
Network analysis of complex biological systems: 
Boundedness of weakly reversible chemical reaction 

networks and conditions for synchronisation of 
coupled oscillators 

Elia, s August 

Supervisor: Mauricio Barahona 

Department of Bioengineering 
Imperial College 

UniversitY of London 

A thesis submitted in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy 

October 2007 

1 



Abstract 

The broad aim of this thesis is to systematically investigate the interdependence of 
dynamical behaviour and network architecture in biological networks that consist of inter- 
connected nonlinear elements. We use a series of mathematical tools from graph theory, 
dynamical systems, Lyapunov stability theory and semi-definite programming to prove and 
implement our results. 

In the first part, we use Chemical Reaction Network Theory to investigate how the 

structure of the un-weighted graph of the underlying reaction network influences the dy- 

namical properties of the system. This theory does not rely on, the values associated with 
the different reaction rates. In particular, we provide a proof that a weakly reversible 
chemical reaction network (that is, one in which the digraph of the reaction complexes 
is the union of strongly connected components) has a bounded absorbing set. Thus, by 

checking structural properties of the graph of the reaction network, this result provides a 
qualitative criterion to establish that solution trajectories of the dynamical system will not 
diverge. Moreover, this information can be used to characterise certain bifurcations from 

stationary to oscillatory behaviour. The proof of our result is based on Lyapunov stability 
theory and graph theory. 

In the second part, we first establish sufficient conditions that guarantee entrainment 

of a dynamical system to a periodic drive. We then establish sufficient conditions that 

guarantee synchronised behaviour of networks of coupled biological oscillatory systems. 
We treat the cases when they are identical (complete synchronisation) and when there is 

parameter mismatch (frequency synchronisation). We reformulate previously established 

conditions which are based on Lyapunov stability theory and contraction theory in order to 

make them computationally implementable. To this end, we use semidefinite programming 
techniques and can not only obtain certificates for synchronisability but also optimise 

associated cost functions. Along these lines, we also establish new and less strict conditions 
for complete synchronisation based on the Bendixson's Criterion for higher dimensional 

systems. All conditions are obtained by analysing the connection network and the model 

of the individual biological system only. 
We provide illustrative examples from physics, chemistry and biology for the applica- 

bility of our work. The examples include the van der Pol oscillator, simple biochemical 

systems, synthetic genetic oscillators like the Repressilator, and models of the circadian 

clock. 
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Notation 

R, Rmxn real numbers, mxn real matrices 
Xi ith entry of vector xE Rn 
e [1, 

..., 1]T 

E the positive matrix: ee T 
A(ij) (i, j)th entry of matrix AE R` 
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" matrix E R'xn, where diag(x)(j, j) = xi and 
diag(x)(i, joi) =0 
transpose of A Cz Rm xn 

null space of AE R"' 

derivative of x with respect to the time variable t 
The Kronecker product: 

A(,,, )B A(1,2)B 
A(2,, )B A(2,2)B 

A(,,,, )B 
A(m, 2)B 

af (X) del operator: [ gxl 

A(l, 
n)B 

A(2, 
n) 

B 

A(m, n)B 
af W]T, 

xERnf: RnR ax" 
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Some mathematical definitions 

set A set is a finite or infinite collection of objects. aEA denotes that 
a is an element of a set A. 

subset A subset is a portion of a set. 

intersection The intersection of two sets A and B is the set of elements 
common to A and B. 

union The union of two sets A and B is the set obtained by combining 
the members of each. 

empty set A set containing no elements. 

open set An open set of radius r>0 and centre xO is the set of all points x such 
that Ix - xoj < r. 

complement set The subset P of some set S which excludes a given subset F. 

closed set A set S is closed if the complement of S is an open set. 

set closure The unique smallest closed set containing the given set, or the 

complement of the interior of the complement of the set. 

connected set A connected set is a set which cannot be partitioned into two 

nonempty open subsets. 

simply connected A path-connected domain is said to be simply connected if any 

simple closed curve can be shrunk to a point continuously in the 

set. 
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boundary The set of points, denoted by OS, known as boundary points, which 

are members of the set closure of a given set S and the set closure 

of its complement set. 

compact set Compact sets are closed and bounded. 
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Chapter I 

Introduction 

The broad aim of this thesis is to systematically investigate the interdependence of dynami- 
cal behaviour and network architecture in biological networks that consist of interconnected 
nonlinear elements. On two levels, we seek to explain the behaviour of large and complex 
biological systems through the underlying network structure. First, we consider Chemical 
Re-action Networks. We investigate the unweighted graph underlying the network. We 
recapitulate previous important results by Martin Feinberg and establish new results on 
how the network structure governs the dynamical behaviour of the system; that is, inde- 
pendently of the values associated with the different reaction rates. Second, we establish 
mathematical conditions that guarantee synchronised behaviour (of a large number) of 
coupled biological system that are either identical or with parameter mismatch. The con- 
ditions are obtained by analysing the connection network and the model of the individual 
biological system only. (Additionally, we provide tools to investigate existence and stability 
of periodic behaviour of the individual system. ) 

One unifying goal in the work presented here is that we provide means to identify ro- 
bustness of a biological system to changes in parameters; that is, in this thesis, we establish 
parameter ranges, in which a system is guaranteed to have bounded solution trajectories, 
to entrain to external periodic drives or, when consisting of coupled subsystems, to ex- 
hibit synchronised behaviour. The following diagram summarises the relationship of the 
different chapters: 
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individual system 
(Chapters 2&4, 
Section S. 1) 

mathematical background: Chapter 3 

1.1 Motivation 

coupled system 
(Sections 5.2 - 5.6) 

Recent years have seen the application of mathematical modelling to an increasing num- 
ber of problems in the biological and medical sciences [1-41. A mathematical model can 
represent an ecosystem, an organ, a cell, or the kinetic reaction between molecules. In 

short, it is a simplified representation of a biological system. A biological system has to 
be simplified because even the 'simplest' building block of higher organisms, the cell, is 

so highly complex that we will have to wait for many years before a complete descrip- 

tion might be available. Furthermore, not only is the interaction within and between cells 

complex but also many interactions between proteins, lipids, and enzymes are not well 
known or understood. However, mathematical models can provide useful insights into the 
dynamics of biological systems and guide the scientists who might be overwhelmed by the 

complexity of their research objects. Many of these processes involve crosstalk and feed- 

back loops generating complex networks rather than simple linear pathways. Dynamical 

system theory and graph theory are powerful tools for the analysis of such systems [5-7]. 

Biology with no parameters 

In his 2001 paper (see reference [8]), the late James E. Bailey, Professor at the Institute 

of Biotechnology, ETH Zurich, stressed that in the field of modelling biological systems 

very often parameter values are unattainable. On the other hand, he acknowledged that 

for certain types of biological systems, and their mathematical counterparts, many results 

are available through analysis methods that do not require information on the quantitative 

values of system parameters [8]. Clearly, these results have a certain robustness associated 

with them which can greatly aid the task of model invalidation. The choice for many years 
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now has been to focus on the information obtainable from the structure of the biological 
network, which is an abstract representation of a biological system capturing many of its 
important characteristics [9-111. For example, a typical biological network for an intracel- 
lular reaction scheme represents molecules by nodes, and their interactions by edges (or 

arrows). There are at least three major types of biological networks representing the pro- 
cesses within the cell: the protein-protein, the protein-DNA, and the protein-metabolite 
interaction networks [12]. However, this description remains a suppression of detail. For 

example, many different mechanisms of transcription regulation may be described by a 
single type of arrow. Figure 1.1 shows in increasing order of complexity (that is, from (a) 

to (c)) the relation between three elements JA, B, C1 of a biological network. Note that 
the representations and the corresponding mathematical models of the network in (a) and 
(b) do not require information on the quantitative values of parameters. 

(a) Interaction-based (b) Constraint-based (c) Mechanism-based 

k, 
\ A+ 8C A+BC 

AL k_j 

Static models Static models Dynamic models 

No stoichiometry Stoichiometry Stoichiometry 

No parameters No parameters Kinetic parameters 

Z, 
FIUXý 

distn, butian 0 

LL 

0 

A 
000.5 1 

Flux 1 Time 
currPent Opinion in MicrobiologY 

Figure I. I: Approaches to the mathematical modelling of biological networks 

(taken from reference [13]). Mathematical models of biological networks can be based 

on (a) interactions, (b) constraints such as network topology and stoichiometries, or (c) 

reaction mechanisms. 

Martin Feinberg's Chemtcal Reachon Network Theory (CRNT) investigates the be- 
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haviour of biochemical models without requiring information about parameter values (re- 
action rates). It allows to derive statements directly from the network structure, which 
corresponds to a type (b) model analysis in Figure 1.1. Particularly, he has developed theo- 
rems that guarantee uniqueness and, under stronger assumptions, also stability of solutions 
(deficiency zero theorem). Martin Feinberg's results are for a specific class of nonlinear 
ordinary differential equations (ODEs) which describe the behaviour of chemical reactions 
in reactor vessels used in chemical engineering [9,14]. These systems obey the law of mass 
action. The law of mass action assumes that if reactions take place at constant tempera- 
ture in a homogenous and well mixed solution then the probability of a collision between 

molecules is proportional to the product of their concentrations. This assumption is prob- 
ably less adequate in biology than it is in chemical engineering and it is therefore unclear 
to what extent CRNT is directly applicable to settings in biological systems. Nevertheless, 
for many reasons, it is widely used [15-171. For instance, a more realistic approach to mod- 
elling intracellular reactions is studying the behaviour of molecules individually through 

a stochastic model incorporating probabilistic and random behaviour of molecules. This 

allows us to deal with a small number of reactants and the assumption of a large number of 
molecules taking part in the reaction, as necessary in mass action kinetics, can be dropped. 

However, it turns out that even for small systems the mean data from numerical methods 
(for example, Gillespie's method) coincides closely with the predictions of the law of mass 

action [18]. 

Another reason for the potential inadequacy of the law of mass action is that the 

cell is not a vessel containing a well mixed solution of chemicals. Its interior, the so 

called cytoplasm, consists not of fluid alone but also of a cell skeleton, which helps the 

cell to keep its shape, anchors organelles and allows also for molecule movements within 

the cell (Figure 1.2). The cell skeleton itself consists of fiber like proteins, some forming 

microtubules, tiny tube like structures, which play an important role in signal transduction. 
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Figure 1.2: The typical structure of an eukaryotic cells containing organelles 
(taken from reference [19]). 

Moreover, many vital reactions happen between extracellular ligands such as signal 
molecules and hormones and receptors on the membrane of the cell and between intracel- 
lular molecules and receptors on the membrane of organelles within the cell. Additionally, 

nutrients have to enter the cell by passing through the membrane and interact with struc- 
tural proteins and lipids. In summary, the mixing of molecules can be often obstructed 
(Figure 1.3. a)). 

Molecular reactions can also greatly depend on the availability of reaction volume. If a 

molecule, which participates in the reaction, is much smaller than the background molecules 

then they have no or only weak influence on the reaction rate as the molecule can freely 

diffuse between them. On the other hand, the diffusion of molecules of similar size would 
be greatly hindered. This effect is called the volurne exclusion effect (Figure 1.3. b)). 
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A 

a) b) 

Figure 1.3: Obstacles to small-molecule mixing and the volume exclusion effect 
(taken from reference [18]). (a) Slow moving obstacles hinder the free movement 
of small molecules as, for example, molecules from region A might take along time to 

reach region B. (b) A small molecule can easily occupy the volume (white and gray areas) 
in between obstacles. The volume a molecule can occupy, whose size is of order of the 

obstacles, is greatly limited. 

Michael A. Savageau developed a phenomenological approach to describe reactions 
following non-ideal kinetics in crowded environments such as the cell. It is called the 

power-law apprommation. In Chapter 2 of this thesis, we first provide a theorem based on 
the network structure of the chemical reaction network that guarantees the uniqueness and 
local asymptotic stability of a positive equilibrium point for reactions under dimensionally- 

restricted conditions as experienced in the cellular environment. This theorem is related 
to Martin Feinberg's so called deficiency zero theorem, which requires the assumption of 
the mass action kinetics. 

We then provide a proof that solution trajectories of the dynamical system representing 

certain chemical reaction networks will not diverge to infinity. It is based on the structural 

properties of the graph underlying the reaction network. Thus, this result provides a 

qualitative criterion to establish boundedness of solution. Moreover, the information can be 

used to characterise certain bifurcations from stationary to oscillatory behaviour (periodic, 
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qua. si-periodic or chaotic). For the proof, we assume the law of mass action but conjecture 
that it also holds under the power-law approximation. 

Biology in sync 

In the last years much attention was given to research in the field of synchronisation of 
biological systems and their entrainment to external periodic inputs. The first reported 
observation of the synchronisation of coupled biological systems can be traced back to the 
Dutch physician Engelbert Kaempfer. In 1680, he visited Siam and described how a large 

population of fireflies slowly synchronised its flashing after it had settled on the branches of 
a tree (Figure 1.4. a)). A famous report on entrainment of a biological system to an external 
periodic input was given in 1729 by Jean-Jacques Dortous de Mairan, a French astronomer 
and mathematician. He noticed that the leaves of the haricot bean (Figure 1.4. b)) reacted 
to daylight changes by moving up during the day and down by night [20,211. 

a) b) 
KATUCIDT REMNI, 

Figure 1.4: Synchronisation and entrainment of biological systems (taken from 

references [22,23]). (a) Synchronised flashing of fireflies in a tree in Malaysia [22]. (b) 

The haricot bean [23]. 

It was repeatedly shown that anticipating environmental changes has measurable fit- 

ness advantages for all organisms. Thus, many bodily functions in mammals are entrained 
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to the day-night cycle and achieve the anticipation of daily environmental changes through 
internal circadian clocks. This requires the synchronisation of the circadian clock of all 
cells [24,25]. The lack of entrainment or sYnchronisation leads to loss of circadian rhythm 
(see Figure 1.5. a)). Individuals who suffer from 'dys-entrainment' of the circadian rhythm 
have an enhanced risk of errors and accidents at work, and of different health problems [24]. 
For example, this condition is common under shift worker, because of lack of entrainment 
to the diurnal cycle, and is also known to world travelers as the so called jet-lag. Quick 
recovery from jet-lag depends on the ability of body cells to synchronise their behaviour. 
Neurological defects can also lead to 'dys-entrainment', because of the lack of synchroni- 
sation between cells (see Figure 1.5. b)). Among the prokaryotes, cyanobacteria are the 
only ones known to follow a circadian rhythm. Importantly, they constitute a simple living 

model to study the circadian clock [26]. During the late 1970s and 1980s, it was discovered 
that the high see environment is dominated by single-celled cyanobacteria [27]. For a long 
time, whether adaptation to the night and day cycle has any benefits to cyanobacteria 
remained unidentified. In 1998, it was shown that in a mixture of different mutants, the 

cyanobacteria strain whose clock period was closest to the artificially applied light and dark 

cycle performed best [28). One aim of this thesis is to establish conditions that guarantee 
entrainment and synchronisation in a mathematical model of coupled biological oscillators. 
Providing certificates for entrainment and synchronisation, which depend on the different 

reaction rates in a biochemical system, could help to specify those rates to target through 

medication in cases of circadian 'dys-entrainment'. 
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Figure 1.5: The circadian clock (taken from references [25,29)). (a) Small data- 
loggers recorded activity pattern in reindeer on Svalbard, Norway, for the duration of one 
year. Each row in the actograms represents one day. Black dots indicate activity while 
inactivity is shown through white spaces [29]. The eireadian rhythm is clearly lost during 
the months when both the polar day and the polar night are advancing. (b) Light entrains 
the master clock in the SCN. It is composed of many clock cells and is responsible for 

synchronising slave oscillators in other brain areas (for example, cortex) and in the organs 
(for example, kidney and liver) [25]. 

The circadian rhythm is not the only oscillator of physiological significance. An organ 
that shows constant periodicity is of course the heart. The normal cardiac rhythm is 

produced by the collective of many heart cells. Investigating conditions for synchrony 
between them is of major importance as it is believed that cardiac dysrhythmia, a life 

threatening heart disease, are caused by poor synchronisation between these autonomous 

pacemakers. A popular phenomenological model for the heartbeat is a system of coupled 

van der Pol oscillators. The choice is justifiable on the basis of the similarity with the 

qualitative features of the heart dynamics or ECG wave [30,31]. Moreover, the model 

exhibits some relevant biological features such as complex periodicity and entrainment [30]. 

Another widely used mathematical model of coupled oscillators is the Kuramoto Model. 

In 1975, Yoshiki Kuramoto presented a model of coupled phase oscillators running at ar- 

bitrary individual frequencies. In his wonderful review paper on the Kuramoto model and 

the contributions to its analysis [32], Steven H. Storgatz makes the connection between 
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the model and different biological systems such as 'networks of pacemaker cells in the 
heart; circadian pacemaker cells in the suprachiasmatic nucleus [(SCN)] of the brain [ 

... 
I 

[(see Figure 1.5. b))]; metabolic synchrony in yeast cell suspensions; congregations of syn- 
chronously flashing fireflies; and crickets that chirp in unison'. However, many biological 
systems are not defined - or it is not suitable to define them - by the phase of a certain 
property and its time evolution but rather by the concentrations of substrates or species. 
Thus, in Chapter 5 of this thesis, we investigate the synchronisation of coupled dynamical 
systems which depart from the Kuramoto model [33-36]. We apply our results to three 
different and relevant models of biological for biochemical oscillators, the van der Pol os- 
cillator [30], the Repressilator [37] and a variant of the Goodwin model 15,38]. The latter 
is repeatedly used to model the circadian clock [39-41). 

An important issue for our analysis is also finding invariants sets, because they decom- 

pose the state space into subsets whose boundaries trap solution trajectories. Thus, we 
can restrict our analysis to the dynamics in each invariant set. Moreover, often an analysis 
of the entire state space would not yield any result. In this thesis, we also show how the 

search for these sets can be implemented computationally. 

1.2 Organisation of the thesis 

In Chapter 2, we provide an overview on Martin Feinberg's CRNT and his main theorems. 

Importantly, we extend his result and show the applicability of these novel results to sys- 
tems in biology and biochemistry. In Section 2.1, we introduce chemical reaction networks 

which obey the law of mass action and in Section 2.2, Martin Feinberg's CRNT. In sec- 

tion 2.3 and Section 2.4, we provide extensions to the theory. First, we consider reaction 

networks that do not obey the law of mass action and provide a deficiency-zero-like theo- 

rem for these networks. Second, we provide a result on the boundedness of solutions which 

depends only on the structure of the network and not on the deficiency. We demonstrate 

the applicability of our results with examples from biology and chemistry. 

Chapter 3 gives the mathematical background necessary for the second part of the 

thesis. In Section 3.1, we give a brief literature review on results on dynamical systems 

with a certain contraction property. In Section 3.2, we present the so called Bendixson's 

Criterion for higher dimensions. These results are based on extensions of Lyapunov theory 

and require positivity/negativity. They are a powerful framework for the analysis biological 
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systems, particularly, because they can be implemented computationally. To this end we 
use semtdefinite programming and the sum of squares decomposition. Section 3.3 provides 
a brief introduction to both. 

Chapter 4 consists of some preliminary applications of the results presented in Chap- 
ter 3. In Sections 4.1 - 4.3, we show how to obtain invariant sets of dynamical systems 
using semidefinite programming and the sum of squares decomposition. These results are 
important by themselves for the analysis of mathematical models in biology. However, 
we also use them in Chapter 5 in order to obtain lower bounds on the coupling strength 
that guarantees synchronisation of coupled systems. In Section 4.4, we computationally 
implement results by Peter Giesl [42-44] to prove existence, uniqueness and exponential 
stability of a limit cycle. 

In Chapter 5, we use the results presented in the previous two chapters to obtain con- 
ditions for the entrainment (Section 5.1) of a dynamical system to an external input (for 

example, the heart driven by an external pacemaker) and for the synchronisation (Sec- 
tions 5.2 - 5.6) of coupled dynamical systems (for example, coupled circadian clocks). 
Section 5.2.1 introduces Louis M. Pecora's and Thomas L. Carroll's master stability func- 
tion which provides local results on the stability of the completely synchrontsed state of 
coupled identical oscillators [33]. Section 5.2.2 provides sufficient results for its global sta- 
bility [34,35,45]. Certificates are hard to obtain; in a few instances, they can be obtained 

analytically. In this thesis, we show how they can be obtain computationally and how this 

can improve the bounds on the minimal coupling strength that guarantees synchronisation 

even for cases for which certificates were obtained analytically (Section 5.2.3 and Sec- 

tion 5.6.1). In Section 5.3, we draw connections between the synchronisation of dynamical 

systems and the construction of an observer. In Section 5.4, we extend the results on global 

complete synchronisation of coupled identical oscillators to frequency synchronisation of 

coupled nonidentical oscillators. In Section 5.5, we provide conditions that are weaker 

than the previous and that guarantee that the differences of solution trajectories between 

different oscillators remain small when they are coupled (incomplete synchronisation). In 

Section 5.6, we show that in the special case of a system of coupled identical oscillators 

with all-to-all coupling, it is possible to extend the results of Section 5.2. In Section 5.6-1, 

we provide a lemma which is equivalent to Theorem 5.2.3 but work also with a nonconstant 

matrix. We then extend this result to obtain conditions that guarantee global complete 

synchronisation for coupled identical discrete-time dynamical systems. In Section 5.6.2, 
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we provide novel sufficient conditions for global complete synchronisation of coupled iden- 
tical oscillators as an alternative to the ones presented in Section 5.6-1. They are based 
on the so called Bendixson's Criterion for higher dimensions which we have presented in 
Section 3.2. They signify a move away from the, at times, strict requirements derived from 
contraction theory. This novel approach, which can be also implemented computationally 
via semidefinite programming, leads to major improvements on the lower bound of the 
coupling constant that guarantees global complete synchronisation. Furthermore, it is also 
applicable to systems which could not be analysed using the methods of Section 5.2. We 

show this through several examples that compare the two approaches. All sections are 
accompanied with examples from physics and biology. Finally, we draw conclusions and 
make suggestion for future research in Chapter 6. 

1.3 Original contribution 
Section 2.3 and Section 2.4 consist entirely of novel results that provide an extension of 
Martin Feinberg's CRNT and thus, of an analysis framework for chemical reaction networks 
which is independent of parameter values. First, we provide a deficiency-zero-like theorem 
for networks that do not obey the law of mass action. Second, we show that by checking 

structural properties of the graph of certain reaction networks, we can guarantee that 

they have a bounded absorbing set. This result provides a qualitative criterion, which 
is completely independent of reaction rate values and the deficiency of the network, to 

establish that a biochemical network will not diverge. Moreover, the result can also be 

used to characterise certain bifurcations from stationary to oscillatory behaviour. 

In Section 4.2, we provide a technique to obtain invariant sets of dynamical systems 

using SOSTOOLS, a free MATLAB toolbox that checks for sum of square decompositions and 

is based on semidefinite programming. The existence and structure of invariant sets con- 

vey important information for the analysis of dynamical systems and thus, mathematical 

models of biological systems (Section 4.3). In Section 4.4, we reformulate Peter Giesl's 

results in [42-44] in order to make them computationally implementable. By doing so, we 

can prove existence, uniqueness and exponential stability of limit cycles (Section 4.4.1). 

In Section 5.1, we propose an algorithm based on semidefinite programming that al- 

lows us to establish sufficient conditions under which a exponentially stable system will 

entrain to the external input. In Section 5.2.3 and Section 5.6-1, we show how to search 
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computationally, for the first time to our knowledge, for certificates for global complete 
synchronisation of coupled identical oscillators. We show the applicability of our technique 
through popular models of biological oscillators. We extend this approach to frequency syn- 
chronisation of coupled nonidentical oscillators in Section 5.4. The results of Section 5.6.2 

consist of a novel approach to guarantee synchronisation of coupled oscillators. They are 
based on the so called Bendixson's criterion for higher dimensional dynamical systems. 
Their computational implementation shows that they can improve the results obtained in 
Section 5.6.1 tremendously. 
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Chapter 2 

Chemical reaction network theory 

2.1 Chemical reaction networks obeying mass action 
kinetics 

Chemical reaction networks are used to describe and understand processes in biology and 
biochemistry. The general form for a chemical reaction is given by 

ki 

aA + bB ; --± xX + yY (2.1) 
k-1 

where [A], [B], [X], and [Y] denote the concentrations of the chemicals or SpecZes: A, 

B7 X and Y. The objects that appear before and after the reaction arrows in (2.1) are 
the so called complexes. Note that complexes are made up of species [46]. Furthermore, 

ki [A]a [B]' ---, and k-, [X]-ý [Y]" ---, are the for-ward reaction rate and reverse reaction rate 

respectively, where a, b, x, and y are the multiplicities (positive integers) of the respective 

chemicals, and k, and k-1 positive rate constants. 
The law of mass action assumes that if reactions take place at constant temperature 

in a homogenous and well mixed solution (Figure 2.1) then the probability of a collision 

between molecules is proportional to the product of their concentrations. Now, consider 

the simple chemical reaction of the form 

A+B- k>C. (2.2) 

Then, it follows from the law of mass action that 

d[C] 
dt 

k[ 
I 
A] [B]. (2.3) 
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Figure 2.1: The law of mass action. 

Moreover, chemical reactions do not proceed in one direction only and we have to 
include the reverse reactions. In this case, equation (2.2) becomes 

k+ 

+ B;:: t C, (2.4) 
k- 

and equation (2.3) 
d[C] 

k- [C] + k+ [A] [B]. (2.5) dt 
However, the reverse reaction could be so small that it can be considered negligible. 

An illustrative example is the following reaction scheme proposed by Michaelis and 
Menten in the beginning of the last century for chemical reactions involving enzymes, 

ki k2 

E+S; -- P, ýý E+ P2, 
k-, k-2 

(2.6) 

where S denotes the substrate, E the enzyme, P, the intermediate product formed by 

the reaction of S and E, and P2 the final product. An enzyme is both a protein and 
catalyst. Most biological catalysts are enzymes. A catalyst is a molecule, whose function 

is to accelerate a chemical reaction (up to a billion times); that is, the particular reaction 

would occur even if the catalyst was not present but at a much slower rate. Furthermore, 

a catalyst is not altered by the reaction and can participate in subsequent reactions. 
In the chemical reaction network given by (2.6), edges represent chemical reactions and 

vertices represent complexes. (In general, the symbol 0 represents the null-complex, which 

functions as a source and a sink for the system. ) We denote the concentration vector of the 

different complexes by T(x), where x is the concentration vector of the different species. 
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For the Michaelis-Menten reaction, the vector of complexes and species are given by 

[E] (S] - 

lp (X) == [Pll 
L [E] [P2] 

j 

[E] 

and x 
IS] 

IN 
[P21 

respectively Q-] denotes a concentration). Now, the so called bookkeeping matrix Y maps 
the space of complexes into the space of species. Its entries are nonnegative integers. The 

entries to the ith column of Y tell us in which complexes species i appears; or, equivalently, 
the entries to the jth row tell us of which species complex j is made of. For (2.6), 

01 

00 

010 
001 

Let K c- W+n be the transpose of the weighted adjacency matrix of the weighted digraph rep- 

resenting the chemical reaction network. The entry K(ij) corresponds to the rate constant 

associated with the reaction from complex j to i. Thus, for (2-6), 

0 k-, 0 
K k, 0 k-2 

0 k2 0 

The transpose of the weighted Laplacian matrix is given by 

diag(K T 
e) - K, 

where e= [1, --- , 1JT . The matrix A,, = -L is the so called the kinetic matrix. For (2.6), 

ki k-, 0 
AK ki -(k-l + k2) k-2 

0 k2 -k-2 

If we assume that the chemical system given by (2.6) obeys the law of mass action then 

its time evolution is given through the following set of nonlinear ODEs [16]: 

,ý= YA, ý ýp (X), In qf (x) =: yT In X. (2-7) 
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For clarity, we also provide the expanded ODE representation of the Michaelis-Menten 
reaction: 

-kj[E][S]+(k-j+k2)[Pl]-k-2[E] [P2], 

[S] -k, [E][S]+k-, [Pl], 

[PI] kl[E][S]-(k-, +k2)[Pl] + k-2[E] [P2], 

[P2] k2 [PI] - k-2[E] [P2] (2-8) 

The figure below (Figure 2.2) depicts the time evolution of (2.8). 
2 

ts 

1.6 

1A 

1,2 

1 

U 

0,6 

------------------------------- 

OA 

0.2 

C 
0 56789 10 

time 

Figure 2.2: Michaelis-Menten reaction. The parameters have arbitrary concentration 
and time units and are k, = 1, k-, = 0.5, k2 = 0.2, and k-2 = 0.7. 

In general, we assume that a chemical reaction network has n species and m complexes. 
----nxm Thus, in (2.7): xE Rn+, T(x) E RN+m, A., c- Rrnxm, and YE R+ . In the following, we 

will highlight certain properties of (2.7), which we will exploit in order to prove the main 
theorem of this chapter (Theorem 2.4.3). Recall that 

Ar, =K- diag(K Te). 

M Let us denote diag(K'e) by D. Then, with 1:, 
=, 

K(jj) = D(j, j), this leads to: 

MMM 
Xi == E ýPj (X) (j, j)K(jj)-Y(jj)D(jj) =EEK(jj)Tj(x)(Y(j, j)-Y(jj)), (2.9) 

j=1 
(E 

1=1 j=1 1=1 

Let us denote the reaction rate of the reaction that transforms complex 1 into complex I 

by kj,,, j, 1= 11, 
.., ml. Then, K(Ij) = kj, j (see [47]) and 

kj-, 1 Wj (x) (Y(i, i) - Y(i, j» - i 

91 
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'The symbol 91 denotes the set of reactions in the underlying network, and its presence 
under the summation sign is intended to indicate that the sum is taken over all reactions' [9). 
Note also that 

n 
, 4rj (X) =: = 

11 
xy(p, j) 

The following lemma introduces an important property of chemical reaction networks 
taken with mass action kinetics. It implies that we can restrict our analysis to the non- 
negative orthant, the space of realistic solution trajectories. 

Lemma 2.1.1. If a dynamtcal system represents a chemteal reaction network, : ýjj'; j=o 0, Vi. Then, solutions remain nonnegative if the initial conditions are nonnegative. 
-n -----n x ?n Proof. The first statement follows directly from (2.7), since xE R+ 

7YE R+ and the 
off-diagonal elements of A,, are nonnegative, which implies that ýbjjxj=o ý: 0, Vi. To prove 
the second statement, define d(x, Rn+)' =" ini'yk- jjx - y1j, xE Rn. Since., ýjjx, =o ý! 0, Vi, for 

every i such that xi = 0, it follows that xi + hfi (x) = hfi (x) >0 for h>0 while for every 
--n i such that xi > 0, xi + hfi(x) >0 for sufficiently small jhj. Thus, x+ hf (x) E R+ for all 

-n sufficiently small h>0 and hence liMh-O+ d(x + hf (x), R+)/h = 0. It now follows from 
Theorem 4.1.26 of [48], with x(O) = x, that x(t) E Rn+ for all t ý! 0.0 

The following definitions of a linkage class and weak reversibility are central to CRNT. 

Definition 2.1.2. A ltnkage class is a closed set of complexes that are linked through 

reactions. We denote the number of linkage classes by f. 

Remark 2.1.3. Note that Definition 2.1.2 implies that the linkage class of the chemical re- 

action network is what is called an indecomposable subgraph in graph theory. Furthermore, 

if i>1 then A,, can be block-diagonalised and each block-diagonal submatrix corresponds 
to a linkage class. 

For example, the Michaefis-Menten reaction (2.6) has one linkage class (f = 1). The 

chemical reaction network in Figure 2.3 has three linkage classes (f = 3). 

Definition 2.1.4. A chemical reaction network is weakly reverstble if there is a directed 

reaction path from any complex to any other within the same linkage class. 

Remark 2.1.5. Note that weak reversibility means that each indecomposable subgraph, 
Ge, of the chemical reaction network is strongly connected; that is, 'any two points are 
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2x, - X2 :; -===== 2X3 X4 Xl + X5 \ 

X/ 
X3 + X5 2X7 

Xl + X3 X6 

Figure 2.3: A sample mass action system. 

mutually reachable by means of directed paths' [49]. This implies that in all linkage 
classes any individual reaction is always part of a reaction cycle. Furthermore, weak 
reversibility implies that every block-diagonal submatrix of A,, associated with a linkage 

class is irreducible. A square matrix is irreducible if it is not reducible. It is reducible if and 
only if it can be made block upper-triangular by simultaneous row/column permutations. 

For example, all individual reactions in the Michaelis-Menten system (2.6) are reversible 
and thus (2.6) is weakly reversible. In Figure 2.3, the reaction network in the first linkage 

class is not weakly reversible, because complex 2x, is not reachable from all complexes in 
the class via a directed reaction path; the networks in the second and third linkage class are 
weakly reversible. It follows that this chemical reaction network is not weakly reversible. 

Definition 2.1.6. The rank of the stoichiometric subspace of a chemical reaction network 
is given by q= rank(YA,, ). 

Definition 2.1.7. The defidency of a chemical reaction network is given by 

6 =dimA� -q-£= m-q-t > 0. 

For the Michaelis-Menten reaction (2.6), dim A,, = 3, 

- ki k-1 + k2 -k-2 

YAx -ki k-1 0 
and thus, q= rank(YA,, ) = 2. 

ki -(k-l + k2) k-2 

0 k2 -k-2 

It follows, that J=3-2-1=0. The Michaelis-Menten reaction is of deficiency zero. 

Note also that, in general, if Y has full column rank then the respective chemical reaction 

network is of deficiency zero. However, the reverse conclusion is not necessarily true. 
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Definition 2.1.8. If q<n, where n is the dimension of the species subspace, then each 
set of n-q linearly independent vectors pi, i=1, n-q, together with the following 
set of constraints 

pi x=0 => pi x= ýY, xC R+, -y c R, pi CR, pi -ý 
defines an affine space of R' which is the stmchiometTic compatibility class of the chemical 
reaction network. If q=n then the stoichiometric compatibility class of the chemical 
reaction network is Rn. 

In the next section, we present Martin Feinberg's CRNT. 

2.2 Martin Feinberg's chemical reaction network the- 

ory 

Martin Feinberg's CRNT is based solely on the structure of the chemical reaction network 
and not the actual values of the reaction rates. Martin Feinberg describes the central 
premise of CRNT as follows: 'Although the governing differential equations vary markedly 
from one chemical system to another, the equations themselves are determined in a rather 

precise way by the underlying network of chemical reactions. Thus, one can hope to draw 

firm connections between aspects of reaction network structure and the variety of dynamics 

that might be admitted by the corresponding system of differential equations' [9]. Before 

stating Martin Feinberg's main results, we have to introduce Lyapunov's stability theorem 

of which we make extensive use in this thesis. We show the theorem as it appears in [50], 

Hassan H. Khalil's excellent book on nonlinear systems in general and Lyapunov theory 

in paxticular. The following formal definition is often used in dynamical system theory for 

Lyapunov stability, asymptotic stability, and instability [50]. 

Definition 2.2.1. The equilibrium point x=0 of 

(2.12) ý= 
is 

9 Lyapunov stable if, for each e>0, there is 9- J(E) >0 such that 

11x(O)II <6=; ý* jjx(t)jj < E, for all t>0, 
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9 unstable if it is not Lyapunov stable, 

10 asYmptotically stable if it is Lyapunov stable and ý can be chosen such that 

llx(0)11 <6 => lim x(t) = 0. t--"o 

Theorem 2.2.2. (Lyapunov's stability theorem) Let x=0 be, an equilibrium point 
for (2.12) and DC Rn be a domain containing x=0. Let V: R --* R+ be a continuously 
differenhable junction such that 

V(O) =0 and V(x) >0 in D- f0j (2.13) 

1ý(X) <0 in D (2.14) 

Then x-0 ZS Lyapunov stable. Moreover, if 

ý7(x) <0 in D- 101 

then x=0M asymptobcally stable 

Now, the following two theorems from reference [16] represent one of the main results of 
CRNT: the deficiency zero theorem. In this thesis, we provide only the proof of statement 
4 of Theorem 2.2.3. (The proofs for both theorems can be found in [16]. ) The proof uses 

a specific Lyapunov function 

T_ X) + XT (11.1 XnT= [1 
... 

1] -! ýý (In x, ... in Xn]T, V (x e (Xeq - In Xeq)) XE R+) 
, Inx - 

which is closely related to the function 

H(t) =If In fdc, 

which was used by Ludwig Boltzmann in 1872 for his H-theorem to describe the increase of 

entropy in an ideal gas. Here, f (r, c, t) is the so called distribution function and is defined 

such that f (r, c, t)drdc is the number of molecules at time t between positions r and r+ dr 

and which have velocities between c and c+ dc (see reference [51] for a more detailed 

description). Moreover, 

H(t) = -kBS(t)j 

where kB is the Boltzmann constant and S(t) the entropy of the system [51]. Ludwig 

Boltzmann proved that 1ý(t) < 0. In [521, it was shown that (2-16) can be interpreted as the 
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thermodynamic state function (or Gibbs free energy function) ýb(t) at constant temperature 
and constant pressure. Moreover, ýb(t) 2'2 RTH(t), where T is the absolute temperature 
and R is the molar gas constant. Hermann von Helmholtz defined the (thermodynamic) 
free energy as 

A(t) = U(t) - TS(t), 

where U(t) is the internal energy of the chemical system. When keeping temperature, 
pressure and volume constant, A(t) = ýb(t). For this reason, F. Horn and R. Jackson 

named (2.16) the pseudo-Helmholtz junction in [53]. 

Theorem 2.2-3. In any chemtcal reaction network, suppose there exists a fixed point 

Xeq E RT for which A,, T(xeq) = 0, then the followMg statements hold. 

1. The network is weakly reverstble. 

2. Every fixed point, x* E RT with f (x*) = 0, satisfies A,, ýP(x*) = 0. 

3. There is one, and only one, fixed point in each stotchiometric compatibility class. 

Each fixed poZnt has a strict Lyapunov function defined on its stoichiometric compat- 

ibility class and is asymptotically stable relahve to that class. 

Proof. Proof of statement 4: Consider the Lyapunov function 

T X) + XT 
Tn 

V (x) =e 
(X, 

q - (In x -In Xeq), e == [I 
... 

1], V(X) >0 if XE R+ 
- 

IXeq}- 

Here, In x ! -ý- [In x1... In x,, ]' and exp(x) Lý- [exp(xi) ... 
exp(X, ")]T . To see that V(x) >0 

-n for all xE R+ - 
fXeql, note that for all y EE R, 

exp(y) >I+y if y =ý 

thus, 

exp (9) 
= exp(p - y) >1+y 4=#- exp(q) - exp(y) > exp(y)(9 - Y) 

exp(y) 

if 9 =ý y, which implies that 

eT (exp (In Xeq) - exp (In x)) > exp (In X)T (In Xeq - In x) ý* eT (Xeq - X) > XT (In Xeq - In x) 
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'f X =/= X, q. Let Iii : -- In X' - In Xieq - Then, 

1ý(X) -- av(x) f (X) 
-f (X)T(_e + Inx - 

InXeq + e) =f (X)T (111 x- In X, q) 
Ox 

nmm 

- q, (X) TA TyT (11, X- In x, )-1: 1: 1: K(l, j), Pj (x) (Y(i, l) - Y(i, j)) (in xi - in xi,, 
Kq 

q) 

mmnn 

K(l, j) x yo"4) 
p 

E(Aiy(i, 
t) - t4Y(j, j)) j=l 1=1 P=j i=l 

mmn 
Y(P, j) 

n 
K(l, j) fl 

(XP, 

q exp(ppY(p, j))) 
E(, uiy(,,, ) - p, y(,, j)) 

mmnp(nnn E 1: K(j, j) 
11 xy("j) ex 1: 

j=i 1=1 P=j 

Peq 

i=l 

NY(ili) piy(i, j) 

<mm 
, j) 

nX 
y(p, j) 

nn 
K( 11 

Peq exp Aiy(i, l) exp piy(ili)) 
P=j 

mmn 
K(l, j)Tj(xeq) 

fj(exp(ttjY(j, 
j)) - exp(ttjY(j, j))) 

mmnmmn 
K(j,, ) TI (X, 

q) 
fl exp(piY(i, j)) - 

K(IJ) Tj (Xeq) exp(piY(ij)) 
i=l 

mnm 
1: 11exp(liiY(i, 

j))E(K(j, 1)411(Xeq)-K(l, j)4jj(Xeq))=O- (2.17) 
j=l i=l 1=1 

To see this, recall that A,, T(x, q) =: 0 and 

Ar. =K- diag(K T e) =K-D. 

Then, with Em, K(j, j) = D(j, j), for all j, j=11... 1 MI 
mm 

(AK4'(Xeq))j (K(j, 
t) q'l (Xeq)- D(j, j) 

'Fj(Xeq))= (K(j,, ) 
4f I 

(Xeq)- K(l, 
j)'I'j(Xeq)) 

The inequality in (2.17) implies that the equilibrium point is unique and globally asymp- 
totically stable within a stoichiometric compatibility class. 0 

Theorem 2.2.4. If a chemical reaction network has deficiency zero, then it has a fixed 

pointX, qE Rn for which AxF(xeq) =0 if and only if it ts weakly reversible. 
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Remark 2.2.5. The trajectories of the system can evolve in different stoichiometric com- 
patibility classes depending on the choice of initial conditions. However, these classes 
are invariant sets. Hence, for any given set of initial conditions, Theorem 2.2.3 and Theo- 
rern 2.2.4 imply asymptotic stability and uniqueness of the fixed point of a weakly reversible 
chemical reaction network of deficiency zero, that periodic solutions do not exist, and that 
if a chemical reaction network of deficiency zero is not weakly reversible then a positive 
fixed point does not exist. 

We wish to stress that chemical reaction networks of deficiency zero are more than a 
theoretical construct. Many models in biochemistry correspond to such network. We refer 
the interested reader to Reference [17], an excellent paper by Martin Feinberg. In the 
following, we present two examples of systems from biology and biochemistry that are of 
deficiency zero, another example is given in Section 2.3. 

Figure 2.4 shows the two-component EnvZ/OmpR signaling system in E. coli. It reg- 

ulates OmpR-P and the expression of porins OmpF and OmpC which form a part of the 

osmotaxis signalling pathway [54]. The chemical reaction network is of deficiency zero. 

Hence, the equilibrium point is locally asymptotically stable. 

ki 
OmpR + EnvZ-P - (EnvZ-P)OmpR k k-i 

**lý 

ki, kk EnvZ + OrnpR-P 

11 

k-2 09 
kp k2 

OmpR + En (EnvZ)OmpR-P 

Figure 2.4: A model of the EnvZ/OmpR two-component circuit [54]. 

In [55], a long proof is presented to show that structurally stable closed orbits do not 

exist if there are no more (possibly reversible) reaction steps than reactants in the case of 

a closed reversible chemical system given by 

kij 

Ti (x) ý: 2 qfj (X), i, i = 11 ... 
9 

mi 

kj, i 

with rankY =n and obeying mass action kinetics. (For example, such a system is the 

reversible Michaelis-Menten reaction given by (2.6). ) This means that the system is weakly 

reversible, n>m and rankY =n which implies that the system has deficiency zero and 

therefore a unique and stable fixed point and that periodic behaviour cannot exist. Hence, 
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we obtain the same result by applying CRNT. Now, we present Martin Feinberg's deficiency 
one theorem [9]. 

Theorem 2.2-6. Consider a mass action system for which the underlying reaction network 
is weakly reversible and has f linkage classes. Suppose that the deficiency of the network J 
and the deficiencies of the individual linkage classes JO satisfy the following conditions: 

1.60 :ýi1 172 
1f 

2-, o=l 00 = d. 

Then, no matter what (positive) values the rate constants take, the corresponding differen- 
tial equations admit precisely one steady state in each positive stoichiometric compatibility 
class. 

The proof of this theorem is very involved and not of importance for the work presented 
in this thesis. We refer the interested reader to reference [56). 

Remark 2.2.7. Note that Theorem 2.2.6 does not guarantee the stability of this unique 
positive equilibrium point. For example, for certain values of parameters the equilibrium 
solution for the chemical reaction network presented in last example of Section 2.4 is 

unstable and a stable periodic orbit appears. 

For completeness, we should mention that Martin Feinberg has also showed that de- 
ficiency zero or one of a chemical reaction network rules out the possibility of multi- 
stationarity, the existence of several equilibria. For example, this is related to differen- 

tiation of cells [57]: E. coli can express two different phenotypes (Lac genes on or off) 
depending on whether it has been exposed to a high extracellular concentration of a spe- 

cific chemical inducer or not. When concentrations are moderate, both types can coexist in 

the same culture as for some these concentration are just enough to push them in one direc- 

tion while for others they are nor. Recently, Martin Feinberg has developed together with 
Gheorghe Craciun a new method for distinguishing between chemical reaction networks 

that are capable of having multiple equilibria and those that are not [17]. 

The species-reaction graph 

Martin Feinberg and Gheorghe Craciun have showed that if the system's Jacobian - that is, 
81(') - is nonsingular within each stoichiometric compatibility class then multi-stationarity Ox 
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is excluded. This is so, because in this case the mapping from the species to the complex 
space is injective or 'one-to-one'. Importantly, they deduce nonsingularity of the Jacobian 
from properties of the species -rea cho n graph. The species-reaction graph is constructed as 
follows: 

e Species are represented in curly brackets and individual reactions in square brackets, 

where one does not discriminate between reversible and irreversible reactions. 

'If a species appears within a reaction, then an arc is drawn from the species symbol 
to the reaction symbol, and the arc is labeled with the name of the complex in which 
the species appears. [ 

... 
] If a species appears in both complexes of a reaction then 

two arcs are drawn, each labeled by a different complex' [17). 

For the Michaelis-Menten reaction (2-6) the species-reaction graph looks as follows: 

f sl S+E (S + E; ---2 Pij P' fpll 

S+E 
I 

P2+E 

I 
P, 

P2+E JEJ [Pi E+ P2] IP21 

We refer the interested reader to reference [17] for the exact procedure how to check whether 

multi-stationarity is possible. It can be surnmarised as follows: multi-stationarity is not 

possible 

if for each cycle, either the number of reactions whose respective complexes are also 

part of the same cycle is odd (odd-cycle), or the complexes in the cycle have all a 

stoichiometric coefficient =1, or both, 

9 and if species that belong to the same complex do not belong to more than one 

even-cycle. 

It follows, that multi-stationarity is not possible for the Michaelis-Menten reaction. The 

next result is complementary to Martin Feinberg's. It was developed by Rene Thomas and 

Christophe Soul6 [58,591 and is also based on proving under what conditions a mapping 

from the domain of x to its range is or is not one-to-one. 

37 



The graph of interaction 

First, we introduce the following definition. 

Definition 2.2.8. The graph of interaction is determined by the Jacobian of the dynamical 
system corresponding to a chemical reaction network. An off-diagonal entry J(i, j) in the 
Jacobian implies a directed edge (or arrow) from node i to node j in the graph of interaction 
of the system. The weight of the arrow, which can be either positive or negative, is given 
by the value of the entry. 

We use the standard graph theoretical definition for the definition of circuits (or loops) 
in the graph of interaction. As implied in Definition 2.2.8 we do not consider self-loops. 
Furthermore, a circuit is positive or negative according to the product of the weights of its 

edges. For the Michaelis-Menten system (2.8) the Jacobian is 

(ki [S] + k-2 [P21) 
-k, [E] k-, + k2 

-k-2 
[P21 

ki [S] -ki [E] k-I 0 
ki[E] -(k-l + k2) k 21 ki[S] + k-2 [P21 

-2 
lp 

-k-2[p2l 0 k2 
-k-2[P2] 

and the graph of interaction is as follows: 

Is *2 o- El 

(D 

Here, we use 6) and E) to indicate positive and negative weights respectively when we 

consider only positive values for the concentrations. 

Lemma 2.2.9. (Rene Thomas's necessary conditions for multi-stationarity) A 

positive directed loop in the graph of interaction of a dynamical system is necessary for 

multi-stationa, rity. 

From the graph of interaction, we can see that there exist several positive directed 

loops. Hence, for the Michaelis-Menten system, the lemma above does not rule out the 

possibility that there exist more than one equilibrium point with positive concentrations. 
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2.3 Chemical reaction networks under dimensionally- 
restricted conditions 

The phenomenological approach developed by Michael A. Savageau to describe reactions 
following non-ideal kinetics in crowded environments such as the cell (mentioned in the 
Introduction) accounts for the fact that 'the kinetic order of a reaction with respect to a 
given reactant is a function of the geometry within which the reaction takes place' [601. It is 
called the power-law approximation and introduces an additional asymmetry in the set of 
ODEs that describe the reaction network. In a three-dimensional homogeneous space, the 
kinetic order of a given reactant is identical to the number of its molecules that take part 
in the reaction. But studies have shown, that when reactions occur on a two-dimensional 
surface, the kinetic order is larger, and becomes even larger still in a one-dimensional 
channel (Figure 2.5). Moreover, this studies indicate that kinetic orders remain positive. 

X+X 

Traditional rractal 

3-D 3-D 2-D I-D I/n -D 

V=kP V---kx2 V: 4XZ46 V- kX3 V: kV2r)--I 

Figure 2.5: Manifestations of power-law kinetics (taken from reference [60]). 

Here, the kinetic order depends on the level of dimensional restriction. Experiments report 

the following: kinetic orders of 2 in homogeneous three-dimensional space, of 2.46 on two- 

dimensional surfaces, of 3 in a one-dimensional channel, and up to 50 in dispersed clusters 

or islands. 

In the case of a chemical reaction network under the power-law approximation, the 

number of equilibrium solutions can be different from the number of equilibrium solutions 

of a chemical reaction network obeying the law of mass action and the same initial condi- 

tions might result in a different dynamical behaviour. For example, consider the following 
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chemical reaction network: 
66 

x 2x 3x 

The corresponding differential equation is given by 

- llx + 6x 2_x3. 

Then, the three equilibrium solutions areX, ql - 11 Xeq2 =2 andX, q3 I the equilibrium 
point X, q2 =2 is unstable and the two others are stable. However, if a dimensional 
constraint changes the dynamics to 

jý =6- llx + 6x 2.5 
_x57 

then there exists only one globally stable equilibrium solution X, q = 1. Furthermore, 
periodic solutions can also appear or vanish because of changes in the differential equations 
(representing a chemical reaction network) under the power-law approximation. 

A possible system of ODEs representing a chemical reaction network obeying Michael 
A. Savageau's power-law approximation is: 

ý= YA,, q, (x), In IQ (x) = G' In x, (2.18) 

where, we assume that 

there exists a diagonal matrix D>0 such that G= DY. (2.19) 

The deficiency zero theorem guarantees that there exists a unique positive equilibrium 
POint X, q 

for 

-ý = DYA� IQ (x) =: GA, IP (x), In T (x) =GT In x, (2.20) 

and that it satisfies 
A,, xP(X, 

q) = 0. This implies that if the chemical reaction network 

represented by (2.18) and (2.19) has deficiency zero then it has the same unique equilibrium 
Point Xeq as (2.20), for which 

AxT(Xeq)= 0. The following theorem proves local asymptotic 

stability of the equilibrium pointX, qof the chemical reaction network represented by (2.18) 

and (2.19). 

Theorem 2.3.1. (A deficiency-zero-like theorem for reactions under dimension- 

ally restricted conditions) The fixed point Xq ERn of a weakly reversible chemical 

reaction network with power-law kinetics, whereX, q is such that Ar, 4' (Xeq) =0 and there 

exists a diagonal matrix D>0 such that G= DY, is locally asymptotically stable. 
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Proof. The Jacobian at x-x,, is: J =: YAyTD[diag(x,, )]-', where A,, - 
A", diag(1p(Xeq)), 

nXn Xm JER, YE R+ 
I A, 

ý E R"'rn, and T(Xeq) E R. It follows that An is negative 
semidefinite, since it is block diagonalisable and each submatrix is irreducible and has zero 
row and zero column sum. Now, let 

P- [diag(Xeq)ID-' - D-1 [diag(X,, 
q) 

)>0 (2.21) 

and ý=X- Xlqi where 0 <IX - Xqj :5 Ei X- Xeq 76 0, and s>0 is small. Consider the 
following (Lyapunov) inequality 

YAryT D[diag(X, 
q)]-lPý + ýT P[diag(x,, )]-'DYATyTý = 2ýT YAn yTý. 

n 
(2.22) 

Note that (2-22) :50 and that (2.22) <0 implies local asymptotical stability of the fixed 
point. 

It follows from 6=0 and weak reversibility that q= rank(YA,, ) = rank(A,, ). Thus, 
(2.22) =0 only if n>q and dinvV(YA,, ) =n-q. By (2.11), there exists n-q linearly 
independent vectors p0 such that pT YA, -0 and pTX = -f. Therefore, (2.22) =0 only 
if ý=p but then ýTý pT(X - Xeq) = -y - -y = 0, which is a contradiction. If follows that 
(2.22) <0 for all ý and thus, Xeq is locally asymptotically stable. 0 

We have provided a deficiency-zero-like theorem for reactions under dimensionally- 

restricted conditions, as experienced in the cellular environment, where the law of mass 
action does not strictly apply. We now briefly illustrate this result with application to an 
important biological system. 

Application to a kinetic proofreading scheme 

Kinetic proofreading schemes, as the one depicted in Figure 2.6, have been proposed to 

model certain signalling cascades [61-63]. Particularly, let R correspond to the receptors 

of a T-cell which bind to antigens L. They consecutively form the complexes S, to SN 

through several steps usually requiring phosphorylation. High concentrations at steady 

state of complexes further down the reaction chain imply the presence of a foreign antigen 

- as opposed to a 'good' self antigen - which triggers an immune response (not shown). 

This allows T-cells to discriminate between foreign and self antigens and to avoid signalling 

mistakes. Since the levels of the concentrations of complexes are determined by the disso- 

ciation constants di and transformation rates ki, i == 0,.. -, Nj in this model 'good' antigen 

have higher values of di and 'bad' antigens have higher values of ki. 
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d 
du L 

kn ki, 
7S- 

R+L 
do 

so 
k2 

-0, S2 
k3 

si 
kN 

-Y N 

Figure 2.6: A kinetic proofreading scheme [62]. A signaling cascade where R is the 
receptor, L the ligand and the Si are signal elements. 

Note that this biochemical reaction network is weakly reversible and of deficiency zero. 
Thus, it has a unique stable equilibrium solution and periodic solutions can not exist under 
mass action kinetics. Now, independently of the kinetics, even if the reactions do not obey 
the law of mass action due to the volume exclusion effects or to macromolecular obstacles, 
Theorem 2.3.1 states that an equilibrium point of the chemical reaction network under 
power-law kinetics is locally asymptotically stable. This provides additional evidence that 
this system is a valid kinetic proofreading model of T-Cell receptor signal transduction. 

2.4 Boundedness of weakly reversible chemical reac- 
tion networks 

In this section, we give results on weakly reversible chemical reaction networks in general, 
since many relevant chemical reaction networks are weakly reversible [47], thereby going 
beyond Martin Feinberg's CRNT and hence, providing an extension to his network analysis 
framework. Importantly, the result is completely independent of the deficiency of the net- 

work. In the following, we assume that all chemical reaction networks are taken with mass 

action kinetics. First, we require the next two definitions of conservative and ultimately 
bounded chemical reaction networks. 

Definition 2.4.1. If there exists ap >> 0 such that p'YA,, = 0, the chemical reaction 

network is conservative. Note that if a chemical reaction network is conservative, the 

origin is Lyapunov stable, since, for x =/= 0, the Lyapunov function V=pTx>0 and 
ýr = pTYA,, T(x) = 0. 

Note that this means that the sum of the concentrations of a conservative system 

42 



remains constant at all time 

Definition 2.4.2. A dynamical system f (x) is said to be ultimately bounded if it possesses 
a bounded absorbing set. The bounded set Bo is absorbing if for any bounded set BERn 
there exists a to - to(B) such that x(B) E Bo for t> to. Equivalently, there exists a scalar 
^ý ý! 0 and a Lyapunov function V(x) such that 1ý(x) < 0, if JJxJJ > -y (see Theorem 4.1 
of [64]). The following figure is an illustration of the solution trajectory of an ultimately 
bounded system: 

9 

----------- 

------------ 
Figure 2.7: Ultimately bounded system. 

A simple chemical reaction network whose solution trajectories diverge to infinity for 

any positive initial condition is: 

2X 

This is an autocatalytic reaction. Another reaction network whose trajectories diverge to 
infinity is given by (2.29). Here, inputs (from the source) into the system are not balanced 

by outputs (into the sink). (See also references [65,66]. ) 

Theorem 2.4.3. If a chemZcal reaction network is weakly reversible then xi -.,, + oc), Vi. 

Proof. First, recall that, by Lemma 2.1.1, solutions remain nonnegative if initial conditions 

are nonnegative. Furthermore, for all i, without loss of generality, we assume that xi =ý 0 

for all x. The idea behind the proof is the following: 

In (1), we assume that for all j, j :ýi, 0< xj :5 xjm.., and show that xi -,, + oo. The 

polynomial function pi(x) that describes the time evolution of xi (that is, : ýj = pi(x)) can 

be written as eimax 

ei 
Pi (x) xi i m, i 

(xjj) + Pi2 (Xj 

ei=l 
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for a weakly reversible chemical reaction network, where Tn,, (x ej ) are monomials and i 
A2 (Xej) is a polynomial function, and both do not depend on xi, ej = 0,1,2,1 eimax, 
We show that m,, max < 0, which implies that that solution trajectories xi cannot diverge 
to infinity for a weakly reversible chemical reaction network. 

In (11), we assume that for all j, j ý4 i, r, 0< xj !ý Ximax 
*We show that rnei*e, * ": ý 01 

where 
ei er ei e &i(x) +&'r(X) =: 

ZZir) 
-ý- Pir2 (Xjj) xX Mei er 

(Xi 
3 

ei-1 e, =l 

and m,!,.. is such that if e* + e* < e* + e* thenTneýe* 
: -- 0. Here, Meje, (Xei) 

are monomials trirr 
and Pir2 

(Xej 

Thus, solutions 7) is a polynomial function and both do not depend on xi or x, 
of the pair f xi, xr I axe bounded, This argument can be extend to triplets, quadruples etc. 

In (111), we show that even if some x,, tend towards zero solutions cannot diverge to 
infinity. By continuity, it is sufficient to show this for x, " = 0. We show that x,, =0 implies 
that all. complexes in the linkage classes that contain x,, are zero. For all other linkage 
classes (1) and (11) hold. Cases (1), (11) and (III) taken together imply that xi -"+ oc, 
Vi7 if the chemical reaction network is weakly reversible. 

(1) By Remark 2.1.5, any individual reaction is always part of a reaction cycle. Thus, 
(2.10) can be written as the sum over all S reaction cycles, where each cycle s consists of 

a subset of reactions 91, s= 11, ..., SI: 

J-i z= ZZ- kj, 1 Tj (x) (Y(i, l) - Y(i, j» - 
(2.23) 

S=l 91. 
Oil 

The constant 3jj EN is the multiplicity of kj, j in 191,.... 
19W. 

Remark 2.4.4. Note that kj--,, >0 for all j, I for which kj, j c 91 and it follows that 

kj,, xPj(x) >0 for all j, 1 for which kj, j C 91 if x >> 0. 

Now, analogously to Kirchhoff's second law, for each reaction cycle s, 

1 == ozi (2.24) E 
a, 

ý Y(i, o - 
y(i, 

j). 

9%8 

Thus, 
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either ce, ýj -0 for all j, 1, which implies that Y(jj) =: Y(j, j) for all j, 1, where j, I are 
such that kj, j C 9%; furthermore, if this holds for all S reaction cycles then iýi =0 
for all x and clearly xi -,, + oc for all i, iE 11, 

.. -, ni I 
(ii) or otherwise, for some m, Y(i,,,, ) is such that Y(i,,,, ) ý! Y(j, j) holds for all 1, where 

m, I are such that k,,,,, c 91, which implies that for some M, Y(i, m) is such that 
Y(j, m) ý! Y(j, m) holds for all 1, where km, l c 91; it follows from (2.24) that aýjj 0, M 
and from Remark 2.4.4 that 

I 
km,, Tm(x)a' I<0 13m, m (2.25) 

Y(P'j) for at least one pair IM, 11 
- 

Recall that Tj (x) = 11'=1 xp Then, it follows from 

(2.25) that 

Es, Eg, -i-kj, 1 fl"., xy(P, j) - Y(i, j» )3ji pp 
(Y(i, l) 

aji, m) ajim 
S fln=l Xy(p, m) a Es=i Egi, -1-- km� ßmi 

(Y(i, l) - Y(i, M» 
ajim 

km� rln. 1 
Xy(p, m) ai 

--L- (P mi ßmi 
Y(i, M) <Oif x»o- Oxi 

This implies that there exists a positive constant y such that , ýj <0 if xi > -Y, x> 

and x. --, ý+ oo for allj : ýi, iE 

Hence, for any i, i=1, ---, n, if x>>0 and solutions of xj are bounded for all j : ý- i then 

solutions of xi must also be bounded. 

(11) Now, we let x >> 0 and assume that solutions of xi are unbounded. Then, ýýj >0 as 

xi --+ oo and the previous result requires that there exists at least one x, such that 

(ei > 01 Xr --' 00- 
Ox, 

Assume that all other solutions are bounded. Then, either (aýj výj) =0 for all S reaction 3 
+C3 

cycles, or there exist a Y(i,, ) and a Y(,,, ) such Y(i,, ) + Y(r, s) ý! Y(ij) + Y(r, j) holds for all 1. 

(Note that Y(i,, ) = Y(j, M) or Y(r, s) = Y(r, M) is not necessarily true. ) It follows that 

r 

+ TT, (x))(ai + asi) 
S, 
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for at least one pair f s, 11 
- This implies that 

(9Gýi +: ýr) 
<0 if x >> 0. (2.26) 

a(Xý(i, s)Xy(r, s)) %r Note that (2-26) contradicts the assumption that xi, x, --ý oo. Repeating this argument, it 
follows that xi -,, + oo for all i if x >> 0. 

(111) Finally, we will show by contradiction that it is also not possible that some xi --+ oo, 
i=1, 

-- .'I<n, while some x,,,, --ý 0, w=I, -, W<n. For instance, assume that 
some xi --+ oo while some x,, --+ 0, which implies that if q>W then O< Xq <Do. Since 
'9ýý is continuous, which means that ýýj(x,, ) --+ Lbj(O) whenever x,, -. 4 0, it is sufficient to axw 
investigate the behaviour of xi at x.. =0 and 0. 

Definition 2.4.5. We denote the support of complex Ti(x) by: suppTi(x). '[T]he support 
of a complex is... the set of species "appearing in" that complex' [9]. 

Let x,, C suppTj(x), wEf Wj. Then, Tj(x) 0, since x,, = 0. This implies 
that kk-ITk(X) =ý 0 only if k =ý j. Since Y(w, k) = 0 if Xw SUPPTk(X)i it follows that for 

xw: 
s 

-tw - lk("Ir (2.27) 
,E1: 

kk-+1'1 
--)y 

8=1 9% 
Al 

which implies that Ilk(-T) -0 if ýýw :-0. Therefore, either our assumption that x,, Z 

SUPPTk(X) is violated or there exists at least one x, such that x, C SUPPxpk(x) and x, = 0, 

that is x, E W1. This implies that if x,,, c suppTj(x), wE W1 (that is, 

x,, = 0) then for each reaction cycle 91., s == I.... S, if kj, j C 9% then x,,, =0 and Xb =0 
for all a, b for which ka--b C 9is- 

Now, if we 'remove' all reaction cycles for which x,, C supp'Pj(x) holds then the attained 

network - of reactions between complexes that do not contain any x,, - remains weakly 

reversible (or is empty). However, we have shown in (1) and (11) that this implies that 

xi --Y, + oc for all i, since x, >0 if c --ý w. This contradicts our assumption that some xi --+ 00 

and concludes the proof. 0 

Remark 2.4-6. Theorem 2.4.3 is completely independent of the deficiency of the network 

and implies that a weakly reversible network is either conservative or ultimately bounded. 
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Remark 2.4.7. Note that Theorem 2.4.3 together with the Brouwer Fixed Point Theorem 
implies that a weakly reversible chemical reaction network possesses at least one nonneg- 
ative equilibrium point. 

Lemma 2.4.8. Theorem 2.4.3 also applies to the weakly reversible chemical reaction net- 
works when taken with the power-law approximation for which (2.19) holds. 

Remark 2.4.9. The significance of Theorem 2.4.3 and Remark 2.4.7 lies in the fact that 
existence of solutions and boundedness of solution trajectories are often an important re- 
quirements for the analysis of dynamical systems. Particularly, in the case of large systems 
checking for strong connectivity of the underlying graph can be performed automatically 
and efficiently as opposed to alternative means that establish boundedness of solution 
trajectories - for example, via Lyapunov stability theory. 

Now, consider, for example, the following two chemical reaction networks and their 

respective representation through a dynamical system (Recall that the symbol 0 represents 
the null-complex, which functions as a source and a sink for the system. ): 

1 

-4-*x + Y: xy 
1 

-xy (2.28) 

a>O 
1 

yx+y -xy 

+a -xy (2.29) 

The network presented in (2.28) is weakly reversible, while the network presented in (2-29) 

is not. Furthermore, the former has the unique asymptotically stable equilibrium point 

(1,1), while in the case of the latter x --+ 0 and y --+ oo. 

Remark 2.4.10. Since Theorem 2.4.3 guarantees boundedness of solutions, instability of all 

equilibria of a weakly reversible chemical reaction network guarantees oscillatory behaviour; 

that is, it guarantees periodic, quasi-periodic or chaotic behaviour. 

Remark 2.4.11. ('Hidden' weak reversibility) Let Ar,, 
add C Ar(Y) (that is, YAadd " 0) 

and Ar., c - Arý + Ar., 
add. Then, 

:ý= YA,, IQ (x) = YA,,,, T (x) - 

If -A,,,, is an M-maftix with zero column sum and irreducible or can be block-diagonalised 

and each block-diagonal submatrix is irreducible (or empty) then the chemical reaction 
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network is weakly reversible. An M-matrix is a matrix with positive diagonal entries and 
non-positive off-diagonal entries. Moreover, all principal minors are nonnegative [67]. 

For illustration, consider the following chemical reaction network, which is not weakly 
reversible for all a>0: 

(2.30) 

11 ""ý 
+y 

Now, let us add matrix A., 
add E /V(Y) to A.., where 

2-a001000 

Alc 
0001 

AK, 
add 

10000101 xy 

+a000 -1 0000110y 
1000 -1 000x 

Thus, 

a00 

AK, 
c:::::::: 

Ar. + Ar., 
add 

00 

a000 
0000 

Note that A,,,, is block diagonal. The new network correspond to (2.29) if a --ý 0. This 
implies that the dynamical system representations of (2-30) and of (2.29) are identical. If 

a=0 then the upper block-diagonal submatrix is irreducible and thus, the corresponding 

chemical reaction network is weakly reversible (in fact, it is network (2.28)). In summary, 

certain dynamical systems arising from a chemical reaction network that is not weakly 

reversible can be represented through a weakly reversible one. In this case, Theorem 2.4.3 

guarantees the boundedness of their solutions (for example, see Figure 2.10). 

2.4.1 Examples from biology and chemistry 

A sample mass action system 

Consider the sample mass action system from [14,47] given in Figure 2.8. Note that an 

ad hoc study of the corresponding dynamical system (2.31) requires an analysis of seven 

polynomial equations in seven variables with up to eighteen unspecified parameters, or 

reaction rates. On the other hand, it is easy to verify that the chemical reaction network 
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in Figure 2.8 is of deficiency one and weakly reversible. Thus, (2.31) admits a unique 
positive equilibrium point independently of parameter values. 

'bl -2k2,1 X2 + (2k, X2 12+ k3,2)X2 
- 

(k2,3 + k4,3)X1X3 + k3,4 
3 

-(k7,6 + k8,6)XIX4 + k6,7X5 + k6,8X6i 

2_ 
X2 ýý2 k2,1X1 (k1,2 + k3,2 + k4,2)X2 + k2,3X1X3 + k2,4 

31 

2 'ý3 (k3,2 + 2k4,2)X2 + (k4,3 
- k2,3)X1X3 

- 
(k3,4 + 2k2,4 + 2k5,4)X3 

k 1()X2 +2k4,5X4 - klo, 9X3X5 +9 71 

'ý4 k5,4X 2- k4,5X4 
- 

(k7 
36+ k8,6)X1X4 + k6,7X5 + k6,8X6i 

ýý5 = k7,6X1X4 - 
(k6,7 + k8,7)X5 + k7 

- 
kl(), 9X3X5 + kg, 1()X2 , 8X6 71 

k8,6X1X4+k8,7X5 
- 

(k6,8+k7,8)X6i 

i7 2k, () - 2k9,1()x 2 
, 9X3X5 7- (2.31) 

Moreover, applying Theorem 2.4.3 we can immediately guarantee that, independently of 
the values of reaction rates, solutions will not diverge for nonnegative initial conditions. 

2xi - X2 - 2X3 ---*' X4 Xl + X4 X5 

X3 + X5 - 2x7 

Xl + X3 X6 

Figure 2.8: A sample mass action system. 

An Active Membrane T! ransport Model 

Figure 2.9 shows a simple model consisting of elementary steps for an active transport 

system that carries molecules across the cell membrane: 
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Figure 2.9: Active membrane transport model [68]. Molecules are actively carried 
across the cell membrane. An extracellular molecule, X', binds to a free transporter 
molecule in the membrane: A+ X' - B. ATP hydrolysis (B + ATP C+ ADP) then 
drives the transport of the molecule into the internal medium, where it is released (X"): 
CD -- E+ X". Thereafter, the empty binding site is prepared to repeat the cycle 
through the de/phosphorylation reaction E -ý F+P, and through the reaction F ý- A. 

The chemical reaction network of the model in Figure 2.9 has the following form: 
ki 

A+X' ; ---t B 
k-1 

k2 

B+ ATP <-- C+ ADP 
k-2 

k3 k4 

D ý12 E+ X" 
k-3 k-4 

k5 

E F+P 
k-5 

k6 

FA 
k-6 

In [68], the concentrations of ligand molecules (X), of ATP, ADP (which drive the trans- 

port (pumping) through ATP hydrolysis) and P (inorganic phosphate involved in the 

phosphorylation-dephosphorylation reactions) are assumed to be externally controlled pa- 

rameters. This leads to a chemical reaction network that is (weakly) reversible (and to a 
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mathematical model that consists of a set of linear ordinary differential equations): 

AlE 

F 

E 
In order to simulate dynamic cooperativity, an extra autocatalytic reaction of the following 
form is added: 

k7 

+F -i--2A. 
k-7 

This addition results in a mathematical model with a nonlinearity Q-] denote concentra- 
tions): 

[Ä] =- (ki +k -6)[A] + k- I[B] + k6[F] + k7 [A] [F] - 
k-7[A]21 

[B] -(k2 +k -J[B] +k -2[C] + kl [A], 

- (k3 +k -2) [CI+k- 3[D] + k2[B], 

- (k4+ k- 3) [D] +k -4[E] + k3[Cli 

-(k, 5 + k- 4)[E] + k- 5[F] + k4[D], 
[F] -(k6+k- 5)[F]+k- 6[-4]+k5[E]-k7[AI[F]+k-7[A]2. 

The chemical reaction network is of deficiency one. This implies that the corresponding 
dynamical system has a unique positive equilibrium point independently of parameter val- 
ues. Moreover, one can easily verify that it is also the only nonnegative equilibrium point. 
In [68], the authors recognised that the system is conservative and thus, solution trajecto- 

ries are bounded for nonnegative initial conditions. We reach the same conclusion by using 
Theorem 2.4.3, since the chemical reaction network is (weakly) reversible. Therefore, in- 

stability of the fixed point necessarily leads to oscillatory behaviour. In [68), the parameter 

regions in which the fixed point is unstable were found and characterised. Additionally, 

the authors used numerical methods to show that the oscillatory behaviour corresponds to 

a limit cycle. 
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Lotka-Volterra system 

Lotka-Volterra equations, or the predator-prey equations, are generally used to describe 
the dynamics of biological systems in which different species interact, of which some are 
the prey of others. The simplest of their type is the following two dimensional first order 
system: 

ax -)3xy 

ý- 6xy - n. 
The first variable, x, represents the prey, who are assumed to have unrestricted food 
resources. Their reproduction rate is determined by parameter a and their death rate by 
0, where only death by predation is assumed. The reproduction rate of the predators, y, 
is determined by the amount of prey they catch and weighted by constant 6. Parameter 7 
influences their natural death rate. 

Consider the three species Lotka-Volterra system in [69). The 'concentrations' of the 
three species are denoted by xi, i-1,2,3. The terms k1xi and k2x? denote birth and 
death rate respectively. ln accordance with [69], we set ki -d= k2 = l- Parameters a>0 
and b>0 denote competition between the different species. Here, we add to this model a 
constant migration rate in to (u > 0) and a migration term out of the habitat (dxi, d> 0) 

which is proportional to the population strength. The mathematical model of the system 
has now the following form: 

ýbj - u+xl(ki-d-k2x, -aX2-bX3), 

-'ý2 -U+ X2(ki -d- bxl - 
k2X2- aX3) , 

: ý3 U+ X3(ki -d- ax, - 
bX2- k2X3). (2.32) 

In the following, we will construct a chemical reaction network that corresponds to 

(2-32). Note that there exists more than one valid representation. In Figure 2.10a, the 

'biologically sensible' realisation. is depicted; that is, migration of the different species is 

independent of each other. However, although this representation is not weakly reversible, 

the chemical reaction network has a 'hidden' weakly reversible structure (Remark 2.4.11). 

A weakly reversible chemical reaction network which corresponds to (2.32) is shown in 

Figure 2.10b. Here, we assume the some migration occurs in pairs, where the pairs consist 

of members from different species. 
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Figure 2.10: Two valid chemical reaction network representations of (2.32). For 

clarity, we omitted the reaction rates in (b) that remain identical to the rates in (a). Note 
that the network in (b) is weakly reversible. 

By inspection, nonnegative equilibria of (2.32) are not feasible. Now, consider , ýj - 0: 
2_ Since 0=u+x, - x, axlX2- bxIX3, Descartes' rule of signs implies that ther, e exists 

a unique positive equilibrium point for x, (and analogously forX2 andX3). It is given by 

_ 
1+Vrl+4u(l+a- b 

x- L-) for all i. The Jacobian of (2.32) is a circulant matrix, its eigenvalues Zeq 2(1+a+b) 7 

are A, = -Vi+4u(l+a+b) and A2,3 =1- (2 + 0.5a + 0.5b)xi,,, ± 0-50(a - b)xi,,, 

(see [69] and the references therein). After some algebraic manipulations, we obtain that 

the Jacobian is unstable if 

9( a+b 
2> 

1+4u(l+a+b). 
4+a+b) 

(Note that for u=0 this simplifies to the condition a+b >2 as in [69] (p. 246). ) Now, since 
(2.32) has a weakly reversible chemical reaction network associated with it, instability of 

the unique fixed point necessarily leads to oscillatory behaviour. Using numerical methods, 

we find only limit cycles for different parameter values even for very small values of u while 

it was shown in [69] that for u=0, a=0.8 and b=1.3 nonperiodic behaviour exists. This 
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gives rise to the question whether weakly reversible chemical reaction network can display 
nonperiodic behaviour. 

Finally, note that ultimate boundedness of (2.32) can also be established via the Lya- 

punov function V(x) = 1: 3 xi, since ý'(x) <0 for large values of E3 
1 xi. (Recall that we i=1 j= 

consider only nonnegative values of xi. ) In the next example, we will provide an example 
of a relatively simple chemical reaction network that is weaklY reversible but for which 
a Lyapunov function that proves ultimate boundedness cannot be readily found, which 
highlights the significance of Theorem 2.4.3. 

A chemical oscillator 

The chemical reaction network in Figure 2.11 (taken from reference [14)) is weakly reversible 

and of deficiency one. Thus, the corresponding dynamical system has a unique positive 

2x, 
allb 

X1 
41 

c 

Xl + X24: ý 3-4---L X2 
6h 

Figure 2.11: A chemical oscillator. The chemical reaction network presented here is 

weakly reversible and of deficiency one. 

equilibrium point independently of parameter values. The set of ODEs describing the 

system is: 

jý, =: cex, - cxl - 
bX2 + (d+ E)X3 - 9X1X2i 

-hX2 +(k+ E)X3 - gXlX21 

-(d+k+ E)X3+hX2 + CX1 + gXlX2- (2-33) 

By inspection, there is only one additional nonnegative equilibrium point, which is the 

origin and unstable for all parameter values. This follows from applying the Routh-Hurwitz 

criterion: Consider matrix AE R"'. Its eigenvalues A are the roots of the characteristic 

polynomial 
JA - Alni : 

\n + al An-1 +... + an =: 0, (2.34) 
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where the coefficients ai are all real, i == 1, ..., n. The Routh-Hurwitz criterion (see [5]) 
says that necessary and sufficient condition for ReA <0 are 

al > 0, a3> 0, aja2- a3 > 0- (2.35) 

Note that a Lyapunov function that shows ultimate boundedness cannot be easily 
found for the dynamical system given by (2.33). However, it follows from Theorem 2.4.3 
that (2-33) is ultimately bounded and thus, if the positive equilibrium is unstable then 
the system exhibits oscillatory behaviour. Now, using the Routh-Hurwitz criterion the 
parameter space can be easily explored. For example, if a= 100, b, c, d=0.1, g=1, h=I 

and k= 100, we have oscillatory behaviour when E< 354. In this case, we get a periodic 
limit cycle (Figure 2.12). 
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Figure 2.12: Time series and limit cycle of (2.33). E= 100, all other parameter values 

are as in the text. 

2.5 Conclusion 

In this chapter, we have first presented a deficiency-zero-like theorem for chemical reaction 

networks that do not obey the law of mass action. We have then showed that a weakly 

reversible chemical reaction network has a bounded absorbing set. When dealing with 

55 

o x1 



dynamical systems that have multiple equilibria, limit cycles, chaotic attractors, and com- 
binations of these, it is often of great interest to find this set, provided it exists. By checking 
structural properties of the graph of the reaction network, our result provides a qualitative 
criterion, which is completely independent of reaction rate values, to establish that solution 
trajectories of a bioche 

' 
mical network will not diverge to infinity. Moreover, the result can 

also be used to characterise certain bifurcations from stationary to oscillatory behaviour 

as exemplified in Section 2.4. In the examples presented in this chapter, we have observed 

only periodic behaviour. Additionally, when we have introduced migration terms to the 

Lotka-Volterra model and thus, made the corresponding chemical reaction network weakly 

reversible previously nonperiodic behaviour of the system became periodic. Therefore, an 
interesting question is whether weak reversibility of a chemical reaction network excludes 

nonperiodic behaviour. 
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Chapter 3 

Positivity conditions related to the 
stability of a dynamical system and 
their computational implementation 

In this chapter, we give the mathematical background necessary for the second part of the 
thesis. In Section 3.1, we give a brief literature review on results on dynamical systems 
with a certain contraction property. In Section 3.2, we present the so called Bendixson's 
Criterion for higher dimensions. Thew results are based on extensions of Lyapunov theory 

and require positivity/negativity. They are a powerful framework for the analysis biological 

systems, particularly, because they can be implemented computationally. To this end we 

use semidefinite programming and the sum of squares decomposition. Section 3.3 provides 

a brief introduction to both. 

3.1 Dynamical systems with a certain contraction prop- 

erty 

In this chapter, we present dynamical systems with a certain contraction property. This 

property leads to stability of limit sets. In [701, D. C. Lewis studied autonomous dynamical 

systems with a certain local contraction property (condition (3.3)). Jean-Jacques E. Slo- 

tine [45] modernised D. C. Lewis's work and made it known to the wider audience under 

the name of contraction theory by applying it to problems in engineering. The idea behind 
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is that if trajectories remain in a bounded region and the distance between any two de- 
creases with time then there exists a unique exponentially stable equilibrium point in that 
region. We refer the interested reader to the excellent review by Jer6me Jouffroy [711. 

Bo. T. Stenstr6m in [72] and Peter Giesl in [44] provide sufficient conditions for the 
existence of a unique and exponentially stable periodic orbit. Their concept is similar to the 
one mentioned above. The extension is possible by relaxing the requirement of contraction 
in the direction of the trajectory (condition (3.8)). 

As we will show, the theory of dynamical systems with a certain local contraction prop- 
erty presents an extension of Lyapunov stability theory. Importantly, through SOSTOOLS it 

offers means to computationally perform a search for conditions that guarantee exponen- 
tial stability of limit cycles. In this section, we provide a short overview on D. C. Lewis's, 

Jean-Jacques E. Slotine's and Peter Giesl's work, since we will use their results later in 

the thesis. In the following, we adopt Jer6me Jouffroy's notation which also corresponds 
to Peter Giesl's in [43,44]. Consider the following system: 

&=f(x), xc: BCR'. 

Importantly, in this section, 

eB is a compact, connected and positively invariant set of (3.1). 

(3.1) 

In his 1949 paper [70], D. C. Lewis provided all major results on what would be later 

known as 'contraction theory'. He used Finsler metrics for his proofs of which Riemannian 

metrics are a subset. For the purpose of this thesis, only conditions in the Riemannian 

space are of relevance and we will formulate all results in this space. First, we require the 

mean value theorem [50]: 

Theorem 3.1.1. (Mean value theorem) Assume that f: R' --+ R is continuously 

differentiable at each potnt x of an open set SC Rn. Let x and y be two points of S such 

that the line segment L(x, y) C S. Then there exists a potnt z of L(x, y) such that 

f (X) Of 
Ox X=Z 

(3.2) 

nn Trim 
It follows that if f: R --ý R then there exists azE im such that zi E [xi, yj] for all i, 

1, ..., n, and (3.2) holds. 

Now, consider the following definition: 
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Definition 3.1-2. (GiesI, Definition 4 of [441) A matrix-valued C'-function M will be calleda Riemannian memc if M(x) is a symmetric and positive definite matrix for all 
xEB. 

In this thesis, whenever we require M(x) > 0, we assume that is a Riemannian met- 
ric. The following theorem is a reformulation of D. C. Lewis's Theorem 9 from [70]. It 
establishes conditions under which asymptotic stability of solutions is guaranteed. 

Theorem 3.1.3. (Lewis, Theorem 9 of [70]) If there exits a matrix M(x) > 0, x C-5, 
such that 

M(x) 
Ox +1 M'(X) < 0, Vx E B, with MI(X)(ij) 

am(x)(ili) 
A (3-3) 2 C9Xk 

k=l 

holds, then any two solutions xi andX2 of (3-1) must approach each other asymptotically. 

We briefly illustrate the idea behind Theorem 3.1.3. For simplicity, let M(x) = I. 
Consider any two trajectories at time to, one that passes through p and one that passes 
p+v which implies that the distance between the two is VTV . Then, the distance between 

two trajectories after an infinitesimal time step is 

(v +f f(P+V) -if (p)), (V+f f(P+V) -f f(p)) 
T (v 

+ 
ap 

P=Z 

V) 

(v 

+ 
ap 

P=z 

V) ýý vTv+ 2vT 
ap 

lp=z 
v<vT VI 

where the equality holds by Theorem 11.1 with zi E ýi 
I pi + vi] for all i, the approximation 

since we consider an infinitesimal time interval, and the inequality follows from (3.3) for 

M(x) = I. Thus, the two trajectories approach each other. Now, the next theorem is an 

immediate consequence of Theorem 3.1.3. The proof is based on Lyapunov stability theory 

and constitutes an extension of the standard proof of Krasovskii's Theorem ý45,501. 

Theorem 3.1.4. If S is a compact, convex and positively invariant set of (3.1) and there 

exists a matrix M(x) >0 such that (3.3) holds for all x (E B then (3.1) has a unique 

asymptotically stable equilibrium point in B. Additionally, if M(x) is bounded in 5 then 

the equilibrium pOint is exponentially stable. 

Proof. First, since S is a compact, convex and positively invariant set of (3.1), by the 

Brouwer fixed point theorem, there exists at least one equilibrium point in B. We denote 
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it by 
-1eq- Without loss of generality, let X, q = 0, for otherwise the equilibrium point can 

be shifted to the origin through a change of a variables. Now, let there exists a matrix 
M(x) such that (3-3) holds. Then, consider the Lyapunov functionV(X) = 

12X TM(X)X. 

Note that L3 is convex; recall that this means that the straight path that connects a 
pair of points in 5 also lies in B. Thus, it follows from Theorem 3.1.1 that there exists a 
z such that zi E [xi, yj] for all i, i=1, .. -, n, and 

ýr(X) 
= XTM(X)f (X) +1X TMI(X)X 

= XTM(X) (f (X) 
-f 

(Xeq)) +IX TMI(X)X 
22 

=XT M(X) +I MI(X) X<0. ax 
I 

X=Z 
2 

This implies that Xeq is unique and asymptotically stable. Exponential stability follows 
from Theorem 4.10 in [50) if M(x) is bounded, because there exist positive constants 
kl, k2, k3 

such that klx Tx< V(x) < k2X Tx 
aild'ý(x) < -k3XTX. 0 

Here, we give the discrete-time version of Theorem 3.1-4, which is proved via Lya- 

punov second method applied to discrete-time systems [50]. Corollary 3.1.5 is equivalent 
to Theorem 3 in [45]. Consider a discrete-time dynamical system given by 

x(k + 1) =f (x(k)), xERn, k=1,2,..., (3.4) 

where f (-) is a continuous function. Moreover, let 8 be a compact, convex and positive 
invariant set for solutions of (3.4). 

Corollary 3.1-5. If there exists a matrix M(x) >0 such that 

Of (X) T 
M(X) 

Of (X) 

- m(x) <0 
ax Ox 

(3.5) 

holds for all xEB then (3.5) has a umque asymptotically stable equilibrium potnt M B. 

Additionally, if M(x) M bounded in 13 then the equilibrium point is exponentially stable. 

Proof. Note that Lyapunov second method applied to discrete-time systems guarantees 

asymptotic stability of xf,,. if there exists a continuous Lyapunov function V(x) > 0, x 

xfix such that 
AV = V(f (X)) - V(X) < 0, X =h Xfix. 

Now, the proof is similar to the proof of Theorem 3.1.4 and hence is omitted. 0 
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Rema, rk 3.1.6. Possibly inspired by D. C. Lewis's work, Larry Markus and Hidehiko Yam- 
abe made the following conjecture about the global behaviour of a dynamical system in 
their 1960 paper [73]: 

Conjecture 3.1-7. (Markus-Yamabe conjecture) Consider the dynamical system 

& (t) == (X (t» , 
(3.6) 

where the vector field f: R' --+ 
Rn ts C1 

, and let xCP be a critical poZnt of the system, f (xp) - 0. If the eigenvalues of the Jacobian matrix J(x) have negative real parts for all 
xERn, then xcp is a global attractor of (3.6). 

A discrete version of Conjecture 3.1.7 was given by J. P. La Salle in [74]. While the conjec- 
ture is true for one and two dimensional dynamical systems a polynomial counterexample 
(both continuous and discrete) was given in 1997 for all dimensions >3 [75]. 

The following theorem considers the case of non-autonomous dynamical systems; that 
is, when 

:ý= h(x, t) == f (x) + u(t), xE8C Rn. (3.7) 

Theorýem 3.1.8. Under the assumptions of Theorem 3.1.3, if (3.7) has no fixed point's 
in B and u(t) is T-periodic then (3.7) has a untque and exponentially stable T-periodic 

solution in B. 

Theorem 3.1.8 is similar to Theorem 10 of [70], Remark (vi) in Section 3.7 of [45], 

and can be also derived from the work presented in [43]. The proof in [43] is the only 
satisfactory one but highly involved. We therefore provide only a brief sketch: First, Peter 
Ciesl showed that the distance between two trajectories with initial conditions (to, xo) and 
(to, x1) is exponentially decreasing, which follows from Theorem 3.1.3, and that their w- 
limit sets are equal. He then proved that the w-limit sets of two adjacent points (to, xo) 

and (t1, x1) are also equal and that the w-limit set of all points in 5 is actually the same. 
Finally, he concluded the proof by showing that this w-limit set is an exponentially stable 
T-periodic orbit. 

Note that this theorem implies that an autonomous dynamical system with a T-periodic 

input u(t) for which (3.3) holds will entrain to the input's period. Furthermore, D. C. Lewis 

showed that if (3.3) holds and f (x) does not depend explicitly on t then it is impossible 

to have a solution other than a stable equilibrium point in B. Clearly, chaotic behaviour 
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is also excluded. In the following, we present an important result by Peter Giesl on the 
exponential stability of the periodic solution of autonomous dynamical systems- 
Theorem 3.1-9. (Giesl, Theorem 5 of [44]) Let M(x) be a Riemannian metric with 
its directional derivative M'(x) given by: 

n OM(X) 
(i1j) A F-4 

i9Xk k=1 

If for all xEB, 

wT 
(M(X) 

+1 M(x) 
)w<0, 

Vw such that WTM(X)f (X) == 0, (3.8) Ox 2 
then (3.1) has either a unique, exponentially stable periodic orbit or fixed point M B. 

We briefly illustrate the idea behind condition (3.8), which guarantees that the two tra- 
jectories approach each other. For simplicity, let M(x) = 1. Consider any two trajectories 

at time to, one that passes through p and one that passes p+ Jw. Then, we require that 

the distance between f (p) and f (p + 6w) decreases in the normal direction of f (p). Thus, 

a sufficient condition for the two trajectories to approach each other is that 

Cos (P 

where W is defined as in Figure 3.1. 

w 

p+c 

v) 

AP) 

(3.9) 

Figure 3.1: A sufficient condition for two trajectories to approach each other. 

T f it follows that (3-9) holds if f (p + Since cos ýo is formally defined as cos ýp =-I-eTf(p+6W)eTWJ I 

6W)TW < 0. Now, let us consider the local behaviour of the two trajectories, that is, for 

small values of 6. Then, 

T W, 

(f(P)+ä 

W) 

T 

w: = 6 
(of (x), 

w (P öw) ax X=P 
( Ox 

lx=p 
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The equality follows since fT(p)W =0 and the inequality from (3.8) for M(x) =L Fur- 
thermore, Peter Giesl also proved that if there exists only one periodic orbit in B and it 
is exponentially stable then (3.8) must hold. In [44], he extends his results to the case in 
which f depends explicitly on t and shows that the sufficient conditions are also necessary. 
For instance, consider the following definition and theorem: 

Definition 3.1.10. (GiesI, Definition 2.3 of [43]) A matrix-valued C'-function M will 
be called a Riemannian metric if M(x, t) is a symmetric and positive definite matrix for 
all XEB and all t, and M(x, t) = M(x, t+ T) for all xEB and all t. 

Theorem 3.1-11. (Giesl, Theorem 5.1 of [43]) Assume that, in (3-7), f(x, t) is a 
periodic function with period T, and all partial derivatives of order one with respect to x 
are continuous functions of t and x. Then, the following two conditions are equivalent: 

(i) The system has an exponentially asymptotically stable T-periodic orbit in B. 

(ii) There ts a Riemannian metric M such that 

M(Xý t) J(X) +I M'(x, t) <0 with Mýj, j) 
+n 

am(ij) 
fk7 VX E, 6) Vt- 

2 at 
Yý 

OXk 
k=l 

(3.10) 

In fact, Theorem 3.1 of [43] establishes that (3.10) is stTictly less than a constant 0<0- 

3.2 Bendixson's Criterion for higher dimensions 

In this section, we present the so called Bendixson's Criterion for higher dimensions [76,77]. 

First, we require a definition from [77]. The second addihve compound AP] of matrix 

A C- R` is the (n) X (n) 
matrix defined as follows. For any integer i=I (n), let 

222 

(i) = 
(il, i2) be the ith member in the lexicographic ordering of integer pairs 

(il, i2) Such 

that 1< il < i2< n. Then, the element of the ith row and jth column of A [21 is 

A(i,, i, ) + 
A(i21i2) if U) 

=W7 

(-l)r+sA(i,, j. ) if exactly one entry i. of (i) does not 

occur in (j) and j, does not occur in (i), 

0 if neither entry from (i) occurs in (j). 
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For example, if n-3 then (1) = (1,2), (2) = (1,3), (3) = (2,3) and 

[21 
+ A(2,2) A(2,3) 

-A(1,3) 
A A(3,2) A(,,, ) + A(3,3) A(1,2) 

-A(3,1) A(2,1) A(2,2)+ A(3,3) 

if n =: 4 then (1,2), (2) 3), (3) =: (1,4), (4) (2,3), (5) (2,4), (6) (3,4) 
and A121 

-- 

A(,,, ) + A(2,2) 

A(3,2) 

A(4,2) 

-A(3,1) 
-A(4,1) 

0 

A(2,3) 

A(1,1) + A(3,3) 

A(4,3) 

A(2,1) 

0 

-A(41) 

A(2,4) 

A(3,4) 

A(,,, ) + A(4,4) 

0 

A(2,1) 

A(3,1) 

-A(1,3) 
A(1,2) 

0 

A(2,2) + A(3,3) 

A(4,3) 

-A(4,2) 

-A(1,4) 

0 

A(1,2) 

A(3,4) 

A(2,2)+A(4,4) 

A(3,2) 

0 

-A(1,4) 
A(1,3) 

-A(2,4) 
A(2,3) 

A(3,3) + A(4,4) 

Note that (A + B) (21 
=:: A [2] +B 

(2] 
and that the eigenvalues of ! (A + A') [21 

are given by 2 
Ai + Aj, where Aj, Aj are the eigenvalues of 1 (A + AT)j 1 <z <j ! ý, n [78]. 2 

Let 5C R' be a compact, simply connected and positively invariant set of if (x), 

and x C- B. Then, the following theorem by Michael Y. Li and James S. Muldowney proves 
global asymptotic stability (Theorem 2.5 in [79] with equality (2.6) and inequality (2-7) 
from [77]). 

Theorem 3.2.1. (Li's and Muldowney's theorem on global asymptotic stability) 
Let the oTigin be the unique equffibTium point of 

,ý= (X), x c- B. 

If there exists a 
(n) X (n) 

matrix P(x) and 22 

1 
Pll (x) + P(x) 

( 

ax < 0, Vx c B, 

then the oTigin is globally asymptotically stable. Here, 

p 
op(i, j)(x) A li, 

j) 
(X 

OXk 
(X)' 

k=I 

(3-11) 

(3.12) 
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Consider the variational equation 

Of (x) 
ax (3.13) 

and let Z^(t) and i(t) be solutions of (3.13). Let A denote the exterior product. Then, the 
time evolution of y(t) = z^(t) A j(t) is given by 

=( ax 
) 12) 

(3.14) 

The proof of Theorem 3.2.1 uses the fact that (3.14) describes the local evolution in B of 
measures of 2-dimensional surfaces under the dynamics of (3.11). In other words, (3-12) 
implies that the area of surfaces decrease under the dynamics of (3.11). 

Note that Theorem 3.2.1 proves asymptotic stability of the equilibrium point and not 
exponential stability as contraction theory does (Section 3.1). Therefore, the following 
remark comes as no surprise. 

Remark 3.2.2. Consider 

iý = (x) + u(t), xc (3-15) 

where u(t) is a bounded T-periodic input. It was shown in [76] that the fact that (3-12) 
holds does not imply that bounded solutions of (3.15) converge to a T-periodic solution. 

Finally, note that Theorem 3.2.1 implies that if (3.12) holds then periodic solutions 
(af (. cannot exist. Moreover, this is also true if ! P' X) ) 

[2] 

> 0, Vx ES (see [76,77]). 2 
(X)+P(X) 

ax 
Thus, if any of the two conditions hold then periodic solutions cannot exist, which means 
that this is a higher dimensional version of Bendixson's Criterion (which is for n= 2). 

3.3 Interior-point methods and semidefinite program- 

ming 
In this section, we provide the mathematical tools that we use in the reminder of the 

thesis in order to computationally implement minimisation problems that arise in the 

field of biological systems modelling. Many optimisation problems can be solved using 

semZdefinite programmes [80], which were shown to be solved efficiently both theoretically 

and practically via interior-point methods [81]. These methods were introduced in order 

to solve optimisation problems with nonlinear inequality constraints. In the following, 
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we provide only a brief introduction to the topic extracted from references [80,81]. The 
interested reader is referred to the paper by Lieven Vandenberghe and Stephen Boyd [80] 
and the excellent text book by the same authors [81]. Before we introduce the concept of 
how to solve minimisation problems and how they relate to semidefinite programming, we 
need some definitions from [81]. 

Definition 3.3.1. A cone C is defined as follows: if xEC and 0>0 then Ox E C, where 
0 is a constant. 

Definition 3.3.2. A set C is said to be convex if for anyXI, X2 c- C and any 0,0 <0<1, 

we have Ox, + (1 - O)X2 EE C- 

Roughly speaking, if, for all 11,12 E C, the straight path that connects x, andX2 lies 

in C then the set is convex. 

Definition 3.3.3. Let C be a cone. The set C* == fylx Ty>0 for all xE C1 is called the 
dual cone of C. Moreover, if C= C* then it is called self-dual. 

It follows that the set of symmetric positive semidefinite matrices S+n is a convex cone, 

since for 011 02 >0 and A, Bc Sý it follows that 01 A +02B E S+n. The latter follows from 

the fact that if x cz Rn, A>0 and B>0 then 

XT (01A + 02B)X = 01X TAx +02XT Bx > 0. 

3.3.1 The Newton method 

Consider the following unconstrained minimisation problem: 

rninimise f (x), (3-16) 

where f (x) is convex and twice continuously differentiable, xER. It is solved by produc- 

ing a sequence x(k), where 

X 
(k+1) 

= X(k) + 8(k)AX(k) I k= 1.... (3-17) 

and the step size S (k) :: ý. 0 if X 
(k) is non-optimal [81]. If follows from convexity that 

Vf (X(k))T(y f (X(k)) AX(k) 
_ X(k)) ý! 0 implies that f (y) - 

[81]. Thus, should satisfy 

, Vf (X(k»TAX(k) 
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In the Newton method, 
AX =: AXnt = -V2f (X)-1'7f (X) 

is called the Newton step. Note that the Newton step is steepest descent direction 
Since V'f (x) is positive definite (see §3.1.4 in [81]) it follows that 

(X)TAXnt 
- -Vf (X)TV2f (X)-iVf (X) <0 

as long as Vf (x) 74- 0. The Newton decrement is given by 

A(x) = (Vf (X)TV2f (X)-lVf (X))112. 

This quantity is useful as a stopping criterion for sequence (3.17). For instance, if we 
denote the second-order Taylor approximation of f by f then 

f (x + AX. t) =-Ä (X)'. 
Thus, if 1 A(X)2 is small then so are changes in the value of f (x) in the direction of the 2 

Newton step, which implies that x is close to the optimal value x*. The algorithm that 

solves (3.16) is called the pure Newton method' and is outlined below [81]. 

Algorithm 3.3.4. 

given starting point x, tolerance E. 

repeat 
1. Compute the Newton step Ax,, t and decrement A(x). 

2 

2. StoppZng cnteHon. quit if L2 
-5 E. 

3. Update. x :=x+ Ax,, t. 

Now, consider the following equality constrained minimisation problem: 

minimise f (x), 

subject to Ax = b. (3.18) 

The difference to (3.16) is that not every x and not every descent direction given by the 

Newton step Ax,, t is feasible. 

'The pure Newton method uses a fixed step size s=1 as opposed to the damped or guarded Newton 

method, which updates s at each iteration via a backtracking line search (consult [811 on the topic). 
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To obtain a feasible Ax,, t, we have to solve the following minimisation problem which 
replaces the objective function in (3.18) with its second-order Taylor approximation near 
x [81): 

minimise f (X + V) =f (X) + Vf (X)TV + _VTV2f 
(X)V, 

subject to A(x + v) b. (3-19) 

This problem can be solved analytically by solving 
V2f (X) AT AX�t - Vf (X) 

(3.20) 
1A 

(see reference [81]). This guarantees that Axnt is a feasible direction; that is, AAx,, t = 0. 
The matrix in (3.20) is the so called Karush-Kuhn- Tucker (KKT) matrix. The Newton 
step is defined only when this matrix is nonsingular. (In the next section, we will require 
w to substitute for v the dual variable. ) With the Ax,, t which is the solution of (3.20) we 
can now solve (3.18) by means of Algorithm 3.3.4. 

Additionally, if a feasible starting point for x is unknown then the following equation 
must be solved in order to obtain a feasible one [81]: 

i72f (X) AT Ax 

=-[ 
Vf(x) 1. 

(3.21) 
A0w1 Ax -b 

Then, a feasible starting point is given by x+ Ax. In the following section, we show how 

to deal with minimisation problems that contain inequality constraints. 

3.3.2 Interior-point methods 

In this section, we discuss interior-point methods for solving semidefinite programmes. 
These methods were introduced in order to solve optimisation problems with nonlinear 

inequality constraints. We define the Lagrangian associated with (3.23) by [81]: 

m 

L (x, A, v) = fo (x) + Ai fi (x) + VT (Ax - b). 

We call the vectors AE Rm and vE RP the dual variables. Let xEDC R', the Lagrange 

dual function is given by [81]: 

Aif g(A, v) = inf L(x, A, v) = inf fo(x) + i(X) + VT (Ax - b)) 
XED XED 

( 

j=l 
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Let p* denote the optimal value of (3.23). Then, g(A, v) : ý, p* for any A >> 0, since for 
any feasible point, denoted by : ý, of (3.23) the following holds fi(Jr) < 0, Vil Aý -b=0 
and thus, Em + VT (Aý - b) < 0. This implies that i= - 

m 

A, v) = fo + A, f, + VT 

and therefore, 
(A, v) = inf L (x, A, v) :5L (jý, A, v) :ý fo (iý). 

--EID 

This leads to the following Lagrange dual problem that is associated with (3.23): 

maximise 9 (A, v) 

subject to A >> 0. 

The barrier method 

(3.22) 

Here, we present the barrier method [81]. Consider the following minimisation problem 

with inequality constraints 

minimise fo(x), xE R' 

subject to fi(x) < 0, i= 1'. m 
Ax = b, AE RPxn (3.23) 

which we rewrite as 

minimise fo (X) +E I- (fi (X)), 

subject to Ax = b. (3.24) 

I-(. ) is the foHowing indicator function [81]: 

I- (U) =I 
0 U<o 

oo 

Since the objective function is not differentiable in general, we approximate the indicator 

function as follows [81]: 

I- (U) log (-U). 
t 
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Parameter t>0 determines the quality of the approximation (see Figure 3.2). Substituting 
the barrier function in (3.24) by the logarithmic barrierfunction L (u) leads to the following 
problem: 

or equivalently: 

minimise 
1 A (X) Et log(-fi(x)), 

i=l 

subject to Ax - b) 

in 

minimise tfo (x) -Z log (- fi (x», 

subjeet to Ax = b. (3.25) 

0. 

-2.5 -2 -1.5 -1 -0.5 0 0.5 
u 

Figure 3.2: The logarithmic barrier function. The dashed lines show the function 

I- (u), and the solid curves show I- (u) log (- u), for t=0-5,1,2. The curve for 
t 

t=2 gives the best approximation [81). 

The minimisation problem given by (3.25) can be solved via the Newton method. As 

apparent from Figure 3.2, a large t is necessary to ensure that the solution of (3-25) 

is close to the solution of the original problem (3.23). However, the Newton method 

runs into computational difficulties for large t [81]. It was shown that the problem can 
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be avoided by solving (3.25) stepwise, increasing t each time, and starting each Newton 
minimisation at the solution for the previous value of t, with stopping criterion ! ý! < IEJ t 
where fo(x*(t)) - t g(A*(t), v*(t)) is the so called duality gap q for any feasible x* [81]. 
The algorithm for the barrier method is outlined below [81]. 

Algorithm 3.3.5. 

given strictly feasible x, t := t(O), p>1, tolerance e>0. 
repeat 

1. Compute x*(t) by solving (3.25), starting at x. 
2. Update. x := x*(t). 
I StoppZng cTiterion. quit if 
3. Increase t. t := pt. 

Note that the Algorithm 3.3.6 requires strict feasibility of x; that is, fi(x) <0 must hold 
for all i. In order to obtain a strictly feasible starting point x if it exists, we have to solve 
the following minimisation problem [81]: 

minimise 8 

subject to AW< 'g, 2-IIIm 
Ax == b. (3.26) 

Primal-dual interior-point method 

In this section, we briefly explain a simple primal-dual interior-point method. It is similar 

to the barrier method but not quite. The main difference is that the search direction 

is derived from Newton's method, applied to modified KKT equations (3-27). This can 

lead to convergence that is better than linear convergence [81]. Thus, that primal-dual 

interior-point method often outperforms the barrier method, particularly, when solving 

problems in semidefinite programming. For instance, the primal-dual interior method 

solves both problems, (3.23) and (3.22), simultaneously. The search direction is given by 

AYpd = (, AXpd 
i 
AApd 

i 
AVpd) 

, which is the solution of 

0(X) + Ein 
1 /\, 

V2f, (x) Df (X)T AT Ax i72f rdual 
i= 

-diag(A)Df (x) -diag(f (x» 0 A, \ =- rcent ý (3.27) 

A001 Av 
i 

rpri 
-i 
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where 

17f 1 
(X)T 

Df (x) 

L 17f 
m 

(X)T 

I'dual Z-- Wo(x) + Df (X)T, \ 
=A 

TV 

r.,,,. t - Ax -b 
rpri == -diag(A)f (x) -1e, ýe =: [l 

In the primal-dual interior-point method, x, A, v are not necessarily feasible. Thus, we 
introduce the surrogate duality gap ý(x, A) =_f (X) T'\ for any x such that f (x) :50 
and any A>>0. The algorithm for the primal-dual interior-point method is outlined 
below (81]. 

Algorithm 3.3.6. 

given x that satisfies f (x) << 0, A >> 0, p>1, Ef,,, > 0, E>0. 

repeat 
1. Determine t. Set t := LP 

77 

2. Compute primal-dual search direction 'Upd- 
3. Update. Y: =- Y+ AYpd 

- 
until Jjrprdj2 :5 ffeas, IlrduaII12 :5 cfeaý,, and < e. 

3.3.3 Semidefinite programming 

In the following we provide a brief overview on semidefinite programmi . ng, particularly, on 
the parts related to the work presented in this thesis. ln semidefinite programming, we 

replace the nonnegative orthant constraint of linear programming by the cone of positive 

semidefinite matrices and pose the following minimisation problem [80]: 

minimise cTx 

subject to F(x) > 0, where 
n 

F(x) = Fo + xiFi. (3.28) 

Here, xE R' is the free variable. The so called problem data, which are given, are 

the vector CE RI and the matrices Fj E R"', i=0,... 'n. 
Note that F(x) >0 
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means that F(x) is positive semidefinite; that is, ZT F(x)z >0 for all z Cz Rn. Moreover, 
zTF (x) z =: = 

jZT (F(x) + F(X)T)Z 
- ZTP(X)z. Thus, if F(x) is not symmetric (or for that 2 

matter Fj) then we can replace it by F(x) (F^j (x), j=0, ..., n) 
The dual problem associated with the semidefinite program given by (3.28) is [80]: 

maximise -trace(FoZ) 

subject to trace(FiZ) == ci, i --- 1, ..., n 
> (3.29) 

Here, the variable is the matrix ZC R"'. Note that solutions of the primal problem 
provides upper bounds on solution of the dual and vice versa. This is called weak duality 

and holds since 
nn 

cTx+ trace(FoZ) cixi + trace(FoZ) trace(FiZ)xi + trace(FOZ) 

n 

trace(E Fixi + Fo)Z > 0. 
i=l 

The inequality is true because of self-dualitY of the positive semidefinite cone [82]. If the 
inequality holds strictly then we speak of strong duality. 

The results presented in this thesis that require the solution of a semidefinite program 
have been obtained by using YALMIP. YALMIP is a free, third-party MATLAB toolbox for 

solving semidefinite programs [83], which relies on the solver SeDuMi [841. 

3.4 The sum of squares decomposition 

In this section, we introduce the sum of squares decomposition. For problem data that con- 

sists of polynomials of any degree, it changes the requirement of positivity to the condition 

that the polynomial function is a sum of squares. This is of great advantage, since we can 

now consider nonlinear problem data. However, since this is only a sufficient condition for 

positivity it can at times be quite conservative. In other words, a function can be positive 

without being a sum of squares. David Hilbert proved that equivalence of nonnegativity 

and the sum of squares condition is true in general only for the follýowing three cases [821: 

* for polynomials with only one variable, 
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* for the case of quadratic polynomials, 

* and, somewhat surprising, for quartic polynomials in two variables. 

In [85], it was shown that for all other cases if the degree of the polynomial is given then 
as the number of variables grows so does the number of nonnegative polynomials that are 
not sums of squares. 

Consider the real-valued polynomial function F(x) of degree 2d, xE R'. A sufficient 
condition for F(x) to be nonnegative is that it can be decomposed into a sum of squares [82]: 

F(x) = 1: fi (x) > 0, 
i 

where fi are polynomial functions. Now, F(x) is a sum of squares if and only if there exists 
a positive semidefinite matrix Q and 

TQZJ d]. F(x) =zZ= 
[1, X17 X2; ... 7 Xn7XlX2ý 

... 1 Xn 

The length of vector z is f n+d 
d ). Note that Q is not necessarily unique. However, 

Ei f2 (X) = i ZTQZ poses certain constraints on Q of the form trace(AjQ) = cj, where Aj 

and cj are appropriate matrices and constants respectively. As an illustration consider the 

following polynomial function (Example 3.5 in [82]), where zi =x21 Z2 =X2 1 27 Z3 = XIX2: 

F(x) = 2X4 + 2X3 X2 -X 
2x24 

1112 +5X2 

- 
x2 1 

T 
qll q12 q13 x2 1 

x2 2 q12 q22 q23 X2 2 

XlX2 q13 q23 q33 XlX2 

44 )X2X2 X3 
3 

qllxl + q22X2 + (q33 + 2q12 
12+ 

2q13 
JX2 + 2q23XlX2* 

This leads to the following set of linear equalities: 

qll = 2, q22 = 5, q33 + 2q12 = -1,2q13 = 2,2q23 = 0- 

Thus, i=1, . .., 5, and, for example, cl - 2, c3 =-17 

00010 

A, 000 and A3 100 

000001 
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In general, in order to find Q, we solve the optimisation problem associated with the 
following semidefinite program: 

minimise trace(AoQ) 

subject to trace(AjQ) = qj, j 
(3.30) 

Remark 3.4.1. Some additional issues: 

Consider a rational function F(x); that is, F(x) f (x), where f (x) and g(x) are g(x) 

polynomial functions. Then, F(x) ý! 0 if g'(x) >0 and (3.30) is feasible with 
ZTQZ == F(X)g2(X) or with ZTQZ = F(x)g(x) if g(x) > 0. 

0 If 

F (x) + p(x) h(x) =Z gi'(x) ýý 0, p (x) ýý 0, h(x) = 
<O if a» x» b1 

i>0 otherwise 

then F (x) >0 if a>>x>>b, where a, b are vectors. Later, we wiH use this fact 

to show that F(x) is nonnegative in specific regions of the state space that are of 
interest. 

In this thesis, to solve sum of squares programs, we have used SOSTOOLS [86], a free, 

third-Party MATLAB toolbox, which also relies on the solver SeDuMi. Note, however, that 

the computational time necessary to solve to problems using SOSTOOLS scales badly with 

the size of the problem [82]: 

2d 1 3 5 7 9 11 13 15 
2 2 4 6 8 to 12 14 16 
4 3 10 21 36 55 78 105 136 
6 4 20 56 120 220 364 560 816 
8 5 35 126 330 715 1365 2380 3876 

10 6 56 252 792 2002 4368 8568 15504 
12 7 84 462 1716 5005 12376 27132 54264 

Figure 3.3: Dimension of matrix Q as a function of the number of variables and 

degree of the polynomial (taken from 182]). Dimension of the matrix Q as a function 

of the number of variables n and the degree 2d. The corresponding expression is n+d (d )* 
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Chapter 4 

Finding invariant sets and proving 
exponential stability of limit cycles 
using sum of squares decompositions 

4.1 Invariant sets 
When dealing with dynamical systems that have multiple equilibria, limit cycles, chaotic 
attractors, and combinations of these, it is often of interest to find a invariant sets for 

solution trajectories, provided they exist. (The following definitions are from [50]. ) If x(t) 
is a solution of (4.1) then p, is said to be a positive limit point of x (t) if there is a sequence 
JtnJ, with tn --+ oc as n --+ oo, Such that X(tn) --+ p as n --+ oo. Furthermore, the set of all 

positive limit points of x(t) is called a positive limit set. A set M is invariant with respect 
to: i = f(X) if 

x(O) EM =->. x(t) E M, for all tER 

This means, that if a solution belongs to M at some time instant, then it belongs to M 

for all time. Furthermore, a set M is positively inva? ýiant if 

x(o) EM=,, - x(t) E M, for all t> ý0. 

In Chapter 2, we have proved the existence of an absorbing set, which belongs to 

a subclass of invariant sets, for chemical reaction networks with a certain property. In 

this section, we present sufficient conditions for the existence of an invariant set 13 of a 
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dynamical system 

ý-fW (4.1) 

and show how to it can be found using SOSTOOLS. (A related procedure was presented 
in [87] (Chapter 3.3). ) In Chapter 5, we will require the existence of a compact, convex 
and positively invariant set in order to find lower bounds for the coupling strength of 
interconnected system that guarantees their synchronisation. 

A famous example of deterministic chaos is the work by the meteorologist Edward 
Lorenz. In 1963, while trying to understand the behaviour of a reduced model of circulation 
in the atmosphere, he established the following model [88]: 

,ý:: = 0, (y - x), 

rx-y-xz, 

xy - bz. (4.2) 

He soon discovered that the system can exhibit nonperiodic, chaotic behaviour. A well 
known absorbing set for this system is given by 

x2+Y2+ (Z 
_ or _ r)2 <b2 

(r + 0, )2 
(4.3) 

4(b - 1) 

Typically, the following system parameters are chosen: a= 10, b and r= 28. 3 

Figure 4.1a shows the Lorenz attractor and Figure 4.1b the absorbing set given by (4.3). 

80ý 
....... 

70,70, 

60, An 
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4.2 Finding invariant sets 
Now, the following corollary provides sufficient conditions that guarantee boundedness of 
solutions. 

Lemma 4.2.1. If there exist a positive constant, 3. and su'm of squares polynomials Vu (x) 
0 and p, (x) such that 

(X). VV 
, 

(X) 
_PI(X)(IIX112 _, 

3U) is a sum of squares (4.4) 2 

then 
ý7. 

U(X) !ý0 if IIXI12 >0. 
2-u 

Note that we have to perform a search on (the desirably minimal) '3. for which (4-4) 
holds. Moreover, if there exits a positive constant % such that IIXI12 > OU if V =0 2- U 

(X) YU 

then the region bounded by Vu(x) - 7u =0 is an invariant set, since f (x) - vVu(x) <0 

on the boundary. The following corollary provides sufficient conditions that guarantee the 

existence of such a -yu. 

Lemma 4.2.2. If there exZst a positive constant -N and a polynomial P2 G-r) (not necessarily 
positive) such that 

(vu (X) - 7u) + P2 (X) (IIX112 
- Ou) is a sum of squares (4-5) 2 

then 11x1122 ýý 0� if V� (x) 
- -ý. == 0, 

2- 

Note that the search for -y. can be posed as an optimisation problem, and thus, provides 

7,, / .. in, the minimal value of -N for which (4.5) holds. Figure 4.2 illustrates the different 

functions in Lemma 4.2.1 and Lemma 4.2.2. 

Similarly, we can search for regions that will not be entered. If there exist a positive 

constant ^ýj and a sum of squares polynomial Vj(x) >0 such that 

(X) - VV£(X) ýý 0 if V£(X) - -ri = 
then solutions will not enter the region bounded by Vj(x) - -yt = 0. To find such a region 

it is sufficient to show that there exist a (desirably large) positive constant Of a sum of 

squares polynomial q, (x) and a polynomial q2 (x) such that 

(x) - VVt(x) + q, (X)(IIXI12 is a sum of squares, (4.6) 
2 

t (X) _ yt) + q2 (X) (11 X 11 (V 
12 is a sum of squares. (4.7) 
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Note that the region between the isolines Vj(x) = -ýj and V,, (x) = -Y. is positively invariant. 
In the following, we apply this procedure to find an invariant set for the van der Pol, 
FitzHugh-Nagumo model and the Lorenz system. 

----------------- 
--------------- ------------- 

------------------------ ------ 
------------------- 

j6.0 % 

dVldtýO 

---------------- 
--- --- 

----------------- 
--- -------------------- ------ - --- --- ---------------------- 

----- 

V v. 
isolines of V,, 

Figure 4.2: Finding invariant sets. The isoline V,, bounds the smallest invariant 

set for the specific function V, 

4.3 Applications 

The van der Pol oscillator 

Consider the van der Pol oscillator which is a widely used simple system to model oscillatory 

behaviour in biological systems [30,89] 

X2 

2) 
: ý2 (k +x1 X2 - Xl- (4.8) 

Here, kER is a parameter. Note that the origin is the only fixed point of (4.8). For k>0, 

the origin is stable. For k<0, the origin becomes unstable and there exists a unique 

stable limit cycle for this system. Its existence and stability can be proved using Lienard's 

theorem: 

Theorem 4.3.1. (Lienard's theorem) [901 For xER, the equation 

:ýf (X)Lý 9(X) =: 
79 



has a unique and asymptotically stable periodic solution if 

0 f, g are contmuous 

ef is an even function 

F(x) <0 for 0<x<a, F(x) >0 and is increasing for x>0 (so, F(x) 0 only at 
x 0, ±a), where F is defined by F(x) :- fox f (u)du 

g is an odd function and xg(x) >0 for all x =ý4 0. 

Now, let us apply the results of Section 4.1 in order to check whether we can find 
an invariant set for (4.8). As an example let k= -1. Requirement (4.4) is a feasibility 
problem and can be implemented as 

given f (x), )3u 16>0 
search for V. (x), pl(x) 

subject to V,, (x) -6 (x'l + x2), pi(x) are sum of squares 2 

(X). VV 
. 

(X) 
_ P, (X)(IIX112 

_ 
0. ) is asumof squares. (4.9) 2 

We find that reproducing the actual algorithm is quite useful and believe that the comments 

make clear the procedure. The implementation in MATLAB using the SlOSTOOLS toolbox is 

as follows (We refer the reader to [86] for a detailed explanation of the different functions. ): 
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system's variables and initiation 

syms xl x2; vars=Exl; x2l ; prog = sosprogram(vars); 

defining vector of monomials of order 2,4,6 
VEC1 = monomials(vars, [2 4 61); 
% creating a polynomial with unknown coefficients 
[prog, V-ul =sospolyvar(prog, VEC1, lwscoeff'); 

VEC2=monomials(vars, [0 2 41); [prog, pll=sospolyvar(prog, VEC2, lwscoeff'); 

% requiring pl>=O, V-u>O 

prog = sosineq(prog, pl); prog = sosineq(prog, V-u-0.0001*(xl-2+x2-2)); 

van der Pol equations 

fl=x2; k=-l; 

f2=-(k+xl-2)*x2-xl; 

% requiring [dif f (V_u, xl) *f 1+dif f (V-u, x2) *f 2) +pl* (xl -2+x2-2-beta-u) I <=O 

beta-u=3.7; prog = sosineq(prog, - (dif f (V-u, xl) *f 1+dif f (V-u, x2) *f 2) ... 

-pl*(xl-2+x2-2-beta-u) ); 

% calling solver 

prog=sossolve(prog); 
% getting V-u 

V-u = sosgetsol(prog, V-u) 
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We obtain with 0. = 3.7: 

V� (x) = 8.361 x2 - 11.679x, x2 + 4.925X2 -4 o98X4 + 3.240X3X2 + 0.710X2X2 21112 

1X3 0X4 1X6 X4X2 33 X2X4 -0.063X 2+ 0-05 
2+0.78 ,+0.298 1 2- 0.434x1X2 + 0.283 12 

-0.089x, x 
5+0.012x 6 
22 

We replace 0,,,, V, p, by ýf, Vj, q, and make the following change: 
prog = sosineq(prog, dif f (V-ell, xl) *f 1+dif f (V-ell, x2) *f 2) 

+ql*(xl-2+x2-2-beta-ell) ); 
Then, we obtain that (4.6) holds if Of = 5.8 and 

Vj(x) = (10.854xi - 1.942x2-1.258X3 +0.517X2 X2- 0.244xi X2 -0.105X3)Xl 1122 

(4.10) 

3 1X2 X2 x3 +(-l. 942x, + 6.094X2+ 0.315x, - 0.57 1X2 - 
0-159X1 2-0.447 2)X2 

+(-l. 258x, + 0.315X2+ 0.180x 3 
-0.093X2 X2- 0.030xi X2 +O. 017X3)X3 

11221 

+(0.517x, - 0.570X2 - 0.0922 + 0.107X2 X2+0.02 1X1X2 +O. 007X3)X2 X2 11221 

32 
1X2 

3)XJX2 
+(-O. 244x, - 0-159X2 - 0.030x, + 0.021X1X2+ 0.149X 2+ 

0-003X2 
2 

+(-O. 105x, - 0.447X2+ 0.017x 3+0.007x 2 
X2+ 0.003x, x 

2+0.085x 3 )X 3 
122 2* 

(4.11) 

(The computation time is on the scale of a few seconds on a standard PC. ) Requirement 

(4.5) can be implemented as the following minimisation problem: 

glven 3., 

minimise IYU 

subject to ýYui P2(x) are sum of squares 
(Vu (X) - 7u) + P2 (X) (X2 + X2 _ ý3u) is a sum of squares. 12 

The implementation in MATLAB using the SOSTOOLS toolbox is as follows: 

(4.12) 
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syms xl x2; vars=[xl; x2l ; prog = sosprogram(vars); 

beta-u = 3.7; 
V-u = 

VEC3 = monomials(vars, [01); 
[prog, gamma-ul = sospolyvar(prog, VEC3, Iwscoeff'); 
VEC4 = monomials (vars, [0 2 41 ); 

[prog, p2l = sospolyvar(prog, VEC4, 'wscoeff'); 

prog = sosineq(prog, gamma-u); 
prog = sosineq(prog, -(V-u-gamma-u)+p2*(xl-2+x2-2-beta-u)); 

gamma-u is the 'objective function' to be minimised 

prog = sossetobj(prog, gamma-u); 

Eprog, info] = sossolve(prog); gammau = sosgetsol(prog, gamma_u); 

We obtain that the minimal value of -N such that (4.5) holds is 41. Let us replace 
Vui P2 by 0j, Vt, q2 and make the following changes: 

prog = sosineq(prog, (V-ell-gamma-ell)+q2*(xl-2+x2-2-beta_ell)); 

prog = sossetobj(prog, -gamma-ell); 
Then, we obtain that the maximal value of -ýf such that (4.7) holds is 12.4. The 

region between the isolines Vt(x) = -yt and Vu(x) = -y,, is the positively invariant set B. It 

is shown in Figure 4.3. 
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-1 - 

1 

Figure 4.3: Solution trajectory of the van der Pol oscillator in B. The boundaries 
of the positively invariant set 8 are given in blue; the gradient field on these is indicated 
by vectors (red); and the trajectory of the van der Pol Oscillator is in black. 

Since B does not contain fixed points, we can apply, as an alternative to Lienard's 

theorem, the Poincarý-Bendixson Criterion: 

Lemma 4.3.2. (Poincare-Bendixson Criterion) [50] ConsWer the system (4.1) and 
let M be a closed bounded subset of the plane such that 

'brium potnt. contains no equilibrium points, or contat'ns only one unstable equffi 

o Every trajectory starting in A4 stays in M for all future time. 

Then, M contains a periodic orbit of (4.1). 

This implies that L3 must contain an asymptotically stable limit cycle. The limit cycle 

is shown in Figure 4-3. Note that the criterion only holds in the case of a second-order 

system. 1n Section 4.4, we present results for systems of order >2 that guarantee existence 

of exponentially stable limit cycles in B when it does not contain fixed points and prove 

exponential stability of the van der Pol limit cycle. 
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Neocortical model 

The dynamics of neocortical neurons in humans and mammals are governed by roughly 
a dozen ion currents and their interplay. This leads to complex behaviour and thus, low- 
dimensional models have been developed in order to provide insight into the relationship 
between the core dynamical principles and biophysics. A popular model was proposed by 
the nobel laureates Alan Lloyd Hodgkin and Andrew Huxley, and further simplified by 

A L4 Richard FitzHugh and Jin-Ichi Nagumo to the following expression [5,91]: 

Ci) = m,,,, [v](v - E) - 

?b= bv - -yw, 

where m,,,, [vj -v (a - v). The first equation describes the changes in membrane potential 
which depend on changes in membrane capacitance, ionic currents, and the stimulating 
current I (in nA). Constant E is the steady state ion potential. The term rn,,,, [v] (v - E) 

is the current contribution from ionic movement and m,,,, [v] is the ion activation function. 

The second equation is to fit results to data. Note that the time t is measured in ms and 
the voltage is measured in 10-2MV. Parameter a is neuron-dependent and lead to different 
dynamical responses. Let the magnitude of the different system parameters be as follows: 

C=E-b= -y = 1,1 =0 and a=4. Then, we describe (4.13) by 

32 j;, - -x, + 5x, - 4x, - x2 

&2 :: -- Xl - X2- (4-14) 

Note that (4.14) has switching behaviour. That is, it has two stable equilibria 10,01 and 

13-618,3.6181 and one unstable, which is 11.382,1.382}. 

Using SOSTOOLS, we can search for a set around the three equilibria that traps solution 

trajectory in the same manner as previously for the van der Pol oscillator. We then obtain 

the following: 

, 3,,, = 26.2,7,, = 88-183 

22 8X4 X3 5X2X2 + 0.11 4 
V�(x) = 0.109x, - 0.089X1X2 + 0.484X2 + 0.02 ,-0.007 1X2 + 0.04 12 x2* 

The boundary of the invariant set is given by V,, (x) == -y. and is shown Figure 4.4 (blue 

dashed line). 
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To find an estimate for the region of attraction for the two stable equilibria, it is 
sufficient to show that there exist a (desirably large) positive constant A, a sum of squares 
polynomial rj(x) and a polynomial r2(X) such that 

- (x) -VV,, (x) + r, (x) x 11 2 is a sum of squares (4.15) 2 

and a positive constant % such that 

IIX112 
_0) -Ya) + r2 (X) (2a is a sum of squares. 

Implementing (4.15)-(4.16) in SOSTOOLS, we obtain for the origin: 

1.56,0.381 

x2 09X2 X4 _ x3 X2X2 X4 (x) = 0.422 - 0.552x, X2+0.6 +0.066 0.023 1X2+0.224 +0.063 2112 2* 

(4.17) 

The estimate for the region of attraction is then given by V,, (x) :5N. Before we implement 
(4.15)-(4.16) in SOSTOOLS for the equilibrium point given by 13.618,3.6181, we shift it to 

the origin through a change of a variables: yj = x, + 3.618 and Y2 = X2 + 3.618. This leads 

to the following result. 

)% = 3.6, -y,,, = 0.235 

0.088 Y2 9Y2 
1- 0-093y, Y2 + 0.15 2 (4.18) 

The estimate for the region of attraction is then given by V,, (y) Both estimates, 

(4.17) and (4.18), are shown in Figure 4.4 (blue solid lines). 
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X1 

Figure 4.4: Regions of attractions for the equilibrium points of a neocortical, 
model. The positively invariant set for system (4.14) is bounded by the blue dashed line. 
The region of attraction of the individual equilibrium points is bounded by solid blue lines. 
The black dash-dotted line was calculated numerically and shows the true border between 

the two regions of attraction. 

It has been observed that the neural system is excitable. That is, if the system at 

equilibrium is sufficiently perturbed, the individual variables will display a considerable 
large excursion in phase space. This can be also understood as switching between two stable 

steady states. Our analysis, summarised in Figure 4.4, shows just how much perturbation 
is at least necessary before one can expect this behaviour. 

The Lorenz system 

Consider the Lorenz system. We apply Lemmas 4.2.1 and 4.2.2 in order to find an invariant 

set and to see how it compares with (4.3). Particularly, we search for a fourth order 

polynomial V. (x, y, z) for which V Y, (x, y, z) :50 if x2+Y2+ (z - 38)2 >U. Using 
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SOSTOOLS, we obtain for Ou == 1100: 

Vu(x, y, z) =: -0.00191xyz + 3.346z - 0.2989xy - 0.04723X2Z -0.0667 Y2Z + 0.00043X2Y2 

+O. 00043X2Z2 + 0.0012ly 2Z2 
+0.2699 1X2 + 0.03172y 2+1.9105z 2 

-0.06689Z3 
+O. 00123x 4+0.0006ly 4 

+0.0006 1Z4 +8.8309, 

-yý, = 1347. (4.19) 

The computation time is on the scale of a minute on a standard PC. The set V,, (x, y, z) = ^/u 
is shown in Figure 4.5. 

............... 80--, 

60-4 

40 -ý 

20 -ý :' 

........... 

-20 -4 ---, "" 

-40 -ý, 
50 

.. ........ ... 

-50 

.... 

-60 -40 -20 
20 40 60 

Figure 4.5: Two invariant sets for the Lorenz system. The 'outer' set boundary is 

given by V,, = -y,,. The embedded spherical shell is from Figure 4.1b and defined by (4.3). 

4.4 Proving exponential stability of limit cycles 

Based on the sufficient positivity condition established by Peter Giesl, in this section, we 

use sum of squares programs to search for a matrix function that guarantees existence, 

uniqueness and exponential stability of a limit cycle. We illustrate our results with the van 
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der Pol oscillator, which is a widely used model in physics and biology for a system that 
exhibits oscillations. 

Consider the dynamical system 

, ý=f(x) where XER n. (4.20) 

Theorem 3.1.9 by Peter Giesl provides a means to prove the existence of a unique, expo- 
nentially stable periodic orbit in a given region of the state space, B. However, it require 
conditions that are usually difficult to check. We have been able to relax them through a 
sum of squares decomposition [82]. Using SOSTOOLS, we prove exponential stability of van 
der Pol oscillations. 

If the vector field (4.20) is polynomial or rational, (3.8) is a conditional positivity condi- 
tion on multivariate polynomials. It is well known that such conditions are difficult to check 
in general. However, one can create a particular hierarchy of relaxations, by replacing the 

positivity conditions with sum of squares conditions, which can be implemented efficiently 

using semidefinite programming with the aid of the MATLAB toolbox SOSTOOLS [82,86). 

Moreover, we can use SOSTOOLS to search for polynomial functions which fulfill the sum 

of squares conditions, thus providing a sufficient condition ('certificate') for the existence 

of a limit cycle in B. In order to use the sum of squares framework, we reformulate the 

original condition (3.8) as follows. First, we recall (3.8): 

wT 
(M(x) 

+1 M'(x» w<0, Vw such that WTM(X)f (x) = 0, Vw, x Ei B. 

19x 2 

Now, if 

wT 
(M(. 

X) + -' M, (X» W_ a(X) 
(WTM(X)f (X»2 < 0, Vw, x cB (4.21) 

ax 2 

then (3.8) holds. If we define v- M(x)w, then (4.21) becomes: 

vT 
(M(X)-1)1 

_ a(X)f (X)f (X)T v<0, VV, x G B, (4.22) ( 
Ox 2 

where we have used the fact that 

(M(x)M(x)-')' =0 == mf(x)M(x)-i + M(x)(M(X)-')/ ===* 
-(M(X)-, ), == M(X) m (X)M(X) 
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Let BI(x) =0 be the inner boundary of 13 and BO(x) =0 the outer boundary. If 
f (x), BI(x) and Bo(x) are given by polynomial functions, we can use SOSTOOLS to search 
for polynomial functions M(x) and a(x) that fulfill sum of squares conditions derived 
from (4-22). This is a feasibility problem that can be implemented as 

given f (x), BI (x), BO (x), ý>0 

search for N(l, l) (x) 
, 

N(1,2) (X) 
i N(2,2)(X), a(X), PIM, P2(V) 

subject to Pl(V)ý P2(V)ý VT (N(x) - 61) v are sum of squares 

-V 
T N(x) - N'(x) _ a(X)f (X)f (X)T V 

09X 2 

-pi (v)BI (x) + P2 (V) BO (X) is a sum of squares, (4.23) 

where N(x) = M-'(x). If a solution is found in terms of sum of squares decompositions, 
this provides a sufficient condition for the existence of an exponentially stable limit cycle in 
B. This certificate is therefore a proof of the existence of the limit cycle. Clearly, these are 
not necessary conditions and the absence of a solution says nothing about the existence of 
the limit cycle. We now illustrate the method establishing the existence and exponential 

stability of the limit cycle for the van der Pol oscillator. 

4.4.1 Application to the van der Pol oscillator 

Recall the set of equations for van der Pol oscillator: 

XI = X2 

2= -(k+x 
2) X2 - Xli (4.24) 
1 

Contraction analysis and SOSTOOLS were recently used to establish global exponential sta- 

bility of the origin for k>0 [92]. For k<0, the existence and stability of the periodic 

orbit can be proved using Lienard's theorem or by obtaining a compact, connected and 

positively invariant set 13 which contains no fixed point as in Section 4.2. Here, 8 is the 

region between BI(x) =0 and Bo(x) = 0, where 

BI(x) = -4 - 4.28lXlX2 + 4.93x 2+ 2-213X2 1.578x 4+0.012X4 + 0.202x 6+1.07X3 X2 
121211 

-0.048-T 
2x2-0.483xlx 3 
12 2' 

(4.25) 
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and 

BO (x) - -3.7 + 78.361x2 - 11.679x1X2 + 4.925X2 -4.098X4 +3.240X3 X2+0.71 0X2X2 121112 

-0-063xlX3 +0.050X4 +0.781X6 +0.298X4X2 -0.434X3X3 +0.283X2X4 221121212 

-0-089xi X5 + 0.012X6 
2 2' (4.26) 

Note that for computational reason, we chose to use (4.25), obtained by considering mono- 
mials of order 4, instead of (4.11), for which we considered monomials of order 6, because 
(4.25) is simpler (but also smaller). 

However, the inner boundary of B given (4.25) is smaller. We now use the above 
results to establish the existence and exponential stability of the periodic orbit of (4.24) 
for k<0. Because f (x) in (4.24) is a polynomial field, we can use SOSTOOLS in order to 

obtain polynomial functions M(x), and a(x) such that (4.22) holds. The computational 
implementation is given in Appendix A. Then, for k=-1 we obtain, with N (x) = M- 1 (x), 

)(x) = 2.759 + 1.080X2 + 0.489x, X2+0.032X2 +O. 514X4 +0.021X'3X2+0.002X2X2 
121112 

-0.006x, x 
3+O. Oolx 4 
2 2ý 

N(1,2) (X) 
= -0-746 - 0.933X2 + 1.652xlX2+0.033X2 -0.266X4 +0.014X3 X2+0.015X2X2 121112 

X3 _ 
O. OOIX4 

-0.0002xl 2 21 

N(2,2) (X) 
= 0.517 + 0.593X2 + 0.717xlX2+ 3-900x 24 X3 X2+. 304X2X2 

1 2+ 1.929x, - 0.184 1 #1 
2 

3 
X4 +O. 139x, x2 + 0.028 23 

a(x) = -1.592 - 2.310X2 - 0.117x, X2 - 0.396X2 - 0.977X4 - 
0.105X3 X2 - 

0.488X2X2 
121112 

-0.15 
1XJX3 - 0.296X4 2 2' 

This result guarantees the existence and exponential stability of a periodic orbit for the 

van der Pol oscillator in B (Figure 4.6). The computation time is on the scale of a few 

seconds on a standard PC. We have obtained similar results for several values of k<0. 
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L 

Figure 4.6: The Lm Landscape. The limit cycle of the van der Pol oscillators and set 
B are shown (in black and blue respectively). Let (4.22) hold if Lm(x) < 0. The contour 
surface of Lm(x) is shown (the plane corresponds to the zero level). 

4.5 Conclusion 

In this chapter, we have provided a practical means to prove the existence of exponentially 
stable periodic solutions of polynomial dynamical systems. Based on results by Peter Giesl, 

we have used SOSTOOLS to search for sum of squares decompositions that provide sufficient 

conditions for the existence of an exponentially stable limit cycle. We have applied the 

method to the van der Pol system. 
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Chapter 5 

Entrainment and sYnchronisation of 
biological systems 

The function of many biological systems is dependent on their ability to entrain to ex- 
ternal periodic inputs. Moreover, when analysing a biological system, it is often not only 
important to know when it will entrain to an external input, but also when it will syn- 
chronise its period to the period of surrounding systems. For instance, as mentioned in 
the introduction, many bodily functions require entrainment to the day-night cycle and 
the synchronisation of the circadian clock of all cells. It is also of great importance that 
heart cells work in sync as it is believed that cardiac dysrhythmia, a life threatening heart 
disease, are caused by poor synchronisation between these autonomous pacemakers [30]. 

Additionally, experiments have shown that, because of high degrees of variability even 
between synthetic genetic oscillators, observing rhythmical behaviour becomes improb- 

able [93]. This highlights the importance of mathematical analysis tools for models of 

coupled biological nonzdentZcal oscillators. 
In Section 5.1, we propose an algorithm based on semidefinite programming that allows 

us to establish sufficient conditions under which a exponentially stable system will entrain 

to the external input. In Section 5.2, we introduce known results on global complete syn- 

chronisation of coupled identical oscillators [33-35]. In Section 5.2.3, we show, for the first 

time to our knowledge, how to obtain these certificates for global complete synchronisation 

computationally. In Section 5.3, we draw connections between the notion of synchrony and 

the notion of observability. We then extend the results of Section 5.2 to obtain conditions 

for frequency synchronisation of nonidentical oscillators when coupled through a network 
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in Section 5.4. We apply our results to different important biological systems that consist 
of a network of coupled oscillators. In Section 5.5, we provide a relaxation of previous re- 
sults by requiring incomplete synchronisation only; that is, we require that the differences 
between the coupled oscillators remain small as time goes on and not that they approach 
zero. In Section 5.6, we show that in the special case of a system of coupled identical 
oscillators with all-to-all, it is possible to extend previous results. In Section 5.6.1, we 
provide a lemma which is equivalent to Theorem 5.2.3 but works also with a nonconstant 
matrix. We then extend this result to obtain conditions that guarantee global complete 
synchronisation for coupled identical discrete-time dynamical systems. In Section 5.6-2, we 
provide novel sufficient conditions for global complete synchronisation of coupled identical 

oscillators as an alternative to the ones presented in Section 5.6.1. They are based on the so 
called Bendixson's Criterion for higher dimensions which we have presented in Section 3.2. 
They signify a move away from the, at times, strict requirements derived from contraction 
theory in Section 5.2. Section 5.7 summarises the results of Chapter 5. 

As synchronisation of dynamical systems with unbounded and diverging solutions does 

not make much sense, in the applications, we shall either show or assume that solution 
trajectories are bounded. Finally, the following remark addresses an issue that is relevant 
to most results in this chapter and which is not satisfactorily addressed in the literature 

in our opinion. 

Remark 5.0.1. Consider 

ýý = 
(5.1) 

Let the origin be the only equilibrium point of (5.1) and globally asymptotically stable. Let 

D>0 be a diagonal matrix. Then, the origin is not necessarily a globally asymptotically 

stable equilibrium point of 
(5.2) jý - (x) - Dx. 

For instance, let 

0.5 -1 1 

A=2 -4 1, f (x) = Ax, D= diag ([0 10 0]) - 
1 -10 

Then all eigenvalues of A are negative and thus, the origin is a globally asymptotically 

stable equilibrium point of (5.1). However, one eigenvalue of A-D is positive and thus, 
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the origin is an unstable equilibrium Point of (5.2). Now, if there exists a (not necessarily 
symmetric) matrix P>0 such that XTpf (X) <0 and XT PDx >0 then XTpf (X) 
XT PDx <0 and the origin is globally asymptotically stable equilibrium point of (5.2). 

5.1 Conditions for the entrainment of a dynamical 

system 
Consider a continuous dynamical system given by 

jý = h(x, t) =f (x, u(t», f: DC Rn ---> R', u(t) CUCR. (5-3) 

Here, u(t) is a continuous, T-periodic function with zero mean. Let 

h(x, t) =f (x) + u(t). 

Then, the following result is well known (see, for instance, Chapter 10.3 in [50]). If the 

autonomous system with u(t) == 0 associated with (5.3) has a stable equilibrium point 
and the Jacobian at the equilibrium point is Hurwitz then the system (5.3) has a stable 
T-periodic solution for sufficiently small amplitude. However, it is worth remarking that 
in order to obtain a bound on the amplitude the periodic orbit must be known. In this 

section, we present an algorithmic implementation of Theorem 3.1.8 based on semidefinite 

programming. This provides the necessary information to establish sufficient conditions 

under which the system will entrain to the external input. Before, we briefly repeat The- 

orem 3.1.8: 

Theorem 5.1.1. If 

M(x)J(X) +I M'(x) <0 with M('ij) 
am(i, j) f, VX E B, (5.4) 

2 IOXk k=l 

holds for (5-3), (5.3) has no fixed points in B and u(t) is T-periodic then (5.3) has a unique 

and exponentially stable T-perzodic solution in B. 

5.1.1 A gene regulation model 

In this section, we apply the results obtained in the previous section to a biological model. 

We consider a gene regulatory system that controls the production of an enzyme from refer- 

ence [5] and examine the conditions that guarantee entrainment to an external drive. This 
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input could consist of the regular intake of medication, where entrainment is important. In 
Figure 5.1, x, denotes the concentration of mRNA, which is the template for the synthesis 
of an enzyme, whose concentration is given by X2. The enzyme combines with a substrate 
to produce a product, whose concentration given byX3 that inhibits the transcription of 
mRNA and also enhances its own depletion. 

Substrate 
DNA - mRNA - Enzyme - 

(X2) 

promotion 

I/ 

\l. 
Product 

repression (x3) 

Figure 5.1: Schematic control system for the production of an enzyme 

The dynamics of this system can be represented by a system of differential equations 
with linear terms for the degradation and some of the saturated enzymatic reactions and 
nonlinear (Hill and Monod) terms for the regulation exerted by the product 13: 

ýkj 
k- 

axl, 1 +X3 

ýý2 bxl-dX2, 
dX2 - 

kX3 

1 +X3 - e13 + U,,, + Au(t). (5-5) 

In (5.5), we have also assumed a positive periodic influx of the product 13 from other 
sources into the cell: u,,, + Au(t), where u,,, corresponds to the mean of the input and A 

to the amplitude. 
Note that for nonnegative initial conditions, the solutions of (5.5) remain in the non- 

negative orthant and their trajectories are bounded. The latter can be seen using the 

Lyapunov Function V(x) pTX, PT 
lb- 2 1], XT = [X1 X2 X3], since there exists a a 

positive scalar a such that V(x) <0 when pTx>a, which implies boundedness (see Defi- 

nition 2.4.2). Let the periodic drive be pure sinusoidal: Au(t) - Asin(27rt/T). Figure 5.2 

shows that the system does not necessarily entrain to the external input. 
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Figure 5.2: Gene regulatory system with external forcing 1. The parameters of 
the system are a=0.25, d=0.2, b=2, e=0.005, k= 10 and u,,, = 2. The three 

sub-figures represent the response of the system (bottom panel) to a sinusoidal. drive of 
different amplitude and period (top panel): (a) Au(t) = 2sin(lt), (b) Au(t) = 2sin(lt), 23 

(c) Au(t) = sin(It). Note that the s stem is not entrained in (a). 2y 

We apply Theorem 5.1.1 to establish conditions on parameters a and e of the system 

under which entrainment is guaranteed. Moreover, in accordance with Remark 5.0.1, we 

require that 
Mdiag([a 0 0]), Mdiag([0 0 e]), or Mdiag([a 0 e]) ýý 0. (5.6) 

To this end, we use YALMIP to solve the following feasibility problem: 

given a, e 

search for m 

subject to M> 01 MJ(X) < 01 VX3E R+ 

Mdiag([a 0 0]), Mdiag([O 0 e]), or Mdiag([a 0 el) ý! 0. (5.7) 
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Here, the Jacobian J is given by 

-a 0 -10 (l+X3 

2 -0.2 0 
0 0.2 -l) - (1+X3)2 

See Appendix B for the implementation in MATLAB using the YALMIP toolbox; note that 
YALMIP can handle uncertainties in J(x). We use recursive sequencing to search for the 
lowest values a and the computation time is on the scale of a few seconds on a standard 
PC for each iteration. Our computations show that with 

0.1011 00 
m00.3272 -0.0066 

0 -0.0066 0.0124 

the system is guaranteed to entrain to all u,,, + Au(t) ý! 0 if a> 26.6 (the inequality 
holds because of (5.6)), keeping all other parameter constants at the values shown in 
Figure 5.2. Similarly, a, e>1.3 guarantee entrainment to any u"' + Au(t) ý! 0, if we keep 

all other parameters constants at those reference values (Figure 5.3). Note that if we drop 

requirement (5.6) then we find that synchronisation occurs already for lower parameter 
values; for instance, if a= 21.8, e=2.6 or a, e=0.6. 

We have checked this sufficient condition numerically by testing for entrainment for 

random parameter values of a and e while keeping all other parameters constant. The 

numerical results indicate that entrainment is observed if a>0.4 or, alternatively, if e> 
0.08. As expected, our condition is conservative but it provides guarantees for entrainment 
and thus, could assist the process of drug design by identifying targets: changes in e, the 
depletion rate of the final product are easiest to change and will lead to entrainment as 
shown before. It is also less risky than introducing changes to the rate of loss and of 

recycling of mRNA given by a. However, a minor increase of the latter would mean that 
the changes to rate e could be reduced greatly. Moreover, the analysis provides a parameter 

regime a, e>1.3 in which the gene regulatory system is robust to changes of a and e with 

respect to its ability to entrain. 
Finally, note that this model is closely related to the Goodwin Model [38], which is often 

used to model the circadian clock [39-41). Therefore, our analysis could provide means 

to help individuals who suffer from 'dys-entrainment' [24]. This condition is responsible 
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Figure 5.3: Gene regulatory system with external forcing 11. The figure shows the 
response of the system to the sinusoidal drive u(t) == 2 sin I (top panels). (a) If a =- 0.25 2 

and e=0.005 then the system does not entrain to the drive (bottom panel). (b) The 

system with a, e=0.6 entrains (bottom panel). 

for an enhanced risk of errors and accidents at work and different health problems. In 

this case, x, would denote the concentration of PER-mRNA. PER, whose concentration 

would be given byX2, is an oscillator gene, which drives the transcription of transcriptional 

inhibitor (X3) that creates a feed back loop by blocking the activation of PER [94]. 

5.1.2 A pacemaker model 

Entrainment is also important in models of the heart beat driven by a pacemaker in order 

to prevent cardiac dysrhythmia. As a phenomenological model of the heartbeat, the Van 

der Pol Oscillator is justifiable on the basis of the similarity with the qualitative features 

of the heart dynamics or ECG wave [30,31]. The driven Van der Pol Oscillator is given by: 

'ý 1 : ̀::: X2 

2)X2 
_ X, + Uffl, 'ý2 -": ý -(k + x, (5-8) 

where u(t) represents the external drive. Let Ju(t)l be bounded; that is, there exists a 

positive constant a such that ju(t)j < a. We apply Theorem 5.1.1 to establish conditions 
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on the parameters of the system under which entrainment is guaranteed. To this end, we 
use SOSTOOLS to solve the following feasibility problem, where we include the requirement 
of Remark 5.0.1: 

given + X2 + U]T 
fW [X2 

- (k DX2 
- XI 

, k, a, 6>0 
search for M(l, 

l)(X), M(1,2)(X), M(2,2)(X)i Pl(V) 

subject to Pi M, VT (M(X) 
- JI) v are sum of squares 

-V 
T 

(M(X)j(X) 
+ 

lMt(X) 
-61 V 

2 
+pl W (U 2a 2) is a sum of squares 

VT 
(M(x)diag([011)+l'M(X)X2 

visasumof squares. 2 OX2 

Note that pl(X)(U2 -a 
2) 

:50 for ju(t) 15- a. Here, the Jacobian is given by 

-(2 

0k 1X2 

XIX2 + 1) -1 

Now, let Ju(t)l :! ý a=1. Then, we obtain with k >- 0.01 and 

(5-9) 

M(1,1) (x) = 7.535 + 1.971x 2- 0-591X1X2 + 0.12 1X2 +7.147X4 +O. 034X2X2 
- 0.004x, x 

3 
12122 

22 
x3 X2X2 M(1,2)(X) =: 0.050 + 7.287x, + 0.012x, x2 - 

0.003X2 
- 0.004 x2 + 0.003 12 

X2 X4 - 0.001X3 M(2,2) (X) 
== 7.544 + 0.113x21 - 0.042x, X2+ 0.006 2+0.006 1 1X2- 

that the van der Pol oscillator entrains to time dependent inputs. Moreover, this result 
also holds for a= 100. For larger bounds on u(t) we run into computational problems. 
However, we think that it is safe to conclude that in order to guarantee entrainment to 

an external drive the van der Pol system has to operate in the stable regime: k>0 (see 

Figure 5.4). 
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Figure 5.4: The van der Pol oscillator with an external drive. (a) For k= -0.6, The 
van der Pol oscillator (bottom panel) does not entrain to the periodic drive (top panel). (b) 
For k =: = 0.01, the van der Pol oscillator (bottom panel) entrains to the drive (top panel). 

5.2 Global complete synchronisation of identical os- 

cillators with symmetric but otherwise arbitrary 

coupling 
In this section, we provide results on global complete synchronisation of coupled identical 

oscillators with a coupling graph that is symmetric and connected but otherwise arbitrary. 
Two dynamical systems x and y are completely synchronised if x == y for all t> to. 

In Section 5.2.1, we briefly present known conditions on a system of coupled identical 

oscillators that guarantee the stability of the completely synchronised state locally [33]. In 

Section 5.2.2, we first present conditions on global stability of the complete synchronised 

state from references [34,35] and compare them. In Section 5.2.3, we exemplify the results 
through a network of coupled Repressilators and chaotic Lorenz systems. Importantly, as a 
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novelty we use semidefinite programming to make it possible to computationally implement 
the theoretical results of Section 5.2.2. We obtain numerical results that fulfil the conditions 
for global complete synchronisation and moreover, can search for their optimum, which 
allows for a comparison with cases, in which 'simple' analytical results exist. 

Notation 

In this section, we use the notation set by Chai Wah Wu in [35]: 
Consider N identical n-dimensional oscillators given by xi E R1, i=1, ..., N. If the 

oscillators are linearly coupled, their dynamics can be described by: 

,ý= (x) + s(C 0 D)x, (5.10) 

where x= [xi ... XN]T and I(x) = [f (xi) ... 
f (XN )]T. In the coupling term of (5.10) 

the positive constant n corresponds to the coupling strength, 

ip D cz R nXn denotes the output matrix for each oscillator of the variables that are used 
in the coupling, 

* and the matrix -C ER NxN is the Laplacian matrix of the coupling topology. 

Figure 5.5: A network of coupled oscillators. Each square represents a three dimen- 

sional dynamical system. They are connected through a weighted network. 
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In Figure 5.5, n-3, N=5, 

0 0 

-2 1 0 
0 1 -8 5 
0 0 5 -8.5 
0 0 2 3.5 

0 

0100 

2 and D000 

3.5 000 

-5.5 
Note that D is diagonal and an output counts I, which we will assume to be the case 
throughout the thesis but which is not necessary. In this case, the connection is in f, and 
given through the exchange of xi,; for example, 

0 0 

0 0 0 
0 0 0 

would imply that the connection is also in f, but given through the exchange of xi,. 

5.2.1 The master stability function 

In [33], Louis M. Pecora and Thomas L. Carroll introduced the notion of the Master 
Stability Function (MSF) for coupled identical dynamical systems. Consider N identical 
n-dimensional linearly coupled oscillators: 

:ý= I(x) + r, (C (9 D)x, (5.11) 

where x= [x I ... XN]T, 
f(X) [f (X1) f (XN)]T 

, r, is the coupling strength, and 
Rnxn 

-C ER NxN 
-ig (see (5.10)). D c- + and are matrices encoding the coup1h 

Let xi xj for all i, j=1, N. We denote this state of (5.11) by ±; that is, ±1 

Xt 2 XN- If the coupling matrix is a zero row sum matrix then (C 0 D)± = 0. The 

MSF approach locally investigates the stability of this state. If the individual uncoupled 

system has a (not necessarily constant) globally stable steady state then the synchronised 

state corresponds to the union of the individual (identical) steady states. 
Now, consider the following linearised variational equation for the synchronised state 

of (5.11): 
[9f(x) 

+ r, (C (9 D) (5-12) ýX- 
4; 
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where [ýj ... ýN]T 
. Let '9f (") Then, ax It- 

I 
ýj 

ý= [IN 
(9 J+ n(C (9 D)] ý. 

Let SAS ̀ =C, where A is a diagonal matrix containing the eigenvalues of C denoted 
by Ai, i= 1 ... 7 N. Let C be connected. Then, one eigenvalue is zero and all others are 
negative. Let A, =0 and ý=S0I,, V. Then, 

ý(S 0 In)-' =ý= 
[SINS-1 

0,1 + r, (SCS-1 0 D)], O = 
[IN 0,1 + r, (A 0 D)] V. (5.14) 

Note that in (5.14) the different variational directions are separated. Thus, 

ýi = [i AinD], di, i= (5-15) 

Moreover, i=1 corresponds to the synchronisation manifold (A, = 0) and all other i's to 
transverse variations. The Master Stability Equation is given by 

ý=[,! arD](, aEC. (5.16) 

By computing the maximal Lyapunov exponent of (5.16) along the trajectory of an in- 
dividual uncoupled system for different values of aEC, we can construct a map of the 

stability of (5.16) in the complex plane. Stable regions correspond to values of a which 
have negative exponents associated with, and unstable to those which have positive expo- 

nents associated with. Then, we can locate Air, in the complex plane for all i. If at least 

one is located within the unstable zone then the synchronised state is unstable at that r.; 

which implies that a necessary condition for stability of the synchronised state is that, for 

all i, Air. is not located within the unstable zone. If they are all located within the stable 

zone then the synchronised state is locally stable for that r,. 

5.2.2 Sufficient conditions for global complete synchronisation of 
identical oscillators 

In the 1990s, Jack K. Hale published his work on sufficient conditions that guarantee 

global stability of the synchronised state of a system of coupled identical oscillators based 

on dissipation in the coupling [95). The new millennium has seen extensions to this work 
by Chai Wah Wu [35,96] and Igor Belykh et al [34,97], who have developed independently 
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different but related approaches to obtain conditions that are based on graph theory and 
Lyapunov theory. In the following, we will present and compare them. In Section 5.2-3, 
we show how to computationally implement the conditions presented here. 

We reformulate Theorem 2.1 of [35] on global complete synchronisation as Theorem 5.2.3 
by using the result of our Lemma 5.2.2. (We have recently discovered that an equivalent 
requirement was already presented in [96]. ) First, we define the Laplacian matrix of the 
completely connected graph (recall that E= eeT, eT = [I 

... 11): 

Definition 5.2.1. The Laplacian matrix of the completely connected graph is given by 

-UER NxN 
, where 

-U = NIN- E<0. (5.17) 

In what follows, -C is the Laplacian matrix of the coupling topology, which is not 

required to be constant; that is, it can be of the form Qx) or C(t). 

Lemma 5.2.2. Let C, UE R"' and U be qZven by (5.17). If -C is a symmetrtc M- 

matrix (that Zs, it has zero row and column sum) of rank (N - 1) then there exists a positive 

constant -y such that --fU < -C if 

-yN = Amin(-C)y 

where A. i,,, (-C) denotes the smallest positive eigenvalue of the matnX -C. 

Proof. First note that C(i, jAi) > 0. Now, UE -0 and CE = 0. Hence, UU = -NU 

and CU = -NC. Let -SCS-1 - A-c, where A-C is the diagonal matrix containing the 

eigenvalues of -C; without loss of generality, let A-Cj,, = 0. Moreover, S-1 = S', and 

since 
SCUST = SCSTSUST = -NSCST 

it follows that SUS' = Au, where Au is the diagonal matrix containing the eigenvalues of 

U and Au, 
', = 0. Now, for all yE R', 

-Y 
T ̂ f uy = _YTST -yAuSy -v 

T 
-yAuv <vT A-cv =y 

TST A-cSy = -y 
Tcy 

holds if A,.,, a,, (--yU) = -yN =A.. i,,, C) -0 

In the following, matrix D represents the coupling between any two dynamical systems, 

which is also not required to be constant; that is, it can be of the form D(x) or D(t). 
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Theorem 5.2-3. Let C, U be as in Lemrna 5.2.2, and 

&= (x) + r, (C (9 D)x, 

where DE R'-x', x= IX1 ... XNI T, f (X) - [f (Xi) 
... 

f (XN )]T, X, EDC Rn 
,i 

11, 
--. ,NI- Furthermore,, let -y be such that 7N = Ai,, (- C) and 

g(xi) -f (xi) - -ýNrDxj. (5.20) 

Then, if there extsts a symmetric and positive matrix P (E R nxn such that for all xi and 
all i 

(X, _ Xj)Tp(g(Xi) _ 9(Xj)) < 0, Xj =h Xi, (5.21) 

the network of coupled dynam2cal systems gZven by (5.19) synchronises in the sense that 
xi - xj --+ 0, Vi, j, as t --+ oo. 

Proof Consider the following Lyapunov function from [35]: 

V(x) = -x 
T(U (& p)X =1X, _ xj )Tp(Xi _ xj )>0 if Xi: 2Z 

U("j) 74 xj, 
i<j 

and thus, 
1T 

(U (& p),: ý 
1. 

2x_2 
j(U 0 p)X = _XT(U (& p): ý. 

The second equality follows from the symmetry of U (9 P. Now, note that if i<j, for all 
ij, then U(jj) = 1, and recall that U' = -NU. Since -y is such that -yN= /\min(-C)) 

it 

foRows that 

V(x) =: -x 
T(U 0 p)jý = _XT(U (g p)(f(X) + r, (C (9 D)x) 
T(U (g p)f(X) _ XTK = -x �(UC 0 PD)x = _XT(U 0 p)f(X) + XT Nr. (C (& PD)x 

< _XT(U 0 p)f(X) + XT -yNr, (U 0 PD)x 
j: (xi - xj)'P(f (xi) -f (xj» - -yNK Z (xi _ xj )Tp(Dxi - Dxj) 

i< J i<j 

= 
j: (X, _ Xj)Tp(g(X, ) _ g(Xj» < 0, X,: ý Xj. (5.22) 

i<] 

The inequality in (5.22) implies that (5.19) synchronises in the sense that xi - xj -+ 
Vi, j, as t -4 oo. 

0 
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By the mean value theorem (Theorem 3.1.1), inequality (5.21) holds if 

P( 

ay 
)<0, 

Vy C- D. (5.23) 

As opposed to the approach presented in the previous section, which investigates the 

stability of the synchronisation manifold locally through the analysis of the Lyapunov 

exponent, the result in this section guarantees global asymptotic stability. However, it is 

more conservative and requires a search for matrix P. In Section 5.2.3 of this thesis, we 
show how to computationally perform this search. 

To see how the results of Igor Belykh et al. in [34] are related to the previously presented, 
we show in the following the ideas behind them. In [34], the difference 

xij = Xi - Xj (5.24) 

was considered. However, synchronisation is also well defined in a system, where the 
different systems are compared to one reference system. Thus, for all i, consider the 

difference xi - x, -- Xi (Xi = 0). Then, 

x, - (_ 0 
X2 

X x3 

-x, _ 
ý--1 

and 

00 

10 

0100 1� 

00 

X =(F®I)±. 

Let matrix P be such that P>0 and consider the following Lyapunov function: 

V(X) = 
iXT(I 

N0 p)X > 0, X zý 0. 

Note that C= CF. Then, 

ýr(X) = XT (IN (& p)X = XT (F 0 P).: ý 

= XT (F 0 P)(f(x) + K(C 0 D)x) 
N 

Xi) _f 
(X1» + XTK Xip(f t(FCF 0 PD)x 

i=2 
N 

=Z X7p(f (X, ) _f (X, » + XTr, (FC 0 PD)X. 
i=2 

(5.25) 

(5.26) 
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By Theorem 3.1.1, there exists a zi such that zi, E [xij 
I x1j] for all j, i=1,..., n and 

(Xi) -f (X, ) - 
J(Xi) Ixi=Zi 

xi, 

where Dfk-) - (xi) 
. Thus, axi -i 

NN 
V(X) =Z XTpj(Xi) Ixi=ziXi + XT r, (FC 0 PD)X =Z XTP(J(xi) Ix, 

=z, - ar. ND)Xi, 
1<i 

where aN = A,. i,,, (-(FC)gL) and (FC)gL is the matrix obtained by deleting the first row 
and the first column. It is the so called grounded Laplactan [98,99], where the deleted row 
and deleted column correspond to the grounded variable - in our case it is xi. A grounded 
Laplacian matrix is a principal sub-matrix of the Laplacian matrix. Now, this implies that 
1ý(X) <0 if 

P(J(xi)1., 
j. � - arND) < 0, z c- D, (5.27) 

The inequality ýr(x) < ýO means that the difference xi - x, tends to zero for all i as t --+ oo 
and thus, that the system of coupled identical oscillators completely synchronises. Since 
eig(FC) = eig(CF) = eig(C)' and the first row of matrix FC is zero, it follows that 
A, -, ý (- (FC)gL)= A. i,, (-C). Thus, (5-27) is equivalent to (5.23) with constant a replacing 
constant ^j. 

In summary, if solution trajectories of the coupled system are bounded and one can 
show that the origin is a globally asymptotically stable equilibrium point of (5.26) then 
the coupled system will exhibit synchronised behaviour that corresponds to the behaviour 

of an individual uncoupled system as t --+ oc. 

Different coupling configurations 

Fnr illustration, we provide examples of Ani,, (-C) of different unweighted coupling config- 

urations; recall that aN = -yN = Aý. jý, (-C)- 

a) All-to-all coupling (C = U): A,,, i,, (-C) = N. 

b) Star-configuration: A j,, (- C) = 1. 

c) Ring of diffusively coupled oscillators: \. i,, (-C) =4 sin 
2 7r 

ýV - 

'The fact that for square matrices A, B, eig(A) = eig(B) is proven in (1001. 
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d) Ring of 2k-nearest neighbor coupled oscillators: A .. jý, (- C) ý-- 27r2 k(k+l)(2k+1)13N 2 
if k<N (see [7]). 

The different coupling configurations are illustrated in the figure below. 

a) 

c) 

b) 

d) 

Figure 5.6: Four different coupling configurations. Here, N= 10 in (a), (c) and (d), 
N= 11 in (b), and k=2 in (d). 

It follows that for any given number N of coupled oscillators, the lower the value of 7 
is, the larger the value of K must be in order for (5.27) to hold. If s is associated with a 
cost function and larger values of r, are more costly then clearly configuration (a) is the 

most desirable. Let -yKN = 1. Then, the following table compares the values of r. for 

configuration (a) - (c) when N=7.... ) 10: 

N 7 8 9 10 

conf (a) (b) (C) (a) (b) (C) (a) (b) (C) (a) (b) (C) 

K 0.143 1 0.19 0.125 1 0.213 0.111 1 0.238 0.1 1 0.262 

Table 5.1: Coupling cost depending on configuration. 
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5.2.3 Computational methods to obtain certificates for global 
complete synchronisation with applications 

In this section, we show how to implement the theoretical results presented previously in 

order to obtain computationally certificates that guarantee global complete synchronisa- 
tion. First, note that condition (5.23) (which is equivalent to (5.27)) corresponds to a 
feasibility problem and can be implemented as: 

given f (x), y, N, D, r, 

search for p 

subject to P>01 PD>O, P( 
09X - -yNKD) < 0. (5.28) 

Note that we have included the requirement of Remark 5.0.1. In the following, we pro- 

vide applications to coupled Lorenz systems and a network of Repressilators (a synthetic 
biological circuit). 

A network of coupled identical Lorenz systems 

Consider a network of N coupled identical Lorenz systems. The set of equations for each 
individual system is given by (i = 1, ..., N): 

'ýil =ý 07(yi2 - 27il), 

'ýi2 = rXiý - Xi2 - XilXi3l 

'ýb = Xil Xi2 - 
bxi3. (5.29) 

The coupled system is given by (5.19): 

ýý = 
I(x) + K(C 0 D)x. 

The Jacobian of each individual Lorenz system is given by 

-a 

xi, 
Xi2 

01 

-1 
Xil 

Now, let D= diag([1 0 0]), where D is the output matrix of the variables that are used in 

the coupling. Let o, >1 and b>2. 
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Similarly to [1011, the following analysis will establish a bound for (5.2.3). For instance, 
consider 

1(NNN 
V(X) =-E Xý + X2 )2). 

2 j2 
+ (7 -r (5.30) 

If follows that 
N 

ýr(X) 
= -0, 

E 
Xi2l 

i=l 
N 

Xý 

Let IF be given by 

NN 

xi2, - bl: (xi2,, _ 
(a + r)X, ý') 

+ XTK(C (& D)x Z2 i3 

NN22 

E Xý - by: Xi3 - 
(T +r+ 

Nb 
(0, +r+xT 

n(C (2) D)x. Z2 22) 
(5.31) 

NNNu+ )2 a+r2 
OrEX2 +EX2 _Zr XT 

i=I 

il 

i=l 

i2 b 
i=I 

(Xi3 

+2r, (C (9 D)x =: Nb 

Then, 1ý(x) <0 outside r and ý'(x) >0 inside r. It follows that, for initial condition 
inside r, the upper bound b of V(x) lies on IF, on which ý'(x) =0 and thus, 

NNN 

X? = -or x2 -by , 
(x' - (or + r)xi, ) + x'r, (C 0 D)x 12 ii i3 

i=l 

which leads to 

, «1 

_ or) + XTK V(x G F) =-Zx? + Z(-bx? + b(or + r)xi., + (xi, - o, - r)2) �(C 0 D)x 
2 21 13 

:5 ýr (X c F) =: 
1 (1-0, ) x? + Z(-bx? + b(o, + r)Xi3 + (Xi3 

_ d7 _ r)2) Zj z3 

Thus 
,b= maxf V (x E IF) maxf V (x E r) 1. Now, for all i, the solutions to 

OV(x E F) OV(X Ei F) u+r )- = 
(1 

- o, 
)xi, 0, = 43 - (u + r) - b(xi, -0 axi, axiý, 

axe given by ti, =0 and ti, = 
b-2 (a + r) = p. Note that, for all i, 

2(b-1) 

02V(X E rl) 
<0 and 

IqX2 i tj xil =ý'ýil 1% =ýý '3 

02V(X C. F) 

0X2 
Xil ý-; 'il 'Xi3 ="3 

<0. 
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It f6flows that 

NN b'(r + or)2 b< MaXIV(X E r)} - -(-bp2+ b(a + r)p + (p _ or _ r)2) = 22 4(b - 1) 
Thus, for initial conditions inside IF, the following bound holds: 

x2 +X? +(o, +r )2 <Nb2 
(r + cr) 2 

il 12 
Xi3 

4(b - 1) 
(5.32) 

Note that this set is compact and convex. In the following, we will assume that the 
dynamics of thecoupled system evolve in or at most on F. 

Similarly to [34], we let P=I, use (5-32) and obtain that 

if 

PA + JLTP 
- 2-yNrPD -A+ JLT 

- 2-yNrD <0 

K> 
b(l + b)(r + or)2 or 

16^ý(b - 1) -ýN 

(5.33) 

(5.34) 

where -y is as in Lenuna 5.2.2. Condition (5.34) follows from the Routh-Hurwitz criterion. 
For instance, (5.34) guarantees that a3 >0 and aja2 > a3, where 

o, + -yNr, +I+b, 

- xi, a2 == or + -yNr, +b+ (o, + 7Nr, )b - 0.25((o, +r 3)2 
+ X2 i2 

)2 +X2 and a3 + 7NK)b - 0.25(b(o, + r- Xi3 i2 

are the coefficients of the characteristic equation of (5.33): A3+ ajA' + a2A + a3 = 0- 
Typically, the following system parameters are chosen for the Lorenz system: 0' = 10, 

b= ý' and r= 28. Thus, if we assume that P=I as in [34] then (5.34) guarantees 31 

global complete synchronisation if r, > 530 - -LO-. Figure 5.6 shows how 7 changes accord- yN 

ing to different coupling topologies. For example, the coupled Lorenz system completely 

synchronises with all-to-all coupling if r. > 525 and N=2, or if r, > 529 and N= 10. 

By using semidefinite programming, the bound on r, can be improved significantly. 
Using YALMIP, we obtain that with 

4.929 00 
p00.877 0 (5.35) 

000.877 
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the coupled Lorenz system completely synchronises if n> 251 (r, > 251 with all-to-all 
coupling) and N=2; and that with 

4.328 

0 

0 

00 

0.327 0 
0 0.327 

the system synchronises if r, > . 1-2-5 (r, > 125 with all-to-all coupling) and N= 10. ly 
Note, that the bound given by (5.32) was implemented in YALMIP as 

x21x2 (38- Xi3 )2 < 1540.3N. il i2l 

(5.36) 

This is somewhat conservative. One great advantage of SOSTOOLS is that condition (5.32) 

can be posed as it is, however at greater computational effort: 

given xi, f (xi), y, N, D, > 

search for P, P(V) 

subject to vT (p _ ýI)V, VT PDv, p(v) are SOS Vv E R' 

-V 
T(j(Xi) 

- 7NKD + 61)v + p(v)(x. 2 + xi2,, + (38 - 
Xi3 )2 

- 1540.3N) is SOS 
ZI 22 

n Vv CR. (5-37) 

Searching for a lower bound on n using SOSTOOLS, we obtain that with 

17.077 00 
p03.777 0 (5.38) 

003.782 

the coupled Lorenz system completely synchronises if r, > 222-6 (r, > 222.6 with all-to-all ly 
coupling) and N=2; and that with 

9.59 00 
p01.116 0 (5.39) 

001.116 

the system synchronises if r, > 117-9 (K> 117.9 with all-to-all coupling) and N= 10. 
Y 

Numerics indicate that for N=2 global complete synchronisation occurs ifK> 4 (Fig- 

ure 5.7). 
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Figure 5.7: Two coupled identical Lorenz systems. (a) For K= 1, the two coupled 
identical Lorenz systems do not synchronise. (b) For K= 4, the two coupled identical 
Lorenz systems completely synchronise. 

The following table summarises the results of this example and shows how using semidef- 
inite programming lowers the value of the minimal K that guarantees global complete 

synchronisation and which we denote by r, *: 

p == I SOSTOOLS 

2 10 2 10 

525 529 222.6 (222-6 117 ("-9 = 0.22) 
525 2 529 

Table 5.2: Comparison of values of r. * obtained with and without the application of semidef- 

inite programming. 

A network of coupled identical Repressilators 

In a seminal paper [37], Michael B. Elowitz and Stanislas Leibler presented the so called 

Repressilator, a synthetic biological oscillator in E. coh which has been used to facilitate 

our understanding of genetic oscillatory circuits. The Repressilator consists of three genes 
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(cI, tetR, and lacI), which synthesise proteins that inhibit the transcription of each other in 
a cyclic way. In a more recent paper, a modified version of the Repressilator was proposed 
to enable inter-cellular coupling that can lead to synchronised behaviour [93]. Here, we 
study the issue of global complete synchronisation in networks of Repressilators. In [93], 
two coupled Repressilator circuits controlling each other were considered. We propose a 
different, simpler biologically plausible modification of the Repressilator circuit that allows 
for easier analysis of the synchronisation of these systems. Namely, we propose to swap 
gene tetR with gene luxI, which synthesises a protein (AI) that can diffuse freely in and 
out of the cell. Furthermore, we assume that Al can bind to another protein and that this 

complex inhibits the expression of the Repressilator gene d (in [93], it is promoting the 

expression of lacl). Figure 5.8 shows the modified Repressilator circuit. This configuration 
provides the means for a network of 'Repressilator cells' to couple. 

Figure 5.8: The Repressilator. Modified Repressilator to allow coupling between cells. 

The Repressilator is presented through the following dynamical system, where the concen- 

trations of I luxI, cI, 1 acI, Al, B, CI are given by IX 11 ---) X6 1: 

-ýI = -x, + 
Cej 

21 1 +X6 

'ý2 = -X2 + 
Ce2 

21 + X4 

: ý3 = -X3 + 
Ce3 

+ X2 5 

ýý4 = 04(Xl 
- X4)i 

'ý5 = /35 
(X2 

- X5) i 

'ý6 = ý6 (X3 
- X6) - 

(5.40) 

Note that, depending on parameter values, solutions of (5.40) tend either to a stable fixed 
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point or a stable periodic orbit [102]. 
We now establish conditions for the global complete synchronisation of coupled identical 

Repressilators. Consider a system of N coupled identical Repressilators in an all-to-all 
configuration. The dynamical system is given by (5.40) together with (5-19), where D= 
diag([O 0010 0]). The coupling constant r, is the diffusion rate of Al in and out of the N 
cell. We assume that once protein Al leaves the cell, where it has been produced, it is 
distributed evenly among all cells. This is represented by factor -N1 N' 

Note that the system given by (5.19) and (5.40) is positively forward invariant with 
respect to the positive orthant and its solutions are bounded. To see the latter, use the 
following Lyapunov function: 

N 
V(X) V , (X), V , 

(X) 
= PT Xi, 

pT 
+ F19 

T= [Xil Xi Xi2 Xi3 Xi4 Xi5 Xi611 NI. 

Since there exists a positive scalar q such that V(x) <0 if p'xi > 'q for all i, boundedness 
follows. Moreover, the absorbing set is compact and connected in the nonnegative orthant. 
Now, we can use Theorem 5.2.3 to find a lower bound for r, >0 which guarantees global 
complete synchronisation. Moreover, since solutions of the system given by (5.19) and 
(5-40) are bounded, the synchronised state corresponds to the union of either the stable 
fixed point or the stable periodic orbit that the individual Repressilator would approach 

when not coupled. We use YALMIP to see whether there exists a matrix P>0 such that 
PJ(x, K) < 0, for all xE Rn+, by increasing values of & Note that J(X, K) corresponds to 

'9' - NrD (where i is given by (5.40)) with aj, = ai2 : =-- ai3= 10 
and Oi,, = Oj, = 3j, = 1: ax 

0 0 0 -20xr, 
(1+X2)2 

0 o -20X4 
- 2*)-2 '-+-X 

4 

0 0 

(X 
s) 

0 0 -20x5 
j2 -)2 

5 

0 

, 
1 0 0 

-1 
0 1 0 
0 0 1 0 

We obtain that synchronisation is guaranteed if r, > 145. However, numerical results for the 

network of two identical Repressilators show that global complete synchronisation occurs 
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if r, > 0.001 (Figure 5.9). Unsurprisingly, the condition is conservative but it provides 
guaranteed global complete synchronisation. Moreover, note that if we consider a different 
coupling configuration then we have to amend r,; that is we can guarantee global complete 
synchronisation only if K> L4 where we know from graph-theory that 'Y <1 (see also 
Figure 5.6). 

a) b) 

Figure 5.9: Two coupled identical Repressilator. (a) The coupling strength is K= 
0.0001 and the two coupled identical Repressilators do not synchronise. (b) The coupling 

strength is r, = 0.001 and the two coupled identical Repressilators completely synchronise. 

The Repressilator, a synthetic oscillator, was designed to assist the study of more 

complex biological oscillators, particularly, when their behaviour is interconnected while 

in a culture. As synchronised behaviour has not been observed in vitro [93], the analysis 

in this section might provide the means to assist the design of the interconnection between 

cells that express the Repressilator circuit in order to guarantee synchronisation within the 

culture. In this section, we considered identical Repressilators only, in Section 5.4 we will 

extend our analysis to nonidentical Repressilators. 
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5.3 Constructing an observer 
The notion of synchrony is closely related to the notion of observability. For instance, 
given a system H with state vector x and measurable outputs y, we feed y into an observer 
(or state- estimator) Iý with state vector z and measurable outputs : ý. They provide an 
estimate for x if x- :ý --ý 0 as t -+ oo. Let :i=z. Then, this is equivalent to complete 
synchronisation of x and z as time goes on (see also reference [45]. ) The following figure 
gives a schematic view of an observer: 

Figure 5.10: A schematic view of an observer. 

Consider a biological system given by 

i == 
with output y. Let y= KDx be the input to the observer, which given by 

-ý = rDz 

with output z. Then, we obtain the following system: 

ýb =: 
i= (z) + rD(x - z). 

(5.41) 

(5.42) 

(5.43) 

Thus, the interconnection between (5.41) and (5.42) given by (5.43) can be written as 

=+ K(C 0 D) 
1 -1 

- f (Z) 
Now, if there exist matrices D>0 and P>0 and a constant K>0 such that (5.21) holds 

2ý0. 
) This implies then the system is observable. (N =2 and with -y = 1: U(C - -ýU) - 
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that the search for n can be implemented as: 

given f, D, K 

search for p 

subject to P>07 P( 
Ox - rD) < 0. (5.44) 

Application to a simple gene regulation model 

In the following, we apply above results to the gene regulatory system that controls the 
production of an enzyme from Section 5.1-1. For clarity, we restate here the set of differ- 

ential equations representing the system, where we assume that the depletion rate of the 
final product is zero, e=0: 

Jýl -- axi, 1 +X3 

ýb2 - bxl-dX2, (5.45) 

'ý3 --`7 
dX2 

kX3 

-X3 - +X3 

It possesses a unique positive equilibrium point 

kbk [X17 X21 X31 = 

[-1 

--7 

'1 

a+b da+b a 

whose instability guarantees oscillating behaviour, since solution trajectories are bounded 
(see Section 5.1.1). Moreover, the bounding set is compact and connected. Now, the 
Jacobian is given by 

a0 T1- +-X3) 2 
Jb 

-d 0 (5.46) 

0d -k )2 J L (1+X3 

In order to find parameter regimes, in which oscillations occur (that is, the equilibrium 

point is unstable), we use the Routh-Hurwitz criterion (see (2.35)). It implies that Re(A) > 
0 if 

(B - A')' > 4A2ad > 07 (5.47) 

F22F22+ 
-(B -A- vl'(B - 

A2)2- 4A2ad)<k<ý (B-A Vr(B-A2)2- 4A'ad), 
2A A 

(5.48) 
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where A=a+d, B- bd, and F=I+ý. For example, if inequality (5.47) holds - a 

which is the case if b is sufficiently large - then there exists ak such that (5.48) also holds. 
Moreover, if a=d then (5.47) holds if b> 8a and (5.48) becomes 

F 
(b - 4a - V/-(b 

--8a)b) <k<F (b - 4a + Vý-(b 
--8a)b). (5.49) 

44 
We wish to construct an observer for (5.45) and test its functionality for a case in which 

(5.45) exhibits oscillations. By inequality (5.49), this is the case if a=d=0.21 b= 2ý 

e=0, and k= 10. Let D=0 but for D(j, j) = 1, Z=1,2,3. Using YALMIP, we obtain that 

the estimation error will decay exponentially to zero if, for example, i=1 and r, = 21.8 or 
i=3 andK= 2-6. The time evolution of the estimation error is shown in Figure 5.11. Let 

us assume that we have perfect knowledge about all reaction rates. A potential application 

of our result is that by measuring concentrations of the final product 13 one can deduce 

the level of mRNA (xi), which might be far more difficult to measure directly [103]. 

16 - 

14 

12 1 

10 - 

8 

6 

4 

2 - 

05 10 15 20 25 30 35 40 4t. W 
time 

Figure 5.11: Estimation error. For D(3,3) 
=I and r, = 2-6. 

5.4 Frequency synchronisation of coupled nonidenti- 

cal oscillators 
Consider a network of nonidentical oscillators: 

,ý- (x) + r, (C 0 D)x, (5.50) 
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-nxn T- where DE R+ 
,X= 

[X1 
... XN] ,f 

(X) = [h (X1) 
... 

fN(XN EDCR)i cz 
11, 

..., 
NJ. Here, fi fj, i :ýi, however, we consider sign conserving parameter mismatch 

only; that is, fi (xi) f* (xi; ai) for all i, where ai is the parameter vector and aTaj >>0 
for all i, j. In this section, we provide a proof for frequency synchronisation. Note that we 

allow any coupling topology as long as the coupling is linear and the associated graph is 

strongly connected. However, we require the existence of a periodic solution of (5.50). 

Now, we introduce some additional definitions. We denote the adjacency matrix of 
the graph that encodes the coupling topology by A and the Laplacian matrix is C= 
A- diag(A'e) with e == [1 ... 1]'. We denote the period of the oscillator xi as P(xi). We 

say that two oscillators are frequency synchronised if their periods are equal. (See also [104] 

on frequency synchronisation. ) Thus, two oscillators xi and xj are frequency-synchronised 

if P(xi) = P(xj). In the following, Ji(xi, K) and 

n ap 
P! 

i (k, f) 
(Xi) 

- 
Z(k, f) 

(X') E 

axi 
j=l 

Lemma 5.4.1. Assume that (5.50) has a bounded absorbing set B and a periodic solution: 

±(t). If the coupling matrix C is irreducible and for all i there exists a constant r, * and a 

matrix Pi (xi) >0 such that Pi (xi) Ji (xi, r, *) +1 Pi'(xi, r, *) <0 Vxj, then P (. tj) =P(. ±j) for 
2 

all i, j; that is, the system will be frequency- synchronis ed. 

Proof. First, note that system (5.50) can be rewritten in terms of A, the adjacency matrix: 

:ý == (x) + r, (A (9 D)x, f (x) =f (x) + diag(C)x. 

j: N A(i, j)Dtj. The input from all other variables into : tj is given by K ((A (9 D).: t)i = r, =, 
Clearly, the period of this input is 

P(((A (9 D).: i)i) = maxfP(A(i,, )D±, ),..., P(A(i, j)D.: tj),, * *, P(A(i, N)D-: tN)I- 

It follows from Theorem 3.1.8 that if ± is periodic, and for all i there exists a con- 

stant r, * and a matrix Pi (xi) >0 such that Pi (xi) Ji (xi, r, *) +1 Pi'(xi, r, *) <0 Vxj, then 2 

P(ij) = P(((A (9 D)±)j) = Pi. Since C is irreducible, the associated directed graph 

is strongly connected and any two points are mutually reachable by means of directed 

paths [49]. This implies that, for any ij, there exists at least one sequence of the form: 

JA(j, 
k) , 

A(k, 
l)) .... 

A(n, 
j), A(j,, ) ..., 

A(,, i) 1. Therefore, Pi ý: Pk ý! P1 ý: Pm ý! ... 
ý! Pn ý! 

Pj ý! P, ý! ... ý! P, ý! Pi, which implies that Pi - Pj (P (±j) =P(. tj)), for all i, j. 0 
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Finally, if the entries to Ji(xi) are bounded then the search for a matrix Pi(xi) >0 
such that Pi (xi) Ji (xi, r, *) +1 Pi'(xi, r, *) <0 can be efficiently performed using semidefinite 2 

programming. 

A network of coupled nonidentical van der Pol oscillators 

Let us consider two coupled nonidentical van der Pol oscillators: 

ýij 3xi, 
2 + Xll)X12 - Xli + S(X22 - X12)1 

'ý21 = X221 

2 
: ý22 + 121)X22 - X21 + 6(X12 - X22)1 (5-51) 

Then, we cannot find constant matrices Pi >0 such that PjJj(xj) <0 and PiD > 0, 
i= 11 2. Now, let us consider ! 2ý, i 7ý j, to be some arbitrary but bounded input, where we axj 
obtain the bound from Section 4.1. Then, we can implement this condition into SOSTOOLS 

as described in Remark 3.4.1 (see also (5.57)). We find that frequency-synchronisation is 

guaranteed if r, >I and when the solution of the system is known to be periodic. Numerics 

indicate that frequency synchronisation indeed occurs at values of r, that are close to I 
(Figure 5.12). 

480 490 Soo 
a) time time 

Figure 5.12: Two coupled nonidentical van der Pol oscillators. (a) For r, = 0.4, we 

do not observe synchronisation. (b) IfK= 1.1, we observe frequency synchronisation. 
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A network of coupled nonidentical Repressilators 

Recall the Repressilator model from Section 5.2.3: 

-Xl + al 
+ X21 6 

'ý2 = -X2 + 
a2 

21 + X4 

: ý3 = -X3 + 
a3 

+ X21 5 

'ý4 = 04(XI 
- X4)i 

ý5 = 05 (X2 
- X5) i 

ýý6 = 06(X3 
- X6)- (5.52) 

Consider a system of ten coupled nonidentical Repressilators with all-to-all coupling (Fig- 

ure 5.13), where ai, =ý aj, and Oi, =ý Oj, k= 1) 2,3, f= 41 51 6,1 =/= J, i, j=1, -. -, n- 

B 

/Uxi 
AI-j 

a) 

Figure 5.13: Repressilator network. a) Modified Repressilator circuit to allow coupling 

between cells. b) Coupling configuration (N = 10). 

Note that the system given by (5.19) and (5.52) is forward invariant with respect to 

the positive orthant and thus, ultimately bounded; that is, it has an absorbing set B that 
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attracts all solution trajectories. To see this, use the following Lyapunov Function, 

10 

V(x) =Z Vi(x), Vi(x) = P, xi, i=l 

+0 i+ + 
= maxf ý31 ..... 01()�1, 

xT1, iE fl.... 
1101. i= 

[Xiý 
Xi2 Xi3 Xi4 Xi5 Xi6 

Since there exists a positive scalar q such that ý'(x) <0 if jjxjjj > q, boundedness follows. 

Moreover, the absorbing set is compact and connected. Figure 5.14 presents numerical re- 

sults for the network of ten coupled Repressilators showing that frequency synchronisation 

occurs if n ýý I. I. Since solutions of the system given by (5.19) and (5.52) are bounded, we 0%. 1 

can use Lemma 5.4.1 to find a lower bound for r, which guarantees frequency synchronisa- 
tion if the solution of the system given by (5.19) and (5.52) is periodic (or a fixed point). 
Let cei, - ai, =: Cei3 = 10 and Oi,, = 0j, = 3j, = Oi for all i. Then, the Jacobian of each 
individual Repressilator is given by 

Ji(xi) = 

0 0 0 -20x, ý6 
(J+x 2 )2 

' 

0 -20x'4 0 
6 

0 
Tl+x? )2 

4 

0 -20x, 0 

0 -Oi - K(l - -NI) 
0 0 

0 0 -0i 
0 

)3i 0 0 -0i 

Note that -6.5 < -"'Y < 0. We use YALMIP to see whether, for all i, there exists a (I+y2)2 - 
-n 

matrix Pi >0 such that PiJi(xi) <0 and PiD > 0, for all xE R+, for increasing values 

of r.. It is easy to verify that the largest lower bound of K is associated with the largest 

Oi. Using this fact, for the parameters shown in Figure 5.14, we obtain that frequency 

synchronisation is guaranteed if r, > 260.9. Unsurprisingly, the condition is conservative 

but it provides guaranteed frequency-synchronisation when the solution of the system is 

known to be periodic. 
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Figure 5.14: Ten coupled nonidentical Repressilators. The parameters are 
Cýil = ai2 = ai3 - 101 A4 =: 

A5 
= 

A6 

= Oi for all i, and [01 
... 31o] = 

[0.4666 1.1125 0.1234 0.1264 1.1014 1.2476 1.848 1.82 1.2292 1.6002]. The coupling strength 
in (a)-(b) is n=0.7; in (c)-(d) K= 1; and in (e)-(f) K=1.1. ln (a), (c) and (e), the vari- 
ables 'T14 

to x 104 are shown. The phase space representations in (b) and (d) confirm that 
the different Repressilators are not frequency synchronised, as they show quasi-periodic 
orbits on torii, while the system in (e) is frequency synchronized. 

2850 2900 2950 
time 

Here, we obtained the value of r, which guarantees that a matrix Pi >0 exists such 
that Pi Ji (xi) <0 for all Z and all xi ED by checking for each individual 0j, i == 1, ..., n. 
In general, to find the parameter combination that provides this value of r. is a combi- 

natorial problem. However, one can perform a conservative search by allowing, for all 
i, an uncertainty in the parameters of Ji(xi) = J(xi) and searching for a value of /-, for 

which there exists a matrix P>0 such that PJ(xi) <0 for all xi E D. For instance, let 

125 

2850 2900 2950 3000 
time 

2800 2850 2900 2950 3000 
time 



1 Oi4l oi5)'3i6< 2. Then, with 

0.0077 0.0901 -0.0035 0 -0.019 0.0113 
0.0901 12.7048 -0.2691 0 -6.2201 0.3376 

p -0-0035 -0-2691 0.4322 0 0.6011 -0.2226 
0 0 0 0.5196 0 0 

-0.019 -6.2201 0.6011 0 11.3109 -0.3963 
0.0113 0.3376 -0.2226 0 -0.3963 0.355 

it follows that the conditions in Lemma 5.4.1 are satisfied if r, > 348.7. 

5.5 Incomplete synchronisation of coupled identical 

oscillators 
As we have seen so far results that provide guaranteed complete synchronisation can be 

extremely conservative. They guarantee that the difference xi - xj for all i, j will approach 

zero as t -+ oo, i, j 1, ---, n. In this section, we relax this requirement and require only 
that JX, _ XjjTpjX, Xjj <c as t ---+ oo, where P>0 is a matrix andE> 0 is a constant. 
In other words, we do not require complete synchronisation. 

Now, consider a network of identical oscillators with all-to-all coupling. For all i, j, we 
denote the difference between xi and xj by Y, i, j=1, ..., n; that is xi - xj -= Y- Assume 

that k can be written as 

ý' = (xi, xj, r, )Y =J (Y, K)Y, xi, x. 7 c D, r. C: R+. (5.53) 

Corollary 5.5.1. For all i, j, if there exist constants c, r, >0 and a matrix P>0 such 

that, for all xi, xj E D, PJý(Y, r, ) <0 if yTpy >c then there exists a to such that 

yTpy <f for all t> to. 

Proof. The Lyapunov function V(Y) = yTpy will decrease until yTpy <c since 1ý(Y) < 

0 if yTpy > C. El 

Application to a simple gene regulation model 

Consider the gene regulatory system that controls the production of an enzyme from the 

previous section. The dynamics of this system are represented by a system of differential 
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equations (5.45). Now, if we consider N coupled systems with C= Uý D= diag([I 0 01), 
and coupling constant r, then, for all i, j, the time evolution of Y= xi - xj is given by: 

k 
('+X3)('+Xj3) 

0 
k 

('+Xi3)('Tx T3733 

B(, '6i3 xh) (5.54) 

Note that 0<< Thus, there exists a matrix function B(. ) such that ( I+xi3)( 1 +Xj3) - 1+1 Y 31 

i3' (Y3, r. )Y. Let the parameters of the system be a=0.2, d=0.2, b=2, e-0.005 
and k- 10. In the following, we require that P >> 0 andP(3,3) = 1, and we wish to 
maximiseP(1,1) + P(2,2) 

-(Clearly, one can choose a different objective function and, for 
example, minimise only one of the two summands. ) Together with the requirements of 
Corollary 5.5.1 this poses a maximisation problem can be implemented as follows: 

given B (Y3), r,, E 

maximise P(l, l) + P(2,2) 

subject to P ý> 07 P(3,3) 17 P(ij) ý! 07 JY31 > Ci Pi3(y3, K) < 0. (5-55) 

We use YALMIP to solve this problem. The following table summarises our results for 

E=0,0.1,3: 

0 0.1 3 
21.9 20.9 9.9 

4.644 0 0.045 5.155 0 0.047 8.262 0 0.12 
p 0 10.001 0 0 10.002 0 0 6.412 0.207 

0.045 01 0.047 01 0.12 0.207 1 

Table 5.3: Incomplete synchronisation. 

Here, c=0 implies complete synchronisation. Note the tight bounds on Yj and Y2; 

that is, for c=0.1 (Y32< 0.1): Y12< 21 and Y22< 0.01, and for c=3 (Y32< 3): Y12 < -1 5.2 8.3 

and Y2' < -L. Obviously, the results in the table serves merely as an illustration and 6.4 

the analysis can be extended. In summary, if we accept certificates that guarantee that 

differences between the coupled systems remain relatively small then these can be given 
for significantly lower values of the coupling constant K. 
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5.6 Global complete synchronisation of identical os- 
cillators with all-to-all coupling 

In this section, we show that in the special case of a system of coupled identical oscillators 
with all-to-all coupling configuration and a single weight constant the coupling strength, 
it is possible to extend previous results. In Section 5.6.1, we provide a lemma which is 
equivalent to Theorem 5.2.3 but allows us to consider a nonconstant matrix P(x) > 0. We 
then extend this result to obtain conditions that guarantee global complete synchronisation 
for coupled identical discrete-time dynamical systems. In Section 5.6.2, we provide novel 
sufficient conditions for global complete synchronisation of coupled identical oscillators as 
an alternative to the ones presented in Section 5.6.1. They are based on the so called 
Bendixson's Criterion for higher dimensions which we have presented in Section 3.2. 

5.6.1 Sufficient conditions based on contraction theory 

In Section 5.2, we require a constant matrix P>0 to fulfill certain conditions to guarantee 

global complete synchronisation of coupled identical oscillators. In this section, because 

we assume all to-all coupling, we can consider a nonconstant matrix P(x) > 0. This result 

was anticipated by Jean-Jacques E. Slotine in [45]. We exemplify the result through a 

network of coupled van der Pol oscillators. 
The following lemma is an extension of Theorem 5.2.3. It holds only if C=U (all-to-all 

coupling) but allows for a nonconstant matrix P(z) C- R"', zED. A similar result is 

given in [105] with a different proof. Using modern computational tools, this makes it 

possible for us to obtain sufficient conditions for synchronisation in cases in which they 

could not been obtained for a constant P (see example below). In the following, 

, 
09p(i, j) 

(Y) 
(fk(y) 

- (KNDy)k)- Pýi'j) (Y) 
(9Yk k=l 

Lemma 5.6.1. Consider the coupling scheme given by (5.19). Let xi E 1) and V be convex. 

If C=U and there exists a nonconstant symmetric matrix P(z) >0 such that 

rNP(zi)D +IP, (zi) <0 (5.56) 
2 

for all zi E E) then (5-19) completely synchronies as t --ý oc. 
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Proof Note that if C=U then the following holds, where X is given by (5-25): 

00... 0 

rND)XI j- 
0 J(12) I 

X2ýZ2 
0 

L00... 
J(XN)IXN=ZN 

Consider the Lyapunov function given by 

V(X) =: 
'XTfD(Z)X 

>0 

P(zi) 00 

x =ý 0, P(Z) -00 

L00 P(ZN) 

It follows that 
ý, (X) 

=: XT P(z)j 
- rNP(z)D +1P, (Z) X. 

Hence, V(X) <0 if (5.56) holds, which implies that (5-19) completely synchronises as 
t -* 00.0 

Now, condition (5.56) comprises a feasibility problem that we implement in SOSTOOLS 

as: 

given xi ED, f (xi), N, D, K, J>0 

search for P(xi) 

subject to v'(P(xi) - 61)v, J P(x)D +I P/ (xi) v are SOS Vv E R' 
2 

where 

and 

-V T P(xi)(J(xi) - NrD) +1 PI (xi) +Hv is SOS Vv E R', (5-57) 
2 

n 

Pým) (xi) =E 
Opu, 

f) (xi) 
(fk (Xi)- (rNDxi)k), 

k=l 
aXik 

-1 n op(j�) (Xi) (Dxi)k- (x) 
axik 

k=l 

Note that we have included the requirement of Remark 5.0-1. 
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A network of coupled identical van der Pol oscillators 
In [30], it was shown that in a network of coupled van der Pol oscillators representing indi- 
vidual heart cells, one group of coupled oscillators could represent the right atrium called 
sino-atrial node. This cell aggregate generates the normal cardiac rhythm. In addition, 
there is another pacemaker, the atrio-ventricular node, which takes over when the former 
fails to perform well. As discussed in [30], this node could be represented by the other group 
and both groups interact with each other. Investigating conditions for synchrony of the 
two heart cell aggregates is of major importance as unsynchronised behaviour is associated 
with cardiac dysrhythmia, a life threatening heart disease. The mathematical framework 

presented in this chapter and exemplified below provides valuable information about con- 
ditions for which synchronised behaviour between heart cells is guaranteed. Moreover, 
therapeutic interventions use beta blockers and antiarrhythmic agents which affect only 
the atrio-ventricular node. The analysis presented below can be used to see the effects on 
the synchrony of the whole system (arguably, the heart). 

Now, consider an all-to-all coupling scheme for a network of coupled identical van der 

Pol oscillators. The individual oscillator with k= -1 is described by: 

Xl X2 

2 
'ý2 (1 

- XDX2 - XI (5.58) 

The Jacobian of an individual oscillator is given by 

iv 
X2 

=[- (2xlOX2 + 1) 1-1 

The equations for the coupled system are given by (5.58) together with (5.19), where C=U 

and D= diag([O 1]). 

Let us assume that the coupled system has a compact, convex and positively invariant 

set. Moreover, the origin is an unstable equilibrium point of the coupled system. To see 

this, consider the Lyapunov function V(x) =xTx; in the vicinity of the origin ý'(x) > 0. 

Thus, the unique synchronised state corresponds to the limit cycle that is the union of the 

limit cycles of the individual uncoupled oscillators. Now, in order to apply the result of 

Lemma 5.6.1, we use SOSTOOLS to search for a matrix P(x) >0 that guarantees complete 

synchronisation of the coupled system. Moreover, we are interested to see whether the value 

of r, decreases as we increase the order of the polynomial functions which are entries to 
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P(x). The results are as follows (note that P(x) is a sum of squares only if the polynomials 
are of even order [92]): 

e For polynomials of order 0, a constant matrix P(x) =P>0 and a constant r, >0 
such that (5-56) holds was not found. 

* For polynomials of order 2, a matrix P(x) >0 and a constant r, >0 such that (5.56) 
holds was not found. 

For polynomials of order 4, inequality (5.56) holds if KN > 1. Note that this case 
corresponds to the van der Pol oscillator with : ý2 == (-k* -x2 )X2-Xli 1-K=-k* >0. I 
For r, = 1.1: 

p(1,1) (x) == 1.748 + 1.102X2 
- 1.379x1X2 + 1.473X2 + 1.321X4 12 

X2X2 x3 X4 +0.452 1 2- 0.037x1 2+0.002 21 

0.056 + 1.506X2 - 0.935x1X2+ 0.145x 2_0.101X3 
x2 P(1,2) (X) 

121 

X2X2 _ 
0.001X1X3 +0.028 12 2ý 

P(2,2)(X) = 1.761 + 1.211x 2-0.460x1X2+0.064X2 
+O. 085X4 _ 0.019X3 X2 2 

X2X2 +0.002 1 2* 

4P Additional increases in polynomial order fail to lower the value of r, for which (5.56) 

holds. This was expected since Nr, <1 corresponds to the case when the fixed point 

of the van der Pol oscillator with ýý2 --:::: (-k* -x2 
)X2- xj, k* < 0. Therefore, a P(x) 1 

such that (5.56) holds cannot exist for Nr, < 1. 

For N=2, numerical results show that complete synchronisation occurs if K>0.017 
(see, for example, Figure 5.15). Unsurprisingly, our condition is conservative (the numerical 

value is about 30 times lower) but it provides guaranteed complete synchronisation. 
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Figure 5.15: Two coupled identical van der Pol oscillators. (a) The coupling strength 
is r, = 0.01 and the two coupled identical van der Pol oscillators do not sYnchronise. (b) 
The two coupled identical van der Pol oscillators completely synchronise forK= 0.02. 

Sufficient conditions of discrete-time dynamical systems 

Here, we provide conditions that guarantee global complete synchronisation for coupled 
identical discrete-time dynamical systems with all-to-all coupling configuration. In what 
follows, -U is the Laplacian Matrix of the completely connected graph and matrix D is 

the output matrix of the variables that are used in the coupling. 

Theorem 5.6.2. Let UE R"' be gZven by (5.17), ConsZder 

x(k + 1) = I(x(k)) + K(U 0 D)x(k), k=1,2.... 1 
(5-59) 

where DcR nxn ] T, f (X) = [f (X 
1) 

)]T, xi c- DC Rn' 
+IX= 

[xi 
... XN ... 

f (XN 

.... NJ. Furthermore, let 

g(xi) -f (xi) - NrDxi. (5.60) 

bve matrtX P(y) >0 such that for all xi, yE Then, if there emsts a symmetrtc and post 

and all i 
ag(xi) , 

P(Y) 19g(xi) < P(Y)' (5-61) 
Oxi 19xi 
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then the network of coupled discrete-time dynamical systems given by (5.59) synchronises 
in the sense that xi - xj ---+ 0, Vi, j, as t --* oo. 

Proof Consider the following Lyapunov function: 

= _XT(U (& p(Y»X = 
V(x) E(X, 

_ Xj)Tp(Y)(Xi _ Xj) >0 if Xi: ý Xjl \Vi, j. 
i<j 

Thus, 

AV(X) = XT(U 0 p(Y»X _ [f(x) + r, (U 0 D)X]T(U (& p(Y»[1(X) + n(U 0 D)x] 
= T(U (& p(y))X _ 

I(X)(U (g p(y))f(X)T XTK x -2 (U2 0 DTp(y))f(X) 

-x 
TK(U3 

OD T P(y)D)x 

= XT(Uop(Y»X-f(X)(Uop(y»1(X)T + 2XT rN(U 0 DTp(Y»f(X) 

-x 
T rN 2 (U 0 DTp(y)D)x 

XT(U (D p(y))X _ [I(x) - NKDX]T(U (& p(y)) [f(X) - NrDx] 

E(, q(X, ) _ g(Xj))Tp(y)(g(Xi) -, q(Xj)) _ (X, _ Xj)Tp(y)(Xi _ Xj) (5-62) 
i<j 

It follows from (5.61) and the mean value theorem (Theorem 3.1.1) that (5.62) <0 if 

xi xj, which implies that (5.59) synchronises in the sense that xi - xj --+ o, vi, j, as 
t 00.0 

5.6.2 Sufficient conditions based on the Bendixson's Criterion 

for higher dimensions 

In this section, we provide novel sufficient conditions for global complete synchronisation 

of coupled identical oscillators as an alternative to the ones presented so far. They are 
based on the so called Bendixson's Criterion for higher dimensions that we have presented 
in Section 3.2. We believe that there is much scope for further relaxation of conditions for 

synchronisation by expanding the result of this section. 
n- iRecall Theorem 3.2.1: If the origin is the unique equilibrium point of f (x) in 

BCRn and there exists a nonsingular and real 
(n) X (n) 

matrix A such that 22 

1 
P, (x) + P(x) 

Ox < 0, Vx Ei L3, (5-63) 
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then the origin is globally asymptotically stable in B. Here, 

, op(i, j) (x) (x), Pýi'j) (X) 
aXk 

fk 1 

k=l 

13 is a compact and simply connected invariant set containing the origin and 
( af (X) ) 

[2] 
is 

ax 
the second additive compound of ax Searching for a constant matrix P>0 such that ( IIIIXI ) 

(5.63) holds can be efficiently performed using YALMIP by solving the following feasibility 

problem: 

given fW 

search for p 
[21 

subject to P>O, P( 
ax 

< 0. (5.64) 

Now, consider a system of N coupled identical systems given by (5.19) with all-to-all 

coupling. If BC R' is convex then 

'ýj = J(xi)Xi - NrDXil (5.65) 

where J(xi) 2LL`-ý 
, Xi = xi - xl, xl, xi, zi E 2,..., N. This leads to the 

axi 
lxi=zi 

f6flowing theorem: 

Theorem 5.6.3. If there exists a matrix P(zi) >0 and a coupling strength r, * such that 

I 
P'(zi) + P(zi)(J(xi) - Nr. *D) [2) 0 

2 
(5.66) 

then the followtng holds for Xi whose evolution with is given by (5-65): Xi --4 0 as t --+ oo 

for all i. 

Here, 
p == 

' ap("j)(y) ((J(xi) - Nr, *D)Y)k- (Y) 
19Yk k==l 

Note that Theorem 5.6.3 implies that the system of N all-to-all coupled identical systems 

given by (5.19) together with (5.65) completely synchronises. 

Remark 5.6.4. Let P=I and D>0 be diagonal. Moreover, let (5.56) hold; that is, 

J(xi) - Nr. * D<0 and thus, Ai <0 for all i, i=1, ..., n, where Ai are the eigenvalues of 

+ 2Nn*D. 
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Now, note that condition (5.66) is equivalent to sup I Ai + Aj }<0, i, i=1, ..., n, which 
clearly holds if (5-56) holds but also if there exists a Ai >0 such that Ai < -Aj for all 
j, j =ý i. Thus, for P-I, inequality (5.66) connotes a more relaxed requirement than 
inequality (5-56). Furthermore, it is reasonable to assume that this is true in general. (It 
is indeed in all cases presented in the next section. ) 

In the light of Remark 5.0.1, in the following we require that PDM >0 such that if 
(5.66) holds for r, * then it holds for all n ->K*. 

Coupled van der Pol oscillators 

Consider N coupled identical van der Pol oscillators: 

'ki, - Xi, 
, ýj2 = 

(i 
-x ij)xiý - Xil 

I (5.67) 

where i=1, ---, N. Let D= diag([O 1]). Note that if JER 2X2 then Jf2J = J(1,1) + J(2,2) 
- 

Thus, j[21 
= (1 - xjý Nr,, which implies that complete synchronisation is guaranteed if %I 

(5.68) 

In the case of two coupled identical van der Pol oscillators with all-to-all coupling, inequality 
(5.68) translates to r, > 0.5. This is the same value as the one obtained in Section 5.2.3. 

Now, consider D= diagQ1 0j). Then, again j[21 = (1 
- xi2, ) - Nr, and thus, complete 

synchronisation is guaranteed if r. > -1. However, when implementing the condition of N 

Theorem 5.2.3 computationally in SOSTOOLS, we obtain no solution for polynomial entries 

to matrix P(x) >0 up to order twelve. Thus, by applying Theorem 5.6.3, we can guarantee 

synchronisation for this case if r, > -L, although we could not do so before. N 

Coupled biological oscillator 

Consider a network of coupled identical biological oscillators: 
10 

-- - 0.2xi,, 
+ Xi3 

2xi, - 
0.2Xi2) (5.69) 

'ýi3 0.2Xi2 
loXi3 

_ eXi3l 
1+ Xi, 
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with coupling constant r,, all-to-all coupling and D= diagQI 0 0]). Numerics indicate that 
complete synchronisation occurs for K> 0.0005. Figure 5.16 shows the behaviour of two 
coupled oscillators. 
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Figure 5.16: Two coupled identical biological oscillators. We consider the following 

initial conditions: [94.424 83-856 25.843 4.29 0.589 57.442]. (a) ForK= 0.0004, we do not 

observe complete synchronisation. (b) For K= 0.0005, we observe complete synchronisa- 
tion. 

Using YALMIP to search for a constant matrix P and constant r, such that the condition 

of Theorem 5.2.3 is fulfilled, we find that complete synchronisation is guaranteed for KN = 
21.9 if e=0.005. Note that if e=0, Theorem 5.2.3 fails us, because a r, such that (5.23) 

holds cannot exist, as at Xi3 = oo the Jacobian becomes singular. 
Let J correspond to the Jacobian of (5.69). Then, the second additive compound of 

J- Nr. D is: 

-0.4 - Nr, 

0.2 

0 

0 

-0.2 - Nr, - l' 
)2 -e 

10 
(1+X'357 

0 

10 
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Using YALMIP to search for a constant matrix P>0 and constant r, >0 such that (5-66) 
holds, we find that complete synchronisati, on occurs for KN = 0.195 when e-0.005 
and r. N = 0.202 when e=0. Thus, in the first case, we have lowered the value of r, 
that guarantees complete synchronisation more than 100-fold; and in the second, we have 
provided a guarantee for global complete synchronisation which we could not obtain before. 

Coupled Lorenz systems 

When applying Theorem 5.6.3 to the Lorenz system discussed perviously in this thesis, 
we obtain that for two coupled identical systems with all-to-all coupling, global complete 
synchronisation can be guaranteed for K>r, * = 55.8. The following table summarises our 
results for coupled identical Lorenz systems and it also provides an excellent opportunity 
to display some of the achievements of the research work presented this thesis (considering 

that, so far, only the first result could be obtained from the literature): 

reference [34) Theorem 5.2.3 Theorem 5.6.3 numerics 

K* 525 222.6 55.8 4 

Table 5.4: Comparison between the different approaches to obtain the minimal value of r, 
(= K*) that guarantees complete synchronisation. 

In summary, we could improve the result from the literature nearly ten-fold and obtain 

now a value of r, * which is less than fourteen times larger than the value we observe in 

numerical trials. 

5.7 Conclusion 

In Section 5.1, we have presented results that provide conditions which guarantee that 

a periodic input to a biological system will create a response with the same period. We 

illustrated our result with applications to a gene regulatory system that we sought to 

manipulate, and to the heart driven by an external pacemaker. In Section 5.2, we have 

provided a sufficient condition for global complete synchronisation. These certificates are 

hard to obtain. Using the methods presented in Chapter 3, we have shown how they can be 

obtain computationally and how this can improve the result even for cases for which cer- 

tificates were obtained analytically. We could minimise the value of the coupling strength, 
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K, by seaxching for a matrix P>0 that provides optimal K as opposed to using a fixed P. 
For example, in the literature, one finds P=I, which does not necessarily provides the 
lowest value of r, (for instance, see reference [34]). We could improve results on K also by 
considering nonlinear bounds (instead of only linear) which we implemented in SOSTOOLS. 
In section 5.4, we presented analytical results that guarantee that systems with periodic 
behaviour will all frequency synchronise when coupled one to each other. A key aspect is 
that we considered nonidentical oscillators, for which only few analytical results exist in 
the literature. We illustrated our results with applications to systems from biology and 
biochemistry. For example, these results could aid the synthetic biologist in the'design of 
genetic circuits. The result of Section 5.1 allows to design a circuit that will entrain to 
external periodic inputs. The results of Section 5.2 and Section 5.4 indicate when cells that 
express a circuit that leads to periodic behaviour and are coupled through an interaction 
network will all synchronise. In Section 5.6-1, we provided conditions for the global com- 
plete synchronisation of discrete-time systems. In Section 5.6.2, we provided novel results 
that guarantee complete synchronisation and can also be implemented computationally. 
The required condition on the system are more relaxed and thus, lead to lower values of 
K that guarantee synchronisation. For instance, in one example we could improve results 
100-fold. Moreover, we also obtained conditions for global complete synchronisation in 

cases for which other methods failed. The subject-matter of the last section can be further 

explored and is considered a fruitful area for future research. 
Finally, we would like to note that in the literature (for example, see [36,93]), one also 

finds a coupling scheme of the following form: 

ýb = (x) + vre 
T (INnoD) 

i) =e 
T(INn (9 D)x, xE R", vER. 

It is called mean-field coupling; here, v denotes the mean field. Note that none of the results 

in this chapter can be applied in this case as the coupling term vreT (INn (9 D) disappears, 

when one considers the difference equation xi - xj. However, numerics show that coupling 

of this kind is considerably less robust than the coupling configuration assumed in this 

thesis; particularly, they show that for mean-field coupling, whether coupled nonidentical 

oscillators synchronise depends greatly on the range of the parameter mismatch. Larger 

ranges are void of synchronisation. It is debatable, whether mean-field coupling constitutes 

a more realistic assumption for system modelling. However, from the point of view of 

system synthesis it is clearly less practical. 
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Chapter 6 

Conclusions 

6.1 Summary 

In this thesis, we have extended Martin Feinberg's CRNT, a mathematical analysis frame- 
work for chemical reaction networks that does not require knowledge about parameter 
values (reaction rates). For instance, in Chapter 2, we have considered chemical reac- 
tion networks in crowded environments such as the cell. Therefore, their kinetics do not 
necessarily obey the law of mass action, which assumes that reactions take place at con- 
stant temperature in a homogenous and well mixed solution. We have provided a theorem 
based solely on structural properties of the network that guarantees uniqueness andlocal 
asymptotic stability of a positive equilibrium point. Thereafter, we have showed that the 

solutions of a dynamical system that represents a chemical reaction network that is weakly 

reversible (that is, has a specific connectivity structure) are bounded. Hence, by checking 

structural properties of the graph of the reaction network, this result provides a qualitative 

criterion, which is completely independent of reaction rate values and the deficiency of the 

system. Moreover, the result can also be used to characterise certain bifurcations from 

stationary to oscillatory (periodic, quasi-periodic or chaotic) behaviour as exemplified in 

Section 2.4.1. 

In Chapter 4, we have provided a technique to obtain invariant sets of dynamical 

systems. These are relevant sets as they trap the dynamics of the system if they include 

the initial condition. This implies that we can restrict our attention to an invariant set 

when analysing the system if the set includes the initial conditions. We have also provided 

a practical means, based on results by Peter Giesl, to prove the existence of exponentially 
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stable periodic solutions of polynomial dynamical systems. We have then applied the 
method to the van der Pol system. 

In Chapter 5, we have first presented results that provide conditions which guarantee 
that a periodic input to a biological system will create a response with the same period. 
We have shown how these results might be used in the design of medical devices and 
medication. First, we have sought to manipulate a gene regulatory system. It has been 
our goal that it should react to medication with the same frequency as the intake. We 
have been able to specify the strength of the medication in order to achieve this and the 
reaction rates that should be targeted to guarantee efficiency. Another application of our 
result is how to determine the strength of an external pacemaker, which drives the heart, 
that guarantees entrainment and absence of dysrhythmia. The other major results of the 
chapter are: 

We have reformulated known results on conditions that guarantee complete syn- 
chronisation of coupled identical oscillators in order to make them computationally 
implementable. To this end, we have taken advantage of recent computational de- 

velopments in semidefinite programming. Thus, we have been able to minimise the 

coupling strength that guarantees complete synchronisation. 

We have extended these results to frequency synchronisation. We have provided a 

novel condition that guarantees that coupled nonidentical oscillators will frequency 

synchronise and showed how to implement this condition computationally. A key as- 

pect is that we have considered nonidentical oscillators, for which only few analytical 

results exist in the literature. 

We have provided novel results for all-to-all coupling, based on the Bendixson's Cri- 

terion for higher dimensional dynamical systems, that guarantee complete synchroni- 

sation and can also be implemented computationally. The required conditions on the 

system are more relaxed and thus, can lead to lower values of the coupling strength 

that guarantees complete synchronisation and also to certificates for global complete 

sYnchronisation in cases for which other methods failed. 

We have applied our results to models of coupled van der Pol oscillators representing 

individual heart cells and of coupled Repressilators. Synchrony in the heart is thought to 

be essential to avoid some life threatening conditions. The Repressilator is an artificially 
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designed biological oscillator in E. coh. It consists of three genes, which synthesise proteins 
that inhibit the transcription of each other in a cyclic way. It is used to shed light into the 
behaviour of more complex naturally occurring genetic oscillatory circuits. Synchronised 
behaviour in cultures of cells expressing the Repressilator circuit and that can interact 
through quorum sensing have not been observed so far. We have shown mathematically 
how to obtain the coupling strength, which is related to the density of the outer medium, 
that guaxantees complete and frequency synchronisation. Finally, what unifies the work 
presented in Chapter 2 and Chapter 5 is that in both we have provided means to identify 
robustness of certain qualitative behaviour of a biological system to changes in parameters. 

6.2 Discussion and future research 
Martin Feinberg's CRNT requires weak reversibility of a chemical reaction network to guar- 
antee existence of a unique positive equilibrium point for systems of deficiency zero or one 
and stability for systems of deficiency zero. Weak reversibility is also required in the novel 
results presented in Chapter 2 in order to guarantee boundedness of solution trajectories 
independently of the deficiency. A fruitful area of research would be to investigate whether 
other, potentially less strict, graph-theoretical properties can provide the same or similar 

results. 
In the examples presented in Chapter 2, we have observed only periodic behaviour. 

Moreover, when we have introduced migration terms to the Lotka-Volterra model (Sec- 

tion 2.4) and thus, made the corresponding chemical reaction network weakly reversible 

previously nonperiodic behaviour of the system became periodic. Therefore, an interesting 

question is whether weak reversibility of a chemical reaction network excludes nonperiodic 
behaviour. 

We believe that there is great potential for several key extensions of the work presented 

in this thesis: 

The results presented in Section 5.6.2 provide a promising start for further research 

into conditions for synchronisation of coupled oscillators based on the Bendixson 

Criterion for systems of order > 2. Particularly, we have considered a all-to-all 

coupling only to obtain conditions that guarantee global complete synchronisation of 

coupled identical dynamical system. Moreover, a theorem that provides conditions 
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that guarantee the entrainment of a dynamical system to a periodic external drive 
is missing (and for that matter, conditions that guarantee frequency synchronisation 
of coupled nonidentical oscillators). 

To obtain conditions that guarantee global complete synchronisation of coupled iden- 
tical dynamical system, we have considered symmetric coupling topologies given by 
matrix C only. A fruitful area of research would be to consider asymmetric zero row 
sum matrices (see for example [106]). 

In Section 5.4, we have provided conditions on the individual subsystems of the cou- 
pled system that guarantee frequency synchronisation. However, the result requires 
that the system possesses a periodic solution. Clearly, it would defeat the purpose 
of the work presented in this thesis, if one would have to analyse the whole system. 
However, it is possible that the existence of a periodic solution can be deduced from 

properties of the individual systems and the coupling topology alone. A promising 

venue to explore are theorems on bounds of the Hausdorff dimension of attracting 

sets [76-78,107,108]. 

Until today the Markus-Yamabe conjecture (Conjecture 3.1.7) was not disproved for 

bounded polynomial systems [109]. Proving the conjecture for bounded polynomial 

systems would provide conditions that might lead to lower values of r, * that guaran- 

tees synchronisation and might provide solutions to some of the problems mentioned 

above. 

Finally, it would be great to see the results of this work applied directly to biological 

systems by working closely with experimentalists. Payoffs would arise from poten- 

tially reduced costs and time in the development of devices that are designed to drive 

a biological system and of medications that are supposed to synchronised coupled bi- 

ological oscillators, as the criteria provided in this thesis could provide guidelines (see 

Sections 5.1.1,5.1.2,5.3 and 5.6.1). 
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Appendix A 

system variables 

syms vl v2 xl x2; vars=[vl; v2; xl; x2l; 

declaring them as vectors of monomials 
v=monomials([vl; v2l, l); x=monomials([xl; x2l, l); 

% van der Pol equation 
k=-l; 

f 1=x2; 

f2=-(k+xl-2)*x2-xl; 

f=monomials([f 1; f2l, l); 

% the system's Jacobian 

J=j acobian ( [f 1; f 21 ); 

initiation 

prog = sosprogram(vars); 
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% The symmetric matrix N (to be searched) 
VEM = monomials([xl; x21, [O 2 41); 
[prog, N111 = sospolyvar(prog, VEC1, lwscoeff); 
[prog, N121 = sospolyvar(prog, VEC1, lwscoeff'); 
[prog, N221 = sospolyvar(prog, VEC1, lwscoeff'); 
N=[N11 N12; N12 N221; 
% and its directional derivative NN 
NN11=[diff(Nll, xl) diff(Nll, x2)1*f; 
NN12=Ediff(Nl2, xl) diff(Nl2, x2)1*f; 
NN22=Ediff(N22, xl) diff(N22, x2)1*f; 
NN=[NN11 NN12; NN12 NN221; 

% condition N>O 

prog=sosineq(prog, vl*(N-0.0001*eye(size(N)))*v); 

%creating polynomial function with unknown coefficients 
VEC2 = monomials(Exl; x2l, [O 2 41); VEC3 = monomials([vi; v2l, [21); 

[prog, alphal = sospolyvar(prog, VEC2, 'wscoeff'); 

[prog, pl] = sospolyvar(prog, VEC3, lwscoeff'); 

Eprog, p2l = sospolyvar(prog, VEC3, lwscoeff'); 

7. condition pl, p2>=O 

prog=sosineq(prog, pl); prog=sosineq(prog, p2); 

% boundaries of invariant set 

% outer boundary 

BO=-3.7+78.361*xl-2-11.679*xl*x2+... 

% inner boundary 

BI=-4-4.281*xl*x2+4.93*xl-2+2.213*x2-2 
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requiring that vl*(J*N-1/2*NN)*v-alpha*(vl*f*fl*v)<o in the invariant set 

prog=sosineq(prog, vl*(1/2*NN-J*N)*v +alpha*(v'*f*f'*v) 

-pl*BI +p2*BO -0.0001*vl*eye(size(N))*v); 

% calling solver 
[prog, infol = sossolve(prog); 

% getting N 

Nll = sosgetsol(prog, Nll) 

N12 = sosgetsol(prog, N12) 

N22 = sosgetsol(prog, N22) 
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Appendix B 

declaring variables 
zeta = sdpvar(l); P= sdpvar(3,3); 

% system's jacobian, where zeta = 1/(l+x3)-2 

kappa = 21.8; A= E-0.25-kappa 0 -10*zeta; 2 -0.2 0; 0 0.2 -10*zeta-0.0051 ; 

% setting requirements 
R= set(P > 0.001) + set((A'*P+P*A) < 0) + set(O<= zeta <=l) 

+ set(P*diag([l 0 01)+diag([l 0 01)*P >= 0) + set (uncertain (zeta)); 

solving 
[info] = solvesdp(R) 

% getting P 

P= double(P) 
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