approach towards an attached flow situation. It is therefore

surprising that figure 6.1 shows that at NKC =r- 5, the inertia

60efficients should closely approach the potential flow values,

=these two sections. Obviously as NKC becomes extremely

small, the vortex strengths must tend to zero and the potential

flow result will be

6n:the flat plates and

bdparated flow and the

contribute towards the

for NKC	 5,

diamond section the large area of

weak vortices do not significantly

acceleration dependent forces. On these

obtained. Evidently therefore

two sections however the vortices present and the large

separated flow do give rise to a drag which as figure 6.2 shows

'results in very large drag coefficients, whereas on the square

section and circular cylinder the tendency towards attached

flow leads to a much smaller drag force.

Returning to the variation of the inertia coefficient

• with NKC for the sections tested, figure 6.1 shows that on all

these sections good correlation with NKC is obtained. Further

• with the exception of the square section, the result on all
r
the sections show similar trends with NKC; in particular for

'NKC between 10 and 20 they all experience a minimum in Cm.

The results for the square section on the other hand are almost

, constant at the potential flow value for NKC less than about

25, and then gradually decreases as NKC increases beyond this.

This difference between results obtained on the square section

and those obtained on the remaining sections are associated

with differences in flow patterns as described in Chapter: 5.
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For the cylinder, flat plates, and diamond section, throughout

the entire range of NKC, (with the exception of small values

of NKC, say < 5), the wake is composed of rather large

distinct vortices, and in particular for NKC in the region of

15, these vortices are very strong and set up clearly defined

motions around the body. The considerable vortex activity,

associated with the growth and motion of these vortices results

in the flow pattern, and particularly the wake, varying

considerably during a cycle as described in Chapter: 5. This

variation in wake characteristics, for values of NKC in the

region of 15 results in the minima in inertia coefficients

observed on the circular cylinder, diamond section and flat

plate. The square section, on the other hand &Griot produce

any distinct vortex structure for NKC less than about 25.

Vortices do form, but as described in Chapter: 5 they are weak

and do not go into any clearly defined motions about the body;

instead they interact with each other and with the body and

soon decay._ On the square section therefore, dramatic changes

in the wake do not take place, as the long afterbody (i.e.

the upper and lower surfaces) cause some delay in interaction

between the separated shear layers, (often with some partial

reattachment or at least interference by the rear edges) and

produces only weak vortices. The result is therefore to

produce an inertia coefficient which is almost constant at

its potential flow value even for NKC of up to about 25.

The minima in the inertia coefficients of the other three

sections are such that in some cases they represent values of

the added mass coefficient on these sections which are negative.

The concept of an added mass arises from the fact that when a

body is immersed in an unsteady flow, it locally disturbs

the flow and results in increased fluid accelerations which

causes the body to experience an extra force. This extra

force is then conveniently expressed as being equivalent to

an extra or added mass, which experiences the undisturbed fluid

acceleration. The notion of negative added mass is therefore

not a physical reality, and arises because the growth and

motion of the vortices in this region alter the phase of the

force. The fact that a shift in the phase of the force could
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result in an exchange between inertia and drag is demonstrated

in Appendix: 2. In this region where negative added masses

were obtained, the strong vortex activity results in rapid

changes in the velocity and accelerations in the vicinity

of the body during a cycle, thus the added mass strictly as

defined should be a time dependent quantity. This fact that

the added mass from a strict interpretation of the definition,

should vary during a cycle was noted by Keulegan and Carpenter

(1958), but was absorbed into the variation of C m. However

although they derived time dependent solutions for Cm , constant

averaged values were presented and here again for NKC in the

region of 15, some of these represent negative added masses.

Time varying added masses were also proposed by McNown and

Keulegan (1959) and more recently by McNown and Learned (1978).

In the latter study, it was suggested that for cases where,

vortex activity was particularly strong, representation of the

added mass coefficient by a single fixed quantity can be

misleading; and negative values may be obtained. These results

seem to support this fact, except here the vortex activity

is viewed as causing a shift in the phase.

The behaviour of the inertia coefficients with NKC, for

the circular cylinder, flat plate and diamond section are

therefore associated with changes in the flow pattern, and as

these are similar on the three sections, similar behaviour in

the Cmvariation is obtained. On the square section however,

as mentioned briefly above, no distinct vortex patterns are

observed and as such no dramatic behaviour in the Cm
variation is obtained. The vortices that do form are so weak

that their influence on the in-line force is not very important.

This lack of any distinct vortex structure for values of NKC

less than about 20 is due to the effect of an afterbody; a

consequence of the geometry of this section. As described in

Chapter: 5, the flow separates on the front face of the square;

interaction between the shear layers is therefore prevented

by the presence of the afterbody, and must take place downstream

of the rear face, thus the vortices eventually formed are

weaker than those that would have formed say on a flat plate.

This effect on afterbody in delaying the interaction between
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the separated shear layers has been studied in steady flow by

using splitter plates. Several authors, including Bearman

(1965), Gerrard (1966) and Roshko (1954) have shown that by

delaying the interaction between the separated shear layers,

vortex formation can be inhibited leading to a reduced base

suction and hence to a lower drag. The vortex shedding

frequency also drops.

This fact that by delaying the shear layer interaction

results in weaker vortices being formed and a lower drag

being felt is demonstrated in figure 6.2, for the drag on the

square section. Here again by using Morison's equation, the

drag on the four sections was obtained and its variation with

NKC compared in figure 6.2. This plot shows that for NKC

between about 8 and 20, the drag on the square section is lower

than that obtained on any of the other sections, but for NKC

above 20 the smaller wake width on the circular cylinder results

in this section experiencing the lowest drag. The smaller

wake width present on the circular cylinder throughout the

range of NKC, should have resulted in this section experiencing

the smallest drag throughout the range of NKC. However for

NKC between 10 and 20, the large vortices formed on this section

remain close to the cylinder and results in very low base

presures and hence a large drag. It should also be noticed

that for the circular cylinder, the orientation of the vortices

45- such that the largest drag is experienced in this region

of NKC, i.e. between about 8 and 15, Figure 6.2 also shows

that for NKC greater than about 10, the results on the three

sections, i.e. the circular cylinder, flat plate and diamond,

are similar, with the plate experiencing the highest drag and

the cylinder, the lowest. Further, as is evident in this

figure and as shown also by Bearman, Graham and Singh (1978),

besides behaving in a similar manner, the drag on these three

sections all tend towards their steady flow value as NKC is

increased, and at NKC 50, the CD 's are only slightly above

their steady flow value at the corresponding Reynolds number

value (subcritical in this case). However the results for

the square section are different to those observed on the

other sections, being more or less constant for NKC less than
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about 20 and increasing slowly but gradually with NKC.

Further, unlike the other sections, at large values of NKC

the drag coefficient on the square is well below its steady,

smooth flow value. As mentioned in Chapter: 5, the wake

of the square section cylinder was noticeably turbulent,

(but with a weaker spanwise intensity than in the other two •

directions); this is the most likely reason for the lower

drag at high NKC, as it is well known that in steady flow

turbulence in the free stream reduces the drag on square

section cylinders. It should be noted that as described in

Chapter: 5, at high values of NKC (in excess of about 30) where

a Karmen vortex street was observed, the break down of the

large two dimensional vortices as the flow reversed and

interacted with the body led generally to very little or no

- three dimensionality, except for the square section. On the

square also, in general the scale of turbulence generated seemed

smaller, apparently due to the fact that the vortices formed

were actually smaller, and that considerable small scale

motion was introduced from the recirculating flow on the

upper and lower surfaces. Note also that of the sections

tested, the square section presented the smallest face to the

flow, thus this is also a reason for producing smaller vortices.

Results of studies in steady flow, especially those of

Vickery (1966), and Laneville, Gartshore and Parkinson (1975),

show quite clearly that the square section is very sensitive

to turbulence in the free stream. The presence of free stream

turbulence seems to accelerate the growth of the separated

shear layers, to such an extent that some reattachment, or

at least some interference between the shear layers and the

rear edges takes place, and thus results in a drag coefficient

smaller than that for smooth flow. The other sections are

much less sensitive to free stream turbulence, as discussed

by Bearman (1978), with very little if any effect on the

flat plate. On the diamond section, i.e. a square section at

450 incidence, results again of Vickery (1966) show very little

effect of turbulence. The circular cylinder, on the other

hand is sensitive to free stream turbulence, but as the early

results of Fage and Warsap (1929) show this is only noticable
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for values of the Reynolds number approaching the critical,

as here the main effect is to promote earlier transition in

the shear layers. Returning to figure 6.2, as stated earlier

• for NKC above 10 the drag on all the sections with the

exception of the square are all similar, however for NKC 4: 10,

the drag on the circular cylinder drops and decreases further

as NKC is reduced. This effect is again associated with the

presence of vortices; for NKC greater than about 10 these

vortices are quite large and do exert considerable influence

on the in-line force on the cylinder, diamond and plate. As

NKC is decreased below 10, the effect of vortices on the

circular cylinder is much less, as now they are not very

strong, and do not produce as great a disturbance to the flow.

The force on the cylinder is therefore more inertia dominated

for NKC less than about 10, whereas on the square section

inertia plays an important part throughout a large range of

NKC. This fact may be evidenced in figure 6.5 which shows

that as the force becomes more inertia dominatedpthe phase of

the maximum force approaches 900 . On the circular cylinder

this is observed as quite a rapid variation in phase for

NKC between about 8 and 10. For the square the results are

quite different and show a slow tendency towards inertia

dominance as NKC is decreased. The results for the drag

coefficient of the flat plate and diamond section, however

show an increase in CD as NKC decreases and suggests that for

these sections even at these low values of NKC, the drag

part of the force is still very important. Examination of

figure 6.5 also reveals that the phase of the maximum force

on these sections, even at small values of NKC show no signs.

of tending towards 90°. Thus body geometry clearly has an

effect on the drag coefficient. This effect is associated

with the formation of vortices, which play an important part

even at low values of NKC on the diamond section and flat

plate; on the square and circular cylinder at the low values

of NKC no discernible vortices are formed and the force is

then almost all inertial. The importance of vortex formation

on sharp edged bodies at - low values of NKC was also recognised

by Graham (1978) who noted that thiseffect might be important

even in the diffraction regime.
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Using the second method of representing the in-line

force, i.e. in terms of root mean square force coefficient,

results in values of CFrms which correlate well with NKC

for all-the sections tested, as shown in figure 6.3. Here

it can be seen that throughout the range of NKC the circular

cylinder experiences the lowest force. These results also

show that as NKC increases, CFrms on all the sections tends

towards a constant value, but as NKC tends to zero CF s

becomes very large. This is an unfortunate consequence of

nondimensionalising by ii9 Um D, where the presence of

a finite force at small values of NKC leads to very large

values of the coefficient. Figure 6.3 also shows that as

NKC decreases below about 20, CFrms on the square section

increases rapidly and for NKC less than about 10, the root

mean square force on the square is comparable with that on

the flat plate. This happens because the inertial force is

very large on the square section, so that although the drag

is small the r.m.s force, composed of the drag and inertia

is still quite large.

Using the third method of describing the. in-line force

i.e in terms of its maximum value and phase, results in

values of CFmax and I- which are plotted in figures 6.4 and

6.5 respectively. This method of description of the force

much favoured by designers, is also very useful in gaining

an insight to the more important features of the flow. The

results for CFmax and are in agreement in principle with

the results of other coefficients. Figure 6.4 shows that

throughout the range of NKC, the flat plate experiences the

largest force, and the cylinder, the lowest. Here again the

results for the square section disagree with the trends

observed by the results on the other sections. For NKC <20

where inertial forces are large on the square section, it

experiences a large maximum force, second only to that on

the flat plate. At larger values of NKC where drag becomes

more important, the maximum force on the square section is

only just greater than that on the cylinder, and this drop

in force is related to the decrease in drag caused by

turbulence, as mentioned above. It is also worth noting that
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figure 6.4 also shows the strong effect of the vortices on the

cylinder and diamond section in the region of NKC between about

10 and 15 where the flow pattern changes from one flow regime

to another. On the flat plate no change in flow regime takes

place, hence the curve is smooth. Note also that although

the change in flow pattern was clearly reflected in C Fmax'
figure 6.3 shows that the r.m.s. is almost unaffected.

Changes in the flow pattern are also clearly reflected

in the phase of the maximum force as figure 6.5 shows. Also

as mentioned early such a plot gives a clear idea of the

importance of drag and inertia on the various sections and

how this varies with NKC. This figure shows that at about

NKC 50, the flow past all the sections is drag dominated.

Forthe diamond section, flat plate and circular cylinder,

figure 6.5 shows that inertia is relatively unimportant

for NKC greater than about 20. This figure also shows that

although the flow past the cylinder and square section is

inertia dominated by about NKCIr...- 5, the flat plate and diamond

section are not. Here also it can be seen that for NKC less

than about 25 inertia is the dominant force on the square

section.

In the foregoing sections the results presented and

discussed were those obtained from data evaluated on average

cycles of the force. However results were presented in

Chapter 4 to show that the in-line force on all the sections,

when described by any of the three methods discussed above,

is not constant from cycle to cycle. These results show that,

although when recorded on a pen recorder or on an oscilloscope

the force shows only a little variation from cycle to cycle

(figure 4.10 being a typical example), when the force is

represented by coefficients substantial variation from cycle

to cycle is observed. As mentioned in Chapter: 4, some of

this variation particularly at low values of NKC and on the

square section may be due to noise. It should however be

stressed that this variation is definitely not all due to noise,

and at higher values of NKC the signal to noise ratio was

high enough to discount noise as 'a contributing factor. These

results show that of all the coefficients used to describe the
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force, and on all the sections the variation in the r.m.s is

the least being always less than about ± 10% of the average

except for very small values of NKC where some of this

variation is probably due to noise. It is also noticeable that

on all the sections tested the variation is neither the same

for every section, nor is it constant and independent of NKC.

Further, the variation changes with NKC and not always in an

orderly manner, so that during certain ranges of NKC the

variation may be definitely smaller than that observed at

other values of NKC. The most striking example of this is

shown in figure 4.52 to 4.56 for the coefficients on the

diamond section. Here it is quite clear that for NKC between

20 and 25 the variation in all the coefficients is markedly

less; figure 4.56 also shows clearly that the phase of the

maximum force is also quite repeatable and exhibits the least

variation in this range of NKC. This without doubt shows that

this variation is not all due to noise but instead reflects

a genuine behaviour of the force, i.e that it is not as

repeatable as was first thought. Such variation in the in-line

force from cycle to cycle is not at first thought plausible

because the incident flow is extermely repetitive. However

during a cycle vortices formed and possibly shed (depending

on the value of NKC) are swept back against the body where

some cancellation with vorticity of opposite sign takes place.

In any case a complex interaction between the vortices and

the body occurs, and this interaction also affects the strength

and later the motion of the vortices subsequently formed.

Thus in order for the force to be exactly repeatable these

processes, i.e. interaction between the vortices and the body,

interaction between vortices of opposite sign, the strength

and the motion of the vortices, must all be precisely the

same from cycle to cycle. It is the differences in these

processes, mainly in vortex strength and motion, which result

in changes in the in-line force from cycle to cycle. First

experiments, on the circular cylinder led to the possibility

that a contributing factor may have been the arbitrariness

of the separation point. Though this in another factor, for

the circular cylinder, it is not the important fact as later

experiments revealed that the foree on sharp-edged bodies also
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the variation was most on the flat plate, where the largest

and most dominant vortices were observed. On this section

also during flow reversal the most dramatic interaction

with the body took place, and resulted in vortex paths

differing noticeably from cycle to cycle. Tliese vortex paths

some of which are presented in Chapter: 5 were obtained from

studies of cine film. Visual observations cannot reveal the

small variation in the vortex paths. These variation in the

vortex strengths and positions, result in changes of the force

which then causes substantial changes in the force coefficients

obtained from Morison's equation, i.e. Cm and CD . However,

only much smaller variations occur in C F sas this is more

or less independent of phase changes. This therefore suggests

that the r.m.s. method of representing the in-line force as

proposed by Maull and Milliner (1978a) is possibly a suitable

alternative to Morison's equation.

6.2 MORISON'S EQUATION

The equation proposed by Morison et al (1950) now known

as Morison's equation is widely used in the field of offshore

engineering. However some controversy and doubts still exist

on its applicability and reliability. This equation was

therefore examined by applying it to several body shapes. On

the circular cylinder the work of Sarpkaya (1976) suggests

that Morison's equation does indeed work admirably well

except in the range of NKC between about 10 to 20. On flat

plates however, the early work of Keulegan and Carpenter (1958)

suggests that when applied to such sharp-edged sections

Morison's equation fails to predict the force with any

acceptable degree of accuracy. In this study Morison's

equation was applied to the measured in-line force not only

on a cylinder and plate but also onksquare and on a diamond

section. This application led to values of C m and CD which

were then used to predict the force as given by Morison's

equation. The bulk of these results were presented in

Chapter: 4, however in figures 6.1 and 6.2 values of the

inertia and drag coefficients obtained on the various sections



124

are compared. These coefficients, obtained through the use

of Morison's equation are very sensitiire to changes in the

flow pattern. Apparently, the presence of large vortices

which remain close to the body and interact with it as the

flow reverses, results in noticeable changes in the variation

of the force coefficients with NKC. This is especially

noticeable for the Cm variation with NKC, where the presence

of these vortices close to the body result in values of Cm

which can correspond to negative added masses. As discussed

above this is not physically possible, and therefore suggests

a failing of Morison's equation when applied in this manner.

With the absence of any clearly defined vortex structure, as

on the square section, the coefficients then show a gradual

variation with NKC. Representing the force by means of an

inertial and a drag component as determined by Morison's

equation also suffers from the drawback that these coefficients

are very sensitive to changes in the phase of the force, as

shown in Appendix: 2. It has also been shown that even in

this relatively simpler case of planar oscillatory motion,

where the incident flow is without doubt extremely regular and

two dimensional in the far field, the interaction between

vortices and the body and/or with others of opposite sign

results in a slight random variation in the in-line force.

This small variation, shows up quite clearly in C m and CD as

these are phase sensitive but only a small variation in CFrms

is observed, thus suggesting that this might be a better

method of describing the force.

Using measured values of the inertia and drag coefficients

in Morison's equation, also yielded the predicted force

variation during a cycle. These results, presented in

Chapter: 4 shows that, as was previously found by Sarpkaya

(1976), Morison's equation does indeed predict the force on

the circular cylinder remarkably well for values of NKC outside

the range 10 <NKC < 20. In the range of NKC between 10 and

20, the strong vortices present remain in motion close to the

body as described in Chapter: 5. At low values of NKC,

however the flow is almost attached, no vortices of any

significance are formed and the force is almost all inertial,
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with the maximum force occuring at around 90 0 , and here

figure 4.19a shows that Morison's equation works quite well.

As NKC increases the flow is now asymmetric with vortices

being formed but not shed, the pattern being as shown in

figure 5.2b. In this region during each half cycle, one

vortex grows quite large which results in a second maximum in

the force which occurs at about 1800 ; the real maximum in the

force still occurs at about 90° as shown in figure •4.19b.

However the growth of this vortex results in the predicted

force being wrong at the peaks. As NKC increases further the

vortices grow stronger and the flow pattern changes. The

pattern is now as shown as in figure 5.2c for NKC about 10,

and here these stronger vortices result in a shift of the

maximum force from about 90 0 to around 1800 (note that the

- phase of maximum force (§) is defined as 180° - position of

maximum force) which corresponds to a change in 	 from about

90o to approximately 00 as can be seen in figure 6.5 for NKC

just below 10. This pattern exists for NKC up to about 15

and during this regime Morison's equation fails to predict

the force accurately because the effect of the voritices is

not propertly accounted for. This behaviour of the vorticies

in this region also accounts for the peak in C Fmax and in CD

as the dramatic change in phase results in an increase in the

drag part of the force and a decrease in the inertial part.

The variation of the measured and predicted force during this

region is given in figures 4.19c and 4.19d; in this region

as can be seen the prediction by Morison's equation is the

poorest being especially bad at NKCIzIl 15. As NKC increases

beyond this a different flow pattenais observed, with the

vortices now tending to rotate around the cylinder as shown

in figure 5.2d. Here the agreement between the predicted

force and Morison's equation begins to improve and by NKC:= 20,

quite a good prediction is obtained from Morison's equation.

Apparently, although quite large vortices are present,

because of the configuration and motion about the cylinder no

dramatic instantaneous effects are produced and Morison's

equation therefore works fairly well. As NKC increases beyond

about 20 more vortices are formed, and by about NKC= 25 some

semblance of a vortex street is observed. Here however, and for
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larger values of NKC, Morison's equation predicts the force

very accurately.

On the flat plate however results presented in figures

4.34 and 4.35 show that the force predicted by Morison's

equation is in poor agreement with the measured force for most

of the range of NKC. Figure 4,35a shows that even for NKC as

low as 3 the force predicted by Morison's equation is not

very accurate. However for NKC greater than about 20 the

agreement between the measured force and Morison's equation

improves, slowly. By NKC =50, the agreement is fair but not

as good as that obtained for the cylinder. This lack of agree-

ment between the predicted force and that measured on the flat

plate, is directly attributable to the influence of the stronger

vortices formed on this section on the force, even at low .

values of NKC where they result in a large drag. The greatest

influence of these vortices is possibly during flow reversal,

where strong interactions between them and the plate occurs.

For larger values of NKC, say above 20, a number of vortices

are formed and shed (depending on the value of NKC) and the

overall effect on the force is not as dramatic resulting in

a better agreement between the predicted and measured force.

On the diamond section results presented in figure 4.47a

to 4.47h show that here also the predicted force is not very

accurate for NKC less than about 2 5. Even for NKC as low as

4 ..8i figure 4.57 shows that the presence of growing vortices

results in a poor prediction. As NKC increases the prediction

first becomes worse, but between NKC = 13 to 16, the prediction

is quite good; beyond this the prediction again depreciates

and then slowly improves so that by about NKC1.s25 and for

larger values of NKC the prediction is fairly good. Throughout

the range of NKC vortices are formed, but for NKC between about

20 and 10 these are particularly strong and set up clearly

defined motions close to the body. The fact that for NKC 15,

fairly good agreement is obtained between the measured and

predicted forces is therefore surprising. However this is

just coincidental and occurs because in this region the force

is influenced by a series of vortices, with the pattern as

shown in figures 5.9c and 5.10a. As with the other sections,
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• it appears that if the cumulative effect of the vortices is

such that a gradual change in the force occurs throughout

a cycle, then Morison's equation works well.

For the square section, results presented in figure

5.71a to 5.71h show that for NKC less than 8 the prediction

starts to improve, but for NKC between about 10 and 30 the

prediction is poor. As NKC increases above about 30 the

prediction gradually improves and by NKC 50, the predicted

force is in fair agreement with the measured force. In the

range of NKC between 10 and 30, although strong dominant

vortices are not present, nevertheless it appears that the

interaction between the body and these vortices are enough

to result in the poor prediction abserved.

Thus, it seems that of all the sections, Morison's

equation is more suitbale to the prediction of the force on

the circular cylinder except for value of NKC between about

10 and 20. The reason for this failure has been suggested

by other workers, e.g. Sarpkaya (1976a) as due to the fact

that Morison's equation contains only odd harmonics and

therefore assumes symmetry in the in-line force. This poor

prediction it is claimed, then results because in this

region (10 n=NKC<20) the presence of large vortices close to

the body results in a force which is not symmetrical; the

large error then reflects this asymmetry in the force which

is absent in Morison's equation. It should be noted that since

the values of Cm and C commonly used are constant averaged

values, (i.e. obtained from the first term of equation A3.10

and A3.11), assumption about the symmetry of the in-line force

does not affect these values. However it has been shown in

Chapter: 4 the poor agreement between Morison's equation and

the measured force is not due to the assumption of symmetry

implied by Morison's equation. This was proved by showing that

the agreement between the predicted and measured forces could

be vastly improved by using values of Cm and CD in Morison's

equation which were not constant, but instead were time

dependent, i.e. varied during a cycle. The expresions for

Cm and CD were therefore modified•to include the third and



12 8

fifth harmonics of the force, (i.e only odd harmonics, so

that the assumption of symmetry was still implied). Using

these value of Cm and CD
 in Morison's equation resulted in

extremely good agreement between the predicted and measured

force, as seen in figure 4.20. This improvement in prediction

was obtained throughout the range of NKC, on the cylinder

though at larger values of NKC it appeared that better

agreement could be obtained if higher odd harmonics were

included. Therefore, without doubt this shows that the poor

prediction by Morison's equation is not primarily due to the

fact that it assumes that the force is symmetrical. This is

not really surprising as the measured force, at least when

averaged over a number of cycles shows no signs of gross

asymmetry. One way of looking at the failure of Morison's

equation to predict the force accurately on the circular

cylinder for NKC between about 10 and 20, is that even though

it does contain odd harmonics of the force, these are not

adequately modelled.

On the sharp-edged sections the prediction by Morison's

equation is notably worse with the remainder function

instantaneously attaining values of between 20 - 30% of the

maximum measured force for NKC less than about 25. This is

especially evident on results obtained for the flat plate.

On the circular cylinder, however poor agreement between

Morison's equation and the measured force was obtained only

for a limited range of NKC, say between 10 and 20, and it was

shown that the error was due to incorrect modelling of the

higher odd harmonics in the force. The presence of odd

harmonics is also evident in the remainder function obtained

on the sharp-edged sections, and it would seem that here again

the reason for the poor prediction is due to these not being

properly represented by Morison's equation. Thus, on all the

sections tested poor agreement was not primarily due to the

assumption of symmetry implied in Morison's equation. However

two important questions remain unanswered; firstly, why are

the odd harmonics not properly modelled and secondly why

should the agreement be better on the cylinder. Before these

questions can be answered, MorisOn's equation must be closely
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examined. Mcrison's equation was not founded on any firm

theoretical evidence, but instead was a result of empiricism,

where the force was assumed to be equal to the linear

summation of two terms, one in phase with the acceleratiow

and the other in phase with the velocity. It should be noted

that for the simpler case of uni-directional accelerated,

flow, Sarpkaya and Garrison (1963) showed that, in this case

the force could indeed be represented as suggested by Morison's

equation, i.e. by the summation of an inertia and a drag term.

No evidence however is available which suggests that for the

relatively more complex case of planar oscillatory flow,

where the acceleration is not just variable but periodic,

Morison's equation might still be applicable. Morison's

equation takes no account of the history of the motion, which

must play an important part as the flow development is

definitely influenced by the previous half cycle. Further this

equation uses constant coefficients averaged over a cycle and
then uses these to artifically introduce some time dependence

into the force. It is therefore remarkable that Morison's

equation should work at all. From the reason above it would

seem that Morison's equation would tend to work better when

the assumptions it makes becomes valid or at least justified.

These assumptions, the most important being that the inertia

and drag coefficients are constant during a cycle, and that

the history effect of the flow can be ignored, would in

practice never be fully valid. However when the form of the

wake is not varying dramatically during a cycle, i.e. when the

wake width and the flow pattern around the body does not change

by large amounts, and when the effect of the previous half

cycle is also not expected to be of primary importance, these

assumptions can be made. Thus, for values of NKC where large

vortices are ?resent which interact strongly with the body,

these assumptions will not hold and this explains the poor

prediction by Morison's equation. Strong vortices close to

the body have the effect of producing large variations in the

wake, thus constant values of Cm and CD will produce errors

in the predicted force. These vortices, as they are swept

back against the body, also directly affect the growth of the
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vortices and subsequent flow development. Therefore both

assumptions are totally invalid. At low values of NKC, if

the flow tends towards attached flow, as on the circular

cylinder these assumptions are more likely to be plausible,

and therefore explains the fair prediction by Morison's

equation of the force on the cylinder in this region. For

the sharp-edged bodies however attached flow is not present

even at low values of NKC, instead vortices though weak are

present, and the interaction as the flow reverses is enough

to render the assumptions invalid and result in poor

prediction. The presence of the sharp edges always causes a

more sudden or violent interaction between the vortices and

the body, but on the circular cylinder the interaction is

more gentle with the vortices allowed to move more easily

across the surface as the flow reverses. It should be

remembered that Morison's equation predicts a force which

gives an average variation during a cycle, and rapid changes

in the force cannot therefore be modelled and result in an
error. On the cylinder therefore the prediction by Morison's

equation is always better than on the sharp-edged sections.

At large values of NKC, a number of vortices are formed and

shed, however although the wake changes rapidly, these

variations are not large, here also the effect of the vorticespot
sweeping back/the cylinder is limited to only a very small

portion of the cycle. Therefore for very large values of

NKC these assumptions seem to be justified and Morison's

equation again works fairly well. The reason for the poor

prediction by Morison's equation can therefore be summarised

by noting that this equation tries to predict the force which

varies during a cycle, using constant averaged force coefficients

which do not lake account of the history of the motion or

the rapid changes in the flow which produce components at

higher frequencies, mainly at odd harmonics of the basic.

Another way of viewing this, is in terms of the frequency

content of the force. Thus, for situations where the form of

the vortices and the manner in which they interact with the

body are such that higher harmonics of notable energy are

produced, Morisons's equation would not hold.
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6.3 TRANSVERSE FORCE

Following the work of Isaacson and Maull (1976),

Maull and Milliner (1978a) and Sarpkaya (1975,1976a,1976b),

on circular cylinders, it is now well recognised that the

lift force or transverse force is very important on circular

cylinders in waves and oscillatory flow. With this knowledge

in hand, the transverse forces on three of the sections

namely, the cylinder, diamond and square section, were measured.

These measurements revealed .that on all the sections, for most

of the range of NKC lift generation was not the same for every

cycle, but instead occurred in uneven or irregular bursts.

This irregularity in the transverse force data was especially

noticeable for values of NKC above 25, for all the sections.

For lower values of NKC (< 25), certain regions exist where.

the irregularity may cease, and the lift is then more'well-

behaved', but still varying from cycle to cycle though by only

smaller amounts. This is clearly seen in figure 4.72c for

NKC = 14.20 on the circular cylinders, where lift is generated

almost regularly every cycle. On the diamond section, for

NKC less than about 20, the lift is generally much more regular

than on the cylinder, however at certain values of NKC irregular

lift generation is observed on this section. The square

section also experiences a lift force which is irregular;

here however this irregularity is observed throughout the entire

range of NKC. The reason for this irregularity in the lift

force can be best understood if the mechanism responsible

for lift generation is examined.

Lift forces result from asymmetry in the flow which is

produced by the growth and motion of vortices. However in

oscillating flow, the return of vortices against the body

also plays an important role in lift generation. This is

particularly important at values of NKC less than about 20,

where large growing vortices generate substantial lift as

they move back over the body when the flow reverses. At

larger values of NKC, greater than about 25, the flow then

becomes quasi-steady and here lift generation is maily due

to the shedding of a series of vortices which result in the

oscillation of the wake. Irregularity of the lift force
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therefore results because of a number of reasons depending on

the Keulegan and Carpenter number range. At low values of

NKC say less than about 8, only weak vortices are formed and

at even lower values of NKC (< 5) sometimes no distinct

vortex pattern is observed. In this region therefore irregular-

ity in the lift force occurs because during some cycles little

or no vortex structure is formed and therefore little or no

lift is produced. This is especially noticable on the

circular cylinder and square section, however on the diamond

section, because of the sharp edges distinct vortices are

formed even at low values of NKC. On this section therefore

any irregularity in the lift at low values of NKC is due to

the fact that sometimes the vortices may form almost

symmetrically thus creating little lift. At other times,

the vortex from one edge may dominate with more lift being

generated. At the intermediate range of NKC, between about

10 and 20, irregularity in the lift is produced because, the

strengths, positions, and the manner in which these stronger

vortices now interact with the body is not the same during

every cycle. It is worth noting that in this range the

strongest vortices appear to be formed, and the interaction

between these and the body is therefore the strongest during

this region. However the lift in this region, on the diamond

section is generally much more regular because the sharp

edges, tended to dictate the motion of the vortices as the flow

reversed. These sharp edges were responsible also for flow

patterns which were repeatable (in general) over long periods.

On the circular cylinder, the arbitrary nature of the

separation point resulted in flow patterns which generally

were not very regular, though the overall motion was more or

less the same. On this section, as the flow reversed the

vortices were free to move either above or below the cylinder

and this produced very irregular lift. At certain values of

NKC however, the position and strengths of the vortices were

such that a more regular pattern was produced, as was the case

for NKC= 14.20 as figure 4.72c shows. At this value of

NKC, the vortices induce strong enough velocities on each

other to make the paths of each other more or less fixed.
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On the square section during the intermediate range of NKC,

as described in Chapter: 5, no distinct vortex pattern was

produced, instead vortices formed were weak and even then the

amount of vorticity seemed to vary considerably from cycle

to cycle, thus leading to very irregular lift generation.

At-the larger values of NKC where lift is now caused by the

regular shedding of vortices, lift is produced every cycle

but the amount of lift produced varies considerably and

. irregularly as figure 4.72, 4.78, and 4.84 shows. Visual

examination of the flow in this region, reveals that precisely

the same conditions do not exist during every cycle. The way

in which the vortices interact with the body as the flow

reverses is not the same during every cycle, and since this

interaction determines how the flow develops then the flow

development is not the same. Further,during certain cycles

noticeably weaker vortices are formed, whereas in some cycles

more vortices may be formed than in others (though the difference

is usually by 1). Therefore a considerable number of variables

are present, and it appears that differences in these processes

result in the cycle to cycle variation in the lift. In

addition, during certain cycles the growth and motion of the

vortices are such as to favour lift generation (i.e. stronger

vortices with a much smaller cancellation), and the lift is
noticeably large. During other cycles however, weaker vortices

interacting with each other result , in a much lower lift. It

should be remembered that since the sole mechanism responsible

for lift generation is the growth and motion of the vortices,

and since these are very sensitive to changes in the flow

conditions, then the lift will be very sensitive to small

variations in the flow pattern. The in-line force on the
other hand is not all due to the effect of the vortices, and

although it does vary from cycle to cycle this variation is

small compared with that on the transverse force.

This irregulatity in lift generation results in the

data being non-stationary. Description of this force was

therefore a problem, as quantities such as r.m.s and maximum

force would be a function of the length of data recorded. It

would seem more suitable to describe the data in a statistical



134

manner, however such a description requires a considerable

quantity of data to give fairly accurate results. In this

case, since the data obtained was not applicable, at least

not in a quantitative manner, to any real situation and

because of the large amount of data needed, the time and effort

involved was enormous, the statistical approach was not used.

Instead, using a 100 cycles of data, the root mean square and

the maximum lift force were obtained and these used to describe

the magnitude of this force. Results obtained in this manner

were presented in figures 4.79 and 4.80.

For NKC above about 25, figure 4.80 shows that the root

mean square lift force on all three sections appears to tend

towards constant values. In this region also the results

exhibit very little scatter even though the lift appeared to

be highly irregular; this therefore suggests that the amount

of data used in the analysis (100 cycles) was a representative

sample. In this region also it appears that the square section

experiences the largest r.m.s force, and the diamond section

the lowest. At first sight this seems odd because the vortices

formed on the square section are the weakest while those on

the diamond are the strongest (of those formed on these three

sections), especially since the growth and motion of vortices

are responsible for the lift. However no contradiction arises;

it is just that the asymmetry caused by the vortices acts over

a greater area on the square section than on the diamond section.

In other words a greater portion of the square is in the wake,

where the pressure differences between the lower and upper

surfaces caused by the vortices give rise to large lift forces.

On the diamond section however a smaller portion of the body is

subjected to the pressure differences. The circular cylinder

as can be . seen in figure 4.80, from a combination of the area

of separated flow and strength of vortices experiences only a

slightly larger r.rn.s force than the diamond section. As NKC

is decreased to less than 25 the data on all the sections

exhibit considerable scatter, with the square section behaving

the most erratic and the diamond, the least. Also for NKC

less than about 20 the results on the diamond section are now

noticeably greater than those on the circular cylinder. This
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jump in the results on the diamond section and the wide

scatter observed in this region of NKC occurs because of the

regularity or irregularity of the lift force. On the

diamond section because of the general regularity in the lift

data for NKC less than about 20, a higher root mean square

force is obtained, whereas on the circular cylinder lower and

generally more scattered results are obtained. This fact that

the increase in regularity of the lift force causes an increase

. in the r.m.s is clearly demonstrated for NKC= 14.20 on the

circular cylinder, where a large r.m.s value is obtained for

a fairly regular lift signal (figure 4.72c). On the square

section the large scatter in CL s is also due to the

irregularity or regularity in the lift signal. However here

also at certain values of NKC some mean lift is also generated,

but the direction in which this mean acts is arbitrary,

therefore for more or less the same value of NKC largely

differences in results may be obtained as for NKC 120 15, in

figure 4.80. This scatter in data resulting from the peculiar

nature of lift generation is clearly demonstrated in figure

4.74. Here, comparison with other data for the r.m.s lift force

on the circular cylinder reveals that for NKC < 25, the force

can adopt a range of values, for the same value of NKC. The

upper bound represents regular lift generation, as for NKC=-14.20,

and the lower bound to very uneven or irregular liftgeneration.

This plot (figure 4.74) also shows that the present data on

its own could be misleading because insufficient measurements

were made, and not at low enough values of NKC to give the

complete picture. The present data, for the results on the

three sections tested, as presented in figure 4.80 appears to

show CLrms increasing rapidly at low values of NKC, however

for the circular cylinder figure 4.74 shows that as expected

C s	 0 as NKC-0. 0. Thus the present results quite simplyLrm
do not show measurements at low enough values of NKC where

will tend to zero, and therefore should not beCLrms
extrapolated. Measurements were not made at very small values

of NKC because of the difficulty associated with measuring

such small quantities. It is probably noticeable that on

the square section, measurements for NKC below about 12 were
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not presented, because this section experienced very small

forces up to this value of NKC. Ideally because the

transverse force is smaller than the in-line force, a more

sensitive pair of load cells should have been designed to

measure this force. Further, because of the wide range of

NKC tested, two pairs of load cells, one more sensitive than

the other would have been better, however time and cost did

not permit this.

Data for the maximum lift force in general shows much

more scatter, and throughout the entire range of NKC. This

is demonstrated in figure 4.73, where results for the maximum

lift force on the circular cylinder is compared with data

obtained by other workers also using 'U-tube' shaped water

tanks. With the exception of data obtained by Sarpkaya and

Tuter (1974), figure 4.73 exhibits considerable scatter.

-In this figure, the mean line through Sarpkaya and Tuter's

data is shown. However in their paper, results presented

showed very little scatter except in the range of NKC between

20 and 25; this is represented in figure 4.73 by a branch in

the mean line. Sarpkaya and Tuter's data also show the

maximum lift tending to zero with NKC as would be expected,

but this fact is not shown by any of the other data including

the present results. Obviously, had these experiments been

conducted at low enough values of NKC the results would show

CLmax tending to zero with NKC. However the , fact that

Sarpkaya and Tuter's results show tend to zero earlier

together with the small overall scatter suggests that in their

case lift generation was probably more orderly and regular,

and with the flow becoming symmetric at earlier values of

NKC. However they did not present root mean square values so

no definite conclusions about the difference in behaviour of

their results, can be made. Nevertheless it is interesting

to note that in their experiments, the cylinders were placed

in an upright arm of the tank, whereas all the other data

were obtained with the cylinder in the horizontal sections of

the tanks. It is possibld- therefore that positioning the

cylinder in the arm of the tank results in more repeatable

flow patterns and hence more regular lift generation. It
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should be remembered that the maximum lift force is a very

sensitive quantity, and it requires strong lift generation

only for a few cycles, to give a large maximum lift force,

and this may explain why the present results and those of

other workers (with the exception of Sarpkaya and Tuter)

show large values of Cimax at fairly small values of NKC.

Similar behaviour of the maximum lift on the other two

sections were observed as shown in figure 4.79 where the

. results for the square and diamond sections are shown compared

with those on the circular Cylinder. Here again as with the

r.m.s force, for NKC 25 the square section again experiences

the greatest force, and the diamond section, the smallest,

for reasons already mentioned. Figure 4.79 also shows that

the scatter in the data is the greatest on the square section

and again for similar reasons as for the scatter on the rsm.s

force. This figure also shows that for NKC between about

15 and 20, the maximum lift on the diamond section is lower

than that on the circular cylinder, but as was mentioned

earlier in this region the r.m.s on the diamond is greater than

that on the circular cylinder. This point thus validates

the claim that it is the regularity of the lift that is

responsible for large r.m.s forces.

Both figures4.79 and 4.80 show some similarity in the

behaviour of the lift forces on all three sections for NKC

greater than about 25. This similarity, in trends is a direct

result of the similarity in the flow. As described in
Chapter: 5, for NKC greater than about 25, the flow past all

these sections approach a quasi-steady situation with a series

of vortices being shed. This causes an oscillation of the

wake and a lift generation, which is similar on these sections,

as demonstrated in figures 4.75, 4.81 and 4.85, for the larger

values of NKC. However for NKC < 25, figure 4.75 and 4.81 show

that the lift on the circular cylinder and diamond section

are very much alike whereas figure 4.85 shows that in this

region lift generated on the square section is of a different

form. This behaviour is again due to the fact that on the

diamond section and circular cylinder similar patterns are
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produced, where lift is produced both by the growth of the

vortices and their motion, especially as they are swept back

against the body. On the square section however, the growth

and motion of the vortices are completely different, with

only weak vortices being formed and the motion being ill-

defined. The fact that the similar flow patterns produce

similar lift generation can be seen in figures 4.75a, 4.75b

and 4.81a where on both sections the flow pattern was similar

with a pair of asymmetric growing vortices being formed

during each half cycle. By examining the sketches in figures

5.2b and 5.9b the variation in lift during a cycle can be

predicted from the motion of these vortices. On the circular

cylinder and diamond section, figures 5.2c and 5.9c show

that during certain ranges of NKC a 'sideways vortex street'

is produced; this pattern produces lift as shown in figure

4.75c (for the circular cylinder), and in figures 4.81b and

4.81c for the diamond section. This distribution in lift

over a cycle during the 'sideways vortex street' can be

verified by examining the position of the vortices as sketched

in figure 5.2c and 5.9c. For slightly higher values of NKC,

figures 5.2d and 5.9d show that similar patterns are again

produced; the pattern now being a cyclic rotation of the

vortices about the body. In this region the lift generation

over a cycle is as shown in figures 4.75d, 4.75f, 4.81d and

4.81f, and can be verified by examining the position of the

vortices as sketched in figures 5.2d and 5.9d. Thus on the

circular cylinder and diamond section similar lift is generated

throughout the entire range of NKC; here also lift is gen.rated

both by the formation of vortices and the passage of these over

or under the body as the flow reverses. On the square section

however, lift variation over a cycle for NKC <25 is different

because the flow pattern is different. Here, although strong

vortices are not formed considerable lift is generated because

a large area of the body is in the wake and is therefore

subjected to large pressure differences arising from the

presence of the weak vortices, On this section therefore lift

is generated more through the formation and shedding of vortices,

than by the return of vortices past the body as the flow reverses.
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This happens because as mentioned in Chapter: 5, the weak

vortices formed, quickly break down as the flow reverses, so

no definite vortex structure is swept back past the body.

Instead, an apparently turbulent (with weak spanwise intensity)

flow is incident on the model as the flow reverses and this

itself does not produce much lift.

Figures 4.75, 4.81 and 4.85 also show that throughout

. the range of NKC, lift is not generated at a constant

frequency; this is easily verified by examining spectra of the

lift force presented in figures 4.77, 4.83 and 4.87. Here it

can be seen that lift is generated over a band of frequencies,

all multiples of the water oscillation frequency, and the

range of frequencies increases with NKC. This fact that the

transverse force occurs over a band of frequencies makes it

difficult to define a dominant frequency of the transverse

force. As vortex shedding plays an important part in lift

generation, the vortex shedding frequency would seem a useful

parameter in the description of the transverse force. However

for some regions, although considerable lift is generated, no

vortex is completely shed, and lift is generated from the

growth and movement of the growing vortices as the flow

reverses. Further, even at larger values of NKC the vortex

shedding frequency is not constant, as the first vortex shed

is usually influenced by other vortices interacting with the

body. In addition, as considerable lift is generated by the

interaction between previously formed vortices and the body,

a vortex shedding frequency to describe the transverse force

was therefore not used. Instead a more representative but not

precise frequency description of the force was based on a

frequency obtained by checking the number of zero crossings.

This frequency is thus a sort of averaged frequency, and was

used to define a Strouhal number. These results presented

in figures 4.76, 4.82 and 4.86, show this Strouhal number

appearing to tend towards a constant value as NKC increases.

Here also it can be seen that for NKC less than about 25,

similar results are obtained on the circular cylinder and

diamond section, whereas the square section again show a
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different behaviour. Further,as expected the Strouhal

number on the square section is also the lowest, due to the

fact that the afterbody in delaying the interaction between

the separated shear layers also reduce the number of vortices

shed. A fact which is evident in steady flow.

As mentioned above, spectra presented in figures 4.77,

4.83 and 4.87 clearly reveal that the transverse force occurs

at several frequencies all multiples of the fundamental frequency.

It should be noted that the peak shown in these spectra at

just over 3 Hz is not genuine but instead due to noise

introduced by the tape recorder. For NKC 25, these plots

show that lift is produced over a wide band of frequencies,

which increases with NKC. The wide band nature of the lift

force occurs because the vortex shedding frequency is not

constant, and also because lift produced by the return of

vortices is not the same for every cycle. At smaller values

of NKC (< 25), the lift spectra is generally not so broad

band and lift tends to occur at discrete frequencies, either

odd or even multiples of the oscillation frequency. The

nature of the spectrum however depends on the flow pattern,

and changes with it.

These results demonstrate that as on the circular cylinder,

the transverse force on the two other bluff sections are also

very important, both in magnitude and frequency. For NKC

greater than about 25, results presented show that lift on all

the sections occurs in uneven bursts of significant notable

magnitude and over a wide range of frequencies increasing with

NKC. For NKC< 25 lift forces can adopt a range of values

depending on the regularity of the flow, here the frequency

content is less broad band depending on the nature of the flow

pattern. It also appears that the maximum lift force, root

mean square force and the Strouhal number appear to tend towards

constant values. Finally it appears that, as would be expected,

the range of frequencies over which the transverse force acts,

at larger values of NKC, is centred on the Strouhal frequency.
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6.4	 SOME IMPORTANT EFFECTS

6.4.1 BODY GEOMETRY

These results show that the singularly most important

feature in oscillatory flow is the production and interaction

of vortices. Providing the formation process is not inhibited,

vortices are formed which set up similar motions around all

the sections. The similar behaviour of these vortices

result in similar variation -of the forces, both in-line and

transverse. The primary effect of the body shape is therefore

in the production of vortices. However the angle of the

separating shear layers is also very important as this

generally determines the strength of the vortices formed,

which in turn determines the magnitude of the drag. This

incidentally is one explanation for the larger forces

experienced by Keulegan and Carpenter (1958), during their

experiments on thin untapered flat plates, where the angle of

the separating shear layers was higher than in the present

case where the flat plates were tapered to give an internal

edge angle of 600 . Bodies with free separation points,

usually have weaker vortices and hence a smaller drag. In an

oscillating flow also the separation points on such a body

var.	considerably during a cycle, particularly at

intermediate values of NKC. This variation in separation point
during a cycle results in a more gradual development of the

flow. However the most important consequence of free

separation points, is that the interaction process between

vortices and the body is usually more gentle, with the vortex

free to move either above or below the body, Further, unlike

sharp edged bodies less stretching of the previously shed

vortices occurs. This gentler process of interaction and

formation of vortices leads to less randomness in the in-line

force, but more in the transverse force (as paths of vortices

are not dictated). Body geometry also plays an important

role in determing the nature of the force at small values of

NKC. On the sharp-edged bodies, even at low values of NKC

vortices are formed and the force is still influenced by drag.

On bodies where reattachment is possible however, this effect
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may cause the force to be considerably influenced by inertia

even at substantially large values of NKC. The larger wake

and the wider variation in wake characteristics, together with

the more complicated interaction between vortices and body

result in a poorer prediction by Morison's equation of the

in-line force on sharp-edged bodies. Lift forces or

transverse forces, being related to the vortex growth and

movement is also affected by geometry. The magnitude of the

lift besides being affected .by the strength of vortices, also

depends on the area of body in the separated region, thus on

the square, even though weaker vortices are formed larger lift

forces are obtained.

6.4.2 BLOCKAGE

By examining the force on different sized flat plates

blockage in oscillatory flow was examined. Results presented

in figures 4.37, 4.38 and 4.39, show distinct effects of

blockage on the drag, r.ra.s and maximum force on flat plates.

These effects are primarily due to blockage.because as

mentioned in Chapter: 4 Reynolds number is not expected to have

much an effect, (a fact demonstrated by the works of Keulegan

and Carpenter (1958) and Shih and Buchanan .(1971)). Aspect

ratio is not considered very important as the flow is more or

less two dimensional, with L/D large enough so as not to be

influenced by the very small gap flow, that must exist at the

ends of the models. In any event, figures 4.41 and 4.42 show

that good collapse of results can be achieved if Maskell's

blockage correction method is used. This correction method

was not strictly applicable and was used only to show that

collapse of results could be achieved by taking the blockage

ratio into account. These results clearly indicate that

blockage is important inksteady flow for blockage ratios more

than about 5%. However it should be noted that the importance

of blockage decreases as NKC decreases, and for NKC less than

about 5 blockage is not very important. These conclusions

are definitely in disagreement with those of Sarpkaya (1976a)

where his experiments on the blockage on circular cylinders
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in oscillating flow led him to the conclusion that 'blockage

effect in harmonic flows is negligible at least for D/W

ratios less than 0.18.' Sarpkaya's method of examining block-

age was by means of pressure tappings on the surface of the

tank, where he compared the acceleration in the vicinity of

the model with that elswhere in the tank. The fact that

he found little difference is therefore is disagreement with

the present results which showed a definite effect of blockage.

However his study was on circular cylinders whereas the present

experiments were on flat plates. The present. experiments

were based on force measurements on a series of plates,

however a similar set of experiments on circular Cylinders

could have been misleading as a.simple. increase in dimension

also increases the Reynolds number. This was not a problem

. on the flat plates where as already mentioned Reynolds

number has little effect.On the circular cylinder however an

increase in Reynolds number causes a decrease in drag, whereas

blockage is expected to increase the drag. Nevertheless these

experiments reveal that blockage is important in oscillatory

flows, at least on flat plates, and possibly bodies where

the angle of the separating shear layers is large, i.e. with

large wake widths, for values of NKC in excess of about 5.

The fact that Sarpkaya (1976a) did not notice any measurable

change in the acceleration, as observed in his surface pressure

measurements is probably due to the wake width being much

smaller on the circular cylinder.

6.5. REPRESENTATION OF THE FORCES

The results and discussion presented above show that even

in this relatively simpler case of planar oscillatory flow,

representing the in-line force by Morison's equation is not

very accurate, except at large values of NKC where fairly

good agreement is generally achieved. Of course on the circular

cylinder the agreement between the force predicted by Morison's

equation and the measured force is better than on the other

sections. The main disadvantage of using Morison's equation

is that the coefficients used with it are averaged values,

which are then used to represent forces which vary considerably

during a cycle; time dependence being introduced by multiplying
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these coefficients by the appropriate velocities or accelera-

tions. Such coefficients tend to be misleading and for the

inertia coefficient can represent values which are not

physically possible. The Morison coefficients are also

extremely sensitive to changes in the phase of the force which

can result from changes in the flow pattern. This causes

noticable variations in these coefficients from cycle to cycle

even though the incident flow is repetitive. In a real situation

the use of Morison's equation to derive coefficients is very

suspect as a wide variation of results is expected since the

incident flow is not regular.

A suitable alternative approach was suggested by Maull

and Milliner (1978a), where a single coefficient, the r.ul.s

was used to describe the force. Such a method of describing

the force is attractive, because although substantial cycle

to cycle variations were observed in the Morison coefficients,

much less variation was observed in CFrms•In addition the

behaviour of CFrms is not as sensitive as the other coefficients,

tochanges in the flow pattern. The variation of this

coefficient with NKC is therefore more orderly and gently

tends towards a constant value at large values of NKC. The

idea of a single coefficient to represent the force was

earlier used very successfully for the case of uni-directional

accelerated motion by Iversen and Balent (1951) and by

Keim (1956). More recently, Karanfilian and Kotas (1978),

showed that the force on a sphere oscillating in still water

can also be adequately . described by a single coefficient.

Further,Maull (1978), showed that the force on a circular

cylinder can be well represented using constant values of

CM and CD in Morison's equation to give C Frms (see Appendix: 4),

for a range of ig values provided the appropriate C D 's are

used. Thus it seems that the in-line force can be adequately

described in terms of a single r.m.s force coefficient which

may be predicted using constant values of Cm and CD in Morison's

equation. Using this approach Morison's equation was used to

predict the r.m.s of the in-line force on the four sections

tested, again using constant values of Cm and CD . The inertia

coefficient used was the appropriate potential flow value,
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and the drag coefficient was the steady, smooth flow value in

the corresponding Reynolds number range. These results presented

in figures 6.6 to 6.9 show that on all the sections except the

square section the predicted value is in good agreement with

themeasured values at large values of NKC. On the square

section this behaviour is due to the fact that the flow about

this section is somewhat turbulent, thus the drag experienced

•and the r.m.s force is lower_ than that for smooth flow.

Obviously such a prediction, i.e. using potential flow value

Cm and steady flow CD , is only really justified at the extreme

ranges of NKC, i.e. at small or large values. However on

the circular cylinder the prediction is good throughout most

of the range of NKC. On the other sections the prediction is

not so good. Nevertheless figures 6.6 to 6.9 show that on , all

the sections the in-line force data can be represented by a

single r.m.s force coefficient. Prediction of this coefficient

on all but the circular cylinder, using constant values of Cm

and CD in Morison's equation is however not very accurate.

A family of such curves could however be presented which

would be valid in certain ranges of NKC and under certain

conditions, but this idea needs to be supported by further study.

It should be noted though that although presentation of the

force in this manner is attractive for the reasons mentioned

above, Morison's equation has the advantage that the force

distribution could be predicted, and this information is

usually needed by designers.

Measurements of the transverse force, reveal that on all

the sections this force is generated in irregular bursts

leading to a large band of values. for NKC < 25. In a real

situation, the more complex incident flow is likely to result

in even more irregularity in the transverse force, however in

this case the correlation along the span of the body would

most probably be less than in the corresponding two-dimensional

flow. Therefore in the 2-D case, the higher correlation

together with the flow being more regular would lead to a

higher lift force. Relevant experiments i.e. at the

appropriate conditons but in two dimensional flow could be used
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to obtain an upper bound of data for design purposes. This

irregularity in the lift force, even for the simpler case of

planar oscillatory motion is due to changes in the vortex

growth, motion and interaction; lift forces are therefore very

difficult to predict, and at this stage impossible for the

more complex real situations. However research is being done,

to model oscillatory flow using discrete vortices, and then

to use Blasius equation as in equation 1.14 and 1.15 to yield

both the in-line and transverse forces. Some of these studies

are currently being carried out at Imperial College, and

some attempts have been made in the past, e.g Stansby (1978)

but these are still in the initial stages. The other important

point as regards the transverse force is its frequency

composition; again prediction of this is not possible from any

present theoretical knowledge and data must be obtained from

experiments. These experiments suggest that the transverse

force occurs over a wide band of frequencies, centred on a

Strouhal frequency as defined earlier, with the lowest

component at the main water oscillation frequency. Obviously

the situation is more complex in real life and the data

presented here is to be treated only in a qualitative manner.
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CHAPTER: 7

CONCLUSIONS

A 'U-tube' type water tank and associated drive

mechanism wivedesigned which produced stable sinusoidal

oscillations; these oscillations attained a maximum

amplitude of about 12". A force measuring system was also

designed and both in-line and transverse forces on four

bluff sections were measured. The flow past these sections

was also visualised. The following conclusions were drawn

from these results.

(1) Comparison of the in-line force data on the circular

cylinder with similar data obtained by other workers .

also using U-tube type apparatus , reveals a considerable

amount of disagreement. No obvious explanation for this

large difference exists but it appears that it might

be due to different data analysis techniques and to the

manner in which the oscillations are produced.

(2) Flowvisualisation reveals that with the exception of the

square section, similar flow patterns are observed on all

the models. For NKC between about 10 and 25, (with the

exception of the square section) large vortices are

formed which set up clearly defined motions around the

sections. On these sections the strongest vortices are

formed during this region. For NKC above 25, the flow

pattern on all sections is similar; here quasi- steady

flow is approached as a series of vortices are shed; At

small values of NKC, below about 5, the pattern on all

the sections is more or less symmetrical, but on the

flat plate and diamond section weak vortices are clearly

observed. On the circular cylinder the flow remains

attached over most of its surface, and on the square

section the flow separates on the front face and weak

recirculation is evident on the upper and lower surfaces.

(3) The similarity in flow patterns observed on the diamond

section, flat plate and circular cylinder results in the
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in-line force being similar on these sections. The

behaviour of the force is directly related to the

growth and motion of the vortices, and it is because these

are similar on the three sections, that the behaviour of

forces is similar. These results also show that on all

the sections, as NKC decreases the inertia coefficients

all approach their attached flow values, even though

attached flow is not observedon all these sections,

notably on the flat plate and diamond section. This

therefore suggests that the weak vortices present at low

values of NKC do not signigicantly influence acceleration

dependent forces. However the presence of weak vortices

at low 'values of NKC on the flat plate and diamond section

result in a drag force which is still important even at

these small values of NKC. At large values of NKC, the

drag on all these sections approach their steady flow

values at the appropriate Reynolds number; on the square

section though ) the presence of turbulence in the flow

(caused by-the wake/body interaction) results in a drag

coefficient lower than the steady flow value. The behaviour

of the square section throughout the range of NKC is

different because the afterbody results in weaker vortices

being formed, and these do not set up any clearly defined

motions. These weak vortices present on this section

result in a very low drag (the lowest of all the sections

tested) for NKC less than about 25, and at the same time

the inertia coefficient is almost constant at its attached

flow value.. The more dominant vortices present on the

other sections result in considerable variation in the

Morison coefficients particularly. in C m. However the

r.m.s of the in-line force is not noticeably affected by

changes in the flow pattern. These results show that

CFrms  is largest on the flat plate and lowest on the

circular cylinder; the same results was obtained for the

maximum force. For NKC less than about 20, on the square

section, although the drag coefficient was small, quite

large values of CFrms and CFmax were obtained, as the

square then experienced forces lower than the flat plate

only; the reason for this being the large contribution

from inertia. For NKC above 20, the forces on the
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diamond section were larger than those on the square.

(4) Unlike previously reported conclusions, results presented

here clearly show that blockage is important in oscillatory

flows, at least on flat plates where blockage ratios

larger than about 5% result in increased forces. This

effect increases with NKC, but for NKC less than about 5,

little effect of blockage is observed. It also appears

that the importance of blockage varies with the body

geometry, and that bodies with larger wake widths, resulting

from large angles of the separating shear layers may be

more affected by blockage.

(5) These results also show that even though the incident flow

is repetitive, the in-line force is not, and substantial

cycle to cycle variations are observed in the force

coefficients. This variation in the in-line force occurs

because the strengths and positions of the vortices are

not the same during each cycle; another reason is that

the interaction process is not the same during every

cycle. Because Cm and CD , the Morison coefficients are

very sensitive to slight changes in phase, the slight

variation in the form of the in-line force, results in

quite large random variation in these coefficients from

cycle to cycle. However the r.m.s force varies by a

smaller amount. The Morison coefficients, C m and CD , are

also very sensitive to changes in the flow pattern, and

Cm in particular varies noticeably with NKC. This

variation in Cm, is such that for certain values of NKC,

a minimum is produced which corresponds to negative

added mass, and is a direct result of changes in the

phase of the force brought about by the motion of vortices

close to the body.

(6) The use of averaged values for Cm and CD in Morison's

equation also results in a poor prediction of the force

on the sharp-edred bodies and on the circular cylinder

during certain ranges of NKC where large vortices are

formed and remain in motion close to the body. This

poor prediction results because Morison's equation tries
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to represent a time varying force with constant averaged

coefficients; time dependence being introduced by

multiplication by the velocity or acceleration, both

functions of time. At times where the flow pattern

changes rapidly and by large amounts, due to the presence

of large vortices close to the body and/or to their

interaction with the body, Morison's equation therefore

fails to predict the force accurately. The problems

associated with using Morison's equation both to predict

the force and to derive values of C and C D suggests the

need for an alternative approach to the description and

prediction of the in-line force. Such an alternative

method exists. This method is based on the use of a

tingle r.m.s force coefficient and is attrative because

of its relative insensitivity to slight phase changes and

therefore to changes in the flow pattern. This method

however suffers from the drawback that the complete

force history cannot be predicted, though the r.m.s force

may be predicted using constant values of C m and CD in

Morison's equation. The value of CD however ought to be

chosen to be representative of the conditions.

(7) The transverse force on all the sections tested show

considerable irregularity with lift being generated in

bursts of irregular lengths. This irregularity in the

lift force occurs because lift is produced solely by the

growth and motion of vortices and it is therefore very

sensitive to changes in the strengths and positions of

these. The interaction mechanism also produces lift and

as this is not always the same during every cycle, it adds

to the irregularity of the lift. Similar vortex patterns

on the circular cylinder and diamond section results in

similar formation of lift throughout the range of NKC;

obviously the detailed variation of the lift during a cycle

depends on the precise flow pattern, so similar patterns

produce similar lift variation. At larger values of

NKC ( > 25) the flow pattern is similar so on all the

sections at these values of NKC the formation of lift is

similar, due primarily to the wake oscillation caused by
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the shedding of vortices.

This irregularity of the lift results in a band of

values both for the r.m.s and maximum forces for NKC less

than about 25, the scatter being larger for Cimax • The

more regular the lift generation, the higher the r.m.s,

such that at the same value of NKC, several values of

the r.m.s may be obtained, the largest corresponding to

extremely regular lift generation. The maximum force

also exhibits a band of values, again related to the flow

pattern; during certain periods the body may experience

a mean lift, and this mean lift varies with the flow

pattern. The frequency of the transverse force in this

'case of planar oscillatory motion, is not a constant, .

but varies with NKC. At any particular value of NKC lift

is not produced at a single frequency but at a number of

discrete frequencies all multiples of the water oscillation

frequency. The nature of the frequency distribution is

such that for NKC above about 25, the spectrum is more

wide band and centred on a Strouhal frequency. This

Strouhal frequency, as defined earlier appears to approach

a constant value as NKC increases. Finally of the three

sections on which lift was measured, for NKC greater

than about 20 the square experienced the largest lift

and the diamond the lowest. This occurred because on

the square section a larger area of the body was in the

wake and subjected to the pressure differences.

(8) Of the four sections, tested therefore, the flat plates

experienced the larges forces as would be expected.

These experiments also show that for the purposes of

design the circular cylinder is the best shape as it

experiences the smallest overall in-line forces. Although

the diamond section experienced smaller transverse forces

than the circular cylinder overkcertain band of NKC,

such a section will be very sensitive to angle of

incidence and forsome angles of incidence (such that it

appears as a square) forces larger than those on the

cylinder will be experienced.
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APPENDIX: 1

FESPONSE OF IDAD CELLS AND MOIEIS

In Section 2.2.2. the equations governing the response of the load

•cell and model are given. These are :-

the frequency

the damping	 (Z. Co Zi„	 /04 	 C • AMC Al. 2

tl /1T

and the phase lag,

• where M =mass of the model and added mass, El = flexural stiffness,

•L = length of the model.

THE CIRCULAR CYLINLER

Potential flow gives an added mass coefficient of 1.0; therefore
2

the added mass = 1.0 Xli)(7C , xL, . The circular cylinder used had a

diameter of 1-9/16" and was made of perspex,

•mass of cylinder = 0.58 lbs.

and added mass	 = 1.66 lbs.

Total mass = 2.24 lbs.

The flexural stiffness of the load cell used with the circular cylinder is

0.53 lbf ft', and the length, 1, of the measuring element is 1.0".

Equation A1.1 therefore gives

eAr	 = 140.09 rads/sec, or f = 22.3 Hz.

The steady flat' drag coefficient, CD , for a circular cylinder is

1.2, and the noximmt velocity in the tank is about 1.96 f.p.s. Ling these

	

valtes in equation A1.2 gives a damping coefficient I = 17.06;.% 	 = 0.12

The response of the circular cylinder and load cell, using the potential flow

for qa , and the steady state drag coefficient is therefore found fram

equations A1.3, and A1.4, and is as tabulated below.

V (Op 03 / 2 S 4 s 6 I 1 / ID

Z. pf.F 1.0 1.1102 1 . 004 /. 02 /. 03 1 . OS' /. OS bil bhp. 1. /1 1, 24'-

0 . G•19 0 • 63 1.26 1•4, 1 249 3.z1 41.• 04e, ,,•gs 5%13 eqw 1.7f
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Experiments at a Keulegan and Carpenter ntirber of 50.4, gives the
measured inertia coefficient, Cm = 1.04, and the drag coefficient, Co= 1.32.
Thus the added mass coefficient = 0.04, .% the adc3ed mass = 0.07 lbs; as
before, the actual mass of the cylinder is 0.58 lbs.

• Total Tress, M = 0.65 lbs.
.•. the frequency,co , using equation A1.1 is

Cif = 260.06 rads/sec, or f = 41.39 Hz.
The darrping coefficient, y , frara equa-ticn A1.2, with NKC = 50.4,

= 1.32 is

= 65.03,	 .7 . )74,- = 0.25

The response of the circular cylinder and load cell, using Treasured
results for Cm and CI , to determine, the added Tress and dairping respectively
is therefore as tabulated below :-

v(/1) 0.3 1 Z 3 4L 5 6 7- g 9 /0

3.1,F 1 • 0 I . PO I • co Z 1. Dos- i . cog 1.01 1. 0 2 /-026 Po341- 1 .1+3 I- 013

0 . 0'2/ 0 . 69 141 2.0 2.75, 3 ,57 4-23 Sit• fft 3'• 3 6-f/ 1•3/

In figure 2.11 a, these responses are plotted.

IHE 3" DIAMETER FLAT PLATE

• Fran potential flow, the inertia coefficient for a flat plate,Cm
is 1.0. Defining Cm as

Cm = Ca + r	 Al. 5
where Ca = added mass coefficient, and r the volume ratio given by

r = volute of plate	 A1.6
volune of circular cylinder based al the sane

dialrethr,
then, for the flat plates used, r = 0.22

Ca = 0.78
the added mass = Ca /0 7ciAL = 4.78 lbs.

The actual mass of the plate, which is made of Aluminium alloy is, 3.63 lbs;
the total mass, M = 8.41 lbs.

This model was used in cadtnction with the stiffer load cell, where the
flexural stiffness is 4.24 lbf ft?, thts equation A1.1 gives

= 204.49 rads/sec	 or f = 32.55 Hz.

In this case, using a steady flag value for the drag coefficient is
not quite justifiable, because the size of the plate is such that the Keulegan
and Carpenter nunber is too low. Further, the maximum velocity in the tank
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would be less, because of the greater resistance offered by the large

plate. Nevertheless, using a steady state value for the drag coefficient

of 2.1 and a maxinum valLe, still of 1.96 f.p.s. gives, y = 15.27.

. •. 1/ur = 0.075

Therefore the response of the 3" diameter plate and load ceLl, using

potential flaw to eerive C, and a steady flow valte for the drag co-

efficient is as tabulated below :-

V (113) *3 I 2 3 * 5 6 ? g i / 0

21-101• F 1 . 00 1• DOI i• MIA I . 00g 1 • DI5 ; 1 . 024 i • 03 l• 04g I•064 1 • 092 1. 103

0.
0.01? 0 .21, 0 33 00 I.07 . 1.3C 14,3	 Ii . f3 Z .24 24'6 2•1

Experinental results at NKC = 20.7, give an inertia coefficient,

Cm = o.46, and a drag coefficient, CD of 3.17. The added mass is therefore

= 1.47 lbs, and thus the total mass is 5.1 lbs. This gives, 4' = 262.6

rads/sec, or f = 41.79 Hz. thing a drag coefficient of 3.17 at NKC = 20.7

gives a damping coefficient, 	 = 30.14:	 370 = 0.11. The response of

this plate and the load cell, using Treasured valtes for the inertia and

drag coefficients, to eetermine the fregtEncy and the darrping respectively

is therefore as tabulated belaq :-

V OW . 3 i 23 4' 5 6 7 g 7 /0

.D.M .F 1 . 0 1.001 p0o2 1.005- i• °of / . O/4t. I . vz 1 . 03 I . 09- / • 05 /•06

° 0.094 0 •3/ 0 . 63 0 • 9C 1 . 2? 1- 60 /fl 2 .2 241 2 11 3'33

These results are plotted in figure 2.11 b.

IHE 1.5" DIAMETER FLAT PLPTE

As in equation 7l.:5, and A1.6, for the 3" dianeter flat plate, the

added mass coefficient, from potential flag is 0.78.

The added mass = 0.78 x	 L = 1.2 lbs.

Total mass, M = 4.0 lbs.

This plate was used with the load cell of flexural stiffness, El = 0.53

lbf ft2 , therefore equation A1.1 gives

co- = 104.83 rads/sec or f = 16.68 Hz.

The steady flow drag coefficient of a flat plate is 2.1, using this

and a rraximum velocity of 1.96 f.p.s. in equation A1.2 gives the damping

coefficient as

Y = 16.05,	 • e• ?i/co' = 0.15

Therefore the response of the 1.5" diamter flat plate and load cell, using
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potential vallm C 	 steady floe Cp is as tabulated.

v(1) '3 I Z 7 4 5- 6 7- S 9 10

D • PI•F 1 • 0 1 . Cv3 1 . 014 I • 03 i-D6 1 . 09 Put. 1. 20 1. 28 1• 37- 1.5

0 . 0.31 I•05 2 • /3 3 •26 4/.•43" 5'16 1•20 Iva 10 • 10 134 r 15.qg

Experinental results give Cm = 1.49, and CD = 2.18 at NKC = 48.04.

Using this value for the inertia coefficient gives an added mass coefficient =

1.49 - 0.22 = 1.27.

The added mass = 1.95 lbs; the actual mass of the nodel, as above, is

2.8 lbs,	 The total mass, M = 4.75 lbs.

This gives, or = 96.2 rads/Sec, or f = 15.31 Hz.

Using the drag coefficient of 2.18, at NKC = 48.04, in equation A1.2 gives,

= 12.91;	 907 = 0.13.
The response of this plate and load cell, using neasured values of Cm and

to determine the frequency and danping respectively is as tabulated :-

V013) •3 I 2 3 14. 5" 6 I- 8 ? 10

p.ohF /. Q i • Poii- 1•02 bort 1- 07- I- / I 1. 1? 1. 23" 1-35" / . 41 /•67-

IP. 0'3 I • D Dg 2 . 0* 3.13 4 . 30 5.O 1 . 0g 1;•2 10 • 92. /3 .s..r /4.0

These results are plotted in figure 2.11 c.

THE 1" DIAMETER FLAT PLATE

As with the other two plates above, potential flaw gives an inertia co-

efficient of 1.0, and for the geonetxy of this plate, the volume ratio r, as

defined in equation A.1.6 is again 0.22.

The addeclmass coefficient = 0.78.

.% the added mass = 0.53 lbs.

the actual mass of this plate, made of stainless steel is 1.16 lbs.

Total mass, M = 1.69 lbs.

Equation P1.1 then gives the natural freqlmncy of this plate and the load

cell, of flexural stiffness, 0.53 lbf ft' as

co: = 161.28 rads/Sec or f = 25.67 Hz.

As beforej the steady state value for the drag coefficient is 2.1, using

this and a Iria3CLITIUM velocity of 1.96 f.p.s. in equation P1.2 gives

= 25.33,	 = 0.16

The response of this plate and load cell, with potential flaw used to determine

the added ness, and hence frequency, and with the damping coefficient obtained
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from the steady flow drag coefficient is therefore as tabulated

VOW O' g I 2 3 if 5 4 7- ir 9 to

to• 1,1•F

a.
1•0 1 . 001 POD(, 1 . 01 1 • 02 1•04 1. 05" 1 . 08 /•/ 1. 13 /./.7

V 0•21 0 • 0 1 . 4/ 2 . 13 2-07 3-64 41- .444 529 6 ./9 7. /6 g•z,

Experimental results at NKC = 73, give Cm = 1.98, and Co =2.1.

Using this neasured value of the inertia coefficient, gives an added

mass coefficient of 1.98 - 0.22 = 1.76, and hence the added mass = 1.2 lbs.

Thus the total mass = 2.36 lbs.

Equation A1.1 gives, 0 = 136.48 rads/Sec; or f = 21.72 Hz. Using a

measured C of 2.1 at NKC = 73 in equation A1.2 gives the damping coefficient

= 16.91	 ; .. Iihr= 0.12.

The response of this plate and load cell, using measured values of Cm and

Cto 
is therefore as tabulated.

VW 0 • 3 / 2 3 4 S- 6 7 g 9' /0

.D .P1.f"
j•

r

/. 0

0•2

1 • 002

0 . 1. 0

1 . 001

1 .12

1 . 02

2‘00

1 . 03

2•70

1 • 05

345

1 . 00

4-20

1 . 11

509

/-/C

6 . 03

/-20

7 .07-

1•)-6

g•zy-

These results are plotted in figure 2.11d.

THE SQUARE SECTION NORMAL '10 IHE FLCW

This model is made of perspex with each face 1.0607", thus, the mass

of the model is 0.81 lbs. From potential flow, the inertia coefficient, On

is 2.78, whereas in equation A1.5, CM = Ca + r, and r is as defined in equation

A1.6. Thus in this case, r = 1.27,

•*• Ca = 2.78- 1.27 = 1.51 ; 	 the added mass = 1.16 lbs;

the total mass, M = 1.97 lbs.

The fraquency,e4r, of this model and the load cell is therefore given by

AT = 145.38 rads/Sec, or f = 23.77.

Using the steady flaw valve for the drag coefficient; C 1, = 2.2 and at the

maximum velocity of the tank of 1.96 f.p.s., equation A1.2 gives, y = 24.14,

.% gar = 0.16.

The response of this system, using these values, is therefore as tabulated.

y 01)) 0.3 I 2 3 Ilt, 5" 4 I- g 9 lc.

3•Pf•F 1 • 0 1.002- 1 . 001- 1-02. 1-03 1 . 04 1 . 01. 1 . 09 /-/2. Hi. /.2

0e) 023 0• 18 I-7- 2 • 37 3-2o 4 . 07 1/.. • 97 5.95 b . 99 8 . /3 9.35

Experiments on this section at NKC = 70.5, give an inertia coefficient, Cm
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= 1.63, and a drag coefficient, CD = 1.74. Using this value for Cm gives

Ca = 	 r, where r is the sane as above, •‘• Ca = 0.36.

The added mass = 0.28 lbs.

M before the mass of the model is 0.81 lbs, thus giving the total mass

as : M = 1.09 lbs.

This gives the frequency of the system,47, as

kr = 200.82 rads/sec or f = 31.96 Hz.

Using the neasured value of 1.74 for the drag coefficient at NKC = 70.5,

in equaticn A1.2 gives

= 32.95 rads/sec,	 1/&;' = 0.16

The response of this model and load cell, using measured vanes of Cm and

C is therefore as tabulated.

v(f/j) 0 . 3 1 2 3 if S- ‘ 7. g 9 10

p . pi . F 1.0 1.001 1 . 004, 1.008 . /- 01S 1 . 024. 1•034 1 . 00- 1 . 01,3 l • Dg l Ho/

95. 0.12 0' 5 q NS / . 76 2 •3'7 g• 01 345 4 •32 5.- PI 3 • 13 6.14

These results are plotted in figure 2.11e.

THE DIANDND SECITON

This is the sane model that was used above for the square section, but

nag it is at 45° incidence, the actual mass of the model is thus still 0.81 lbs.

The potential flcm value for the inertia coefficient is naa 1.39; here the

volune of fluid is based cn a circular cylinder of dianeter equal to the length

of a diartet.Thus r, as defined in equaticn A1.6 is 0.64, and the added mass

coefficient, Ca = 0.75 giving :

added mass = 1.15 lbs.

Total mass, M = 1.96 lbs.

Thus the frequency of the model and load cell conbinaticn, as given by equation

A1.1 is :	 = 149.76 rads/sec, or f = 23.84 Hz. Using the steady flcm

value for the drag coefficient, CD = 1.71, and the maximum value of 1.96 f.p.s.

for the velocity in the tank gives,

= 26.68;	 Vas = 0.18

The respcnse of this system, using potential flow to find Cm and a steady flow

value for the drag coefficient is therefore as tabulated.

V NJ) 0 . 3 •1 2 3 1 5 - 6 1- V 9 to

D•11•P 1 . 0 bop" ) . 001 1- oif 1•021- 1-043 1•063 1-05* 1 • 12 1 . 15" 1•19

ft. 0.2& 0•14, 1 • 13 241 312 4-47 540 6..5 3 7 .68 13 • 9Z fo•z8
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Experiments on this section at NKC = 50.3, give an inertia coefficient,

Cm of 1.26, and a drag coefficient,	 = 1.86. Using this value for C m and

a value of r = 0.64 as above, gives

Ca = Cm - r = 0.62

Thus the added mass = 0.95 lbs, and the total mass, M = 1.76 lbs.

and ...the freqtyncy 4r= 158.04 rads/Sec, or f = 25.15 Hz.

Using a drag coefficient of 1.86, at NKC = 50.3 in equation A1.2, gives the

damping coefficient, Y = 31.13,.% XL = 0.2.

The response of this system, using measured values of C m and CD to derive

the frequency and damping respectively is therefore as tabulated.

OW 0 .3 1 a 3 if- .1 4 7 g ? /0

2,-(1 .F 1 . 0 1 . 001 1 . 004, 1•013 /-0241- Log s p oss /• 076 1. /02. / .112. p/Gf

95° 0.27 0 • 9 /4/ 2 . 73 3 . 6 g 'J.- 4 4 5% 69 6 lif 7 . 94 ?•/S, /0.-ria.

These results are plotted in figure 2.11f.



From Keulegan and Carpenter's analysis
21C

e e
=

C 3	 IfqZ-
I	 (-LT

21C	 0.
. and Cd = - 3

c

0 e	 L

3

P2. 4
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APPENDIX: 2

PHASE SEilFT ANALYSIS

Using Nbrison's equation, the force may be written as :

FT = 1 n Cr	 C D2/ P C u
it I	 ddt

where FT is nod the total force.

Let the velocity be given by U = - Um Cos 9 , where 13 = 2/c" yr , and

T is the period of oscillations, then equation A2.1 bemires

/
FT =-1DC1L LI4.1 Len 9 ICal 491	 p	 Q.,	 9

—	 A2.22

A2.1

Navz let a phase shift occur between the velocity and the force, such

that e	 e+ e	 so U is nag given by
U = - U	 Cos ( +	 )
	

P2.5

Substituting equation A2.5 into equation A2.1 results in an equation

similar to equation A2.2, but rim, with 0 replaced by ( e 	). Denoting,

this new total force shifted in relation to the velocity, by Fs , then

this is given by

P

	 _c Co	 ic.(0,0) tx zp_) C44 4 fe--(e-tE)
(.14.1T	

. 6

Then, by substituting for the force but nary using equation A2.6, into

equations A2.3, and A2.4, the effect of a phase shift on the inertia and

drag coefficients, respectively, may be assessed.

Thus, for the inertia coefficient
sc	 •

Co„	
3 

- AMC f EC Ca (9 tE) /Co	 emt	 (9 t o] SiA.4. g d 9
0 L
	

Aixc	 A2.7

refers to the inertia coefficient cbtainedwhem the forcewhere Cm



= Vs]. + Sin (3e-4	 ) - Sin (e 2. E, ) 
2

et.Therefore, a = ig(o) de	 cos -A Car (3e+2. ․)+ Cos t 2 E)]11-

a=l  - Cos Gt -1 Cos (34 + E ) +1 Cos (4 +2- E ) - 1 Cos 2 E
2	 12	 4

and	 b = 1 r-z Co (C14)-1 Col (DC I- 3d +2 E.) 1- Ccri	 -t-

T

+Cosa. +1

3

Cos ( 34. +	 2E) - Cbs (k+ 2E)
2	 ff 4

and c = - 1	 -1 Cbs (6 + 2 E) +1 Cbs (2r+ 2E)
1	 1.7

+1	 cos (,c+4) +1 Cbs (3x + 3oL+ 2E ) - 1 cos (r +K. + 2E
7
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is shifted in relation to the velocity, and Cm is the inertia coefficient
with no phase shift.

The integration in equation A2.7 can be carried out by consicering
the two separate parts. Therefore, let

	

I =	 Co (9 4-0 Co3 (e tt) Sj. e 12.8

	

and J=	 f	 te tE)	 e cLe	 A2.9

Equation A2.8 nay further be written as
IC-tat

I = J(e) ad	 f !(e,)	 +	 3co	 a- 121-c	 A2.10
0	 4	

IC4-ek

Where d. is given by Cos (4 	 ) = 0 ; or e( = 5- - E.
and	 (e +E.) M. e

e (i+ cco (e+E))

Thus,I=a-b+c

= -2 Ops (f- - ) -	 cos OE
7

— E.) + Cos	 + E )

I = -8 Sin E	 A2.11



1.7c

FLunt equaticn A2.9, J = 	 Sin(e	 ) SinB de
1.7c-

7 J0 (Ccs(2 e t-E ) - Cce ) (19'
J = - 1

J = r Cos E.	 _	 A2.12

Sthstituting for I f and J in equation A2.7 gives

Cm = NKC Cd x 8 Sin e. +	 Cm r Cos e_.

• 7C 3	 NKC

•
.
• cin = 8 Cd WC	 Sin E.	 + Crn

S
Cos e

7
7V

Similarly for the drag ocefficient the effect of a phase shift results

A2.13

: oc-

cd	s = - 3	
[

j 	- Cd Cos (0 f f- ) /Cos (0- -fr e

	

'a	
)/ -tx.2._ cm Sin (e 4-E) Cosa de

NKC	 A2.14
o

f tIC

As before, let I = 	 Cos (O t€ ) !Cos (e e )1 Cos	 de

and J = I Sin (9+ E ) Cose	 de.
0

Hadever, by writing e. as E - 2_ , I and J can be easily solved, being
related to I and J as defined earlier.

Thus I = 8/3 Cos t and J = K" Sin

Substituting for I and J into equation A2.14 gives

Cd =- 3	 - C x8 -CDs E + 7E- 2 	 c x- Sind -
3

	

NKC	
in

Cd = Cd Cos	 -3 7C
3 c

m	 Sin E
NKC

Further, as can be seen in equaticn A2.15, as NKC

Cd	 C Cbs E

A2.15

aci



APPENETX : 3

IN LINE IDICE ODEFEICIENTS

lpresenting the horizontal velocity by

U = -U Cos

where 9 =	 y and substituting into Morison's equation

• results in :

A3.1

F 	 =x2 C
m D
	 sine - C

D
 Cos Itos 9 4/ 	 A3.2

kfUm2DUm T

where F = force per unit length acting on the body. In the analysis by

Keulegan and Carpenter (1958), they assured that since the force is periodic

and the incident flog is symrretric, then F(0 ) = - F(9 +r) ; an assunption

that is not quite true or necessary. If this assurrption is not made, the

results for Cm and CD as can be seen later are only slightly different.

Nevertheless, whether or not this assunption is made, the analysis is basically

the sane, hcwever assuming for the tine being F (0) = - F(e +$r) slightly

simplifies the algebra, and F can then be represented by

CF = F	 = A1 Sin + A3 Sin 39. + A5 Sin 50 + 	
p Um2 D

	

B = 1	 F Cos 71 e 
7).1	

7C	 k p Urn2

Since the drag term, Cos 6 laps P / in equaticn A3.2 is an even functicn

of 9 , this may also be represented by a Fourier Series as : 	 A3.5

Cos e (Cos oI = ao + a1 Cos 9 + a2 Cos 20 + a3 Cos 30 +....

where the coefficients an are given by

+ B1 Cos9 + B3 Cbs 39 + B5 Cos 5e + 	 A3.3

The coefficients An and B,n are then given by

A = 1	 F Sin	 d 

	

7ç J	 Um2 D

	

o	 A3.4

a

Eguaticn A3.6 reduces to

(vc-

Jo Cos 9 1Cos 0 I Cos -n9 e 

3.rOos2	 d 0
0

aft = 0 for GI even

A3.6

41 I- I

g	 I) 2.	 8
	

for /-1, odd,

'n (41 2- 4,-)7c



Let B, = B1al

B3 - B1 a3 = B 
/
3

al
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thus equation A3.5 nay be written as

Cos 0 !Cos 01 = al Cos 0 + a3 Cos 39+ as Cos 5 9. + 	 	 A3.7

Equation A3.3 may be re-written as

CF = A, Sin 0 + A3 Sin 30 + A5 Sin 50 + .......

al
- B1 a3 Cos 39 - B1 a5 	 cos 50 	

al
+B3 Cos 3e+ B5 Cos 59 + 	

i = Sin 0 (A1 + A3 Sin 30	 + A5 Sin 50 +
Sin e	 Sine

+B1 	 Cos /Cos r	 (B3 - B1 a3  ) Cos 30+ (B5 -	 a5)Cos 5
a
l

al	
al
A3.8

+ B1 (al Cos 0 + a3 Cos 3e + a5 Cos 59 	

and B
5 - B1 a5 =	

etc.,

al
then equation A3.8 beoorres

CF = Sin 9 ( A1 + A3 Sin 30 + A5 Sin 50
Sin Sin

,	 I
+ B

1	
Oos 9 ,tCos Or + B3 Cos 30 + B5 Cbs 59 + 	 	 A3.9

Carparing equation A3.9 with A3.2 results in

m.-2 C,,, ( D ) = Ai +A3 Sin 30	 + A5 Sin 59	  + 	 	 A3.10'` - UTm 	 Sine	 Sin 0

and

CD = - B	 -B3
/ cos 381

	

	 - B5 Oos 5 0
/

COS 9 40os 91	 Cos 8 ICos Of

Equations A3.10 and A3.11 are the basis for calculation of the drag and

inertia coefficients, but in general only the first term of these series

are used, resulting in

A3.11

1. C
C,m = U m T) . Ai . 1 ( UmT ) F Sin 9	 d 0	 A3.12

D —E—
X	 --r— D -7-0

m
-1-2-1 D7C	 I/ 

0,



8 
f  F Cos 6	 de A3.13

1/2 r Um2Dand	 CD = -	 = - B1 = -3

al
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Thus Cm and CD calculated in this manner, represents the weighted

averages over a cycle.

Had the assumption that F (0) = - F (0- +lc), not been made

then equations A3.10 and A3.11 would have become respectively

+Cm um D T
	

=	 -+ A2 Sin 26 + A3 Sin 30	 A4 Sin 46--
+ A3 14

and	 CD.

Sin e

= - B1 • - B2 Ccs 20

Oc—Ts-ir—Cos&C

Sin

- B
i 

Cos 30

Cos /Cos 9/

....	 •Sin e

-B4 Cos 40- 13/ 	 5-E0
5 

Cosa/Cosa/ Ooso/Cosof

A3.15

Thus the commonly used expressions for Cm and CD , i.e. the first term

of the series as in equations A3.12 and A3.13 remain unchanged.
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APPENDIX : 4

R. M. S . FORCE FFOM MMISCN'S EQUATION

Substituting U = U Cos 0 into Morison 's equation, where 0 =	 VT

results in :
2

F= - CD x i f 	 Cos 0 /Cos 9 + c T-D2 p u S in e
7 '	 0,1	 4	 T

A4 .1

= P Cos e 1Cos 0-1 + Q Sin
where P = -CD x1pDUQ .=Crn 7(2D2, 

7	 m	 2T
The neans square of equaticn A4.1 is

T

F2	 = 1 f(2 Cos2 e1Cos	 + Q Sin2 + 2PQ Sin, 0 Ca3

Ncw ; coe & (cos e 121 = COS 4 a = 1 (Cos 40 +1 + 4 Cos 26+ 2)
trc
cos4 = 3

T

Sin2 29= 1 - Cos 2a
2

• . fSin2 2 0 =

and	 2 SinOCcsO lOos 01 = Sin 2 !Cos 0 1
r
j Sin 20. las af	 =0

0. jcos/) dt
A4. 2

Therefore Equation A4.2 may be re-written as
VC"

1 i (P2 COS 4 a + Q2 Sin2 + PQ Sin 29 ICos a. ) T	 dt

1	 (P2 3	 + 7C Q2 )
Try

=3 P2 + Q2
2

Stbstituting for P2 and Q2 gives

X 1 to 2 D2 U 4 + 1 C27c4D4,o2 1.3„1 

4 em 	 " 4 sa

=

A4. 3



. io
2
 4,4 D2 	 ( 3 c_.2 + 2c4cm2 D ) 2 )

T -9'	 U T

	

8	 02/1

:= 02 U 4 D2	3 Cn2 +-4 Cm2/NKCI
i 	 m	 T 1-1

8

= 4
• „2 U D2	 2 C+

	

r rn	
3 c_ 2 Nic 7r4 02)

"Y3 1-sr-e-K	 (T -I°

Non-dirrensionalising by 1 D U 2 D then gives
7 1 m

A4. 4

1 p19 D )2
I la = (CFWS) 2 = 2 NKC2	 T

1 	 I 3
CD2 

NKC 4-7i-4Cm9

( 1 pUm2 D)2
2

=17
 1 
2 NKC

(

2 cD2 Imo
4

4+ 7C Cm2

A4.5

Ncri-dimensionalising by 1 p D3 results in :
2

(C.; ) 2 _
= IsMe	 cD2 NKC2 +	 Cm2 A4 .6

(--F-°—/T2Y-	 2

Thus CFR.	

• 

CFRIAS 
N KC	 A4.7



3 0NKC
CM CDIE No.x 10

CF PMS	 CF MAX	 .0
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APPENDIX: 5

IN - LINE FORCE COEFFICIENTS - DATA

TABLE : 1	 CIRCULARCYLINDER

= 451	 :	 D = 1.5625"	 : Dig = 6.51%

4.78 2.13 1.72 1.42 2.65 3.74 65.1
6.79 3.03 1.58 1.53 1.87 2.55 70.8
7.67 3.42 1.41 1.72 1.66 2.18 71.7
8.55 3.82 1.28 1.75 1.50 1.94 9.4
8.92 3.98 1.12 1.93 1.49 2.15 0.4
9.17 4.10 1.13 2.01 1.52 2.15 - 0.4

10.05 4.49 1.03 1.89 1.36 2.01 4.3
10.05 4.49 1.08 1.99 _	 1.44 2.21 0.2
10.43 4.66 1.03 2.02 1.43 2.20	 . 1.3
11.06 4.94 C.98 2.02 1.39 2.17 0.2
11.18 4.99 0.90 1.92 1.32 2.04 0.4
11.44 5.11 0.89 2.00 1.35 2.15 1.3
12.32 5.50 0.97 1.91 1.30 1.99 1.3
12.57 5.61 0.81 1.97 1.30 2.12 0.4
13.19 5.89 0.89 1.90 1.27 2.04 1.3
14.07 6.29 0.99 1.81 1.22 1.93 1.3
14.33 6.40 0.84 1.78 1.18 1.90 - 1.3
14.83 6.62 0.99 1.70 1.15 1.82 2.2
14.95 6.68 0.85 1.80 1.19 1.97 - 2.2
16.46 7.35 0.93 1.63 1.07 1.63 2.2
16.71 7.46 0.90 1.58 1.04 1.64 - 1.3
19.35 8.64 0.97 1.67 1.08 1.65 20.2
19.98 8.92 0.97 1.62 1.05 1.66 17.6
20.11 8.98 1.09 1.57 1.03 .1.61 20.2
25.89 11.56 1.06 1.49 0.95 1.51 -8.2
26.64 11.90 1.03 1.48 0.94 1.48 7.7
31.92 14.26 1.09 1.40 0.89 1.39 3.7
32.42 14.48 1.11 1.43 0.91 1.41 7.8
32.92 14.70 1.10 1.39 0.88 1.36 2.2
37.82 16.89 1.02 1.41 0.88 1.36 5.6
38.45 17.17 1.03 1.38 0.86 1.33 8.2



-3
CNKC Fe No. x 10 Cm CD

PE CF

43.73 19.53 0.98 1.36 0.85 1.31 6.4
43.86 19.59 1.07 1.34 0.84 1.71 4.7
44.61 19.92 0.97 1.33 0.83 1.27 - 0.4
47.12 21.05 1.07 1.35 0.84 1.33 2.2
47.88 21.38 0.99 1.35 0.84 1.30 1.7
50.39 22.51 1.04 1.32 0.82 1.26 0.0

'TABLE : 2 1.5"D FLAT PLATE

= 421.5 D/W = 6.25%
- 3

NKC le No x 10 Cm CD
CFFIvB

CF
°

3.80 1.60 1.46 5.19 4.20 7.23 30.0
6.02 2.50 1.35 3.77 2.80 4.58 28.7
6.15 2.59 1.35 3.91 2.84 4.66 35.7
7.33 3.09 1.43 3.86 2.73 4.78 27.4
7.98 3.37 1.41 3.62 2.56 4.14 40.0
9.03 3.81 1.28 3.23 2.22 3.50 37.7
9.16 3.86 1.36 3.22 2.23 3.83 28.3
9.69 4.08 1.29 3.19 2.17 3.59 39.1

10.08 4.25 1.24 3.07 2.06 3.41 31.4
10.47 4.41 --1.26 3.04 2.05 3.51 34.3
10.60 4.47 1.31 3.11 2.10 3.62 37.9
11.26 4.74 1.16 3.03 1.99 3.27 32.2
11.52 4.85 1.17 3.00 1.98 3.17 39.4
11.91 5.02 1.08 2.92 1.91 3.32 33.1
12.70 5.35 0.91 2.83 1.82 2.83 39.1
12.83 5.41 0.92 2.98 1.90 3.06 35.7
14.40 6.07 0.69 2.74 1.72 2.72 35.7
14.66 6.18 0.70 2.82 1..76 2.84 33.1
14.79 6.23 0.62 2.86 1.78 2.84 31.4
16.89 7.12 0.51 2.79 1.72 2.75 29.6
17.15 7.23 0.48 2.66 1.64 2.65 28.8
21.07 8.88 0.48 2.70 1.65 2.64 20.2
21.34 8.99 0.57 2.62 1.61 2.56 23.6
23.95 10.09 0.72 2.54 1.56 2.43 18.5
26.05 10.98 1.05 2.62 1.61 2.43 5.6
28.27 11.92 1.29 2.42 1.50 2.28 9.9
32.07 13.52 1.34 2.48' 1.52 2.31 12.9



NKC

32.72
34.82
37.83
38.48
41.23
42.94
43.33
44.77
46.21
46.47
46.60
48.04
48.43

175

0 °

13.3
12.9
0.4
9.0
6.0
3.9
4.7
6.0
6.9
2.6
3.9
3.4
3.0

Re
-3

No. x 10 Cm CD CFN.13 CFmAx

13.79 1.39 2.41 1.49 2.24
14.67 1.41 2.36 1.45 2.21

15.95 1.40 2.35 1.45 2.20
16.22 1.45 2.26 1.39 2.10
17.38 1.49 2.23 1.37 2.07

18.10 1.49 2.30 1.41 2.13
18.26 1.43 2.22 1.36 2.07
18.87 1.52 2.22 1.36 2.05
19.48 1.58 2.19 1.34 2.04
19.59 1.45 2.21 1.35 2.03
19.64 1.47 2.23 1.36 2.09
20.25 1.49 2.18 1.33 2.02
20.41 1.71 2.16 1.33 2.01

TABLE : 3

NKC

3"D

ft = 1685.8-3
Be No.x 10	 Cm CD

FLAT PLATE

•	 D/W =12.5%
0

CF	 CF

3.08 5.19 1.46 6.52 5.25 8.76 24.4
3.34 5.63 1.46 5.85 4.75 7.96 27.1
3.80 6.40 1.50 5.41 4.35 7.54 28.3
3.86 6.51

_
1.53 5.38 4.35 7.66 32.2

4.19 7.06 1.51 5.03 4.01 7.00 28.8
4.39 7.39 1.47 4.97 3.86 6.63 32.2
4.45 7.50 1.55 5.06 3.96 6.72 28.3
4.65 7.83 1.60 4.87 3.86 6.74 34.8
4.91 8.28 1.64 4.90 3.82 6.46 32.2
4.97 8.39 1.56 4.87 3.72 6.34 31.7
5.17 8.72 1.65 4.74 3.68 6.24 33.9
5.50 9.27 1.61 4.66 3.52 5.91 33.6
5.56 9.38 1.59 4.56 3.44 5.70 34.3
5.83 9.82 1.64 4.39 3.34 5.63 34.8
6.28 10.58 1.63 4.34 3.22 5.33 38.2
6.28 10.58 1.67 4.40 3.27 5.45 33.1
6.81 11.48 1.59 4.14 3.02 5.13 33.1
7.33 12.36 1.69 4.11 2.99 5.10 33.6
7.40 12.47 1.59 4.08 2.93 5.20 29.1
8.12 13.69 1.57 3.91 , 2.76 4.52 38.5
8.97 . 15.12 1.55 3:81 2.63 4.37 36.9
9.23 15.56 1.48 3.77 2.58 4.60 27.0
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f

34.3
34.8
31.5
33.1
22.4
30.5
29.3
25.4
19.0
16.4
21.5
19.8
19.0
16.8
14.0

=4617'
Ai

°

NKC
-3

No x 10 C
m CD %Is cFNA„

11.52 19.42 1.26 3.52	 2.30 3.81
11.52 19.42 1.45 3.45	 2.30 3.88
12.89 21.73 0.92 3.39	 2.16 3.62
13.16 22.19 0.93 3.45	 2.18 3.59
14.20 23.94 0.82 3.31	 2.07 3.57
14.27 24.06 0.77 3.38	 2.11 3.49
16.23 27.36 0.60 3.30	 2.03 3.37
16.95 28.57 0.47 3.30	 2.03 3.37
17.28 29.13 0.48 3.23	 1.98 3.31
17.93 30.23 0.53 3.24	 1.99 3.28
18.85 31.78 0.40 3.23	 1.97 3.22
18.98 32.00 0.41 3.18	 1.94 3.17
19.90 33.55 0.41 3.30	 2.01 3.25
19.96 33.65 0.49 3.24	 1.97 3.14
20.68 34.86 0.46 3.17	 1.93 3.13

-3
TABLE : 4 1" EIFLNT PLATE	 : 1g = aff-0

NKC Pe No x 10 C
CD
	 CF

MAX

5.50 1.04 1.51 4.61 3.42 5.76 30.0
8.84 1.67 _1.28 3.26 2.24 3.76 31.7
9.42 1.79 1.28 3.38 2.27 3.79 30.9
9.72 1.84 1.24 3.14 2.13 3.56 37.7

10.80 2.04 1.20 2.96 1.97 3.11 30.0
11.78 2.24 1.13 3.15 2.04 3.41 32.9
11.88 2.25 1.23 2.89 1.91 3.19 36.9
13.35 2.52 0.94 2.74 1.75 2.87 32.2
14.14 2.67 0.87 2.81 1.77 2.94 31.4
14.14 2.68 0.90 2.97 1.88 3.17 30.0
15.12 2.86 0.74 2.73 1.70 2.75 25.4
16.10 3.04 0.78 2.68 1.67 2.74 29.6
16.30 3.09 0.73 2.78 1.73 2.89 27.4
16.89 3.19 0.85 2.64 1.65 2.62 27.9
17.87 3.38 0.70 2.57 1.59 2.56 26.2
18.26 3.47 0.78 2.76 1.71 2.81 25.7
18.65 3.52 0.73 2.63 1.63 2.57 17.6
20.22 3.82 0.73 2.51 1.55 2.52 21.9
20.42 3.86 0.87 2.52, 1.56 2.46 21.1



NKC
-3

Fe.No. x 10

20.42 3.88
21.40 4.05
22.78 4.32
22.97 4.34
24.45 4.62
25.72 4.88
26.51 5.01
29.45 5.57
32.01 6.08
33.38 6.31
37.21 7.03
39.47 7.49
42.80 8.09
46.53 8.80
49.68 9.43
52.62 9.95
57.92 11.00
59.89 11.30
66.17 12.60
73.43 13.90

-3
NKC rb.No. x 10

17'

Cm
CD	

CF:ms
CP

0.83 2.65	 1.64 2.60 18.0

0.95 2.45	 1.52 2.38 20.2

0.98 2.57	 1.59 2.48 20.2

0.95 2.47	 1.52 2.35 21.9

1.11 2.48	 1.54 2.28 9.9

1.36 2.59	 1.61 2.42 15.9

1.21 2.43	 1.51 2.25 12.5

1.46 2.26	 1.41 2.13 13.3

1.58 2.46	 1.53 2.30 13.3

1.47 2.23	 1.39 2.08 11.6

1.58 2.19	 1.36 .2.01 11.6

1.65 2.30	 1.42 2.09 9.0

1.45 2.09	 1.28 1.92 5.6

1.55 2.08	 1.28 1.88 5.6

1.86 2.21	 1.36 1.98 9.0

1.60 2.04	 1.26 1.84 -	 1.3

1.73 2.12	 1.30 1.93 6.4

1.65 1.96	 1.20 1.79 5.6

1.78 2.10	 1.28 1.93 8.2

1.98 2.04	 1.25 1.86 3.0

TABLE : 5 DIAMDND SECTION

= 422.7 :	 D = 1.5" : 101/107	= 6.25%

Cm	
CD	 Crizs	 CPmAx

4.84 2.05 1.18 3.65 2.81 4.51 35.1

6.15 2.60 1.08 3.24 2.32 3.64 32.0

6.54 2.77 1.04 3.21 2.25 3.62 24.9

7.46 3.15 0.99 3.21 2.18 3.54 38.2

7.85 3.32 1.02 2.88 1.99 3.28 41.1

8.25 3.49 0.98 2.99 2.01 3.26 36.5

8.90 3.76 0.89 2.99 1.96 3.22 36.5

9.69 4.09 0.88 2.89 1.88 3.06 35.7

10.21 4.32 0.77 2.81 1.80 2.82 27.9

10.47 4.43 0.73 2.79 1.78 2.78 39.5

10.86 4.59 0.71 2.73 1.74 2.59 25.4

11.52 4.87 0.64 2.69 1.70 2.39 23.7

11.91 5.04 0.62 .2.60 1.65 2.37 15.0

12.17 5.15 0.66 2.59 1.64 2.31 24.5



55.7
63.4
60.6
61.7
53.7
55.4
64.6
64.9

1 7%
-3

NKC	 Pe.No. x 10	 CIn CD	 CF	CFPAXPNS

13.09 5.53 0.54 2.46	 1.55 2.23
13.09 5.53 0.55 2.51	 1.58 2.31
13.74 5.81 0.68 2.46	 1.56 2.25
14.79 6.25 0.81 2.32	 1.47 2.21
15.18 6.42 0.75 2.25	 1.43 2.12
15.71 6.64 0.85 2.37	 1.50 2.53
17.28 7.30 0.88 2.31	 1.46 2.40
17.80 7.53 0.75 2.34	 1.46 2.47
18.98 8.02 0.72 2.30	 1.44 2.46
21.86 9.24 0.80 2.23	 1.39 2.47
23.95 10.13 0.94 2.11	 1.32 2.22
26.83 11.34 1.01 2.12	 1.32 2.08
27.10 11.45 1.04 2.18	 1.35 2.11
27.88 11.79 1.01 2.20	 1.36 2.25
28.14 11.90 1.10 2.10	 1.31 2.04
29.45 12.45 1.20 2.16	 1.34 2.15
32.46 13.72 1.25 1.99	 1.24 1.89
33.25 14.05 1.23 2.06	 1.27 1.92
35.74 15.11 1.20 2.03	 1.25 1.93
39.01 16.49 1.14 1.98	 1.21 1.82
39.14 16.54 1.18 2.02	 1.24 1.84
41.76 17.65 1.24 1.95	 1.21 1.87
43.85 18.53 1.29 1.91	 1.17 1.77
45.81 19.37 1.21 1.98	 1.22 1.94
47.39 20.03 1.16 1.89	 1.16 1.75
47.78 20.20 1.36 1.94	 1.19 1.79
50.27 21.25 1.26 1.86	 1.14 1.75

TABLE : 6	 SQUABE SECTION

-3 = 208.6	 :	 D = 1.061"	 : D/la 4.42%
NKC Re.No. x 10 CD	 CFPMS CF

5.92 1.22 2.51 1.68	 3.14 4.48
7.59 1.60 2.75 1.45	 2.68 4.00
8.15 1.68 2.70 1.86	 2.57 3.69
9.44 2.00 2.64 1.51	 2.16 3.22
9.81 2.02 2.65 1.67	 2.14 3.20

10.18 2.10 2.56 1.60	 2.01 2.93
10.92 2.25 2.50 1.87 2.74
11.11 2.35 2.63 1.55	 1.90 2.97

6.9
3.9

12.1
25.8
15.0
6.0

12.1
16.8
15.5
15.9
17.6
14.6
17.1
20.2
18.5
24.1
5.2
5.2
8.5
8.6
7.3
2.9
0.9
2.1
0.9
1.7
2.6



17'
-3

NECC	 x 10 C
m	CD
	

CFRIS
	

CFmax

11.85 2.44 2.57 1.59 1.80 2.71 59.4
12.03 2.54 2.63 1.46 1.76 2.66 54.6
12.77 2.63 2.65 1.59 1.74 2.61 56.0

12.96 2.67 2.71 1.51 1.72 2.50 62.3

13.33 2.74 2.71 1.55 1.70 2.61 58.6

15.18 3.12 2.80 1.57 1.60 2.34 66.6

16.11 3.40 2.62 1.41 1.42 2.07 62.3

16.48 3.39 2.75 1.54 1.49 2.18 66.0

17.03 3.60 2.62 1.38 1.36 1.99 55.1

17.59 3.62 2.77 1.58 1.45 2.20 63.5

17.77 3.76 2.72 1.47 1.39 2.03 58.5

18.98 3.91 2.71 1.57 1.37 1.99 64.0

19.99 4.23 2.56 1.42 1.24 1.81 59.7

20.55 4.23 2.73 1.51 1.30 1.87 59.4

22.40 4.61 2.66 1.47 1.21 1.71 48.7

22.96 4.85 2.65 1.43 1.18 1.65 41.3

23.23 4.78 2.72 1.49 1.21 1.74 50.0

25.55 5.26 2.56 1.48 1.13 1.59 54.3

26.47 5.60 2.69 1.49 1.14 1.58 47.4

27.95 5.75 2.54 1.52 1.11 1.54 43.9

29.99 6.17 2.56 1.53 1.10 1.53 43.1

32.40 6.85 2.51 1.56 1.09 1.49 37.4

37.02 7.62 2.19 1.57 1.03 1.44 27.5

38.88 8.22 2.25 1.64 1.07 1.50 20.2

40.73 8.38 2.25 1.60 1.04 1.42 19.8
45.35 9.33 2.07 1.65 1.05 1.48 10.3

50.35 10.36 2.00 1.65 1.03 1.51 6.0

55.17 11.35 1.75 1.69 1.04 1.58 4.3

58.13 11.96 1.83 1.69 1.05 1.59 3.4

58.31 12.32 1.99 1.70 1.06 1.59 3.4
62.02 12.76 1.61 1.70 1.04 1.62 3.4
64.98 13.37 1.68 1.74 1.07 1.68 - 1.7
68.12 14.02 1.53 1.73 1.06 1.69 1.7
69.61 14.71 1.79 1.73 1.07 1.68 1.7
70.53 14.52 1.63 1.74 1.07 1.72 2.6



1 BO

APPENDIX : 6

VOFCrEX POSITIONS DURING A CYCLE

TABLE : 1	 THE CIPCULAR CYLINDER, BE 	 (	 ) = 451

CYCLIC REGECN, NKC = 20.42 ROTATION ANTE-CIOCKWISE.
D = DIMMER OF CYLINDER.

FRAME TIME 1XZEIEX POSITION
NO. t/T x/D Y/13 SICN EDGE ICOMMENT'S

1 0.99 1.90 0.80 -w Top (This vortex is nag very weak)

1 0.99 1.10 0.15 + ve Bottom IH

1 0.99 0.40 0.50 7 ve Tbp 111 (This vortex is just starting
to grcw)

2 0.02 0.50 0.40 -ye Top IH

2 0.02 1.10 0.15 ve Bottom LH (This is shed about nag)

3 0.04 1.40 0.25 ve Bottom Ill

3 0.04 0.60 0.30 -ye 'Ibp LH

4 0.06 1.65 0.30 + ve Bottom III

4 0.06 0.65 0.10 - ye Top IH

5 0.09 1.90 0.35 ve Bottom LH

5 0.09 0.75 0.0 -ye Tp ILH

6 0.11 2.05 0.55 + ve Bottom III

6 0.11 0.85 0.05 -ye bp IH

7 0.13 2.25 0.75 + ve Bottom IR

7 0.13 0.70 0.10 -ye Top IR

8 0.16 2.40 0.80 ve Bottom

8 0.16 0.80 0.15 -ye p LU

9 0.18 2.35 0.95 ve Bottom IH

9 0.18 0.70 0.35 ve Tcp IH

10 0.20 2.55 0.90 + ve Bottom LH

10
11

0.20
0.23

0.70
2.30

0.40

1.1

ve

+ ve

Ibp LU
Bottan LH

(Starts to split up and goes
underneath the cylinder tothi

(bottom R.H.)

11 0.23 Vortex from Top LH noir squashed
against cylinder.

0.25 - 2.05 - 0.8 + ve Bottom LH (The top R.H. vortex still

0.25 (squashed against the cylinder
(as flag about to reverse.
(Pcsiticn an other side of
(cylinder indeterminate)

13 0.27 - 1.95 -0.90 + ve Bottom LH

14 0.30 - 1.60 - 1.05 + ve Bottom IH

15 0.32 - 1.45 - 1.50 + ve Bottom In

16 0.34 - 1.20 - 1.35 + 'ye Bottom II-1

17 0.37 - 0.85 - 2.05 + ve Bottom IH



OOMNENIS

(This vortex started growing
(some time before, but only
(ncw is its position clear)

out of Vied but exists up ix
trr :.--- 0.5)

(This vortex is nod shed)

(Ant beginning to grow)

(This is the sane vortex whict

J (appears to split up)

((Sam of this vorticity cal
((from the Bottom RI.)

lcnger distinct,it is very
weak.

1 S i

TABLE : 1, Continued..

FRAME
No.

TIME
(t/T)

WITIEX
x/D

POSITION
Yip EDCE

18 0.39 - 0.45 - 2.35 + ve Bottom IR

19 0.41 0.00 - 2.80 + ve Bottom LH

19 0.41 0.70 0.15 + ve Tcp RH

20 0.44 0.75 0.25 + ve Top RH

20 0.44 (This vortex f •	 the •Bottom RH
nod goes

21 0.46 0.85 0.20 +ve Top RH

22 0.48 0.95 0.10 + ve Top RH

23 0.51 1.15 0.20 + ve Tcp RH

24 0.53 1.50 0.20 + ve Top RI

24 0.53 0.60 - 0.10 - ve Bottom RI

25 0.55 1.70 0.20 4 ve Top RH

25 0.55 0.75 0.00 - ve Bottom RI

26 0.58 2.10 0.50 +ve Top Rd

26 0.58 0.95 0.50 - ve Bottom RI

27 0.60 2.55 0.50 + ve Top RH

27 0.60 0.75 0.50 - ve Bottom RI

28 0.52 2.70 0.75 + ve bp HI

28 0.62 1.05 0.40 - ve Bottom RI

29 0.65 2.90 0.85 + ve Top RH

29 0.65 1.15 0.35 - ve Bottom RI

30 0.67 2.85 1.05 + ve Top RH

30 0.67 0.95 0.25 - ve Bottom RI

31 0.69 3.05 1.00 + ve Top RH

31 0.69 0.90 0.40 - ve Bottom RI

31 0.69 0.35 0.75 - ve Bottom RI

32 0.72 2.90 0.95 + ve Top RH

32 0.72 0.35 0.80 - ve Bottom RI

32 0.72 1.05 - 0.20 - ve Top LH

33 0.74 - 0.10 0.90 - ve Top LH

33 0.74 3.00 1.20 + IR Tcp FH

34 0.76 3.05 1.50 + ve Top RH

34 0.76 -0.30 0.80 - ve Top LH

35 0.78 2.70 1.65 + ve Top RH

35 0.78 The vortex from the top LH is



FRAME
EiC4

TIME
(t/r)

VORTEX
x/D

POSITION
y/D SIGN EDGE ODMMENTS

36 0.81 2.95 1.75 + ve Tcp RH

37 0.83 2.20 2.00 +ve Top FH

38 0.85 1.95 2.25 + ve Top RH

39 0.88 1.40 2.60 + ve Top RH (This vortex then disappears
from view)

40 0.90 - 0.65 0.15 +ve Bottom LH (New vortex forming)

41 0.92 - 0.80 0.10 +ve Bottom LH

41 0.92 - 0.85 0.70 .- ve Top LH

42 0.95 - 1.30 0.80 - ve Top LH

42 0.95 -0.80 0.10 + ve Bcttan LH

43 0.97 - 1.75 0.90 - 1m Top LH

43 0.97 - 0.90 0.15 + ve Bottom LH .

,

,

162

TABLE : 1, Continued...
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TABLE : 2 THE 3" DIAMETER FLAT PLATE, p = 1685.8
CYCLIC REGICN - NKC = 15.13,
FOTATION ANTI-CLOCKWISE

D = DIAMETER OF PLATE

FRAME
No.

TINE
(t/T)

VOFEEX
x/D

POSITION
v/D SIGN EDGE COMMENTS

1 0.99 -0.75 -0.18 + ve Bottan LH •
2 0.02 - 0.84 - 0.31 + ve Bottom III
3 0.04 - 1.06 - 0.22 . + ve Bottom LH This vortex is nag shed
3 0.04 - 0.49 0.40 - ve Top IR Nie 	 vortex grcwing
4 0.06 -1.15 -0.35 +w Bottom IR
4 0.06 - 0.58 0.31 - ve 'Top IR
5 0.09 - 1.33 - 0.44 + ve Bottom LH
5 0.09 - 0.62 - 0.40 - ve Top 111

6 0.11 - 1.15 - 0.58 + ve • Bottom LH
6 0.11 - 0.62 0.13 - ve Top LH
7 0.13 - 1.15 - 0.80 + ve Bottom LH
7 0.13 - 0.58 0.04 - ve Tcp III
8 0.16 -1.33 -0.84 + ve Bottom IR
8 0.16 - 0.66 0.00 - ve Tap LH .

9 0.18 - 1.46 - 0.89 + ve Bottom Ul
9 0.18 - 0.58 - 0.09 - ve Mop IR

10 0.20 - 1.64 - 0.89 + ve Bottom LH
10 0.20 - 0.40 0.13 - ve Top IR .
11 0.23 -1.55 - 1.33 + ve 13ottcm UI
11 0.23 - 0.66 - 0.09 - ve Top IR
12	 . 0.25 - 1.37 - 1.33 + ve Bottom Ui •
12 0.25 - 0.53 0.00 - ve Ttp LH
13 0.27 -1.68 - 1.29 +w Bottom IR
13 0.27 - 0.53 - 0.18 - ve Top Ill
14 0.30 - 1.42 - 1.42 + ve Bottom /11
14 0.30 - 0.40 - 0.18 - ve Top IR
15 0.32 - 1.29 - 1.51 + ve Bottom IR
15 0.32 - 0.27 - 0.35 - ve Tap Ui	 -
16 0.34 - 1.02 - 1.73 + 'ye Bottom IR
16 0.34 The vortex fran the top edge is na, squashed against the pli
17 0.37 - 0.66 - 1.91 + w Bottom Lifi (and its position is not
18 0.39 - 0.40 - 2.08 + ve -. Bottom IR (identifiable)



1 Z.4

TABLE : 2 Continued..

FRAME
No.

TIME
(t/T)

VORTEX
x/D

POSITION
y/D SIGN ErGE COMMENTS

18 0.39 - 0.44 - 0.66 - ve Bottom RH. (This vortex appears to

18 0.39 0.18 0.35 + ve -\Top RH R‘
(Na'  vorte

(ccntain sone vorticity
(from the top LH edge.)
grcwing here)

19 0.41 - 0.31 - 2.22 +xe Bottom LH
19 0.41 0.58 - 0.58 - ve Bottom RH

19 0.41 0.31 0.27 + ve Top RH .

20 0.44 0.18 - 2.26 +ve Botta-ILIA

20

20

0.44

0.44

Vortex

0.44

from Bottom

0.22

RH

+ ye

edge is weak

Top RH
and its position is not

clear)

21 0.46 0.71 - 2.35 + ye BottaTILH (This vortex ncra goes out c
Oried but decays by about
(t/T'.:-.=	 0.55)

21 0.46 1.55 - 0.62 - ve Bottom HI (Weak vortex - position
21 0.46 0.58 0.18 + ve TopRH approximate)

22 0.48 0.71 0.09 + ve Top RH (Vortex about to be shed)

22 0.48 1.68 - 0.62 - vs ' Bottom PH (Amoadinate position)

23 0.51 0.89 0.13 + ve Top HI

23
24

0.51

0.53
1.86
0.98

0.53

0.18

- ve

+ vs

Bottom PH

Top EH

(Vortex almost totally
diffused)

24 0.53 0.31 - 0.40 - ve Bottom RH (Ne# vortex grading here)

25 0.55 1.06 0.22 + ve Top RH
25 0.55 0.31 - 0.18 - vs Bottom RH
26 0.58 1.11 0.40 + vs Top RI
26 0.58 0.27 - 0.22 - vs Bottomn RH
27 0.60 1.24 0.49 + ve Top PH
27 0.60 0.44 - 0.18 - vs Bottom RH
28 0.62 1.33 0.53 + ve Top EH

28 0.62 0.40 - 0.13 - ve Bottom PH
29 0.65 1.46 0.62 + ve Top RET
29 0.65 0.44 - 0.04 - vs Bottom HI

30 0.67 1.64 0.66 + w Top RH
30 0.67 0.53 0.09 - vs Bottom RH
31 0.69 1.51 0.89 + vs Top RI
31 0.69 .0.58 - 0.04 - vs Bottxxn RI
32 0.72 1.68 0.93 + ve Ibp RI
32 0.72 0.53 0.00 - vs Bottom RH .
33 0.74 1.86 1.02 + vs Top PH
33	 • 0.74 0.40 0.09 - ve Bottom HI
34 0.76 1.64 0.98 + ve Top FH
34 0.76 0.49 - 0.13 - vs Bottom PH
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TABLE : 2 Ccntinued..

FRAME
No.

TINE
(t/T)

VDRTEX
x/D

PCSITICN
y/D SRN EDGE GOMENTS

35 0.78 1.68 1.06 + ve Top RH

35 0.78 0.31 0.00 - ve Bottom RH (About to go over the top

36 0.81 1.42 1.06 +ve Top RH
L.H. edge)

36. 0.81 - 0.22 0.44 - ve Tcp LH (This vortex contains
(vorticity from the vortex

37 0.83 1.15 1.24 +ve Top HI (at the Bottom RH edge)

37	 . 0.83 - 0.35 0.53 - ve Top LH • -
38 0.85 0.84 1.51 +am Top FH

38 0.85 -0.62 0.49. - ve Top LH

39 0.88 0.62 1.73 + ve Top HI

39 0.88 - 0.24 0.53 - ve Top Ill

40 0,90 0.22 1.95 + ve Top HI (This vortex then noves out
(of vied but decays by VT
(.---:•--.1.0)

40 0.90 - 1.02 0.66 - ve Top LH (This vortex almost coMpleb
(ly diffused)

40 0.90 - 0.18 - 0.35 + ve Bottom III (Nie vortex forning)

41 0.92 - 0.35 - 0.09 +ve Bottom IR
42 0.95 - 0.44 - 0.22 + ve Bottom LH

43 0.97 - 0.53 - 0.27 + ve Bottom 1/1

,

-

. . - •



1 86

TABLE : 3	 THE 1.5" DIAMETER FLAT PLATE, /? = 421.5

CYCLIC REGION - NKC = 15.18

ROTATION CLOCKWISE

D = DIAMETER OF PLATE

FRAME TIME liD.HihX POSITION
No. (t/r x/D Y/D SIGN EDGE COMMENTS

1 0.99 - 0.71 0.22 - ve Tbp LH

1 0.99 - 1.90 -0.69 +-ve Tbp RH (Vortex ncw very weak,positicn
approximate)

2 0.22 - 0.51 - 0.54 + Bottom ( New vortex forming)

2 0.22 - 0.83 0.20 ve Top Ili

3 0.04 - 0.97 0.14 -w Top LH

3 0.04 - 0.49 - 0.41 + ve Bottom LH

4 0.06 - 0.43 - 0.43 + Bottom IR

4 0.06 - 0.94 0.31 -ye Top 111

5 0.09 - 1.05 0.32 -ye Ibp LH

5 0.09 - 0.43 - 0.30 + Bottom LH

6 0.11 - 0.43 - 0.35 + ve Bottom III

6 0.11 - 1.08 0.43 -ye Top 1.11

7 0.13 - 1.16 0.57 -ye Ibp

7 0.13 - 0.49 - 0.20 + ve Bottom III

8 0.16 - 0.45 - 0.24 + ve Bottom 1H

8 0.16 - 1.17 0.69 -ye Top III

9 0.18 - 1.20 0.80 -ye Top LH

9 0.18 - 0.45 - 0.04 + Bottom LH

10 0.20 - 0.45 - 0.09 + Bottom LH

10 0.20 - 1.12 0.86 - ve Top 111

11 0.23 - 1.13 0.94 -ye Top LH

11 The vortex nay starts to go over to the top R.H. edge of the plate.
Position unclear.

12 0.25 - 0.68 - 0.43 + ve Bottom 111

12 0.25 0.30 0.46 + Ve Top 141 (This vortex contains vorticit3
(from the Bottom 111 edge)

12 0.25 - 1.19 0.91 -ye 'Itip LU

13 0.27 - 1.08 0.97 -ye Top LB

14 0.30 - 0.94 1.15 -ye Top LB

15 0.32 - 0.73 1.31 -ye Top LH

35 0.32 0.38 0.66 .+ ve Top 11.1 (The positicn of this vortex
(was not clear in frartes 13 &

16 0.34 0.66 0.74 + ve Top RH

16 0.34 - 0.56 1.47 -w Top 111

17 0.37 - 0.29 1.79 - ye Top 111
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TABLE : 3, Continued..

FRAME
No.

TIME
(t/T)

VDITTEX
x/D

POSITION
y/D SIGN EEGE CONMEnITS

17 0.37 0.83 0.74 + ve Top HI

18 0.39 1.07 0.80 +ve Top PH

18 0.39 0.04 2.03 - ve Top LH

18 0.39 0.35 - 0.35 - NE Bottom RH New Vortex growing here.
19 0.41 0.52 - 0.32 - ve Bottom RH
19 0.41 0.44 2.14 - ve Ibp LH
19 0.41 1.46 0.85 +ve Top EH
20 0.44 1.70 0.86 +ve Top FH
20 0.44 1.01 2.33 - ve Top LH
20 0.44 0.58 - 0.26 - ve Bottom RH
21 0.46 0.68 - 0.30 - ve Bottom RH
21 0.46 1.24 2.35 - ve Top LH
21 0.46 2.32 1.24 + ve Top RH ((This vortex is ncw weak and i
22 0.48 2.47 1.01 +ve Top PH (133siittibaleoouncleigTafute* fir f"t) .
22 0.48 1.74 2.50 - im Tap IH 4\ (This vortex then goes out of

(view but by tirvao.5 is almos
22 0.48 0.89 - 0.31 - ve Bottom PH (diffused)
22 0.48 0.61 0.43 + ve Top RH New vortex forming.
23 0.51 1.01 - 0.38 - ve Bottom RH
23 0.51 0.63 0.35 + ve Top RH
24 0.53 0.67 0.22 + ve Top Hi
24 0.53 1.12 - 0.46 - ve Bottom RH
25 0.55 1.16 - 0.61 -, 'ye Bottom RH
25 0.55 0.71 0.14 + ve Top RI
26 0.58 0.69 0.04 + 'ye Top HI
26 0.58 1.31 - 0.68 - ve Bottom PH
27 0.60 1.45 - 0.87 - ve Bottom RH
27 0.60 0.72 0.00 + ve Top RH
28 0.62 0.64 - 0.05 + ve Top RH

28 0.62 1.55 - 0.90 - ve Bottom EH
29 0.65 1.60 - 1.04 - ve Bottom PH
29 0.65 0.76 - 0.20 +ve Top RH
30 0.67 0.76 - 0.20 + ve Top RH
30 0.67 1.70 - 1.10 - ve Bottom RH
31 0.69 1.84 - 1.19 - ve Bottom PH
31 • 0.69 0.76 - 0.20 + ve Top RH
32 0.72 0.76 0.02 + ve Top Hi

0.72
	

1.89 - 1.30 - ve Bottom PH
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TABLE: 3, Continued..

FRAME
No.

TIME
(t/r) x/D	 y/D

IADFCCEX POSITION
SIGN EDGE COMMENrS

33 0.74 1.82 - 1.42 -e Bottom RH

33 0.74 0.79 - 0.02 + ve Top RH

34 0.76 0.69 - 0.04 + ve Top Hi

34 0.76 1.66 - 1.47 -'se Bottom Hi

35 0.78 1.59 - 1.64 -'e Bottum Hi

35 0.78 0.57 - 0.09 + ve Top Hi	 (This vortex then goes "4~1'
-N (the plate and is enhanced by

(vorticity from the bottom LH
36 0.81 1.41 - 1.83 -ye Bottom Hi (edge)

37 0.83 1.07 - 1.96 -ye Bottom Hi

38 0.85 0.79 - 2.06 ve Bottum Hi

38 0.85 - 0.38 - 0.36 + ve Bottom LH (This vortex contains some
(vorticity from the top RH edge

39 0.88 0.51 - 0.39 + ve Bottom LH

39 0.88 0.49 - 2.11 -ye Bottom Hi

40 0.90 0.30 - 2.20 -)e Bottom 111

40 0.90 0.21 0.44 -ye Top LH New vortex forming here.
40 0.90 0.58 - 0.44 + ve Bottom LH

41 0.92 1.00 - 0.60 + ve Bottom. III

41 0.92 0.02 - 2.27 -ye Bottom Hi

41 0.92 0.36 0.34 -ye Top LH
42 0.95 0.48 0.30 -ye Top III
42 0.95 0.46 - 2.27 -ye Bottom Hi
42 0.95 1.33 - 0.57 + ve Top 111
43 0.97 1.42 - 0.60 + ve Top Hi
43 0.97 0.58 0.26 -ye Top III
43 0.97 0.86 - 2.30 -ye Bottom Hi
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TABLE : 4	 THE 1.5" ETANETER FLAT PLATE, /q	= 421.5

CYCLIC REGION	 NKC = 18.6 : ROTATICN ANTI-CLOCKWISE

FRAME
No.

TIME
(t/T)

.voRrEx
x/D

POSITION
'Y/D SIGN EDGE COMMENTS

1 0.99 - 0.59 0.47 - ye Tcp LH
1 0.99 - 0.99 - 0.37 + Bottom IR
2 0.02 - 1.14 - 0.43 + ye Bottom LH
2 0.02 - 0.59 0.33 -ye 'Ibp
3 0.04 - 0.65 0.17 -ye Top
3 0.04 - 1.34 - 0.56 ye Bottom
4 0.06 - 1.46 - 0.71 + ve Bottom IR
4 0.06 - 0.69 0.13 - ye Top III
5 0.09 - 0.80 0.00 -ye Tbp LH
5 0.09 - 1.68 - 0.89 + ye Bottom IH
6 0.11 - 1.91 - 1.04 '+ ye Bottom Ill
6 0.11 - 0.89 - 0.09 - ye Top Ili
7 0.13 - 0.93 - 0.04 - ye ¶Etp LH

7 0.13 - 2.13 - 1.07 + ye Bottom LH
8 0.16 - 2.25 - 1.32 + ye Bottom
8 0.16 - 1.04 - 0.14 - ye Top LB
9 0.18 - 1.17 - 0.18 - ye Tcp LH
9 0.18 - 2.39 - 1.33 + ye Bottom LH

10 0.20 - 2.41 - 1.46 + ye Bottom Ill
10 0.20 - 1.24 - 0.17 - ye Top Ill
11 0.23 - 1.20 - 0.32 -ye Top IR
11 0.23 - 2.30 - 1.42 + ve Bottom LB

0.25 - 1.09 0.03 -ye Top Ili
12 0.25 - 2.36 - 1.37 + ye Bottom
13 0.27 - 2.21 - 1.67 +ye Bottom LH
13 0.27 - 1.02 0.03 -ye p IH

14 0.30 - 0.76 - 0.11 -ye 'Bop IR
14 0.30 - 1.65 - 1.71 + ye Bottom LH
15 0.32 - 1.54 - 1.70 + ye Bottom LH
15 0.32 - 0.54 - 0.32 - ttp IH

16 0.34 The vortex from the Top Ili edge is nag squashed against the
plate and sone of it starts to go under the plate.

16 0.34 - 0.90 - 1.76 + ve Bottom
17 0.37 - 0.69 - 1.78 + ve Bottom
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TABLE : 4, Continued..

FRAME

NO.

TINE

MO

VORTEX

x/O

POSITICN

y/O SIGN EDGE
1

Ca/VENUS

17 0.37 0.44 - 0.45 - ve Bottom PH (This vortex contains most of
(the vorticity fran the vorbex
(that:was at the top LB edge,
UNA:which transferred to the

18 0.39 0.60 - 0.43 - ve Bottom RH (Bottom RH edge)

18 0.39 - 0.30 - 1.81 4. ye Bottom LH .
18 0.39 0.36 0.41 4. ve Top RH New vortex forming here.

19 0.41 0.41 0.37 4- ve Top RH

19 0.41 - 0.14 - 1.87 4- ve Bottom LH

19 0.41 0.85 - 0.51 - ve Bottom RH

20 0.44 1.13 - 0.66 - ve Bottom RH .

20 0.44 4. Ve Bottom LH Position not clear.--

20 0.44 0.47 0.23 4. ve Tbp RH

21 0.46 0.54 0.19 4- ve Tbp RH .

21 0.46 1.26 - 1.91 + ye Bottom LH This vortex then moves out of
view.

21 0.46 1.57 - 0.52 - ve Bottum RH (This vortex is now very
(weak and insignificant)

22 0.48 0.75 0.17 4- ve Tbp RH

22 0.48 0.40 - 0.63 - ve Bottom RH New vortex forming here.
23 0.51 0.89 0.17 +ve Tbp RH

23 0.51 0.50 - 0.62 - ve Bottom RH

24 0.53 0.54 - 0.48 - ve Bottom RI

24 0.53 0.92 0.23 +ve Top RI
25 0.55 1.12 0.31 +ve Tbp RH

25 0.55 0.52 - 0.39 - ve Bottom RI
26 0.58 0.44 - 0.22 - ve Bottom RI
26 0.58 1.26 0.39 +ve Tbp RH

27 0.60 1.45 0.52 +ve Tbp RH

27 0.60 0.55 - 0.13 - ve Bottom RH

28 0.62 0.56 - 0.09 - ve Bottom Hi.
28 0.62 1.68 0.61 + ve Top RH

29 0.65 1.80 0.80 + ve Tbp RH

29 0.65 0.63 - 0.03 - ve Bottom RI
30 0.67 0.64 0.03 - ve Bottom RI
30 0.67 2.02 -	 0.82 + ve Tbp RH

31 0.69 2.10 0.89 +ve Tbp RH
31 0.69 0.68 0.10 - ve Bottom RH

32 0.72 0.63 - 0.10 - ve Bottom RH •

32 0.72 2.02 1.00 + ve Top RI.
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TABLE : 4, Continued..

FRAME
No.

TINE
(t/T)

33 0.74

33 0.74

34 0.76

34 0.76

35 0.78

35 0.78

36 0.81

36 0.81

37 0.83

37 0.83

38 0.85

38 0.85

39 0.88

39 0.88

40 0.90

41 0.92

42 0.95

43 0.97

43 0.97

VDPCIEX POSITION
x/D	 y/D SIGN EDGE CONVENI'S

- 0.30

- 0.37

- 0.52

- 0.69

- 0.85

- 0.48

- 0.72

1.36

0.92

- 0.44

0.68

0.20

1.97

0.59

0.61

1.88

1.68

0.45

Vortex

1.89 +ve Tcp

0.71 - ve Tcp LH

0.69 - ve Tcp LH

1.94 + ve Top RH

2.05 + ve Roc RH

- 0.34 + ve Bottom LH

- 0.35 + ve Bottom III

- 0.38 + ve Bottom LH

- 0.30 + ve Bottan

- 0.35 + ve Bottom LH

0.56 - ve Top LH

frum the Bottcm R.H. edge goes over the top of the
plate,but its position is not

1.70 + ve Tcp PH	 clear)

(This vortex caitains vorticit
(frcm the bottom RH vortex
(which went over the top of th
(plate)

(Position unclear, and uncerta

(after this franc)

1.13

0.12

0.09

1.30

1.56

0.13

Top RH

Bottom RH

Bottom Fli

Tcp PH

Top 14.1

Bottom RH

(New vortex forming)

(This vortex then =Nes out of
vied)

mew vortex forming)
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TABLE : 5	 THE DIAMOND SD7TION (	 = 422.7)
SIDEWAY VORTEX Silted% NEC = 15.18

FRAME
N.

TIME VORCEX
x/D

POSITICN
y/D sial ErGE COWEN'S

1 0.99 - 1.21 0.71 - ye Tcp IR
1 0.99 0.36 2.64 + ye Tcp RH
2 0.02 0.07 2.86 + ve Top HI
2 0.02 - 1.50 0.64 - ye Tcp LB
3 0.04 - 1.79 0.79 ye 'Itp I,H
3 0.04 - 0.50 2.93 + ye Top Hi •
4 0.06 - 1.00 3.07 + ye Tcp Hi
4 0.06 - 2.14 0.93 - ye 'Ibp LB
4 0.06 - 0.71 0.00 + ye Bottom IR (This vortex began growing

(sooner, at about t/r0, but
(only ncw is its pcsition clea

5 0.09 - 0.86 0.00 + ye Bottom Ill

5 0.09 - 2.43 0.93 - ye Ibp 11.1

5 0.09 - 1.36 3.50 + ye Top Hi (This vortex then goes out of
(vi, but it is quite weak)

6 0.11 - 2.79 1.07 - ve Top IR
6 0.11 - 0.86 0.00 + ye Bottom LB
7 0.13 - 1.00 0.00 + ye Bottom IR

7 0.13 - 3.07 1.14 - 1.,e Top IR

8 0.16 - 3.21 1.29 - ye Top IR
8 0.16 - 1.14 0.14 + ye Bottom IR

9' 0.18 - 1.07 - 0.07 + ye Bottom IH

9 0.18 - 3.29 1.71 - ye Tcp IH
10 0.20 - 3.50 2.00 - ye Tcp IR
10 0.20 - 1.14 - 0.21 + ye Bottom IH
11 0.23 - 1.29 - 0.21 + ye Bottom IH

11 0.23 - 3.57 2.14 - 1,,e Top IH

.

12 0.25 - 1.14 - 0.21 + ve Bottom IR
12 0.25 - 3.79 2.14 - 1,,e Top IH
13 0.27 -1.07 -0.07 + ye Bottom IR
13 0.27 - 3.71 2.36 - ye Top Ill
14 0.30 - 1.00 - 0.21 + ve Bottom IR (This vortex starts to split 1
14 0.30 0.29 0.50 + ve 'Itp Hi (This vortex contains sone of

(the vorticity from the botton
(IR)

14 0.30 - 3.50 2.43 - ye Top IR
-..
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TABLE : 5, Ccntinued..

FRAME
No.

TINE
MAO x/D

VDRODCFCGITION
y/D SIGN EDGE comENTs

15 0.32 -1.00 -0.43 + ye Bottom IR

15 0.32 0.57 0.36 +ve Tcp RH

15 0.32 - 3.57 2.57 - ve Tcp LH

16 0.34 - 3.43 2.79 - Ye Tcp LH

16 0.34 - 0.86 -0.43 + ye Bottont LH

16 0.34 0.43 0.36 + ve Top RH

17 0.37 0.71 0.36 + ve Top Hi

17 0.37 - 0.57 - 0.43 + ve Bottom LH (This vortex then goes under
(the model and is cancelled ou

17 0.37 - 3.21 3.00 - ve Top LH

18 0.39 - 3.07 2.86 - ve Top LH

18 0.39 0.79 0.14 + ye Top Hi (This vortex is ncw shed)
19 0.41 0.86 0.29 + ye Top RH

19 0.41 - 2.86 3.14 - ye Top LH

20 0.44 - 2.64 3.21 - ye Tcp LH

20 0.44 0.93 0.14 + ye Tcp PH

21 0.46 1.14 0.14 +ve Tbp HI
21 0.46 0.64 - 0.43 - ye Bottan RH (Vortex grading here)
21 0.46 - 2.43 3.29 - ye Top LH

22 0.48 - 2.14 3.07 - ye Top LH

22 0.48 0.64 - 0.21 - ye Bottom RH

22 0.48 1.36 0.21 + ye Top RH

23 0.51 1.43 0.21 + ye Top HI
23 0.51 0.71 - 0.14 - ve Bottom RH

23 0.51 - 1.86 3.21 - le Tcp LH
24 0.53 - 1.64 3.21 - ye Top LH

24 0.53 1.64 0.29 +1,e Top RH

24 0.53 0.71 0.00 - ye Bottam RH

25 0.55 0.86 - 0.14 - ye Bottom RH

25 0.55 1.93 0.36 + ye Top RH

25 0.55 - 1.29 3.21 - ye Tcp LH

26 0.58 - 0.86 3.21 - 1,v Top LH

26 0.58 2.14 0.29 + ye Top RH

26 0.58 0.86 0.00 - ye Bottom Rd
27 0.60 1.00 - 0.14 - ye Bottom Hi
27 0.60 2.14 0.64 +ve Top RH

27

28

0.60

0.62

- 0.36

2.36

3.29

0.57

- ye

+ve

Top LH
,

Tap RH

(This vortex:then goes out of
vied)
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TABLE : 5, Continued..

FRAM
No.

TIME
(t/1) x/D

VORTEXFOSITION
y/D SIGN EDGE CDMMENTS

28 0.62 1.00 0.07 - ve Bottom RH
29 0.65 1.00 - 0.14 - ve Bottom Rd
29 0.65 2.36 0.79 +ve Tcp RH
30 0.67 2.57 0.79 + ve Tap RH
30 0.67 1.14 0.14 - ve Bottom RI
31 0.69 1.29 0.00 - ve Bottom HI
31 0.69 2.79 0.86 + ve Tcp RH
32 0.72 2.93 1.07 ve Top RH
32 0.72 1.14 - 0.07 - ve Bottom HI
33 0.74 1.14 - 0.07 - ve Bottom RI
33 0.74 3.00 1.21 +ve Tap RH
34 0.76 2.79 1.36 + ve Tap RH
34 0.76 1.14 - 0.07 - ye Bottom HI
35 0.78 3.00 1.43 +ve Tcp RH
35 0.78 1.00 0.07 - ve Bottom RI
36 0.81 0.79 0.14 - ve Bottom HI
36 0.81 2.64 1.57 + ve Tap RH
37 0.83 2.43 1.79 + ve Tap RH
37 0.83 0.50 0.14 - ve Bottom EH (This vortex then goes over tt

(top and a new vortex begins
(to form at Tap LH)

38 0.85 Vortex frau Bottom HI squashed as it goes over the top.
38 0.85 2.29 1.93 + ve Top RH
39 0.88 2.00 2.07 + ve Tap RH
39 0.88 - 0.29 0.43 - ve Tap LH
40 0.90 - 0.43 0.43 -ye Top LH
40 0.90 1.64 2.14 + ve Tcp RH
41 0.92 1.36 2.36 + ve Top RI
41 0.92 - 0.50 0.21 - ve Top LH
42 0.95 - 0.71 0.50 -ye Tap LH
42 0.95 1.07 2.43 + ve Tap RH
43 0.97 0.64 2.50 + ve Tap RH
43 0.97 - 1.00 0.57 - Ve ¶Ltp IH
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MK LIFT. CIRCULAR CYL NKC	 7.54 ma(
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011 LIFT. CIRCULAR CYL NKC = 14.20 am
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s m LIFT ON SQUARE NORMAL NKC = 14.81 um
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