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ABSTRACT

The dry and lubricated contact problem of closely con-

formal spherical bodies is studied theoretically.

The models used in both cases, are the contact between

an elastic sphere and either a sperical cavity in an infinite

elastic medium, or a spherical elastic layer on a rigid sub-

strate.

In modelling the lubricant, both pressure and shear-rate

dependent viscosities are considered.

In the dry case, it is shown that the results depend

on the degree of conformity between the two bodies, and also

that Hertz's theory becomes inaccurate when the contact is

larger than 300. Further, when the available contact arc is

insufficient, pressure singularities occur at the circular edge.

In the lubricated case, it is shown that for a given

approach velocity of di.stant points on the two bodies, the

rate of change of elastic deformations of the surfaces, plays

a major role in determining film thicknesses. In addition, it

is shown that for a pressure dependent viscosity lubricant, an

entrapment starts to form, the magnitude and shape of which

depend on approach velocity, lubricant viscosity, pressure

viscosity coefficient, elastic properties and geometry.
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NOMENCLATURE

A

A, A

B

B(N, i)

BS , BL
n n

b

b(i)

Matrix of size NxN, defined by equation (2.3.3).

:	 Summation terms

n - index

s - refers to the sphere

L - refers to the layer.

Matrix of size NxN, defined by equation (2.3.12).

:	 The ith element of the Nth row of matrix B.

:	 Summation terms

n - index

s - refers to the sphere

L - refers to the layer.

:	 Vector of size N, defined by equation (2.3.4).

:	 The ith element of vector b.

:	 Clearance (R -R ).
C S

:	 Young's Modulus.

: Summation terms

n - index

c - refers to the cavity

L - refers to the layer.
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e	 :	 Eccentricity.

F, F	 :	 Summation terms

n - index

c - refers to the cavity

L - refers to the layer.

Fe 	 :	 Total lubricant volumetric flow rate, at any

section defined by angle e.

FeB	 :	 Fe at the time boundary (t=0).

:	 A function of e and .

G	 :	 Shear Modulus [ G = E/2(1+v) 1.

S	 C	 L
Hn : Summation terms

n - index

s - refers to the sphere

c - refers to the cavity

L - refers to the layer.

H	 :	 Layer thickness (R0_R).

h	 :	 Film thickness.

I	 :	 The unit matrix.

i,j,k	 :	 Indeces.

L	 :	 Elemental volume of lubricant in the gap.

M, M , M :	 Influence coefficient matrices
S	 C

s - refers to the sphere

c - refers to the seat.
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M*, M*
S	 C

:	 Same as M and M , but with the order of the
S	 C

elements of the rows and columns reversed.

N	 :	 Number of nodal points employed.

n	 Index.

Os' 0	 :	 The centre of the sphere and seat respectively.

P(u)	 :	 Legendre polynomial of order n.

P ' P5' PC :	 Vector of pressure magnitudes at the nodal points.

s - refers to the sphere

c - refers to the seat.

p	 :	 The pressure at nodal point j.

p.	 :	 The jth element of pnew

old - refers to the previous iteration

id new - refers to the present iteration.

Q	 Radial load on the sphere.

q	 :	 Pressure distribution on elemental band.

:	 Constant pressure acting on the sphere.

By integrating it over its area of application,

it gives Q.

R	 :	 Arbitrary radius.

:	 The sphere or the layer outer radius.

The cavity or the layer inner radius.

:	 The sphere undeformed radius.

R
0

R.1.

R
S
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:	 The seat undeformed radius.

:	 Radial coordinate.

r5, r	 :	 Deformed radii of curvature of the sphere and

seat surfaces respectively, measured from their

respective centres.

r 1 , r 2 : Deformed radii of curvature of the sphere and

seat surfaces respectively, measured from the

centre of the seat.

R
C

r

S's
S	 C

seat

S	 cT, T

The sphere and seat surfaces respectively.

Refers to either a cavity or a layer.

Summation terms

n - index

s - refers to the sphere

c - refers to the cavity.

:	 Time instants.

Time.

U, U, U:	 Surface displacements. Considered positive

u5 uC L	 when in the coresponding positive coordinate
e' e' e

direction.

r - denotes radial displacement

e - denotes tangential displacement

s - refers to the sphere

c - refers to the cavity

L - refers to the layer.
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ur ( e j )	 :	 Radial displacement at node i, defined by

angle e1.

U	 :	 Vector of radial displacements at the nodal

points.

U5 , U	 :	 Radial displacements of the sphere and seat

surfaces respectively.

U 0 , U 0 :	 As above, but for the contact pole.

U	 :	 Total elastic deformation (U_U).

U	 :	 Vector of total elastic deformations at the

nodal points.

V	 :	 Sphere centre velocity.

Vol	 :	 Gap volume between it and 0, see equation (3.2A.25).

V0	 :	 Lubricant flow velocity in the 0-direction.

Wc	 :	 Tangential displacement of the seat surface,

in the 0-direction.

y	 :	 Substitute coordinate for the film thickness,

see equation (3.2A.7).

:	 Pressure-viscosity coefficient.

n' Bn 1n	 Summation terms.

n'	 1

:	 Shear strain rate.
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'av

Is

n

Ti0

av

,new

j,old

0
C

Shear strain rate averaged across the film.

Time interval.

:	 Approach.

:	 Lubricant viscosity.

:	 Viscosity at atmospheric pressure and ambient

temperature.

:	 Viscosity averaged across the film.

:	 The jth element of the viscosity vector.

old - refers to the previous iteration

new - refers to the present iteration.

The angular extent of the contact zone.

:	 The angular extent of application of

:	 The angular coordinates.

p

a(0)

an

TrO

cosO.

Poisson's Ratio.

:	 Rounoff error.

:	 Direct radial stress on the surface.

:	 Radial loading on the surface.

:	 The nth coefficient in the series used to

express the radial loading.

Shear stress on the surface.
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T(e)	 :	 Tangential loading on the surface.

T	 :	 The nth coefficient in the series used to

express the tangential loading.

The exponent in the lubricant constitutive

equation in the case of shear-rate dependent

viscosity. When possitive the lubricant is

said to be Dilatant and when negative

Pseudoplastic.
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CHAPTER 1

THE ELASTIC EQUATIONS FOR SPHERICAL SURFACES

1.1 Introduction

Elastic contact between closely conformal spherical sur-

faces is frequently met in engineering structures, as well as

in nature. Such contacts, however, have been given relatively

little attention in the literature, and it is usually assumed

that a good enough approximation of elastic behaviour is ob-

tained by using Hertz's theory. The theoretical study reported

in this thesis, was prompted by the need to test the validity

of this assumption, and to investigate the dry and squeeze film

lubricated behaviour of such contacts.

In general, a contact problem can be seen as presenting

two distinct areas of interest; the elastic behaviour of the

bodies in question, and their interaction within the contact

region. However, without the use of any simplifying assump-

tions, it can not be treated and solved as two separate problems.

It is therefore necessary, that the equations resulting

from the models describing the elastic behaviour and the cont-

act region interaction, be in such a form as to permit their

simultaneous solution.

Accordingly, taking into account the description of
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the contact interactions presented in the following chapters,

the requirement for the equations describing , the elastic be-

haviour of the bodies is to give the radial displacement at

a point on their surface, inside or outside the contact

region, when the applied pressure is specified at a number of

discrete points inside that region. Displacements outside

the contact region are not essential for the solution, but

are required only to complete the picture of the distorted

body shapes.

Towards satisfying these requirements, Finite Blements

and Boundary Integral methods were first considered. These

were however, rejected for two main reasons. Firstly, the

discretisation methods involved would create a large amount

of information redundant to the solution of the problem in

question, resulting in a possibly unnecessary waste of res-

ources.	 Secondly, even if such waste were deemed acceptable

in order to obtain a solution, the number of equations that

would be required to model the complete problem to the required

accuracy, would probably result in a system solvable by none

but the most powerful of presently available computers.

A very ingenious analytical solution, by C. Weber [43b]

of a single force acting normally upon the surface of a

sphere, was also considered. At first sight, this appeared

to satisfy the requirements of the solution, for at least

the case of a sphere.	 However, this was also rejected, as

after the calculation errors discovered in its development

were rectified, it was found impossible to transform the
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results into spherical polar coordinates, and thus isolate

the required radial displacements.

Finally, it was decided that the general solution to

the elasticity problem for bodies of revolution, presented

by A.I. LUR'E [23], would be used as it permits particular

solutions for a sphere, a spherical cavity and a spherical

layer to be obtained in a directly usable form.

This chapter presents this general solution, and pro-

ceeds to develop the particular solutions for the three types

of spherical body, and cast them into influence coefficient

matrix form, as such to be used in the following chapters

for the solution of the dry and squeeze film contact problems.

1.2 General Solutions

The models used in this study are based on the solution

of the equilibrium equations of the theory of elasticity, for

axisymrnetrically loaded spherical bodies, as presented by

A.I. LUR'E1.

This solution was obtained by solving the equilibrium

equations of the theory of elasticity, in their Papkovich-

Neuber form 2, through the expression of displacements and

stresses in terms of solid spherical harmonics.

Given below are the equations for the case of zero body

forces and axisymmetric external loading, relating to an

elastic sphere, to a spherical cavity in an infinite elastic

1 See reference 23, chapter 6.

2 This form of the equilibrium equations was given by
P.F. Papkovich in 1932 [27], and by H. Neuber in 1934 [26].
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medium, and to the inner surface of a spherical layer

(hollow sphere) having a rigid substrate. 	 The equations

for the former two cases are exactly as given by !JUR'E,

while for the latter, they are taken a step further to

include the assumption of a rigid substrate.

1.2A The equations for a sphere

The equations for the displacements on the surface of

an elastic sphere, of radius R 0 , are given by:

Z 1AR n+l (n+ i )(n_ 2+ 4 v)+nBsR n-lip (p)
r	 n=oLno	 no Jn

(n+5-4v)+B5R n-i] dP(u)no	 no
(1 . 2A. 1)

5	 SIn order to obtain the constants	 and	 the external

loading on the surface of the sphere,

is represented in the form of the series:

dP()	 dP Cu)
____	 nT	 -	 T	 sin	 (l.2A.3)n=l n	 d3	 n=l n	 du

* a and T are assumed to be positive if the corresponding
forces are directed along the positive coordinate
directions r and e respectively.
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where, the coefficients of these series are determined by

the formulae:

'-IT

a = 2n+1J a(e)P (cose)sineden	 2	 n

	

2n+1	 __________
fir

	2n(n+1	 r(8) 
dP(cos9)

sinede	 (1.2A.4)

By using the above equations, the constants 	 and B

are obtained for different values of n as follows:

For n=o

1
0	 4G(1+v) o
	 (1 . 2A. 5)

note, that there is no solution relating to BS.
0

For n=1

1	 1
- 8GR0(1+v) a1 = 4GR(1+v)	 i	 (1.2A.6)

note, that the solution relating to B, represents a solid

body displacement.

For n2, the constants 	 and B, are obtained from the

following system of equations:

an-2= n
no

s n-2
=	 (1.2A.7)
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Thus, in order to obtain the displacement on the sur-

face of the sphere at a given angle e,the given external

loading, expressed as (0) and t(S), is substituted in equa-

tion (1.2A.4), and n and Tn are obtained for a particular

value of n.	 The corresponding values of	 and B are then

obtained by substituting these values of an and T into equ-

tions (1.2A.5) when n=o, (1.2A.6) when n=1 or (1.2A.7) when

n2.	 Using these values of	 and B, one term of equation

(1.2A.1) is obtained. 	 This process is repeated for up to as

large a value of n as is needed to obtain the displacements
S	 S

Ur (e) and Ue(t3) to the required accuracy.

l.2B The equations for a spherical cavity

The equations for the displacements on the surface of a

cavity in an infinite elastic medium, of radius R 1 , are given

by:

IEC	 (n+1)FC]
Uc (0)= E I n fl(fl+3-4V	

R2]rr	 n=oLRn

1

EC	 F 

IL	
(4-n-4vH-

=	 R2	 dO	

(1.2B.1)

In order to obtain the constants E and F, the

external loading on the surface of the cavity is represen-

ted as a series, given by equations (1.2A.3) and (1.2A.4).

In this case however, a and r are assumed to be positive,

if the corresponding forces are directed along the negative
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coordinate directions r and e respectively.

Using equations (1.2A.4), the constants E and F,

are obtained for different values of n as follows:

For n=o

note, that there is no solution relating to E.

For n1, the constants E and F are obtained from

the following system of equations.

EC n(n2+3n_2v) +Fc (n+1)(n+2) - ___
n	 R1	 R'3	 2G

i	 I

	c n2-2+2v	 c n+2	 T	__________	 ________	 n
En R n+i -F R n+3

i	 i	 (1.2B.3)

Thus, in order to obtain the displacements on the sur-

face of a cavity at a given angle e, the same method is used

as explained for the sphere, keeping in mind the difference

in the sign convention for	 and r.

1.2C The equations for a spherical layer

The solution for a spherical layer can be obtained by

superimposition of the solutions for the sphere and the

spherical cavity.	 Thus, one obtains for the displacements

at any radius R and for an arbitrary value of n, the

following equations:
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ULW	 L n+1-)- A R	 (n+1)(n-2+4v)+nBt'R	 1r -En	 n

EL	 F(n+1)1

+	
n(n+3-4v)- R n+2 ]P(II)

(n+5-4v)+B1R fhU(0)=[AR n+1

EL	 FL 'dP(u)__	 n ___+	 (4-n-4v)-4- R n+2J do
R (1 . 2C. 1)

When considering a spherical layer with a rigid sub-

strate at R=R0 , one set of boundary conditions, namely,

ue	 = u'ce)	 = 0r	 R=R	 R=R0	 0
(1 .2C.2)

can be directly applied to equations (1.2C.1) to reduce the

constants by two.

Accordingly, substituting equations (1.2C.2) into (1.2C.1),

the following two equations are obtained, relating the const-

ants F and BL to A and E.

L_ 1	 IELR 2 fl (2 fl 1) ALR 2n+3 2 ( 3 + l ( 4 +2 ))]
F- 2n+1 L n o

I EL
L	 1 I______	 )+ALR 2 (n+1)(2ri+3)B=- 

2n+1 I R 
2n-1 2(3n+2-v(4n+2) 	

]
L °	 ( 1.2C.3)

Thus substituting equations (1.2C.3) into (1.2C.1),

the equations describing the displacements on the inner

surface, R=R 1 , of a spherical layer with a rigid sub-

strate at R=R0 , are obtained as follows:
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ue=cAL1R.1(n^1)(n_2+4v)
r	 n=o nLi.

1R 2n+3

+ 2n+1 I R2 2(n+1)(3n+1-(4n+2))
Li

-R 2R. 1 n(n+1 )(2n+3)]]0 1

+ELE 1 n(n+3-4v)
Ri

FR 
n-i

1	 _________________

- 2n+1	 2n(3n+2-v(4n+2))

0

R2
n(n^1)(2n_1)]]P(1)

AL1R.n+1(n+5_4v)
e	 n=1( nI 1

1R 2n+3
lb___

- 2n+1 R 
n+2 2(3n+i-v(4n+2))

Li
+R 2R.fh (+1 )(2n^3)]]0 1

+ELE
__1

	 (4-n-4v)

i

E 

R.11
- 2n+1 R 

2n-1 2(3n+2-'(4n+2))

0

R 2	

n(2n 1)]1 ) 
dP(i)

0	 ________

R 2	-I	 fl de

(1 . 2C. 4)
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In order to obtain the constants A and E, the

external loading on the inner surface of the layer is

represented in the form of a series as given by equations

(1.2A.3) and (1.2A.4), with the same sign convention for

and r, as used for the cavity.

Thus, using the same method as LUR'E, but keeping

in mind that the number of constants can be reduced in this

particular case using equations (1.2C.3), the following

equations are derived for determining the constants A and

for different values of n.

For n=o

AL=ER03 (4v_2)_(1+v)] 4GR.1
(1 . 2C. 5)

note, that there is no solution relating to E.

For n1, the constants AL and E are obtained from the

following system of equations:

ALcL +ELB
nn nn 2G

where,
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= (n+i)(n2-n-2-2v)R'

1 IR.n2R 2
- 2n+i L 1	 0 n(n-i ) (n-H) (2n+3)

R 2n+3

+	 2(n+1 ) (n+2) (3n+1_v(4n+2))]

i

1
R i-i+i n(n2+3n-2v)

i

E 

R n-2
1i

- 2n+1 R 
2n-1 2n(n-i)(3n-i-2-v(4n+2))

0

R2
0	

n(n+i)(n+2)(2n-i)]
-

1

= (fl2+2fl_1^2V)Rr1

R	 n-2
2n+1[o .

R	 (n-i )(n+1 ) (2n+3)

R 2n+3
0

2(n+2)(3n+i-(4n+2))]
- R i

=	 1	
(n2-2+2v)

R.1
1

E 

R n-2
1i

- 2n+1 R 
2n-1 2(n-i)(3n+2-,(4n+2))

0

R2

+ 
R3 n(n+2)(2n_1)]

i
(1 2C. 7)



- 28 -

Thus, in order to obtain the displacement on the inner

surface of the layer at a given angle e, the same method is

used again as explained for the sphere, keeping in mind that

the sign convention for a and t is the same as that for the

cavity.

1.3 Particular Solutions

In this section, use is made of the relationships pre-

sented in the previous one, to obtain the equations repre-

senting the displacement at any given point on the surface

of a spherical body, when the external loading is an axi-

symmetric variable pressure band.

The reason for obtaining this solution is that by the

use of multiple such pressure bands, an arbitrary axisym-

metric pressure distribution on a spherical body can be dis-

cretised and thus, the relationship between pressures and

displacements can be expressed in the form of influence co-

efficients, as required in the following chapters for the

solution of the contact problem.

The original intention was to try different functions

of e to represent the variation in pressure across the

aforementioned band, in order to obtain a number of dis-

crete models for the pressure distribution, from which the

optimum one, from the point of view of accuracy versus cost,

could be chosen.	 However, in this attempt an unsurmountable

obstacle was presented by the integral in equation (1.2A.4),

as the only form of the pressure variation that permits the

analytical solution of this integral is a linear function

of cosO.
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It should be noted here, that it is not possible to use

numerical integration, because in order to obtain the value

of a Legendre polynomial of order n, where n is large, a re-

currence relation has to be used and started at some small

value of n, where the value of	 can be analytically ob-

tained.	 Having to repeat this process a large number of

times, in order to obtain the required accuracy for the numer-

ical solution of the integral, would produce a rather large

number of calculations.	 Further, even if numerical inte-

gration were feasible by itself, the large number of such

integrations required by the overall solution would make the

method completely untenable.

Only the solutions for radial displacements are derived

in subsections 1.3A, 1.3B and 1.3C, because tangential dis-

placements are not used in the following chapters. It would,

however, be a very simple operation to derive them from the

results presented therein, if they were required.

1.3A The solution for the sphere

Figure 1.1 : Primary external loading on the sphere
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Consider a sphere subjected to an axisymmetric loading,

as shown in Figure 1.1, such that:

q=a+bcos e
	

(1 . 3A. 1)

and

q=q 1 at e=e1

q=q2 at e=e2	 (1 . 3A. 2)

from which

- q2cose1-q1cose2

a- cose1-cose2

q-q

- cose1-cose2 (1 . 3A. 3)

and	 is a constant pressure acting on the angular extent e.

From static equilibrium considerations,	 can be ex-

pressed as a function of a and b as follows:

2 1	 [accos2e2_cos2e1 )++b(cos3e2_cos3ei)]
cos Ol

(1 .3A.4)

Only the applied pressure distribution q, is of direct

interest to the form of the solution of the contact problem,

as presented in the following chapters. 	 However, for the

existence of the elastic solution, the applied external

loading should be self-equilibrating. 	 For this reason, the

pressure distribution	 is introduced.	 This equilibrating

pressure distribution is used in preference to a concentrated

force, because the use of the latter results in a.divergent

series in the solution.



cosê P(u)d
	

(1 . 3A. 7)
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For the loading shown in Figure 1.1, and following

the solution as described in subsection 1.2A,

T(e)=o
	

(1 . 3A. 5)

and

0
for

-q

0

0 e e

e<e<e2
(1.3A.6)

thus, substituting equations (1.3A.1) and (1.3A.6) into

equation (1.2A.4), a is obtained as follows:

Jcosec
2n+1

2	 P ()dpn

çCOSe1

2n+1
+ 2 a cose2

çcose1

+ 2n+1 b Jcose2

In order to solve the integrals in equation (1.3A.7),

use is made of the two relationships for Legendre polynomials,

that are applicable for any arbitrary value of n.

These relationships are as follows:
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*

and

(2n+l)UP(ii) = (n+l)P 1 (ij)+np 1 ()	 (1.3A.8)

Thus, using equations (1.3A.8), equation (1.3A.7)

can be rewritten as:

cosO

f
.cose1

a f
2cose2 [

+1 ()-P_ 1 (u)]du

cose1

b n+1+	 2n+3	 ose2 [P+2_P]d

,cosO1

b n
+ 7 2n-1 Lose2 

[P-P 2 ()]dz	 (1

It is now a simple matter to perform the integrations,

and noting that,

1 )=1
	

(1 3A. 10)

for any arbitrary value of n, equation (1.3A.9) can be

rewritten as:

* the C') represents differentiation with respect to .1.
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-
2 [	 (cosO )-P	 (cose )]n+1	 e	 n-i

+ E["	
(cose )-P	 (cose )] _ 1P	 (cose )-P	 (cose )]]n+1	 1	 n-i Ln--1	 2	 n-i	 2

b n+1
+ 1 2n+3 [[n+2 ccos i )-P(cose 1 )]-[P 2 (cose )-P cose)]]2	 n

b n
T2n-1 [[Pn (cose i )_Pn_2 (cose i )]_[P (cose )-P	 (cose2)]]n	 2	 n-2

1 . 3A. 11)

Further, by substituting	 into equation (1.3A.1i) from

equation (1.3A.4), and a and b from equation (i.3A.3), a can

be written as a function of q 1 and q2 , in the following way.

1 q 2cose 1 -q 1 cose 2 (cos2e2_cos2e1

2	 cose1-cose2	
cos28_1	

(cosO )-P	 (cose )]
C	 n-i	 c

+[Pn+1(cose )-P
	 (cosO )]_[P	 (cose )-P	 (cose2)]1	 n-i	 1	 n+1	 2	 n-i

1	 q1-q2	 ( cos3e2-cos3e1

6cose1-cose2 2	
cos2e_1	

[Pn+i (cose )-P	 (cose )]C	 n-i	 C

3(n+1

+ 2n+3 [[n+2 ose )_P(cose1 )1_[Pn+2(c05e2)_Pn(c0se2)]]

3n
+ 2n-1 [cose 1 )-P 2(cos$1 )]_[Pn(cose2)_Pn2(cose2)]]

(1 . 3A. 1 2)

From equation (i.3A.12), the particular cases of 	 for

n=o and n=1, can be obtained by noting that,

=
	

(1 . 3A. 13)
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thus,

r cosO +cose
Ii-	 1	 2

= + (q2cose1-q1cose2) 
L	 cosO+1 ]

q-q2	cos3e2-cos3e1	 3
cose1-cose2 [2	 cosG+1	 + - 

(cos2e1_cos2O2)]

(1 3A. 1 4)

cr1=O
	

(1 . 3A. 15)

and

It is thus possible .to obtain the constants A and B in

equation (1.2A.1), for different values of n, as follows:

For n=o, from equations (1.2A.5) and (1.3A.14)

S	 1	 _______
- 8G(1+v) [2cosei_icose2[1_ cosel+cose2]cose+1

+	 q1-q2	 2 cos3e2-cos3e1

cose 1 -cose 2 [	 cose^1	
+ -- (cos2e1_cos2e2)]]

(1 . 3A. 1 6)

For n=1,from equations (1 .2A.6) and (1 .3A.15)

A=O
	

(1 3A. 17)

For n2, from equations (1.2A.7), noting that for the

loading in question r=o for all values of n.

n

4GR ,nTS
0 fl

BS=	 °n	 n2+2n-1+2v

	

4GR n2TS	 n-i
0	 fl

where

(1 . 3A. 1 8)

T=n(n-1)+(2n+1)(1-i-v)	 (1.3A.19)

and	 is given by equation (1.3A.12).
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Finally, by substituting into equation (1.2A.1), equa-

tions(1.3A.16), (1.3A.17) and (1.3A.18), letting

2n 2 (-1 -1 )+n+2-
V	 V

n	 S(n-i )T
(1 . 3A. 20)

and separating q 1 and q2 , the ecluation giving the radial dis-

placement at any point, defined by e, on the sphere, due to an

axisyminetric variable pressure band, defined by q1 at 	 and

q2 at e2 , can be written as:

R	 l-2v	 Ii	 2cose1+cose25	 0 ___	 _________U= q1	 1+v (cose1-cose2) 
L	 3(cose+1) I

+vn2HPn(u)(cose2_cosei) 2cose1+cose2
	

]E'
	 (cose )-P	 (cose

3(cos2O-i) n+1
	 C	 n-i

I	 2n+1
+ cosG1-cosê2 L(n_i_)(n+2) [CoSe

1 )-P(cose2)]

rn+1
[n^2 cosei_cose2]Pn+,(cosei)+[cose2_ nt1 cose1]P_cose1

+ n+2 cosG 2P ^1(cosO2)+ n1 cose2P1(cose2)].

01	 _______

R	 -2v	 [i	 cose1^2cose2l
+ q2	

i+v (cose1-cose2)	 3(cose+l) ]

(	 cose1+2cose
+v E H5P (ii )< (cose2-cose1) 3(cos2G
	

2 [P +1 (cose)_P 1 (cose € )]n=2nn	
(

C

1	 12n+1
+ 
cose1-cose2 L_12[0502)_05e1)1

+ 
n+2 cosO P	 (cose1)+ n1 cos81P1(cosG1)1 n+1

cose2-cose ip	 (cose2)+[cose1_ n-i cose2]P_1(cose2)]1J n+i

(1 . 3A. 21)
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1.3B The solution for the cavity

. q _

R3

Figure 1.2 : Primary external loading on the cavity

Consider a cavity in an infinite elastic medium subjected

to an axisymxnetric loading as shown in Figure 1.2, such that:

q=a+bcose	 (1 . 3B. 1)

and

q=q 1 at e=e1

q=q2 at e=e2

from which

- q2cose1-q1cose2

a- cose1-cose2

q -q

cose1-cose2

(1 .3B.2)

(1.3B.3)

For the loading shown in Figure 1.2, and following the

solution as described in subsection 1.2B,
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T(e)=o
	

(1 . 3B. 4)

and

0
	

oe<e2

(e) = -q for	 (1 . 3B. 5)

0
	

e1 <e

thus, substituting equations (1.3B.i) and (l.3B.5) into

equation (l.2A.4), ri becomes,

cose1

= 2n+1 a fn	 2	 cose2

cose1

2n+1 b 
J

	

+ 2	 cose2
cosePn(1)au
	

(1 .3B.6)

which, using the same method employed to obtain equation

(1 .3A..1 1) ,gives:

	

n=	+1 (cose1 )Pn_i (cose1 )][n+i (cose 2 )-P	 (cose2]]n-i

b n+i

	

+	 2n+3 [[Pn^2 (cose i )-Pn (cose i )]-[P^2(cose )-P (cose)]]

	

2	 n

b	
n [[Pn (cose i )_P	 (cose )]_EP(cose2)_P	

(cose2)]]22n-1	 n-2	 1 n-2

(1 . 3B. 7)

Substituting a and b from equation (i.3B.3), into equa-

tion (1.3B.7), a can be written as a function of q 1 and

becoming:
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1 q2cose1-q1cose2

n	 cose1-cose2	 [[Pn+i(cosoi)_Pni(cosei)]

- [+ (cose
2 )-P	 (cose2)]]n-i

1	 q1-q2	

[ 

fl+
+ Y cosO 1 -cosO 2 2n+3 [['n+2 ose 1 )_P(cose1)]

- [n+2 (cos8 2 ) _P(cose2)]]

+ 2n-1	 (cose )-P	 (cos81)]-[P(cosO2)-P	 (cosen	 1	 n-2 n-2	 2

(1.3B.8)

and in particular for n=o, equation (i.3B.8) gives:

a0=(q1+q2) + (cose 1 -cose 2 )
	

(1 . 3B. 9)

It is thus possible to obtain the constants E and F

in equation (1.2B.1), for different values of n, as follows:

For n=o, from equations (i.2B.2) and (i.3B.9)

R.3
C	 1F0= 16G (q 1 +q2 )(cose 1 -cose 2 ) (1 . 3B. 1 0)

For n1, from equations (i.2B.3), noting that for the

loading in question r=o for all values of n.

R. n+i

E= - 4GT a

R.3c	 1	 n"-2+2v a
Fn= - 4GT	 n+2

where

(1 . 3B. 11)

T= n2+n+i-v(2n+1)
	

(1 .3B. 12)

and an is given by equation (1.3B.8)
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Finally, by substituting into equation (1.2B.1), equa-

tions (1.3B.1O) and (1.3B.11), letting

HC= 
(2n2+4n-i-1)(- -1)-n

n	 (n+2)TC
n

(1 . 3B. 1 3)

and separating q 1 and q2 , the equation giving the radial dis-

placement at any point e on the cavity, due to an axisymmetric

variable pressure band, defined by q 1 at	 and q2 at e2 , can

be written as:

R.
- q	 1 (cosO cose2)	 + 7-8vr	 1 4G	 1	 - 9(1-v) COse(cOsei++c0se2)]

+ cose11cose2	
E HCp	 2n+1

n=2 n n	 (n_i)(n^2)[Pnb5el)n0502)]

^[	 cose1-cose2]P^1(cose1)+[cose2_ n1 cosei]Pni(cosei)

+ 1 cose P	 (cose2)^ n1 cose2P1(cose2)n+2	 2 n+1

R.	 _____

7-8v- q2 fr(cose1-cose2) 1+ +	 cose(+ cose1+cose2)]

+ ,cose11cose	
HCp (ii) <	 2n+i	 [P(cosO)P(OS$)]2 n=2 n n	 (n-1)(n+2)

+ n+2 cose P	 (cose1)+ 1 1 cose1P1(cose1)1 n+1

rn+1	 -cose 1 P	 (cose )+[cosO -	 cose 'P	 (cosG2)[n+2 cose2	 ii n+i	 2 1 n-i	 2J n-i

(1 . 3B. 1 4)
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1.3C The solution for the layer

e

q 
-

R1

Figure 1.3 : Primary external loading on the layer

Consider a spherical layer with a rigid substrate at

R=R0 and subjected to an axisyinmetric loading on its inner

surface, at R=R , as shown in Figure 1.3, such that:

q=a+bcose	 (1 . 3C. 1)

and

q=q 1 at e=e1

q=q2 at e=e2	(1.3C.2)

The analysis in subsection 1.3B, up to and including
equation (1.3B.9), is also directly applicable to the layer.

This is because the external loading on the cavity and on the

layer, as well as the method used to express it in spherical

harmonics, are identical.
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It is thus possible, to obtain the constants 	 and

in equation (1.2C.4), for different values of n, as follows:

For n=o, from equations (1.2C.5) and (1.3B.9)

A=[
3	 -1

03 (4v_2)_(1+v)]	 1G (q 1 +q2 )(cose 1 -cose2 )	 (1.3C.3)

For n1, from equations (1.2C.6), noting that for the

loading in question t=o, for all values of n.

6L	 1	 n

	

A=- ad-y	 annn nn

E=L1 __________—-	 an	 2G %6nYnBn n
(1. 3C. 4)

where, n'	 and	 are given by equation (1.2C.7) and

is given by equation (1..3B.8).

Finally, by substituting into equation (1.2C.4), equa-

tions (1.3C.3) and (1.3C.4), letting

6 c -yL	 nfl nfl 1
Hn=ctóy	 rnn nn	 1

(1 . 3C. 5)

where,

£ = R.'1(n+1)(n-2+4v)fl	 1

2n+3
1 I 0	 )-R 2R fl_ln(n+1)(2n+3)]

+ 2n+1 I R n+2 2(n+1)(3n+1-v(4n+2)Li
(1 . 3C. 6)
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R.r n(n+3-4v)

1

E 

R 1	R2

	

1 i	 ____

- 2n+1 R 
2n-1 2n(3n+2-v(4n+2))+ R2 n(n+1)(2n_1)]

	

0	 i
(l.3C.7)

and separating q 1 and q2 , the equation giving the radial dis-

placement at any point e on the inner surface of the layer,

due to an axisyminetric variable pressure band acting on the

same surface and defined by q 1 at e 1 and q2 at e 2 , can be

written as follows:

R. (R03-R.3) (1-2v)
L1	 ___________

Ur= q 1	(cose1-cose2) [+ R03(4-2)-R13(1+v)

+ H'cose(cose1+ +cosO2)]

+	 e1e	
HLP (u)	 2n+1n=2 n	 (_l)(^2)[P(cose1)-P(cose2)]

[

rn+1	 e 1p	 (cose1)^[cose2- n1 cose1]P1(cose1),n+2 
cosO1	 2J n+1

+ 1 cose2P1(cose2)+ ni cosOP_1(cosO2)n+2

R	 CR 3 -R 3)(1-2v)1	 0	 1+ 2_ _(cos81_cosO2)[.. R3(4v-2)-R.3(1+v)

+ Hcose(+ cose1+cose2)]

____	 C ____

E HLP (i.')	
2n+1

+ cose 1 -cose 2 n=2 n n	 (n_i)(n+2)[Pn0502)n0SGl)]

1	 1
+ n+2 cose1P^1(cose1)+ n-i cosO1P1(cose1)

+[	
cose2-cose1]P+1(cose2)^[cose1_ ni cose2]P_1(cose2)

(1 . 3C. 8)
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It can be easily shown that, in the limit as R0-P,

equation (1.3C.8) reverts to equation (1.3B.14), which gives

the radial displacement for the case of the cavity.

1.4 Calculation of the influence coefficients

0,
01	 - U1(e1)

c%I	 -

- - -
	 p11I' ".t "cs Ift	 \

I'.

' \	 '

I	
t.%
t ...	 '	 .'

'

ip tpa

Figure 1.4 : Discretised pressure distribution
on a spherical body

Consider an axisymmetric continuous pressure distribution

applied to a spherical body, within an angular extent ec.

Such a pressure distribution can be approximated by a

discretised equivalent, as shown in Figure 1.4.	 This model
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is made up of a number of variable pressure bands, of the form

used in the previous section, where the pressure p at the

boundaries between bands is set equal to the pressure applied

to the surface by the continuous pressure distribution at the

particular point e.

By using the principle of superposition, it is then

possible to obtain the resulting displacement Ur(ei), on the

surface of a spherical body, from the equations derived in

the previous section.

It should be noted here, that the number of pressure

bands used, does not affect the accuracy of the displacements

obtained, resulting from the application of the discretised

pressure distribution, but only the accuracy to which the

actual continuous pressure distribution is approximated.

It is thus possible to express the relationship between

the discretised pressure distribution and the displacements

at the required points, in influence coefficient form,

U=Mp
	

(1.4.1)

where,

U is the vector of displacements Ur(8i) at the

required points

p is the vector of pressures p, at the specified

points e3.

M is the matrix of influence coefficients.

Its elements M.	 give the displacement at point e.,1,J
due to a unit pressure at point e.
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In calculating the influence coefficients M. ., either1,J
equation (1.3A.21), (1.3B.14) or (1.3C.8) is used, when the

spherical body in question is a sphere, a cavity or a layer

respectively and the proceedure employed is as follows.

When calculating the influence coefficients M 11 or MiNI

only one pressure band is involved, defined by p 1 and p2 or

N-1 and N respectively, as seen in Figure 1.4. 	 In the

former case only the part of the relevant elastic equation

referring to q 1 is used, with q 1 set to p 1 .	 While, in the

latter case, only the part referring to q 2 is used, with

and e2 replaced by eN_l and eN respectively and q2 set to

When calculating the influence coefficient M. ., for1,J
1<j<N, two pressure bands are involved, as seen in Figure 1.4,

and defined by p_ 1 , p and p 1 .	 Thus the relevant elastic

equation is used twice and the results summed to obtain the

required influence coefficient. 	 For the pressure band def-

ined by p_ 1 and p, the part of the equation referring to q2

is used, with e 1 and e2 replaced by e 1 and e respectively,

and q2 set to p.	 For the band defined by p and p1, the

part of the equation referring to q 1 is used, with 01 and

replaced by e and 0j+1 respectively, and q 1 set to p.

1.5 Computer implementation

The formulation of a computer algorithm for the calcul-

ation of the influence coefficients, as described in the

previous section, is a relatively simple exercise.	 However,

two major points have to be kept in mind.
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First, in the calculation of the Legendre polynomials

the recurrence relationship, given by equation (1.3A.8), is

used in the form:

= uP(u)-P_1(u)+P(u)-	 n-i-i

where,	 p (p)=10

and

for reasons of economy and numerical stability.

(1.5.1)

(1.5.2)

Note, that for large values of n, the last term of equ-

ation (1.5.1) is negligible, giving the approximation

From equation (1.5.3), it can be shown that the roundoff

errors grow at worst linearly for IuI 1 , as follows.

If	 is the error in Pfl+k(u) due to a single rounding

error p in P(u) the approximation gives,

n+k+1 = 2 n+k - n+k-i
	 (1.5.4)

with initial conditions

and pfl=O
	

(1.5.5)

This difference equation has its maximum for 1.11=1,

and in this case the solutions are:

n-i°'	 t)^iI2), • •., I P n+kI 1(+1	(1.5.6)
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Second, the term	 in equation (1.3C.8), given by

equation (1.3C.5), has a numerator which is a function of

n 4 and a denominator which is a function of n6 , which pro-

duce overflow errors when an attempt is made to calculate

them directly for large values of n.

This problem was circumvented by expressing H in such

a way as to only involve calculation of fractions, where the

power of n is the same in the numerators and denominators,

and in the worst case it is equal to 2.	 This was achieved

through the use of recurrence relationships for all the terms

of H, as follows:

H is written as

i=6
HL= 

ili,2 - C72

2	 i13
i8 C12 - C142

where,

l 2= 4(7-lOv)(19v-17),

C22= 126]

IR 3
C32= 4(7-1Ov)(8-1Ov)I.I

L oJ

1R
C42= 15O(4v3)I'l

L oJ

C52= 1OO(1-3v+2v2)I-I
L oJ

(1.5.7)
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IR •10
C6,2 = 4(8_10v)(7_4v)IT.I

i oJ

R
C7,2 = 252(2v-1)I.I

L oJ

C82 = 16(7-lOv)(7-5v)

C92 = 504[.]

R.3
C 102= 16(7-10v)(8-10v)1-1

L oJ

IR .
C 112= 600[2.j

rR . -i7
)IIC 12,2= 100(1-v2 IRII- OJ

rR 10
C 13,2= 4(810v)(7.f.4v)I..LI

L oJ

R.15
C 14,2 = 10081..I

L oJ

And letting,

= C.	 xD.1,n 1,n

(1.5.8)

(1.5.9)

can be written as

i=6
HL = 

ilin+l -
n+1	 i=13

1=8 i,n+1

(1.5.10)

where,
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3n+4-v(4n+6) 2n2(v-1)+n(9v-8)+(8v-7)D1	
= 3n+1-v(4n+2) 2n2(v-1)+n(5v-4)+(v-1)

rR 2
D	 = n+2 2n+5 2n+1 I ii
2,n	 n	 2n+3 2n-1 1T1

L oJ

r
D	 = 3n+4-v(4n+6) 3n+5-v(4n-4-6) I.i

3,n	 3n+1-v(4n+2) 3n+2-v(4n+2) L'

D 4 1 n	 n	 5,n

2 rR •2
2n+3

D5, = [2n+1] i R IL o.j

3n+5-(4n+6) 2n2(1-v)+n(4-3v)+(1+v) R._____________ _______________________ 1 1
= 3n+2-v(4n+2) 2n2(1-v)+nv-4-(2v-1)	 Li

D	 =D7,n	 2,n

n+3 3n+4-v(4ri+6) n2+3n+3-v(2n+3)
D8, = n+2 3n+1-v(4ri+2)

r
D	 = n+3 •2n+5 2n+1

9,n	 n-i 2n+3 2n-i IR
LO

r
D	 - n	 n+3 3n+4-v(4n-i-6) 3n+5-v(4n+6) I..i.

1O,n n-i n+2 3n-f-1-v(4n+2) 3n+2-v(4n+2) L'

n+3D	 =	 Dll,n n-i	 5,n
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D	 =D12,n	 5,n

n	 3n+5-v(4n+6) n2+3n+3+v(2n+1) R.4___ _________ ____________ Ill
Ii- In-i 3n+2-v(4n+2) n 2+n+1+v(2n-i-1) L oJ

D 14, = D9
(1 .5. 11)

Note that the process is started from n=2, because some

of the terms D.	 are not defined for n=1.	 The value ofun

is of course obtained by direct substitution of n=1 into equ-

ation (1.3C.5).
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CHAPTER 2

DRY CONTACT

2.1 Introduction

H. Hertz [13] was first in successfully treating the

contact problem between elastic bodies, and even one hundred

years after its conception his theory is as widely used as

ever.

Elastic contact problems can be classified as Hertzian

if they satisfy the following conditions:

1) The bodies are homogeneous, isotropic, obey Hooke's

law and experience small strains, (i.e. the linear theory

of elasticity applies).

2) The contacting surfaces are smooth and frictionless.

3) The dimensions of the deformed contact patch remain

small compared to the principal radii of curvature of

the undeformed surfaces.

4) The deformations are related to the stresses in the

contact zones as predicted by the linear theory of

elasticity for half-spaces.

5) The contacting surfaces are continuous and may be repre-

sented by second degree polynomials prior to deformation.
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Contact problems can be further classified as,

a) Counterformal (or Antiformal), where condition 3 above

is satisfied.

b) Conformal, where condition 3 above can be violated.

When considering the conformal contact between a sphere

and a spherical seat* of nearly the same radii, under a severe

enough loading the footprint dimensions can reach the same order

of magnitude as the undeformed radii of curvature, without the

actual displacements of the surfaces becoming large enough to

prohibit the use of the linear theory of elasticity. However,

the relatively large footprint dimensions possible in this case

invalidate condition 3 of Hertz's theory, thus necessitating

a different solution.

In this chapter a numerical solution is presented for

the problem of axisymmetric conformal contact between a sphere

and a spherical seat, which presents computational time advan-

tages over other such available solutions. The assumptions of

this solution being as follows:

1) Hertzian conditions 1 and 2 apply.

2) The radii of curvature of the two bodies are almost equal.

3) The external loading is such that the resulting force acts

along the line connecting the centres of the two spherical

bodies and produces no rotations.

* seat, •refers to either a spherical cavity or a spherical
layer.
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2.2 Geometric conditions governing the contact deformations

Figure 2.1 : Contact of elastic spherical bodies

Consider a smooth elastic sphere S 5 and a smooth elastic

seat Sc in contact along an angular extent	 of their boun-

daries, as shown in Figure 2.1. It is assumed that they are

of almost equal undeformed radii (RsRc) and that the external

loading Q, is non-torsional and axisymrnetric about the line

connecting the centres of the two bodies, permiting the con-

sideration of only a meridional plane. It is further assumed

that the displacements of the surfaces of the two bodies are

of such order of magnitude as to permit the use of linear

elasticity theory.

This section presents the derivation of the geometric

relationships governing the deformations that characterize

such a contact.
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I

Figure 2.2 : Contact of rigid sphere and elastic seat

First, assume that the sphere S5 is rigid and the seat Sc

elastic and that they are initially touching at point A 0 as

shown in Figure 2.2. After application of the external loading

on S, along the	 axis, S5 penetrates S by U 0 , and a

typical point A	 Sc moves to A, being now on the spherical

surface of contact S, with radius R5.

If	 and	 are the radial and tangential (in the e dir-

ection) components of displacement of A, the following two

geometric relationships can be obtained:

R cose+A = (R +U )cose-W sines	 c c	 c

(2.2.1)R sine' = (R +U )sine+W coses	 c c	 c

where,	 = U +c and c = R -R
Co	 C 5 (2.2.2)



U = U cose-c(1-cose)
C	 Co (2.2.5)

1
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By eliminating e from equations (2.2.1) and noting that,

(R 2 -R 2 ) = (R -R )(R +R )	 2cRC S	 C S C S	 C

one obtains,

2R (U +c-(U +c)cose)^U 2 +W 2 -i-t3 2 +c2+2cUC c	 Co	 C C Co	 Co

+2(u 0+C)(wsine_ucose) = 0

(2.2.3)

(2.2.4)

By neglecting second-order small quantities equation

(2.2.4) can be rewritten as,

Figure 2.3 : Contact of elastic sphere and rigid seat

Next, the . sphere S5 is assumed elastic and the seat S
c

rigid, see Figure 2.3. By using a similar method to that

employed above for the opposite case, the relationship at the
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surface of contact of radius 	 becomes:

U = U cose+c(1-cose')
S	 SO

(2.2.6)

In deriving equations (2.2.5) and (2.2.6), it was found

that by neglecting second-order small quantities, the condi-

tions of deformation in the contact region are independent of

the tangential displacements. This being so in both extreme

cases, when either of the two bodies is rigid, it is logical

to assume that the same will apply in the case when both

bodies are elastic.

The surfaces of the two bodies can be represented in

spherical coordinates as,

S	 :	 R = a F (e,U
S	 S	 SS

S	 :	 R = a F (e,4)
C	 C	 CC

(2.2.7)

When the bodies are pressed together, the contact surface

can be represented as,

R = âF(O,)	 (2.2.8)

Figure 2.4 : The contact surface
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From Figure 2.4, it can be seen that,

w
RC+UC = F(e-I-de,u = aF(e+--, eu	 (2.2.9)

Expanding equation (2.2.9) as a Taylor series, it

becomes:

w
RC+UC =

w21	 2C____

+ R2
	ae2 EF(e,)]+ . . . 1 	(2.2.10)

In order to be able to ignore the terms in

n [F(e,U] = 0	 for all	 n1	 (2.2.11)
ae

Which leads to the conclusion that F(e,) must be a

constant, in order to conform with the assumption that the

conditions of deformation in the contact region are indepen-

dent of the tangential displacements; and thus the contact

surface is spherical with radius R.

Thus, when both S and Sc are assumed to be elastic, the

two extreme cases, described above, can be combined by assuming

that the surface of contact is spherical with radius R.

Therefore, from equations (2.2.5) and (2.2.6) as applied

to Figure 2.5, follow the relationships:

U = Ucocose_(Rc_R)(1_cose;)

= U50cos05+(R-R)(1-cos8)	 (2.2.12)
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Figure 2.5 : Contact of elastic sphere and elastic seat

Now, noting that from geometrical considerations,

equations (2.2.12) can be combined to give:

U -U = (U -U )cose-c(1-cose) 	 (2.2.14)C S	 co so

Equation (2.2.14) represents the geometric relationship

for. the displacements within the contact region. And, of

course, the relationship that holds for the displacements

outside the contact region, for the two bodies not to inter-

fere, follows directly from equation (2.2.14) and is:

U -U > (U -U )cose-c(1-cose) 	 (2.2.15)c 5	 co so
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2.3 Formulation and Solution

When considering a contact problem, the known conditions

are the body geometries, the material properties and the ex-

ternal loading, while the unknowns are the dimensions and

shape of the contact area, the approach of the two bodies

and the contact pressure distribution.

By formulating the problem this way, it becomes very

difficult to solve due to its non-linear nature.

One of the following two numerical methods is usually

used to determine the contact area, approach and pressure

distribution.

In the first method (25,28], a contact area that exceeds

the expected one, as well as an approach of the two bodies is

assumed. The contact area is discretised and a trial solution

is obtained. If any negative pressures are present in this

solution the contact area is gradually reduced until all

pressures are positive or zero. Then the approach is adjusted

to ensure that the bodies do not interfere outside this cont-

act region. This process is repeated until both criteria are

satisfied.

The second method (19], is based on the principle that

the pressure distribution and area of contact will be such as

to minimize the total elastic strain energy, subject to posi-

tive pressures within the contact region and no interference

of the bodies outside it. This method can be implemented by

the use of quadratic programming.
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In both the aforementioned methods, the criterion of

non-interference between the two bodies outside the contact

region is used as a direct part of the solution, in order to

provide a means by which the approach of the two bodies can

be made compatible with the external loading, as well as

the resulting contact area and pressure distribution. However,

such interference is physically impossible, as it would require

undulations of the surfaces of the two bodies, when pressed

together, which are incompatible with bodies having originally

smooth continuous surfaces, as is the case when a smooth

sphere is contacting a smooth spherical seat.

When such a contact is stipulated, the surfaces of the

deformed bodies will be expected to remain continuous, with

no abrupt changes in curvature, and the resulting pressure

distribution will also be continuous and dropping to zero

at the contact edge. However, the non-interference crite-

rion has still a role to play in the numerical solution of

the problem in question, albeit not a direct one.

In order to be able to stipulate a smooth continuous

surface for a body after the application of a given pressure

distribution, it must also be smooth and continuous. However,

this is not possible when the method of solution employed is

numerical, as pressure and surface displacements are speci-

fied at discrete points and thus, the surface between them

can take any shape compatible with the discretised pressure

distribution, but not necessarily compatible with the stipu-.

lated smooth surface specified by the displacements at the

discrete points.
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Thus, due to the surface undulations that can be pro-

duced by the piece-wise continuous pressure distribution em-

ployed to model the expected smooth and continuous one, the

discretised models of the bodies could interfere outside the

contact region. Such interference however, would disappear

at the limit, when the discrete points used are numerous

enough to produce the theoretical continuous pressure distri-

bution and surfaces. Therefore, the non-interference crite-

rion, in a numerical solution of a contact problem of such

form as described here, would be used only to check if the

nodal point density is, at least from this point of view,

satisfactory.

It is of course implied that a different way would have

to be used to obtain the approach of the two bodies. Such

a method is described in this section.

When considering a non-torsional axisymmetric radial

loading, applied to a sphere and spherical seat in contact,

such that the resulting forces act along a line connecting

the centres of the two, then the contact area can be defined

by a single dimension. Namely, the contact angle, as shown

in Figure 2.1. This dimension characterizes the contact and

is subject to a non-linear relationship with the applied

external loading. The non-linearity of this relationship is

the major difficulty in the solution of the problem, when

formulated in the intuitively correct way described in the

first paragraph of this section, and would require the use of

one of the methods of solution mentioned above. However,

from an engineering point of view, there is no reason why the
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problem should not be formulated in the opposite way, i.e.,

specification of the contact angle, instead of the applied

load, and upon solution, derivation of the latter.

This formulation, permits the solution of the problem,

as will be seen below, without direct reference to the non-

linear load-contact angle relationship; and although possi-

bly distasteful to a mathematician, it permits comparison of

results with Hertz's theory, as well as providing a design

engineer with information as useful as that provided by the

alternative formulation.

Accordingly, consider the contact of a smooth sphere

with a smooth spherical seat as shown in Figure 2.1 and

assume the contact angle to be of a given magnitude ec.

The first step in the solution is to discretise this

contact area as shown in Figure 2.6.

e.pr	 -

	

-. -	
- -

1%	 \	 --

It	 \
•1 \ S.1%	 S.

ri

S.

S.

I	

S.

I
I

Figure 2.6 : Discretised contact area
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Equation (2.2.14) is applicable to all the points in

the contact area, but for point 1, when e=o, it conveys no

useful information. However, at point 1 the sum of the dis-

placements of the two bodies is equal to their approach,

It is thus possible, using equations (2.2.14) and (2.3.1),

to write the geometric relationship governing the displacements

in the contact region in matrix form,

Ax(UC_US ) = b
	

(2.3.2)

where,

A= 1
	

0

Cos2	 -1

cose_1 0

cose 0

cose1 0

coseN_l 0

coseN
	 0

...	 000

...	 000

• . -1	 0	 0

• . •	 0 -1	 0

• • .	 0	 0 -1

000

000

•..	 00

•..	 00

00

00

00

• . • -1	 0

. . .	 0 -1 (2.3.3)

* the minus sign is due to the sign convention used for
U and U

S	 C



U =Mxp
c	 c c (2.3.8)
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b=

c(1-cose2)

c(1_cose_1)

c(1-cose)

c(l_coseN_l)

c(1_cosON ) (2.3.4)

and, U and U are the vector of displacements of the sphere

and seat respectively, at the specified N points.

Noting that, due to the nature of matrix A,

AxA	 I
	

(2.3.5)

where, I is the unit matrix.

equation (2.3.2) can be rewritten as,

U-U =Axbc S (2.3.6)

Now, using equation (1.4.1), the displacements at each

specified point within the contact region can be written as

a function of all the pressure magnitudes at the same points,

as follows:

U = M5xp5	 (2.3.7)

and



p = [M -M ]1xAxbC 5 (2.3.11)

and letting

B = (2.3.12)

N
iS= - _______________

B(N, 1) (2.3.14)
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Further, at all points in the contact region the pres-

sure magnitudes acting on the sphere and seat are equal,

making it possible to write,

PC = PS =P
	

(2.3.9)

Thus using equations (2.3.7), (2.3.8)and (2.3.9),

equation (2.3.6) can be rewritten as,

[M_M5 ] xp = Axb	 (2.3.10)

By premultiplying both sides of equation (2.3.10) with

the inverse of [M_M5], it becomes:

equation (2.3.11) can be rewritten as,

p=Bxb
	

(2.3.13)

Equation (2.3.13), specifies the pressure distribution

within the contact region, but note that, the first element

of b, namely iS, is as yet unspecified. However, using the

fact that N=°' as it corresponds to the point where the con-

tact area ends, iS can be obtained from:

Thus, b is now completely specified, so that all the
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pressures within the contact region can be obtained from

equation (2.3.13).

From the computed pressure distribution, the applied

external load on the sphere, that would result in a contact

angle of magnitude e , can be obtained.

At this point, by using equation (1.4.1) again, but this

time specifying the displacements outside the contact region,

the non-interference criterion, as expressed by equation

(2.2.15), can be checked and a decision made as to whether

the number of nodal points used in the discretisation of the

contact angle were numerous enough.

Equation (2.3.13), can also be used for the case when

the seat is truncated at e , i.e. for the case of a restricted

contact. In this case	 will not be equal to zero unless the

specified approach is exactly equal to that obtained by set-

ting it equal to zero. Setting the approach smaller serves

no usefull purpose, as it implies a contact angle smaller than

and produces negative pressures. Setting the approach lar-

ger however, implies a larger unrestricted contact angle than

and thus, the pressure distribution for the case of a res-

tricted contact is obtained. The non-interference criterion

is of course irrelevant in this case, as by definition the

seat does not extend past e and thus, no interference is

possible.
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2.4 Results

The formulation of a computer algorithm for the solution

of the contact problem is a very simple exercise, as the only

complication presented is the requirement for matrix manipula-

tion subroutines, which are available as software packages on

most computers.

The number of nodal points used in the solution affects

the accuracy of the results obtained. Figure 2.8 presents the

pressure distributions obtained with different numbers of nodal

points for a 10° contact, together with the resulting load,

maximum pressure and approach. The choice of the optimum

number of nodal points for a particular contact was made by

increasing their density until the change in the results obtained

was less than 1% between consecutive increases.

The non-interference criterion discussed in the previous

section was checked in all cases, and was found not to be vi-

olated for all ofi the nodal point densities employed. Note,

that the check was made at four points, with a density double

that used inside the contact region.

No deformed shapes are shown as part of the results

owing to the high cost that would be involved in obtaining them.

This is due to the need to discretise the complete surfaces of

two bodies. However, the deformed shapes within the contact

region were checked and found to conform to a circular arc, as

expected. As an example of deformed shapes see Figure 2.1,

which is qualitatively correct.
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Results were obtained for three different ratios of radii,

combinations of two different materials and a range of differ-

ent seat thicknesses. One material is assumed to be steel

with a Young's modulus of 200 GN/m 2 and a Poisson's ratio

of 0.3. The other material is assumed to high molecular weight

polyethylene with a Young's modulus of 500 MN/rn 2 and a Poisson's

ratio of 0.38. In the case of the polyethylene, it is assumed

that it behaves as alinearly elastic material by ignoring creep.

Thus, the results obtained for it can be assumed to be correct

only if the application of the external load is of a very short

duration.

Figures 2.9 through 2.16, present the pressure distribu-

tions for different contact angles, ratios of radii, materials

and seat thicknesses. It can be seen in these figures that

for the case of infinite seat thickness, the shape of the pres-

sure distributions starts by being exactly elipsoidal for small

contact angles, being thus compatible with the shape assumed

by Hertz. However, they deviate sharply from this shape as the

contact angle reaches 900.

By further comparing the results presented in Figures 2.9

through 2.13, it can be seen that that their magnitude is depen-

dent on the degree of conformity of the two bodies.

Figure 2.16, presents an interesting point that was encoun-

tered, when the seat is of softer material than the sphere. In

this case a limiting contact angle exists, which can not be exce-

eded within the confines of linear elasticity, irrespective of

the magnitude of the applied load. It can be seen from equation
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(2.2.14), that for a 90° contact angle to be possible, the dis-

placements of the surfaces of the two bodies should be able to

satisfy the following equation at the contact edge,

When the material of the seat is softer than that of the

sphere, equation (2.4.1) can not be satisfied even if the clear-

ance is zero. From this, it can be surmised that the limiting

contact angle is a function of the clearance and the relative

material properties of the two bodies.

Figure 2.17, presents the results of truncating the seat

at 10°. However, the pressure singularities involved should

be considered only qualitatively correct for two reasons.

First, the model used for the seat, as. described in Chapter 1,

becomes more inaccurate the nearer the seat is truncated to

the edge of the contact zone. And second, the elements used in

the region of the pressure singularity are inadequate, so some

type of singularity element should be employed [25]. However,

in the model used, such elements are precluded for the reason

explained in Section 3 of Chapter 1.

In Hertz's theory it is assumed that both bodies can be

considered as elastic half-spaces and, if they are of the same

material, should undergo the same displacements at correspon-

ding contact points. This is strongly contradicted by the

results presented in Figure 2.17. This figure shows that, even

for a small approach, the ratio of displacements is still not

quite equal to one. However, extrapolation of the curve could
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be seen to imply asymptotic equality at very small approaches,

which would be as expected, because of the very localised

effect of the stresses in that case.

Figures 2.19 through 2.21, present plots of dimensionless

groups. It can be seen from these, that Hertz's theory overes-

timates the approach and the contact area, while underestimat-

ing the maximum pressure. However, for contacts angles up to

about 300 it does provide a good approximation. This can be

attributed to the conformity of the bodies, as despite the

large contact area involved, invalidating an assumption of

Hertz's theory, the actual displacements involved remain com-

paratively small.

Figures 2.22 through 2.24, present plots of results in

the form of dimensionless groups, obtained for contacts between

bodies of different materials, in an attempt to present some

measure of the quality of the method of solution presented

herein.

2.5 Conclusions and suggestions for further work

A numerical method has been presented for the solution

of the conformal contact problem between an elastic sphere

and a spherical cavity in an infinite elastic medium or an

elastic spherical layer with a rigid substrate. This method

presents advantages from the point of view of computational

time, over other such methods, by avoiding the use of an ite-

rative solution.

Hertz's theory was shown to provide reasonably accurate
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results for an infinite seat thickness and contact angles up

to 300, even when the assumption of relatively small contact

footprint dimensions has been violated. However, for the case

of finite seat thicknesses no such specific statement can be

made, as the difference in the results varies with seat thick-

ness and contact angle. In this case Hertz's theory can be

used, as a reasonable approximation, only when the contact arc

is relatively small compared with the seat thickness.

When the seat is of softer material than the sphere, a

limiting contact angle exists, which is a function of clear-

ance and material properties and can not be exceeded, within

the limits of linear elasticity theory, irrespective of the

magnitude of the applied load.

When the arc available for contact is insufficient, stress

concentrations result at its edge. However, in order to ob-

tain quantitative measures of these concentrations, different

models for the bodies must be employed, that permit the use

of singularity elements.

The stress equations, which were used in Chapter 1 to

derive the displacements, can be employed to obtain the

stresses which result in the two bodies from the pressure

distributions under the contacts in question.

No mention of experimental results, for the particular

types of contact described, has been found in the literature

and thus, any further work should first concentrate on obtain-

ing such results, in order to validate the theory. Any dis-

crepancies in the theory, that will be revealed by such results,
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can be attributed to two major factors. First, in a real

situation no frictionless contact can exist. And second, the

models used for the seat are not accurate in describing any

real situation in which it would be possible to load the sphere,

as they involve complete cavities. In a real situation, the

arrangement would be a variant of the one shown in Figure 2.7.

Figure 2.7 : Possible experimental arrangement

However, the method as it stands might prove adequate

for design purposes, as it is more accurate, for large angle

conformal contacts, than Hertz's theory.
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FIGURE 2.8	 ImportarcQ of Nodal Point DQnsity
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Angulor Dsstonce from the Pole (Degrees)

+ - ELIPSOID

SEAT	 LOAD	 APPROACH CONTACT ANGLE	 SOLUTION
THICKNESS	 (KN)	 (pm)	 (Degree.)	 TYPE

A	 388.33	 227. 614	 20
B	 46.64	 57. 751	 10	

CAVITYC	 5.61	 14.476	 5
0 __________	 0.35	 2.339	 2	 __________

FIGURE 2.9 : UnrQstrictQd Dry Contact
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Angular Distonce from the Pole (Degrees)

+ - ELIPSDID

SEAT THICKNESS	 LOAD	 APPROACH	 SOLUTION
Cm)	 (N)	 (pm)	 TYPE

A	 0.0005	 24.06	 0.101
B	 0.0010	 20.72	 0.099
C	 0. 0020	 18. 88	 0. 103	

LA R

0	 0.0050	 18.38	 0.111	 ____________
E_______________	 18. 29	 0. 117	 CAVITY

FIGURE 2. 10 : UnrQstrictQd 2 Dry Contact
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Angular Distance from the Pole (Degrees)

+ - ELIPSOID

SEAT THICKNESS	 LOAD	 APPROACH	 SOLUTION
CM)	 (N)	 (pm)	 TYPE

	

0. 0005	 455. 74	 0.659
B	 0. 0010	 403. 16	 0. 634
C	 0.0020	 343.35	 0.620	 LAYER
0	 0. 0050	 299. 68	 0. 645

	

E0.0100	 291.87	 0.678	 ____________
F ____________	 289.50	 0.724	 CAVITY

FIGURE 2.11 : UnrQstrictQd 50 Dry Contact
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FIGURE 2. 12	 UnrQstrictd 10° Dry Contact
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-	 -
-	 Angular Distance from the Pole (Degrees)

• - ELIPS0IO

SEAT THICKNESS	 LOAD	 APPROACH	 SOLUTION
(i.)	 (MN)	 (jam)	 TYPE

-r	 0.0005	 35.71	 10.946
B	 0.0010	 33.94	 10. 720
C	 0. 0020	 30.96	 0.390	 LAYER
0	 0. 0050	 26. 08	 0. 022

	

E0.0100	 22.73	 - 0.006	 _____________
F____________	 20.01	 1.381	 CAVITY

FIGURE 2. 13 : UnrstrictQd 20D Dry Contact
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FIGURE 2. 14	 UnrstrictQd 450 Dry Contact
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FIGURE 2. 15 : UnrQstrictQd 900 Dry Contact
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FIGURE 2. 16 s UnrQstrictQd Dry Contact
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200	 R Cm) E CGN/m') v
SPHERE 0.0300	 200	 0.3
SEAT	 0.0301	 200	 0.3

SEAT THICKNESS -
SOLUTION TYPE - CAVITY

150
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100-	 B
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FIGURE 2. 17 s RQstrictQd lOs Dry Contact
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102

'I
10 0	101

Dimensionless Load	 (Q /R5Ec)

Youngs Modulus (ON/rn') 	 Poisson's Ratio

SPHERE	 SEAT	 SPHERE	 SEAT

A	 200	 0.5	 0.3	 0.38
8	 200	 200	 0.3	 0.3

____	 0.5	 0.5	 0.38	 0.38

FIGURE 2.22 : Variation of Approach with Load
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SPHERE	 SEAT	 SPHERE	 SEAT

A	 200	 0.5	 0.3	 0.38

8	 200	 200	 0.3	 0.3

K	 0.5	 0.5	 0.38	 0.38

FIGURE 2.23 z Variation of maximum PrQssurQ with Load
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CHAPTER 3

LUBRICATED CONTACT

3.1 Introduction

Very little effort appears to have been concentrated on

the analysis of lubricated contacts between closely conformal

spherical elastic bodies. In this chapter, such contact is in-

vestigated for conditions of pure squeeze under a constant

approach velocity of distant points on the two bodies.

In general, when a thin film lubricated contact is to be

investigated, use is made of Reynold's equation to describe the

behaviour of the lubricant. However, the analysis herein is

started from the equations of motion for the lubricant and the

conditions of continuity. This is because, for the particular

problem in question, the continuity conditions can be explicitly

stated, thus making the process a lot easier than trying to

apply boundary conditions to Reynold's equation.

Two types of lubricant are considered, a paraffinic oil

with pressure dependent viscosity, and synovial fluid, which is

the lubricant in human joints and has shear-rate dependent

viscosity.

Great interest is centred around the behaviour of natural

joints, and no definite concensus exists over the lubricating
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mechanisms involved. At present, a tribologist would find it

extremely difficult, if not impossible, to provide a man made

bearing which would operate within the body environment, occupy

the same space as the natural bearing, withstand the same dy-

namic loads, possess the same degree of movement and low fric-

tion and have the same remarkable mean life. It would thus seem

probable, that complete understanding of natural joint behaviour

would revolutionize bearing design.

In this study, synovial fluid is considered as a lubri-

cant, in a contact configuration which closely resembles an

artificial hip joint replacement. The purpose of this, is to

investigate whether synovial fluid per Se, presents advantages

over normal engineering lubricants in a bearing of such con-

figuration.

3.2 Formulation and Solution

3.2A Pressure dependent viscosity

Consider an elastic sphere and a spherical elastic seat

of almost equal undeformed radii R 5 and R respectively, in

lubricated contact, as shown in.Figure 3.1.

It is assumed that:

1) The seat is stationary.

2) The sphere is subject to an axisymmetric load Q, of such

varying magnitude, as to result in a constant pure squeeze

velocity V for the centre of the sphere, along the line

connecting the centres of the two bodies.

3) The gap between the two bodies is completely filled with
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Figure 3.1 : Spherical squeeze lubricated bearing

a lubricating fluid. And further, as the gap closes, due

to the movement of the sphere, the fluid is permitted to

escape at the edge of the seat, in such a way as to result

in a constant pressure, equal to atmospheric, at the edge.

4) The two bodies are homogenous, isotropic, obey Hooke's law,

and experience small strains, permitting the use of linear

elasticity theory.

5) There is no slip at the solid-fluid interface and no chem-

ical interference.

6) The lubricant is incompressible and the process isothermal.

7) The lubricant viscosity is pressure dependent. The equa-

tion of state used for the lubricant is the one proposed by

Cameron [4], and has the form:

11 = ii0 (1+ctp)16	(3.2A.1)
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1	 dp= -	 -r+C1 r (3. 2A. 4)
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8)	 The inertia forces are negligible compared to the viscous

ones.

9) The lubricant flow is laminar.

10) The pressure is constant across the film thickness.

Using the above assumptions, the equations of motion of

the lubricant for axisymmetric flow in the gap, can be obtained

from the Navier-Stokes equations and are, for spherical polar

coordinates [5]:

ye3p	 ___
= r	 (r	 (	 ))

ap
0

3p - 0
	

(3.2A.2)

which, since the variation of r is small and the viscosity

does not vary with r, can be rewritten as,

By integrating equation (3.2A.3), ye is obtained as,

If r 1 and r 2 are the local deformed radii of curvature

of the surface of the sphere and seat respectively, measured

from the centre of the seat, the film thickness can be written

as,

h = r 2 -r 1	(3.2A.5)
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and the boundary conditions for ye can be written as,

r=r 1	:	 v0=Vsine

r = r 2	:	 V8 = 0
	

(3.2A.6)

Using the boundary conditions (3.2A.6), equation (3.2A.5),

and setting,

y = r-r.
	 (3.2A.7)

equation (3.2A.4) becomes:

R h-y1 dp	 S ____
ye = - 2r d8 y(h-y,+---- h Vsin8	 (3.2A.8)

The total lubricant volumetric flow rate at any section,

defined by angle e, is given by:

( 211 çr2

F8 
= J	 J rsine v0 dr d'

r1

çh

= 2Trsin8 J rye dy	 (3.2A.9)
0

and by substituting equation (3.2A.8) into equation (3.2A.9)

and performing the integration, the flow rate due to the pres-
dp

sure gradient d8 is obtained as,

h 3 dpF = irsine(-- — +R hVsin8)	 (3.2A. 10)13	 6fld8
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I

Figure 3.2 : Geometric relationships for the
film thickness

Now, consider the geometrical relationships pertaining to

the film thickness as shown in Figure 3.2, from which,

re	 s
sin& - sine

r1

- sin-y (3.2A. 11)

= e
	

(3.2A. 12)

From equations (3.2A.11) and (3.2A.12), r 1 is obtained as,

r s	 .-1 e
= sine sin[8-sjn ( - sine)]r5 (3. 2A. 13)

which can be rewritten as,

r =,/r2_e2sin2& -ecose	 r -ecose1	 S	 S (3.2A. 14)



h = c+TJ+ecose (3.2A. 16)

where,

c=R-R	 and	 U=U-U
C S	 C S (3.2A. 17)
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Thus, using equation (3.2A.14) and noting that:

r =R+U	 and	 r =r =R+Us	 s s	 2	 c	 c c (3.2A.15)

equation (3.2A.5), giving the film thickness, can be written as,

Now, as the sphere approaches the seat, lubricant is

displaced, and from geometrical considerations, the volumetric

flow rate of the lubricant at any section specified by 0, can

be calculated. Consider an element of the gap as shown in

Figure 3.3.

dO

d4

Figure 3.3 : Elemental volume of lubricant

The volume of the element is:

L = R 2 sinO h ae d1	 (3.2A.18)
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The rate of change of the volume of the element is:

= Rsine 4-de dc	 (3.2A. 19)

thus, the volumetric flow rate at any section can be written as,

F0 = 2R 2 fsin0d8	 (3.2A.20)

By using equation (3.2A.16) and noting that by definition

de	 V, equation (3.2A.20) can be rewritten as,

+Vcos0)sin0 dO

piT

F = 2rrR 2 I
e	 SJ0 (3.2A.21

By equating the flow rates obtained from equations (3.2A.1O)

and (3.2A.21), an equation specifying the pressure gradient can

be obtained, which together with the elasticity equations and

the equation of state of the lubricant, would completely speci-

fy the problem and permit its solution, if somehow the term

in equation (3.2A.21) could be specified. Indeed, in most

cases it is solved in this fashion by neglecting the term in

question. However, results by Herrenbruch (121, suggest that

this term becomes of increasing importance, and can not be

safely neglected, as film thicknesses decrease and elastic

deflections increase.

This problem was circumvented by using a numerical method

to calculate the flow rate resulting from continuity consider-

ations.



- 100 -

At some considerable film thickness, it can indeed be

assumed that:

<< Vcose
	

(3.2A..22)

and thus from equation (3.2A.21), the flow rate can be

obtained at the time boundary as,

FOB = -irR2Vsin2O
	

(3.2A.23)

Considering two consecutive time instants T 1 and T2,

separated by a small time interval t, and assuming that the

flow rate varies linearly within the said time interval, the

following relationship is obtained:

F'	 +F0I
VO1 IT - VO1 IT =	

elT	 IT2

(3.2A.24)

where, "Vol" is the gap volume enclosed by the section in

question, defined by e, and is given by:

Vol = 2irR jsinO h dO
	

(3.2A.25)

Therefore, assuming that the flow rate at time T 1 is

known, the one for T 2 is obtained from:

F	 = -. (Vol iT - VO1IT ) - F 
I

e l T 1	 OIT
(3.2A.26)

It is now possible to obtain the solution to the problem

numerically, by discretising the contact area as per Figure 3.4.

Note, that the order in which the nodal points are numbered, is
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the reverse to that employed in Chapter 1, and thus the order

of the elements of the rows and columns of the influence co-

efficient matrices, must also be reversed.

- - -

Its-s
It	 '% .S.

It

I	
S

S."	 '	 •

I	 ' .
; I	 •'\ )'I	 I.

I'

p	 N-I

Figure 3.4 : Discretised area of contact

The algorithm employed to obtain the solution is as

follows:

Part A : At time t=0, the sphere is assumed to be in a posi-

tion relative to the seat, specified by a given eccentricity,

while its centre is moving with velocity V.

The iteration steps are:

1)	 A quess is made for the pressure vector. Its element p1

being set to zero to comply with assumption 3.

2)	 The vector of flow rates is obtained using equation

(3.2A.23).

3)	 Using the pressure vector and equation (1.4.1), the

elastic deflections are obtained as,

A
U = (M* - M*)xp	 (3.2A.27)

C	 5
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4) Using the elastic deflection vector and equation (3.2A.16),

the film thicknesses are obtained.

5) Using the pressure vector and equation (3.2A.1), the

viscosity vector is obtained.

6) Using equation (3.2A.10), in its finite difference form,

a new pressure vector is obtained.

Steps 3 to 5 are repeated until convergence is reached.

The convergence criterion employed is,

frj, new - Pj,oldI
	

io	 (3.2A.28)
j,old

for all values of j, 2jN.

The load Q on the sphere is calculated by integrating the

pressure distribution.

The volume vector is calculated using equation (3.2A.25).

The pressure, volume and flow vectors, as well as the

eccentricity and sphere centre velocity, are passed on as input

data for the calculation of the next time instant.

Part B : A new eccentricity is specified. Using this, together

with the eccentricity of the previous time step and the sphere

centre velocity, the size of the time step 1t is calculated.

The iteration steps are:

1) As a first quess for the pressure vector, the one obtained

from the solution of the previous time step is used.

2) Elastic deflections are obtained.

3) Film thicknesses are obtained.

4) The volume vector is calculated using equation (3.2A.25).
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5) Equation (3.2A.26) is used to obtain the volumetric flow

rates.

6) The viscosity vector is obtained.

7) Using equation (3.2A.10), a new pressure vector is

obtained.

Steps 2 to 7 are repeated until convergence is reached,

with the same convergence criterion as in Part A.

The load Q on the sphere is calculated.

The pressure, volume and flow vectors, as well as the

eccentricity and sphere centre velocity, are passed on as input

data for the calculation of the next time instant.

Part B of the algorithm is repeated for as many time steps

as are required.

A major problem presented, is the choice of starting eccen-

tricity and the size of the time intervals t.

From the total elastic deflections obtained for the pole

dUof the contact (nodal point N) from each time step,	 can be

obtained numerically. Thus the choice of starting eccentricity

can be judged as for its adequacy.

The choice of the time steps is first made by adjusting

their size to produce a smooth 	 curve. And finally, their

size is halved repeatedly, until the change in the results

between two consecutive runs is less than 1%.
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3.2B Shear-rate dependent viscosity

When considering a lubricant with shear-rate dependent

viscosity, in a contact configuration as described in subsection

3.2A, all assumptions made therein are applicable, except for

assumption 7, which would only be applicable if the viscosity

were pressure dependent as well.

For the purposes of the analysis presented here,it is

assumed that the viscosity of the lubricant is only shear-rate

dependent, with a constitutive equation as given below:

= 0	 (3.2B.1

However, in this case the equations of motion, equations

(3.2A.2), become analytically intractable because of the van-

ation of the viscosity with r.

Very recently Tayal et al (37], presented an analysis

based on the Navier-Stokes equations, which is applicable to

any form of the constitutive law for the lubricant. However,

taking into account the algebraic complications involved, as

well as the expensive computations resulting from the three

dimensional finite element formulation employed, it appears to

be rather impractical from an engineering point of view.

An alternative method was presented by Malik et al (241,

the results of which compare favourably with published experi-

mental ones [41]. In this approach, the lubricant viscosity

is defined in terms of the shear strain rates averaged inte-

grally across the film. The viscosity is thus reduced to a

function which is independent of r, making it possible to
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apply the method used in the previous section with the addi-

tion of a further iteration loop.

Accordingly, the constitutive equation for the lubricant

is given as,

av = no av
	 (3.2B.2)

and the shear strain rate averaged across the film is defined

as,

av 

=

	
(3 . 2B. 3)

dye
where,	 ' = dy	 (3.2B.4)

and thus, using equation (3.2A.8) for ve the average strain

rate is obtained as,

1
1av	 {h_-I_'_hI^_.II}	

(3.2B.5)

where,

1	 dp
R dOav S

1	 dp	 Vsine
2fl R deh+ hav S

(2.3B.6)

It is now possible to obtain the solution numerically,

by discretising the contact area as in subsection 3.2A.

The algorithm employed to obtain the solution is as

follows:
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Part A : At time t=0, the sphere is assumed to be in a posi-

tion relative to the seat, specified by a given eccentricity,

while its centre is moving with velocity V.

The iteration steps are:

1)	 A quess is made for the pressure vector, with p 1 set to

zero.

2)	 The flow rates are obtained from equation (3.2A.23).

3) All average viscosities are set equal to

4) Elastic deflections are obtained from equation (3.2A.27).

5)	 Film thicknesses are obtained from equation (3.2A.16).

6)	 Using equation (3.2A.10), in its finite difference form,

a new pressure vector is obtained.

7)	 Steps 4 to 6 are repeated until convergence is reached,

according to the convergence criterion (3.2A.28).

8)	 Using equations (3.2B.2) and (3.2B.5), new values of

average viscosities are obtained.

Steps 4 to 8 are repeated until convergence is reached.

The convergence criterion employed for the average

viscosities is:

T1j,neW - Tijoldi	 1o_8	 (3.2B.7)
j,old

for all values of j, 2jN.

The load Q on the sphere is calculated by integrating the

pressure distribution.

The volume vector is calculated using equation (3.2A.25).

The pressure, volume, flow and viscosity vectors, as well

as the eccentricity and sphere centre velocity, are passed on
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as input data for the calculation of the next time instant.

Part B : A new eccentricity is specified. Using this, together

with the eccentricity of the previous time step and the sphere

centre velocity, the size of the time step tt is calculated.

The iteration steps are:

1)	 As a first quess for the pressure and viscosity vectors,

the ones from the previous time step are used.

2) Elastic deflections are obtained.

3) Film thicknesses are obtained.

4) The volume vector is calculated using equation (3.2A.25).

5) Equation (3.2A.26) is used to obtain the volumetric flow

rates.

6) Using equation (3.2A.10), a new pressure vector is obtained.

7) Steps 2 to 6 are repeated until convergence is reached,

according to convergence criterion (3.2A.28).

8) New average viscosities are obtained.

Steps 2 to 8 are repeated until convergence is reached,

according to convergence criterion (3.2B.7).

The load Q on the sphere is calculated.

The pressure, volume, flow and viscosity vectors, as well

as the eccentricity and sphere centre velocity, are passed on

as input data for the calculation of the next time instant.

Part B of the algorithm is repeated for as many time steps

as required.

The choice of the starting eccentricity and of the size

of the time steps is made in the same way as described in

subsection 3.2A.
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3.3 Results

In obtaining the results for both cases of pressure and

shear-rate dependent viscosity, three interesting points were

encountered.

First, the choice of starting eccentricity is not critical,

as long as it is smaller than the eccentricity at which the

rate of change of total elastic deformation at the contact

pole versus eccentricity starts rising sharply *• It was

found that two solutions with different starting eccentricities,

chosen according to the above criterion, converge on each other

with results differing by less than 0.1%, within about three

time steps; which confirms the validity of the assumption made

to obtain the flow rate at the time boundary.

Second, it was found in all cases that it was possible

to obtain results satisfying the criterion of less than 1%

change between consecutive runs, with only one halving of the

size of the time steps used. However, this is probably because

the original time steps were chosen very carefully to give a

smooth curve, as seen by eye, for the rate of change of total

elastic deformation at the pole versus eccentricity.

Third, the algorithms become unstable when the rate of

change of total elastic deformation at the pole becomes

nearly equal to the sphere's centre velocity, making it im-

possible to obtain results past that point.

* See Figures 3.5 through 3.8 and 3.10 through 3.13, for

plots of --versus eccentricity.
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Results were obtained with a seat spaning a 900 angle,

for two different ratios of radii, two combinations of mater-

ials, two seat thicknesses, two lubricants, and a number of

different sphere centre velocities.

The two materials used are the same as the ones used in

Chapter 2, and are specified in section 2.4.

One lubricant is assumed to be oil, with a constitutive

equation expressed as,

= 0.01(1 + 1.842x10 9 xp) 16 	(3.3.1)

The values for the viscosity and the pressure viscosity

coefficient, were obtained from Cameron [ref.4, p.23, Fig.2.6,

for 24° C].

The other lubricant is assumed to be normal human syn-

ovial fluid in vitro, the viscosity of which is invariant

with pressure and varies inversely with shear strain rate [6].

The experimental results available for this variation do not

however cover the large shear rates required here. It was

therefore assumed that the viscosity of synovial fluid tends

- to that of water at large shear rates, and thus the constitu-

tive equation used is,

Equation (3.3.2), represents a good fit for the available

experimental results [ref.6, p.113, Fig.12.7], and gives the

viscosity of water when y-.

Figures 3.5 through 3.8, present film thickness profiles,
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pressure distributions and plots of rate of change of total

elastic deformation at the contact pole versus eccentricity,

for the cases of pressure dependent viscosity, a steel seat of

infinite thickness and a steel sphere with centre velocities

of lm/s, ldm/s, 1cm/s and 1mm/s respectively.

Figure 3.9, presents a comparison of load carrying capa-

cities for the above cases.

Figures 3.10 through 3.13, present film thickness profiles,

pressure distributions and plots of rate of change of total

elastic deformation at the contact pole, for a seat thickness

of 1.5cm and a sphere centre velocity of 7.5cm/s; where,

a) the sphere and seat are steel and the lubricant is

oil (Figure 3.10),

b) the sphere is steel, the seat is polyethylene and

the lubricant is oil (Figure 3.11),

c) the sphere and seat are steel and the lubricant is

synovial fluid (Pigure 3.12),

d) the sphere is steel, the seat is polyethylene and

the lubricant is synovial fluid (Figure 3.13).

Figure 3.14, presents a comparison of load carrying capa-

cities for the above four cases.

It should be noted here, that for the case of a poly-

ethylene seat, the results were stopped when the elastic dis-

placements started becoming too large to safely assume the

validity of linear elasticity theory.
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3.4 Discussion and suggestions for futher work

It can be seen from all the results obtained, that

rapidly reaches the same order of magnitude as the sphere

centre velocity. It would thus be disastrous to the accuracy

of any results obtained, to consider it relatively negligible

under conditions of large elastic deformations and thin films.

Further, by observing the film thickness profiles, it can be

seen that	 is not uniform, thus refuting the occasional

uniform velocity assumption used in the solution of ehi sque-

eze problems. These results are in agreement with the conclu-

sions reached by Herrenbruch [12], for counterformal cylinders.

Entrapments of the lubricant are beginning to form in all

cases of pressure dependent viscosity, and become more apparent

at high sphere centre velocities and small clearances. This is

in qualitative agreement with the experimental results obtained

by Paul [29], for a ball falling onto a flat plate covered

with oil, where small entrapments were observed when ball

bounce was inhibited. The larger entrapments predicted here,

can be attributed to the close conformity of the two bodies,

the larger extent of the ehi contact and the constant sphere

centre velocity.

From Figure 3.9, it can be seen that for the case of

pressure dependent viscosity, the load carrying capacity is

strongly dependent on approach velocity, lubricant viscosity

and pressure-viscosity coefficient, as well as the material

properties of the two bodies. However, this dependency is

weakened conciderably after the entrapments start to appear,
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probably because of the reduction in lubricant outf low from

the region of the entrapment, which corresponds to the region

of highest pressure.

A very interesting behaviour is presented for the case of

a polyethylene seat and a pressure dependent viscosity lubri-

cant (see Figure 3.11). An entrapment appears to start forming

near the edge of the contact, however, no final conclusion can

be reached by the present method, due to the limitations of

linear elasticity theory.

No obvious entrapments appear to be generated with either

a steel or a polyethylene seat when the lubricant viscosity is

shear-rate dependent, despite the considerable reduction in

the lubricant outflow. The film thickness profiles have simi-

lar shapes but the load carrying capacity of the polyethylene

seat is considerably smaller for similar film thicknesses (see

Figures 3.12 through 3.14).

From the results obtained here, synovial fluid per se,

does not appear to present any advantages, except of course

for lower friction, as it results in thinner films and lower

load carrying capacities than a pressure dependent viscosity

lubricant. Thus, nothing positive can be said to have been

added to the understanding of the operation of human hip joints,

however, the knowledge that more complex models will be needed

for that purpose, might prove of some use to further research.

The present model could easily be extended to include

porous bearing surfaces, and possibly dynamically varying

velocity under a constant or a changing external load on the
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sphere. Any further work should concentrate on those lines,

and possibly an attempt made in reshaping the algorithms to

remove the instability and thus enable results for thinner films

to be obtained; which judging from the relative behaviour shown

in Figure 3.14, might reverse the conclusions about synovial

fluid. And of course, some experimental results would be of

the utmost importance, in order to validate the theory.
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