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Abstract 

The presented Avork attempts to extend the conditional moment closure method 
for non-premiiced, turbulent combustion to predict extinction and reignition phe- 

nomena in turbulent flames. 

The conditional moment closure method is one of a class of conserved scalar 
modelling approaches in turbulent non-premixed combustion, where chemistry 
is treated as mainly dependent on the mixing of oxidizer and fuel. However, as 
designers of combustion devices aim for higher turbulence rates to enhance mixing 
and promote combustion, chemical conversion is not solely determined by the rate 
at which fuel and oxidizer are mixed, but kinetic effects become important. 

Therefore it is necessary in these cases, to consider a second variable to govern 
the evolution of the chemical system. This variable will parameterise the chemical 
conversion process from cold, mixed reactants at fixed equivalence ratio to an 
equilibrium state. 

Equations describing the chemical system as a function of these two variables, 
the conserved scalar, commonly referred to as mixture fraction and the progress 
variable, can be derived and constitute the doubly conditioned moment closure 
equations. However, solution of this set of equations is computationally expensive 
and key parameters describing the rate of dissipation of the progress variable, 
which is a reactive scalar, are not yet fully understood. 

By considering conditional fluctuations of the progress variable, applying simple 
relationships for scalar dissipation and using a pre-computed functional depen- 
dence of conditional moments on the progress variable, the effect of double condi- 
tioning on the chemical source term and on the overall chemistry predictions can 
be examined. 

The methodology is tested for its capability to predict the turbulent, piloted 
flames of the Sandia D-F series. These laboratory flames show an increasing 
degree of local extinction and reignition due to varying turbulence levels. Hence 

they provide an ideal benchmark for the study of models trying to predict these 

phenomena. 
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Nomenclature 

Greek Symbols 

a Thermal diffusivity M2 /S 

a! Ratio of flamelet and premixed flame solution 

X, XC Scalar dissipation rate of conserved scalar 1/s 

Xh. Scalar dissipation rate of reactive scalar 1/s 

Xs_qs Subgrid scale scalar dissipation rate 1/5 

A Filter width M 

77 Sample space variable of conserved scalar 

, Yt Proportionality factor 

Tsgs Subgrid stress tensor kgl(S2 M) 

Stress tensor kgl(sl m) 

[I Dynamic viscosity kgl(m s) 

lit Turbulent dynamic viscosity kg/(m s) 

V Kinematic viscosity M2S 

Vi Stoichiometric coefficient of species i 

0 Scalar quantity 

P Density kg/m' 
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O'i Lennard-Jones collision diameter M 

ýIr2 Conserved scalar subgrid variance 

Conserved scalar, mixture fraction 

Sample space variable of progress variable 

Rom an Symbols 

f Integral length scale M 

e Length M 

f7l Kolmogorov length scale M 

f Body force M/S2 

I Identity matrix - 

S Strain rate tensor 1/8 

U Velocity vector M/s 

'C Leonard term M2 /S2 

Mi Chemical symbol of species i 

A Frequency factor 1/s 

c Progress variable Jlky 

Qý Variance model parameter 

Ci Concentration of species i kmol/m3 

cp Specific heat capacity at constant pressure JI(kg K) 

CS Smagorinsky parameter 

Di Binary diffusion coefficient J/(m s K) 

E Activation energy Ulmol 

12 



ey Fluctuation term 1/s 

G Filter kernel 

9i Scaling factor 

h Total specific enthalpy Jlkg 

h' Li Standard enthalpy of formation of species i Jlkg 

h, Sensible enthalpy Jlkg 

i Diffusive flux 

k Reaction rate constant kmol/m 3 /S 

kB Boltzmann constant JIK 

k-T Thermal conductivity J/(m s K) 

Lei Lewis number for species i 

Mi Atomic weight of element i kg 

N Number of species 

P Probability density 

P Pressure Pa 

Pr Prandtl number - 

Q, Singly conditioned mean - 

Q"' Doubly conditioned reference field - 

Qd, ref Scaled doubly conditioned reference field - 

Qi Conditional mean of species i - 

qR Radiative heat source k. g/(, rn3 S) 

R Universal gas constant Ul(kmol K) 
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Re Reynolds number 

Scj Schmidt number for species i 

T Temperature K 

t Time S 

tý Conserved scalar time scale S 

th. Reactive scalar time scale S 

V Volume kg/, M3 

W Mean molecular weight of mixture i kglkmol 

Wi Molecular weight of species i kglkmol 

Wi Chemical source of species i 1/s 

Xi Mole fraction of species i 

Y" Fluctuations about the conditional mean 

Yj Mass fraction of species i 

Zi Element mass fraction of element i 
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Chapter I 

Introduction and Outline 

1.1 Introduction 

Modern civilisation relies on the availability of vast amounts of energy to operate 

industrial and domestic appliances. Although a lot of effort is being made to 

provide alternative energy sources like solar, wind, water or ocean current tech- 

nologies, the combustion of fossil fuels is unlikely to be replaced as the main 

primary energy source in the near future. 

Therefore, the issues associated with hydrocarbon combustion need to be ad- 

dressed. The rising cost of oil and related fossil fuels make the quest for more 

efficient combustion technologies worthwhile. On the other hand, controlling emis- 

sions is necessary, since environmental concerns have led governments to impose 

restrictions on the amount of pollutants that can be released into the atmosphere. 

To aid the design process of such novel technologies computational tools have 

become invaluable. Many parametric studies necessary for optimisation and as- 

sertion of design features are now carried out computationally rather than having 

to build physical models of the device and conduct experiments. This saves money 
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and time and gives a more detailed view of the various physical phenomena and 

their individual importance. However, for these computational tools to be of any 

value, the models of the underlying physics have to be sound and their results 

trustworthy. 

In many fields of engineering interest such models are already very mature. For 

example the finite element method and their application to solid mechanics prob- 

lems. This has been introduced into engineering practise decades ago and is 

nowadays a part of many commercial design softwares, where stress analysis of 

virtual components can be performed quite accurately. 

In the field of fluid dynamics and related disciplines such as combustion mod- 

elling a lot of progress has been made as well. Commercial software is available 

to model the aerodynamic behaviour of aeroplanes, trucks or even pollutant dis- 

persion in entire city blocks. Meteorology heavily relies on computational fluid 

dynamics methods to provide reasonable weather forecasts. But even though these 

techniques are available, many problems remain unsolved for a lot of industrially 

relevant conditions. Unfortunately, turbulent combustion combines two of the 

most challenging of these problems. 

The turbulence closure problem has been the focus of many scientists for almost a 

century. Some turbulence modelling approaches have been proposed with varying 

success. But so far no unified model, let alone theory, exists which gives reasonably 

accurate predictions for the range of possible turbulence levels. 

With combustion taking place in a turbulent flow field, the coupling between 

heat release through chemical reaction and fluid properties introduces additional 

modelling problems. 
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Traditionally two distinct cases have been identified and approached separately 

in combustion science - premixed and non-premixed combustion. Premixed com- 

bustion is primarily viewed as a fluid dynamic discontinuity and the combustion 

closures seek to find appropriate quantifications of the mean speed of flame propa- 

gation, taking into account wrinkling of the flame front which cannot be resolved. 

As for non-premixed combustion, conserved scalar approaches have a long tradi- 

tion and have proved to be both effective and accurate in many instances. Burke 

and Schumann identified diffusion to be the factor determining chemical conver- 

sion rates [8], hence they coined the term 'diffusion flame'. In subsequent years 

the fast chemistry assumption and a conserved scalar formalism have been intro- 

duced. Reactive quantities can then be uniquely related to this conserved scalar. 

This makes it possible to decouple chemistry from the fluid dynamics. From a 

fluid dynamics perspective the problem of diffusion flames is therefore reduced 

merely to a problem of the mixing described by the conserved scalar. Therefore, 

the conserved scalar is widely referred to as mixture fraction. An early review of 

the topic is given by Bilger [3]. 

Although this approach introduces interesting ideas, the assumption of fast chem- 

istry is easily refuted for many combustion scenarios. It is only valid when rep- 

resentative chemical time scales are smaller than all other timescales of physical 

phenomena present in the system, which is certainly not the case for slow, pol- 

lutant forming reactions or high Reynolds number flows that induce high strain 

rates and cause local extinction. 

One step away from the fast chemistry assumption was the flamelet model in- 

troduced in the early 1980s; an early review of this approach is given by Peters 
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[561. By means of a coordinate transformation from physical space to a coordinate 

base attached to the isosurface of stoichiometric mixture fraction and the main 

coordinate direction normal to it, an equation is derived for chemical species and 

enthalpy with mixture fraction as independent variable. Additionally, the scalar 

dissipation rate serves as a parameter describing the intensity of the mixing of fuel 

and oxidizer. This method has found widespread use in its steady and unsteady 

form, as well as in Eulerian and Lagrangian interpretations. The field of flamelet 

modelling and a thorough overview of relevant studies can be found in Peters [571. 

The early 1990s brought about an new approach to turbulent non-premixed com- 

bustion modelling exploiting the conserved scalar formalism. Kilmenko [43] and 

Bilger [4] independently proposed the conditional moment closure method, com- 

monly abbreviated CMC. An extensive synthesis of the method is given by Kli- 

menko and Bilger [44]. Although arriving at the same set of equations, Klimenko 

and Bilger took different routes for the derivation. Bilger's starting point is the 

notion that fluctuations in species concentration or temperature largely coincide 

with the fluctuations of the conserved scalar. Therefore, he proposed a decom- 

position of reactive quantities into their conditional mean and their deviation. 

Together with the reactive scalar transport equation and some mathematical ma- 

nipulations, the CMC equations follow. In his approach, Klimenko considers the 

joint probability density function (p. d. f. ) of a conserved scalar and a reactive 

scalar. Since a transport equation for this p. d. f. can easily be derived lie applies 

the mathematical definition of a conditional mean and derives a partial differential 

equation for the conditional mean of a reactive scalar, the CMC equations. 

Although similar in their mathematical form, the flamelet model and the condi- 

tional moment closure method differ in some subtle ways. Firstly, the derivation 
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of the flamelet equation assumes scale separation, which means some characteris- 

tic measure of the flame thickness has to be smaller than the smallest turbulent 

scales. This assumption is refuted by Bilger [2] for many cases of non-premixed 

combustion. Nevertheless, the flamelet model usually yields good predictions for 

cases where flames are well established. The assumption of a particular scale 

of the flame is not needed for the derivation of the CMC equations. Moreover, 

the CMC method provides a consistent way of incorporating convective effects, 

since they appear naturally from the reactive species or the joint p. d. f. transport 

equation. However, since both approaches contain the usually most significant 

contributions, namely the source and diffusion in scalar space, arguments about 

fundamental difference and superiority of one or the other model seem to be of a 

more theoretical nature. 

Despite their success in many applications, conserved scalar approaches fail to give 

satisfactory results in cases with a large degree of local extinction and re-ignition. 

This is due to the fact that mixture fraction does not suffice to describe a flame 

in the case of transient phenomena like extinction and reignition where several 

physical processes other than molecular diffusion are competing at comparable 

time and length scales. The flame cannot be described as a diffusion flame any- 

more. There is no more balance between reaction and diffusion for which mixture 

fraction serves well as a parameterisation, as molecular transport does not hap- 

pen in one main direction anymore. The diffusion flame structure is perturbed 

by turbulence and processes like flame propagation or autoignition might become 

important. To address these issues, a straightforward remedy comes to mind, 

namely the introduction of a second parameter. This is usually taken to be some 

sort of progress variable, taking into account the local reaction progress, hence, 
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allowing for one additional degree of freedom. 

This was done by Pierce & Moin in their flamelet/progress variable approach [60] 

and its capability to predict extinction and reignition was assessed by Ihme et al. 

[32). As progress variable they chose nondimensional temperature, normalised by 

the maximum and minimum values at stoichiometric composition. 

Another rigorous way to introduce a progress variable as second independent pa- 

rameter is the double conditioning of reactive quantities (DCMC). This is an ob- 

vious extension of the CMC approach. Instead of solving transport equations for 

the first statistical moment of reactive quantities conditioned on mixture fraction 

only, it is straightforward to derive these equations conditioned on tivo indepen- 

dent variables [441. The first variable remains mixture fraction. The other one is 

a suitably chosen quantity, describing the progress of reaction. 

Several analyses have examined the potential of this approach and results are 

encouraging. Cha et al. [101 found in their a priori DNS study, that DCMC is 

able to capture extinction to some extent. As a progress variable scalar dissipation 

rate, X, was chosen. 

Kronenburg et al. [45,481 assessed the potential of DCMC with sensible enthalpy 

as second conditioning variable in an a priori manner. They found good agreement 

between DCMC predictions and DNS. 

Other feasible approaches to treat deviations from a purely mixing dominated 

combustion mode are available, such as second-order conditional moment closure 

[11,411. However, the identification of parameters governing the combustion 

physics and chemistry, and trying to reduce the fluctuations about the doubly 

conditioned mean, rather than finding a model accounting for these fluctuations 

20 



in terms of second order statistics, seems to be the more intuitive choice. 

Another branch of turbulent non-premixed combustion modelling are p. d. f. -methods. 
This is a stochastic approach, in which a numerical solution to the joint proba- 

bility density function of all chemical quantities (species concentration, enthalpy) 

is sought. This approach does not suffer from the deficiencies of conserved scalar 

methods, since it considers all possible degrees of freedom and does not restrict 

the attainable region in composition space. This fact however, makes this method 

computationally very expensive and restrictions of the resolution of phase space 

have to be made due to limited computational resources. Furthermore, although 

the chemical source appears in closed form, the micromixing rate of subgrid inho- 

mogeneities has to be approximated. This is still an active area of research and 

various approaches have been developed. Nonetheless, a lot of research with some 

impressive success has been done in this field [16,26,35,67,77]. 

Apart from the chemistry treatment, the accurate and reliable prediction of the 

flow and conserved scalar field is crucial to the success of combustion simulations. 

For many decades the Reynolds averaged Navier-Stokes (RANS) approach has 

been the prime choice, where ensemble averages of all quantities are solved for. 

The influence of fluctuations about the average is captured by turbulence models. 

RANS computations have a runtime of the order of a few hours or even less 

and are therefore very efficient to employ, but the setup of these simulations is 

not particularly generic. Empirical parameters for turbulence models have to 

be adjusted according to the specific setup or geometry under investigation, and 

transient, unsteady effects are not satisfactorily captured. 

This led to the development of a new approach in computational fluid dynamics. 
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In the 1960s meteorologists realised that small scale, regional weather forecasts 

rely heavily upon unsteady features of the flow in the atmosphere. RANS was 

therefore not suited, since it is not capable of providing predictions of these small 

scale features. The other extreme is direct numerical simulation (DNS) where all 

turbulent length scales are resolved, thus requiring a high spatial resolution. DNS 

was and still is, computationally so expensive that it cannot be applied to atmo- 

spheric flow simulations. Even a conservative estimation yields an atmospheric 

Reynolds number of Re > 10' (u ;: ý:; 1mls, f ; ý-, lkm). The computational effort, 

expressed in the number of grid nodes needed, scales with ROM. The basic prin- 

ciple of DNS is that all relevant turbulent scales down to the Kolmogorov scale, 

f,,, are captured, such there is no need to employ turbulence models. However, 

this requirement cannot be realised given modern computational resources. 

In a pioneering work, Smagorinsky applied a new technique, nowadays known as 

large eddy simulation (LES) [69]. Leonard [49] then provided mathematical rigour 

and applied a spatial filter to the flow parameters and examined the influence of 

filtering on the Navier-Stokes equations. This removes fine scale, spatial fluctu- 

ations and motion such that only the large, energy containing structures remain 

and are directly computed. The filtering gave rise to an additional term similar 

to the Reynold stresses known in the RANS context, quantifying the influence of 

the unresolved scale on the resolved ones. Since it involved spatial rather than 

temporal fluctuations, this term was labelled subgrid-scale (SCS) stress. Assum- 

ing subgrid-scale energy production balancing dissipation, he proposed a simple 

model for this term which is still widely used. 

Significant advances in the field of LES were made in the early 1990s when 

Germano et al. [29] proposed a methodology that determines a coefficient in 
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Smagorinsky's model equation dynamically rather than it being prescribed a pri- 

ori. Several variations of this general idea have been developed of which Lilly 

[51] is one of the more significant ones and it is widely used. It improved the 

method's computational stability by using a slightly different derivation of the 

equation for the coefficient. This formulation minimises singularities, which aids 

numerical stability. Another method was proposed by Piomelli and Liu [611 which 

smooths the coefficient field in time. This makes spatial averaging unnecessary 

and stabilises simulations. This method was used for present work. 

Large eddy simulation has become increasingly popular since it resolves large parts 

of the turbulent spectrum and therefore, fairly simple models for the residual, 

subgrid scale contributions can be employed. Especially for cases where large 

scale unsteady features are present, LES offers an advantage over an ensemble 

averaged method such as RANS. 

Early studies using large eddy simulation to predict a turbulent diffusion flame 

were carried out by Branley and Jones [6,7] and Pitsch and Steiner [65]. Both 

used a conserved scalar approach. Since then, LES has successfully been applied 

to reactive flows with a variety of combustion m odels [35,36,55,67,68,62]. A 

recent overview of the field of large eddy simulation of both non-premixed and 

premixed combustion is given by Pitsch 1631. 

Recently Navarro-Martinez et al. [55] have carried out an LES incorporating 

CMC in a fully predictive manner. They have used classical singly conditioned 

moment closure, and it has proven to predict well the pollutant formation for the 

benchmark flame Sandia D which is characterised by a low level of local extinction. 
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1.2 Outline 

The present work and the methodology described in this thesis aims to build on 

the conditional moment closure method for large eddy simulation (LES-CMC) 

framework. The objective is to extend LES-CMC, such that more challenging 

scenarios like local extinction and reignition can be predicted. The new method is 

called extended conditional moment closure, short CMCe. A way of approximat- 

ing the conditional fluctuations of a suitably chosen progress variable has to be 

found. This is achieved by solving a conditional variance equation. Based on that, 

the doubly conditioned chemical source term is approximated by constructed and 

scaled reference fields, mimicking doubly conditioned moments. The conditional 

probability density of the progress variable is assumed to follow a, 8-function. The 

performance of the proposed method is assessed by simulating the Sandia piloted 

jet flames D-F, which exhibit various levels of local extinction and reignition and 

are a standard benchmark testcase for combustion models. 

The thesis is structured in the following way. 

Chapter 2 introduces the fundamental equations of turbulent gaseous combus- 

tion. The Navier-Stokes equations are given along with constitutive relationships, 

such as the ideal gas law, Fickian diffusion or Arrhenius kinetics. Furthermore, 

some relevant nondimensional parameters are presented. Additionally, intrinsic 

challenges to the solution of this closed system of equations are discussed and the 

need for modelling approaches is stressed. 

Chapter 3 introduces fundamentals, terminology and the set of equations used 

for large eddy simulation. Common closure strategies for the subgrid stresses are 

presented, along with the basic principle behind the dynamic modelling approach. 
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Furthermore, the generation of artificial inflow turbulence is discussed. 

Chapter 4 describes the conditional moment closure method. The conserved scalar 

approach to turbulent combustion modelling is introduced. Basic ideas and defini- 

tions from probability theory are given to highlight the connection of conditional 

moment closure to transported p. d. f. methods. The singly and doubly condi- 

tioned moment closure equations are given and common closure strategies dis- 

cussed. Additionally, details of the numerical solution of the conditional moment 

closure equations are described. 

Chapter 5 introduces the extended source term closure. Sensible enthalpy is in- 

troduced as progress variable. The choice of progress variable and the validity 

of the 8-p. d. f. assumption for the conditional p. d. f. are discussed. Approaches 

for obtaining the conditional progress variable variance are presented and some 

fundamental issues are highlighted. Modelling of various terms of the conditional 

variance equation is described and the construction of doubly conditioned refer- 

ence fields is explained. 

Chapter 6 describes the experimental setup of the piloted jet flames of the Sandia 

D-F series. The setup of the simulations carried out is presented. The results are 

reported and the performance of the proposed methodology is assessed. 

Chapter 7 closes with some conclusions about the work carried out, implications 

of the results and some directions and ideas for further research into this field of 

engineering importance. 
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Chapter2 

The Governing Equations of 

Turbulent Reacting Flows 

For a system which can be regarded a continuum, the equations governing turbu- 

lent reacting flows are the mathematical formulation of the principle of conserva- 

tion of mass and Newton's second law of motion as well as some thermodynamical 

and otherwise constitutive relations. This chapter will briefly state the set of 

equations to lay the groundwork for the following chapters where derivatives of 

the basic equations will be presented. For a detailed derivation of these equations 

refer to Bird et al. [5]. 

2.1 Fundamental principles 

In this section, transport equations will be presented that are a direct consequence 

of fundamental principles of classical physics. 
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2.1.1 Conservation of Mass 

The notion that, in the absence of nuclear effects, mass can neither be created 

nor destroyed is represented by the continuity equation, 

(9p 
j- pu t 

with p denoting density and u being the velocity vector. 

2.1.2 Transport of Momentum 

Newton's second law of motion states that the rate of change of momentum of 

a body equals the sum of all external forces acting on that body. This notion is 

represented by the momentum equation, 

Opu 
+V-puu= -VP+V--r+pf, (2.2) 

at 

where p represents the pressure, -r the viscous stress tensor and f the sum of all 

body forces. 

The Stress Tensor 

If Newtonian behaviour of the fluid can. be assumed, the viscous stress tensor -r 
is given by 

21t -2 1tv -u1 (2.3) 
3 
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with y denoting the dynamic viscosity, I the identity matrix and S the strain 

rate tensor. This relation models the shear stresses occurring within the fluid as 

proportional to the strain rate. A common approximation to the viscosity for 

multicomponent mixtures will be given in section 2.2. 

The Strain Rate Tensor 

The strain rate tensor is defined as 

1 
Vu) + (Vu)'). (2.4) 

2 

It is the quantification of the shear rate in the flow, which is needed for the three- 

dimensional form of Newtons; formula, that connects the shear forces in a flow to 

the shear rate through the viscosity. 

2.1.3 Transport of Enthalpy 

The conservation of mass implies conservation of all extensive quantities. There- 

fore a transport equation for the total specific enthalpy, h, can be formulated. 

Oph 
+V-puh = 

Rpý 
-V. Jh+qR - (-r: Vu), (2.5) 

at Dt 

where Jh represents the diffusive flux of enthalpy, and qR is a radiative heat source. 
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2.1.4 M-ansport of Chemical Species 

A direct consequence of the conservation of mass is the equation governing the 

transport of chemical species i. It follows directly from the conservation of element 

mass and accounts for chemical conversion processes. It is conveniently formulated 

as a transport equation for the species mass fraction Yj, 

apyi 
+V- puyi = -V - jyi + pwi, (2.6) 

at 

where Jy, represents the diffusive flux of the species and wi the source of that 

species from chemical conversion. 

It shall be pointed out that mass fraction Yj and mole fraction Xi are easily 

converted via the relation 
w; 

Yi =, Xi, (2.7) 

where Wi is the molecular weight of species i and W is the mean molecular weight, 

which is given by 
y4i 

(2.8) 
Wi) 

Here, N is the number of chemical sPecies of the mixture. 

2.2 Thermodynamical and constitutive relations 

This section will present complimentary relations to the partial differential equa- 

tion from the previous section, that are necessary to get full closure. These are 

the equations where distinctions have to be made regarding the fluid under con- 
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sideration. 

2.2.1 The Equation of State 

To close the system of equations an expression is needed to relate pressure, density 

and temperature, thereby specifying the thermodynamical state. If ideal gas and 

mixture behaviour can be assumed, the pressure is given by: 

RT 
Pýp -W) (2.9) 

with R denoting the universal gas constant and W the mean molecular weight. 

2.2.2 Viscosity 

Viscosity is the quantity which relates the strain rate tensor and the stress tensor 

in the momentum equation (2.2). It is a macroscopic quantity which depends on 

the composition of the mixture as Nvell as the local temperature and pressure. 

Kinetic theory provides an expression for the viscosity of a single component i as 

[31J: 
5 N/ýi-mjl, -BT 

Pi =% (2.10) 
16 7rai2f2(2,2)* 

where mi denotes molecular mass, kB the Boltzmann constant and ori the Lennard- 

Jones collision diameter. The collision integral is a function of temperature. 

This is only to point out the main parameters influenciDg viscosity. 

The viscosity of the multicomponent mixture of gases is modelled by the semi- 
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empirical formula by Wilke [79], with modifications by Bird et al. [51, 

xilli 

N (2.11) 
j=l xj,,, ij, 

with 

1/2 1/4) 2. 
Wi) -1/2 (1 

+ 
(I+ 

_ 

(1 
+ 

ýL 

Wi lij wi 

2.2.3 Heat Conduction 

The diffusive flux of enthalpy in equation (2.5) is commonly approximated by 

Foutier's law of heat conduction [5]. It is a macroscopic quantification of the heat 

or enthalpy transported on a molecular level. It is in accordance with kinetic gas 

theory and states that the diffusive heat flux is proportional to and of opposite 

sign as the local temperature gradient. The mathematical form is 

Jh 
= -k-TVT, (2.13) 

with k-T denoting thermal conductivity. 

2.2.4 Mass Diffusion 

The diffusive mass flux appearing in equation (2.6) can be approximated by Fick's 

law of diffusion [5]. It is a model for binary diffusion driven by a concentration 

gradient and states that the diffusive flux of a particular species is proportional to 

and of opposite sign as the concentration gradient of that species. It is expressed 
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mathematically as 

Jy, = -pDiVYi, (2.14) 

where Di is the binary diffusion coefficient of species i. This relation is strictly 

valid only for binary mixtures. However, in certain circumstances it is still a 

reasonable approximation of diffusion in multicomponent gas mixtures. Drawing 

on fundamental work by Curtiss and Hirschfelder [18] and Chapman and Cowling 

[14] Williams concludes, that if one species is dominating the mixture it can be 

viewed as a back-ground fluid and the remaining components as trace species [80]. 

In the case of gaseous combustion processes with air as oxygen carrier, nitrogen 

would be this background component with mass fractions YN, of about 0.7. In 

that case, the transport process of diffusion can be viewed as binary diffusion 

between each individual trace species with the background fluid. For this, the 

binary diffusion coefficient of species i with the background fluid can be taken as 

the diffusion coefficient Di. 

2.2.5 Nondimensional Parameters 

Dimensional analysis of the transport equations (2.5) and (2.6) gives nondimen- 

sional parameters describing the magnitude of the molecular diffusion terms. 

These parameters will be outlined below and common assumptions in combus- 

tion modelling will be discussed. 
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The Prandtl Number 

The thermal conductivity in equation (2.13) appears in a non dimensional param- 

eter called the Prandtl number. It is defined as 

CPIL V 
Pr= --- (2.15) 

k-T a 

with cp denoting the specific heat capacity at constant pressure, a the thermal 

diffusivity and v the kinematic viscosity. For most common gases the Prandtl 

number is found to be of the order of 0.7 [80]. 

The Schmidt Number 

The equivalent of the Prandtl number for heat conduction is the Schmidt number 

for mass diffusion. It is defined as 

It (2.16) 
pDi' 

Again, the Schmidt number is found to be slightly less than unity for many gases 

[801. 

The Lewis Number 

The Lewis number is defined as 

Le - 
k-T (2.17) 

pDicp 
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and can easily be shown to be the ratio of Schmidt and Prandtl number: 

Le, - 
sci 

(2.18) 
Pr 

The Lewis number is a measure of the relative magnitude of heat transfer through 

conduction compared to mass diffusion [801 and a common assumption in gaseous 

combustion modelling is that of a unity Lewis number which has been adopted 

throughout the present work. 

Transport Coefficients 

With the nondimensional parameters presented in the previous section, molecular 

transport coefficients for enthalpy and mass can be related to the mixture viscos- 

ity. With the approximation of equal diffusivities for all species, the molecular 

diffusivity is obtained as 

ý-Sc 

and heat conductivity as 

(2.20) 
Pr 

2.2.6 The Reaction Rate 

An arbitrary reversible reaction can be described as follows 

NN 

vi Mi:;: -- vi'A4i, (2.21) 
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where v, is the stoichiometric coefficient for species i as a reactant and v, ' the stoi- 

chiometric coefficient for species i as a product, whereas Mi denotes the chemical 

symbol of species i. 

The rate of reaction for species i in a chemical system with r reactions can then 

be expressed as 

rNN 
v 

f 
][I C )', k 

_k 
][I Vjk] 

Vi, k) 

[k 
6 C. (2.22) Wi = 

1: (Vi', 
k 3j 

k=l j=l j=l 

where Cj denotes the concentration of species i and is obtained as 

Ci = 
PY4 
Wi 

(2.23) 

This relation is frequently called the law of mass action since it captures the 

dependence of the reaction rate on the available mass of reactants, expressed as 

concentration. It is simply explaining that, on a molecular level, a binary reaction 

between two molecules is more likely to take place the more molecules of these 

two species are present. 

2.2.7 The Arrhenius Reaction Rate Constant 

The influence of temperature on the reaction rate is contained in the specific re- 

action rate constant which is commonly approximated by the empirical Arrhenius 

law [80]: 

-E- k=A CRT (2.24) 
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with A denoting the frequency factor and E the activation energy. The frequency 

factor A exhibits a weak dependence on temperature which is given as 

BT', (2.25) 

where B and n are constants, specific to the reaction of interest. 

2.3 Multiscale Nature of Turbulent Combustion 

The set of equations presented in the preceding sections is closed, provided suitable 

boundary conditions and models for molecular properties are at hand. These 

equations describe all the physical and chemical processes that determine the 

evolution of the system and its chemical composition at any point in space and 

time. 

No analytical solution to the full, unsimplified system has yet been found. In 

fact, the Clay Mathematics Institute has named the solution of the Navier-Stokes 

equations as one of seven 'Millennium P7%ize PrOblems' and will award 1 million 

dollars to anyone who is able to provide a solution [33]. Their problem descrip- 

tion already includes the simplification of constant density and viscosity. This 

highlights, that an analytical solution for the original problem is unlikely to be 

found. 

However, the numerical solution of this system is a viable option. In that case a 

solution to these partial differential equations is sought at discrete points in space 

and time. This gives rise to another problem. 
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The different physical and chemical processes introduce a wide range of length 

and time scales. For the numerical solution to capture all phenomena, all relevant 

scales have to be resolved. 

'Dirbulence theory provides an estimate of the fluid dynamics' range of scales. 

From the integral length scale fj, which is commonly assumed to be of the order 

of geometric features of the domain in which the flow is considered, to the smallest 

scale of turbulence, the Kolmogorov scale f,,, where turbulent energy is dissipated. 

An important way to charactrise turbulent flow is by means of the Reynolds 

number Re. It is defined as 

Re = 
pu (2.26) 
Y 

where u is some characteristic, mean, large scale velocity, fa characteristic length 

scale, p the density and 1L the dynamic viscosity. The Reynolds number is a 

dimensionless quantity and describes the ratio of inertial to viscous forces in a 

flow. The higher the Reynolds number, the more unstable is the behaviour of the 

Navier-Stokes equations. If a critical range of the Reynolds number is approached, 

transition from laminar to turbulent flow takes place. The flow becomes random 

and with increasing Reynolds number turbulence intensifies. 

If the Reynolds number of a particular flow is known, the ratio of Kolmogorov 

scale to integral length scale can be estimated. The Kolmogorov scale f,,, is defined 

as [66]: 

v 
3)1/4, 

(2.27) f" =(E 

where E denotes the rate of dissipation of turbulent kinetic energy. Dimensional 
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analysis gives a scaling for this disspation rate, namely: 

E= (2.28) 

Combining these two equations leads to an estimate of the ratio of Kolmogorov 

and the large length scales [661: 

f, 
7/f - Re-24. (2.29) 

Turbulence enhances mixing. This makes it possible to decrease residence time in 

technical devices and design smaller apparatuses. That is the reason why engineers 

designing technical devices such as furnaces, chemical reactors, or other process 

engineering machinery, consider it a desired mode of operation. 

With Reynolds numbers easily exceeding values of the order of 104 for stan- 

dard applications, it is estimated that at least three orders of magnitude (t,, fl - 
1 (10')-4= 10-') are covered by the relevant length scales. 

If chemical reaction takes place within this turbulent flow, additional length and 

time scales are introduced, some of which are even smaller than the Kolmogorov 

scale [57]. 

This might give an idea why even though a mathematical description of the prob- 

lem is at hand, it is unfeasible even with the most powerful of computers to resolve 

all time and length scales involved for a realistic engineering device. 

Therefore techniques have been developed that attempt to provide means of mak- 

ing accurate predictions of quantities characterising the flow, without the need to 

resolve the full range of scales. One of these techniques is large eddy simulation 
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(LES) , details of which will be presented in the following chapter. 
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Chapter3 

Large Eddy Simulation 

In large eddy simulation (LES) a spatial filter is applied to all transport equations. 

This separates the large scale turbulent motion from the small scales. The small 

scale motion is commonly assumed to behave more isotropic, therefore, relatively 

simple expressions can be used to model them. This chapter will outline the 

mathematical foundations of large eddy simulation and present the set of equations 

being solved, including all modelled quantities. 

3.1 The Spatial Filter and Favre Filtering 

A spatial filter is defined as the convolution of a quantity O(x, t) with the filter 

kernel G(x, A). The kernel G is a function of space and the filter width A. The 

physical interpretation of the filtering procedure is the damping of high frequency 

oscillations in the flow or scalar fields. It yields a local, spatial average of flow 

parameters according to the characteristic length scale of the filter, A. Formally 

this procedure can be written as the following volume integral over the entire 
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domain of interest: 

0(XI t) = 
iv 

G«x - x', A) O(x', t) dV, (3.1) 

with V being volume and the overbar denoting a filtered quantity. 

Note, that this is the mathematical basis to define the quantity that is being solved 

for in an implicit large eddy simulation. The filtering provides mathematical 

means to separate large scale from small scale motion. In this Nvay it is possible 

to examine, and to quantify the effect of the small, subgrid scale motion on the 

resolved, mean quantities. 

It is common practice in turbulence modelling to employ Favre averaging to over- 

come the need to model terms involving density fluctuations. This was introduced 

by Favre [23]. 

Favre averaging, or in the context of large eddy simulation, Favre filtering is 

defined as 

(3.2) 

with the tilde denoting a Favre filtered quantity. 

3.1.1 The Subgrid Scale 

The spatial filter separates the large scale, low frequency, low wavenumber part 

of the turbulent spectrum from the small scale, high frequency, high wavenumber 

part. The latter is often referred to as subgrid scale. The resolved, large scale 

part can alternatively be interpreted as a weighted (weighted with the filter kernel 
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G) volumetric average of the flow variables. Therefore it is necessary to define 

a measure for the fluctuation about this average within the volume in which the 

average value is defined. 

This measure is the subgrid scale variance, ýý. Germano introduced the con- 

cept of generalised central moments [271 and expanded on his concept later [281 

to maintain some fundamental properties such as the fact that the mean of a 

fluctuation should vanish. He proposes a definition for the subgrid variance as: 

(3.3) 01 = 00 - 00. 

Wherever this correlation apprears in a transport equation the full expression will 

be retained for the sake of clarity. 

3.2 The Filtered 'Iransport Equations 

If the spatial filter is applied to the fundamental transport equations introduced 

in chapter 2, a new set of equations can be derived which form the basis for large 

eddy simulations. 

3.2.1 The Filtered Continuity Equation 

Since the continuity equation (2.1) is linear in all its variables p and u, the filtered 

form looks just like the unfiltered 

ap +v- fiii = 0. (3.4) 
c9t 
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3.2.2 The Filtered Momentum Equation 

The momentum equation is nonlinear in u. Therefore, the filtering procedure gives 

rise to terms involving correlations of so called subgrid contributions of velocity. 

They are often referred to as subgrid or residual stresses. The momentum equation 

solved in the case of large eddy simulation becomes 

apii 
+V- fiiiii = -VI5 +V-V- (3.5) 

at 

In this equation the subgrid stresses are represented by -r, 
_,, = fi(Eu- - iiii). For 

this term a subgrid model has to be employed to obtain full closure. This will be 

discussed in section 3.3.1. 

3.2.3 The Filtered Conserved Scalar Transport Equation 

Filtering the transport equation (2.6) for a scalar without source, ý, leads to the 

filtered conserved scalar transport equation. The diffusive flux is approximated 

by a gradient transport model, 

apý 
+V- (3.6) at 

3.3 Subgrid Scale Modelling 

Equations (3.5) and (3.6) contain unclosed terms, which have to be modelled. 

They describe the small, subgrid scale features of velocity or the conserved scalar, 

respectively. These terms also describe quantitatively the influence of those small 

43 



scales on the large, resolved scales. Since LES resolves a large part of the turbulent 

spectrum, the small, unresolved scales at the dissipative end of the spectrum are 

thought to behave more universally. Hence, fairly simple, algebraic models for 

these subgrid scale term have been developed. 

3.3.1 The Subgrid Scale Stresses 

The Smagorinsky Model 

The commonly used model for the anisotropic part subgrid scale stresses, 

7, (3.7) 
-q", 

= P(Eu - 
iiii), 

was developed by Smagorinsky [69]. He proposed a turbulent viscosity to be 

computed as 

Vt == lit lp = (C 
s A)2 I§1, (3.8) 

where Cs is the so called Smagorinsky constant and A the filter width, usually 

taken to be proportional to the local grid spacing. Originally this model was 

proposed as a model for incompressible flow, but it is straightforwardly generalised 

to constitute a model for variable density flow. This form is presented here. 

This model proved to work reasonably well in many flow configurations, with 

values for the modelling constant in the range of CS = 0.1 - 0.23. A brief review 

of studies into the specific value is given in the introduction of the paper by 

Germano et al. [29]. 
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Given the turbulent viscosity, the subgrid scale stresses are then modelled as 

-r, g, -3 -r,,, I = -2/it S. (3.9) 

Dynamic Subgrid Scale Modelling 

A breakthrough in the area of large eddy simulation came with the dynamic model 

first proposed by Germano et al. [29]. In this model the turbulent viscosity is 

still computed by equation (3.8), but the parameter rather than constant, CS, 

is determined dynamically. This method employs a second filtering operation 

applied to equation (3.5). This operation will be denoted with a hat, i, and is 

often referred to as test-filtering. 

The test-filtered momenturn equation contains a subgrid scale stress tensor, T, of 

the form: 

uu - uu, 

which can be related to the subgrid scale stresses as given in equation (3.7) by 

--r, gs. 

This term has been labelled Leonard* term. It can be interpreted as the part of 

the turbulent energy spectrum between the length scale A, dictated by the test- 

filter and the filterwidth A. The Leonard term can be explicitly computed since 

it involves only resolved quantities. Subsequently, the Smagorinsky approach, 

equation (3.9), is applied to both T and -r, g.. Taking into account the identity 

(3.11), the follwing relation can be derived and serve as a starting point for the 
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determination of CS: 

Ic -I Ll = acs - 
fi-c-S, (3.12) 

3 

with 

-2 
; K2 (3.13) 

,8= -2A2 
I§I§. (3.14) 

Plenty of different techniques have been proposed, invoking several assumptions 

to solve equation (3.12) for Cs [29,51,61,30,54]. For the present study, the 

version proposed by Piomelli and Liu [611 was used, which utilises the value of Cs 

from the previous timestep so solve equation (3.12). 

The idea of dynamic modelling greatly improves the generality of large eddy simu- 

lation since no modelling parameter has to be specified a priori and configuration 

dependent. The only degree of freedom with this method is the ratio of filter 

widths, 7,; A = a/A, which is usually taken to be 2. This assumption is much less 

restrictive than specifying a constant value of CS for the entire domain. 

3.3.2 The Subgrid Scale Flux of Conserved Scalar 

An equivalent to the dynamic model for the turbulent viscosity, as described in the 

previous section, was proposed by Pierce and Moin [58] for the modelling of the 

turbulent, subgrid scale conserved scalar flux, Jg, =- Uý)). A gradient 

transport model of the form: 

J, g, -DtVý, (3.15) 
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is used and a dynamic procedure utilised to obtain the turbulent diffusivity. How- 

ever, since approaches that choose to relate the turbulent diffusivity to the tur- 

bulent viscosity via an assumption for a turbulent Schmidt number 

Dt - 
lit (3.16) 

fisct 

have proven to work reasonably well [65], a constant turbulent Schmidt number 

Nvas used in the present study. Sensitivity of the presented method on the specific 

value for Sct will be presented in chapter 6. 

3.4 Boundary conditions 

The solution of a partial differential equation requires the specification of appro- 

priate boundary conditions. In the case of turbulence simulations this can be 

problematic, since it may not be feasible to extend the computational domain to 

a point or bounding surface where boundary conditions are well defined. 

3.4.1 Inflow Boundary Treatment 

Most commonly, boundary conditions have to be prescribed for an inflow position 

where significant turbulence levels are observed experimentally. Although some 

components of the turbulent stress tensor are routinely recorded experimentally, 

the question remains how to synthesize a velocity signal that has the observed 

one-point statistics and where all components of the stress tensor are correlated. 

Many studies employ Gaussian noise with the observed means and variances [15] 
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but this provides uncorrelated velocity signals, of which the oscillations are quickly 

damped by viscous effects upon entering the domain. Clayton [15] argues, that 

in cases where turbulence produced during the breakup of a jet or some mixing 

layer much exceeds the inflow turbulence, the turbulent characteristics at the 

inflow become irrelevant, and the natural turbulence production of the shear flow 

suffices to give satisfactory results. However, it is hard to predict under which 

circumstances this criterion holds and other methods are desireable. 

Pierce and Moin [59] developed a forcing method that enabled them to provide 

inflow conditions for a coannular jet simulation by carrying out a periodic pipe 

flow calculation which yields the experimentally observed statistics. This is an 

elegant but computationally relatively expensive method. 

Recently, Klein et al. [42] developed a new approach to this problem that was 

further modified and tested by di Mare et al. [19]. In this approach, a digital 

filter is used to provide correlated velocity signal components. Subsequently, the 

observed correlations given by the measured components of the stress tensor are 

used to scale the correlated signal to yield a realistic estimation of the turbulent 

flow entering the computational domain. This is the method used for the present 

work, with the inlet velocity data taken from the sources of the TNF workshop 

[21,1]. 

3.4.2 Outflow Boundary M-eatment 

At the outflow plane a convective outflow boundary condition is imposed. 

00 

_LO = 0, ät- 
uconveetive 

£9X� 
(3.17) 

48 



where x,, denotes the direction normal to the outflow boundary, and Uconvective is 

some convective outflow velocity. For the present study this velocity was taken as 

the bulk velocity resulting from a global mass balance. 
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Chapter4 

Conditional Moment Closure 

A fundamental challenge for the modelling of combustion is the wide range of 

length and time scales involved as outlined in section 2.3. While the large scales 

of the flow and mixing fields are largely governed by the geometry of the specific 

setup, turbulent dissipation takes place at the Kohnogorov scale, eq, which is 

several orders of magnitude smaller. But even this is large compared to the scales 

introduced by the chemical conversion of species. The thickness of flames might 

be even smaller, and time scales can vary heavily depending on the reactiveness of 

single species. This is problematic for the modelling of these processes, since one 

cannot afford to resolve all scales involved numerically. Therefore models have to 

account for the effects of the unresolved scales. 

Due to the nonlinearity of the equations describing the chemical system, those 

effects are of particular importance when trying to model combustion. Therefore 

several closures for the chemical source have been proposed in the past. 
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4.1 Conserved Scalar Approaches to Turbulent 

Combustion Modeling 

It has been realised for a long time that in nonpremixed combustion systems, 

where fuel and oxidizer are initially separated, the fluctuations occurring in quan- 

tities like species mass fractions and temperature or enthalpy are closely linked 

to the fluctuations of a conserved scalar, the mixture fraction. For a two feed 

system, Bilger [21 proposed the following definition for this quantity 

2(Zc-Zo, o) (ZH-Zll, o) (Zo-Zo, o) 
AIC 

+2 
AfH + Afo 

2(Zc, p-Zc, o) (ZH, F-ZH, O) (zo, p-zo, o), 
Afc 

+2 
AIH 

+ 
Afo 

with Zi denoting element mass fractions of element i, Mi being the element's 

atomic weight and 0 and F denoting oxidizer and fuel stream respectively. This 

definition is used to compute the local mixture fraction based on experimental 

data. For numerical simulations it is sufficient to state that mixture fraction is 

a conserved scalar, that is a scalar without sources, and to impose consistent 

boundary conditions. 

The mixture fraction describes the local ratio of elemental mass originating from 

the fuel stream to the elemental mass originating from the oxidizer stream. More 

intuitively it describes the degree of mixing of the two fluid streams. As they 

mix, on large scales by convection and on small scales by molecular diffusion, 

conversion of species by chemical reaction takes place and releases heat. This 

causes the density to drop and the fluid mixture to become more viscous. It is 

this phenomenon that constitutes the fluid-chemistry coupling. Fluid dynamics 

determine the mixing for the combustion to take place, and combustion determines 
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the change in thermodynamic properties feeding back to fluid dynamics. 

Since most combustion systems of industrial relevance operate under turbulent 

flow conditions in order to enhance mixing, one can imagine that further fluc- 

tuations, stemming from the turbulence, have great influence on the small scale 

mixing and therefore on the chemistry. This is commonly known as turbulence- 

chemistry interaction. 

As mentioned in the introduction, several combustion closures utilise the con- 

served scalar approach, describing chemistry in terms of its mixture fraction 

dependence. However, most of them are local models, assuming infinitely fast 

chemistry and an equilibrium between diffusion and reaction across the flame. 

No such assumptions are invoked in conditional moment closure (CMC). The 

equations are exact and the modelling is introduced through some asymptotic 

analysis of terms that vanish in the high Reynolds number limit. Furthermore the 

diffusive flux in mixture fraction space is approximated by analogy with a Markov 

process. 

4.2 Background for the Conditional Moment Clo- 

sure Equations 

In this section, an outline of the ideas behind the derivation of the conditional 

moment closure equations for LES will be presented. The joint p. d. f. transport 

equation is given to highlight the ties of CMC with p. d. f. methods. 
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4.2.1 The Fine Grained and Joint Probability 

Density Function 

Given a vector of random variables 0= (01, ..., 0,, ), where n denotes the dimen- 

sionality of the vector, with phase or sample space 71 = (, ql, . .., 71,, ) the so called 

fine grained probability density function (p. d. f. ) is given by: 

n 
fl (4.2) 
i=l 

where 5 denotes the Dirac delta function. With this definition, probability theory 

provides the joint probability density function of this random variable, P(q), as 

some average of the fine grained p. d. f.: 

P(77) = V;, (4.3) 

where the overbar indicates the averaging process. This average may be an en- 

semble average as in the context of the RANS methodology, or a spatial average 

or filtering as encountered in the LES framework. 

4.2.2 The Fine Grained Probability Density Function 

Transport Equation 

With the definition of the fine grained p. d. f. in the previous section and some 

fundamental rules from the theory of generalised functions as Nvell as the generic 

transport equation for a reactive scalar (2.6), a transport equation for the fine 

grained p. d. f. can be derived. The total derivative of the fine grained p. d. f. can 
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be expressed as: 
dO n0 dO 
-=- 

(7pdt) 
(4.4) 

dt 
E 

=1 
2ý, -i 

Substituting the total derivative of the random variable on the right hand side of 

the equation leads to a transport equation for the fine grained p. d. f.: 

D(po) na 

at +V- (pu -V - (OpDVOi) (4.5) 071i 

nn 02 

-EE 
a7liaqj 

(OpD(VOi - VOj)) - 
i=l j=l 

where wi denotes the volumetric source of random variable Oi. 

4.2.3 The Subgrid Scale Joint Probability Density 

Function and Conditional Filtering 

A probability density function, P(27, x, t) can be defined in a way that is consistent 

with the filtering procedure of the large eddy simulation technique. 

(71, X) t) O[q - O(x', t)] G(x - x')dx'. (4.6) 

A density weighted p. d. f., F3(, q, x, t) can be defined as: 

P(II, X, t) = P(XI t) 
1 

p(x, t) O[j7 - -O(x', t)] C(x - x')dx'. (4.7) 

54 



Conditional filtering of a quantity 0 can then be defined as proposed by Steiner 

and Bushe [70]: 

77= 
10 

7p[ri - O(x', t)] G(x - x')dx' (4.8) -P(77, X, t) 

i 

Density weighted conditional filtering of a quantity 0 follows as: 

POP In POP 1 -a 77 = --ý =-- (4.9) 
(P I 77)P(77) TP(77) 

With this definition, the p. d. f. constitutes a subgrid scale p. d. f., describing the 

small scale features of the flow. Mathematically, this p. d. f. has the same properties 

as the temporal p. d. f. in Reynolds averaged flow simulations (RANS), where the 

p. d. f. describes the unsteady features of the flow. Since the present work is 

concerned with the large eddy simulation of turbulent combustion, the former 

p. d. f. will be used for the remainder of the text, but all conclusions have their 

equivalent in the RANS context. 

4.2.4 The Subgrid Scale Joint Probability Density 

Function 11-ansport Equation 

Applying the definition of the subgrid scale density weighted p. d. f., convoluting 

equation (4.5) with the spatial filter and rearranging yields a transport equation 

55 



for this p. d. f.: 

O(PP(71)) 
+ 6u-, ý174) P (7 7) (4.10) 

at nn D2 5(77)1 EE (D VOivoj 
i=l j=l 

nn 

c 17 (p (Dvoi 1 77) 
i=l 

al7i 

Similar forms of this equation have been proposed by Cao et al. [26], Colucci et 

al. [16] as well as Jones and Navarro-Martinez [351. 

4.2.5 Conditional Expectation 

The first statistical moment, also referred to as the mean or expectation , Q, of a 

random variable 0 with p. d. f. P(, q), where 71 is the sample or phase space of that 

random variable is defined as: 

Q=j 
+00 

77 P(, q)di7. 

For a system involving multiple random variables, the conditional first moment, 

or the conditional mean of one of these random variables, conditioned on the 

remaining variables is often of interest. 

To illustrate this concept, consider the system of n+1 random variables q5 = 

(Y, ý) = (Y, ý1, ..., The sample or phase space of these random variables will 

be denoted by (b = (y,, q) = (y, 711, ---'77n)- In that case the joint p. d. f. of all 

random variables, P(1)) = P(y, 77), fully describes the state of the system. If the 

conditional expectation or conditional mean, Q= (Y Iý= 77), of the random 
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variable Y, is of interest, equation (4.11) can be straightforwardly be generalised 

to this multi dimensional case as: 

--L y P(y,, q) dy. (4.12) 
P(77) 

1 

The idea of the conditional mean of a random variable together Nvith the transport 

equation for a joint p. d. f. of multiple random variables (4.10) and the fine-grained 

p. d. f., equation (4.2.2), provides the framework necessary to derive the conditional 

moment closure equations for large eddy simulation. 

The CMC equations provide a strong reduction of the dimensionality of the sys- 

tem, since chemical quantities are now only a function of space, time and the 

chosen conditioning variables, 4+N, with N. denoting the number of condition- 

ing variables. Recall that equation (4.10) is of dimensionality 4+N, where N 

denotes the number of chemical species in the system. 

4.3 The Conditional Moment Closure Equations 

Following the idea presented in the previous section the conditional moment clo- 

sure equations for large eddy simulation can be derived as shown in great detail 

in Navarro-Martinez et al. [55]. 

4.3.1 The Singly Conditional Moment Closure Equation 

If only one conserved scalar is considered as conditioning variable and usual as- 

sumptions regarding high Reynolds number flows are employed, the singly condi- 
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tioned moment closure equations as derived and presented by Klimenko and Bilger 

[441 and derived for the LES context by Navarro-Martinez et al. [551. The evolu- 

tion of the density weighted conditional mean, Qj = (Yj 1 71) = (pYj 1 77) / (fi 1 71), of 

a reactive scalar Yj conditioned on a conserved scalar with sample space variable 

71 reads: 

aQi a2Q, 
+ (u VQi = (wi 177) + 2(X 

1 71) + e,,, (4.13) 

with X= 2D JVý12 
and ey defined as 

ey =v- 

[(P 1 77) 
((U I 77)(Yi IW (Uyi 1 77)) 

Pol)] 
(4.14) 

(p lq)p(, q) 

This term describes the influence of fluctuations about the conditional mean. Usu- 

ally subgrid contributions in LES are modelled by gradient transport approaches 

and that practice is applied for this term 

ey = -V - ((Dt I ? I)VQi). 

4.3.2 The Doubly Conditioned Moment Closure Equation 

For the case of local extinction and reignition a progress variable should be taken 

into account. In this case the evolution of the doubly conditioned mean, Qj = 
(Yj 1 77, () of a reactive scalar Yj, conditioned on a conserved scalar ý and a reactive 

scalar c, with sample space variables 77 and C respectively, is given by Kronenburg 
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[45) and reads: 

(p I q, ýýQi + (pulq, ()-VQi=(wilq, ()-(wrl? 7, ()'Q' (4.16) at ac 
12 a2 Q, 

* (px 1 71, 
ý--Q' 

+ (pD VcVc I q, () 2 arl 2 9(2 

*2 (pD V6 Vc (92Q' 
+ eq+ e. arla( 

with 

eq -ý (V - (pDiVQi) + pDjVý -V 
aQi + pDiVc -V 

aQ. (4.17) 
aq ac 

+V- (p(Di - Dý)Vý)22-+ V- (p(Di - a)Vc)"Q' 171, C), 
aq ac 

ey = -(P 
ay" 

+ PUVY" -V- (pDiVY") 177, C). 
at 

Here, Y" denotes the fluctuations about the conditional mean. These equations 

can be simplified for unity Lewis number cases, where Di = Dý = a. An order 

of magnitude estimation suggests that ey can often be neglected as practised by 

Kronenburg [45] for DNS of homogeneous, decaying turbulence. In the context 

of the present work these equations are presented for reference and to highlight 

the main differences and common features of the singly and double conditional 

moment closure equations. For the use of the doubly conditioned moment closure 

equations, closure of the dissipation rates involving gradients of the progress vari- 

able, c, will not be straightforward and is the main problem for the solution of 

these equations. 
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4.4 The Conserved Scalar Subgrid Scale p. d. f. 

The solution of equation (4.13) provides the conditional moments of chemical 

quantities. Unconditional values are then given by the convolution of the condi- 

tional moments with the density weighted subgrid scale p. d. f. of mixture fraction, 

P(77), as: 

Qj P(77) d7j. (4.18) 

To obtain P(71) it is possible to seek a numerical solution to the subgrid scale 

p. d. f. transport equation (4.10) for a conserved scalar as sole random variable. 

However, due to the computational cost of this approach and the notion that in 

the LES context variance should be rather small, the p. d. f. is often approximated 

by a, 6-function. It has been shown that this is a reasonably good approximation 

to the p. d. f. [34,17]. 

The 6-p. d. f. is given by [17]: 

77 a-I (i 
- 77)11-11 

(4.19) 
fl 7a-1 (1 

- -y)b-1 d-y' 

with 

(4.20) 

(a/ý) -a. (4.21) 

A subtlety worth mentioning in this context is the somewhat counter-intuitive 

equation to determine the unconditional density. Since the p. d. f. is density 
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weighted, unconditional density is obtained as: 

11 
7=11P (77) d77. (4.22) 
p '7=0 (p 1 77) 

For an explanation of this relation, the reader is referred to Appendix A. 

4.4.1 Subgrid Scale Modelling 

The Conserved Scalar Variance 

The 6-function is determined by its first two statistical moments. The mean is 

given by the solution of equation (3.6). The variance is a characteristic quantity, 

it determines the structure of the conserved scalar field and has to be accounted 

for by a subgrid scale model. A lot of work has been and still is being devoted to 

devise subgrid scale models for large eddy simulation. In analogy to Smagorinsky's 

[691 model for the subgrid scale stresses Branley and Jones [6) devised a model for 

the subgrid scale variance of a conserved scalar that reads: 

CýA21Vý12. (4.23) 

Pierce and Moin [581 proposed a dynamic procedure to obtain the coefficient Ct 

but that method has not been adopted in the present Nvork. Instead a constant 

value of Cý is used. For the present Nvork, it Nvas taken to be Cý = 0.09 as suggested 

by Navarro-Martinez et al. [55]. 
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The Conserved Scalar Dissipation Rate 

The filtered scalar dissipation rate, 5ý = 2DJVý12 can be split into the resolved, 

X, e, = 2DJVýj 2, and the residual or subgrid scale part, X., g,, which requires mod- 

elling. Following Pierce and Moin [581 this contribution is taken to be 

such that 

-2 lit -2 
Xsgs ý 2DtJVýj =2- JVýj (4.24) 

A sct 

Xres + Xsgs ý2 
(D 

+ ýlt I Výl 2 (4.25) 
psct) 

4.5 Closures 

The conditional moment closure equations (4.13,4.16) involve conditional quan- 

tities like the conditionally filtered velocity or scalar dissipation rate that are 

unclosed. Modelling these quantities poses serious difficulties in the context of 

RANS simulations, where conditional quantities have to be approximated based 

on only two parameters, the mean and the variance. Since in LES-CMC it is com- 

mon practise to solve the CMC equations for much larger control volumes than 

unconditional quantities, such as velocities and scalars, it is possible to derive 

a straightforward model for conditional quantities, which involves little a priori 

knowledge or assumptions. 

The basic idea is expressed mathematically as follows: 

(4.26) 

62 



As will be outlined in section 4.6.1, every CMC cell volume coincides with several 

hundred LES cells. That means several hundred values of the Favre averaged 

quantity are available within this volume. This offers a straightforward way to 

model conditional quantities. With the assumption of local homogeneity within 

one CMC control volume, these terms are simply approximated as the conditional 

average of the LES quantity. 

E(Cv. 
c cvcNfc) A (ri-A77: ý ý(X) < ri+A, 7) 

ý(X) 

(0 1 77) = EWv. 
c cvcNfc) A (ri-A77: ý ý(X) < n+Ari) 

1 
(4.27) 

This method has proven successful in a LES-CMC computation of Sandia flame D 

[55]. However, it has to be stressed that in order for this model to be advantageous 

over others, it needs to be made sure that a sufficiently large part of conserved 

scalar space is covered by the respective CMC control volumes. This is to ensure 

that samples exist for the most part of conserved scalar space. Otherwise the mod- 

elling is not straightforward at those points in mixture fraction space. Without 

information from the flow field, assumptions about the functional form of the con- 

ditional quantity have to be employed. Whenever this was the case in the present 

work, linear interpolation was used to provide a non-zero value for for the 

entire range of 0<ý<1. Since those occurrences are avoided where possible, 

this only occurred on the rich side of conditional quantities far downstream, since 

the conserved scalar diffuses, which causes the maximum possible value for this 

conserved scalar to decrease below ý=1 with increasing downstream distance. 
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4.6 Numerical Solution of the CMC Equations 

The set of equations consisting of the singly conditioned moment closure equation 

(4.13), formulated for all chemical species in the system and enthalpy, cannot be 

solved analytically. Therefore a numerical solution at discrete points in time and 

space is sought. 

4.6.1 The Computational Mesh 

Since the conditional moment closure equations require the resolution of an addi- 

tional dimension that represents conserved scalar space, the computational costs 

of and the memory requirements for solving these equations are high. 

However, since conditional moments of reactive quantities are expected to vary less 

rapidly as unconditional quantities, Navarro-Martinez et al. [55] argued that the 

CMC equations can be solved on a much coarser mesh than that of unconditional 

quantities like velocity or the conserved scalar. This procedure implicitly assumes 
homogeneity of conditional moments in the respective control volumes, which 

seems reasonable. This procedure has proven to work well for the LES-CMC 

simulation of piloted jet flames [55] and is adopted for the present work. Figure 

4.1 illustrates the mesh arrangement, where the control volumes for the conditional 

moments contain up to hundreds of LES control volumes. This mesh design makes 

the modelling of conditional quantities as described in Section 4.5 possible. 
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Figure 4.1: Mesh arrangement 

4.6.2 Boundary Conditions 

For the present study of piloted jet flames three points in mixture fraction space 

for reactive quantities are specified by the fuel composition at ý=1, the oxi- 

dizer composition at ý=0 and the pilot composition at ý=0.27. Therefore, 

a triangular profile is constructed and applied as boundary condition for condi- 

tional moments at the inflow plane. All other boundaries are treated as Neumann 

boundaries, hence 
aQ 

=0 (4.28) 
(9Xnormat 

113ounclary 

plane 

is enforced. 

4.6.3 Discretization 

The convective term in equation (4.13) is discretized with a standard central 

difference scheme and treated explicitly. 
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The model for term (4.14), equation (4.15), is discretized by a standard finite 

difference, second derivative approximation. This term is treated explicitly as 

well. 

Diffusion in scalar space is equally discretized by a three-point, finite difference, 

second derivative approximation. This term is the only transport term which 

is treated implicitly. It yields a three point stencil, thus a tridiagonal matrix. 

This makes it possible to use for the solution of the linear system the Thomas or 

tridiagonal matrix algorithm (TDMA), which is a direct solution method and is 

extremely efficient and scalable. 

Details of all the mentioned discretization schemes and the TDMA can be found 

in standard textbooks such as Ferziger and Peric [24). All schemes chosen are of 

second order accuracy. 

4.6.4 Solution Procedure 

The numerical solution of equation (4.13) is challenging since it involves the chem- 

ical source term which causes the system of equations to be stiff and poses un- 

acceptable constraints on the possible time step size if treated in the simplest, 

explicit manner. Additionally, it is desireable to achieve a certain degree of mod- 

ularity in the solver, so that independent changes of the numerical treatment of 

a single term can be implemented without the necessity to review the remaining 

parts, for which a satisfactory solution might be at hand. 

For these reasons, the method of fractional steps has been used to advance the 

numerical solution of equation (4.13) in time. This method was developed by 
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Yanenko [82] and has found widespread use as in Kim and Moin [37]. 

The Method of R-actional Steps 

To introduce the method of fractional steps, consider the conditional moment 

closure equation (4.13), written in terms of numerical operators. 

OQ 
at = W(Q) + T(Q), (4.29) 

where W denotes the operator accounting for the chemical source of conditional 

moments, and T subsumes all remaining transport terms. The entire equation can 

then be split into the various contributions of different physical processes, so that 

they can be integrated individually. In the present case, the operator splitting 

method proposed by Strang [71], often referred to as Strang-splitting, is used, 

which involves the following steps: 

Step 1: 

Step 2: 

Step 3: 

Q* Q, T(Q') (4.30) 
(lT2- At) 

Q** - Q* 
yt-- ý W(Q*) (4.31) 

, ()t+At - f)** 

k. L/ 'r, "&J 
= (4.32) 

This sequence completes the advancement in time. This method, as originally 

proposed by Strang, is of second order accuracy in time. However, his analysis did 
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not include a chemical reaction operator and was concerned with a pure advection 

equation in two spatial dimensions. Carrayrou et al. [91 consider very simple 

reaction models and their implications on the errors of the numerical solution of 

reactive transport equations such as the CMC equations. 

4.6.5 Implicit Integration of the Chemical Source Term 

The stiffness of the equations describing chemical kinetics makes it necessary to 

treat the chemical source term in the conditional moment closure equations with 

care. A simple explicit integration leads to impractically small times steps to 

ensure stability. Therefore a more sophisticated method which utilises a New- 

ton linearisation of the chemical source term is used for the integration. The 

mathematical form of this method will be outlined below. 

A solution is sought for the following differential equation describing a chemical 

system of i=1, 
..., n species and m elementary reactions 

ayi 
(4.33) 

at 

The chemical source term wi of chemical species i as function of the composition 

vector Yj, pressure p and temperature T, can be expanded in a Taylor series in 
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the following Nvay: 

wi (yj, T, P) = wi (yj, o, To, po) 

+ awi Ayj + 09'Wi (Ayj)' 
(gy2 ayj j 2! 

(9wi AT + 
aw' 

Ap 
6rT OP 

(4.34) 

Terminating the series after the linear term and discarding influences of varying 

temperature T and pressure p comprises a linearised form of this equation, giving: 

wi(yj) = wi(yj, o) + awi A yj ayj 
(4.35) 

Considering Arrhenius kinetics, an irreversible reaction involving 1 species being 

converted, the rate of reaction of species i can be expressed as 

1-1 
wi = k(T) - Yic' -E Yjcj (4.36) 

j=l 

Given this, the Jacobian -9' is readily evaluated analytically as oyj 

(9w, 
= k(T) - Cj . Y. ci-i Y Ck 

a3Ek 
(4.37) 

k=l 

Discretizing equation 4.33 and introducing equation 4.35 expanded about to = t*, 

higher order terms 

69 



with V being the last intermediate time level leads to 

yt+At 
- 

yt t. 
ii i= 

awi 
+At 

- 
yt*) 

At wi(yt*) + Dyj 
I 

wit j 

t* 

yt+At - yt (9wi +At - yt*) At 
ii= wi(yt*) At + ayj 

ý Wit j 
yt+At - yt = wi(yt*) At 

awi (Yt+At - Yt*) At + 49wi + oyi ii ayj 
(Ayi) 

[34i 
At 

awi 
yt+At = wi(yt*) At 

Dyil i 

owi ýt awi it* 
t. Yt 

ayj (Ayi) 
joi 

At ayi yi +i (4.38) 

where the coefficients for the linearised system of the form Ax =b can easily be 

identified. 

That constitutes a fully implicit integration of the form 

oyi 
= Wý+At Ot 1 

(4.39) 

since for the converged solution Y"'ý` - Y` holds, and the difference Y"'ý` Y'* i-jj-j 

vanishes. This leaves the Newton linearisation as a numerical construct to improve 

stability of the integration. 

For an interpretation of this procedure it is more convenient to consider the inte- 

gral form of equation (4.33). 

t+At ay t+A 
i dt = Yit+A' - Yit = Wi(yt) + 

awi 
dY(t) dt (4.40) 

t at 
it i 

ayj 
An explicit integration of this equation, Nvith wi = wi(Y') would assume the 
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rate of reaction to be constant even though the species mass fractions Y might 

vary considerably. Given the highly nonlinear nature of chemical kinetics, explicit 

integration is unstable and therefore useless for practical purposes. By implicit 

integration with the present method, rates of reaction are still assumed constant 

within one time step but stability of the integration is greatly improved. The 

method and a graphical interpretation of the integral equation (4.40) is illustrated 

in figure 4.2. 

Wi = 

11 
Figure 4.2: Source term integration 
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Chapter5 

Extended Conditional Moment 

Closure 

Doubly conditional moment closure provides a mathematically sound framework 

for scenarios where a single conditioning variable might not be sufficient to capture 

the main parameters governing the combustion process. In the case of extinction 

and reignition, mixture fraction accounting for the mixing process of fuel and 

oxidizer is not the only characteristic parameter. Fluctuations about the singly 

conditioned mean will be large, and the finite progress of chemical reaction has to 

be considered. Whereas a first order evaluation of the chemical source term based 

on conditional mean quantities might be sufficient for pure diffusion flames, for 

the case of such highly unsteady scenarios like local extinction and reignition, it is 

necessary to quantify the reaction progress and include this additional knowledge 

in the approximation of the source term. The reaction progress can be quanti- 

fied by considering a suitably chosen progress variable. This progress variable 

parameterises the transition of a mixture of fixed mixture fraction, or equivalence 

ratio respectively, from mixed reactants at ambient temperature to products at 

the specific adiabatic flame or equilibrium temperature. 
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5.1 Extended Source Term Closure 

The aim of the extended conditional moment closure method is to approximate 

the effect of double conditioning on the chemical source term in equation (4.13). 

It is obvious from equation (2.24) that temperature, sensible enthalpy, or therefore 

any other progress variable parameterising the transition from mixed oxidant and 

reactants at ambient conditions to chemical equilibrium, has a strongly nonlinear 

influence on the rate of reaction. Therefore, taking into account variations in 

conditional temperature should improve chemistry predictions for cases with local 

extinction and reignition events. 

For this, doubly conditioned moments of the chemical species of the system have 

to be approximated. The present work uses a precomputed, doubly conditioned 

reference field, Qd, O(n, (), where superscript d denotes double conditioning and 'q 

and C are the sample space variables of mixture fraction and progress variable, 

respectively. Section 5.2 elaborates on the choice of progress variable for the 

present work. Section 5.3 discusses issues and the approximation of the conditional 

p. d. f. and section 5.4 describes the construction of the reference field Qd, O(, q, (). 

The reference field Qd, O(n, () provides an educated guess for the functional de- 

pendence of conditional moments on a progress variable but is not necessarily 

consistent with the instantaneous, local, singly conditioned moments stemming 

from the solution of equation (4.13). The joint probability density function of 

mixture fraction and progress variable, P(q, (), can be decomposed according to 

Bayes' theorem 
P(q, 0= P(, q) P(( 1 77). 
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With this p. d. f. given, doubly conditioned moments, Qd(_,, t' 71, (), are related to 

singly conditioned moments, Q'(x, t, 77), and have to satisfy the following condi- 

tion: 

Q, (x, t, ri) =£ Qd(X, t' 11, () P« 1 g) d(. (5.2) 

In the proposed method we seek an estimation for these doubly conditioned mo- 

ments Qd by a reference field Qd, ref for which the constructed reference field 

Qd-O provides the functional shape. In order to ensure consistency as defined by 

equation (5.2), the constructed reference field is scaled, such that this relation is 

satisfied. The scaled reference field, Qd, ref (X, t', ý' (), which is used to calculate 

the doubly conditioned chemical source term, is computed as 

Qd, ref (X, t, n, () = 9(X ) t, n) . Qd, O (77, (). (5.3) 

The scaling factor g(x, t, q) enforces that equation (5.2) holds and is obtained 

from 

g (X, t, 71) = 
fc 1 

Q, (X, t, 77) 
1 71) d(' 

(5.4) 
=0 

Qd, 0(77, () p(( 

where Q'(x, t,, q) denotes the current solution of the standard CMC equations. 

Based on the scaled reference field, Qd, ref (X, t' 71, (), the doubly conditioned chem- 

ical source term can be calculated as 

W, (qd, ref (., t, 77, (), P, T), (5.5) 

via 
rNN I/ k k, 

Vý, k 
Wi = 

E(Vilk 
- Vi, k) k-f 11 C, ". b 

11 C3 (5.6) 
k=l 

I 

j=l j=l 

I 

74 



where Qd, ref (X, t' 77, () provides the concentrations Ci. The thermodynamical 

state of the system is specified by the composition, the pressure and the en- 

thalpy. The temperature T is then determined by an iterative procedure, where 

the temperature is sought, which, for the composition given byQd, ref(X, t' 71 , 

yields the enthalpy given by 

(h, - h, )+E Qd, ref (X, t, 77, () - h' i. (5.7) 
, max min 

The temperature influences the chemical source term through the Arrhenius re- 

action rate constant 

-R- k= BT'e-nT. (5.8) 

Subsequently the doubly conditioned source term is integrated in progress variable 

direction to yield the singly conditioned source term, which appears in the CMC 

equation (4.13). 
I 

(wi 1 77) = 
fc=o 

(wi 1 77, () P(( 1 77) d( (5.9) 

The above flow chart, figure 5.1, illustrates and summarises the method and the 

sequence of computations. 

5.2 The Progress Variable 

Many choices are plausible for a progress variable. The most obvious is temper- 

ature which has been used in a number of studies [10,60,64). Others choose a 

linear combination of certain species [25,20,78]. These studies use the sum of 

75 



retrieve (h, I q) from 
current CMC solution 

I normalize to get (c I q), eq. (5.15) 1 

solve for conditional sensible 
enthalpy variance G= (h"' 

., 
1 77) 

I 
normalize to get (c /12 1 

-q), eq (5.28) 1 

invoke P-p. d. f. assumption to get conditional p. d. f. 
P (( 1 77) =f 

((C 1 77), (C"2 1 77)) 

I 

compute scaling factor g(o, t) 71), eq. (5.4) 

1 

scale reference fields to get Qd, ref (X, t, 77, (), eq. (5.3) 

1 

compute doubly conditioned chemical source term, eq. (5.5) 
(Wi 177,0 

1 

integrate doubly conditioned source term over progress 
variable space, weighted by conditional p. d. f., eq. (5.9) 

(wi I q) f (wi 71, () P(( 1 77) d( 

advance CMC equations with singly conditioned source term 
(Wi 1 71) 

Figure 5.1: Flow chart of CMCe methodology 
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C02 and CO mass fractions to ensure a monotonous parameterisation of progress 

variable space. For the present work sensible enthalpy was chosen as progress 

variable. 

Enthalpy of a multicomponent mixture comprises two contributions. On one 

hand the enthalpy of formation; the enthalpy required to form the species of 

the mixture from their elements at standard conditions. Standard condition is 

usually accepted as T' = 25'C and p' =1 atm = 101.325 kPa = 1.01325 bar. 

On the other hand there is sensible enthalpy, which is the amount of enthalpy 

that is needed to heat the mixture from standard temperature, T', to the actual 

temperature encountered, T. 

h(T, p) hf (To, p) + cp dT (5.10) 
TO 

Enthalpy of formation at standard condition " ------ 
sensible enthalpy 

For the present Nvork, sensible enthalpy, h, as defined by Eq. (5.10) and calculated 

according to Eq. (5.11) is used. 

N 

h, = h- EYj h'f, i 
i=l 

Kronenburg [451 argues, that this is a good choice because it yields a straight- 

forward calculation of the progress variable source term. The calculation of the 

source term for the case of temperature as progress variable would be more difficult 

because of temperature dependence of the specific heat. 

If volume forces, pressure fluctuations and shear stresses are negligible, and unity 

Lewis number is assumed, which is standard practice, the sensible enthalpy source 
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term is given by 
N 

Ohý = -Ewi h7i+qR- (5.12) 

Heat release goes along with the system approaching or retreating from chemical 

equilibrium. Therefore sensible enthalpy provides a monotonous and continuous 

parameterisation of the reaction. 

The extended CMC methodology solely focuses on the closure of the chemical 

source term. Mixture fraction and sensible enthalpy are identified to be the two 

parameters with which fluctuations of the source term can be associated. To 

capture the effect of varying sensible enthalpy, representing a non-zero probability 

of states of reaction progress from unburnt to fully burnt, this probability has to 

specified. 

5.3 The Conditional p. d. E 

Since the dependence of the chemical source term on mixture fraction and progress 

variable will be considered, the joint p. d. f., P(71, (), of those two parameters has 

to be approximated. Invoking Bayes' theorem, a joint p. d. f. can be expressed as 

the product of a the marginal p. d. f. of one variable, P(71), and the conditional 

p. d. f., P(( I q), of the other. 

P(77,0 = P(71) P(( I ? 1)- (5.13) 

In this way, both terms on the right hand side can be treated separately. The 

marginal p. d. f. of mixture fraction, P(71), is approximated as shown in section 
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4.4. 

For the conditional p. d. f., P(( 1 77), Vervisch et al. [78] have shown that, with the 

mean and variance (the first and second statistical moment of a p. d. f. ) known, a, 3- 

function is a good approximation, as long as the progress variable is normalized. 

This is to ensure that for every point in mixture fraction space, the progress 

variable is allowed to vary between a local minimum and a locally achievable 

maximum. This represents a stretching of progress variable space, in order to 

cover only accessible regions of mixture fraction-progress variable space. 

-0 

Iv 

8 

6 

.04 
2 
IL 2 

n 
0 0.2 0.4 0.6 0.8 100.2 0.4 0.6 0.8 

00 

0 

-D c' 
. c2 
0 
Q-i 

(1 

actual p. d. f. 

il=0.5 
D-p. d. f. 

0 ýctual p. d. f. 
7 P-p. d. f. 

il=0.75 6 
5 
4 

ca 3 
0 2 

1 

0 0.2 0.4 0.6 0.8 100.2 0.4 0.6 0.8 1 
00 

Figure 5.2: Assessment of the validity of the 6-p. d. f. assumption for the condi- 
tional p. d. f. of the progress variable. 

To stress the validity of this approach, figure 5.2 shows a test of the P-p. d. f. 

assumption, based on the data from Sandia flame E. Temperature data was nor- 
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malized by the maximum value for a specific mixture fraction value, T,,,,,,, and 

the minimum temperature of the coflow, T,,, i,, = 291K, 

T-T,,, i,, 
Tmax 

- 
Tmin 2 

where 0 denotes normalized temperature. 

The conditional mean and variance for that point in mixture fraction space Nvas 

computed and based on those values the 6-p. d. f. Nvas obtained. 

It can be seen that with the correct prediction of conditional mean and variance 

as well as a suitable normalization, the 6-p. d. f is indeed a good approximation 

to the true conditional probability density function. 

5.3.1 The Conditional Mean of the Progress Variable 

At any given value of mixture fraction, or equivalence ratio respectively, there is 

only a finite amount of chemically bound energy available to be released through 

chemical reaction. The adiabatic flame temperature, or equilibrium temperature 

is a function of mixture fraction, and temperature above those will generally not 

be encountered in absence of heat sources. 

For the present study, sensible enthalpy is therefore normalized as 

(11" 1 
(5.15) 
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in order to invoke the 6-p. d. f. assumption for the conditional p. d. f., with 

N 
[yi, o + 77'(Yi, F - Yi, o]) - h', f 

and It ...... (q) taken from the solution of a flamelet calculation with scalar dissi- 

pation rate of 201 at stoichiometric and an error-function dependence on mixture 8 
fraction. 

With the conditional mean, (c I q), given by equation (5.15), only the conditional 

variance of the progress variable has to be approximated to specify aO-function 

as model for the conditional p. d. f.. 

5.3.2 The Conditional Variance of the Progress Variable 

Modelling approaches 

To estimate the conditional variance of the progress variable, current practice in 

LES suggests a few straightforward ideas. 

Firstly, the well established model for the variance of a conserved scalar was tested 

for this case, 

h"'2 = Ch. A'lVh, l 
3 

as Nvell as the formulation taking into account the source correlation, as suggested 

by Pierce and Moin [58]: 

A2 I Výs 12 h'O = Cl Ch. + w" h"I Iý1 (5.18) 
s h, s)- 

81 



Also, in a further attempt, the unconditional variance equation Nvas solved. 

Op h1,1 2 
+V- pii h ,2=V- pD, ff VV-P Xh., sys + 2p w" h" + 2P Dt I Vh, 12, (5.19) 

t3Sh, a 

where D, ff denotes an effective diffusivity, obtained as D, ff = 
Dmolecular + Dt. 

After obtaining those variances, they were conditioned as described in section 4.5, 

to yield conditional variances. 

However, it was not possible to obtain reasonable results in this way. The peak of 

conditional variances of temperature around stoichiometric, which can be observed 

in the experiments could never be reproduced. In fact, conditional variances 

predicted by any of the above methods showed unnaturally strong underprediction 

of conditional variances around stoichiometric. 

It was found that a fundamental flaw in the practice described above, was the 

reason behind this originally puzzling behaviour. Firstly, unconditional and con- 

ditional variances are fundamentally different quantities. The latter is a measure 

of fluctuations about the conditional mean; therefore modelling of this quantity 

should not be based solely on unconditional quantities, since they contain the 

fluctuations of the conditioning variable. The main issue however is the following. 

If the conditional variance, (h" 2 177), of a conditional quantity like sensible en- S 
thalpy, (it, 177), in the present formulation is sought, it has to be kept in mind, 

that the unconditional quantity h, is not independent, but a function of the con- 

ditioning variable; in the present case ý. The dependence is formally given by 

equation (4.18). If the conditional variance is now attempted to be modelled 

based on the gradients of the unconditional h,, -field a simple analysis highlights 
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the problems. 

Considering the most basic model, equation (5.17), and introducting the func- 

tional dependence of h, on ý and ýý, the model reads: 

2-2= Ch, A21Vf(ý 
I h"2 = Ch. A lVh, l 12. (5.20) 

s 

Applying the chain rule of differentiation and assuming a narrow mixture fraction 

p. d. f., the model can be written as: 

2 
C, A2 I Vf 12 ; Zý Ch. A2 V 

h 
l(all d 

(5.21) 

Considering now a typical profile of conditional temperature, which is strongly 

linked to conditional sensible enthalpy, with the maximum temperature close to 

the stoichiometric mixture and decreasing temperatures towards both limits of 

conserved scalar space; yielding the pure fuel or pure oxidizer temperature re- 

spectively, the problem is evident. Because 

, 9f (77) 
=0 (5.22) 

aq 

at a maximum of any function f (77),. this entire term (5.2 1) will approach zero 

around the physically crucial area of the stoichiometric mixture in conserved scalar 

space. Due to the fact that this term is expected to be the main source of vari- 

ance, referred to as the 'production'-term by many authors, it is not surprising 

that conditional variance is underpredicted around stoichiometric by the above 

procedures. 
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It shall be noted that the source correlation term W" h" is no solution to the h, s 

problem, since it was found to be mostly negative or of insignificant magnitude 

compared with the previously discussed term. Furthermore, none of the other 

terms in the unconditional variance transport equation (5.19) are variance pro- 

ducing. 

In another attempt, sensible enthalpy was treated as an independent variable and 

the unconditional sensible enthalpy transport equation 

at +V- pii hý, =V- pD, ff V h, + Zh., (5.23) 

along with the unconditional sensible enthalpy variance equation (5.19) was solved. 

The heat release rate, Zh,, appearing in this equation was obtained from the 

doubly conditioned heat release rate and the integration with the marginal mixture 

fraction p. d. f. and the conditional p. d. f. of normalized sensible enthalpy 

10h, `I 
J(Wh. 

I (177) P(71) P(71 I () di7 d(. (5.24) 

The sensible enthalpy mean and variance were conditionally averaged, following 

equation (4.27), and subsequently used to determine the conditional p. d. f. invok- 

ing the, 6-p. d. f. assumption. 

As with the previously discussed methods, it did not lead to physically useful 

predictions. The heat release obtained in this way led to a globally extinguished 

flame. Since for the case of sensible enthalpy being an independent variable, the 

doubly conditioned moment closure equations describe the chemical system, it was 

also attempted to incorporate the term -(w,, I through a rather crude OC 
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approximation of the form 

(W. aQi 
Pzý (W. 1 77) 

Qi - Qi, mixing (5.25) 
a( (CI77)-O 

where Qi, tnixin_q denotes the boundary condition of doubly conditioned moments, 

which is assumed to be given by pure mixing of fuel and oxidizer according to the 

specific mixture fraction value 

Qi, 
mixing ý (yi, 

tnixing 
1 77) = (5.26) 

Yi, Oxidizer + 77 * (yi, Fuel - Yi, Oxidizer)- 

This method also proved to be of no practical use. Again the heat release obtained 

in this case led to a globally extinguished flame. Therefore, the following approach 

was adopted. 

Current Model 

Due to the problems described in the previous section, the following model yielded 

the most useful predictions. 

Sensible enthalpy was not treated as an independent variable, but remained a 

function of mixture fraction. To approximate the conditional variance of the 

progress variable, the following equation for the conditional variance of sensible 

enthalpy, 0= (h" 2 is solved [44] 
S 

ac ý a2G + VG = (Dvývý ly) + 2(w" h" 177)+ (5.27) 
at 

(u 71) 2 h. s 

- 92 Qh 1a ic (x"h" 17) wv*s - 2(DVh, Vhs 171) - 2(u"h" lq)VQh, + ýa 071 2s 0(77) aq 
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In order to invoke a 3-p. d. f. the variance has to be normalized as Nvell. This is 

done in the following way 

71) =G (5.28) (h,, 
Max 

(? I)- h,,,, i,, (71))2 

Several of the terms of the r. h. s. of this transport equation have to be modelled. 

For the employed closure of the first term on the r. h. s. the reader is referred to 

chapter 4. 

The Source-Scalar Correlation 

Strictly, the correlation of the scalar source Wh, and the scalar h,, the second term 

on the r. h. s., does not need modelling. The present extension to the CMC method, 

with the presumed conditional p. d. f. along with the doubly conditional source 

term from equation (5.5), provides a consistent way to compute the correlation 

directly: 

h. h" 1 71) W" h" P(( I 71)d(, (5.29) M' 

3 h, s 

with 

Wh", = (Wh. 1 77, () - (Wh. 1 77) (5.30) 

and 

71)). (5.31) 

Singly conditional quantities like (Wh, I q) are obtained via weighting with the 

conditional p. d. f. and integration in progress variable space as exemplified in 

equation (5.9). 
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The Scalar Dissipation-Scalar Correlation 

The third term on the r. h. s. of equation (5.27) needs to be modelled. However, 

since there is no direct dependence of sensible enthalpy on scalar dissipation, 

approximating this correlation is not straightforward. 

Scalar dissipation as a parameter appears in most conserved scalar approaches 

to turbulent combustion and the S-shaped curve is a well established outcome. 

The S-shaped curve gives the temperature, usually at stoichiometric, as a function 

of the log of scalar dissipation and has three distinct branches. The uppermost 

branch corresponds to burning flamelets (one dimensional, non-premixed diffusion 

flames) and shows decreasing temperature with increasing scalar dissipation. The 

lowest branch corresponds to an extinguished non-premixed flame, and these two 

are connected by an unstable branch. This unstable branch corresponds to the 

transition or extinction and reignition. Therefore, in this crucial region, there is no 

physical connection between a certain value of scalar dissipation and temperature. 

Because of these uncertainties, a rough estimation to model this term is taken for 

the present Nvork. The sign of this correlation is given from the negative influence 

of increasing scalar dissipation on temperature for non-premixed flames. The 

magnitude is approximated by the product of the root-mean-square of conditional 

scalar dissipation and conditional sensible enthalpy. 

(l/2) 
G(112) (x"hI, Iq) = -(X"2 1 il) (5.32) ZaZ 

Li and Bilger [50) proposed a slightly different model for this term. Their approach 

is formulated in terms of the conditional mean scalar dissipation rate. Since LES- 
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CMC provides a quantification of conditional scalar dissipation rate fluctuations 

due to the large CMC control volumes, the present method takes advantage of this 

fact. It is however, only a first step until further understanding of this correlation 

provides an improved approach. 

This term turns out týbe of particular importance and is included 
I 
in all studies 

where a conditional variance equation is solved, such as Kim et al. [41,40,391, 

Fairweather and Woolley [22] as well as Kronenburg et al. [46] or Mastorakos 

and Bilger [52]. Studies into the behaviour of conditional variance equations 

by Swaminathan and Bilger [72,73] and Kim [38] confirm the importance of 

this term. It shall be stressed however, that most of the published work on 

conditional moment closure and conditional variance equations has been carried 

out with the time-averaged formulation and a RANS flow solver. It is not clear 

whether conclusions drawn under these circumstances can be adopted for the 

space-average LES case. Nevertheless, the fact that trends seem to agree in both 

cases, provides encouragement for the current practice. Further research into the 

differences between RANS-CMC and LES-CMC and implications for modelling is 

welcome. 

Since in the proposed methodology the progress variable is not treated as an 

independent scalar and remains a function of the conserved scalar, the turbulent 

production term, (Ullh" 177)VQh., modelled by a gradient transport assumption 

in the standard Nvay is not sufficient to produce realistic variances, especially 

around stoichiometric, as described in section 5.3.2. It is the scalar dissipation- 

scalar correlation that is the key to a physically meaningful estimation of these 

conditional variances. 
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The Reactive Scalar Dissipation Rate 

The fourth term on the r. h. s. is the rate of dissipation of sensible enthalpy. 

Although a lot of work has been done to model the conserved scalar dissipation 

rate, it is still a matter of controversy how to approximate the dissipation rate of 

a reactive scalar. The influence of the reaction term on the dissipation is not yet 

understood well enough to devise reasonably universal models. However, work is 

being done to gain fundamental understanding of the processes involved . These 

studies investigate the contributions of various terms in a transport equation for 

the reactive scalar dissipation rate for the case of a turbulent premixed flame. 

Swaminathan and Bray [74] propose a model incorporating the effect of flame 

propagation on the reactive scalar dissipation rate. Swarninathan and Grout [751 

propose a similar model and introduce the Damk6hler number to account for flame 

propagation effects. Chakraborty and Swarninathan [12,13] investigate further 

the influence of the Damk6hler number on the reactive scalar dissipation rate. 

These are interesting developments and it will be interesting to study the effect 

of these new approaches for the present work. However, since the present work is 

concerned with a new chemical source term closure, focus is not on reactive scalar 

dissipation rate modelling. Nevertheless, this provides interesting considerations 

for further research. 

For these reasons, as a first step, a simple relation between time scales for con- 

served and reactive scalar mixing is assumed [32,20,471. For the present work, the 

following considerations lead to a simple, one-parameter model for the conditional 

reactive scalar dissipation rate. 
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A time scale for the mixing of the conserved scalar can be defined as: 

61f2 
(5.33) 

Xc 

A conditional time scale, (tC 1 71), is then obtained through conditioning of the 

unconditional values, as described in Section 4.5, assuming spatial homogeneity 

of this time scale. 

Introducing the notation (Xh. I 'q) for the dissipation rate of sensible enthalpy, 

2 (DVh, Vh, a conditional time scale for the reactive scalar can be defined 

as: 
(th, G 

(5.34) 
(Xh. 

Assuming proportionality between these two conditional time scales, 

(th, I ý1) = -Yt (tC I 'q) (5.35) 

with proportionality factor -yt, leads to a model of the form: 

xh. 1, q) =G 
77) 

(5.36) 

Specific values for the constant -yt will be given in chapter 6, where all other param- 

eters are given for the specific experimental configuration. Values for -Yt have been 

obtained by matching the conditional fluctuations of temperature, as observed in 

the experiments. It is acknowledged that this is not a desirable way to model this 

term, but since the focus of this work is the assessment of the presented chemical 

source term closure, it is deemed necessary to ensure the parameters influenc- 

ing the method, such as conditional conserved scalar dissipation and conditional 
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7 

variance of the progress variable, resemble the physically observed parameters as 

closely as possible. This procedure yields values for -yt of the order 0(l), which is 

reassuring and provides confidence that the assumptions made in order to model 

the various terms are not too far from reality. 

The Turbulent Flux 

The fifth term on the r. h. s. describes the production of conditional variance due 

to turbulent flux of sensible enthalpy. For this term a gradient transport model 

for the correlation is employed in physical space which is common practice in 

turbulence modelling and can be found in Ihme and Pitsch [32] 

u""h" = -DtVh,. (5.37) 
3 

The conditional term is approximated in a way that is consistent with modelling 

of other conditional quantities in LES-CMC, as described in section 4.5 

(u"h" 177)VQI,, (-Dt I Vh, 12) 1 q). (5.38) 

The Diffusion of Conditional Variance 

For the diffusion flux of sensible enthalpy variance, a gradient transport model as 

proposed by Kim [38] is employed: 

aG 
JG = CG Xý 1 77) P(q) -, (5.39) 

2 a17 

with the constant CG set to unity. 
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5.4 The Construction of the Reference Field 

As briefly outlined in this chapter's introduction the source term evaluation is 

based on a constructed two-dimensional reference field Qd, O. 

To construct this field, the second conditioning variable has to be mapped from 

sensible enthalpy to normalized sensible enthalpy. Figure 5.3 illustrates how this 

is done. Several steady flamelets are computed, filling the shaded region. Above 

hs 

0 

C=o 

Figure 5.3: Construction of reference field Qd, O 

a certain limit of scalar dissipation rate, a stable solution of the reaction-diffusion 

equation does not exist and the flamelets extinguish. However, due to the partially 

premixed nature of combustion, some chemical conversion will take place in the 

grey region of figure 5.3. To approximate the functional form of the species mass 

fractions at sensible enthalpies and temperatures below (or scalar dissipation rate 

above) the quenching limit, laminar premixed flames at equivalence ratios accord- 
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ing to the value of mixture fraction Nvere computed and scaled to match the value 

of flamelets at the quenching point, as illustrated in Fig. 5.4. For this, the ratio of 

y* 

j(c) (X = 
flamelet 

-- 
3 

Y. (X 
nrernixed 

1.0 

Yfl*amelet 

--Y* 
pren-ýxed 

............. 

Figure 5.4: Scaling procedure 

flamelet and premixed flame mass fractions at the quenching point c* is computed 

as: 

a* 
yi, flamelet (5.40) Yi*, 

premixed 

and reference field Qd, O, below the quenching limit is then constructed as: 

Qd, O(C C*, ý) = (ai - (5.41) < 
[1 

+ Yi, 
premixed 

(C) 
i 

c 

where f is an arbitrary relaxation function yielding a= a* at c= c* and a=1 

at c=0 to ensure smoothness of the fields. In cases where certain flamelet mass 

fractions and laminar premixed flame mass fractions differ heavily at c= c*, a 

linear relaxation might lead to unphysically high values for Q110 at c< c*. In the 
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present case an exponentially decaying function 

(5.42) 

has been used, where b represents a damping factor that controls how quickly 

the reference field converges to the premixed flame solution in the shaded region. 

The factor was taken to be b= 14 as a compromise between the smoothness of 

the reference field and a limited region of deviation from the premixed solution. 

This choice seems justified as the reference field compare reasonably well with the 

experimental doubly conditioned fields as shown in figures 5.5 and 5.6. 

This procedure is applied to all species and this library is the input for our CMCe 

method. Figures 5.5 and 5.6 show the resulting reference fields for some represen- 

tative species, together with the doubly conditioned field obtained from experi- 

mental data at x1D = 7.5 and x1D = 15. It can be seen that the constructed 

reference fields give a rather good approximation to the experimentally observed 

doubly conditioned moments. 

Singly conditional moment closure as described in chapter 4 can be thought of as 

the presented methodology, CMCe, with vanishing variance of sensible entbalpy, 

and therefore a Dirac delta p. d. f.. 
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Chapter6 

Large Eddy Simulation of Piloted 

Jet Flames 

The presented extended conditional moment closure method is tested for its capa- 

bility to improve upon standard LES-CMC predictions and its capability to pre- 

dict local extinction and reignition. The 'International Work-shop on Measurement 

and Computation of Turbulent Nonpremixed Flames' (TNF)[211 was established 

in a worldwide, joint effort of combustion researchers to provide a set of stan- 

dard benchmark flame configurations, such as simple jet, piloted jet, bluff body 

as well as swirl flames. These different configurations were carefully designed to 

exhibit various combustion phenomena of interest, and exhaustive, detailed mea- 

surements were taken of the flow and mixing fields, as well as chemical species and 

temperature. These flames serve as benchmark for the majority of new combus- 

tion modelling techniques that are validated against them and therefore provide 

a means of direct comparison of a variety of modelling strategies. 
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6.1 The Sandia Piloted Jet Burner 

One of the basic flame configurations in the TNF workshop are the piloted jet 

flames, Sandia flames A-F. 

This burner issues a volumetric mixture of 25% methane (CH4) and 75% air into 

the surroundings. Barlow and Frank give an insight into the considerations that 

led to the choice of this composition [11: 

"This mixture significantly reduces the problem of fluorescence inter- 

ference from soot precursors, allowing improved accuracy in the scalar 

measurements. Partial premixing with air also reduces the flame length 

and produces a more robust flame than pure CH4 or nitrogen- diluted 

CH4. Consequently, the flames may be operated at reasonably high 

Reynolds number with little or no local extinction, even with a mod- 

est pilot. The mixing rates are high enough that these flames burn as 

diffusion flames, with a single reaction zone near the stoichiometric 

mixture fraction and no indication of significant premixed reaction in 

the juel-rich CH41air mixtures. 

The jet nozzle has a diameter of D=7.2 mm and is enclosed by a burning pilot. 

The outer diameter of the pilot nozzle is Dpii,, t = 18.2 mm. The pilot operates 

at a mixture fraction value of ýpil& = 0.27. 

This burner is placed inside a windtunnel that provides a low coflow velocity 

ucoflow ý 0.9 m1s. The geometry is unconfined. Figure 6.1 shows a schematic of 

the setup and Table 6.1 summarises the main parameters for all flames simulated 

for this study, flames D-F. 
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C "Oflow , 

Figure 6.1: Pieture of the Sandia piloted jet burner (left), and the corresponding 
schematic (right) 

"81] define a To quantify the level of local extinction anci reigm-lion Xu and Popee i, 

burning index, B. I., which is the ratio of aa scalar suc. 1 as temperature or species 

mass fraction and a reference value of a mildly strained, opposed-flow lam-Lar 

flame 

Trej, 
(6.1) 

where T,,.,, is the reference temperature icor the laminar flame. Th. s reference value 

burning flame. It taken from Xu and Pope [81] - -se. -. Is the state of a fui 
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Jet Pilot Coflow 
1.0 0.27 0.0 

Temperature [ K] 294 1880(± 50) 291 
Bulk velocity [m/sj: 

Flame D 49.6 2) 11.4 0.5) 0.9 0.05) 
Flame E .4 2) 17.1 0.75) 0.9 0.05) 
Flame F_ 199.2 ( 2) 1 22.8 ( 1.0) 1 0.9 (± 0.05) 

Reynolds number: 11 
Flame D 
Flame E 11 33600 
Flame F 44800 

Table 6.1: Specifications for the Sandia D-F flames series 

and has a value of T,, f = 2023K. The burning index aids in comparing levels 

of extinction qualitatively, such that these differences amongst the three flames 

become somewhat more comprehensible. 

This burning index is presented for the piloted jet flames D, E and F in figure 6.2 

to illustrate the distinct levels of local extinction and reignition. The low levels 

of extinction of flame D, represented by high values of the burning index are 

clearly visible. Temperature stays closer to the limit of a weakly strained flame 

throughout the domain. Flame E shows more pronounced extinction, which is 

expected given the increased Reynolds number. Flame F shows the lowest burning 

indices, which is consistent with the highest Reynolds number of the flames series 

and the flame being close to global extinction. 

6.2 Computational parameters 

The presented extended conditional moment closure method is applied to all three 

of the above described flames, D, E and F. Flame E exhibits a good balance of a 
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Figure 6.2: Burning indices for Sandia flames D, E and F 

substantial level of extinction and reignition, retained stability of the flame and 

confidence in the boundary conditions. Some authors [761 have found that flame 

F is close to global extinction and that even relatively small variations of , 20 K 

in the pilot temperature can cause the entire flame to extinguish. Therefore, all 

development was carried out on flame E and calculations of flames D and F show 

the effect of in/decreasing turbulence levels on the predictions. 

All calculations were carried out on a 320 x 96 x 96 grid, stretched in main flow 

as well as the lateral directions. It extends 80 jet diameters in the downstream 

direction. In cross sectional direction it varies between 10 jet diameters at the 

inflow plane and 24 jet diameters at -the outflow plane, accounting for the jet 

spreading in downstream direction. Figure 6.3 gives an impression of the domain. 

Reference calculations with the standard LES-CMC method have been carried 

out to serve as a benchmark for the performance of the extended CMC method. 

The CMC grid consists of 64 xIxI points, where grid refinement has shown no 
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Figure 6.3: Grid used for the present study (only every fourth grid point shown 
for clarity). 

significant improvement of results for both CMC and the extended CMC method. 

Mixture fraction space is resolved by 50 grid nodes. The reference fields for the 

CMCe methodology Nvere approximated by 50 points in mixture fraction space 

and 26 in sensible enthalpy space. 

The chemical mechanism used approximates methane combustion with 48 species 

and 300 elementary reactions and includes NO. chemistry. For reference the 

mechanism is given in appendix B. For details the reader is referred to Meyer 

[53]. 

The calculations were carried out on a 32 node cluster, equipped with AMD 

Opteron 2.2 GHz processors and took 8 days to complete for the CMCe cases and 

5 days for the LES-CMC cases. 
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6.3 Results 

Flame E is the intermediate flame between flame D and flame F. For prediction 

of flame D, which shows moderate extinction and reignition, conserved scalar 

approaches like Eulerian flamelets [621 or LES-CMC [551 provide reasonably accu- 

rate predictions. Flame F is close to global extinction and regarded as the most 

challenging flame of the series. 

6.3.1 Flame E 

For the case of flame E, three calculations with the CMCe methodology were 

carried out. 

Case A 

In the first case, coefficient -yt of the conditional sensible enthalpy variance equa- 

tion (5.36) was determined as equal to 1.75. This was done by matching the 

magnitude of experimentally observed, conditional temperature fluctuations at 

x1D = 7.5. It is appreciated that this is somewhat arbitrary. However, since the 

level of extinction at this location is rather high, as indicated by the low condi- 

tional temperatures observed there, it seemed like a reasonable choice to base this 

study on. 

Case B 

In the second case, coefficient -yt Nva-s kept at 1.75, but the turbulent Schmidt num- 

ber was decreased to Sc = 0.2 to study the effect of increased scalar dissipation. 

Case C 
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For the third case, -yt Nvas determined such as to match the conditional tempera- 

ture fluctuations at x1D = 15, which resulted in generally higher predictions of 

conditional temperature fluctuations. In this case, the turbulent Schmidt number 

Nvas kept equal to the value for the first case, Sc = 0.4. 
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Figure 6.4: Axial velocity mean and r. m. s along the centreline 

Figure 6.4 shows the mean and r. m. s. axial velocity component along the centre- 

line. The mean velocity is well captured in the entire domain and the predictions 

for the r. m. s. velocity are also in reasonable agreement with the experimental 

values. Even close to the nozzle, r. m. s. velocity predictions agree well with the 

experimentally observed values. That is further evidence, that the method for gen- 

erating a correlated quasi turbulent signal as inflow boundary condition, described 

in section 3.4.1, has its merit. It provides a significant improvement over previous 

practice, where random fluctuation where scaled according to experimental inflow 

data, but quickly damped upon entering the domain [42]. 

Figure 6.5 shows the mean and r. m. s. mixture fraction along the centreline. It 

can be seen, that the mean mixture fraction is somewhat underpredicted from 

approximately x1D = 15 on downwards. This might be attributed to the TVD 

scheme used to treat the convective term of scalar transport equations, which is 
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Figure 6.5: Mixture fraction mean and r. m. s. along the centreline 

strongly dissipative, but ensures boundedness. The root mean square mixture 

fraction is well captured after the breakup of the jet has occurred around x1D = 

15, as indicated by the change in curvature of the mean mixture fraction and mean 

velocity profile. The discrepancy of the predicted value of the r. m. s. mixture 

fraction closer to the nozzle x1D <, 15 is easily explained. Since most of these 

points lie within the jet core which is still largely intact in this area, no fluctuations 

of the mixture fraction are expected from a physical point of view. The measured 

fluctuations in that region can be attributed to experimental noise and largely 

discarded. 
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Figure 6.6: Temperature mean and r. m. s. along the centreline 

105 



Figure 6.6 shows the mean and r. m. s. temperature along the centreline. The 

mean temperature is generally overpredicted. This can be attributed in parts 

to the underprediction of mixture fraction and the overprediction of conditional 

temperature. Conditional temperature and the extent to which the present model 

captures local extinction and reignition can be seen in figure 6.9 and a more 

detailed discussion follows where conditional moments are presented. 

Radial profiles of mixture fraction in figure 6.7 show good agreement in the region 

x1D < 15, both for mean and r. m. s.. The jet is predicted somewhat wider than 

what is measured, but this most probably is an effect of the TVD scheme which is 

not able to maintain such steep a gradient and diffuses outwards. At x1D = 7.5 

both shear layers that emanate from the velocity differences between jet and 

pilot, as well as pilot and surroundings, have merged as indicated by the single 

maximum of mixture fraction fluctuations. At x1D = 30 the underprediction of 

mixture fraction around the centreline is consistent with the findings from figure 

6.5. 

Radial profiles of temperature are depicted in figure 6.8. They agree well with 

experimental findings close to the nozzle at x1D = 2, which is not surprising since 

at that location the jet breakup has not yet occurred and the temperature is likely 

to be strongly governed by the inflow conditions, that is the pilot temperature. 

This is also suggested by the lack of discrepancy amongst both standard LES- 

CMC and all parameter variations of CMCe at this location. At x1D = 7.5 

and further downstream, turbulence intensifies and predictions of unconditional 

temperature cannot reproduce the level of extinction seen in the experiment. 

One great benefit of CMC is that conditional quantities are directly being solved 
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Figure 6.7: Mixture fraction mean and r. m. s. at several downstream locations 
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Figure 6.8: Temperature mean and r. m. s. at several downstream location 
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for. Since a lot of the fluctuations of reactive quantities can be attributed to 

fluctuations of the mixture fraction, decoupling these offers additional insight 

in and clarity of the flame structure. Therefore, conditional quantities will be 

presented and discussed for the remainder of this section. 

Figure 6.9 shows conditional temperature predictions as well as the results from 

the solution of the conditional sensible enthalpy transport equation (5.36). It 

can be seen that at x1D =2 the conditional temperature is almost of triangular 

shape, which supports the view that at this location chemistry is still largely 

determined by the inflow conditions. Some heat release is observed, since the 

maximum temperature around stoichiometric is higher than the pilot temperature 

of - 1880K. No significant difference between the different model predictions can 

be seen. However, the trend is the one expected. Standard LES-CMC provides 

the benchmark and predicts the highest temperatures. Case A improves upon 

those, although only moderately. The effect of higher scalar dissipation in Case B 

does not seem to account for the inhibition of combustion compared to a diffusion 

flame at this location. Case C provides a more significant improvement for this 

location, although the conditional sensible enthalpy variance necessary to reduce 

the temperature by that amount exceeds the temperature fluctuations observed 

in the experiment, whereas Cases A and B are of the correct order. 

At x1D = 7.5 the magnitude of temperature fluctuations indicates strong extinc- 

tion and reignition. Cases A and B capture the level of fluctuations well, since the 

model and its main free parameter, yt, have been calibrated at that location. Case 

C overpredicts these by around 150K, which provides significant improvement of 

the conditional temperature. Cases A and B improve LES-CMC by around 100K 

which is good, and shows that the main principle behind the consideration that 
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Figure 6.9: Conditional mean temperature and r. m. s. (from conditional variance 
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led to the CMCe methodology is valid. However, since realistic values for the sen- 

sible enthalpy variance as input for the CMCe methodology do not bridge the gap 

between the models predictions and the experimentally observed temperatures, it 

seems to indicate that other effects than the temperature dependence (expressed 

as dependence on sensible enthalpy in the present formulation of the model) lead 

to the strong extinction and reignition phenomena in this flame. Higher values 

for conditional sensible enthalpy variance, representing an overprediction of con- 

ditional temperature fluctuations of about 150K, lead to very good results for the 

conditional temperature. 

At x1D = 15 predictions of conditional temperature fluctuations are too low for 

Cases A and B and good for Case C. Conditional temperature predictions are 

practically indistinguishable for Cases A and B, which is not surprising since the 

different turbulent Schmidt numbers do not lead to significantly different scalar 

dissipation rates, as seen in figure 6.14. However, they offer a slight improvement 

over LES-CMC. Case C with its realistic prediction of conditional temperature 

fluctuations further improves upon the results of Cases A and B, predominantly 

in the rich part of the flame. That is another indication that the main idea behind 

the model is valid, but not sufficient to explain the level of extinction in this flame. 

Conditional temperatures remain overpredicted by about 150K. 

At x1D = 30 conditional temperature fluctuations are relatively small, of the 

order of 100K. The trends of the parameter variations of CMCe is consistent with 

the other locations and Case C provides the highest and most realistic results. 

Despite that, the CMCe method hardly provides improvement of LES-CMC at 

this location and results resemble a laminar diffusion flame at low strain rate. 
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Figure 6.10: Conditional means of methane and oxygen 
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Results for methane and oxygen are shown in figure 6.10. Conditional concentra- 

tions of methane exhibit the trends seen in the predictions of conditional temper- 

atures, with the most pronounced improvements at x1D = 7.5. However, even at 

this location and for the high sensible enthalpy variance case, Case C, fuel con- 

sumption is still overpredicted, just like at all other downstream locations. The 

general depletion of oxygen is predicted remarkably ivell by CMCe for Case C, 

although it has to be kept in mind, that for x1D =2 and x1D = 7.5, this goes 

along with an overprediction of conditional fluctuations of temperature. Cases 

A and B improve significantly upon LES-CMC results, but cannot reproduce the 

experimental findings at any point in the domain. 

Similar to the two previously discussed species, conditional means of water and 

carbon dioxide behave in the same manner. Figure 6.11 shows that the production 

of water is overpredicted throughout, and differences between LES-CMC and the 

three cases of CMCe are most pronounced at x1D = 7.5, but again, result are not 

satisfactory. In the case of carbon dioxide, Case C yields excellent predictions 

and Cases A and B still perform significantly better than LES-CMC. 

For the hydroxyl radical, shown in figure 6.12, no model is satisfactory. However, it 

can be seen that although CMCe does not account for the full level of extinction 

it is consistently superior to LES-CMC. The same figure shows the results for 

hydrogen, which is equally overpredicted throughout the domain, but improves 

upon LES-CMC significantly and consistently. 

Carbon monoxide and nitric oxide predictions are given in figure 6.13. At x1D =2 

and x1D = 7.5 Case C gives reasonable predictions for carbon monoxide, whereas 

all other model perform poorly. At x1D = 15 all models overpredict the formation 
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Figure 6.11: Conditional means of Nvater and carbon dioxide 
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Figure 6.13: Conditional means of carbon monoxide and nitric oxide 
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of the pollutant, although LES-CMC shows by far the worst results. Further 

downstream at x1D = 30 all models perform equally badly and cannot reproduce 

the low levels of carbon monoxide at this location. Nitric oxide on the other 

hand is rather well predicted until x1D = 15, although some underprediction is 

observed for Case A and C. In contrast to these results, LES-CMC consistently 

overpredicts NO production by a factor of 2-3. This is most probably explained 

by the extreme temperature dependence of nitric oxide producing elementary 

reactions. For that reason it is not surprising, that taking into account even 

slight fluctuations of conditional temperature has a great effect on the production 

rate of this pollutant. At x1D = 30, all three cases of CMCe provide significant 

improvement on the LES-CMC results, but also overpredict the generation of NO. 

The scalar dissipation rate, as shown in figure 6.14 is reasonably Nvell predicted 

by LES-CMC, Nvas well as in Cases A and C. As intended, Case B shows a 

slightly higher scalar dissipation rate, but conditional temperature and conditional 

moments of the species indicate this not to have a strong effect. Thus, dissipation 

is most probably not the mechanism responsible for the extinction in this flame. 
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6.3.2 Flame D 

For the other turbulent flames of this series no variation of the turbulent Schmidt 

number was carried out, but the standard value of Sct = 0.4 has been used as 

suggested in [651. However, two calculations using the CMCe methodology were 

carried out with the two values for -yt, to study the influence of varying temperature 

fluctuations on the performance of the method, given the lower/higher turbulence 

level in flame D/F. 
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Figure 6.15: Axial velocity mean and r. m. s along the centreline 

The mean and r. m. s. axial velocity component is shown in figure 6.15. Excel- 

lent agreement with the experiment can be seen for the mean. The r. m. s. is 

also very well predicted, although the maximum fluctuation levels are somewhat 

underpredicted for the case of LES-CMC. 

The mixture fraction field is also very well predicted, especially in the main area of 

interest, for x1D < 30. Further downstream a slight underprediction is observed, 

possibly due to excessive numerical dissipation. Fluctuation levels are predicted 

reasonably well. The discrepancy of experiment and simulation close to the nozzle, 

is again most likely explained by experimental noise. Far downstream mixture 
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fraction r. m. s. is slightly underpredicted. 
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Figure 6.16: Mixture fraction mean and r. m. s. along the centreline 
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Temperature along the centreline is seen in figure 6.17. It is slightly overpredicted. 

Temperature fluctuations levels are of similar order as the experimental values. 

More insightful however, are the conditional temperatures as given by the different 

models. They will be discussed later in this section. 

Figure 6.18 shows radial profiles of the mixture fraction mean and r. m. s. for the 

relevant downstream locations. Agreement with the measurements is very good, 

both for the predicted mean and fluctuations. The different models result in only 
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Figure 6.18: Mixture fraction mean and r. m. s. at several downstream location 
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minor differences in the prediction of the mixture fraction field. 

Figure 6.19 gives radial temperature profiles. All models perform Nvell, both for 

the mean and r. m. s., but again, assessment of their performance is more straight- 

forward if conditional values are viewed. 

Since flame D exhibits only little local extinction, and LES-CMC and Eulerian 

flamelets have proven to work reasonably well for this flame, strong improvements 

cannot be expected, nor are they needed. Conditional temperatures and condi- 

tional fluctuations are shown in figure 6.20. Close to the nozzle it is practically 

impossible to distinguish between LES-CMC and CMCe, although for the latter 

extremely good estimates for the temperature fluctuations have been taken into 

account by the two CMCe cases. At x1D = 7.5 CMCe can improve upon the 

LES-CMC results and the trend is consistent; the high -ft case provides a slight 

overprediction of conditional temperature fluctuations and lower conditional tem- 

peratures, that match the measurements well. Further downstream at x1D = 15 

all models overpredict the maximum conditional temperature by about 100K and 

only small differences amongst them are seen. At x1D = 30 conditional temper- 

ature fluctuations are so small that the flame resembles a pure diffusion flame. 

Hence, LES-CMC and CMCe are fairly close to the experimentally observed con- 

ditional temperatures, but deviate in the very rich part of the flame by about 

150K. 

Figure 6.21 shows predictions of methane and oxygen, which are reasonable through- 

out the domain, although the depletion of fuel is overpredicted from x1D = 15 

onwards. In the case of oxygen, CMCe yields significantly improved predictions 

over LES-CMC. 
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Figure 6.22: Conditional means of Nvater and carbon dioxide 
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The production of water as seen in figure 6.22 is somewhat overpredicted at every 

location. Generation of carbon monoxide on the other hand is very well cap- 

tured by both LES-CMC and CMCe and a strong sensitivity of this pollutant on 

conditional temperature fluctuations cannot be observed. 

The hydroxyl radical in figure 6.23 is generally overpredicted, although CMCe 

can improve the results of LES-CMC to some extent, but not significantly. At 

x1D = 30 prediction are relatively good for all cases of CMCe, whereas LES-CMC 

shows a slight overprediction. Hydrogen levels are equally overpredicted, but in 

this case CMCe offers significant improvement over LES-CMC. However, CMCe 

still overpredicts the production of OH consistently. 

Carbon monoxide is predicted well by CMCe relatively close to the nozzle. Further 

downstream, from x1D = 15 onwards it is overpredicted in the rich part of the 

flame by all models. As for nitric oxide, LES-CMC predictions are about twice 

the concentration levels that were measured. CMCe predicts lower levels of NO, 

but show underproduction of the pollutant close to the nozzle. At x1D = 15 

results are very good for CMCe and at x1d = 30 NO is somewhat overpredicted 

by CMCe. 

For all cases presented, the conditional scalar dissipation rate is very well predicted 

until x1D = 15 as seen in figure 6.25. At x1D = 30 however, conditional scalar 

dissipation is far too low, compared to the experimentally observed values. 
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Figure 6.23: Conditional means of hydroxyl and hydrogen 
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Figure 6.24: Conditional means of carbon monoxide and nitric oxide 
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6.3.3 Flame F 

Out of this series, flame F is the most difficult flame to model. It is close to global 

extinction and boundary condition yielding a burning or extinguished flame, lie 

within the range of experimental uncertainty. For flame F the same calculations 

were carried out as for flame D. A benchmark is provided by LES-CMC and two 

calculations invoking the CMCe methodology for one low-(7t = 1.75) and one 

high--y case (-yt = 2.9). 
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Figure 6.26: Axial velocity mean and r. m. s along the centreline 

Figure 6.26 shows results for the axial mean velocity and r. m. s.. From x1D = 10 

onwards, velocity is consistently slightly underpredicted, whereas the fluctuation 

levels are quite accurately predicted. 

Mixture fraction mean and r. m. s. are well predicted, as seen in figure 6.27 through- 

out the domain. 

Results for the temperature are shown in figure 6.28. It is noticeable that predic- 

tions are rather poor; detailed discussion follows, when conditional quantities are 

presented. 
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Figure 6.28: Temperature mean and r. m. s. along the centreline 
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Figure 6.29 gives radial profiles of mixture fraction and mixture fraction fluctua- 

tions. Results are very good for both mean and r. m. s. and significant differences 

between the different models cannot be observed. 

Radial temperature and temperature fluctuation profiles are shown in figure 6.30. 

As observed in the previous flames, at x1D =2 conditions seem dominated by 

the inflow conditions. Hence, predictions at this location are good. Further down- 

stream however temperatures are severely overpredicted although fluctuation lev- 

els are in reasonable agreement with the experimental findings. 

Conditional temperatures and modelled conditional temperature fluctuations are 
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Figure 6.29: Mixture fraction mean and r. m. s. at several downstream location 
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Figure 6.30: Temperature mean and r. m. s. at several downstream location 
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seen in figure 6.31. At x1D =2 the agreement is good, which is further ev- 

idence, that inflow conditions largely determine the thermodynamical state at 

this location. The shortcomings of the models become apparent at x1D = 7.5, 

where all models largely overpredict conditional temperatures, although for the 

case of CMCe conditional temperature fluctuations are of the correct order and 

even overpredicted for the high--y case. 

At x1D = 15 the range of models fail to capture the extent of extinction, which 

renders them of no practical use in these extreme combustion scenarios. Condi- 

tional temperatures are off by as much as 600K here. Even the so far impressive 

scalability of the conditional sensible variance model to predict conditional tem- 

perature fluctuations, as seen for the flames and locations seen so far, breaks down 

here. Even the high--y model underpredicts the maximum conditional temperature 

by about 150K. Similarly, at x1D = 30 conditional temperatures are underpre- 

dicted by about 300K and the still strong temperature fluctuations observed in 

the experiment are not captured at all. The conditional variance equation predicts 

them as about 100K or 150K respectively; about 300K less than the measure- 

ments. 

As expected, given the results for conditional temperatures, methane and oxygen 

depletion are not well captured by any of the models, as seen in figure 6.32. At 

x1D =2 results are relatively close to the measurements, but further downstrearn 

predictions are poor. 

The same can be said for the generation of water and carbon monoxide, as seen 

in figure 6.33. 

This trend carries through and is seen for all remaining species seen in figures 
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Figure 6.34: Conditional means of hydroxyl and hydrogen 
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6.34-6.35. 

Figure 6.36 gives the predictions of conditional scalar dissipation rate. However, 

experimental values were not available to assess their agreement with the experi- 

ment. 
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Chapter7 

Conclusions and Future Work 

The aim of the presented work is to build upon the LES-CMC methodology and 

extend it to account for the influence of temperature fluctuations on the condi- 

tional chemical source term. 

The extended conditional moment closure method (CMCe) solves for the condi- 

tional sensible enthalpy variance equation to quantify the level of extinction and 

reignition. The work showed that results from LES-CMC can generally be im- 

proved by the presented method. The computation of Sandia flames D, E and F 

showed varying success, although the general trends observed are encouraging. 

Flame E with an intermediate level of extinction and reignition was chosen to 

assess parameter variations of the CMCe methodology. The influence of the -Yt 

parameter was studied and showed the expected trend. Increasing -yt, which re- 

sults in lower conditional progress variable dissipation, leads to higher predictions 

of conditional temperature fluctuations. Taking into account higher conditional 

temperature fluctuations by CMCe leads to lower mean conditional temperatures. 

However, where predictions of the conditional temperature fluctuations agree well 

with the experimental findings, the conditional temperature is still consistently 
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overpredicted to a varying degree. 

The variation of the turbulent Schmidt number, leading to higher conditional 

scalar dissipation rates did not show a significant effect in regions with strong local 

extinction and reignition. Further downstream the increased turbulent Schmidt 

number did not raise conditional scalar dissipation rate significantly, possibly 

because it increases diffusion, which counteracts the effect by decreasing gradients, 

whereas further upstream turbulence levels seem to be high enough so that mixing 

is controlled by turbulence and not by diffusion. To investigate and assess the 

behaviour of the proposed method, Flames D and F were computed to study to 

performance of CMCe in the case of different turbulence intensities. 

Flame D exhibits only moderate local extinction and reignition and conserved 

scalar approaches have shown to work reasonably well. The proposed extended 

source term closure provides some improvement over LES-CMC and yields im- 

proved predictions of conditional temperatures as well as conditional means of 

chemical species. Variation of the -ft parameter again proved consistent and a 

higher value for -tt leads to higher conditional temperature fluctuation levels, which 

in turn leads to lower conditional mean temperatures, closer to the experimentally 

observed. 

Flame F is the case with the strongest degree of local extinction and reignition. 

It is close to global extinction and challenging to model. The CMCe method 

was applied and 7t was varied. Results however, were poor. Even with condi- 

tional temperature fluctuations of the correct order the strong levels of extinction 

observed in the experiments could not be reproduced. 

It shall be noted, that although the solution of the conditional sensible enthalpy 
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variance equation invokes a rather ad hoc model for the conditional reactive scalar 

dissipation rate, the results and in particular the scalability are impressive. Values 

of 7t obtained by matching conditional temperature fluctuations in flame E, yield 

reasonable predictions of the temperature fluctuations for flames D and F. The un- 

derprediction of conditional temperature fluctuations further downstream might 

be alleviated by an improved model for the reactive scalar dissipation rate, incor- 

porating Damk6hler number effects as proposed by some researchers [12,13,75]. 

To summarise, the proposed CMCe methodology improves predictions of condi- 

tional moments for the three piloted jet flames studied. However, with increasing 

levels of local extinction and reignition, even realistic estimations of the temper- 

ature fluctuations do not yield the low mean temperature that can be observed 

experimentally. This seems to indicate that other processes that contribute to 

local extinction are not yet being accounted for. 

The solution of the conditional sensible enthalpy variance equation requires mod- 

elling of several terms. Previously proposed ad hoc models are employed in the 

conditional variance transport equation framework used in the present work. This 

approach proved to perform better than initiall y considered algebraic models. 

However, the need to calibrate the 7t coefficient is not entirely satisfactory and 

provides room for improvement and generalisation. 

It seems that treatment of sensible enthalpy as an independent variable should 

improve the predictive cababilities of any model. Therefore, doubly conditional 

moment closure should be better suited for cases of high levels of local extinction 

and reignition. However, the issue of the modelling of reactive scalar dissipation 

remains. Additionally, it is still a matter of controversy how to treat regions in 

145 



phase space, that are characterised by extremely low probabilities. Since boundary 

conditions for conditional moments can only be imposed at the limits of phase 

space, the question is how to treat the regions connecting the limits with the 

region of finite probability. 

These issues could be avoided, if one does not solve for the conditional moments, 

but the product of conditional moments and probability, and focuses on analysis 

of unconditional quantities rather than conditional ones. In this case the speci- 

fication of appropriate boundary conditions would be straightforward, since only 

physically observed values are used; they are the only ones with non-zero probabil- 

ity. Although conditional quantities would not be readily available for evaluation, 

conditional averaging could easily provide those. 

Furthermore, it might be worthwhile considering to solve the joint p. d. f. transport 

equation of mixture fraction and progress variable in order to overcome the need 

to presume a functional shape of this p. d. f.. 
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AppendixA 

The Relation between density 

weighted and non-density 
weighted p. d. f. 

Given the definitions of a conditional filtering procedure, equation (4.8), the com- 
mon definition of Favre or density weighted filtering of a quantity 0, as introduced 
by Favre [23]: 

(A. 1) 

where the tilde denotes Favre filtering and the overbar denotes non-density weighted 
filtering, it is shown that the following relation must hold to ensure consistency 
between the two forms of the p. d. f. and to ensure the normalization condition for 
both; a fundamental, mathematical characteristic of any p. d. f.. 

1 
=I 

1 P(q)dij. (A. 2) 
pp In 

The definition of the conditional filter, applied to the density yields: 

p1 27 P(I7, x, t) =1p0 [il -0 (x', t)i 0 (x - x) dx'. (A. 3) 

Considering the r. h. s. of equation (A. 1), the following relation must hold: 

pP=fp0 [77 - O(x', t)] G(x - x')dx'. (A. 4) 
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Since the r. h. s. of equations (A. 3) and (A. 4) are identical, equating these yields: 

pp=p In P(77). (A. 5) 

Substituting the definition of Favre flItering, equation (A. 5) leads to: 

P(77) =P1 77 P(77), (A. 6) 

which can be rearranged to 

P(77) p P(77) 
(A. 7) 

P1 77 
Invoking the normalization condition yields: 

P(71)d7l = 11 dq. (A. 8) 

Since the unconditional density p is not a function of 27 it can be moved outside 
of the integral. 

P(77) di7 (A. 9) 
p1 77 

1 P(71) dq. 
77 
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AppendixB 

Chemical mechanism 

For reference, the parameters of the chemical mechanism proposed by Meyer [531, 

which was used for the presented work, is given below. 

_E Tabulated are the constants in the expression k= BT' e Al' for the individual 

reaction rate constant. 

Table B. 1: Chemical mechanism used, for details see 
Meyer [53). 

No Reaction B n E [kJ/molel 
1 H+02 OH+O 2. OOOE+ll 0.00 70.30 
2 0+ H2 OH+H 5.120E+01 2.67 26.30 
3 OH + H2 H20 +H 1. OOOE+05 1.60 13.80 
4 OH+OH H20 +0 3.570E+01 2.40 -8.84 
5 02 +H+M H02 +M 2.300E+12 -0.80 0.00 
6 H02 +H OH + OH 1.680E+ll 0.00 3.66 
7 H02+H ; Fý H2 + 02 4.270E+10 0.00 5.90 
8 H02 + OH ; =I-t 

H20 + 02 2.890E+10" 0.00 -2.08 
9 H02 +H H20 +0 3. OOOE+10 0.00 7.20 
10 H02 +0 -- OH + 02 3.190E+10 0.00 0.00 
11 H+H+M H2+M 6.530E+ll -1.00 0.00 
12 H+H+M H2+M 9.200E+10 -0.60 0.00 
13 H+H+M H2+M 6. OOOE+13 -1.25 0.00 

Table B. I: continued 
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No Reaction B n E [kJ/molel 

14 H+H+M H2 +M 5.490E+14 -2.00 0.00 

15 H+OH+M H20+M 2.200E+16 -2.00 0.00 

16 O+O+M 02+M 1.000E+11 -1.00 0.00 

17 CO + OH C02+H 4.400E+03 1.50 -3.10 
18 CO + H02 C02 + OH 1.500E+ll 0.00 98.93 

19 CO+O+M C02 +M 5.300E+07 0.00 -19.01 
20 CO + 02 C02 +0 2.500E+09 0.00 200.00 

21 CH + 02 CHO +0 7.500E+10 0.00 0.00 

22 CH + C02 CHO + CO 3.400E+09 0.00 2.90 

23 CH+O CO+H 4. OOOE+10 0.00 0.00 

24 CH + OH CHO +H 3. OOOE+10 0.00 0.00 

25 CH + H20 CH20H 5.730E+09 0.00 -3.16 
26 CH + CH20 C2H20 +H 9.460E+10 0.00 -2.16 
27 CH + CH2(T) C2H2 +H 4. OOOE+10 0.00 0.00 
28 CH + CH3 C2H3 +H 3. OOOE+10 0.00 0.00 
29 CH + CH4 C2H4 +H 6. OOOE+10 0.00 0.00 

30 CHO +H CO + H2 9. OOOE+10 0.00 0.00 

31 CHO +0 CO + OH 3. OOOE+10 0.00 0.00 
32 CHO +0 -- C02+H 3. OOOE+10 0.00 0.00 

33 CHO + OH -- CO + H20 1.000E+11 0.00 0.00 

34 CHO + 02 CO + H02 4.520E+14 -1.85 1.47 
35 CHO +M CO+H+M 1.860E+14 -1.00 71.10 
36 CH2(S) + H2 CH3 +H 7.230E+10 0.00 0.00 
37 CH2(S) +H CH + H2 7. OOOE+10 0.00 0.00 

38 CH2(S) +0 CO+H+H 1.500E+10 0.00 0.00 
39 CHAS) +0 CO + H2 1.500E+10 0.00 0.00 

40 CH2(S) + OH CH20 +H 3. OOOE+10 0.00 0.00 
41 CH2(S) + 02 -- CO+OH+H 3. OOOE+10 0.00 0.00 
42 CH2(S) + C02 

;: =! CH20 + CO 3. OOOE+09 0.00 0.00 
43 CH2(S) + CH3 C2H4 +H 1.800E+10 0.00 0.00 
44 CH2(S) + CH4 CH3 + CH3 4.270E+10 0.00 0.00 

Table B. 1: continued 
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No Reaction B n E [kJ/molel 

45 CH2(S) +M CH2(T) +M 1.000E+10 0.00 0.00 

46 CH2(T) + H2 CH3 +H 3. OOOE+06 0.00 0.00 

47 CH2(T) +H CH + H2 1.100E+ll 0.00 0.00 

48 CH2(T) +0 CO+H+H 4.880E+10 0.00 0.00 

49 CH2(T) +0 CO + H2 3.250E+10 0.00 0.00 

50 CHAT) + OH CH + H20 1.130E+04 2.00 12.56 

51 CHAT) + OH CH20 +H 2.500E+10 0.00 0.00 

52 CH2(T) + 02 CO+H+OH 1.642E+18 -3-30 12.00 

53 CH2(T) + 02 C02 +H+H 3.285E+18 -3-30 12.00 

54 CH2(T) + 02 CH20 +0 3.285E+18 -3.30 12.00 

55 CHAT) + 02 C02 + H2 2.630E+18 -3.30 12.00 

56 CH2(T) + 02 CO + H20 2.240E+lg -3.30 12.00 

57 CH2(T) + C02 CH20 + CO 1.100E+08 0.00 4.19 

58 CH2 (T) + CH2 (T) C2H2 +H+H 1.200E+ll 0.00 3.32 

59 CH2(T) + CH3 C2H4 +H 4. OOOE+10 0.00 0.00 

60 CH20 +H CHO + H2 2.180E+05 1.77 12.55 

61 CH20 +0 CHO + OH 4.150E+08 0.57 11.56 

62 CH20 + OH CHO + H20 1.130E+06 1.18 -1.87 
63 CH20 + 02 CHO + H02 6. OOOE+10 0.00 170.00 

64 CH20 + CH3 CHO + CH4 4.090E+09 0.00 37.00 

65 CH3 + CH3 C2H5 +H 5. OOOE+09 0.10 44.36 

66 CH3 + CH3 C2H6 3.600E+10 0.00 0.00 

67 CH3 +0 CH20 +H 8.430E+10 0.00 0.00 

68 CH3 + OH CH20H +H 1.500E+ll 0.00 34.46 

69 CH3 + OH CH2 (S) + H2 0 4. OOOE+10 0.00 10.47 

70 CH3 + OH CH20 + H2 1.024E+09 0.00 0.00 

71 CH3 + OH CH30 +H 5.740E+09 -0.23 58.28 

72 CH3 + 02 
;: ý CH30 +0 1.320E+ll 0.00 131.36 

73 CH3 + 02 CH20 + OH 3.300E+08 0.00 37.40 

74 CH3 + H02 CH30 + OH 1.800E+10 0.00 0.00 

75 CH3 + CHO - CH4 + CO 1.200E+ll 
, 

0.00 0.00 
1 

Table B. I: continued 
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No Reaction B n E [kJ/mole] 

76 CH30 +M CH20H +M 3.010E+08 0.00 17.04 

77 CH30 + 11 CH20 + H2 2. OOOE+10 0.00 0.00 

78 CH30 +0 CH20 + OH 6. OOOE+09 0.00 0.00 

79 CH30 + OH CH20 + H20 1.800E+10 0.00 0.00 

8ö CH30 + 02 CH20 + H02 6.600E+07 0.00 10.88 

81 CH30 +M CH20+H+M 5.450E+10 0.00 56.50 

82 CH20H +H CH20 + H2 3. OOOE+10 0.00 0.00 

83 CH20H +0 CH20 + OH 4.220E+10 0.00 0.00 

84 CH20H + OH CH20 + H20 2.400E+10 0.00 0.00 

85 CH20H + 02 CH20 + H02 1. OOOE+11 0.00 21.00 

86 CH20H +M CH20 +H+M 1.220E+25 -4.00 133.42 
87 CH3 +H CH4 2.100E+11 0.00 0.00 

88 CH4 +H CH3 + H2 3.860E+03 2.11 32.42 

89 CH4 +0 CH3 + OH 9.033E+05 1.56 35.50 

90 CH4 + OH CH3 + H20 1.560E+04 1.83 11.60 
91 C2H + H2 C2H2 +H 5.670E+07 0.90 8.34 

92 C2H +0 CO + CH 1. OOOE+10 0.00 0.00 

93 C2H + OH C2H0 +H 2. OOOE+10 0.00 0.00 
94 C2H + 02 CO + CO +H 9.040E+09 0.00 -1.91 
95 C2H + H20 C2H20 +H 1.140E+10 0.00 1.66 

96 1 C2H0 +H - CH2(S) + CO 1. OOOE+11 0.00 0.00 
97 - C2H0 +0 CO+CO+H 9.635E+10 0.00 0.00 

98 C2H0 + 02 CO+CO+OH 1. OOOE+10 0.00 0.00 
99 C2H0 + 02 C02+CO+H 1. OOOE+10 0.00 0.00 

100 C2H2+0 
;::: t CH2(T) + CO 2.893E+03 2.09 6.54 

101 C2H2 +0 C2H0 +H 4.340E+03 2.09 6.54 

102 C2H2 + OH C2H + H20 3.370E+04 2.00 58.58 

103 C2H2 + OH C2H20 +H 3.750E+03 1.70 4.18 

104 C2H2 + 02 C2H0 + OH 2. OOOE+05 1.50 126.00 

105 CH (T) + CO : ýý 
C2H20 

i 
0. OOOE+00 0.00 

1 
0.00 

106 C2H20 +H -- CH3 + CO 1 1.110E+04 2.00 1 8.37 
Table B. 1: continued 
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No Reaction B n E [kJ/mole] 

107 C2H20 +H C2HO + H2 1.800E+ll 0.00 35.98 

108 C2H20 +0 C02+CH2(T) 2. OOOE+10 0.00 9.60 

109 C2H20 +0 C2HO + OH 2. OOOE+04 2.00 41.69 

110 C2H20 + OH CH20H + CO 1.020E+10 0.00 0.00 

ill C2H20 + OH C2HO + H20 1. OOOE+04 2.00 12.56 

112 C2H3 C2H2 +H 2. OOOE+14 100 166.28 

113 C2H3 +H QH2 + H2 3. OOOE+10 0.00 0.00 

114 C2H3 +0 C2H20 +H 3. OOOE+10 0.00 0.00 

115 C2H3 + OH C2H2+ H20 2. OOOE+10 100 010 

116 C2H3 + 02 CHO + CH20 3.360E+09 0.00 -1.00 
117 C2H3 + 02 C2H2 + H02 1.500E+08 0.00 -1.00 
118 C2H4 +H C2H3 + H2 1.325E+03 2.53 51.21 

119 C2H4 +0 CH3 + CHO 1.320E+05 1.55 1.79 

120 C2H4+OH Z=-ý C2H3+H2O 1.570E+01 175 17.46 

121 C2H5+02 C2H4+ H02 1.020E+07 0.00 -9.14 
122 C2H5 +0 CH3+ CH20 6.600E+10 0.00 0.00 
123 C2H4+ H C2H5 3.974E+06 1.28 5.40 
124 C2H6 C2H5 +H 8.850E+20 -1.23 427.70 

125 C2H6+ H C2H5 + H2 1.445E+06 1.50 3110 
126 C2HG +0 C2H5 + OH 1. OOOE+06 1.50 24.30 

127 C2H6 + OH C2H5+ H20 7.226E+03 2.00 3.62 

128 CH2(T) +M Cl+H2+M 1.148E+ll 0.00 233.70 

129 CH+M Cl+H+M 1.000E+11 0.00 267.95 

130 CH +H Cl + H2 3. OOOE+10 0.00 0.00 

131 CH + OH Cl + H20 4. OOOE+04 2.00 12.55 

132 Cl + OH CO+H 5. OOOE+10 0.00 0.00 

133 C1+02 CO+O 1.200E+ll 0.00 16.71 

134 Cl + C02 CO + CO O. OOOE+00 0.00 0.00 

135 Cl + CH3 C2H2 +H 5. OOOE+10 0.00 0.00 

136 Cl + CH2(T) C2H +H 5. OOOE+10 0.00 0.00 

137 C2H + C2H C2H2 + C2 1.810E+09 0.00 0.00 
Table B. I: continued 
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No Reaction B n E [kJ/mole] 

138 C2H +H C2 + H2 3.610E+10 0.00 118.25 

139 Cl+Cl+M C2+M 1.800E+15 -1.60 0.00 

140 C2 +0 CO + Cl 3.610E+ll 0.00 0.00 

141 C2 + 02 CO + CO 8.970E+09 0.00 4.10 
142 NH3 +M NH2+H+M 1.400E+13 0.06 379.07 

143 NH3 +H NH2 + H2 6.360E+02 2.39 42.56 
144 NH3 + OH NH2 + H20 2.040E+03 2.04 2.37 
145 NH3 +0 NH2 + OH 2.100E+10 0.00 37.66 
146 NH2 +H -- NH + H2 5.670E+08 0.59 15.26 
147 NH2 + OH NH + H20 9. OOOE+04 1.50 -1.91 
148, NH2 +0 NH + OH 7. OOOE+09 0.00 0.00 
149 NH2 +0 HNO+H 9.900E+ll -0.50 0.00 
150 NH2 +0 NO + H2 5. OOOE+09 0.00 0.00 
151 NH2 +N N2+H+H 7.200E+10 0.00 0.00 
152 NH2 + NO N2 + H20 3. OOOE+17 -2.60 3.87 
153 NH2 + NO NNH + OH 1.395E+09 0.00 0.00 
154 NH2 + NO N20 + H2 5. OOOE+10 0.00 102.43 
155 NH2 + 02 -- HNO + OH 1.510E+09 -0.39 151.04 
156 NH2 + 02 NH + H02 1.000E+11 0.00 209.19 
157 NH2 + H02 NH3 + 02 4.520E+10 0.00 0.00 
158 NH2 + NH N2H2 +H 1. OOOE+12 -0.50 0.00 
159 NH2 + NH2 N2H2 + H2 4. OOOE+10 0.00 49.55 
160 NH2 + NH2 NH + NH3 5. OOOE+10 0.00 41.57 
161 NH+H N+ H2 1. OOOE+10 0.00 0.00 
162 NH+O NO+H 7. OOOE+10 0.00 0.00 
163 NH+O N+OH 7. OOOE+09 0.00 0.00 
164 1 NH + OH N+ H20 2. OOOE+06 1.20 0.03 

165 NH + OH HNO +H 4. OOOE+10 0.00 0.00 

166 NH + 02 NO + OH 1. OOOE+10 -0.20 20.04 
167 NH + 02 HNO +0 4.610E+02 2.0 0 27.20 
168 NH+N N2 +H 3. OOOE+10 0.00 0.00 

Table B. 1: continued 
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No Reaction B n E [kJ/mole] 

169 NH + NO N20 +H 2.940E+ll -0.40 0.00 
170 NH + NO N2 + OH 2.160E+10 -0.23 0.00 
171 NH + NO NNH +0 5.600E+09 0.21 45.48 
172 NH + NH N2 +H+H 2.540E+10 0.00 0.00 
173 N+ 02 NO+O 6.400E+06 1.00 26.28 
174 N+OH NO+H 3.800E+10 0.00 0.00 
175 N+NO N2 +0 3.300E+09 0.30 0.00 
176 N2H2 +M NNH+H+M 1.170E+14 0.00 209.20 
177 N2H2 +H NNH + H2 5. OOOE+10 0.00 4.18 
178 N2H2 + NO NH2 + N20 3. OOOE+09 0.00 0.00 
179 NNH +M N2+H+M 1.700E+09 0.00 59.86 
180 NNH + OH N2 + H20 5. OOOE+10 0.00 0.00 
181 NNH + NO N2 + HNO 9.100E+08 0.00 0.00 
182 NNH + NH N2 + NH2 5. OOOE+10 0.00 0.00 
183 NNH +0 N2 + OH 1. OOOE+10 0.00 20.92 
184 N20 +H N2 + OH 2.230E+ll 0.00 70.08 
185 N20 +H NNH +0 2.400E+16 -1.26 197.04 
186 N20 +0 NO + NO 2.900E+10 0.00 96.92 
187 N20 +0 N2 + 02 1.400E+09 0.00 45.22 
188 N20 N2 +0 1.300E+ll 0.00 249.42 
189 N20 + OH N2 + H02 1.300E-05 4.72 152.97 
190 HNO +M H+NO+M 2.360E+13 0.00 203.81 
191 HNO +H H2 + NO 4.500E+08 0.72 2.74 
192 HNO + OH H20 + NO 1.300E+04 1.88 -4.00 
193 HNO +0 OH + NO 3.600E+10 0.00 0.00 
194 HNO + HNO H20 + N20 3.900E+09 0.00 209.20 
195 HNO + NH2 NH3 + NO 2. OOOE+10 0.00 4.18 
196 HNO + NO N20 + OH 2. OOOE+09 0.00 108.78 
197 HNO + 02 NO + H02 3.160E+09 0.00 12.55 
198 HNO + N02 HN02 + NO 6.022E+08 0.00 8.31 
199 NO + H02 N02 + OH 

_2.110E+09 
0.00 -2.00 

Table B. 1: continued 
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No Reaction B n E [kJ/mole) 
200 N02 NO+O 7.600E+18 -1.27 306.64 
201 N02 +H NO + OH 3.500E+ll 0.00 6.28 
202 N02+0 NO + 02 3.900E+09 0.00 -1.00 
203 N02 + N02 NO+NO+02 1.626E+09 0.00 109.30 
204 N02 + H02 HN02 + 02 4.640E+08 0.00 -2.01 
205 N02 + NO N20 + 02 1. OOOE+09 0.00 252.00 
206 HN02 OH + NO O. OOOE+00 0.00 0.00 
207 HN02 +H H2 + N02 1.200E+10 0.00 24.94 
208 HN02 + OH H20 + N02 1.260E+07 1.00 0.56 
209 HN02 +0 OH + N02 1.200E+10 0.00 30.76 
210 NO + Cl N+CO 2.800E+10 0.00 0.00 
211 NO + Cl CN+O 2. OOOE+10 0.00 0.00 
212 NO + CH HCN +0 4.800E+10 0.00 0.00 
213 NO + CH CO + NH 5. OOOE+09 0.00 0.00 
214 NO + CH2(T) HCNO +H 2.500E+09 0.00 25.00 
215 NO + CH2(S) HCNO +H 6.600E+09 0.00 0.00 
216 NO + CH3 HCN + H20 1.200E+ll 0.00 121.30 
217 NO + CHO HNO + CO 7.226E+09 0.00 0.00 
218 NO + CH20 HNO + CHO 1.023E+10 0.00 170.77 
219 NO + CH30 CH20 + HNO 1.300E+ll -0.70 0.00 
220 NO + C2HO HCN + C02 1.800E+10 0.00 2.91 
221 NO + C2HO HCNO + CO 4.200E+10 0.00 2.91 
222 N02 + CH CHO + NO 1.010E+ll 0.00 0.00 
223 N02 + CH3 CH30 + NO 1.300E+10 0.00 0.00 
224 N02 + CH4 CH3 + HN02 1.200E+10 0.00 125.52 
225 N02 + CHO HN02 + CO 1.700E+10 0.00 0.00 
226 N02 + CO NO + C02 9.033E+10 0.00 141.34 
227 N20 + Cl CN + NO 1. OOOE+10 0.00 0.00 
228 N20 + CO ; ý:: t N2 + C02 3.200E+08 0.00 85.00 
229 N2 + CH HCN +N 3.680E+04 1.42 86.70 
230 N2 + CH2(T) HCN + NH 1. OOOE+09 0.00 309.00 

Table B. 1: continued 
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No Reaction B n E [kJ/mole] 
231 N+CH CN+H 1.300E+10 0.00 0.00 
232 N+ CH2(T) HCN +H 5. OOOE+10 0.00 0.00 
233 N+ CH3 HCN + H2 7. OOOE+09 0.00 0.00 
234 N+ CH4 NH + CH3 1. OOOE+10 0.00 100.42 
235 NH + CH HCN +H 5. OOOE+10 0.00 0.00 
236 NH + CH2(T) H2CN +H 3. OOOE+10 0.00 0.00 
237 HCN +0 CN + OH 4.200E+07 0.40 86.50 
238 HCN +0 NH + CO 5.400E+05 1.21 31.34 
239 HCN +0 ; =ýt NCO +H 2. OOOE+05 1.47 31.76 
240 HCN + OH CN + H20 3.900E+03 1.83 43.06 
241 HCN + OH HNCO +H 4.800E+08 0.00 46.02 
242 HCN + OH HOCN +H 9.200E+09 0.00 62.76 
243 HCN + OH NH2 + CO 7.830E-07 4.00 16.74 
244 CN+O CO +N 7.700E+10 0.00 0.00 
245 CN + H2 HCN +H 3. OOOE+02 2.45 9.36 
246 CN + OH NCO +H 6. OOOE+10 0.00 0.00 
247 CN + 02 NCO +0 6.620E+09 0.00 -1.70 
248 CN + N02 NCO + NO 3.000E+10 0.00 0.00 
249 CN + N20 NCO + N2 1. OOOE+10 0.00 0.00 
250 CN + CH4 HCN + CH3 2.170E+10 0.00 5.12 
251 CN+N Cl + N2 1.040E+12 -0.50 0.00 
252 CN + NO N2 + CO 1.080E+ll 0.00 33.59 
253 CN + NO N+ NCO 9.640E+10 0.00 176.26 
254 NCO +M N+CO+M 1.020E+12 0.00 195.39 
255 NCO +H NH + CO 5. OOOE+10 0.00 0.00 
256 NCO+O NO + CO 5.600E+10 0.00 0.00 
257 NCO + OH NO + CHO 5. OOOE+09 0.00 62.80 
258 NCO + NO N20 + CO 6.200E+14 -1.73 3.19 
259 NCO + NO N2 + C02 7.800E+14 -1.73 3.19 
260 NCO +N N2 + CO 2. OOOE+10 0.00 0.00 

1261 1 
NCO + HNO HNCO + NO 

I 
1.800E+10 

1 _0.00 1 0.00 
Table B. 1: continued 

165 



No Reaction B n E [kJ/mole] 

262 NCO + NCO N2 + CO + CO 1.800E+10 0.00 0-00 

263 NCO + 02 NO + C02 2. OOOE+09 0.00 83.74 

264 HNCO +M NCO+H+M 5. OOOE+12 0.00 498.84 

265 HNCO +H NCO + H2 5.500E+ll 0.00 113.90 

266 HNCO +H NH2 + CO 2.089E+ll 0.00 70.67 

267 HNCO +0 NCO + OH 2.230E+03 2.11 47.80 

268 HNCO +0 NH + C02 9.600E+04 1.41 35.67 

269 
1 

HNCO +0 -- HNO + CO 1.500E+05 1.57 184.27 

270 HNCO + OH ;: ý NCO + H20 3.450E+04 1.50 15.04 

271 HNCO + OH NH2 + C02 3.630E+03 1.50 15.04 

272 HNCO + CN HCN + NCO 1.500E+10 0.00 0.00 

273 HNCO + NH NH2 + NCO 2. OOOE+10 0.00 49.87 

274 HOCN +H NH2 + CO 1.200E+05 0.61 8.69 

275 HOCN +H NCO + H2 2.400E+05 1.50 27.69 

276 HOCN +0 NCO + OH 1.700E+05 1.50 17.29 

277 HOCN + OH NCO + H20 1.200E+03 2.00 -1.04 
278 N+ CH3 H2CN +H 7.100E+10 0.00 0.00 

279 NO + CH3 H2CN + OH 5.200E+09 0.00 101.43 
280 NH + CH3 H2CN + H2 7.100E+10 0.00 0.00 

281 H2CN +H HCN + H2 1.000E+11 0.00 0.00 

282 H2CN + OH ; =. It HCN + H20 1.000E+11 0.00 0.00 

283 H2CN +M HCN+H+M 3.000E+11 0.00 92.05 

284 H2CN +N CH2(T) + N2 2. OOOE+10 0.00 0.00 

285 NO + CH NCO +H 1.800E+10 0.00 0.00 

286 NO + CH CHO +N 2.600E+10 0.00 0.00 
287 NO + CH2(T) HCN + OH 5.012E+08 0.00 12.00 
288 NO + CH2(S) HCN + OH 3.300E+09 0.00 0.00 

289 NO + C2H HCN + CO 6. OOOE+10 0.00 2.39 

290 HOCN +M HNCO +M 3.100E+05 0.84 8.02 

291 HCNO +M HNCO +M 2.100E+12 -0.69 11.93 
292 HCNO +M HOCN +M 1.400E+08 -0.19 10.39 

Table B. 1: continued 
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No Reaction B n E [kJ/mole] 
293 HCNO +H HCN + OH 2.700E+08 0.18 8.85 
294 HCNO +H NH2 + CO 1.700E+ll -0.75 12.10 
295 HCNO +0 CHO + NO 7. OOOE+10 0.00 0.00 
296 HCNO + OH CH20 + NO 4. OOOE+10 0.00 0.00 
297 C2H2 + 02 C2H + H02 1.200E+10 0.00 311.70 
298 HCN +M HNC +M 1.600E+23 -3.23 207.43 
299 HNC +0 NH + CO 4.600E+09 0.00 9.14 
300 HNC + OH HNCO +H 2.800E+10 0.00 15.46 

Table BA: Chemical mechanism used, for details see 
Meyer [53] (End). 
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