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ABSTRACT 

The optimum design of a distillation system is posed as a 

constrained nonlinear problem, which enables the simultaneous deter- 

mination of the optimal configuration and the design variables of the 

given configuration. Initiall y the problem is formulated as a mixed- 

integer nonlinear problem because the set of optimization variables 

includes integer number for the ideal stages of each section of a given 

column. Since no explicit algorithm is Yet available for solving this 

class of problem, the integer optimization variables are treated as 

real ones and a constrained nonlinear problem is solved. 

The optimization of a single column with two or more products 

is carried out minimizing an objective function which is the nonlinear 

total cost of the column and the specifications for the products are 

expressed as nonlinear constraints. The use of short cut methods to 

model the distillation column, widely used in the design of distillation 

systems, has been replaced by a simple, but more rigorous, plate to plate 

model of the column that can be made as sophisticated as desired as the 

design evolves, thus avoiding the restrictions imposed by short cut 

methods and obtaining more realistic information on the system. 

The optimal configuration of a series of distillation columns 

is found Py optimizing a general configuration that contains most of 

the possible arrangements between columns. The objective function is 

the total cost of the general configuration, the nonlinear constraints 

are the specifications of the products and bounds on the internal flow 

rates of the columns and the optimization variables are the ideal stages 

in all the sections of the columns, the flow rates of the intermediate 

streams interconnecting columns and the heat exchanged in the condensers, 



reboilers and intermediate heat exchangers of the systen. Some of the 

configurations frequently used in industry can be found as particular 

simplifications of the general configuration proposed, but when energy 

costs dominate unconventional systems with strong thermal coupling 

between columns are usually obtained. 
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CHAPTERI 

INTRODUCTION 

Distillation is one of the most widely used separation processes 

in industry, accounting for 20 to 50 percent of the total energy con- 

sumpti on in petroleum refineries; it is a highly energy-intensive process. 

When a complex mixture is to be separated into several fractions, the 

designer is faced with the problem of choosing the configuration of 

columns and heat exchangers to be used, as well as the size and the 

operation conditions of each unit. . 

The distillation system to be designed must satisfy given speci- 

fications, which are represented by bounds on the system variables or 

algebraic expressions between the system variables. A good model of 

the distillation process is necessary to achieve the design requirements 

and is expressed by a set of algebraic equations. The system of equations, 

including the model and the specifications, is likely to be underdetermined 

mainly because most of the design requirements are inequality expressions. 

Therefore an infinite number of alternatives exists where a number of 

design variables equivalent to the degrees of freedom of the system has 

to be specified. A good, or the best, alternative can be selected following 

some specific criteria. 

It is often possible to formulate a quantitative measure of 

desirability, called an objective function, so that the optimal choice 

corresponds to maximizing this function. Frequently the basis of this 

measure is economic, and the objective function is simply the cost; in 

this case of course the optimum choice corresponds to minimizing the 

cost. 
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Techniques developed in the area of nonlinear programming can 

be used to solve the design problem, where the extremun of the objective 

function is sought in the feasible space defined by the constraint 

equations, which are the design specifications, operating restrictions 

and sometimes the equations modelling the system. 

In the last decade, a great deal of effort has been directed 

towards the development of computer based methods for the selection of 

good configurations for chemical processes in general and for distillation 

columns in particular. The selection of the design variables has been 

carried out on two levels: an outer loop where the structure of the system, 

mainly the connections between different units of equipment, is deter- 

mined and an inner loop where the size and operating conditions of each 

unit is found. The use of decomposition techniques is mainly due to 

the big number of variables involved in the solution of the problem and 

the fact that different alternatives frequently involve discrete decisions, 

such as which columns should be used and in which order they should be 

connected. Furthermore, in the case of distillation columns, there is 

a set of integer variables representing the plate numbers in each section 

of a given column. Because of these integer variables, the resulting 

optimum design is a mixed-integer nonlinear problem. 

The optimization of the total number of plates in each column 

was first attempted by Gaminibandara and Sargent (5), though an outer 

loop was used to search for the values of the continuous variables 

that would minimize the same objective function. 

In Chapter IV , the optinum design of a single distillation column 

is carried out. The integer variables were chosen simultaneously using 

a standard nonlinear programming algorithm to minimize the cost of running 

the distillation column. The model and the algorithm used for the simu- 
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lation of a single distillation column are described in Chapter 11. 

Most of the work on synthesis of distillation columns has been 

concerned with the configurations of columns carrying out sharp separa- 

tions, thus reducing the synthesis problem to search for the optimum * 

configuration among a predefined set of possibilities, where each column 

has only two products and the use of mass recycles is severely limited. 

Coupled columns, as the ones shown by Petlyuk et al (56,57), often 

give substantial savings over more conventional separation sequences. 

It is unlikely that the non-conventional coupled arrangement between 

columns will be synthesized using heuristic or evolutionary rules. 

Gaminibandara and Sargent (5) developed a general system of interlinked 

columns from which most configurations of interest can be obtained by 

deletion of parts of the general structure. The. appropriate deletions 

were obtained by direct optimal design of the general configuration. 

The same approach has been used in the pre. sent work. Therefore, the 

optimum arrangement between columns will be found by analysis of the 

general structure, the synthesis step being the one of finding the 

general structure. A slightly more general configuration than the 

one presented by Gaminibandara and Sargent ( 5) will be used in this 

thesis. They used two optimization levels while in the algorithm 

presented in Chapter V all the design variables are optimized sinul- 

taneously, thus requiring only one optimization level. The simulation 

of the general configuration is presented in Chapter III. 
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CHAPTERII 

SIMULATION OF A DISTILLATION COLUMN 

2.1 Introduction 

In an ordinary distillation column, the feed is introduced into 

a vertical cascade of stages. Vapour rising in the section above the 

feed is washed with liquid to remove the less volatile components. 

The liquid is provided by condensing some of the vapour leaving the 

top of the column and returned as reflux liquid. In the section 

below the feed, the liquid is stripped of volatile components by 

vapour produced at the bottom by vaporization of the liquid in the 

reboiler. Some of the more volatile components are vaporized from 

the liquid, increasing the light component concentrations on the 

vapour and some of the less volatile components are condensed from 

the vapour increasing the heavy component concentrations in the liquid. 

Most of the columns are fitted with plates which are arranged to bring 

about the best possible contact between liquid and vapour. The liquid 

flows by gravity from one stage to the other. 

For mass transfer to take place the streams entering each stage 

must not be in equilibrium with each other, for it is the departure 

from equilibrium that provides the driving force for transfer. The 

leaving streams are usually not in equilibrium either but are much 

closer to being so than the entering streams. If the mixing in a 

given stage is so effective that the leaving streams are in fact in 

equilibrium, the stage is, bý definition, an ideal stage. 

The purities obtained for the withdrawn products will depend 

upon the liquid-gas ratios used and the number of stages provided. 

In Figure 2.1 a typical column and plate are shown. 
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2.2 Statement of the Problem 

The solution of a multistage distillation problem requires 

mass balances, heat balances and equilibrium conditions to be satis- 

fied over each stage of the process. The basic equations are often 

simple but the countercurrent method of operation interconnects all 

stages. More specifically, the solution of the equilibrium stage 

model for a separation process is obtained by finding a set of 

temperatures, phase flow rates and compositions which satisfy the 

following equations: 

1. The equilibrium relationship 

Yl 
sp 1 sp 

xip 

The component mass balance around stage p 

L x. +VY. -Lf=0(2.2) p I, p p 1, P P-1 i, p-l p +1 Yi p +-l -ip 

3. The energy balance around stage p 

Lphp+VpHp-L 
P-1 

h 
P-1 - Vp+l Hp+l -Fph Fpl- 0 (2.3) 

4. The summation restrictions 

xiP == 1 .0 and yi p=1 .0 
(2.4) 

Some methods of solution are based on tearing and partitioning 

the system, so that subsets of variables are paired with subsets of 

equations through which they show their greatest effects. For example, 

Equation (2.1) can be used to eliminate the vapour compositions through- 

out the other three equations. The compositions are obtained from 

the component mass balance Equations (2.2). Two arrangements are 

then possible, the "boiling point" (BP) arrangement matches the tempera- 

tures with the summation Equations (2.4) and the flow rates. with 

enthalpy balance Equations (2.2). The "sum-rates" (SR) arrangement 

matches the enthalpy balances with stage temperatures and the summation 
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equations with flow rates. Friday and Smith (1 ) analyzed the cir- 

cumstances under which different pairings are appropriate. To 

consider the convergence characteristics of the BP and SR approaches, 

they studied these methods as a system of two sets of variables, the 

flow rates and temperatures and two sets of equations representing 

the successive substitution procedures for generating mean values 

of the variables, the enthalpy and summation equations. The rate 

of convergence of the Direction Substitution (DS) method near the 

solution. can be predicted knowing the dominant eigenvalue of the 

Jacobian of the iteration matrix at the solution, as will be seen in 

more detail in Appendix B. If the absolute value of the dominant 

eigenvalue is less than unity the DS method will converge, otherwise 

it will diverge. Friday and Smith (1) calculated the values of the 

dominant eigenvalues of the Jacobian matrices for different examples 

and found that BP methods have an absolute value of the dominant 

eigenvalue less than unity for relatively narrow boiling feeds and 

that the dominant eigenvalue increases as the range of temperatures 

of the components of the mixture increases, reaching values bigger 

than unity for wide boiling mixtures. On the other hand, the SR 

methods have the absolute value of the dominant eigenvalue less than 

unity for wide boiling mixtures and the magnitude of the dominant 

eigenvalue increases as the difference in temperatures of the different 

elements in the mixture decreases. 

From this work it follows that the BP method should be used 

for narrow-boiling mixtures and the SR method for wide-boiling 

mixtures. However, Friday and Smith (1) found that the range of 

applicability of the BP and SR methods increases considerably by 
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damping the changes on the variables from iteration to iteration. 

Amundson and Pontinen (2) noticed that iterating on the tempera- 

tures and flow rates, the component mass balance equations form a 

set of linear equations which are easily solved by standard matrix 

procedures. They reduced the nonlinear part of the problem to one in- 

volving plate temperatures only, which they treated as non-interacting 

and corrected using the Newton-Raphson method after normalizing liquid 

plate compositions. 

Wang and Henke (3) eliminated the inversion of the matrix pro- 

posed by Amundson and Pontinen (2) and solved the linearized mass 

balance equations using Thomas' method for tridiagonal matrices; 

Muller's method was used to accelerate convergence of the temperatures. 

Sargent and Murtagh (4) used the same linear subsets and introduced an 

inner loop to obtain temperatures from boiling point or dew point 

calculations, thus being able to deal with non-ideal mixtures. 

Sargent and Gaminibandara (5) performed a flash calculation for each 

plate to find the temperatures, avoiding the instability due to the 

presence of very light and very heavy components in the bubble and 

dew points calculations. 

One disadvantage of the BP approach arises when the equilibrium 

ratios are composition dependent. The liquid and vapour compositions 

are not known at the point when it is necessary to calculate composition 

dependent equilibrium ratios, that is, just before the component mass 

balance equations are solved. In such problems, either the compositions 

from a previous trial must be-used or an extra iteration loop must be 

introduced. If the composition lag approach is adopted, the convergence 

properties of the iteration algorithm may be adversely affected, 
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especially for highly non-ideal systems. The second approach could 

be costly in terms of computational effort. 

The pairing problem is avoided if all the equations are solved 

simultaneously. Stainthorp and Whitehouse (6) solved all the equations 

describing the system, including mass and energy balances, physical 

data correlations and performance specifications, as one large set 

of nonlinear algebraic equations, using the Newton method. The method 

involves the computation of the Jacobian matrix and makes large demands 

on computer storage. In a second paper, Stainthorp, Whitehouse and 

Kandela (7) solved the mass balance for each component separately as 

a linear system, thus reducing the nonlinear set of equations to be 

solved with the Newton method. As equilibrium and enthalpy data were 

independent of compositions, the storage requirement was independent 

of the number of components, thus reducing the working space. They 

placed constraints on the relative change of variables to stabilize 

the method. Using the Newton method, quadratic convergence can be 

obtained near the solution but the calculation of the Jacobian matrix 

each iteration could be time consuming. 

Tierney and Yanosik (8) noticed that the Jacobian matrix changes 

little near solution. Orbach, Crowe and Johnson (9) kept the Jacobian 

matrix unchanged for several iterations and only when the rate of con- 

vergence was slow was a new Jacobian matrix calculated. Tomich (10) 

adjusted temperatures and flow rates simultaneously at each iteration, 

solving the enthalpy and summation equations with Broyden's method (11). 

The tridiagonal matrices for the component mass balance were solved 

separately. 

In Broyden's method, which is described in Appendix D, an approxi- 

mation of the Jacobian or its inverse is used and the approximation 

is revised after each step on the basis of information generated during 
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the step. No additional function evaluations are required. 

The Jacobian matrix has a stagewise sparse structure for multi- 

stage procedures and advantage can be taken of the fact that the 

sparsity pattern is known a priori to develop more efficient solutions. 

Naphtali and Sandholm (12) exploited the block tridiagonal structure 

of the Jacobian when the equations were grouped by stage. Ishii and 

Otto (13) solved all the equations simultaneously using the Newton- 

Raphson method to obtain temperatures, flow rates and compositions, 

but the linearized equations only included the partial derivatives 

that have a dominant influence on the solution and this greatly 

reduces the computational effort required. 

Shewchuk and Hutchinson (14) solved the set of nonlinear equations 

by linearizing the coefficients describing the equilibrium relation- 

ships and enthalpies of the internal streams. These coefficients 

are re-estimated between iterations and since all components are 

treated simultaneously it is possible to let the equilibrium ratio 

depend on all compositions on a plate. Shewchuk (15) extended the 

method for non-ideal distillation calculations. In this so-called 

"Quasi-Linear" method, to obtain second order convergence, it is 

necessary and sufficient that the coefficients of the linear equations 

be chosen such that they are the partial derivatives of the nonlinear 

functions with respect to the appropriate variables, and in this case 

the method reduces to Newton's method. 

A large fraction of the computer time is consumed in thermo- 

dynamic calculations. Barrett and Walsh (16) introduced a Thermodynamic 

Interface Package designed to provide local approximation models of 

fugacities and enthalpies to be used in the process simulation. These 

models are generated from a full thermodynamic computer package. The 
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availability of simple analytical expressions for their derivatives 

allow the use of better algorithms in the solution of equations which 

contain these properties, thus accelerating convergence. 

Boston and Sullivan (17) introduced the use of newly defined 

energy and volatility parameters as the primary iteration variables 

together with a third parameter defined for each stage as a combination 

of the liquid and vapour phase rates and temperatures. Reasonably good 

initial estimates of the energy parameters can be obtained by using 

quite inaccurate initial estimates of the temperatures and interst age 

phase rates. Boston (18) used direct substitution or the bounded 

Wegstein method for the outer loop variables, in this case the energy 

and volatility parameters, but the Broyden method with the identity 

matrix as the initial guess for the Jacobian matrix was used to 

improve convergence on the third parameter defined for each stage. 

The main advantage of this so-called "inside out" approach is that 

the new variables are relatively free of interaction with each other, 

and are relatively independent of the primitive variables (temperatures, 

flow rates), hence precise initialization is not critical to good 

algorithm performance. 

Hlavacek and Van Rompay (19) classify the separation problems 

in five differential degrees of difficulty and propose different 

methods of solution for each case. The use of the Leverberg-Marquardt 

method with the BroYden formula to update the Jacobian is recommended 

for difficult problems of small or medium size. For simple distillation 

problems in which there is a. weak interaction in the liquid phase and 

the volatilities in the column are of the same order of magnitude, 

they reckon that decomposition methods (e. g. Wang and Henke (3)) will 

easily solve the system. 
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The main advantage of the Newton or quasi-Newton methods is 

that any process specification that can be expressed as an algebraic 

equation can be solved simultaneously with the rest of the equations 

describing the distillation system. The storage required for the 

method describing the distillation is very important, considering the 

dimension of the problem to be solved in the optimization of the 

general configuration presented in Chapter V. Pairing methods require 

much less storage than simultaneous solution methods, and so a tradi- 

tional approach of decomposing the general system and coupling certain 

equations with given variables was chosen. The BP method was used 

given the fact that it solves most distillation problems. 

2.3 Equations Describing the Distillation Column 

The notation for a typical plate is illustrated in Figure 2.2 

where the stages have been numbered from the top to the bottom of the 

column and the nomenclature used was 

x i, p 
liquid mole compositions 

Yi, P vapour mole compositions 

vp vapour molar flow rate 

Lp liquid molar flow rate 

p 
feed molar flow rate 

PV vapourniolar product flow rate p 

liquidmolar product flow rate 
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PV 
p 

h r7 Zi 

Qp 

r, L 
.p 

IIP, ýi, p 

Figure 2.2 - Notation of a typical plate 

P-1 
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p 
heat exchanged 

Tp temperature 

Hp vapour enthalpy 

hp liquid enthalpy 

p stage number 

The basic relations are derived from heat and material balances 
I 

and the use of equilibrium conditio ns for each stage. 

Ideal stages are assumed throughout, so that vapour and liquid 

leaving a given plate are in thermal and phase equilibrium given by 

the relations 

yi, p = Ki, 
p x i, p 9 i=1,2, ... (2.5) 

where K i'P is the equilibrium ratio defined in terms of the fugacity 

coefficients ýLV for the liquid and vapour phases respectively: ipiP 

L 
Kpc (2.6) 

P= . 
-V, 
ýi, p 

The fugacity coefficients are functions of pressure 7T p, 
tempera- 

ture Tp and compositi on of the phase in question: 

L, 

p = ýL (7r 
,T, x(2.7) iippip 



21 

V, 
p 

v (Tr 
,T, yj P) 

(2.7) 
iipp 

A material balance on plate p yields 

Fp+ Vp+l +L P-1 =V+ PV +L+ pL (2.8) pppp 

For the top plate of a column (p=l) there are no upper plates 

so we have 

L0= 

while if m -is the bottom plate of a column we have 

Lm = Im+, =1 

A similar balance for a typical component i yields 

(2.9) 

(2.10) 

zFv+x Lp = 'V +p 
V) 

+x (L +P 
L) (2.11) 

i, p p+ yi, p+l P+l i, p-l -I 
yi, p( ppi, p pp 

while the energy balance yields 

+hF+Hv+hL=H (V +PV) +h (L +P 
L (2.12) 

p FP p P+l P+l P-1 P-1 pppppp 

where the enthalpies are functions of np, temperature and compositions 

of the relevant phase: 

hp = h(n 
p, 

Tp, xi, p) 

(2.13) 

HP = 
H(7f 

p, 
Tp3, Yi 

, P) 
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We also have by definition of the mole fractions 

c 
xi9p Yi 

p 

where z i, p molal feed composition 

Summing (2.8) and (2.11) over all plates in the column we 

obtain the overall balances: 

E (F Pp-p V) 
=o 

PEP PPP 

(Q +hF-hPp-HP 
V) 

=o 
Pep P FP pPPPP 

where P is the set of plates with non zero streams of material or 

energy to the exterior. 

To specify the operating conditions, the state of each product 

stream, and all but one product flow rate and one heat exchanger 

rante much be specified, these two quantities being computed from 

to assume a steady state. 

From Equation (2.8) 

Lp =F+V+ Lp_l _ (VP + pV) _ pL 
p P+l pp 

replacing Equation (2.16) in Equation (2.12) we obtain 

p+h FP Fp+ Hp+, Vp+l +h P-1 
L 
P-1 = 

(2.16) 

=Hp (V 
p 
+PV) +hp (P L 

+F p +V P+l+ 
L 
P-1- 

p L_V 
-pv) pppp 
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p+Fp 
(h FP- hp)+ Lp_, (hp_, -hp) = 

-H v+V (H -h+ PV(H -h)+Vh P+l P+l pppppp P+l p 

vV (H -h )+PV(H h )-Q -F (h -h )-Lp_, (hp_, -hp) P+l = 
(Hp+, -h p)(pppppppp 

FP p 

(2.17) 

For given values of enthalpies, obtained using Equation (2.13), 

Equations (2.8) and (2.12) can be used alternately to generate all 

internal flow rates, Lp and V 
P, 

Using Equations (2.5) and (2.11) we obtain 

ZF +x Kv +X L =X K (V +p 
v)+x (L +P 

L) 
i, p p i, P+l i, p+l P+l i, p-1 P-1 i, p i, p ppi, p pp 

-x L +X (L +P 
L+K (V +P 

V ))-x KV (2.18) ,: F i, p-l P-1 i'P pPi, p ppi, p+l i, p+l P+,,, pzi, p 

Each set of equations for each component can be solved for the 

values of liquid compositions if the internal flow rates and equili- 

brium ratios are known. In general the K are dependent upon i, p 
compositions as well as temperature and pressure as shown in Equations 

(2.6) and (2.7), making Equation (2.17) nonlinear. 

If the equilibrium ratios depend weakly upon compositions, it is 

possible to remove the nonlinearity by evaluating the K i, p 
for the 

compositions obtained in the previous iteration. 

The component mass balance equations may be written as 
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Gi 

where Gi is a tridiagonal matrix whose non-zero elements are: 

gi, p-l "': -L P-1 

gi, p =L+PL+K (V +Pv) (2.20) 
ppi, p pp 

gi, p+l = -K i, p+l 
Vp+l 

Usually the equilibrium ratios and internal flow rates are unknown, 

and we shall have to iterate on the values of these variables. This will 

result in Equation (2.19) being a set of linear equations to be solved 

within each iteration for each component. The Thomas method with partial 

pivoting was used to solve the tridiagonal matrix and it is described 

in Appendix A. 

Equation (2.19) has to Pe solved for each component in turn, 

obtaining x i, p 
for all i and p, and then from Equation (2.5) yi, p 

for 

all i and p can be calculated. However, unless the K i'p were consistent 

with these compositions and temperatures, the computed compositions 

do not sum to unity on each plate. 

Amundson and Pontinen (2) normalized the liquid composition on 

each plate by dividing each composition by the composition sum on that 

plate. The K isp , then, had to be chosen to satisfy the following 

equation: 

c 
K i, p xi, p=1, p=1,2,2.21) 
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If the K 
lip are functions only of the temperature and pressure, 

Equation (2.21) can be used to correct temperatures. Amundson and 

Pontinen treated the temperatures as noninteracting variables and cor- 

rected then using Newton's method applied to Equation (2.21). This process 

diverges in general if the liquid compositions are not scaled. 

The inherent separation factor ai, j in a vapour-liquid system is 

commonly called the relative volatility. The reasons for this name are 

apparent from Equation (2.25), where for an ideal system a i1i is simply 

the ratio of the vapour pressures of i and j. 

C, i j -- 
yi/xi 

(2.22) 
yj/x j, 

If the components of the mixture obey Raoult's and Dalton's law, 

P. = py p vx. (2.23) 

where P total pressure 

Pv vapour pressure of pure liquid i 

at the temperature of the mixture. 

In such a case 

ypv 
KJ-J (2.24) 

xip 

and 

pvK. 
a=i=1 (2.25) i, j pv j 

The vapour pressures of i and j depend upon temperature. Since 



26 

C, i, j is proportional to the ratio of vapour pressures, and since both 

vapour pressures increase with increasing temperature, a i1i will be less 

sensitive to temperature than ki and k j* Over short ranges of temperature, 

C'i'j can often be taken to be a constant. 

The selection of a base component can be done by choosing one of 

the components of the mixture or defining a hypothetical component. If 

the mixture contains a wide range of boiling temperatures, then a middle 

component should be taken as the reference component. 

For the base component Kbý Yb'Xb and ab ý 1.0. Expressions needed 

for the calculation of the bubble point and dew point temperatures are 

developed in the following manner. For any component i, 

Yi Kixi 

y. = (2.26) 

which can be rearranged to 

Yi 
, R- ý ai (2.27) 

bb 
Xi 

Summation of both sides of the expressions over all components 

yields 

Ic1 Eax or K (2.28) 
K I=j i, b ibc 
b i, b xi 

where c is the number of components present in the mixture. 

Elimination of Kb from Equations (25) and (26) gives 
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CL i, bxi 

Yi c (2.29) 

CE ibxi 

In an analogous manner it is readily shown that 

c 
Kb Yj /cc 

i, b (2-30) 

and that 

Yi /a i, b 
c 

Yi /a i, b 

In developing a simple K-value model, the dependence of K values 

on temperatures could be represented by a model for the form: 

Bb 
Z Kbp = Ab 

p+TP 
(2.32) 

where p is the ideal stage number and Ab 
p and Bb 

p are the Antoine constant 

for the reference component. 

In the inside-out approach, Ap and Bp are the iteration variables 

in the outside loop. 

Supposing that the liquid compositions are obtained from Enuation 

(2.19) and then normalized, the equilibrium ratio for the reference 

component from Equation (2.28), the vapour compositions from Equation 

(2.29), the temperatures from. Equation (2.32), and the enthalpies from 

Equations (2.13), then the internal flow rates can be calculated from 

Equations (2.16), (2.17), (2.9) and (2.10). 

The equilibrium ratios can be obtained from a propertýy prediction package 

or simple enuations like the Antoine equation and the relative volatili- 

ties from Equation (2.25). The liquid compositions can be calculated 
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again from Equation (2.19) with the updated values for the equilibrium 

constant and internal flow rates. 

In this algorithm, the vapour composition will not satisfy Equation 

(2.14) until a solution of the system is found, because unless the esti- 

mated equilibrium ratios are all correct, the calculated vapour mole 

fraction of the different components on a given stage will not add to 

unity. The convergence rate using direct substitution on the Kb could 

be very slow in some cases; an acceleration technique like the Weastein 

method (35) will improve the efficiency in these cases, as it will be 

seen in some of the results. 

2.4 Method of Solution 

Interstage flows are'linked together by the overall mass balance 

in such a way that if vapour flow increases in a certain direction through 

the section, the liquid flow will also increase in the same direction. 

Since the fractionation is mainly dependent on the ration L/V, considerable 

changes can occur in flows without greatly disturbing L/V, and hence the 

separation. 

For the purposes of finding an optional configuration of distillation 

columns in the early stages of design, constant molar flows were therefore 

assumed. The changes at feed and products that correspond to intermediate 

plates in a given column are easily dealt with in terms of "q-factors". 

This simplification eliminates the need for heat balances and enthalpy 

determination. There will then be no need to determine temperatures in 

each ideal stage, temperatures will only be needed in the places in which 

heat exchange takes place. 
F The feed q factor is defined by equation 

qF=h 
Fp- hp 

(2.33) 
H-h 

pp 
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The liquid product qL factor is defined by 

LL 
qp = AV 

p 
/P 

p 
(2.34) 

where Qp = AV p 
(h 

p- 
Hp) (2.35) 

and the vapour product qv is defined as 

qv = AL /P v (2-36) 
ppp 

and Qp = AL p 
(H 

p- 
hp 

L 
q= qv =0 correspond to QP=O 

PP 

Equations (12) and (13), then, reduce to 

Lp =L. +F (I-qF) - (1-q L) pL _, qvPv (2.37) 
P-1 pppppp 

vV-F qF + (I-qv) pv + qL pL (L38) 
P+l ppppppp 

and the overall balance equations (11) reduce to 

E (F -p 
L_ pv)=0 

p 
(2-39) 

F_ V-LL E (Fq P, Pq0 
prp pppp 

The summation equations can be written as 
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C 

x. -1=S 
"1=1 

'' p 
(2-40) 

The algorithm used to solve the simplified model follows. 

2.4a Simplified Algorithm 

Given all the F, qF and Z 
ppi, p 

all the qL and qv except one pp 

all the Pv and PL except one of them 
pp 

the relative volatilities and the number of plates in each section of 

the column, then I 

Step I- Compute the remaining product rate and heat exchanged from 

Equation (2.39) 

Step 2- Starting at the bottom of the column and using alternately 

Equations (2.37) and (2.38), compute VP and LP upwards through 

the column and use Equations (2.9) and (2.10) to calculate 

vi $L0 11 Lrrls Vm+l 

Step 3- Compute the equilibrium ratio for the reference component 

from Equation (2.28) using the feed composition as the liquid 

compositions and assume that the equilibrium ratios for this 

compnent in all the plates are the same 

Step 4- Solve Equations (2.19) for each component to give all the 

x i9p , then compute Sp from Equation (2.40) 
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Step 5- If IS 
pI<E: 

for al 1 p, STOP, otherwise normal i ze the xip 

and go to step 6 

Step 6- Adjust K bp using Equation (2.28) for each plate. A secant 

method to accelerate the convergence of the Direct Substituion 

method can be used in this step. Go to step 4. 

The accelaration of the Direct Substitution method will be described 

in Appendix C. 

2.5 Numerical Examples 

The acceleration of the direct substitution method is analyzed 

in Appendix C. To avoid instabilities in the application of the Wegstein 

method some bounds on the extrapolation can be used or otherwise the 

first acceleration step is used with some delay, for example after a 

few iterations using direct substitution steps only, and from then on, 

using the acceleration method every n direct substitution steps. 

Some examples will be run to see whether the Wegstein method 

improves the convergence of the direct substitution method and under 

which conditions. Two binary mixtures and three ternary mixtures will 

each be separated into their components in a single column, at atmospheric 

pressure. The binary cases, of a column with two liquid products will 

be run with different composition of the feed. For the ternary mixtures, 

the three products were liquid. The feed in all the cases was 100 lb 

mole/hr as a liquid at its bubble point. 

The nomenclature used was: 

NT total number of ideal stages in the column 

NF plate number where the feed is introduced 
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NI plate number where the intermediate product is obtained from 

R reflux ratio defined as the amount of liquid being recycled 

over the liquid product at the top of the column 

D top product molal flow rate (lb mole/hr) 

PH intermediate product molal flow rate (lb mole1hr) 

xF molal composition of the feed 

I 
cc relative volatilities 

it number of iterations 

minws first iteration number in which the acceleration method was used 

(nac-1) number of direct substitution steps used between the accele- 

ration steps 

error tolerance error 

time seconds (CDC 6500) 
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Example Ia 

NT NF RD error 

21 9 1.4733 30.0 0.0001 

xF Ct product purity 

benzene 0.3 2.8 0.899 

toluene 0.7 1.0 0.957 

mi nvis nac it time 

no ac celeration 15 0.1695 

14 6 18 0.2055 

10 6 20 0.2355 

Example Ib 

NT NF RD error 

17 8 0.71 50.0 0.0001 

xF a product purity 

benzene 0.5 2.8 0.900 

toluene 0.5 1.0 0.900 

minws nac it time 

no acceleration 14 0.1305 

10 4 14 0.1320 
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Example Ic 

NT NF RD error 

18 9 0.56 70.0 0.001 

xF C1 product purity 

benzene 0.7 2.8 0.957 

toluene 0.3 1.0 0.901 

minws riac it time 

no acceleration -13 0.126 

10 16 0.170 
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Example Na 

NT NF RD error 

31 14 3.55 30.0 0.0001 

xFa product purity 

chloroform 0.3 1.8 0.899 

carbon tetrachloride 0.7 1.0 0.957 

minws nac it time 

no acceleration 11 0.1800 

8 4 12 0.2020 

10 6 12 0.1980 

6 6 13 0.2175 

Example Ilb 

NT NF RD error 

26 12 1.8676 50.0 0.0001 

xfa product purity 

chloroform 0.5 1.8 0.899 

carbon tetrachloride 0.5 1.0 0.899 

mi nws nac it time 

no acceleration 11 0.1530 

10 6 11 0.1590 

6 6 11 0.1610 

6 4 11 0.1695 

4 4 16 0.2250 
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Example Ilc 

NT NF RD error 

29 15 1.455 70.0 0.0001 

xFa product purity 

chloroform 0.7 1.8 0.958 

carbon tetrachloride 0.3 1.0 0.901 

minws nac it time 

no acceleration 13 0.2010 

10 6 13 0.2100 

6 4 10 0.1575 

4 4 14 0.2220 

Example Ild 

NT NF RD error 

19 9 2.092 50.0 0.0001 

xFa product puri ty 

chloroform 0.5 1.8 0.899 

carbon tetrachloride 0.5 1.0 0.899 

minws nac it time 

no acceleration 10 0.1020 

64 10 0.1035 

4480.0855 
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Example III 

NT NF NI R D PH 

30 21 13 6.807 30.0 40.0 

xF CL product purity 

dichloromethane 0.3 4.9 0.901 

chloroform 0.4 1.8 0.904 

carbon tetrachloride 0.3 1.0 0.972 

mi n-I s n. ac it time error 

no acceleration 46 1.093 0.001 

18 6 34 0.855 0.001 

no acceleration 69 1.6170 0.0001 

18 6 38 0.8940 0.0001 

14 6 37 0.8595 0.0001 

10 6 39 0.9345 0.0001 
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Example IV 

NT NF NI R D PH 

27 19 12 10.2 20.0 40.0 

xF CL product pu rity 

dichloromethane 0.2 4.9 0.900 

chloroform 0.4 1.8 0.900 

carbon tetrachloride 0.4 1.0 0.950 

mi nws nac it time error 

no acceleration 34 0.8685 0.001 

18 6 26 0.5820 0.001 

14 6 22 0.4815 0.001 

10 6 25 0.5535 0.001 

no acceleration 44 0.9810 0.0001 

18 6 31 0.7560 0.0001 

14 6 27 0.5805 0.0001 
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Example V 

NT NF NI R D PH 

24 19 15 6.23 30.0 40.0 

xF a product purity 

benzene 0.3 6.7 0.898 

toluene 0.4 2.4 0.888 

o-xylene 0.3 1.0 0.953 

mi nws nac it time error 

no acceleration 41 0.7635 0.001 

18 6 41 0.7680 0.001 

10 6 38 0.7095 0.001 

10. 4 29 0.5595 0.001 

8 6 30 0.5655 0.001 

8 4 38 0.7095 0.001 

no acceleration 56 1.014 0.0001 

18 6 47 0.885 

10 6 42 0.789 
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2.6 Comments 

In the first six examples, dealing with a distillation column 

with two products to separate a binary mixture into its components, 

the rate of convergence of the direct substitution method was good. 

In the mixture composed of benzene and toluene the relative volatilities 

were (2.8,1.0) while in the second case the mixture of chloroform and 

carbon tetrachloride has smaller relative volatilities (1.8,1.0). More 

ideal stages are required in the second mixture; thus the system of 

equations to be solved is bigger and more time is required to obtain 

the solution but the iterations required to converge'using direct sub- 

stitution do not increase with the size of the system, as can be seen 

comparing the iterations required for both mixtures with the same feed 

composition, as in cases Ic and IIc. An increase of 38 percent in the 

number of plates corresponds to an increase of 37 percent in the computing 

time used, for the same number (13) of iterations. Comparing examples 

IIb and IM, with the same feed but different ideal stages and reflux 

ratio in the column, in both cases to obtain 90 percent purity in both 

products, it can be observed that an increase of 33.3 percent in the 

number of ideal stages corresponds to an increase of 34.5 pe rcent in the 

computing time. The number of iterations are nearly the same, eleven 

and ten respectively. The use of the Wegstein method did not improve 

the convergence in most of the cases, as can be seenin examples Ib, 

IIb and IId and is likely to make things worse as is the case in examples 

Ia, Ic and Ha. 

For the last three examples, in which a ternary mixture is fed 

in the column, the convergence of the direct substitution method is 

quite slow, requiring from 44 iterations in example IV to 70 iterations 

in example III, for the same error tolerance as in the previous examples. 

In these cases the improvement achieved using the Wegstein method to 
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accelerate convergence is not negligible, provided that some delay 

is introduced before the use of the acceleration procedure and that 

the unbounded secant step is used every "nac" direct substitution 

steps. 

In the third example, the computing time was reduced by 47 

percent of the original computing time required using DS only. DS 

was applied for the first fourteen iterations, followed by Wegstein 

acceleration every sixth iteration thereafter. 
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CHAPTERIII 

SIMULATION OF A SERIES OF DISTILLATION COLUMNS 

3.1 Introduction 

The simulation of a set of distillation columns can be done 

either by solving the equations for all the columns simultaneously or, 

alternatively, solving each column separately as a unit and iterating 

on the values of the recycle streams being torn. If the first approach 

is followed, the tridiagonal matrices for the component mass balances 

or the block band matrices in the simultaneous solution of all the 

linearized equations, will be fil. led in with elements corresponding 

to the interconnecting streams. Bending and Hutchinson (20) developed 

a Gaussian elimination method for sparse sets of linear equations which 

consisted of two stages, triangularization and back substitution and 

two programs were written. The primary equation routine solves the 

equations using only the operator list and the updated list of element 

values. This operator list method can save a significant amount of time 

if the matrix is sparse as. the secondary linear equation routine does 

not need to search for elements which probably do not exist. This M. ethod 

was used by Shewchuk and Hutchinson (14) for multiple distillation towers. 

Some efforts have recently been made to use modified Gaussian 

elimination to solve band matrices having some off-ban submatrices by 

Kuricek, Hlavacek and Prochaska (21), Browne, Ishii and Otto (22), 

Holefing and Seader (23) and Hidalgo, Correa and Seader (24). The 

minimization of the number of non-zero off-band elements in the tri- 

angularization as proposed by Hidalgo et al (24) is time consuming, 

though storage is saved if all non-zero elements of the matrix are 
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stored in a linear vector. 

The key for-an efficient simultaneous solution of all the 

equations of the system is an efficient handling of a set of sparse 

algebraic equations. In the context of quasi-Newton methods and a set 

of nonlinear equations with a sparse Jacobian matrix, Shubert (25) found 

that the updating procedure can be made more efficiently for the appro- 

ximate Jacobian than for the inverse of the Jacobian where the sparsity 

is destroyed. If the constant elements in the Jacobian are known, they 

will remain unchanged in the updating procedure.. Curtis, Powell and 

Reid (26) showed how to use known constant elements in the Jacobian 

matrix to reduce the work required to estimate the remaining elements 

by finite differences. 

T, he advantages and disadvantages of solving simultaneously all 

the equations have been discussed in the previous chapter. For the 

general configurations described in Chapter V, the storage requirement 

for the Jacobian in the simultaneous solution would be excessively 

large. The possibility of solving the general system simultaneously 

will depend on the development of powerful sparse matrix procedures 

and on the robustness of the algorithm used to solve the nonlinear 

equations. At present, research is being done in both areas. It is 

likely that in the near future with an increased capacity of the com- 

puters, the simultaneous approach will compete favourably with the 

modular approach. 

The modular approach was used in this work for the simulation 

of a system of distillation columns, the main advantages of this approach 

being the simplicity and robustness of the direct substitution method 

in dealing with arbitrary initial guesses. However, sometimes the 

convergence is very slow, as expected in the DS method and some 
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acceleration procedure is needed to improve the rate of convergencel 

as has been seen in the previous chapter. 

In the next section the general configuration for a ternary 

mixture being separated into its components will be analyzed. The 

use of the direct substitution approach to update the torn variables. 

will be compared with the Broyden method. 

3.2 General Configuration for a Ternary Mixture 

The general configuration for a ternary mixture in which all 

the final products are liquids is shown in Figure 3.1. All the flow 

rates are expressed in moles, where 

L(J) and V(J) are the liquid and vapour internal flow rates in 

the first column 

PL(J) and PV(-J) are the liquid and vapour product flow rates in 

the first column 

L2(J) and V2(J) are the liquid and vapour internal flow rates in 

the second column 

PL2(J) and PV2(J) are the liquid and vapour product flow rates in 

the second column 

NI represents the ideal stages above the feed in the 

first column 

N2 represents the ideal stages below the feed in the 

first column 
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PH 

Figure 3.1 



46 

N3 represents the ideal stages in the top section of 

the second column 

N4 represents the ideal stages in the intermediate section 

of the second column, above the extraction of the 

intermediate final product 

N5 represents the ideal stages in the intermediate section 

of the second column, below the intermediate heat 

exchanger 

N6 represents the ideal stages in the bottom section of 

the second column 

F feed flow rate to the system 

PV(I) vapour top product of the first column 

PL(l) liquid top product of the first column 

FI(2) liquid feed from the second column into the first 

column 

PV(NT) vapour bottom product of the first column 

PL(NT) liquid bottom product of the first column 

Fl(NT-I) vapour feed from the second column into the first 

column 
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D liquid flow rate of the lightest product 

PH liquid flow rate of the intermediate product 

B liquid flow rate of the heaviest product 

RI defined as the reflux ratio of the liquid returned 

to the top of the first column over the total product 

flow rate at the top of the column 

Rl = L(1)/(PV(I)+PL(l)) (3.1) 

R2 defined as the reflux ratio of the liquid returned 

to the top of the second column over the top product 

R2 = L2(1)/D 

R3 is defined as follows 

(3.2) 

R3 = (PV2(N3+N4+1). - PL2(N3+N4)) /PH (3.3) 

Dropping the sub index in PV and PL, if 

PV > PH and PL =0 then R3 >1 and a condenser is needed 

PV = PH and PL =0 then R3 =1 and a condenser is needed 

PV < PH , PL >0 and PV > PL then 0< R3 <1 and a condenser 

is required 
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IV - PV = PL , PL >0 and PV >0 then R3 =0 and a condenser is needed 

V- PV < PL , PL >0 and PV >0 then -1 < R3 <0 and a condenser is 

needed 

VI - PV =0 and PL = PH then R3 = -1 and no heat exchanger is needed 

VII - PV =0 and PL > PH then R3 < -1 and a reboiler is needed 

In the first case, more vapour than the amount needed to provide 

for the intermediate liquid product PH is condensed and recycled as reflux 

into the column. In the second case, an amount of vapour equivalent 

to PH is condensed. In the third, fourth and fifth cases the liquid 

product, PH, is made up of condensed vapour-and liquid in different pro- 

portions. The liquid product is obtained directly from the internal 

liquid flow in the sixth case. More liquid is extracted from the column 

than needed for PH in the seventh case, thus some liquid is vaporized 

and returned to the column. 

The degrees of freedom of this system will be obtained in the 

next section. 

3.3 Degrees of Freedom 

To solve a set of simultaneous equations, a sufficient number 

of variables must be specified for the number of remaining unknown 

variables to be exactly equal to the number of independent equations. 

The unknown variables to which. we assign values are the design variables. 

If there are m variables and n independent equations, the degrees of 

freedom of the system are (m-n) and (m-n) values have to be specified 

for the design variables. 



49 

In order to describe a separation process uniquely, the number 

of variables which must be specified is equal to the number which can 

be set by construction or controlled during the operation by external 

means. 

Analyzing each column of the general confiouration in turn, vie can 

find the degrees of freedom of the system. 

In Figure (3.2) the first column can be seen. 

If we assumed that all the feeds to the first column are known, 

the number of plates above and below the feed F are set during construction. 

The column can be operated at an arbitrary chosen pressure between certain 

limits. An arbitrary amount of heat can be introduced in the reboiler 

and an arbitrary amount of heat, between limits, can be removed from 

the condenser. The liquid leaving the condenser can be split in any 

desired ratio by adjusting the valve in the reflux line and the same 

is true for the vapour leaving the reboiler. 

Thus, after all the feeds have been set, seven more variables 

must be defined. The seven variables mentioned were: 

Nl, N2, p1l Qcj QR , rc, rR 

where p, is the pressure in the column, Qc and QR are the heat exchanged 

in the condenser and reboiler and rc and rR are the split ratio of the 

liquid and vapour, condensed and boiled in both exchangers. Instead of 

Qc' QR ,rc and r R' the design variables specified were: 

PV(1), PL(l), PV(NT) and Rl 

The second column is shown in Figure (3.3). Assuming that all 

the feeds to the column are known, four more variables than in the 
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PV(l ) 
PL(l) 
FI (2) 

Fl (NT- 1) 
PV (NT) 

PL(NT) 

Figure 3.2 
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PV(l ) 
PL(l ) 
Fl (2) 

PH 

F1 (N T- I 
PV (NT 
PL (NT) 

Figure 3.3 



52 

previous column can be regulated, thus increasing the degrees of free- 

dom to eleven. The design variables chosen were: 

N3, N4, N5, N6, P2 , D, PH, R2, R3, F1(2), Fl(NT-1) 

where P2 is the pressure in this column. 

Thus the number 'Of degrees of freedom of the system are eighteen. 

3.4 Simulation of the System 

Assuming that the above eighteen design variables have been speci- 

fied, the system is well determined. 

Each column is solved separately and the recycle stream variables 

must be guessed and iterated on. To simulate the first column, the 

variables of the streams being fed into the first column should be 

specified. As the recycle stream variables are now known, some guessed 

values should be assigned to these variables and then updated. Enthalpy 

balances were not included in the simulation of a single column and will 

not be included in the simulation of the general configuration, therefore 

there is no need to calculate temperatures and enthalpies. There are two 

recycle streams, a liquid feed at the top and a vapour feed at the bottom 

of the first column. The flow rates of these two recycle streams were 

chosen as design variables, so that the only unknown variables are the 

compositions of these streams. Two component fractions in each stream 

could be guessed and updated and the third one calculated to satisfy 

that the summation of all the mole fractions add to unity. Four mole 

component fractions need to be-guessed initially to define completely 

the feeds to the first column. The stage numbers were numbered from 

the top to the bottom of the columns. 
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Setting 

NWI = N3 (3.4) 

NW3 = N3+N4+N5+1 (3.5) 

the four torn variables are the liquid fractions 

X2(1 NI41 ) 

and the vapour fractions 

Y2(2, NI, 13) 

9- X2(2, NWI) 

I Y2(3, NW3) 

The summation equations were used to obta'in the two remaining 

mole fractions: 

X2(3, NWI) =I- X2(1, NW1) - X2(2, NWI) 

Y2(1, NW3) =I- Y2(2, NW3) - Y2(3, NW3) 

(3.6) 

(3.7) 

A straightforward way of calculating the values of the recycle 

variables would be the direct substitution method. After the first 

simulation of the first column, the composition of the four products 

from the firstý column being fed to the second column are known and a 

simulation of the second column can be carried out, obtaining-new 

values for the compositions of the recycle streams which are products 

from the second column. The values of the unknown recycle streams are 
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guessed initially, the sequence of distillation columns computed through, 

and a new set of values for the recycle stream compositions obtained. 

These-are compared with the values of the torn variables in the previous 

iteration. If they differ by less than some prescribed tolerance, the 

problem is solved, otherwise the cycle is repeated. 

In the general configuration, capable of separating a given 

feed into its components, the number of torn variables can be calculated 

as follows: 

C-1, 
(3.8) 

i=2 

where c is the number of components present in the feed. 

3.5 Numerical Results 

Particular cases of the general configuration shown for a ternary. 

mixture are simulated in the following examples. In each case the direct 

substitution method is used to update the value of the torn variables. 

The maximum eigenvalue of the sYstem of torn variables is estimated 

around the fifth iteration, using Equation C6 of Appendix C. This value 

app) is used to predict the number of direct substitution steps max 

needed to find the solution using equation B12 of Appendix B, and checked 

with the number of DS steps really required to find the solution. In 

each example the value of the biggest eigenvalue of the system calculated 

at the solution using Equation C6 is reported as Xmax. 

Broyden's method was also used to update the compositions of the 

recycle streams, in the same examples as those run using the direct sub- 

stitution method, to check the robustness and efficiency of both methods. 

Different-initial guesses for the torn variables and different numbers 

of maximum inner iterations for the simulation of each column were 

tried. 
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A ternary mixture, described in each example, is separated 

into its components. Both columns are run at atmospheric pressure 

and the flow rate of the feed is 100 lb moles/hr in all the cases. 

The nomenclature used follows: 

maxdis maximum number of. iterations allowed for convergence of 

each column simulation 

it number of iterations required to find the solution value 

of the torn variables 

time ' seconds (CDC 6500) 

z0 initial guesses for the torn variables 

z 
Sol solution value of the torn variables 

x 
1, F molal feed compositions 

aR relative volatilities 

minws first iteration, in the inner loop, in which the Wegstein 

method is used 

(nac-1) number of direct substitution steps used between the accele- 

ration steps. 
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Example I 

xFý0.3,0.4,0.3 a i, R = 4.9,1.8,1.0 

tll N2 N3 N4 N5 N6 RI R2 R3 PV(l) PL(I) Fl(2) PV(NT) Fl(NT-1) 

8977 14 12 0.466 1.13 1.0 28.0 13.0 00 60.0 

Z 
Sol 

/ Y2(2, NI13) = 0.734 Y2(3, PJW3) = 0.243 

Table 3.1a Direct Substitution 

Changing the maximum iteration number in the column simulation 

z maxdis it time minws nac case 0 

0.4 0.55 20 13 3.305 14 4 1 

0.4 0.55 10 13 2.622 no acceleration 2 

0.4 0.55 5 13 1.747 no acceleration 3 

0.4 0.55 2 17 1.063 no acceleration 4 

0.4 0.55 1 30 1.051 no acceleration 5 

Table 3.1b Direct Substitution 

Different initial guesses for the torn variables 

z maxdis it time minws nac case 
0 

0.2 0.7 5 14 1.89 no acceleration 6 

0.333 0.333 5 13 1.835 no acceleration 7 

0.6 0.2 5 13 1.751 no acceleration 8 

0.2 0.1 5 14 1.969 no acceleration 9 
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Table 3.1c Broyden Method 

Changing the maximum number of iterations in the column simulation 

z maxdis it time minws nac case 0 
0.4 0.55 20 12 2.921 14 4 10 

10 15 2.699 no acceleration 11 

5 16 1.975 no acceleration 12 

0.4 0.55 3 18 1.470 no acceleration 13 

0.4 0.55 2 40 2.175 no acceleration 14 

0.4 0.55 1 8 bounds impeding progress 15 

Table 3.1d Broyden Method 

Different initial guesses for the torn variables 

z maxdi s it time case 
0 

0.2 0.7 5 22 2.605 15 

0.333 0.333 5 23 2.589 16 

0.6 0.2 5 17 1.965 17 

0.2 0.1 5 26 2.789 18 

0.2 0.1 2 bounds impeding progress 19 

0.2 0.1 3 bounds impeding progress 20 

0.6 0.2 3 19 1.494 21 

0.333 0.333 3 38 2.833 22 

0.2 0.7 3 bounds impeding progress 23 
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. 
Table Me Broyden Method 

z0 maxdis it time minws nac case 
0.4 0.55 20 12 2.921 no acceleration 24 

0.4 0.55 20 14 2.847 64 25 

0.4 0.55 20 14 2.584 10 4 26 
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Example II 

This is nearly the same as the first example, except that two design 

variables, the reflux ratios R2 and R3 have been changed, where R2 = 2.0 

and R3 = 1.5. 

z 
Sol : Yl(2, NII3) = 0.737 s YI(3, NI43) = 0.247 

Table 3.2a Changing the maximum iteration number in the column simulation 

Direct Substitution is used to update the torn variables 

z mi nws nac maxdis it time case 0 
0.4 0.55 14 4ý 20 35 9.266 1 

0.4 0.55 no acceleration 10. 35 7.433 2 

0.4 0.55 no acceleration 5 38 4.832 3 

0.4 0.55 no acceleration 2 43 2.610 4 

0.4 0.55 no acceleration 1 45 1.507 5 

Table 3.2b Different-initial c 

z minws nac 0 
0.2 0.7 no acceleration 

0.2 0.7 no acceleration 

0.333 0.333 no acceleration 

0.6 0.2 no acceleration 

0.2 0.1 no acceleration 

0.2 0.7 no acceleration 

0.333 0.333 no acceleration 

0.6 0.2 no acceleration 

esses for the torn variables 

maxdis it time case 

10 37 7.804 6 

5 40 5.030 7 

5 23 2.955 8 

5 22 2.777 9 

5 24 3.089 10 

1 48 1.612 11 

1 47 1.590 12 

1 46 1.571 13 
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Table 3.2c Different maximum number of iterations in each column 

simulation 

z minws nac maxdis it time case 0 
0.40 0.55 14 4 20 15 4.017 1 

0.40 0.55 no acceleration 10 19 3.488 2 

0.40 0.55 no acceleration 5 32 3.965 3 

0.40 0.55 no accele ration 2 80(*) 4.425 4 

Table 3.2d Different initial values for the torn variables 

z mi nws nac 0 
0.200 0.100 no acceleration 

0.600 0.200 no acceleration 

0.333 0.333 no acceleration 

0.200 0.700 no acceleration 

maxdis it time case 

5 60 bounds inpeding 5 

progress 

5 26 bounds impeding 6 

progress 
5 41 bounds impeding 7 

progress 

5 36 bounds impeding 8 

progress 

(*) did not converge 
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Example III 

xF": 0.3,0.4,0.3 

Nl 142 -N3 N4 N5 N6 Rl R2 

8 10 77 14 12 0.14 1.44 

Direct Substitution method used to 

z 
Sol 

/ X2(ljNWl) = 0.4401 

cc = 6.35,2.47,1.0 

R3 PV(I) PL(l) FI(2) PV(NT) Fl(NT-1) 

-1.0 30.5 41.44 20.0 00 

update the torn variables 

X2 (2, NW1) = 0.5476 

Table 3.3a Different maximum number of iterations in each column simulation 

z minws nac maxdis. it time case 0 

0.55 0.4 14 4 20 9 1.748 1 

0.55 0.4 no acceleration 10 9 1.561 2 

0.55 0.4 no acceleration 5 10 1.211 3 

0.55 0.4 no acceleration 2 11 0.757 4 

0.55 0.4 no acceleration 1 13 0.568 5 

0.333 0.333 14 4 20 8 1.733 6 

0.333 0.333 no acceleration 10 8 1.363 7 

0.333 0.333 no acceleration 5 8 0.964 8 

0.333 0.333 no acceleration 10 0.667 9 

0.333 0.333 no acceleration 1 14 0.548 10 

Table 3.3b Different initial values for the torn variables 

z minws nac maxdis it time case 0 
0.7 0.2 no acceleration 5 10 1.266 11 

0.2 0.6 no acceleration 5 9 1.054 12 

0.1 0.2 no acceleration 5 9 1.169 13 
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Broyden nethod used to upda-te the torn variables 

Table 3.3c Different maximum number of iterations in each column 

sir,, iu Ia tion 

z minws nac maxdis it time case 0 
0.333 0.333 14 4 20 15 2.95 14 

no acceleration 10 19 2.478 15 

no acceleration 5 16 1.823 16 

2 bounds impeding 17- 

progress 

Table 3.3d Different initial values for the torn variables 

Changing the initial guess for the torn variables 

z minws nac maxdis it time case 
0 

0.55 0.40 20 bounds impeding 18 

progress 

0.70 0.20 20 bounds impeding 19 

progress 

0.20 0.60 20 24 4.781 20 

0.10 0.20 20 36 8.486 21 
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xF": 0.3,0.4,0.3 

NI 112 N3 N4 N5 N6 Rl 

8 10 87 15 12 0.2 

z 
Sol 

/ X2(1, NWI) = 

Direct substitution method 

simulation 

Example IV 

a=6.7,2.4,1.0 

R2 R3 PV(l) PL(l) FI(2) PV(NT) Fl(NT-I) 

3 1.6 -1.0 43.0 34.0 20.0 0.0 0.0 

0.310 X2(2, Nl-ll) = 0.657 

used to update the iterations in each column 

Table 3.4a Different maximum number of iterations in each column 

z minws nac maxdis it time case 
0 

0.333 0.333 14 4 20 8 1.904 1 

0.333 0.333 no acceleration 10 8 1.514 2 

0.333 0.333 no acceleration 5 8 1.041 3 

0.333 0.333 no acceleration 2 9 0.657 4 

0.333 0.333 no acceleration 1 14 0.542 5 

Table 3.4b Different initial values for the torn variables 

z maxdis it time case 

0.1 0.2 5 7 0.995 6 

0.2 0.6 5 7 0.877 7 

0.55 0.4 5 9 1.114 8 

0.7 0.2 5 9 1.190 9 
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Broyden method used to update the value of the torn variables 

Table 3.4c Different maximum number of iterations in each column 

simulation 

z minws nac maxdis it time case 0 
0.333 0.333 14 4 20 21 3.517 1 

0.333 0.333 no acceleration 10 18 2.946 2 

0.333 0.333 no acceleration 5 23 2.806 3 

0.333 0.333 no acceleration 2 14 0.799 4 

0.333 0.333 no acceleration bounds impeding 5 

progress 

Table 3.4d Different initial values for the torn variables 

z maxdis it time case 0 
0.10 0.20 20 80(*) 11.200 6 

0.20 0.60 20 19 7 

0.55 0.40 20 bounds impeding progress 8 

0.70 0.20 20 bounds impeding progress 9 

(*) did not converge 
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Table 3.5 Direct Substitution Convergence 

Example I IV 

Case 1 .1 

Iteration No. 6 6 6 5 

Estimated 0.52 0.884 0.4 0.306 
eigenvalue 

Exact (xmax) 0.51 0.7867 0.45 0.287 
eigenvalue 

Estimated No. of est 7 (6.75) 42 2 (1.6) 2.4 
additional steps max 

Exact No. of 7 29 2 3 
additional steps 
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3.6 Comments 

In the first and second example, there is only a vapour recycle 

stream to the bottom of the first column, therefore only two vapour 

compositions are needed as torn variables, YI(2, NW3) and Yl(3, NW3). 

In the first example, the products satisfied a minimum recovery and 

purity of 90 percent, while in the second example the reflux ratio in 

both condensers of the second column were increased in such a way that 

a minimum purity of 95 percent was obtained. In Table 3.5 the values 

of the estimated maximum eigenvalue, calculated in the fifth or sixth, 

iteration, and the value c. alculated at the solution, are shown together 

with the predicted number of additional steps required to find the 

solution. The real steps needed to find the solution are shown in the 

same table. The approximation to the dominant eigenvalue (, est ) is 
max 

good enough to give an idea of the rate of convergence of the DS11 and, 

in a general case, whether an acceleration technique or a different 

method altogether should be used to solve the problem. 

In the first example, the estimation of the dominant eigenvalue 

in the sixth iteration is a very good one and the number of additional 

steps predicted is the same as the number of steps needed to find the 

solution. Allowing a maximum of 20 iterations for the simulation of 

the distillation columns, BM converged quicker than the DSM in cases 1 

and 10, but in all the other cases DSM was more efficient and never 

failed to find the solution. The dominant eigenvalue in this example 

is 0.51 and the DSM is expectqd to have a good rate of convergence. 

In Table 3.1a, the maximum number of inner iterations for the column 

simulation is changed from 20 to 1, and the computing time decreases 

as MAXDIS decreases. Indeed, when only one iteration was allowed 

inside the distillation columns (case 5), the computing time required 
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was less than a third of the time required wi th MAXDIS = 20 (case 1 

Table Mb shows the behaviour for different initial. values 

of the torn variables. The cases were run with MAXDIS =5 to compare 

them. with BM, because BM is very likely to fail to find a solution if 

MAXDIS <5 as can be seen in Table Mc and Md (cases 15,19,20, 

23). For all the different initial guesses DSM was more efficient than 

BM. In Table 3.1c, BM was run with different values of MAXDIS, and 

the computing time decreases as MAXDIS decreases up to a point in this 

case MAXDIS 3 (case 13). For MAXDIS =2 the computer time increased 

compared with MAXDIS = 3, and for MAXDIS = 1, BM failed to find a 

solution because the bounds on the variables were impeding progress. 

In Table 3.1d, the Steffensen method was used to accelerate the con- 

vergence in the inner loop of each distillation column, while BM was 

used to update the torn variables. Some reduction in the computing 

time can be observed (cases 25 and 26), although the reduction is less 

than the one obtained decreasing MAXDIS. 

In the second example, the dominant eigenvalue is 0.787 and 

the DSM required more iterations than in the previous case to converge. 

In Table 3.2a, for values of MAXDIS from 20 to 5 inclusive, BM was more 

efficient than DSM. For MAXDIS = 2, BM did not converge in 80 iterat ions, 

but the DSM went on reducing the computing time needed as MAXDIS decreased, 

becoming the most efficient way of simulating the system for MAXDIS = 1. 

The computing time using DS and MAXDIS =I is less than one sixth of 

the computing time using DS and MAXDIS = 20. BM was used with different 

initial values for the torn variables and with MAXDIS = 5, it failed to 

find a solution in 2 cases (I and 2) out of four trials. DSM never 

failed to find a solution, and the option of MAXDIS =1 and DSM was the 

most effective way of solving this example, 
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In the third example, a different mixture is separated into 

its components, and in this case there is a liquid recycle stream 

only, being fed at the top of the first column. The dominant eigenvalue 

is 0.45 and the DSM was more efficient than the BM in all the cases. 

The robustness of the BM was poorer than in the two previous exýmples 

failing to find a solution even for MAXDIS = 20. 

The last example was tried with the same feed and the same 

design variables as in example three, except for the two reflux ratios 

corresponding to both condensers in the second column that were increased. 

The dominant eigenvalue decreased to 0.312 and obviously the DSM per- 

formed better than the BM. Again the robustness of the BM was poor, 

not finding the solution for MAXDIS = 20 because bounds on the Yariables 

were impeding progress. 

It can be said that the direct substitution method with MAXDIS =1 

was the best option in all the cases. 
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CHAPTERIV 

THE OPTIMUM DESIGN OF A DISTILLATION COLUMN 

4.1 Introduction 

The optimum design of a distillation column is of special 

interest because this is the unit operation that is most frequently 

employed for separating products from a given mixture. Short cut 

methods have been widely used to design distillation columns, parti- 

cularly to find the number of theoretical stages required for a given 

separation. Empirical equations have been proposed relating the reflux 

ratio and the total number of stages of a given column with two pro- 

ducts, where the minimum reflux and the minimum number of ideal stages 

are-known. The minimum stage number-required is obtained at infinite 

reflux using the Fenske-Underwood (28) equation that requires constant 

relative volatility, though some modifications have been suggested for 

use in cases where the relative volatilities are not constant. The 

minimum reflux ratio is the maximum reflux ratio which will require an 

infinite amount of trys to obtain a required degree of separation and 

represents the minimum cost in heating and cooling utilities. The 

calculation of the minimum reflux for non-conventional columns has 

received some attention in the literature, but when the restriction 

imposed to simplify the model, like constant relative volatility and 

flow rates, are lifted the procedure can become as time consuming as 

a plate to plate simulation. kecently Cerda and Westerberg (29) have 

proposed simplified methods of determining minimum reflux conditions 

and have suggested the use of Edmister's "absorption factor method" 

to determine the number of plates and feed plate locations. However 
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the approximations used depend heavily on the fact that the separations 

are sharp, which is an undesirable restriction for our approach 6nd 

on the assumption that internal flow rates and relative volatiles are 

constant. 

Given the limitations of these short-cut methods, and the 

underlying need to make the simplifications of constant flow rates and 

relative volatilities, it seemed worth examining the savings that could 

be made by using these simplifications in a plate by plate simulation 

of the column. Accordingly, the simplified algorithm described in 

Chapter II was developed, and this indeed proved fast enough for use 

in an optimum design procedure. This approach has the advantage that 

the model can be refined to locate the optimum more precisely - the 

ideal algorithm would in fact progressively increase the sophistication 

of the model as the optimun, is approached. This of course requires 

the addition of energy balances to the model, but the computing time 

will not be greatly increased if simple expressions are used to cal- 

culate enthalpies and equilibrium-ratios. 

When the number of stages in each section is known the design 

constraints can be added to the system of equations describing the 

distillation process. If the design specifications are expressed as 

equality constraints and their number is equal to the degrees of freedom. 

of the system, a well determined system of nonlinear equations and 

variables is to be solved, and any standard algorithm may be used to 

find the solution of all the equations simultaneously. The need to 

express the design specifications as constraint equalities leaves much 

to be desired, especially in separation processes where the specifi- 

cations will normally be a minimum recovery or purity in more than one 

product and it might well be that there is no feasible solution with 
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all the constraints specified as equality constraints. 

When designing a distillation column, there are frequently 

more degrees of freedom than design specifications, so that the design 

variables can be chosen to minimize or maximize a given objective 

function like the cost or profit of running the process. When the 

stage numbers are defined, a nonlinear constraint problem with a non- 

linear objective function can be defined and solved with standard. 

optimization techniques. The equations describing the column can be 

included as equality constraints; however, given the large number of 

equations representing the column, it is probably best to solve them 

separately. Some work has'been reported lately by Boston (30) on 

the optimization of a distillation column where the stage numbers of 

each section are known. A variable metric algorithm developed by 

Powell (31) was used to find the design variables that would minimize 

a given cost function. The equations describing the distillation 

column were solved separately using the "inside out" algorithm (18), 

to reduce the search space. 

When the stage numbers are included as the optimization 

variables in such a way that the structure of the column and the 

operating conditions are calculated at the same time, the problem 

cannot be solved with standard optimization techniques due to the 

inclusion of integer variables in the set of optimization variables. 

No technique is yet available to solve an optimization problem in 

which integer and real variables are solved at the same level. Sargent 

and Gaminibandara (5) attempteý the optimum design of a distillation 

column in two levels: an inner optimization level in which, given 

the total number of stages, the feed and product distributions along 

the column together with the energy requirements were optimized and an 

outer optimization level in which the total number of stages of the 
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column is searched to minimize a given objective function. 

This approach requires that for each value of the total number 

of stages given by the outer level of optimization, some kind of 

heuristic rules should be developed to define the places in which 

the number of stages added or subtracted should be put in or taken 

away. Otherwise the initial point for each inner optimization should 

distribute the feed and (or) the products along the column, depending 

on the design specifications. This last option will not use the 

information obtained in the previous inner optimization and the 

initial point for each inner optimization will always be far from the 

point obtained in the previous inner optimization, thus decreasing 

enormously the efficiency of the optimization algorithm. The Variable 

Metric Projection method of Murtagh and Sargent (0) was used in the 

inner loop while a one-dimensional minimization method of Sargent 

and Sebastian (68) was used in the outer loop. 

In the present work the stage numbers of each section were 

optimized at the same level that the other design variable s as it 

will be seen in the following sections. 

4.2 Formulation of the Optimization Problem 

The mathematical description of a distillation process consists 

of a set of nonlinear equations containing state and design variables. 

The number of state variables is the same as the number of equations 

describing the system. If the design variables are known the values 

of the state variables can be determined by solving the set of equations 

as has been described in Chapter II. The design problem, to be considered 

is to select the design variables in such a way that they minimize a 

specified objective function. 

The objective function will be given by the annual cost of 
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running the distillation column and could be written as 

F 
obi ý C(u, s) 

where 

S is the state variable vector of dimension m 

(4.1) 

u is the design variable vector of dimension (n-m), n 

being the total number of variables 

The performance of the distillation process can be represented 

by the system of nonlinear equations 

f(u, s) =0 (4.2) 

where f is the m vector of equations. 

The design specifications have the general form 

L 
c< g(u, s) < cu (4.3) 

where g is the vector of constraint functions with lower and upper 
Lu bounds c and C 

Then the general design problem consists of solving the 

following problem: 

min F 
obj 

C(u, s) 

st f(u, s) 

CL < g(u, s) <cu 



74 

The dimension of the nonlinear vector f describing the 

distillation system is big. To reduce the size of the optimization 

problem, the equality constraints were solved separately using the 

simplified algorithm described in Chapter II for the simulation of 

a distillation column. This simplifies the optimization problem to 

the form 

min F 
obi = C(U) 

stcL<g (U) <c 

(4.4) 

(4.5) 

the dimension of the vector u' now being equal to the number of 

degrees of freedom of the system. Some bounds on the optimization 

variables may also be specified as follows: 

u 

4.2a The Objective Function 

(4.6) 

For a given separation, the greater the reflux used the fewer 

the plates needed but the more steam and cooling water, the larger 

the diameter of the column, and the greater the size of the. heat 

exchangers required. 

There are many different systems for measuring the profitability 

of a process. When the plant is planned to operate at a constant annual 

production rate over a definite number of years, the annual annuity 

charge can be defined as 

(4.7) 
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where Tr =i+f (4.8) 

i equals the percentage rate of interest divided by 100 

f equals the percentage of inflation divided by 100 

n number of Years (lifetime) 

The annual cost of running a distillation process was cal- 

culated as: 

+R (4.9) 
annual aIFc 

IF= total investment in the distillation column 

RC= running costs per annum 

The total installed equipment cost is made up of the cost of 

the distillation column and its plates and the cost of heat exchangers, 

condensers and reboilers. Capital costs for piping, insulation and 

instrumentation were estimated to add 60 percent to the installed costs 

of the equipment. The installed cost of the equipment was calculated 

following Happel and Jordan (40). These simplified costs are sufficient 

for preliminary design purposes. As an illustration, formulae for the 

cost of a single column with a-liquid feed and two liquid products, one 

condenser and one reboiler will be developed. 

The cost of a distillation column can be expressed as 
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c col s 0.77 N 
0 (4.10) 

EY 

where 

C col, annual investment cost (i/plate yr) 0 

S tower cross sectional area (ft 2) 

N number of theoretical stages 

E overall column efficiency 

Y hours/year operation 

The tower cross sectional areas can be calculated as: 

S= V/G 
a= 

D(1+R)/G 
a 

(4.11) 

where V vapour throughput rate (lb moles/hr) 

Ga allowable vapour velocity (lb moles/hr ft 2) 

reflux ratio 

D product flow rate (lb moles/hr) 

In most cases, the vapour velocity is limited by entrainment 
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of liquid droplets in the rising vapour which can result in improper 

operation or even flooding of the column. A tower must have sufficient 

cross sectional-area to handle the rising vapour without excessive 

entrainment of liquid from one plate to another. 

The overall column efficiency, defined as the number of theoretical 

stages required to produce a given separation divided by the number of 

real stages necessary to produce the same separation, was used because 

of its simplicity. 

Then, the cost of the column becomes 

c col N «l+R). D) 0*77 
0 

G 0.77 EY=c col 
(4.12) 

a 

if Ci = cc, 1/G0.77 EY (4.13) 
0a 

c 
col =CIN 

[(I+R) D] 0.77 (4.14) 

The cost of the heat exchanger can be calculated as 

c Chex A 0.6 /y (4.15) 
he o 

where C hex 
annual investment cost of the heat exchanger 0 

A area of heat transfer 

The heat transfer area can be obtained from 

A= Q/UAT (4.16) 
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heat exchanged 

U overall heat transfer coefficient 

AT overall temperature difference 

Qc (1+R) Dxc 

QR ý (1+R) D ýR 

(4.17) 

(4.18) 

where Qc and QR are the heat exchanged in the condenser and reboiler 

A and AR are the latent heat in the c*ondenser and reboiler 

then 

Ac = (I+R) Dc/Uc AT 
c 

(4.19) 

Aý = (1+R) D AT (4.20) XR/ UR 
R 

The cost of both heat exchangers can be written as 

c C+R (C2C+C2R) (1+R) 0.6 D 0.6 (4.21) 

where CCx0.6 / (UCATC). 0.6 y (4.22) 2Ccc 

ccx0.6 AT *6 y (4.23) 2R ýRR/I UR R) 
0 
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It has further been assumed that the steam cost is a linear function 

of-its condensation temperature 

c 1.0) i/tonne (T in OC) (4.24) 
steam 

(0.04 T 

The combined cost of steam and cooling water could be obtained 

from 

(C +C) (1+R) D 
S+C steam cw 

(4.25) 

The total cost of the distillation column is the sum of all 

these costs 

c 0*77 
col umn 

Ci N (D(I+R)) 

I 
(C 2c+ c 2R) (1+R) 0.6 D 0.6 

+ (4.26) 

+ (C 
steam +C cw 

) (1+R) D 

and N= NI + N2 (4.27) 

where 

NI is the number of theoretical stages above the feed 

N2 is the number of theoretical stages below the feed 

The optimization variables are NI, N2, R and D. 
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4.2b Constraints 

The requirements for the separation process are expressed as 

constraints of the optimization problem, and will normally be speci- 

fications of the products such as pu rity, recoveries, temperatures, 

etc. It is sometimes difficult to find algebraic expressions of. the 

constraints as functions of the optimization variables, like the stage 

number. In most of the cases the constraints will be inequality con- 

straints, and in the space in which these requirements are satisfed a 

mininum value of the objective function will be found. 

4.3 Method of Solution 

The problem has been presented as an integer nonlinear problem, 

because some integer variables are included in the set of optimization 

variables. Since no explicit algorithm is yet available to solve this 

class of problem, the integer variables were treated as real variables 

and the problem posed as a nonlinear programming problem. The objective 

function and the constraints are normally nonlinear functions of the 

optimization variables and an augmented lagrangian algorithm called MINOS, 

of Murtagh and Saunders (38,39) was used to find the minimum of the 

objective function in the feasible space defined by the constraints. 

MINOS requires both function and derivatives with respect to the optimi- 

zation variables for the objective and con straint functions. For the 

objective function, there is no difficulty in obtaining the derivatives 

analytically, but for the constraints finite-difference approximations 

were used. 

4.3a Obiective Function Derivatives 

Rewriting the cost function for a column with two products 

presented in Equation (4.26) 
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C= Ci (XI+X2) [D(1+R)) 0.77 

(C 2c+ c 2R) (I+R) 0.6 D 0.6 
+ (4.28) 

(C 
steam +C cw 

) (1+R) D 

the analytical derivatives can be calculated as follows 

ac 
= C' (D(1+R)l 0*77 

ax] I 

ac ac 
(4.29) 

aX2 3XI 

ac 
- Ci-(Xl+X2). 0.77 (I+R)- 0.23 D 0.77 

A 

(C 2R +C 2R) 0.6 (1+R)- 0.4 D 0.6 
+ (4.30) 

+ (C 
steam +C cw 

)D 

ac 
- Ci (Xl+X2) (1+R) 0.77 0.77 D- 0.23 

aD 

+ (C 2c +C 2R) (1+R) 0.6 0.6 D- 0.4 
+ (4.31) 

+ (C 
steam+c cw 

) (I+R) 

The real numbers Xl and. X2, corresponding to the ideal stages 

in each section, given by the optimization algorithm as the solution 
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values for these variables, have to be converted into real stages 

using the global efficiency. Having done that, the real numbers 

corresponding to the real stages have to be rounded up to integer 

numbers-. The purities increase as the stage number in each section 

increases, so that the integer number most likely to satisfy the 

purity constraints is the nearest bigger integer number bracketing 

the real number corresponding to a given section. 

4.3b Constraint Derivatives 

Plate numbers have to be modified by integral amounts and an 

appropriate interpolation scheme was used to give data corresponding 

to the non-integer values of the plate number given by the optimization 

algorithm. The technique used is illustrated in Figure (4.1) for two 

integer variables. Thus if Xl and X2 are the non-integer values for 

the plate numbers, these are first rounded to the nearest integer 

number in each case to provide the base point (NI, N2+1) in Figure 

(4.1), then perturbations are made to the adjacent integer which 

brackets the corresponding non-integer value in each case, yielding 

points (Nl+l, N2+1) and (NI, N2). For a typical dependent variable 

Y, the required values are then obtained as follows: 

ay Y(Nl+l, N2+1) - Y(NI, N2+1) 
ax] 

(4.32) 

ay 
= Y(Nl, N2+1) - Y(NI, N2) 

aX2 

Y(XI, X2) = Y(Nl, N2+1) + ay 
T (XI-Nl) + ay (4.33) 

ax 3X2 
(X2- (N2+1)) 

For the continuous variables, forward difference approximations 
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were used such as 

3y _ 
g(X+hi)-g(X) 

3x i 
(x) vhi (4.34) 

to estimate the partial derivatives of the constraints. If the 

perturbation hi is too small, cancellation errors could be high. On 

the other hand, if hi is too large the estimation error could be 

excessive. Constant perturbations of 1% of the values were made. 

For each derivative approximation, one simulation of the column is 

required, and this is one of the main reasons to keep the number of 

the optimization variables'as low as possible. As a small perturba- 

tion on each variable is required, the initial guess for the state 

var. iables in each simulation can be made equal to the s6lution of the 

previous simulation, this value being a very good initial point in 

most of the cases. 

4.4 Numerical Examples 

If steam is only available at a limited number of temperature 

levels, the temperature differences in the reboilers are fixed by 

heat sources available in the plant in consideration. 

On the other hand, if the whole plant is being designed, it 

might well be that steam can be produced at the pressure levels required 

to match the temperature levels of the distillation columns. This will 

be the case if the cost of running the separation process is an impor- 

tant fraction of the total energy cost. Obviously another important 

variable to be optimized would be the pressure of the column in such 

a way that given the boundary conditions for heat to be exchanged, 

the pressure of the column could be chosen to use the available energy 

le vels in the most efficient way. This problem was not attempted, but 

in principle, the pressure of the column could be added to the set of 
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optimization variables and an algebraic expression should be found 

defining the fixed and running costs as functions of the pressure, 

then, the problem could be solved using the method developed in 

Section 4.3. 

Supposing that steam was available at different pressures, 

the source of heatinq was chosen to be at a temperature 10 0C higher 

than the liquid being vaporized and the steam cost was represented 

by the equation 

Steam cost = 0.6 T-1.0 i/tonne (T in 0 C) (4.35) 

and T=Tbt+ 10 (4.36) 

where Tbz is the bubble point of the liquid being vaporized 

It was assumed that cooling water was available at 20 0C and 

it would increase its temperature up to 10 0C less than the temperature 

of the liquid being condensed. 

The assumption of 10 0C as the minimum driving force for heat 

transfer in the exchangersivas taken to minimize the expenses in 

cooling and heating utilities. The steam cost is by far the most 

important term in the total cost of running a distillation column as 

can be seen in Table XVI. It seems reasonable to assume a fixed AT 
min' 

that might well be other than 10 0 C, because the cost of the area needed 

for heat transfer in the reboilers is 20 times smaller than the steam 

cost. On the other hand, the cooling water cost is similar to the fixed 

cost of the condenser, both being small terms. For high temperature 
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levels of the vapour to be condensed, the use of a AT bigger than 10 0C 

will decrease the fixed cost of the condenser and the total cost could 

be'improved. The cost of water at 20 0C was 10.025/1000 gal. 

For the fixed cost of heat exchangers the following relations, 

based on "installed costs" data given by Peters and Timmerhaus (32) 

were used 

Reboiler cost = 1124 A 0.6 (4.37) 

Condenser cost = 180 0.6 A (4.38) 

where A (ft 2) is the heat exchange area based on appropriate heat 

transfer coefficients. 
The cost for piping, insulation and instrumentation was esti- 

mated to be 60 percent of the cost of the installed equipment. 

The installed cost of the distillation column was calculated 

as follows: 

Column cost = 155 A 0.77 
per real plate (4.39) 

where A (ft 2) is the cross sectional area of the column. 

The global efficiency used was 80 percent for all the examples. 

4.4a A Single Column with Two Products 

In Examples I to X, binary mixtures are separated in a distilla- 

tion column at atmospheric pressure. A minimum recovery and purity of 

90 percent is required in both products. Care has to be taken to 

specify the design constraints, specially when equality constraints 

are to be used. For example, if a recoverý of 90 percent of the component 

in the largest amount is satisfied, a minimum purity of 90 percent 

of the component in the smallest amount in the corresponding product 
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cannot be obtained. Similarly, supposing that a purity of 90 percent 

is required in both products, a recovery of 90 percent of the component 

in the smallest amount cannot be achieved. On the other hand, when a 

minimum recovery and composition are satisfied by the' product corresponding 

to the component in the smallest amount, the same recovery and composi- 

tion is satisfied by both products. Specifying constraints for one 

product only could make the job easier for the optimization algorithm, 

otherwise the four constraints should be specified as inequality con- 

straints. 

When the recovery and the purity constraints of a given product 

are satisfied as equality constraints, the flow rate of the product is 

fixed. The flow rates of the products are therefore fixed during optimi- 

zation and their values are defined by the specifications of 90 percent 

recovery and 90 percent purity of the component in the smallest amount. 

Thus, only a minimum purity constraint for the smallest product is 

needed. Thi's constraint is always active at the solution. 

A total condenser is used because the top product was required 

as a liquid. The optimum column for the separation of three different 

mixtures, each one of them with three different feed compositions 

is calculated. They are fed at a rate of 500 moles lb/hr. The optimum 

design for the fourth binary mixture is obtained using different initial 

points. The annual cost of running the distillation column is minimized 

using MINOS. All the cases are run with the normal steam price (case A) 

and with the price of steam ten times cheaper than the real one (case B), 

to analyze the sensitivity of-the solution to different prices of the 

most important term of the objective function. In each example the 

ratio of the reflux ratios and of the total stages numbers between 

case B and case-A are shown where NT is defined as 



88 

NT = XI+X2 

The values of the overall heat transfer coefficients for each 

example are given as Uc and UR where c and R refers to the condenser 

and reboiler respectively. 

4.4b A Sinqle Column with Three Products 

In Examples XI to XV, a special case of one column with three 

products, shown in Figure 4.2, was optimized. A ternary mixture is 

separated into its components in a column at atmospheric pressure. 

Three liquid products are obtained from the column which has three heat 

exchangers, two qondensers. and one reboiler, -so that two reflux ratios 

can be defined - one at the top of the column calculated as the ratio 

between the liquid being recycled into the column and the top product 

flow rate and a second reflux ratio corresponding to the intermediate 

condenser which can be defined as 

R2 = PV(Nl+N2+1)/PH (4.40) 

Supposing that R2=0, then PV(NI+N2+1) =0 and no condenser is 

needed. The liquid product is extracted directly from the internal 

liquid stream. 

The optimization variables are Xl, X2, X3, R, R2, D, PH, where 

the first three variables correspond to the stage numbers in each 

section of the column and PH is the molal flow rate of the intermediate 

product. 

To calculate the fixed cost of the column, each section of the 

column has a different cross sectional area depending on the internal 

vapour flow rate going through the given section. The total annual 
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cost to be minimized is given by the following expression: 

c TOTAL ý- Cl' (Xl+X2) (D(1+R)) 0.77. 

Ci X3 (D(I+R) + R2 x PH) 0.77 

+C 2c (D(I+R)) 0.6 
+C 3c (R2 x PH) 

0.6 
+ 

(4.50) 

C 2R ('D(1+R) + R2 x PH) 0*6 

+C cwT 
D (1 

. 
+R) +C CWI 

R2 x PH + 

+C steam 
(D(1+R) + R2 x PH) 

where the first and second terms are the fixed cost of the column 

the third and fourth terms, the fixed cost of the top and intermediate 

condensers respectively; the fifth term represents the fixed cost of 

the reboiler; the sixth and seventh terms the cooling water cost in 

the top and intermediate condensers and the last term represents the 

steam cost. 

For a column with three sections there are three integer 

variables to be optimized and for each real point representing these 

three variables XI, X2 and X3 there are eight integer base points to 

choose from. As in the previous case Xl, X2 and X3 are first rounded 

to the nearest integer number in each case to provide a base point 

(NI, N2, N3) and then perturbations are made to the adjacent integer 

number which brackets the corresponding non-integer value in each 

case, to approximate the partial derivatives using finite differences. 
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These finite approximations are requirpd to calculate the value of 

any given state or dependent variable (Y) as a function of Xl, X2 and 

X3 as shown in the following equation: 

y Y(XI, X2, X3) = Y(NI+N2+N3) + ý-Xj (XI-Nl) 

ayy 
+ (X2-N2) + -L- (X3-N3) 

DX2 aX3 

(4.51) 

In addition the optim ization method used requires values of 

the constraint derivatives, so that these finite approximations are 

provided as the partial derivatives of the constraints. For the real 

variables, constant perturbations of 1% were made. 

Two different ternary mixtures with different feed compositions 

are processed at a rate of 500 moles lb/hr. Three liquid products were 

obtained, with each column being. run at atmospheric pressure. The 

flow rates of the products are specified in each example as D and PH, 

corresponding to the top and intermediate product. 
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Example Ia 

Table 4.1a Normal steam price 

xFa T(OC) D 

toluene 0.3 2.4 ill 150 

6-xylene 0.7 1.0 174 

Initial Sol Lower Upper Real Rounded 
point point bound bound plates Sol 

xi 15 11.52 2.0 15.0 14.40 15.. 0 

X2 15 15.00 2.0 15.0 18.75 19.0 

R 3.3 1.919 2.0 8.0 

Cost(l/hr) 33.068 22.515 

Iterations 12 

Function and gradient calls 70 

Time (6500) secs 32.27 

Time per column simulation 0.115 
(6500) secs 

Uc= 100 BTU/hr ft 2oF 

uRý 30 BTU/hr ft 2oF 



93 

Example Ib 

Table 4.1b Steam price ten times less than the real one 

Initial 
poi nt 

xi 15.0 

X2 15.0 

R 3.0 

F b* (i/hr) 5.375 

Iterations 

Sol Lower Upper Real Rounded 
point bound bound plates Sol 

8.46' 2.0 15.0 10.58 11.0 

10.04 2.0 15.0 12.55 13.0 

2.005 0.2 8.0 

3.750 

30 

Function and gradient calls 191 

Time (6500) secs 72.70 

Time per simulation of the 0.095 
column (6500) secs 

Rb / Ra =1 . 045 

(NT)b /(NT)a = 0.698 
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Example 

Table 4.2a Norrial steam price 

xF T(OC) D 

Tol uene 0.5 2.4 111.0 250.0 

O-xylene 0.5 1.0 174.0 

Initial Sol Lower Upper Real Rounded 
point point bound bound plates Sol- 

xi 15.0 11.01 ' 2.0 15.0 13.76 14 

X2 15.0 11.05 2.0 15.0 13.81 14 

R 1.5 0.955 0.2 8.0 

Cost(i/hr) 32.065 24.978 

Iterations 10 

Function and gradient calls 78 

Time (6500) secs 28.96 

Time per column simulation 0.093 
(6500) secs 

Uc = 100 BTU/hr ft 2oF 

uR :- 80 BTU/hr ft 2oF 
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Table 4.2b Steam price ten times less than real one 

Initial Sol Lower Upper Real 
point point bound bound plates 

xi 15.0 7.000 2.0 15.0 8.75 

X2 15.0 8.002 2.0 15.0 10.00 

R 1.5 1.036 0.2 8.0 

Cost(l/hr) 5.5695 3.9940 

Iterations 30 

Function and gradient calls 228 

Time (6500) secs 38.84 

Time per column simulation 0.043 
(6500) secs 

Rb / Ra =1 . 085 

Rounded 
Sol 

9.0 

10.0 

(NT)b / (NT)a = 0.725 
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Example III 

Table 4.3a Normal steam price 

xF a T(OC) D 

Toluene 0.7 2.4 111.0 350.0 

O-xylene 0.3 1.0 140.0 

Initial Sol Lower Upper Real Rounded 
point point bound bound plates Sol * 

X1 14.0 14.41 2.0 17.0 18.01 18 

X2 16.0 12.00 2.0 17.0 15.00 15 

R 1.0 0.73784 0.2 8.0 

Cost (i/hr) 35.823 31.0415 

Iterations 7 

Function and gradient calls 66 

Time (6500) secs 40.16 

Time per column simulation 0.152 
(6500) secs 

Uc = 100 BTU/hr ft 2oF 

uR 'ý 80 BTU/hr ft 2oF 
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Table 4.3b Steam price ten times less than the. real one 

Initial Sol Lower Upper Real Rounded 
point point bound bound plates Sol 

xi 14.0 8.0 2.0 17.0 10.0 10 

X2 16.0 8.75 2.0 17.0 10.94 11 

R 1.0 0.80623 0.2 8.0 

Cost (i/hr) 6.14800 4.93085 

Iterations 19 

Function and gradient calls 140 

Time (6500) secs 32.23 

Time per column simulation 0.058 
(6500) secs 

Rb Ra 1.093 

(NT)b / (NT)a = 0.634 
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Example IV 

Table 4.4a Normal steam price 

xFa T(OC) D 

Benzene 0.3 2.79 80.0 150.0 

Toluene 0.7 1.00 111.0 

Initial Sol Lower Upper Real Rounded 
point point bound bound plates Sol 

xi 10.0 8.99 2.0 15.0 11.24 12 

X2 10.0 11.80 2.0 15.0 14.75 15 

R 1.6 1.4733 0.2 8.0 

Cost(l/hr) 11.655 11.050 

Iterations 13 

Function and gradient calls 90 

Time (6500) secs 92.4 

Time per column simulation 0.257 
(6500) secs 

UC 100 BTU/hr ft 2oF 

UR 80 BTU/hr ft 2oF 
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Table 4.4b Steam price ten tiries less than the real one 

xi 

X2 

R 

Initial Sol Lower Upper Real Rounded 
point point bound bound plates Sol 

10.0 7.0 2.0 15.0 8.75 9 

10.0 8.4 2.0 15.0 10.50 11 

1.6 1.601 0.2 8.0 

Cost(l/hr) 2.555 2.390 

Iterations 

Rb / Ra 

29 

Function and gradient calls 184 

Time (6500) secs 29.9 

Time per column simulation 0.041 
(6500) secs 

=1 . 087 

(NT)b / (NT)a = 0.741 
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Example V 

Table 4.5a Normal steam price 

xFa T(OC) D 

Benzene 0.5 2.79 80.0 250.0 

Toluene 0.5 1.0 111.0 

Initial Sol Lower Upper Real Rounded 
point point bound bound plates Sol 

xi 14.0 8.0 2.0 20.0 10.0 10 

X2 15.0 9.153 2.0 20.0 11.44 12 

R 0.8 0.710 0.4 8.5 

Cost(i/hr) 13.6255 12.5125 

Iterations 24 

Function and gradient calls 96 

Time (6500) secs 39.6 

Time per column simulation 0.103 
(6500) secs 

Uc= 100 BTU/hr ft 2oF 

UR= 80 BTU r ft 2oF 



ill 

Table 4.10b Normal steam price 

Initial Sol Lower Upper Real Rounded 
point point bound bound plates Sol 

xi 10.0 8.7 2.0 17.0 10.86 11 

X2 10.0 10.6 2.0 17.0 13.25 14 

R 1.6 1.57407 1.0 8.0 

Cost(i/hr) 6.12695 6.0440 

Iterations 10 

Function and gradient calls 40 

Time (6500) secs 15.468 

Time per column sinulation 0.09668 
(6500) secs 

Table 4.10c Steam Drice ten times less than real one 

Initial Sol Lower Upper Real Rounded 
point point bound- bound plates Sol 

xi 10 7.0 2.0 17.0 8.75 9 

X2 10 8.31 2.0 17.0 10.39 11 

R 1.6 1.69186 0.2 8.0 

Fobi (1/hr) 2.3143 2.0855 

Iterations 23 

Function and gradients calls 297 

Time (6500) secs 67.08 

Time per column simulation 0.06 
(6500) secs 
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Example XI 

Table 4.11a Normal steam price 

xF a T(OC) D PH 

Dichloromethane 0.3 4.9 41.0 150.0 

Chloroform 0.4 1.8 61.0 200.0 

Carbon tetrachloride 0.3 1.0 76.0 

Initial Sol Lower Upper Real Rounded 
point point bound bound plates Sol 

xi 15.0 '13.01 2.0 30.0 16.26 17 

X2 10.0 7.98 2.0 30.0 9.96 10 

X3 10.0 9.03 2.0 30.0 11.29 12 

R 12.0 6.8067 3.0 30.0 

R2 0.05 0.01 0.01 4. o 

F 
obi 

(1/hr) 38.148 23.080 

Iterations 9 

Function and gradient calls 30 

Time (6500) secs 52.5 

Uc=1 75 BTU/hr ft 2oF 

uRý 150 BTU/hr ft 2oF 
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Table 4.11b Steam price ten times less than real price 

Initial Sol Lower Upper Real Rounded 
point point bound bound plates Sol 

xi 15.0 10.19 2.0 30.0 12.74 13 

X2 10.0 8.36 2.0 30.0 10.45 11 

X3 10.0 8.50 2.0 30.0 10.63 11 

R 12.0 6.955 3.0 30.0 

R2 0.02 0.01 0.01 4.0 

I 
Cost(i/hr) 12.315 7.4245 

Iterations 11 

Function and gradient calls 92 

Time (6500) secs 114.51 

Rb / Ra = 1.022 
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Example XII 

Table 4.12 Normal steam price 

xF a T(OC) D PH 

Dichloromethane 0.2 4.9 41.0 100.0 

Chloroform 0.4 1.8 61.0 200.0 

Carbon tetrachloride 0.4 1.0 76.0 

Initial Sol Lower Upper Real Rounded 
point point bound bound plates Sol 

X1 15.0 12.32 2.0 30.0 15.40 16 

X2 10.0 6.97 2.0 30.0 8.71 9 

X3 10.0 7.94 2. o 30.0 9.93 10 

R 12.0 10.1856 3.0 30.0 

R2 0.5 0.01 0.01 4.0 

Cost(l/hr) 25.945 21.870 

Iterations 

Function and gradient calls 

Time (6500) secs 

9 

32 

52-383 

Uc= 175 BTU/hr ft 2oF 

uR 'ý- 150 BTU/hr ft 2oF 
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Example XIII 

Table 4.13 Normal steam orice 

xF T(OC) D PH 

Dichloromethane 0.1 4.9 41.0 50.0 

Chloroform 0.4 1.8 61.0 200.0 

Carbon tetrachloride 0.5 1.0 76.0 

Initial Sol Lower Upper Real Rounded 
point point bound bound plates Sol 

xi 15.0 14.00 2.0 20.0 17.50 18 

X2 9.0 6.41 2.0 15.0 8.01 8 

X3 9.0 6.50 2.0 15.0 8.31 9 

R 22.0 20.098 10.0 30.0 

R2 0.02 0.01 0.01 4.0 

Cost(i/hr) 22.970 20.650 

Iterations 3 

Function and gradient calls 9 

Time (6500) secs 18 

Uc = 175 BTU/hr ft 2oF 

uR= 150 BTU/hr ft 2oF 
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Exanple XIV 

Table 4.14a Normal steam price 

xF a (TOC) D 

Benzene 0.3 6.7 80.0 150.0 

Toluene 0.4 2.4 111.0 

O-xylene 0.3 1.0 174.0 

Initial Sol Lower Upper 
point point bound bound 

xi 15.0 15.4 2.0 20.0 

X2 10.0 4.0 2.0 15.0 

X3 10.0 5.0 2.0 15.0 

R 8.0 6.23 3.0 30.0 

R2 0.02 0.01 0.01 4.0 

Cost(i/hr) 69.62 57.25 

Rb / Ra = 1.054 

Uc= 80 BTU/hr ft 2oF 

PH 

200.0 

Real 
pl ates 

19.25 

5.00 

6.25 

Rounded 
Sol 

20 

5 

7 

uR= 100 BTU/hr ft 2oF 
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Table 4.14b Steam price ten times less than the normal price 

Initial Sol Lower Upper Real Rounded 
point point bound bound plates Sol 

xi 15.0 10.987 2.0 20.0 13.73 14 

. 
X2 10.0 4.172 2.0 15.0 5.22 6 

X3 10.0 5.96 2.0 15.0 7.45 8 

X4 8.0 6.5677 4.0 30.0 

X5 0.02 0.01 0.01 4.0 

Cost(1/hr) 12.320 9.445 

Iterations 29 

Function and gradients calls 105 

Time (6500) secs 126 

Rb / Ra = 1.054 
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Example XV 

Table 4.15 Normal steam price 

xF Cc T(OC) D 

Benzene 0.2 6.7 80.0 100.0 

Toluene 0.4 2.4 111.0 

O-xylene 0.4 1.0 174.0 

Initial 
point 

X1 15.0 

X2 6.0 

X3 6.0 

X4 12.0 

X5 0.02 

Cost(i/hr) 66.472 

PH 

200.0 

Sol Lower Upper Real Rounded 
point bound bound plates Sol 

13.0 2.0 20.0 16.25 17 

4.0 2.0 15.0 5.00 5 

5.0 2. o 15.0 6.25 7 

9.71 5.0 30.0 

0.01 0.01 4. o 

54.500 

Iterations 10 

Function and gradient calls 62 

Time (6500) secs 85.3 

Uc 80 BTU/hr ft2 oF 

uR= 100 BTU/hr ft 2oF 
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Example XVI 

Table 4.16 Normal steam price 

xF a T(OC) D 

Benzene 0.1 6.7 80.0 50.0 

Toluene 0.4 2.4 111.0 

O-xylene 0.5 - 1.0 174.0 

Initial Sol Lower Upper 
point point bound bound 

xi 15.0 13.0 2.0 20.0 

X2 10.0 3.0 2.0 15.0 

X3 10.0 5.0 2.0 15.0 

X4 24.0 19.3 10.0 30.0 

X5 0.02 0.01 0.01 4.0 

Cost(l/hr) 64.70 51.65 

Iterations 

Function and gradient calls 

Time (6500) secs 

Uc = 80 BTU/hr ft 2oF 

13 

153 

166 

PH 

200.0 

Real 
plates 

16.25 

3.75 

6.25 

Rounded 
Sol 

17 

4 

7 

u R'= 100 BTU/hr ft 2oF 
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Table 4.17a Percentaqe of total cost of the seDaration Drocess 

Costs Example Example Example Example 
ii v viii X 

Col umn 3.80 5.27 11.395 11.28 

Condenser 0.74 1.62 1.760 3.47 

Reboiler 2.38 4.11 3.430 5.10 

Cooling 0.53 1.37 3.365 10.63 
water 

Steam 92.55 87.63 80.050 69.52 

Table 5.17b Temperatures of the light and heavy pure components at 

atmospheric pressure 

0c Example Example Example Example 
ii v viii X 

T light ill 80 61 41 

comp 

T heavy 
174 ill 76 61 

comp 
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Table 4.18a Percentage of the total cost of the column 

Costs Example 
XI 

Example 
Xiv 

Column 10.06 3.21 

Condenser 1.82 0.65 

Reboiler 4.19 2.72 

Cooling 8.52 0.80 
water 

Steam 75.42 92.62 

Table 4.18b Temperature at the top and bottom of the column 

0c Example Example 
XI Xiv 

Lighest 41 80 
component 

Heaviest 76 174 
component 
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4.5 Comments 

From Tables 4.17a, 4.17b, 4.18a and 4.18b, it can be observed 

that the higher the temperature level at which the steam has to be 

provided, the bigger the contribution of the steam cost to the total 

cost, varying from 93 percent in Examples II and XIV to 70 percent in 

Example X. In Examples VIII, X and XI, the cost of cooling water is 

much higher than in the other examples, due to the low temperature level 

at which cooling is needed (41 0 Q, contributing to the total cost with 

more than 10 percent in Example X. Thus, the steam and cooling water 

costs together represent more than 80 percent in all the cases, while 

the fixed cost of the column varies from 3.2 percent in case XIV to 

11.4 percent in case VIII. It is clear that the doninant factor in 

the total cost of a distillation column is the temperature levels at 

which heat is exchanged, so that to find the optimal operating conditions 

of a given column, this factor should be taken into account. 

4.5a Two Product Cases 

In all the examples in which a binary mixture was separated 

into its components the system was first designed with the stean price 

given by Equation (4.35) and then with a steam price ten times less than 

the real one. As expected, an increase in the value of the reflux 

ratio (R) was observed in all the cases when cheap steam was used and 

at the same time a decrease of the number of ideal stages needed to 

obtain the same degree of separation. The increment of the reflux 

ratio ranged from 4.5 percent in Example I to 12.7 percent in Example 

VI, the average being 9.6 perýent in the first ten examples while the 

decrease on the total number of ideal stages (NT) ranges from 25 to 

40 percent. Thus, one can expect savings of the order of 10 percent 

in the cost of running a column by adjusting properly the reflux ratio 
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and the number of ideal stages needed for a given separation. The 

computing time required to find the minimum of the cost function 

ranges from 15 secs to 117 secs in the CDC 6500, the average being 

55 secs. So, it is clear that anyone designing a distillation column 

need spend less than a couple of minutes of computing time to find 

the optimum design of the column. As mentioned previously, different 

boundary conditions can easil y be considered in the cost function. 

For instance, if for any reason steam is available and has no real 

cost in the context of a specific plant, then there will be no steam 

cost in the total cost of the column. If steam is available only 

at a given pressure, then the steam cost is constant regardless of 

the temperature level of the reboilers in the column, but the size 

of the reboiler will be dependent on the temperature level. 

In Example X, two different initial points were used to check 

the sensitivity of the solution point to different initial points. 

The solutions obtained are slightly different, but when the real 

variables corresponding to ideal stages are transformed into real 

stages and then rounded up to integer numbers, the solution becomes 

the same. The reflux ratio is the same in both cases up to the third 

decimal. 

4.5b Three Product Cases 

A single column, in which the intermediate component is removed 

as a sidestream, the lighest component is taken overhead and the heaviest 

product removed as bottom product, is designed optimally in the last 

six examples. Although this sidestream column is unlikely to become 

the optimum configuration for the separation of a ternary mixture, as 

has been shown by Doukas and Luyben (27), it was chosen as an example 

to check the algorithm with non-conventional columns. They studied 

this column, between different alternatives, to separate a mixture of 



124 

benzene, toluene and o-xylene and found that this single sidestream 

column is only the most economical configuration for low concentrations 

of benzene in the feed (less than 10 percent). 

In the optimal solution, for all the cases, the intermediate 

product is removed from the internal liquid stream, so that no inter- 

mediate condenser is needed. This is due to the fact that the concentration 

of the intermediate component in the liquid is bigger than the vapour 

concentration. 

Two cases, XI and XIV, were run at normal steam price and at 

a steam price ten times less than the normal one. When the cost was 

minimized using cheap steam, the reflux ratio increased only 2.2 and 

4.5 percent for Examples XI and XIV, respectively. The minimum is less 

sensitive to cost prices than in the previous examples of one column 

with two products, probably because this column consumes more energy 

than the column with two products. 

The efficiency and the robustness of this algorithm to find 

the optimum design of a single column is good. The tighter the bounds 

on the optimization variables the higher the efficiency and robustness 

of the method. As the objective function. depends strongly on the reflux 

ratio, MINOS will tend to decrease the reflux ratio reaching non-feasible 

points and, then, increase the stage numbers to reach a feasible point. 

For normal steam prices, the reflux ratio may reach the lower bound 

and the real variables representing the stage numbers in each section 

may reach the upper bounds. Supposing that an approximation to the 

minimum value of the reflux ratio is known, by using an appropriate 

value for the lower bound on the reflux ratio the efficiency of the 

algorithm could be greatly increased. These values were not assumed 
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known, but in practical cases it is likely that the designer will 

know, from the information already available of processes in operation, 

the order of magnitude of the reflux ratio and the stage number in each 

section. Therefore good approximations of the lower bound on the reflux 

ratio and upper bounds on the stage numbers could be expected, thus 

allowing for improvements in the efficiency of the algorithm. 
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CHAPTERV 

OPTIMU14 DESIGN OF A SYSTE14 OF DISTILLATION COLUMNS 

5.1 Introduction 

Process systems are defined by the interconnections between 

the process units and the capacities and operating conditions of these 

process units. Therefore, the optimal design of process systems requires 

a search over the space of configurational alternatives as well as over 

the design variable space for each particular process configuration. 

Three reviews of the field have*recently been published by Hlavacek (42), 

Westerberg (43) and Nishida et al (44). The major problem of synthesizing 

a particular process from the available units is the high. dimensionality 

of the design problem. In the optimum design of a distillation svstem, 

the processes are restricted to distillation columns and heat exchanqers, 

though there are many possible alternatives to choose from. The number 

of possible sequences rises rapidly as the number of products increases 

as shown by Thompson and King (45). Because of the large combinatorial 

problem resulting when many products are to be obtained, they proposed 

a simplification of the screening procedure by incorporating some heuristic 

rules. 

Hendry and Hughes (46) used a dynamic programming technique to 

locate the. optimum path through a tree of possible separation sequences. 

If the components of a mixture are ranked according to a particular 

physical property, then it is possible to derive all Possible sub-groups 

of components which may result during the separation of the mixture 

using that particular property. This is done by first deriving all the 

sub-groups which may results from one splitting of the original list, 
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and then continuing to repeat this with the sub-group so derived until 

no more sub-groups may be generated. 

To avoid the need to search over the entire space of all possible 

separators, branch and bound algorithms were proposed by Westerberg and 

Stephanopoulos (47), Rodrigo and Seader (48) and Gomez and Seader (49). 

Supposing that the tree of all possible separations is developed as 

proposed by Hendry and Hughes (46), all the possible sequences can be 

found by following the branches of the tree. The cost of any of these 

sequences can be calculated and used as the upper bound (UB) on the 

optimal sequence. Any complete or partially developed separation sequence 

which has a lower bound larger than the UB cannot be optimal and it is 

disregarded. The UB can be updated as sequences are found whose total 

cost is smaller than the UB. The nearer the UB is to the solution the 

more effective the search, therefore heuristics can be used to choose 

the sequence whose cost is the UB initially. 

Evolutionary synthesis refers to the synthesis of new processes 

by modifications of previously generated processes. King, Gantz and 

Barnes (50) applied this technique to demethanizer towers in ethylene 

plants. No theoretical guidance was given for the selection of process 

modifications; these were drawn from considerable engineering experience 

in this particular process unit. The use of an evolutionary approach 

to the synthesis of distillation columns was presented by Stephanopoulos 

and Westerberg (51) where four basic ideas were used: an initial flow- 

sheet, rules to make systematic and small changes to the flowsheet, and an 

effective strategy to apply these rules, and means to compare the original 

flowsheet to any of its neighbours. Seader and Westerberg (52) examined 

the use of heuristic rules to aid in the first and third ideas proposed 

by Stephanopoulos and Westerberg (51). Often the heuristics are in 
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conflict and in order to give different priorities to different heuri- 

stic rules, these could be ranked as proposed by Seader and Westerberg 

(52), but as they pointed out the ordering of the heuristics is itself 

an heuristic. Nath and Motard (53) further developed the combined use 

of the evolutionary approach and heuristic rules. Eighteen heuristic 

rules are reported by Nishida et al (44). The use of such rules has 

been of much help in developing initial structures for the branch and 

bound and the evolutionary approach. 

The idea of determining an optimal system structure from an 

enlarged system structure, which is directly optimized was first intro- 

duced by Umeda, Hirai and Ichikawa (54). Streams were split into 

alternatives routes and when the optimized splitting ratios are close 

to 0 or 1, one of the alternatives streams can be eliminated. Box's 

complex method was used for the optimization. The advantages being 

that the structured variables (split ratios) and the optimal design 

parameters of each subsystem are obtained simultaneously. The structure 

solved with this approach (54) consisted of two reactors, two distillation 

columns and severa I heat exchangers. Osaka and Fan (55) optimized the 

same structure, coupling the approach of Umeda et al (54) with a multi- 

level technique. 

The basic limitations of all these methods is the restriction 

of considering successive splits between components which excludes many 

potentially interesting configurations. Only conventional schemes for 

separating an n-component mixture in (n-1) two sectional columns have 

been considered. Petlyuk, Plotonov and Slavinskii (56) studied thermally 

coupled columns and their performance was compared with conventional 

columns usfng-the following-criteria: total specific amount of liquid 

to be vaporized for all the columns and the overall specific work of 

separation which takes into consideration the temperature levels at 
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which heat is exchanged. The savings achieved with the coupled columns 

on the amount of liquid being vaporized is as high as 50 percent compared 

with the conventional scheme; only ternary mixtures were considered. 

Petlyuk, Plotonov and Avetlyan (57) considered various examples with 

more than three components and pointed out that the new arrangement 

would require n(n-1) different sections for a given mixture of n compo- 

nent to be separated into its components. This led Sargent and Gamini- 

bandara (5) to tackle the synthesis problem by proposing a general system 

of interlinked columns from which most configurations of interest could 

be obtained by deletion of parts of the more general configuration. 

This general configuration for a ternary mixture was developed from 

the coupled system presented by Petlyuk et al for a ternarymixture, 

in such a way that the conventional arrangements and all the cases 

presented by Petlyuk et al (56) were included in the general configuration. 

The general configuration was extended to n products and is made up of 

n(n-1) different sections. The cost of separating various ternary 

mixtures into its components in eight different configurations was 

studied by Tedder and Rudd (58). The separation of a ternary mixture 

into three product streams was studied by Doukas and Luyben (59)-using 

four different configurations including a single column with sidestream 

product. 

The general configuration presented by Sargent and Gaminibandara 

(5) provides for some thermal linking between the columns, but does not 

deal with the general heat integration problem. Here the first work 

was done by Rathore et al (60, -61) who considered possible matches of 

hot and cold streams in heat exchangers along with the separation splits, 

extending the algorithm of Hendry and Hughes (46) to deal with the prob- 

lem. Umeda et al (62) used an ad hoc method based on effective use of 

the overall heat content-temperature diagram for the system. The branch 
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and bound algorithm has been pursued by Sophos et al (63) and Morari 

and Faith (64). Again, however, the separation possibilities in all 

these papers are limited to sharp splits between adjacent components, 

and the kinds of heat integration considered are severely limited. 

Moreover, as pointed out by Dunford and Linnhoff (65), there are 

dangers in considering heat integration only in relation to the separa- 

tion system; the solutions adopted may prevent wider heat integration 

in the rest of the process. 

In this work we develop further the approach of Sargent and 

Gaminibandara (5) in optimizing a general configuration. A slightly 

more general configuration is proposed and a greatly simplified model 

is used in the early stages of the optimization to economize in com- 

puting effort. No attempt is made to solve the general heat integration 

problem, but as pointed out earlier, the configuration itself provides 

for some thermal coupling between columns. In addition, the objective 

function can reflect the cost of provision and removal of heat at 

various specified temperature levels, so that an optimal selection 

of appropriate heat sources and sinks in made. Thus heat integration 

with the rest of the process can be effected through adjustment of 

temperature levels and costs of the heat sources and sinks. 

5.2 The General System Configuration 

The general configuration used is illustrated in Figure 5.1 

for the separation of a ternary mixture into its constituents and in 

Figure 5.2 for a mixture of four components. The extension to a larger 

system should be obvious. This general configuration differs slightly 

from the one proposed by Gaminibandara and Sargent (5). For example 

in the case of a ternary mixture, liquid and vapour feeds from the 

condenser and reboiler of the first column into the second column 
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Figure 5.1 
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Figure 5.2 
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are included while in the previous general structure (5) only vapour 

from the condenser and liquid from the reboiler were taken into con- 

sideration as feeds into the second column. A general configuration 

of this type yields most of the particular configurations known, as 

can be observed in Figure 5.3. The conventional configuration shown 

in Figure 5.3a can be obtained from the general configuration shown 

in Figure 5.1 by deleting sections N5, N6 and obviously Q,, the one shown 

in Figure 5.3b by deleting sections N3, N4 together with Q3 . The 

Petlyuk configuration shown in Figure 5.2c can be obtained if 

Ql = Q2 = Q4 ý0* 

The top section of the second column, section 3(N3), in Figure 

5.1 receives vapour from section l(NI) and section 4(N4) and provides 

liquid to both sections, therefore it can be said that section 3 is 

shared by both columns and can be located at the top of the first 

column to perform the same function as the one performed at the top 

of the second column. The same is true for the bottom section of the 

second column, section 6(N6), in Figure 5.1 which. provides vapour to 

section 5(N5) and section 2(N2) and receives liquid from both sections, 

therefore it can be located at the bottom of the first column. Figure 

5.3d can be obtained if sections 3 and 6 of Figure 5.1 are transferred 

to the first column. Supposing that n4 =- Ql '= Q2 =0 in Figure 5.3d, 

then the configuration shown in Figure 5.3e is obtained while Figure 

5.3f is obtained, if n5= Ql = Q2 =0 

These are only some of the possibilities and they are far from 

exhaustive but they show how ahy particular configuration can be 

obtained from the general system by deletion of column sections, heat 

transfer devices or interconnecting streams. Since these deletions 

correspond to setting variables to zero, the optimum configuration 
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can in principle be found by optimum design of the general system. 

5.3 ODtimum Desiqn of the General Confiquration for a Ternarv Mixture 

5.3a Formulation of the Optimum Desiqn Problem 

The general design problem consists of finding the configuration 

that will satisfy the required specifications on the products, with 

the minimum annual cost. Therefore the optimum design can be posed 

as an optimization problem as follows: 

min F" C(u, s) obj ": 

st h(u, s) =05. Pl 

cL< g(u, s, ) <cu 

where the vector h describes the general system of distillation 

columns and the vector g represents the design and operational constraints. 

To reduce the size of the optimization problem the vector h of equality 

constraints is solved separately using the simulation algorithm pre- 

sented in Chapter III, and the problem 5. Pl can be rewritten as: 

min Fobj = C(U) 

st cL< g(u) <cu5. P2 

Lu 6u 

where the dimension of the vector u is equal to the degrees of freedom 

of the general system of interlinked columns. Bounds on the variables 

were added in problem 5. P2 because the optimization algorithm, used to 



136 

solve the problem, MINOS (38,39) requires bounds on the optimization 

variables. The set of optimization variables include the stage numbers 

in all the sections, the size of the heat exchangers and the flow rates 

of the streams connecting the columns. 

The objective function and its derivatives and the constraint 

functions and their derivatives are required by MINOS, and their calcu- 

lation will be analyzed in the following sections. 

5.3b The Objective Function 

The calculate the annual cost of running the distillation system 

the procedure presented in Chapter IV is followed. Supposing that Cc i 
is the annual cost of each section of a given column and that Ch includes i 

the fixed and running cost of each heat exchanger, then the total cost 

of the system is defined as 

ncmh 
CTOTAL E C. +EC. 

i=i I i=i I 

where n is the number of different sections in the system 

and m is the number of heat exchangers 

Each column section has a different cost per plate depending 

on the diameter of the given section which is proportional to the 

internal vapour flow rate going through the section. 

The final product flow rates are likely to be tightly bound 

by the specifications of purity and recovery, and their inclusion as 

variables to be chosen by the optimization algorithm is not expected 

to cause a considerable change'in the solution especially for high 

recoveries and purities; therefore the flow rates of the final products 

were fixed to deal with a smaller number of optimization variables. 

For the same reason bo th columns were operated at atmospheric pressure, 
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though the inclusion of the pressure in each column as an optimization 

variable should be included in any future work. 

The objective function to be minimized is given in the following 

equation, where all the final products were liquid: 

F= Cl x (XI + X2) «1 + X8) (X9 + XIO» 0.77 
+ 

Cl x X3 x ((l + X7) x D) 0.77 

Cl x X4 x( (I+X7) xD- X9 ) 

CIx X5 x( (1+X7) D- X9 + X14 x PH ) 

x X6 x( (I + X7) xD- X9 + X14 x PH - X12 ) 

C2F x( X8 x (Xg + X10) + XIO )0.6 

C2R x( X8 x (X9 + XIO) + X10 )+ (5.2) 

C3F x( (1 + X8) (X9 + X10) + X12 - X13) 0.6 

+ C3R x( (1 + X8) (X9 + XI 0) + X12 - X13 )+ 

C4F x ((I+X7) D) 0.6 
+ C4R x (1 + X7) D 

C5F x (X14 x PH) 0.6 
+ C5R x X14 x PH 

C6F x( (i + X7) xD+ X14 x OH + X13 - X9 - X12 ) 

C6R x( (1 + X7) xD+ X14 x PH + X13 - X9 - X12 ) 
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where X1 is the real variable representing the number of stages 

in section 1 

X2 is the real variable representing the number of stages 

in section 2 

X3 is the real variable representing the number of stages 

in section 3 

X4 is the real variable representing the number of stages 

in section 4 

X5 is the real variable representing the number of stages 

in section 5 

X6 is the real variable representing the number of stages 

in section 6. 

X7 = R2 

X8 = R1 

X9 = PVI(I) 

X10 = PLl(l) 

X11 = F1 (2) 

X12 = PVl(NT) 

X13 = Fl(NT-l) 

X14 = PV2(N3+N4+1) / PH 

where the nomenclature is the same as in Chapter III. 

The first term in Equation (5.2) represents the cost function 

of the first column, the second, third, fourth and fifth terms represent 

the cost of the four sections of the second column, the sixth and seventh 

terms, the fixed and running costs of the top condenser of the first 

column, the eighth and ninth, the fixed and running costs of the reboiler 

of the first column, the tenth and eleventh, the fixed and running costs 

in the top condenser of the second column, the twelfth and thirteenth, 
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the fixed and running costs in the intermediate condenser and the 

fourteenth and fifteenth terms, the fixed and running costs of the 

reboiler in the second column. 

The fourteen partial derivatives of the objective function 

can be calculated analytically. 

5.3c The Constraints 

For given feeds the design variables available are the number 

of plates in each column section, the flow rates of interconnecting 

streams and the heat transfer rates to the exterior. The temperatures, 

compositions and flow rates of all streams leaving any of the plates 

in the system can be calculated using the performance algorithm given 

in Chapter III. From these state variables, any other property required 

for the design specifications can be obtained. Partial derivatives of 

the design specifications in relation to the optimization variables are 

needed. To calculate the finite-difference approximations to the 

partial derivatives, perturbations of I percent of the values of the 

continuous variables were made. But for the stage number the inter- 

polation scheme presented in the previous chapter was used, where a 

base point is chosen and then perturbations are made to the adjacent 

integer number which brackets the corresponding non-integer number 

given by the optimization algorithm. 

In addition to the design specification, physically realizable 

design and operating conditions impose further constraints. In parti- 

cular the internal flow rates in each section of a given column must 

be non-negative, some of these extra constraints are also nonlinear. 

They are algebraic expressions of the design variables and therefore 

the partial derivatives can be calculated algebraically. Some of these 

operational constraints are the following expressions to avoid negative 



140 

internal flow rates: 

(I + X7) D- X9 >, 0 (5.3) 

The vapour feed from the top of the first column into the 

second column cannot be bigger than the vapour internal flow rate in 

the top section of the second column, otherwise the vapour flow rate 

in the section immediately below is negative. 

(I + X8) x (X9 + XIO) - X13 >0 (5.4) 

The vapour fed at the bottom of the first column cannot be 

bigger than the internal vapour flow rate in the top section of the 

first column, considering that the intermediate feed into the first 

column is liquid. 

(I + X7) D- X9 + (I + X14) PH + X13 - X12 ;ý0 (5.5) 

The internal vapour flow rate in the bottom section of the 

second column has to be positive. 

X7 xD+ XIO - XII + (X14 - 1) PH >- 0 (5.6) 

The internal liquid flow rate in the section below the inter- 

mediate condenser, in the second column, cannot be negative. 

X9 + XIO + X12 - Xll - X13 -F>, 0 (5.7) 
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The liquid product from the reboiler of the first column cannot 

be negative. F is the flow rate of the feed to the system. 

The optimization algorithm, MINOS, will search for the minimum 

of the annual cost of running the distillation system in the feasible 

space defined by the design and operational constraints. *The optimiza- 

tion variables were scaled in such a way that all their values are 

between 0 and 10. 

5.4 Numerical Examples 

A liquid ternary mixture of 500 lb moles/hr is separated in 

each one of its components in the following examples, where a minimum 

purity of 90 percent in the three products is required. 

As the steam price is the dominant term in the total cost, 

the optimization of the general configuration is carried out at normal 

steam prices in the first example and at steam prices ten times less 

than the normal one in the second example. The third example is run 

at normal steam price, but changing the rate of interest and the rate 

of inflation, using as the initial p9int the solution of the first 

example. The information that follows is common to the three first 

examples: 

Component Mole Relative Temperature 
fraction volatility (OC) 

Dichloromethane 0.3 4.9 41 

Chloroform 0.4 1.8 61 

Carbon tetrachloride 0.3 1.0 76 

Uc= 175 BTU/( 0F hr ft 2 

UR= 150 BTU/(OF hr ft 2 

D= 150 moles lb/hr 

PH = 200 moles lb/hr 
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In the fourth example a ternary mixture composed of benzene, 
I 

toluene and o-xylene is separated into its components, where the 

temperature at which heat has to be exchanged is higher than in the 

previous examples. 

The values of the flow rates given in the examples as X9, X10, 

XII, X12 and X13 are given in moles lb/hr based on a feed to the 

system of 100 moles lb/hr. 
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Example I 

i=f=0.0 lifetime = 10 years 

Table 6.1a Normal steam price 

Initial Sol Lower Upper 
values point bound Bound 

xi 5 8 2.0. 20.0 

X2 5 9 1.0 25.0 

X3 7 9 2.0 18.0 

X4 7 8 1.0 20.0 

X5 12 16 1.0 25.0 

X6 12 15 2.0 25.0 

X7 2.0 1.035 0.01 4.0 

X8 0.8 0.460 0.01 3.0 

X9 32.0 27.0 0.10 90.0 

X10 8-. 0 15.0 0.10. 70.0 

x1l 10.0 0.1 0.10 60.0 

X12 20.0 0.1 0.10 100.0 

X13 10.0 61.32 0.10 90.0 

X14 1.8 1.0 0.01 4.0 

Total cost 

(f/hr) 15.6865 12.000 

Iterations 25 

Function and gradient calls 115 

Time (CDC 6500) secs 825 
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Table 6.1b Costs (i/hr) 

Columns 1.098 

Exchangers 0.595 

Steam 9.507 

Cooling water 0.800 

Total 12.000 
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Example II 

i=f=0.0 lifetime = 10 years 

Table 6.2 Steam price ten times less than normal price 

Initial Sol Lower Upper 
values values bound bound 

xi 8.0 7.0 2.00 20.0 

X2 9.0 12.0 2.00 25.0 

X3 15.0 - 2.00 18.0 

X4 12.0 - 1.00 20.0 

X5 16.0 14.0 1.00 25.0 

X6 14.0 12.0 2.00 25.0 

X7 1.355 0.01 0.01 4.0 

X8 0.510 1.3951 0.01 3.0 

X9 40.0 0.1 0.10 90.0 

X10 0.2 30.0 0.10 70.0 

x1l 0.2 0.1 0.10- 60.0 

X12 0.2 0.1 0.10 100.0 

X13 60.0 71.85 0.10 90.0 

X14 1.07 2.15 0.01 4.0 

Iterations 9 

Function and gradient calls 16 

Time (CDC 6500) secs 112 
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Example III 

i=0.1 f=0.1 lifetime = 10 years 

Table 6.3 Normal steam price 

Initial Sol Lower Upper 
values values bound bound 

xi 8 7.5 2.0 20.0 

X2 9 9.5 2.0 25.0 

X3 8 6.7 2.0 18.0 

X4 8 7.3 1.0 20.0 

X5 16.0 14.0 1.0 25.0 

X6 15.0 12.0 2.0 25.0 

X7 1.1 1.130 0.01 4.0 

X8 0.5 0.466 0.01 3.0 

X9 27.0 28.00 0.10 90.0 

X10 15.0 13.00 0.10 70.0 

x1l 0.02 0.01 0.10 60.0 

X12 0.02 0.01 0.10 100.0 

X13 0.6 0.60106 0.10 90.0 

X14 1.0 1.03 0.01 0.01 

Cost(i/hr) 14.130 13.550 

Iterations 6 

Function and gradient calls 23 



148 

(0 
x 

Lli 

-in 
Lý 

CD 
S- 
=3 
M 

Ll- 

k--t >--O 

(n C) 

x 
LLJ 

(0 
uý 

LL- 



149 

Example IV 

Component Mole Relative Temperature 
fraction volatili ties (OC) 

Benzene 0.3 6.7 80 

Toluene 0.4 2.4 ill 

O-xilene 0.3 1.0 174 

i=0.1 f=0.1 lifetime = 10 years 

Table 6.4 Normal steam price 

Initial Sol Lower Upper 
values values bound bound 

xi 8 8 2.00 20.00 

X2 10 10 3.00 25.00 

X3 7 8 2.00 18.00 

X4 7 7 1.00 20.00 

X5 14 15 1.00 25.00 

X6 12 12 2.00 25.00 

X7 0.8 1.68 0.01 4.00 

X8 0.3 0.3 0.01 3.00. 

X9 27.0 43.0 0.10 90.00 

X10 23.0 14.0 0.10 70.00 

xii 5.0 0.1 0.10 60.00 

X12 5.0 0.1 0.10 100.00 

X13 5.0 0.1 0.10 90.00 

X14 1.0 0.01 0.01 4.00 

Cost(i/hr) 30.275 24.650 

Iterations 14 

Function and gradient calls 58 

Time (CDC 6500) secs 487.5 

Uc 100 BTU/( 0F hr ft 2 

UR 80 BTU/( 0F hr ft 2 
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Figure 5. c - Example IV 
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5.5 Comments 

On the calculation of the partial derivatives of the purities in 

relation to the optimization variables fifteen simulations of the 

distillation system are required to obtain the finite-difference 

approximations, considering that there are fourteen optimization vari- 

ables. In the simulation of the distillation system Broyden's method 

was used to update the four torn variables. In the first simulation 

the Jacobian was approximated using finite-differences but in the fol- 

lowing fourteen simulations, the Jacobian of the previous solution was 

used as the initial Jacobian of the current simulation. Convergence 

was normally obtained in less than the 5 iterations which are required 

for the finite-difference approximation of the Jacobian, thus increasing 

the efficiency of the method. This result is not surprising given the 

fact that the solutions of the fifteen simulations are very near due 

to the fact that the steps on the optimization variables are small. 

Using realistic cost, it can be seen that steam costs dominate 

and economy indicates the coupled system. In the first example where 

the annuity is 0.1 and the normal steam price is used, a coupled system 

is obtained, as the optimum design. The reboiler at the bottom of the 

first column is deleted because the constraint expressed in Equation 

(5.4) is active, therefore all the internal vapour in the first column 

is provided by the vapour feed at the bottom of the first column. 

Indeed this extraction of vapour from the second, column improves the 

separation. By providing vapour to the bottom of the first column the 

internal vapour flow rate in the bottom section of the second column 

increases, thus the slope ot the operating line (L/V) decreases and 

the distance between the operating line and the equilibrium line 

increases. Therefore the change of composition from plate to plate 

is bigger in this section of the column, where the most difficult part 
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of the separation is carried out (a= 1.8). That is why vapour is produced 

at the highest level of temperature when it could have been produced 

at a cheaper cost at the bottom of the first column. One also has to 

consider that in this example the bubble point (BP) of the heaviest 

0 product is 76 C, and hence the temperature of the bottom plate of the 

first column is an intermediate value between 61 0C and 76 0 C. Clearly 

there cannot be much difference in price for this specific example 

between heating in on e or the other reboilers, thus the intermediate 

flow rates are chosen to improve the separation. 

On the other hand, it is advantageous to provide cooling at 

the top of both columns, given the fact that the temperature level of 

the lightest component (410C) is very near the temperature level of 

the cooling water, thus requiring a considerable amount of cooling 

water and area for heat to be exchanged in the top section of the second 

column. Therefore the possibility of cooling at the other condenser 

at higher temperature levels is used; the intermediate condenser in 

the second column serves solely to condense the chloroform product. 

Drastic reduction of steam costs, ten times less than the real 

one, as shown in Example 11, tips the balance towards saving capital 

costs and a more conventional two columns system results. All the 

steam is supplied at the bottom of the second column to decrease the 

slope of the operating line below the feed in the second column which 

carries out the more difficult separation. This simplified configu- 

ration satisfies one of the most popular heuristic rules: leave the 

most difficult separation for lpst. 

The third example is run at normal steam prices, where the 

annuity is 0.2ý, therefore the fixed costs are more important than 

in the-first example and the total number of stages at the solution 
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is less than in the first example. 

In the fourth example a mixture of benzene, toluene and 

o-xylene is separated into its components. In the initial guess 

an intermediate condenser in the second column is included to 

condense the toluene product. In this example the BP of the three 

pure components at atmospheric pressure are 80 0 C, ill 0C and 174 0 C., 

In the optimum design, the intermediate condenser is deleted and 

the toluene product obtained directly from the internal liquid stream. 

This liquid is provided by increasing the amount of vapour being 

condensed at the top of the second column, as can be seen for the 

increase in the variable X7 representing the reflux ratio in the 

top condenser. Steam price is more expensive than in the previous 

case due to the higher temperature levels at which steam has to be 

provided, therefore it has to be used in an efficient way. It is 

unlikely that the savings in cooling water that could be expected 

if cooling were carried out in the intermediate condenser could com- 

pensate for the decrease in the slope of the operating lines (L/V) 

in the top of the second column, whereby the operating line is nearer 

to the equilibrium line and the change in the composition from step 

to step is smaller. 

When the reflux ratio approaches the minimum reflux ratio 

the stage numbers might increase very quickly. In the case of a 

single column, as pointed out in the previous chapter, the use of a 

reasonable lower bound on the reflux ratio can increase the efficiency 

of the optimization algorithm. 'In the general configuration, the 

reflux. ratios should be able to approach zero because one doesn't 

know in advance which heat exchangers and column sections might be 

deleted. For these reasons, in some cases the optimization algorithm 

might fail to find a solution because the reflux ratio reaches the 
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lower bound value, zero, and the stage numbers increase up to the 

upper bound values, getting stuck at these values. 

It might well be the case that the temperature level of the 

condensers is high enough to provide heat to other processes in the 

plant as pointed out by Dunford and Linnhoff (65). Siiroja (66) 

has evaluated the possibility of steam generation from the condensers 

of distillation systems. Steam could be available from other processes 

and its price is likely to be much. less than the normal steam price. 

These. options have not. been tried but only a change in the cost function 

of the general configuration is required. 
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CHAPTER V-I 

CONCLUSIONS 

The aim of this work has been to develop an algorithm for the 

optimal design of systems of distillation columns for the separation 

of mixtures into several fractions. Given the limitations on the type 

of distillation columns and their interconnections allowed in most of the 

published work on the synthesis of such systems, the approach presented 

in Chapter V is followed. A general structure is proposed, which 

contains most of the known arrangements between columns and the optimal 

design is obtained by optimizing this general structure. 

To make this approach practicable, a very fast method is needed 

to compute the performance of the system under given conditions. Short- 

cut methods were therefore investigated, but in the proposed method, 

described for a single column in Chapter II, a plate to plate simulation 

is carried out under the assumption that internal flow-rates and relative 

volatilities remain constant. With these simplifications, the computing 

time required for the optimum design of a single distillation column 

is not excessive, as can be seen in the examples presented'in Chapter 

IV and there are no restrictions on the type of columns to be designed 

optimally; any number of feeds, products and heat exchangers can be 

dealt with. The extension of this approach to deal with the simulation 

of th e general configuration is described in Chapter III, and again it 

can be seen from the results that the method is very efficient. 

Release of the simplifYing assumptions requires only minimal 

modifications of the simulation subroutine, with inclusion of calls to 
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an appropriate physical property package, but of course, accuracy must 

be paid for in extra computing time. 

The interpolation scheme developed to deal with the integer 

variables, presented in Chapter IV, permits the simultaneous optimi- 

zation of all the design variables of a single distillation column, 

a design problem that has not been solved up to now, despite the 

importance that the optimum design of distillation columns has had 

in the chemical engineering literature. This approach makes it possible 

to use any standard nonlinear programming algorithm for the optimization. 

In the present work, the MINOS package was used, which proved adequate 

for single column problems, but failed rather frequently when applied 

to the general configuration. 

Thus, overall the approach is completely satisfactory for the 

optimal design of single distillation columns. If the flowsheet is 

chosen on other grounds, and the cost of the utilities is known, the 

algorithm presented in Chapter IV can be used to design each of the 

columns separately. Therefore this approach is a very useful tool for 

a designer in need of a fine-tuning optimization method. In the 

examples presented in Chapter IV, the annual cost of running the dis- 

tillation column was minimized but, in principle, any other objective 

function could be used. 

Most of the work on synthesis of distillation columns does not 

include mass recycle between columns except when an external substance 

to t he mixture being separated is used. It has been shown in Chapter V 

that the use of recycle streAms from the second column into the first 

column improves the performance of the second column thereby increasing 

the efficiency of the distillation system. It is therefore important 
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to develop synthesis methods which allow such coupling, but will also 

generate simpler systems when these are more economic, as in the approach 

proposed here. There has been significant progress in the nonlinear 

programming field during the last several years and if the theory 

and algorithms developed are incorporated in good software packages, 

the robustness and efficiency of the simultaneous optimization of 

general structures is also likely to improve. 

The magnitude of the computing task rapidly increases with the 

number of fractions to be produced from the given mixture, and the size 

of the system to be optimized will be limited by the storage and time 

required by the simulation of the system. However, the capacity of 

computers is constantly increasing with time, allowing a corresponding 

increase in the complexity of the system to be optimized. 

Thus the basic approach seems well justified by the results 

obtained so far, and it will be worth exploring other facets of the 

problems. 

Work needs to be done on the flexibility, operability and cont- 

rollability of the coupled system of distillation columns. It is 

reassuring that the control studies done by Doukas and Luyben (27) 

have shown that satisfactory control schemes can be devized and that the 

coupled systems are stable under moderate disturbances. 

To deal with the problem of energy integration with the rest 

qf the process, it is also clearly necessary to include the pressures 

at which the columns are operated as design variables. As far as the 

numerical techniques are co nceYned, this is a trivial extension, which 

merely in creases the size of the optimization problem. However, running 

columns at different pressures has implications in terms of pumps or 
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compressors, and hence possibly of layout, which in turn complicates 

formulae for costs. Allowing for direct thermal coupling between 

columns and the use of heat-pump cycles causes further complications. 

The problem is then to devize a configuration sufficiently general to 

include most useful solutions, yet sufficiently simple to yield a 

tractable optimization problem. 

From these considerations it seems unlikelY that the approach 

can be extended to deal comprehensively with the heat integration 

problem, but with the inclusion of variable pressures the algorithm 

should again prove a useful tool to assist the designer in developing 

solutions. 
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Given GX =f 

Triangular Factorization 

with G non-singular and tridiagonal 

i. e. Gii =0 for j< i-I and j> i+l 

G can be factorized 

911 g12 

921 g22 g23 21 22 

23 33 

gn-I n 

gn, n 

whence 

u 
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i i, i-I i-l, i-l 
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gi, i+i 
k ij u i, i+l 

choosing kil =I 

ij-1 : -- gi, i-i / ui-l, i-I 
u 

i, i gij ij-1 i-i 'i 
ui J+l = gi J+l 

kz 
n, n-1 n, n 

1u 12 
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Un-I 
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If ux = \) 
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then Lv =L UX = GX f 

LUG 

9,11 u 11 911 where z 11 1 

for i=l u 11 = 911 

and from Lv=f 

11 'Vi fI again ku 

then vI=f1 

2, 'v ,+ 22 v2f2 

2= (f2 k2l vl) 1 k22 

1=fk ij i vi-I for i>I 

To obtain X from LJX v 

for i=m xn= vn/un, n 

xn-I = ("n-l - un-l, n xn) / Un-l, n-1 

Xi = ýIi - ui, i+i Xi+l) Ui, i 

xi= ('Vi - gi i+l x i+l ) ui 
,Ii<n 

Partial pivoting was used to reduce the effects of round-off 

errors 
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APPENDIX B 

Convergence properties of the direct substitution method in recycle 

systems. 

When using the direct substitution method for a recycle system 

one assumes the calculated value of the recycle variable g(x) to be 

the new estimation of X. Then 

x k+l ý g(Xk) 

where K is the iteration number 

A recycle system is shown in the following figure: 

g(x) 

Figure BI -A recycle system 

where F is the feed 

X is the assumed recycle value 

Gi is the equipment matrix for unit i 

Yi is the set of output variables for unit i 

(Bl ) 
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Given Yo =ym+F (B2) 

Yi = gi(Yi-1) i=1,2, ... m (B3) 

To solve by direct substitution 

Yo, k+l = Ym, k +F 
k=1,2,3,... (B4) 

Yi, k+l = gi(yi-l, k+l) 

From (B4) Yi, k+l - Yi, k ý gi(y i-l, k+l) - gi(yi-l, k) 

By Mean-value Theorem 

Yi, k+l - Yi, k G i, k (yi-l, k+l - Yi-l, k) (B5) 

where G ik is the matrix of partial derivatives of gi(-) with each 

row evaluated at an appropriate point between Yi-l, k and 'yi-l, k+l 
(ie. at Yi-I k c' yi 

-1 k -ý (1-c) Yi-I k+l for some awith 0, < cc, < 1). 

Write ý'Yi, k ý Yi, k - Yi, k-I (B6) 

From (B5) and (B6) Ayi, k+l G i, k ý'Yi-l, k+l (B7) 

whence Aym, k+l Rk Ayo, k+l (B8) 

where Rk7Gm, k G 
m-l, k -G2, k G I, k 

Now from (B4 ) and (B6) Ay 
o, k+l = Yo, k+l - Yo, k 

= (ym, k + F) - (YM, k-I+F) 

=ym, k - Ym, k-l 1ýym, k (B9) 

From (B8) and (B9) Aym, k+l Rk Aym, k (BIO) 
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Let A be the eigenvalue of largest magnitude for the matrix k 

R k* Then if there isa positive scalar r<1 such that Ix kI <r for 

all k, 
. 
we have Ay mk -)- 

0 as k-* - and T Aym, k is convergent. 
k=l 

k 
But from (B6) Ym, k '- YM, O + 

jEj 
AYP. I, j 

so the sequence fym, k' then converges. 

Note that if R* at the solution y* has all eigenvalues of m 

magnitude less than unit, and the functions g, (. ) are continuously 

differentiable, then Ix ki r<I for some r and for all Ym, k suf- 

ficiently close to y*. Thus direct substitution then converges from 
n 

stafting points ym 
'0 

sufficiently close to y*fn. 

The rate of convergence is a function of the maximal eigenvalue 

of the recycle matrix. The maximum eigenvalue can be estimated from 

the ratio of changes in two successive iterations as has been shown 

by Orbach and Crowe (36). The number of direct substitution steps 

needed before a good estimation of x max can be obtained, as the ratio 

of successive changes, is a function of the difference between the 

maximal and the second largest eigenvalue. Once, an approximated value 

of the maximal eigenvalue has been found, the number of additional 

iterations required to obtain the solution can be estimated. The- 

number of iterations (k) required to reduce an error vector to. a fraction 

6 of its initial value is 

kv log log xk (B12) 

If all the eigenvalues have an absolute value less than 

unity, the iterative procedure is convergent and the rate of conver- 

gence is governed by the biggest eigenvalue in absolute value, the 
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nearer to unity, the slower the convergence. For an eigenvalue near 

to unity, the convergence will be very slow and what is worse, the 

change in the computer value from iteration to iteration will be so 

small that the computations may appear to have converged before a 

correct solution is reached. 

Though the direct substitution method may have a slow rate 

of convergence, Shacham and Motard (41) have shown that the direct 

substitution method must converge for every physically stable linear 

recycle system. Assuming the linear recycle system is in steady state, 

then 

xs=R 'XS +b (B13) 

Supposing that a small disturbance (H) is introduced in 

the recycle stream, as the disturbance passes through the system a 

number of times: 

xI= R(X s+ 6X) +b= Xs +R 6X 

x2=RXI+b= R(X s+R 6X) +b 

= Xs +R2 6x 

xkýxs+Rk. 6x (B14) 

Then the disturbance will die out on condition that JA 
kI "ý 1* lf 

Ix 
kI > 1, the disturbance will grow indefinitely. The same conclusions 

are valid for a general nonlinear recycle system in the vicinity of 

the solution. In this case R will be the Jacobian of the system near 

the solution, therefore, the direct substitution method must converge 

for every physically stable system, from an initial point which. is 

close enough to the solution. 
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APPENDIX C 

Acceleration of the direct substitution method 

When an iteration 

x k+l 
= g(x 

k k=0219 n (Cl) 

leads to a linearly convergence sequence {X k 1, one method of improving 

the convergence is to use extra*polation in the form of Aitken's 6 
2_ 

acceleration (33). The method was originally proposed for one equation 

and the sequence fX kI 
was defined by 

xs=qkX k-l. 
+ (1-q k)xk (C2) 

where 

qk = (X k_x k-1 )/(Xk - 2X k-1 
+X 

k-2 ) (C3) 

and 

x k-1 
= g(x 

k-2 ) 

xk (X k-1 ) 

The method was extended to multivariable problems by Steffensen 

(34) and is better known in the Chemical Engineering literature as 

Wegstein method (35). In its application to a system of nonlinear 

equations, the assumption that the systemýis uncoupled is made, and 

in this case qk is a diagonal matrix defined as 

k 
ij i/j 

(C4) 
kk_ Xk-l), (Xk ' Xk-I k-2 

q, (X iii2i+Xi if i=j 

Rewriting equations C2 for each variable 
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x k-1 
+. (Xk _x 

k-1 )/(l-S (C5) 

where the slope Si is obtained from two successive trials 

S. xkx k-1 
Ek (C6) 

ix k-I 
x 

k-2 Ek--l 

For one of the variables, the value of Si could be a good 

approximation to the biggest eigenvalue, as has been shown by Orbach 

and Crowe (36). In their Dominant Eigenvalue Method, they used the 

maximum eigenvalue of the system to accelerate the convergence of the 

direct substitution method, using the following formula: 

+ cc (X i-xi )/(1-X 
max) ' -v-- i (C7) 

with 0<ak<I included as a damping factor to suppress oscillation 

and X 
max 

being the maximum eigenvalue of the system. Orbach and 

Crowe (36) noted that a few iterations using direct substitution are 

almost always needed before each new extrapolation is made. 

The extrapolation applied could be too large, and the system. 

would-then become unstable. Considering that 

qj ýSi/ (S i-I) (C8) 

then 

lim 
S -0 

1 qj (cg) 

Moreover, the acceleration procedure is most need when S -1. 
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Some lower bounds on qj could then be used to limit the extrapolation. 

The introduction ot some delay, in the DS method, before the acceleration 

procedure is applied, will stabilize Lhe acceleration. In this way, 

the first acceleration step is used after m direct substitution steps 

and from then on acceleration each n direct substitution steps. 

The best values of m and n depend on the specific problem to 

be solved, where n is likely to have a value between 4 and 8. 
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APPENDIX D 

The Method of Broyden 

Consider a set of n nonlinear equations 

fi (xl2x 2xn0 j=122 ... n (DI) 

that can be written more concisely as 

f (X) = 
Where X is the column vector of independent variables and f is the 

vector of functions fIfXk is the kth approximation to the 

solution of equation (Dl) and fk is written for f(X k ), then Newton's 

method is defined by 

k+l k-Ik XX-Akf (D2) 

where Ak is the Jacobian matrix evaluated at. Xk. 

One disadvantage of the Newton's method is the evaluation of 

the Jacobian matrix each iteration. If the partial derivatives cannot 

be calculated analYtically, an approximation to the Jacobian matrix 

must be obtained numerically. Broyden (11) described a class of methods 

in which an approximation of the Jacobian or the inverse of t he 

Jacobian is used and the approximation is updated after each step 

using the information generated during the step. No additional 

function evaluation is required, thus being much simpler to perform 

than the evaluation of the complete Jacobian. Supposing that 

pkBk, 
1fk (M) 

where Bk is some approximation to the Jacobian matrix evaluated 

at Xk, then 

k+l kk x+tp (04) 

where t is a scalar multiplier chosen to prevent the process diverging. 
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An approximation to the negative increase of the Jacobian matrix is 

named as 

Hk=Bk1 (D5) 

The value of the matrix H is updated using the following 

equation 

(p k+Hkk) kT Hk 

H k+l 
= Hk (D6) 

kT Hkk 

where 
k k+l k 

y=f (X 
I)- -f (X ) (N) 

and pkx 
k+l 

-xk (D8) 

To begin with, values of X0 and H0 are needed. Given values 

of Xo, the initial Jacobian can be obtained using finite differences. 

Alternatively, the identity matrix can be used as the initial approxi- 

mation. For sparse Jacobian matrices, the knowledge of the constant 

elements in a Jacobian matrix can be used to reduce the work required 

to estimate the remaining elements by finite differences as shown by 

Curtis, Powell and Reid (26). Shubert (25) developed a formula to 

update the Jacobian for sparse systems. 

Broyden (11) proposed to adjust t to guarantee norm reduction, 

such that 

F k+l Fk 

where Fkf kT fk 

(D9) 

(DIO) 

This normal reduction impair the efficiency of the Broyden 

method, therefore Perkins and Metcalfe (37) suggested the unity for 

the parameter b, unless JIF k+l 11 > 1011 Fk 11 in which case t=0.1 

should be used. This version of Broyden was used. 


