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Abstract

In this thesis we consider the Cauchy problem for general higher order con-

stant coefficient strictly hyperbolic PDEs with lower order terms and show

how the behaviour of the characteristic roots determine the rate of decay in

the associated Lp − Lq estimates.

In particular, we show under what conditions the solution behaves like

that of the standard wave equation, the wave equation with dissipation or

the Klein–Gordon equation. We explain the various factors involved, such

as the presence of multiple roots, the size of the sets of multiplicity and the

order with which characteristics meet the real axis, yield different rates of

decay. As an example, we show how the results obtained can be applied to

the Fokker–Planck equation.

In the second part, we derive Lp−Lq estimates for wave equations with

a bounded time dependent coefficient. A classification of the oscillating

behaviour of the coefficient is given and related to the estimate which can

be obtained.
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Chapter 0:

Preliminaries

0.1 Notation

Throughout this thesis we will use the following notation:

Arbitrary Constant: We will use C, sometimes with suffices, to denote

an arbitrary constant (depending on its suffices); it may differ at each

occurrence, unless explicitly stated otherwise.

Derivatives: Use Dxj = −i∂xj = −i ∂
∂xj

, where x = (x1, . . . , xn) ∈ Rn and

i =
√−1; and Dx = (Dx1 , . . . , Dxn). Similarly, Dt = −i∂t = 1

i
∂
∂t . We

use multi-index notation: if α = (α1, . . . , αn) and each αl ≥ 0 is an

integer then Dα
x = Dα1

x1
. . . Dαn

xn
. Also, write |α| = ∑n

l=1 αl.

Function Spaces: We use the standard notation for Lp(U) spaces, that is

the space of functions that are p-times integrable on the set U ⊂ Rn.

We denote Sobolev spaces by

W s
p := W s

p (Rn) =
{

f ∈ Lp : ‖f‖W s
p (Rn) < ∞

}
,

where s ∈ R, p ≥ 1, and ‖·‖W s
p (Rn) is the standard Sobolev norm.

Fourier Transform For f ∈ S (the space of Schwartz functions) and f ∈
L1(Rn) define the Fourier transform of a function

f̂(ξ) ≡ (Ff)(ξ) =
∫

Rn

e−ix·ξf(x) dx

and

(F−1f)(x) = (2π)−n

∫

Rn

eiξ·xf(ξ) dξ ;

for more general f , such as f ∈ L2(Rn) or even f ∈ D′(Rn) the

corresponding natural definitions are employed.
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Symbol Classes For m ∈ R, we write Sm ≡ Sm
(1,0) for symbols of order m;

that is, functions f ∈ S such that |Dαf(x)| ≤ Cα(1 + |x|)m−|α|.

Balls We write Br(c) to denote the ball in Rn of radius r with centre c;

also, use B′
r(c) = Br(c) \ {c} to denote the punctured ball.

0.2 Hyperbolic Differential Operators

We give some standard definitions from the theory of hyperbolic partial

differential equations, as used in, for example, [ES92], [Hör83b], [Nis00]

and [Trè80].

Definition 0.1. Let L = L(Dx, Dt) be a linear constant coefficient mth order

partial differential operator. We define the principal part of the operator L

to be the homogeneous mth order part and denote this by Lm = Lm(Dx, Dt).

Definition 0.2. A linear constant coefficient mth order partial differential

operator L = L(Dx, Dt) is called hyperbolic if, for each ξ ∈ Rn, the auxil-

iary polynomial of the principal part, Lm(ξ, τ), only has (m) real roots with

respect to τ . L is said to be strictly hyperbolic if, at each ξ ∈ Rn\{0}, these

roots are pairwise distinct. We denote the roots of Lm(ξ, τ) with respect to τ

by ϕ1(ξ) ≤ · · · ≤ ϕm(ξ), and if L is strictly hyperbolic the above inequalities

are strict for ξ 6= 0.

Examples of such operators include the well-known wave equation; other

examples such as those arising from the Fokker–Planck equation are dis-

cussed in Chapter 5 and explored more fully in, for example, [VR04].

Remarks:

1. The condition for hyperbolicity arises naturally in the study of the Cauchy

problem for linear partial differential operators and it can be shown that

it is a necessary condition for C∞ well-posedness of the problem (that

is existence and uniqueness of a solution which depends continuously on

the initial data); this is discussed in [ES92] and [Hör83b], for example.

Strict hyperbolicity is sufficient for C∞ well-posedness of the Cauchy

problem for such an operator with any lower order terms; if the operator

is only hyperbolic (sometimes called weakly hyperbolic) the lower order
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terms must satisfy additional conditions for C∞ well-posedness, so-called

Levi conditions. For this reason, we only consider strictly hyperbolic op-

erators (with lower order terms), and thus we know that there exists a

unique solution to

Dm
t u +

m∑

j=1

Pj(Dx)Dm−j
t u +

m−1∑

l=0

∑

|α|+r=l

cα,rD
α
xDr

t u = 0 ,

Dl
tu(x, 0) = fl(x), l = 0, . . . , m− 1.





2. Sometimes, for example in [Trè80], in the definition of a hyperbolic op-

erator the polynomial L(ξ, iτ) is used as it is better suited to taking the

partial Fourier transform in x, corresponding as it does to L(Dx, ∂t); in

this case, we require the roots with respect to τ to be purely imaginary.

However, the definition given above is more standard, and thus adopted

here throughout.

Definition 0.3. Given a linear constant coefficient mth order partial differ-

ential operator L = L(Dx, Dt), we denote the roots of the associated auxiliary

polynomial L(ξ, τ) with respect to τ by τ1(ξ), . . . , τm(ξ). L(ξ, τ) is called the

characteristic polynomial of L and the roots are called the characteristic

roots of the full operator.

Clearly, if L is a homogeneous operator then the characteristic roots

τk(ξ), k = 1, . . . , m, coincide, possibly after reordering, with the roots ϕk(ξ),

k = 1, . . . ,m, of the operator Lm from Definition 0.2. However, in general

there is no natural ordering on the roots τk(ξ) as they may be complex-

valued.
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Chapter 1:

Introduction

1.1 Background

The study of Lp − Lq decay estimates, or Strichartz estimates, for linear

evolution equations began in 1970 when Robert Strichartz published two

papers, [Str70a] and [Str70b]. He proved that if u = u(x, t) satisfies the

Cauchy problem (that is, the initial value problem) for the homogeneous

linear wave equation

∂2
t u(x, t)−∆xu(x, t) = 0, (x, t) ∈ Rn × (0,∞) ,

u(x, 0) = φ(x), ∂tu(x, 0) = ψ(x), x ∈ Rn ,



 (1.1)

where the initial data φ and ψ lie in suitable function spaces such as C∞
0 (Rn),

then the a priori estimate

‖(u(·, t), ut(·, t),∇xu(·, t))‖Lq ≤ C(1 + t)−
n−1

2

(
1
p
− 1

q

)
‖(∇xφ, ψ)‖

W
Np
p

(1.2)

holds when n ≥ 2, p−1 + q−1 = 1, 1 < p ≤ 2 and Np ≥ n(p−1 − q−1). Using

this estimate, Strichartz proved global existence and uniqueness of solutions

to the Cauchy problem for nonlinear wave equations with suitable (“small”)

initial data. This procedure of proving an a priori estimate for a linear

equation and using it, together with local existence of a nonlinear equation,

to prove global existence and uniqueness for a variety of nonlinear evolution

equations is now standard; a systematic overview, with examples including

the equations of elasticity, Schrödinger equations and heat equations, can

be found in [Rac92].

There are two main approaches used in order to prove (1.2); firstly,

one may write the solution to (1.1) using the d’Alembert (n = 1), Poisson

11



(n = 2) or Kirchhoff (n = 3) formulae, and their generalisation to large n,

u(x, t) =





1
∏n−1

2
j=1 (2j − 1)

[
∂t(t−1∂t)

n−3
2

(
tn−1 −

∫

∂Bt(x)
φ dS

)

+(t−1∂t)
n−3

2

(
tn−1 −

∫

∂Bt(x)
ψ dS

)]
(odd n ≥ 3)

1
∏n/2

j=1 2j

[
∂t(t−1∂t)

n−2
2

(
tn −

∫

Bt(x)

φ(y)√
t2 − |y − x|2 dy

)

+(t−1∂t)
n−2

2

(
tn −

∫

Bt(x)

ψ(y)√
t2 − |y − x|2 dy

)]
(even n) ,

(for the derivation of these formulae see, for example, [Eva98]), as is done

in [vW71] and [Rac92]. Alternatively, one may write the solution as a sum

of Fourier integral operators:

u(x, t) = F−1
(eit|ξ| + e−it|ξ|

2
φ̂(ξ) +

eit|ξ| − e−it|ξ|

2|ξ| ψ̂(ξ)
)

. (1.3)

This is done in [Str70a], [Bre75] and [Pec76], for example. Using one of these

representations for the solution and techniques from either the theory of

Fourier integral operators ([Pec76]), Bessel functions ([Str70a]) or standard

analysis ([vW71]), the estimate (1.2) may be obtained. The representation

(1.3) and the method of Pecher is the one that is perhaps the most useful

since it can be generalised to other hyperbolic equations (see Section 0.2 for

the definition of such operators and other important related concepts that

we shall use throughout) for which the solution may also be written as the

sum of Fourier integral operators.

Another problem of interest where an Lp − Lq decay estimate for the

linear equation is used to prove existence and uniqueness for the related

nonlinear problem is the Cauchy problem for the Klein–Gordon equation.

Precisely, if u = u(x, t) satisfies the initial value problem

utt(x, t)−∆xu(x, t) + m2u(x, t) = 0, (x, t) ∈ Rn × (0,∞) ,

u(x, 0) = φ(x), ut(x, 0) = ψ(x), x ∈ Rn ,



 (1.4)

where φ, ψ ∈ C∞
0 (Rn), say, and m is a constant (representing a mass term),

12



then

‖(u(·, t), ut(·, t),∇xu(·, t))‖Lq ≤ C(1 + t)−
n
2

(
1
p
− 1

q

)
‖(∇xφ, ψ)‖

W
Np
p

, (1.5)

where p, q,Np are as before. Comparing (1.2) to (1.5), we see that the esti-

mate for the solution to the Klein–Gordon equation decays more rapidly—

there is an improvement in the exponent of the decay function of −1
2(1

p− 1
q ).

The estimate is proved in [vW71], [Pec76] and [Hör97] in different ways,

each suggesting reasons for this improvement: in [vW71], the function

v = v(x, xn+1, t) := e−imxn+1u(x, t) , xn+1 ∈ R ,

is defined; using (1.4), it is simple to show that v satisfies the wave equation

in Rn+1, and thus the Strichartz estimate (1.2) holds for v, yielding the

desired estimate for u. This is elegant, but cannot easily be adapted to other

situations due to the importance of the structures of the Klein–Gordon and

wave equations for this proof. In [Pec76] and [Hör97], a representation of

the solution via Fourier integral operators is used and the stationary phase

method then applied in order to obtain estimate (1.5).

A third problem of interest is the Cauchy problem for the dissipative

wave equation,

utt(x, t)−∆xu(x, t) + ut(x, t) = 0 , (x, t) ∈ Rn × (0,∞)

u(x, 0) = φ(x), ut(x, 0) = ψ(x), x ∈ Rn ,





where ψ, φ ∈ C∞
0 (Rn), say. In this case,

‖∂r
t ∂

α
x u(·, t)‖Lq ≤ C(1 + t)−

n
2
( 1

p
− 1

q
)−r− |α|

2 ‖(φ,∇ψ)‖
W

Np
p

.

This is proved in [Mat76] with a view to showing well-posedness of related

semilinear equations. Once again, this estimate (for the solution u(x, t)

itself) is better than that for the solution to the wave equation by −n
2 (1

p− 1
q );

there is an even greater improvement for higher derivatives of the solution.

As before, the proof of this may be done via a representation of the solution
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using the Fourier transform:

u(x, t) =





F−1
([e−t/2 sinh

(
t
2

√
1− 4|ξ|2)√

1− 4|ξ|2 +e−t/2cosh
(

t
2

√
1− 4|ξ|2)

]
φ̂(ξ)

+
2e−t/2 sinh

(
t
2

√
1− 4|ξ|2)√

1− 4|ξ|2 ψ̂(ξ)
)

, |ξ| ≤ 1/2,

F−1
([e−t/2 sin

(
t
2

√
4|ξ|2 − 1

)
√

4|ξ|2 − 1
+ e−t/2 cos

(
t
2

√
4|ξ|2 − 1

)]
φ̂(ξ)

+
2e−t/2 sin

(
t
2

√
4|ξ|2 − 1

)
√

4|ξ|2 − 1
ψ̂(ξ)

)
, |ξ| > 1/2.

Matsumura divides the phase space into the regions where the solution has

different properties and then uses standard techniques from analysis.

It is, therefore, interesting to ask why the addition of lower order terms

improves the rate of decay of the solution to the equation; furthermore, we

would like to understand why the improvement in the decay is the same

for both the addition of a mass term and for the addition of a dissipative

term. In the proof of each of the estimates (see the papers cited above), the

critical role is played by the characteristic roots (see Definition 0.3) of the

equations. Let us list the significant properties in each of the cases:

• Wave equation. The characteristic roots are ϕ±(ξ) = ±|ξ|; they are real

and homogeneous of order 1.

• Klein–Gordon equation. Here, the roots, τ±(ξ) = ±
√
|ξ|2 + m2, are real,

but not homogeneous. Furthermore, the Hessian of each of the roots is

everywhere non-singular, whereas the Hessian of each of the characteristic

roots of the wave equation is zero at the point of stationary phase, ξ = 0.

• Dissipative wave equation. Here τ1,2(ξ) = i
2 ± 1

2

√
4|ξ|2 − 1. In this case,

the improvement in the decay rate occurs because the roots lie away from

the imaginary axis when ξ 6= 0. The rate of decay is determined by the

behaviour of τ1(ξ) near ξ = 0; this can be seen from the proof of Lemma 1

in [Mat76] and will be studied in more detail later in the thesis.

In conclusion, it is the difference in the behaviour of the characteristic roots

of the Klein–Gordon equation and the dissipative wave equation which yield

improvement over the Strichartz decay rate for the wave equation.
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The aim of this thesis is to investigate this phenomenon for higher order

hyperbolic equations and see how lower order terms affect the rate of decay

compared to that for the homogeneous mth order equation and the examples

above.

1.2 Statement of Main Problem

Consider the Cauchy problem for the model mth order constant coefficient

linear strictly hyperbolic equation with solution u = u(x, t):

Dm
t u +

m∑

j=1

Pj(Dx)Dm−j
t u +

m−1∑

l=0

∑

|α|+r=l

cα,rD
α
xDr

t u = 0, t > 0,

Dl
tu(x, 0) = fl(x) ∈ C∞

0 (Rn), l = 0, . . . ,m− 1, x ∈ Rn ,





(1.6)

where Pj(ξ), the polynomial obtained from the operator Pj(Dx) by replacing

each Dxi by ξi, is a constant coefficient homogeneous polynomial of order j,

and the cα,r are constants.

Remark 1.2.1: For a hyperbolic equation with real coefficients we note

that the constants cα,r satisfy im−|α|−lcα,r ∈ R; the equation is written in

the form above since our results may be used to study hyperbolic systems,

which can be reduced to an mth order equation with complex coefficients.

We seek a priori estimates for the solution to this problem of the type

‖Dα
xDr

t u(·, t)‖Lq ≤ K(t)
m−1∑

l=0

‖fl‖W
Np−l
p

, (1.7)

where 1 ≤ p ≤ 2, 1
p + 1

q = 1, Np = Np(α, r) is a constant depending on p, α

and r, and K(t) is a function to be determined.
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1.3 Homogeneous Operators

The case where the operator in (1.6) is homogeneous has been studied ex-

tensively:

L(Dx, Dt)u = 0, (x, t) ∈ Rn × (0,∞)

Dl
tu(x, 0) = fl(x), l = 0, . . . , m− 1, x ∈ Rn ,



 (1.8)

where L is a homogeneous mth order constant coefficient strictly hyperbolic

differential operator; the symbol of L may be written in the form

L(τ, ξ) = (τ − ϕ1(ξ)) . . . (τ − ϕm(ξ)), with ϕ1(ξ) > · · · > ϕm(ξ) (ξ 6= 0).

In a series of papers, [Sug94], [Sug96] and [Sug98], Mitsuru Sugimoto showed

how the geometric properties of the characteristic roots ϕ1(ξ), . . . , ϕm(ξ)

affect the Lp−Lq estimate. To understand this, let us summarise the method

of approach.

Firstly, the solution can be written as the sum of Fourier multipliers:

u(x, t) =
m−1∑

l=0

[El(t)fl](x), where El(t) =
m∑

k=1

F−1eitϕk(ξ)ak,l(ξ)F

and ak,l(ξ) is homogeneous of order −l. Now, the problem of finding an

Lp−Lq decay estimate for the solution is reduced to showing that operators

of the form

Mr(D) := F−1eiϕ(ξ)|ξ|−rχ(ξ)F ,

where ϕ(ξ) ∈ Cω(Rn \ {0}) is homogeneous of order 1 and χ ∈ C∞(Rn)

is equal to 1 for large ξ and zero near the origin, are Lp − Lq bounded for

suitably large r ≥ l. In particular, this means that, for such r,

‖El(1)f‖Lq ≤ C‖f‖W r−l
p

.

Indeed, it may be assumed, without loss of generality, that t = 1 since:
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Lemma 1.3.1. For t > 0 and f ∈ C∞
0 (Rn),

[El(t)f ](x) = tl[El(1)f(t·)](t−1x) .

Proof. By the homogeneity of ϕk(ξ) and ak,l(ξ),

[El(t)f ](x) =
m∑

k=1

1
(2π)n

∫

Rn

ei(x·ξ+ϕk(ξ)t)ak,l(ξ)f̂(ξ) dξ

=
m∑

k=1

1
(2π)n

∫

Rn

ei(x·ξ+ϕk(tξ))ak,l(ξ)f̂(ξ) dξ

=
m∑

k=1

1
(2π)n

∫

Rn

ei(x·ηt−1+ϕk(η))ak,l(t−1η)f̂(t−1η)t−n dη ,

where in the last line the change of coordinates ξ 7→ t−1η has been used.

Now, with y 7→ ty′,

f̂(t−1η) =
∫

Rn

e−iy·t−1ηf(y) dy =
∫

Rn

e−iy′·ηf(ty′)tn dy′ = tnf̂t(η) ,

where ft(x) := f(tx). Thus,

[El(t)f ](x) =
m∑

k=1

1
(2π)n

∫

Rn

ei(x·ηt−1+ϕk(η))tlak,l(η)f̂t(η) dη

= tl[El(1)f(t·)](t−1x) .

Using this identity gives

‖El(t)f‖q
Lq = tlq‖[El(1)ft](t−1·)‖q

Lq = tlq
∫

Rn

|[El(1)ft](t−1x)|q dx

(x=tx′)
= tlq

∫

Rn

tn|[El(1)ft](x′)|q dx′ = tlq+n‖El(1)ft‖q
Lq .

Then, noting that a simple change of variables yields

‖ft‖p
W k

p
≤ Ctkp−n‖f‖p

W k
p

,
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we have,

‖El(t)f‖Lq ≤ Ct
l+n

q ‖ft‖W r−l
p

≤ Ct
r−n( 1

p
− 1

q
)‖f‖W r−l

p
;

hence,

‖u(·, t)‖Lq ≤ Ct
r−n( 1

p
− 1

q
)

m−1∑

l=0

‖fl‖W r−l
p

.

It has long been known that the values of r for which Mr(D) is Lp −Lq

bounded depends on the geometry of the level set

Σϕ = {ξ ∈ Rn \ {0} : ϕ(ξ) = 1} .

In [Lit73], [Bre75] it is shown that if the Gaussian curvature of Σϕ is never

zero then Mr(D) is Lp−Lq bounded when r ≥ n+1
2

(
1
p− 1

q

)
. This is extended

in [Bre77], in which it is proven that Mr(D) is Lp − Lq bounded provided

r ≥ 2n−ρ
2

(
1
p − 1

q

)
, where ρ = minξ 6=0 rankHessϕ(ξ).

Sugimoto extended this further in [Sug94], where he showed that if Σϕ

is convex then Mr(D) is Lp−Lq bounded when r ≥ (
n− n−1

γ(Σ)

)(
1
p − 1

q

)
; here,

γ(Σ) := sup
σ∈Σ

sup
P

γ(Σ; σ, P ) , Σ ⊂ Rn a hypersurface ,

where P is a plane containing the normal to Σ at σ and γ(Σ;σ, P ) denotes

the order of the contact between the line Tσ ∩ P , Tσ is the tangent plane

at σ, and the curve Σ∩P . See Section 3.2.3 for more on this maximal order

of contact.

In order to apply this result to the solution of (1.8), it is necessary to

find a condition under which the level sets of the characteristic roots are

convex. The following notion is the one that is sufficient:

Definition 1.1. Let L = L(Dx, Dt) be a homogeneous mth order constant

coefficient partial differential operator. It is said to satisfy the convexity con-

dition if the Hessian, Hessϕk(ξ), corresponding to each of its characteristic

roots ϕ1(ξ), . . . , ϕm(ξ) is semi-definite for ξ 6= 0.

It can be shown that if an operator L does satisfy this convexity con-

dition, then the above results can be applied to the solution and thus an

18



estimate of the form (1.7) holds with

K(t) = (1 + t)−
n−1

γ

(
1
p
− 1

q

)
, where γ ≤ m.

Finally, the case when this convexity condition does not hold is discussed;

in [Sug96] and [Sug98] it is shown that, in general, Mr(D) is Lp−Lq bounded

when r ≥ (
n− 1

γ0(Σ)

)(
1
p − 1

q

)
, where

γ0(Σ) := sup
σ∈Σ

inf
P

γ(Σ; σ, P ) ≤ γ(Σ).

For n = 2, γ0(Σ) = γ(Σ), so, the convexity condition may be lifted in that

case. However, in [Sug96], examples are given when n ≥ 3, p = 1, 2 where

this lower bound for r is the best possible and, thus, the convexity condition

is necessary for the above estimate. It turns out that the case n ≥ 3,

1 < p < 2 is more interesting and is studied in greater depth in [Sug98],

where microlocal geometric properties must be looked at in order to obtain

an optimal result.

Two remarks are worth making; firstly, the convexity condition result

recovers the Strichartz decay estimate for the wave equation, since that

clearly satisfies such a condition, Secondly, the convexity condition is an

important restriction on the geometry of the characteristic roots that af-

fects the Lp − Lq decay rate; hence, in the case of an mth order operator

with lower order terms we must expect some geometrical conditions on the

characteristic roots to obtain decay.

The discussion here, and that on the second order equations, suggests

that the properties of the characteristics play the key role in determining the

rate of decay; we concentrate on this in Chapters 2–4: in Chapter 2 we state

the main results in this thesis for the case where the operator has lower order

terms and outline the approach used to prove them; in Chapter 3, some key

results needed for the main proof are proved, and Chapter 4 contains the

proof of the main theorem. In Chapter 5, there are some results which give

characterisations in terms of the structure of the lower order, as well as an

application to systems and some examples.
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Chapter 2:

Main Results and Outline of

Approach

2.1 Main Results

In this thesis, we shall analyse the conditions under which we can obtain

Lp−Lq decay estimates for the general mth order linear, constant coefficient,

strictly hyperbolic Cauchy problem

Dm
t u +

m∑

j=1

Pj(Dx)Dm−j
t u +

m−1∑

l=0

∑

|α|+r=l

cα,rD
α
xDr

t u = 0, t > 0,

Dl
tu(x, 0) = fl(x) ∈ C∞

0 (Rn), l = 0, . . . ,m− 1, x ∈ Rn .





(2.1)

The main theorem below states how different behaviours of the character-

istic roots τ1(ξ), . . . , τm(ξ) affect the rate of decay that can be obtained.

Ideally, of course, we would like to have conditions on the lower order terms

for different rates of decay; in Chapter 5 we shall give some results in this di-

rection. For now, though, we concentrate on conditions on the characteristic

roots.

It is natural to impose the condition:

Im τk(ξ) ≥ 0 for k = 1, . . . , m ; (2.2)

this is equivalent to requiring the characteristic polynomial of the operator

to be stable at all points ξ ∈ Rn, and thus cannot be expected to be lifted.

Also, we shall show that it is sensible to divide the considerations of how

characteristic roots behave into two parts: their behaviour for large values

of |ξ| and for bounded values of |ξ|. These two cases are then subdivided

further; in particular the following are the key properties to consider:
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• multiplicities of roots (this only occurs in the case of bounded |ξ|—see

Lemma 3.1.4);

• whether roots lie on the real axis or are separated from it;

• behaviour as |ξ| → ∞ (only in the case of large |ξ|);

• how roots meet the real axis (if they do);

• properties of the Hessian of the root, Hess τk(ξ);

• a convexity-type condition, as in the case of homogeneous roots (Sec-

tion 1.3).

Here is the main theorem, which in Chapter 4 we shall prove; included in

it are notions such as “convexity condition γ”, “no convexity condition, γ0”,

“codimension l”; these will be defined and discussed in the relevant places

in Chapters 3 and 4.

Theorem 2.1.1. Suppose u = u(x, t) satisfies the mth order linear, constant

coefficient, strictly hyperbolic Cauchy problem (2.1). Denote the character-

istic roots of the operator by τ1(ξ), . . . , τm(ξ) and assume that (2.2) holds.

We introduce two functions, K(l)(t) and K(b)(t), which take values as

follows:

I. Consider the behaviour of each characteristic root, τk(ξ), in the region

|ξ| ≥ N , where N is a large real number to be chosen later. The

following table gives values for the function K
(l)
k (t) corresponding to

possible properties of τk(ξ); if τk(ξ) satisfies more than one, then take

K
(l)
k (t) to be function that decays the slowest as t →∞.
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Location of τk(ξ) Additional Property K
(l)
k (t)

away from real axis e−δt, some δ > 0

detHess τk(ξ) 6= 0 (1 + t)−
n
2
( 1

p
− 1

q
)

on real axis rankHess τk(ξ) = n− 1 (1 + t)−
n−1

2
( 1

p
− 1

q
)

convexity condition γ (1 + t)−
n−1

γ
( 1

p
− 1

q
)

no convexity condition, γ0 (1 + t)−
1

γ0
( 1

p
− 1

q
)

detHess τk(ξ) 6= 0 (1 + t)−
n
2
( 1

p
− 1

q
)

asymptotic to real axis rankHess τk(ξ) = n− 1 (1 + t)−
n−1

2
( 1

p
− 1

q
)

no convexity condition, γ0 (1 + t)−
1

γ0
( 1

p
− 1

q
)

Then take K(l)(t) = maxk=1 ...,n K
(l)
k (t).

II. Consider the behaviour of the characteristic roots in the bounded re-

gion |ξ| ≤ N ; again, take K(b)(t) to be the maximum (slowest decay-

ing) function for which there are roots satisfying the conditions in the

following table:

Location of Root(s) Properties K(b)(t)

away from axis no multiplicities e−δt, some δ > 0

L roots coinciding (1 + t)L−1e−δt

on axis, detHess τk(ξ) 6= 0 (1 + t)−
n
2
( 1

p
− 1

q
)

no multiplicities∗ convexity condition γ (1 + t)−
n−1

γ
( 1

p
− 1

q
)

no convexity condition, γ0 (1 + t)−
1

γ0
( 1

p
− 1

q
)

on axis, L roots coincide

multiplicities∗ on set of codimension ` (1 + t)L−1−`( 1
p
− 1

q
)

meeting axis L roots coincide

with finite order s on set of codimension ` (1 + t)L−1− `
s
( 1

p
− 1

q
)

∗ These two cases of roots lying on the real axis require some additional regularity assumptions; see proof for details.

Then, with K(t) = max
(
K(b)(t),K(l)(t)

)
, the following estimate holds:

‖Dα
xDr

t u(·, t)‖Lq ≤ K(t)
m−1∑

l=0

‖fl‖W
Np−l
p

,

where 1 < p ≤ 2, 1
p + 1

q = 1, and Np = Np(α, r) is a constant depending

on p, α and r.
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2.2 Schematic of Method

Step 1: Representation of the solution.

Using the Fourier transform, this reduces the problem to studying oscillatory

integrals.

Step 2: Division of the integral.

Reduce the problem to several model cases using suitable cut-off func-

tions; in view of interpolation techniques, it then suffices to prove L2 − L2

and L1 − L∞ estimates. The problem is divided into studying the behav-

iour of the characteristic roots in three regions of the phase space—large |ξ|,
bounded |ξ| away from multiplicities of roots and bounded |ξ| in a neigh-

bourhood of multiplicities.

Step 3: Interpolation reduces problem to finding L1 − L∞ and L2 − L2

estimates.

Step 4: Large |ξ|:

• root separated from the real axis;

• root asymptotic to the real axis;

• root lying on the real axis.

Step 5: Bounded |ξ|, away from multiplicities:

• root away from the real axis;

• root meeting the real axis with finite order;

• root lying on the real axis.

Step 6: Bounded |ξ|, around multiplicities of roots:

• all intersecting roots away from the real axis;

• all intersecting roots lie on the real axis around the multiplicity;

• all intersecting roots meet the real axis with finite order;

• one or more of the roots meets the real axis with infinite order.
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Chapter 3:

Auxiliary Results
In this chapter, we collect together various tools that enable us to prove

the main theorem. First, we prove some important properties for the char-

acteristics of strictly hyperbolic operators, which motivate the division into

large and bounded |ξ|. Then we give several theorems about oscillatory inte-

grals divided into the cases where a convexity condition holds on the phase

function and where no such condition holds.

3.1 Strictly Hyperbolic Operators and

Polynomials

In order to study the solution u(x, t) to (1.6), we must first know some

properties of the characteristic roots τ1(ξ), . . . , τm(ξ). Naturally, we do not

have explicit formulae for the roots, unlike in the cases of the dissipative wave

equation and the Klein–Gordon equation, but we do know properties for the

roots of the principal symbol. For general hyperbolic operators, the roots

ϕ1(ξ), . . . , ϕm(ξ) of the characteristic polynomial of the principal part are

homogeneous functions of order 1 since the principal part is homogeneous.

Furthermore, for strictly hyperbolic polynomials these roots are distinct

when ξ 6= 0. Since these two properties are very useful when studying

homogeneous (strictly) hyperbolic equations, it is useful to know whether

the characteristic roots of the full equation, τ1(ξ), . . . , τm(ξ), have similar

properties. Indeed, if we regard the full equation as a perturbation of the

principal part, we can show that similar properties hold for large |ξ|; these

results are the focus of this section. In particular, we shall show that they are

continuous everywhere, analytic away from multiplicities, are symbols and

have no multiplicities for sufficiently large |ξ|. In the schematic of the proof

(Section 2.2), we subdivided the phase space into large |ξ| and bounded |ξ|,
and it is these properties that motivate this step.

First, we give some properties of general polynomials which are useful

to us. For constant coefficient polynomials, the following result holds:

24



Lemma 3.1.1. Consider the polynomial over C with complex coefficients

zm + c1z
m−1 + · · ·+ cm−1z + cm =

m∏

k=1

(z − zk).

If there exists M > 0 such that |cj | ≤ M j for each j = 1, . . . , m, then

|zk| ≤ 2M for all k = 1, . . . , m.

Proof. Assume that |z| > 2M . Then

|zm + c1z
m−1 + · · ·+ cm−1z + cm| ≥ |z|m

(
1− |c1|

|z| − · · · −
|cm−1|
|z|m−1

− |cm|
|z|m

)

≥ (2r)m(1− 2−1 − · · · − 2−(m−1) − 2−m) > 0.

That is, no zero of the polynomial lies outside of the ball about the origin

of radius 2M ; hence |zk| ≤ 2M for each k = 1, . . . , m.

Remark 3.1.1: If we replace the hypothesis |cj | ≤ M j by |cj | ≤ M for each

j = 1, . . . ,m, then by a similar argument we obtain that |zk| ≤ max{2, 2M}.
The max{2, 2M} term appears because we need M ≥ 1 for the sum on the

right hand side to be positive.

For general polynomials with variable coefficients, we have:

Lemma 3.1.2. Consider the mth order polynomial with coefficients depend-

ing on ξ ∈ Rn

p(ξ, τ) = τm + a1(ξ)τm−1 + · · ·+ am(ξ).

If each of the coefficient functions aj(ξ), j = 1, . . . , m, is continuous in Rn

then each of the roots τ1(ξ), . . . , τm(ξ) with respect to τ of p(ξ, τ) is also

continuous in Rn.

Proof. Define ρ : Cm → Cm by ρ(z1, . . . , zm) = (c1, . . . , cm) where the cj

satisfy

zm + c1z
m−1 + · · ·+ cm =

m∏

j=1

(z − zj).

Then ρ is:
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(a) surjective by the Fundamental Theorem of Algebra;

(b) continuous since each of the cj may be written as polynomials of the zj

(by the Vièta formulae);

(c) proper (that is, the preimage of each compact set is compact) by Re-

mark 3.1.1;

properties (b) and (c) imply that ρ is a closed mapping.

Now, fix ξ0 ∈ Rn. For any given ε > 0, consider the set

U =
⋃

α∈Sm

m⋂

k=1

{ζ = (ζ1, . . . , ζm) ∈ Cm : |ζαk
− τk(ξ0)| < ε} ,

where α = (α1, . . . , αm) ∈ Sm denotes the set of permutations of {1, . . . , m}
(see Fig. 3.1 for a diagram of this). Note that U is, by construction, symmet-

-

C2
6

C1

r r
τ1(ξ0)

τ1(ξ0)

τ2(ξ0)

τ2(ξ0)

r

r U1

U2 6

6

?

?

2ε

2ε

- -¾ ¾2ε 2ε

Figure 3.1: U = U1 ∪ U2

ric, i.e. if (z1, . . . , zm) ∈ U then (zα1 , . . . , zαm) ∈ U for all (α1, . . . , αm) ∈ Sm.

Let F denote the complement to U :

F =
⋂

α∈Sm

{ζ = (ζ1, . . . , ζm) ∈ Cm : |ζαk
− τk(ξ0)| ≥ ε ∃ k = 1, . . . , m} .

We need to show that there exists δ > 0 such that (τ1(ξ), . . . , τm(ξ)) ∈ U

whenever |ξ − ξ0| < δ; note:

• ρ−1(ρ(F )) = F by construction—if ρ(w) = ρ(w′) then both w and w′ give

rise to the same polynomial, and hence their entries are permutations of

each other, and so either both or neither lie in F ;
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• by the surjectivity of ρ,

ρ(U) = ρ(F c) = ρ([ρ−1(ρ(F ))]c) = ρ(ρ−1(ρ(F )c)) = ρ(F )c ;

• ρ(F ) is closed since F a closed set and ρ is a closed mapping;

therefore, ρ(U) is open. Thus, there exists an open ball in ρ(U) of radius δ′

(for some δ′ > 0) about a(ξ0) ≡ (a1(ξ0), . . . , am(ξ0)) = ρ(τ1(ξ0), . . . , τm(ξ0)):

Bδ′(a(ξ0)) =
{
(c1, . . . , cm) ∈ Cm : |cj − aj(ξ0)| < δ′ ∀ j = 1, . . . , m

} ⊂ ρ(U).

By the continuity of the aj(ξ), there exists δ > 0 such that

|ξ − ξ0| < δ =⇒ |aj(ξ)− aj(ξ0)| < δ′ for all j = 1, . . . , m ;

hence,

|ξ − ξ0| < δ =⇒ (a1(ξ), . . . , am(ξ)) ∈ Bδ′(a(ξ0)) ⊂ ρ(U) .

Finally, since ρ(τ1(ξ), . . . , τm(ξ)) = (a1(ξ), . . . , am(ξ)) and U is symmetric

(this is needed as different root orderings give the same coefficients), we find

(τ1(ξ), . . . , τm(ξ)) ∈ U when |ξ − ξ0| < δ as required; this completes the

proof of the lemma.

Now, let us turn to proving properties of the characteristic roots.

Proposition 3.1.3 (Continuity of Roots). Let L = L(Dx, Dt) be a linear

mth order constant coefficient partial differential operator. Then each of

the characteristic roots of L, denoted τ1(ξ), . . . , τm(ξ), is continuous in Rn;

furthermore, for each k = 1, . . . , m, the characteristic root τk(ξ) is analytic

in

{ξ ∈ Rn : τk(ξ) 6= τl(ξ)∀ l 6= k} .

Proof. The characteristic polynomial of L is of the form

L(ξ, τ) = τm + a1(ξ)τm−1 + · · ·+ am(ξ) ,

where the aj(ξ) are polynomials in ξ of order j. Thus, by Lemma 3.1.2
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each of the roots is continuous. The second statement follows by the Real

Analytic Implicit Function Theorem1, using that the aj(ξ) are polynomials

and hence analytic in ξ.

Remark 3.1.2: In the case where L(Dx, Dt) is a differential operator in t

with coefficients that are pseudodifferential operators in x, the aj(ξ) are

classical symbols of order j; so, in this case, the characteristic roots are

continuous in Rn and smooth away from multiplicities.

Lemma 3.1.4 (Location of Root Multiplicities). Let L = L(Dx, Dt) be a

linear mth order constant coefficient strictly hyperbolic partial differential

operator. Then there exists a constant N such that, if |ξ| > N then the

characteristic roots τ1(ξ), . . . , τm(ξ) of L are pairwise distinct.

Proof. We use the notation and results from Chapter 12 of [GKZ94] con-

cerning the discriminant ∆p of the polynomial p(x) = pmxm + · · ·+p1x+p0,

∆p ≡ ∆(p0, . . . , pm) := (−1)
m(m−1)

2 p2m−2
m

∏

i<j

(xi − xj)2 ,

where the xj (j = 1, . . . , m) are the roots of p(x); that is, the irreducible

polynomial in the coefficients of the polynomial which vanishes when the

polynomial has multiple roots. We note that ∆p is a continuous function of

the coefficients p0, . . . , pm of p(x) and it is a homogeneous function of degree

2m− 2 in them; in addition, it satisfies the quasi-homogeneity property:

∆(p0, λp1, λ
2p2, . . . , λ

mpm) = λm(m−1)∆(p0, . . . , pm).

Furthermore, ∆p = 0 if and only if p(x) has a double root.

We write L(ξ, τ) in the form

L(ξ, τ) = Lm(ξ, τ) + a1(ξ)τm−1 + a2(ξ)τm−2 + · · ·+ am−1(ξ)τ + am(ξ),

where

Lm(ξ, τ) = τm +
m∑

k=1

Pj(ξ)τm−j

1see, for example, [KP02]
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is the principal part of L(ξ, τ); note that the Pj(ξ) are homogeneous poly-

nomials of degree j and the aj(ξ) are polynomials of degree ≤ j. By the

homogeneity and quasi-homogeneity properties of ∆L, we have, for λ 6= 0,

∆L(λξ) = ∆(Pm(λξ) + am(λξ), . . . , P1(λξ) + a1(λξ), 1)

= ∆(λm[Pm(ξ) + am(λξ)
λm ], . . . , λ[P1(ξ) + a1(λξ)

λ ], 1)

= λm(2m−2)∆(Pm(ξ) + am(λξ)
λm , . . . , λ−(m−1)[P1(ξ) + a1(λξ)

λ ], λ−m)

(using that ∆ is homogenous of degree 2m− 2)

= λm(m−1)∆(Pm(ξ) + am(λξ)
λm , . . . , P1(ξ) + a1(λξ)

λ , 1)

(by quasi-homogeneity).

Now, since L is strictly hyperbolic, the characteristic roots ϕ1(ξ), . . . , ϕm(ξ)

of Lm are pairwise distinct for ξ 6= 0, so

∆Lm(ξ) = ∆(Pm(ξ), . . . , P1(ξ), 1) 6= 0 for ξ 6= 0.

Since the discriminant is continuous in each argument, there exists δ > 0

such that if
∣∣aj(λξ)

λj

∣∣ < δ for all j = 1, . . . , m then

∣∣∆(Pm(ξ) + a0(λξ)
λm , . . . , P1(ξ) + am−1(λξ)

λ , 1)
∣∣ > 0,

and hence the roots of the associated polynomial are pairwise distinct. So,

fix ξ ∈ {ξ ∈ Rn : |ξ| = 1} and let λ →∞. Since the aj(ξ) are polynomials of

degree ≤ j it follows that aj(λξ)
λj → 0 for each j = 1, . . . , m. So, there exists

N > 0 such that if λ > N then
∣∣aj(λξ)

λj

∣∣ < δ for all j = 1, . . . , m. Hence when

|ξ| > N the characteristic roots of L are pairwise distinct.

Remark 3.1.3: As in the case above, this statement is true when L(Dx, Dt)

is a (strictly hyperbolic) differential operator in t with coefficients that are

pseudodifferential operators in x. The only modification to the proof needed

is we must use the simple fact that Pj(ξ) − Pj(λξ)
λj → 0 as λ → ∞ when

ξ ∈ Sn−1 (since the Pj(ξ) are symbols of order j) to ensure

∆L(λξ) = λm(m−1)∆
(Pm(λξ)+am(λξ)

λm , . . . , P1(λξ)+a1(λξ)
λ , 1

)
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is bounded away from zero for large λ.

Proposition 3.1.5 (Symbolic Properties of Roots). Let L = L(Dx, Dt) be

a linear mth order constant coefficient hyperbolic partial differential operator

with characteristic roots τ1(ξ), . . . , τm(ξ); then

I. for each k = 1, . . . , m, there exists a constant C > 0 such that

|τk(ξ)| ≤ C(1 + |ξ|) for all ξ ∈ Rn . (3.1)

Furthermore, if we insist that L is strictly hyperbolic, and denote the roots of

the principal part Lm(ξ, τ) by ϕ1(ξ), . . . , ϕm(ξ), then we have the following :

II. Suppose that the maximum order of the lower order terms is 0 ≤ K ≤
m−1. Then, for each τk(ξ), k = 1, . . . , m, there exists a corresponding

root of the principal symbol ϕk(ξ) (possibly after reordering) such that

|τk(ξ)− ϕk(ξ)| ≤ C(1 + |ξ|)K+1−m for all ξ ∈ Rn . (3.2)

In particular, for arbitrary lower terms, we have

|τk(ξ)− ϕk(ξ)| ≤ C for all ξ ∈ Rn . (3.3)

III. There exists N > 0 such that, for each characteristic root of L and for

each multi-index α, we can find constants C = Ck,α > 0 such that

∣∣∂α
ξ τk(ξ)

∣∣ ≤ C|ξ|1−|α| for all |ξ| ≥ N , (3.4)

In particular, there exists a constant C > 0 such that

|∇τk(ξ)| ≤ C for all |ξ| ≥ N . (3.5)

IV. There exists N > 0 such that, for each τk(ξ) a corresponding root of the

principal symbol ϕk(ξ) can be found (possibly after reordering) which

satisfies, for each multi-index α and k = 1, . . . , m,

∣∣∂α
ξ τk(ξ)− ∂α

ξ ϕk(ξ)
∣∣ ≤ C|ξ|−|α| for all |ξ| ≥ N , (3.6)
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for some constants C = Ck,α > 0.

If we further assume that the maximum order of the lower order terms

is 0 ≤ K ≤ m− 1, then we get the estimate

∣∣∂α
ξ τk(ξ)− ∂α

ξ ϕk(ξ)
∣∣ ≤ C|ξ|K+1−m−|α| for all |ξ| ≥ N (3.7)

for each multi-index α and k = 1, . . . , m.

First, we need the following lemma about perturbation properties of

general smooth functions.

Lemma 3.1.6. Let p : C → C and q : C → C be smooth functions and

suppose z0 is a simple zero of p(z) (i.e. p(z0) = 0, p′(z0) 6= 0). Consider,

for each ε > 0, the following “perturbation” of p(z):

pε(z) := p(z) + εq(z) ,

and suppose zε is a root of pε(z); then, for all sufficiently small ε > 0,

|zε − z0| ≤ Cε
∣∣∣ q(z0)
p′(z0)

∣∣∣ . (3.8)

Proof. By Taylor’s Theorem, we have, near z0,

pε(z) = pε(z0) + p′ε(z0)(z − z0) + O(|z − z0|2)
= εq(z0) + (p′(z0) + εq′(x0))(z − z0) + O(|z − z0|2) .

Thus, setting z = zε,

0 = εq(z0) + (p′(z0) + εq′(z0))(zε − z0) + O(|zε − z0|2) . (3.9)

Now, consider the function of ε, z(ε) := zε; this is clearly smooth since p

and q are smooth and z0 is a simple zero of p(z), and thus, near the origin,

z(ε) = z(0) + εz′(0) + O(ε2) . (3.10)
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Combining (3.9) and (3.10), we get

0 = εq(z0) + (p′(z0) + εq′(z0))(εz′(0) + O(ε2)) + O(ε2) ,

or,

0 = q(z0) + p′(z0)z′(0) + O(ε) ,

which is equivalent to

|q(z0) + p′(z0)z′(0)| ≤ Cε as ε → 0 .

Therefore, by the triangle inequality, for each ε > 0 small enough,

|z′(0)| ≤ Cε

|p′(z0)| +
∣∣∣ q(z0)
p′(z0)

∣∣∣ ,

and, thus,

|z′(0)| ≤ C
∣∣∣ q(z0)
p′(z0)

∣∣∣ . (3.11)

Finally, combining (3.11) with (3.10), we obtain (3.8) as required.

Proof of Proposition 3.1.5.

Part I: We may write L(ξ, τ) in the form

L(ξ, τ) = τm + a1(ξ)τm−1 + · · ·+ am−1(ξ)τ + am(ξ),

where the aj(ξ) are polynomials in ξ of order ≤ j. Now, for each j =

1, . . . , m, there exists a constant Mj such that, for some constant Cj >

0, we have |aj(ξ)| ≤ Cj |ξ|j when |ξ| > Mj ; this is because the aj(ξ) are

polynomials. Then, taking M = maxj Mj , we have by Lemma 3.1.1 that

there exists C > 0 such that |τk(ξ)| ≤ C|ξ| when |ξ| > M ; since τ(ξ) is

continuous in Rn (Proposition 3.1.3) and thus bounded on compact sets, we

have (3.1) as desired.
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Part II: In the proof of this part, let us write L(ξ, τ) in the form

L(ξ, τ) =
R∑

i=0

Lm−ri(ξ, τ) ,

where r0 = 0, m − r1 = K (the maximum order of the lower order terms),

1 ≤ r1 < · · · < rR ≤ m,

Lm(ξ, τ) = τm +
m∑

k=1

Pj(ξ)τm−j

and Lm−ri(ξ, τ) =
∑

|α|+j=m−ri

cα,jξ
ατ j for 1 ≤ i ≤ R;

here, as usual, the Pj(ξ) are homogeneous polynomials in ξ of order j.

Denote the roots of

Ll(ξ, τ) :=
l∑

i=0

Lm−ri(ξ, τ) , 0 ≤ l ≤ R ,

with respect to τ by τ l
1(ξ), . . . , τ

l
m(ξ). Note that L0(ξ, τ) = Lm(ξ, τ), i.e.

L0(ξ, τ) is the principal symbol with no lower order terms.

Here, let us choose constants Nl ≥ 1 so that, for each fixed l = 0, . . . , R,

τ l
1(ξ), . . . , τ

l
m(ξ) are distinct when |ξ| > Nl—this can be done by Lemma 3.1.4

since each Ll(ξ, τ) is a strictly hyperbolic polynomial. Next, set N ≡
maxl Nl, and from now on, we assume that |ξ| ≥ Nmax throughout.

We shall show that there exists M ≥ Nmax so that, possibly after re-

ordering the roots, for all k = 1, . . . , m,

|τ l+1
k (ξ)−τ l

k(ξ)| ≤ C|ξ|−rl+1+1 for all l = 0, . . . , R−1 and |ξ| > M . (3.12)

Assuming this, and noting that τ0
k (ξ) = ϕk(ξ) and τR

k (ξ) = τk(ξ) for each

k = 1, . . . , m (possibly after reordering), we obtain

|τk(ξ)− ϕk(ξ)| ≤
r∑

l=0

|τ l+1
k (ξ)− τ l

k(ξ)| ≤ C|ξ|−r1+1 when |ξ| > M ;

this, together with the continuity of the τk(ξ) and ϕk(ξ)—and thus the
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boundedness of |τk(ξ)−ϕk(ξ)| in BM (0), gives (3.2). Then, (3.3) follows by

setting K = m− 1.

So, with the aim of proving (3.12), we first introduce some notation: set

L̃m−ri : Sn ×C→ C : L̃m−ri(ω, τ) = Lm−ri(ω, τ) , i = 0, . . . , R,

L̃l : (Nl,∞)× Sn ×C→ C : L̃l(ρ, ω, τ) = ρ−mLl(ρω, ρτ), l = 0, . . . , R;

observe that L̃m−ri is just the restriction of Lm−ri(ξ, τ) to Sn×C→ C. De-

note by ϕ̃1(ω), ϕ̃2(ω), . . . , ϕ̃m(ω) the roots of L̃m(ω, τ) = L̃0(ρ, ω, τ) with re-

spect to τ , and by τ̃k
1 (ρ, ω), τ̃k

2 (ρ, ω), . . . , τ̃k
m(ρ, ω) those of L̃k(ρ, ω, τ). Now,

for 1 ≤ l ≤ R,

|ξ|−mLl(ξ, τ) = |ξ|−m
(
τm +

m∑

j=1

Pj(ξ)τm−j +
l∑

i=1

∑

|α|+j=m−ri

cα,jξ
ατ j

)

=τ̃m +
m∑

j=1

Pj

( ξ
|ξ|

)
τ̃m−j +

l∑

i=1

|ξ|−ri
∑

|α|+j=m−ri

cα,l

( ξ
|ξ|

)α
τ̃ j

=L̃m

( ξ
|ξ| , τ̃

)
+

l∑

i=1

|ξ|−riL̃m−ri

( ξ
|ξ| , τ̃

)
, (3.13)

where τ̃ = τ
|ξ| . Since,

L̃m

( ξ
|ξ| , τ̃

)
= Lm

( ξ
|ξ| , τ̃

)
= |ξ|−mLm(ξ, τ) = |ξ|−mL0(ξ, τ) = L̃0

(|ξ|, ξ
|ξ| , τ̃

)

for ξ ∈ Rn, τ ∈ C, and

L̃l+1(ρ, ω, τ) = ρ−mLl+1(ρω, ρτ) = ρ−m
l+1∑

i=0

Lm−ri(ρω, ρτ)

=ρ−m
l∑

i=0

Lm−ri(ρω, ρτ) + ρ−m
∑

|α|+j=m−rl+1

cα,j(ρω)α(ρτ)j

=L̃l(ρ, ω, τ) + ρ−rl+1
∑

|α|+j=m−ri

cα,jω
ατ j

=L̃l(ρ, ω, τ) + ρ−rl+1L̃m−rl+1
(ω, τ) (3.14)

for ω ∈ Sn−1, ρ > Nmax, τ ∈ C, l = 0, . . . , R − 1, we have, by repeated
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application of (3.14) in (3.13),

|ξ|−mLl(ξ, τ) = L̃l

(|ξ|, ξ
|ξ| , τ̃

)
. (3.15)

As the left-hand side of this is zero when τ = τ l
k(ξ), k = 1, . . . , m, and

the right-hand side is zero when τ̃ = τ̃ l
k(|ξ|, ξ

|ξ|), k = 1, . . . ,m, we see

that |ξ|τ̃ l
k(|ξ|, ξ

|ξ|) = τ l
k(ξ) for each k = 1, . . . ,m (possibly after reordering).

Hence, for all |ξ| > Nmax, k = 1, . . . , m and l = 0, . . . , R− 1, we have

|τ l+1
k (ξ)− τ l

k(ξ)| = |τ̃ l+1
k

(|ξ|, ξ
|ξ|

)− τ̃ l
k

(|ξ|, ξ
|ξ|

)||ξ| .

Next, observe that applying Lemma 3.1.6 with ε = ρrl+1 to

L̃l(ρ, ω, τ) + ρ−rl+1L̃m−rl+1
(ω, τ)

yields, for all ω ∈ Sn−1 and k = 1, . . . ,m,

|τ̃ l+1
k (ρ, ω)− τ̃ l

k(ρ, ω)| ≤ Cρ−rl+1

∣∣∣ L̃m−rl+1
(ω, τ̃ l

k(ρ, ω))

∂τ L̃l(ρ, ω, τ̃ l
k(ρ, ω))

∣∣∣ .

provided we take ρ > M ′ for a sufficiently large constant M ′ ≥ Nmax.

Therefore, for all |ξ| > M ′, k = 1, . . . , m and l = 0, . . . , R− 1, we have

|τ l+1
k (ξ)− τ l

k(ξ)| ≤ C|ξ|−rl+1+1

∣∣∣∣∣∣
Lm−rl+1

( ξ
|ξ| ,

τ l
k(ξ)

|ξ|
)

∂τ L̃l

(|ξ|, ξ
|ξ| ,

τ l
k(ξ)

|ξ|
)

∣∣∣∣∣∣
. (3.16)

Thus, it suffices to show the following two inequalities when |ξ| > M for

some M ≥ M ′:

• there exists a constant C1 so that, for all 1 ≤ i ≤ R,

∣∣∣Lm−ri

( ξ
|ξ| ,

τ l
k(ξ)

|ξ|
)∣∣∣ =

∣∣∣
∑

|α|+j=m−ri

cα,l

( ξ
|ξ|

)α( τ l
k(ξ)

|ξ|
)j

∣∣∣ ≤ C1; (3.17)

and
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• there exists a constant C2 > 0 so that, for all 0 ≤ l ≤ R− 1,

∣∣∂τ L̃l

(|ξ|, ξ
|ξ| ,

τ l
k(ξ)

|ξ|
)∣∣ = |ξ|−m+1|∂τLl(ξ, τ l

k(ξ))| ≥ C2. (3.18)

Then, combining (3.16), (3.17) and (3.18) gives (3.12).

Let us now show (3.17) and (3.18):

The first, (3.17), follows immediately from Part I since the τ l
k(ξ) are

roots of strictly hyperbolic equations.

The second, (3.18), in the case l = 0 is clear: the homogeneity of Lm(ξ, τ)

and its roots give

|ξ|−m+1|∂τL0(ξ, τ0
k (ξ))| =

∣∣∣∂τLm

( ξ
|ξ| , ϕk

( ξ
|ξ|

))∣∣∣ ,

which is never zero due to the strict hyperbolicity of Lm and hence (using

that the sphere Sn−1 is compact and Lm(ξ, τ) is continuous and thus achieves

its minimum) is bounded below by some positive constant as required.

For 1 ≤ l ≤ R− 1, we know that τ l
k(ξ), k = 1, . . . ,m, are simple zeros of

Ll(ξ, τ) for |ξ| > Nmax by the earlier choice of Nmax. Observe,

(∂τLl)(ξ, τ l
k(ξ))

|ξ|m−1
=

(∂τLm)(ξ, τ l
k(ξ))

|ξ|m−1
+

l∑

i=1

(∂τLm−ri)(ξ, τ
l
k(ξ))

|ξ|m−1
.

Now,

(∂τLm−ri)(ξ, τ
l
k(ξ))

|ξ|m−1
= |ξ|−ri(∂τLm−ri)

( ξ
|ξ| ,

τ l
k(ξ)

|ξ|
) → 0 as |ξ| → ∞

for i = 1, . . . , l, because ∂τLm−ri(ξ, τ) is homogeneous of order m − ri − 1

and
∣∣(∂τLm−ri)

( ξ
|ξ| ,

τ l
k(ξ)

|ξ|
)∣∣ ≤ C for all ξ ∈ Rn for some C ≥ 0 (here we use

Part I once more). Also, using the Mean Value Theorem,

(∂τLm)(ξ, τ l
k(ξ)) = (∂τLm)(ξ, ϕk(ξ)) + [(∂τLm)(ξ, τ l

k(ξ))− (∂τLm)(ξ, ϕk(ξ))]

=(∂τLm)(ξ, ϕk(ξ)) + (∂2
τ Lm)(ξ, τ̄ l

k(ξ)) ,

where τ̄ l
k(ξ) lies on the path γ connecting ϕk(ξ) and τ l

k(ξ), γ(s) = ϕk(ξ) +

s[τ l
k(ξ)−ϕk(ξ)], 0 ≤ s ≤ 1 for each ξ ∈ Rn, k = 1, . . . ,m and l = 1, . . . , R−1,
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and
∣∣(∂2

τ Lm)(ξ, τ̄ l
k(ξ))

∣∣
|ξ|m−1

= |ξ|−1
∣∣∂2

τ Lm( ξ
|ξ| ,

τ̄k(ξ)
|ξ| )

∣∣ ≤ C|ξ|−1 → 0 as |ξ| → ∞ .

Therefore, for a sufficiently large constant M ≥ M ′, there exists a constant

C2 > 0 such that

∣∣∂τLm(ξ, τ l
k(ξ))

∣∣
|ξ|m−1

≥ C
|∂τLm(ξ, ϕk(ξ))|

|ξ|m−1
≥ C2 , when |ξ| > M.

This completes the proof of (3.17) and thus of Part II.

Part III: We take N > 0 as given by Lemma 3.1.4, that is, for |ξ| > N ,

the roots τ1(ξ), . . . , τm(ξ) are distinct.

To prove the statement, we do induction on |α|.
First, assume |α| = 1. Since L(ξ, τk(ξ)) = 0 for each k = 1, . . . , m, we

have, for each i = 1, . . . , n,

∂L

∂ξi
(ξ, τk(ξ)) +

∂L

∂τ
(ξ, τk(ξ))

∂τk

∂ξi
(ξ) = 0 .

The first term is a polynomial of order m− 1 in (ξ, τk(ξ)), hence, by Part I,

there exists a constant C such that, when |ξ| ≥ M1 for some suitably large

constant M1 ≥ N , ∣∣∣∂L

∂ξi
(ξ, τk(ξ))

∣∣∣ ≤ C|ξ|m−1 .

The inequality (3.4) for |α| = 1 (i.e. (3.5)) then follows immediately from:

Lemma 3.1.7. There exists constants C > 0, M2 ≥ N such that, for each

k = 1, . . . , m,

∣∣∣∂L

∂τ
(ξ, τk(ξ))

∣∣∣ ≥ C|ξ|m−1 when |ξ| > M2 .

Proof. Note that

∣∣∣∂L

∂τ
(ξ, τk(ξ))

∣∣∣ ≥
∣∣∣∂Lm

∂τ
(ξ, ϕk(ξ))

∣∣∣−
∣∣∣∂L

∂τ
(ξ, τk(ξ))− ∂Lm

∂τ
(ξ, ϕk(ξ))

∣∣∣ , (3.19)

where Lm(ξ, τ) is the principal symbol of L and ϕ1(ξ), . . . , ϕm(ξ) are the
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corresponding characteristic roots, ordered in the same way as in Part II.

We look at each of the terms on the right-hand side in turn:

• By strict hyperbolicity, ∂Lm
∂τ (ξ, ϕk(ξ)) is non-zero for ξ 6= 0, so there is

some constant C > 0 such that |∂Lm
∂τ (ω, ϕk(ω))| ≥ C for all ω ∈ Sn−1

(here we have used the compactness of the sphere). It is also clearly

homogeneous of order m− 1; thus, for all ξ 6= 0,

∣∣∣∂Lm

∂τ
(ξ, ϕk(ξ))

∣∣∣ = |ξ|m−1
∣∣∣∂Lm

∂τ

(
ξ
|ξ| , ϕ

( ξ
|ξ|

))∣∣∣ ≥ C|ξ|m−1 . (3.20)

• Observe,

∂L

∂τ
(ξ, τk(ξ))− ∂Lm

∂τ
(ξ, ϕk(ξ))

=
∂Lm

∂τ
(ξ, τk(ξ))− ∂Lm

∂τ
(ξ, ϕk(ξ)) +

m−1∑

r=0

∑

|α|+l=r

cα,llξ
ατk(ξ)l−1 .

Now,

∂Lm

∂τ
(ξ, τk(ξ))− ∂Lm

∂τ
(ξ, ϕk(ξ))

= m(τk(ξ)m−1−ϕk(ξ)m−1)+
m∑

j=1

(m−j)Pj(ξ)(τk(ξ)m−j−1−ϕk(ξ)m−j−1),

and

|τk(ξ)r − ϕk(ξ)r| =
|τk(ξ)− ϕk(ξ)||τk(ξ)r−1 + τk(ξ)r−2ϕk(ξ) + · · ·+ ϕk(ξ)r−1| .

So, by Part I and Part II (specifically inequality (3.3)) and the fact that

the Pj(ξ) are homogeneous polynomials in ξ of order j, we have, for some

suitably large M2 ≥ N ,

∣∣∣∂Lm

∂τ
(ξ, τk(ξ))− ∂Lm

∂τ
(ξ, ϕk(ξ))

∣∣∣ ≤ C|ξ|m−2 when |ξ| > M2 .
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This, together with

∣∣∣
∑

|α|+l=r

cα,rlξ
ατk(ξ)l−1

∣∣∣ ≤ C|ξ|m−2 when |ξ| > M2, r = 0, . . . , m− 1 ,

which again follows straight from Part I, yields

∣∣∣∂L

∂τ
(ξ, τk(ξ))− ∂Lm

∂τ
(ξ, ϕk(ξ))

∣∣∣ ≤ C|ξ|m−2 for |ξ| > M2 . (3.21)

The result now follows by combining (3.19), (3.21) and (3.20).

For |α| = J > 1, assume inductively that,

∣∣∂α
ξ τk(ξ)

∣∣ ≤ C|ξ|1−|α| when |ξ| > M, |α| ≤ J − 1 ,

for some fixed M ≥ max(M1,M2).

Then, for |α| = J , we use ∂α
ξ [L(ξ, τk(ξ))] = 0, i.e.

∂α
ξ τk(ξ)∂τL(ξ, τk(ξ))

+
∑

β1+···+βr≤α,

βj 6=0,βj 6=α

cα,β1,...,βr

( r∏

j=1

∂βj

ξ τk(ξ)
)
∂α−β1−···−βr

ξ ∂r
τL(ξ, τk(ξ)) = 0 .

By the inductive hypothesis and the fact that ∂β
ξ ∂j

τL(ξ, τk(ξ)) is a polynomial

of degree m − j − |β|, we have, for all multi-indices β1, . . . , βr 6= 0 or α

satisfying β1 + · · ·+ βr ≤ α,

∣∣∣∣∣∣
( r∏

j=1

∂βj

ξ τk(ξ)
)
∂α−β1−···−βr

ξ ∂r
τL(ξ, τk(ξ))

∣∣∣∣∣∣
≤ Ck,α|ξ|m−|α| when |ξ| ≥ M.

Thus, using Lemma 3.1.7 again, we have

|∂α
ξ τk(ξ)| ≤ Cα|ξ|m−|α|

|∂τL(ξ, τk(ξ))| ≤ Ck,α|ξ|1−|α| when |ξ| ≥ M,

which completes the proof of the induction step.
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Part IV: Once again, assume that the roots τk(ξ), k = 1 dots,m corre-

sponds to ϕk(ξ) k = 1, . . . ,m in the manner of Part II.

The proof of this part for general multi-index α is quite complicated, so

we first give the proof in the case |α| = 1 to demonstrate the main ideas

required, and then show how it can be extended when |α| > 1.

From L(ξ, τk(ξ)) = 0 = Lm(ξ, ϕk(ξ)), we have for each i = 1, . . . , n,

∂L

∂ξi
(ξ, τk(ξ)) +

∂L

∂τ
(ξ, τk(ξ))

∂τk

∂ξi
(ξ) = 0 ,

∂Lm

∂ξi
(ξ, ϕk(ξ)) +

∂Lm

∂τ
(ξ, ϕk(ξ))

∂ϕk

∂ξi
(ξ) = 0 .

Therefore,

∂L

∂τ
(ξ, τk(ξ))

(∂τk

∂ξi
(ξ)− ∂ϕk

∂ξi
(ξ)

)
=

∂Lm

∂ξi
(ξ, ϕk(ξ))− ∂Lm

∂ξi
(ξ, τk(ξ))

+
∂ϕk

∂ξi

[∂Lm

∂τ
(ξ, ϕk(ξ))− ∂L

∂τ
(ξ, τk(ξ))

]
− ∂(L− Lm)

∂ξi
(ξ, τk(ξ)) . (3.22)

It suffices to show that the right-hand side is bounded absolutely by C|ξ|m−2

when |ξ| > M for some suitably large M1 ≥ N ; this is because an application

of Lemma 3.1.7 then yields

∣∣∣∂τk

∂ξi
(ξ)− ∂ϕk

∂ξi
(ξ)

∣∣∣ ≤ C|ξ|m−2

∣∣∂L
∂τ (ξ, τk(ξ))

∣∣ ≤ C|ξ|−1 for |ξ| > M ,

where M = max(M1,M2).

Since ∂ξi(L−Lm)(ξ, τ) is a polynomial of degree ≤ m− 2 in (ξ, τ) (it is

the derivative of a polynomial of order ≤ m−1), it is immediately clear that

the final term of (3.22) is absolutely bounded by C|ξ|m−2; here we have also

used Part I. Also, noting that |∂ξiϕk(ξ)| ≤ C by the homogeneity of ϕk(ξ),

we have, by (3.21),

∣∣∣∂ϕk

∂ξi
(ξ)

∣∣∣
∣∣∣∂Lm

∂τ
(ξ, ϕk(ξ))− ∂Lm

∂τ
(ξ, τk(ξ))

∣∣∣ ≤ C|ξ|m−2 .

Finally, by the Mean Value Theorem,

∣∣∣∂Lm

∂ξi
(ξ, ϕk(ξ))− ∂Lm

∂ξi
(ξ, τk(ξ))

∣∣∣ ≤ C
∣∣∣∂

2Lm

∂τ∂ξi
(ξ, τ̄)

∣∣∣|ϕk(ξ)− τk(ξ)| ,
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where τ̄ lies on the linear path between ϕk(ξ) and τk(ξ)—which means that

(using Part I once more) |τ̄ | ≤ C|ξ| for |ξ| ≥ M . Since ∂τ∂ξi
Lm(ξ, τ) is a

polynomial of degree m − 2 in (ξ, τ), and |ϕk(ξ) − τk(ξ)| ≤ C by Part II,

this term is bounded by C|ξ|m−2, completing the proof in the case |α| = 1.

For |α| = J > 1, we assume inductively that

∣∣∂α
ξ τk(ξ)− ∂α

ξ ϕk(ξ)
∣∣ ≤ C|ξ|−|α| for |ξ| > M , |α| ≤ J − 1 .

As in the proof of Part III, we have

∂α
ξ τk(ξ)∂τL(ξ, τk(ξ))

+
∑

β1+···+βr≤α,

βj 6=0,βj 6=α

cα,β1,...,βr

( r∏

j=1

∂βj

ξ τk(ξ)
)
∂α−β1−···−βr

ξ ∂r
τL(ξ, τk(ξ)) = 0 ;

similarly,

∂α
ξ ϕk(ξ)∂τLm(ξ, ϕk(ξ))

+
∑

β1+···+βr≤α,

βj 6=0,βj 6=α

cα,β1,...,βr

( r∏

j=1

∂βj

ξ ϕk(ξ)
)
∂α−β1−···−βr

ξ ∂r
τLm(ξ, ϕk(ξ)) = 0 .
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Thus,

(∂α
ξ τk(ξ)− ∂α

ξ ϕk(ξ))∂τL(ξ, τk(ξ)) =

∂α
ξ ϕk(ξ)

(
∂τLm(ξ, ϕk(ξ))− ∂τL(ξ, τk(ξ))

)

+
∑

β1+···+βr≤α,

βj 6=0,βj 6=α

cα,β1,...,βr

( r∏

j=1

∂βj

ξ ϕk(ξ)
)
[∂α−β1−···−βr

ξ ∂r
τLm(ξ, ϕk(ξ))−

∂α−β1−···−βr

ξ ∂r
τLm(ξ, τk(ξ))]

+
∑

β1+···+βr≤α,

βj 6=0,βj 6=α

cα,β1,...,βr

( r∏

j=1

[∂βj

ξ ϕk(ξ)−∂βj

ξ τk(ξ)]
)
∂α−β1−···−βr

ξ ∂r
τLm(ξ, τk(ξ))

−
∑

β1+···+βr≤α,

βj 6=0,βj 6=α

cα,β1,...,βr

( r∏

j=1

∂βj

ξ τk(ξ)
)
∂α−β1−···−βr

ξ ∂r
τ (L− Lm)(ξ, τk(ξ)) .

We claim the right-hand side is then bounded absolutely by Cα|ξ|m−1−|α|,

which, together with Lemma 3.1.7, yields the desired estimate.

To see this, let us look at each of the terms in turn:

• |∂α
ξ ϕk(ξ)| ≤ Cα|ξ|1−|α| by the homogeneity of ϕk(ξ); using this with (3.21)

gives the desired bound.

• Using the Mean Value Theorem as in the case |α| = 1, we get

∣∣[∂α−β1−···−βr

ξ ∂r
τLm(ξ, ϕk(ξ))− ∂α−β1−···−βr

ξ ∂r
τLm(ξ, τk(ξ))]

∣∣

≤ Cα|ξ|m−|α|+|β1|+···+|βr|−r−1 ;

coupled with |∂β
ξ ϕk(ξ)| ≤ Cα|ξ|1−|β|, this gives the correct bound.

• By the inductive hypothesis,

|∂βj

ξ ϕk(ξ)− ∂βj

ξ τk(ξ)| ≤ Cβ|ξ|1−|βj | ;

together with

|∂α−β1−···−βr

ξ ∂r
τLm(ξ, τk(ξ))| ≤ Cα|ξ|m−|α|+|β1|+···+|βr|−r ,
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which follows from Part I and the homogeneity of Lm(ξ, τ), this gives the

correct estimate.

• To show the final term is bounded absolutely by |ξ|m−1−|α|, first note that

∂α−β1−···−βr

ξ ∂r
τ (L − Lm)(ξ, τk(ξ)) is a polynomial of degree ≤ m − |α| +

|β1|+ · · ·+ |βr| − r− 1; applying Part III to estimate the ∂βj

ξ τk(ξ) terms,

we have the required result.

This completes the proof of (3.6); (3.7) is proved in a similar way in the

proof using the set-up of the proof of Part II.

Remark 3.1.4: As with Proposition 3.1.3 and Lemma 3.1.4, this Propo-

sition holds when L(Dt, Dx) is a (strictly hyperbolic) differential operator

with respect to t with coefficients that are pseudodifferential operators in x

(see Remarks 3.1.2 and 3.1.3).

Indeed, for the proof of Part I, it suffices for the aj(ξ) to be (classical)

symbols of order j; for the proof of Part II, it suffices to have inequality in

place of the equality in (3.15), and the proofs of (3.17) and (3.18) rely on

the symbolic nature of the coefficients and the strict hyperbolicity of the

operator. The proofs of Part III and Part IV similarly only use symbolic

estimates and Lemma 3.1.7 (which is a consequence of strict hyperbolicity

and the fact that the coefficients are smooth, and hence bounded from below

on the unit sphere).

To complete this section, we give one final property which tells us about

the image of the set of multiplicities of the characteristic roots.

Corollary 3.1.8. Let L = L(Dx, Dt) be a linear mth order constant coeffi-

cient strictly hyperbolic partial differential operator. Let τ1(ξ), . . . , τm(ξ) be

the characteristic roots of L. Then there exists a constant R ≥ 0 such that,

if τk(ξ0) = τl(ξ0) for some ξ0 ∈ Rn, l 6= k, it follows that |τk(ξ0)| < R. That

is, there exists a disc in C centred at 0 of radius R such that no multiple

roots lie outside it.

Proof. By Part I of Proposition 3.1.5 there exists C > 0 and M > 0 such

that if |ξ| > M then |τk(ξ)| ≤ C|ξ| for all k = 1, . . . , m; by Lemma 3.1.4,
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if τk1(ξ0) = τk2(ξ0) for k1 6= k2 then |ξ0| ≤ N . Also, by the continu-

ity of the τk(ξ) (Lemma 3.1.3), there exists B ≥ 0 such that if |ξ| ≤ M

then |τk(ξ)| ≤ B for all k = 1, . . . , m. The claim then holds with R =

max(NC, B).

3.2 Convexity Results

As discussed in Section 1.3, in the case of homogeneous mth order strictly

hyperbolic operators, geometric properties of the characteristic roots play

the fundamental role in determining the Lp −Lq decay; in particular, if the

characteristic roots satisfy the convexity condition of Definition 1.1, then

the decay is, in general, more rapid than when they do not. We will show

that a similar improvement can be obtained for operators with lower order

terms when a suitable ‘convexity condition’ holds. In section 3.2.3, we shall

extend this notion of the convexity condition to functions τ : Rn → R and

prove a decay estimate for an oscillatory integral (related to the solution

representation for a strictly hyperbolic operator) with phase function τ .

First, we give a general result for oscillatory integrals and show how the

concept of functions of “convex type” make this a useful result.

3.2.1 A General Theorem for Oscillatory Integrals

The following theorem is central in proving results involving convexity

conditions. In some sense, it bridges the gap between the Van der Corput

Lemma and the Method of Stationary Phase, in that the former is used when

there is no convexity but gives a weaker result, while the former can be used

when a stronger condition than simply convexity holds and gives a better

result. Here, we state and prove a result that has no reference to convexity;

however, in the following section, we show how convexity (in some sense)

enables this result to be used in applications.

Theorem 3.2.1. Consider the oscillatory integral

I(λ, ν) =
∫

RN

eiλΦ(y,ν)A(y, ν)g(y) dy , (3.23)

where N ∈ N, I : [0,∞)×N → C, N is any set of parameters ν and
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(I1) there exists a bounded open set U ⊂ RN such that g ∈ C∞
0 (U);

(I2) Φ(y, ν) is a complex-valued function such that ImΦ(y, ν) ≥ 0 for all

y ∈ U , ν ∈ N ;

(I3) for some fixed z ∈ RN and some γ ∈ N, γ ≥ 2, the function

F (ρ, ω, ν) := Φ(ρω + z, ν)

satisfies

|∂ρF (ρ, ω, ν)| ≥ Cργ−1 and |∂m
ρ F (ρ, ω, ν)| ≤ Cmρ1−m|∂ρF (ρ, ω, ν)|

for all (ω, ν) ∈ SN−1 ×N , m ∈ N and δ > ρ ≥ λ−1/γ > 0;

(I4) for each multi-index α such that |α| ≤ [
N
γ

]
+1, there exists a constant

Cα > 0 such that |∂α
y A(y, ν)| ≤ Cα for all y ∈ U , ν ∈ N .

Then there exists a constant C = CN,γ > 0 such that

|I(λ, ν)| ≤ C(1 + λ)−
N
γ for all λ ∈ [0,∞), ν ∈ N . (3.24)

Remark 3.2.1: This Theorem extends to the case where A(y, ν) is replaced

by A(y, ν′), where ν ′ is independent of the variable ν appearing in the phase

function Φ(y, ν); these parameters do not have to be related in any way,

provided the estimates in hypotheses (I2) and (I4) hold uniformly in the

appropriate parameters.

Proof. It is clear that (3.24) holds for 0 ≤ λ < 1 since |I(λ, ν)| is bounded

for such λ.

Now, consider the case where λ > 1. Set y = ρω + z, where ω ∈ SN−1

(using the convention that S0 = {−1, 1}), ρ > 0 and z ∈ RN is some fixed

point; then

I(λ, ν) =
∫

SN−1

∫ ∞

0
eiλΦ(ρω+z,ν)A(ρω + z, ν)g(ρω + z)ρN−1 dρ dω .

By the compactness of SN−1, it suffices to prove (3.24) for the inner integral.
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Choose a function χ ∈ C∞
0 (R+), 0 ≤ χ(s) ≤ 1 for all s, which is iden-

tically 1 on 0 ≤ s ≤ 1
2 and is zero when s ≥ 1; then, writing F (ρ, ω, ν) =

Φ(ρω + z, ν), we split the inner integral into the sum of the two integrals

I1(λ, ν, ω, z) =
∫ ∞

0
eiλF (ρ,ω,ν)A(ρω + z, ν)g(ρω + z)χ(λ

1
γ ρ)ρN−1 dρ ,

I2(λ, ν, ω, z) =
∫ ∞

0
eiλF (ρ,ω,ν)A(ρω + z, ν)g(ρω + z)(1− χ)(λ

1
γ ρ)ρN−1 dρ .

Let us first look at I1 = I1(λ, ν, ω, z); since χ(λ
1
γ ρ) is zero for λ

1
γ ρ ≥ 1,

we have, by the change of variables ρ̃ = λ
1
γ ρ,

|I1| ≤ C

∫ ∞

0
χ(λ

1
γ ρ)ρN−1 dρ = C

∫ ∞

0
(ρ̃)N−1λ

−N−1
γ χ(ρ̃)λ−

1
γ dρ̃

≤ Cλ
−N

γ

∫ 1

0
(ρ̃)N−1 dρ̃ = Cλ

−N
γ ,

where we have used |eiλF (ρ,ω,ν)| ≤ 1 since ImF (ρ, ω, ν) ≥ 0 for all ρ, ω, ν by

hypothesis (I2); this is the desired estimate for |I1|.
In order to estimate I2 = I2(λ, ν, ω, z), let us first define the operator

L := (iλ∂ρF (ρ, ω, ν))−1 ∂
∂ρ and observe that

L(eiλF (ρ,ω,ν)) = eiλF (ρ,ω,ν) .

Denoting the adjoint of L by L∗, we have, for each l ∈ N ∪ {0},

I2 =
∫ ∞

0
eiλF (ρ,ω,ν)(L∗)l[A(ρω + z, ν)g(ρω + z)(1− χ)(λ

1
γ ρ)ρN−1] dρ .

Now,

(L∗)l =
( i

λ

)l ∑
Cs1,...,sp,p,r,l

∂s1
ρ F . . . ∂

sp
ρ F

(∂ρF )l+p
(ρ, ω, ν)

∂r

∂ρr
,

where the sum is over all integers s1, . . . , sp, p, r ≥ 0 such that s1 + · · · +
sp + r − p = l. By Hypothesis (I3),

∣∣∣∂
s1
ρ F . . . ∂

sp
ρ F

(∂ρF )l+p
(ρ, ω, ν)

∣∣∣ ≤ Cρp−s1−···−sp−lγ+l = Cρr−lγ .
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Also, we claim that, for r ≤ [Nγ ] + 1,

∣∣∣ ∂r

∂ρr
[A(ρω+z, ν)g(ρω+z)(1−χ)(λ

1
γ ρ)ρN−1]

∣∣∣ ≤ CNρN−1−rχ̃(λ, ρ) , (3.25)

where χ̃(λ, ρ) is a smooth function in ρ which is zero for λ
1
γ ρ < 1

2 . Assuming

this is true, we see that, for large enough l—it suffices to take l = [Nγ ] + 1,

i.e. N − lγ < 0—we have,

|I2| ≤CNλ−l

∫ ∞

0

∑
Cs1,...,sp,p,r,lρ

r−lγ [ρN−1−r]χ̃(λ, ρ) dρ

≤CNλ−l

∫ ∞

1
2
λ
− 1

γ

ρN−1−lγ dρ = CNλ−l
[ ρN−lγ

N − lγ

]∞
1
2
λ
− 1

γ
= CN,γλ

−N
γ ;

together with the estimate for |I1|, this yields the desired estimate (3.24).

Finally, let us check (3.25). It holds because:

(i) |∂r
ρ(ρ

N−1)| ≤ Cr,NρN−1−r for all r ∈ N.

(ii) For each r ∈ N, ∂r
ρ[(1−χ)(λ

1
γ ρ)] = −λ

r
γ (∂r

sχ)(λ
1
γ ρ); now, (∂sχ)(λ

1
γ ρ)

is supported on the set
{

(λ, ρ) ∈ (0,∞)× (0,∞) : 1
2 < λ

1
γ ρ < 1

}
, so,

in particular, on its support λ
1
γ < ρ−1; therefore,

|∂r
ρ[(1− χ)(λ

1
γ ρ)]| ≤ Cρ−r(∂r

sχ)(λ
1
γ ρ) for all r ∈ N ,

and (∂r
sχ)(λ

1
γ ρ) is smooth in ρ and zero for λ

1
γ ρ ≤ 1

2 .

(iii) By hypothesis (I4), |∂r
ρA(ρω+z, ν)| ≤ Cr for each r ≤ [N

γ ]+1 (this can

be seen for r = 1 by noting that ∂ρA(ρω+z, ν) = ω ·∇yA(y, ν)
∣∣
y=ρω+z

,

and then for r ≥ 2 by calculating the higher derivatives). Also, g is

smooth in U , so, |∂r
ρ[A(ρω + z, ν)g(ρω + z)]| ≤ Cr for r ≤ [Nγ ] + 1.

Furthermore, by hypothesis (I1), there exists a constant ρ0 > 0 so that

g(ρω + z) = 0 for ρ > ρ0; thus, ∂r
ρ[A(ρω + z, ν)g(ρω + z)] is zero for

ρ > ρ0; hence, for r ≤ [Nγ ] + 1,

|∂r
ρ[A(ρω + z, ν)g(ρω + z)]| ≤ Crρ

r
0ρ
−r .

This completes the proof of the claim, and thus the theorem.
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3.2.2 Functions of Convex Type

Hypothesis (I3) of Theorem 3.2.1 is sufficient for the result of the The-

orem to hold; however, it is often difficult to check. For this reason, we

now introduce the concept of a function of convex type—a condition that is

far simpler to verify—and show that for such functions, (I3) automatically

holds.

Definition 3.1. Let F = F (ρ, υ) : [0,∞) × Υ → C be a function that is

smooth in ρ for each fixed υ ∈ Υ, where Υ is some parameter space. Write

its N th order Taylor expansion in ρ about 0 in the form

F (ρ, υ) =
N∑

j=0

aj(υ)ρj + RN (ρ, υ) , (3.26)

where RN (ρ, υ) =
∫ ρ
0 ∂N+1

ρ F (s, υ) (ρ−s)N

N ! ds is the N th remainder term.

We say F is a function of convex type γ if, for some γ ∈ N, γ ≥ 2, and

for some δ > 0,

(CT1) a0(υ) = a1(υ) = 0 for all υ ∈ Υ;

(CT2) there exists a constant C > 0 such that
∑γ

j=2|aj(υ)| ≥ C for all

υ ∈ Υ;

(CT3) for each υ ∈ Υ, |∂ρF (ρ, υ)| is increasing in ρ for 0 < ρ < δ;

(CT4) for each k ∈ N, ∂k
ρF (ρ, υ) is bounded uniformly in 0 < ρ < δ, υ ∈ Υ.

Remark 3.2.2: Note that, if F is real-valued, then (CT3) is equivalent

to requiring either ∂2
ρF (ρ, υ) ≥ 0 for all 0 < ρ < δ, or ∂2

ρF (ρ, υ) ≤ 0 for

all 0 < ρ < δ—this is because ∂ρF (0, ν) = 0. This is the connection with

convexity, hence the name of such functions.

Such functions have the following useful property:

Lemma 3.2.2. Let F (ρ, υ) be a function of convex type γ. Then, for each

sufficiently small 0 < δ ≤ 1 there exist constants C,Cm > 0 such that

|∂ρF (ρ, υ)| ≥ Cργ−1 (3.27)

and |∂m
ρ F (ρ, υ)| ≤ Cmρ1−m|∂ρF (ρ, υ)| (3.28)
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for all 0 < ρ < δ, υ ∈ Υ and m ∈ N.

Remark 3.2.3: A version of this Lemma appeared in [Sug94] for analytic

functions without dependence on υ and is based on Lemmas 3, 4 and 5 of

Randol [Ran69] (which also appeared in Beals [Bea82], Lemmas 3.2, 3.3).

This result extends it to functions that are only smooth and which depend

on an additional parameter.

Proof. First, let us note that, for 0 < ρ ≤ 1 we have, by (CT2),

π(ρ, υ) :=
γ∑

j=2

j|aj(υ)|ρj−1 ≥ Cργ−1 . (3.29)

Thus, in order to prove (3.27), it suffices to show

|∂ρF (ρ, υ)| ≥ Cπ(ρ, υ) for all 0 < ρ < δ, υ ∈ Υ ; (3.30)

For 1 ≤ m ≤ γ, we have, using (3.26),

∂m
ρ F (ρ, υ) =

γ−m∑

k=0

(k + m)!
k!

ak+m(υ)ρk + Rm,γ−m(ρ, υ) , (3.31)

where Rm,γ−m(ρ, υ) =
∫ ρ
0 ∂γ+1

ρ F (s, υ) (ρ−s)γ−m

(γ−m)! ds is the remainder term of

the (γ −m)th Taylor expansion of ∂m
ρ F (ρ, υ). By (CT4) and (3.29), we see

|Rm,γ−m(ρ, υ)| ≤ Cγ,mργ+1−m ≤ Cγ,mπ(ρ, υ)ρ2−m for 0 < ρ < δ . (3.32)

Hence, for 0 < ρ < δ,

|∂ρF (ρ, υ)| =
∣∣∣
γ−1∑

k=0

(k + 1)ak+1(υ)ρk + R1,γ−1(ρ, υ)
∣∣∣

≥
∣∣∣

γ∑

j=2

jaj(υ)ρj−1
∣∣∣−

∣∣∣R1,γ−1(ρ, υ)
∣∣∣ ≥

∣∣∣
γ∑

j=2

jaj(υ)ρj−1
∣∣∣− Cγπ(ρ, υ)ρ .

Now, by (CT3), |∂ρF (ρ, υ)| is increasing in ρ for each υ ∈ Υ and, by
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(CT1), ∂ρF (0, υ) = 0; therefore,

|∂ρF (ρ, υ)| = max
0≤σ≤ρ

|∂ρF (σ, υ)|

≥ max
0≤σ≤ρ

∣∣∣
γ∑

j=2

jaj(υ)σj−1
∣∣∣− max

0≤σ≤ρ
Cγπ(σ, υ)σ

= max
0≤σ̄≤1

∣∣∣
γ∑

j=2

jaj(υ)ρj−1σ̄j−1
∣∣∣− Cγπ(ρ, υ)ρ ,

since π(σ, υ)σ =
∑γ

j=2 j|aj(υ)|σj clearly achieves its maximum on 0 ≤ σ ≤ ρ

at σ = ρ. Noting that

max
0≤σ̄≤1

∣∣∣
M∑

j=1

zj σ̄
j−1

∣∣∣ and
M∑

j=1

|zj |

are norms on CM and, hence, are equivalent, we immediately get

|∂ρF (ρ, υ)| ≥C

γ∑

j=2

j|aj(υ)|ρj−1 − Cγπ(ρ, υ)ρ

≥(C − Cγδ)π(ρ, υ) = Cγ,δπ(ρ, υ) ,

which completes the proof of (3.30).

To prove (3.28), we consider the cases 1 ≤ m ≤ γ and m > γ separately.

For m > γ, we have, by (CT4),

|∂m
ρ F (ρ, υ)| ≤ Cm ≤ Cm,δρ

γ+1−m for 0 < ρ < δ ,

since γ + 1 − m ≤ 0, and, thus, ργ+1−m ≥ δγ+1−m > 0; so, by (3.27), we

have

|∂m
ρ F (ρ, υ)| ≤ Cm,δρ

2−m|∂ρF (ρ, υ)| for 0 < ρ < δ, m > γ . (3.33)

For 1 ≤ m ≤ γ, we have the representation (3.31). It is clear that

∣∣∣
γ−m∑

k=0

(k + m)!
k!

ak+m(υ)ρk
∣∣∣ ≤ Cmπ(ρ, υ)ρ1−m ,
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which, together with (3.32) and (3.30), yields

|∂m
ρ F (ρ, υ)| ≤ Cm,δρ

1−m|∂ρF (ρ, υ)| for 0 < ρ < δ, 1 ≤ m ≤ γ .

This, together with (3.33), completes the proof of (3.28) and, thus, the

Lemma.

This Lemma means we have the following alternative version of Theo-

rem 3.2.1.

Corollary 3.2.3. Hypothesis (I3) of Theorem 3.2.1 may be replaced by:

(I3′) for some fixed z ∈ RN , the function F (ρ, ω, ν) := Φ(ρω + z, ν) is a

function of convex type γ, for some γ ∈ N, in the sense of Defini-

tion 3.1 with (ω, ν) ∈ SN−1 ×N ≡ Υ.

3.2.3 Convexity Condition for Real-Valued Phase Functions

Using the results of the previous two sections, we can now prove a se-

ries of results for which a so-called convexity condition holds; here we give

important definitions and prove the basic result for real-valued functions.

Given a smooth function τ : Rn → R and λ ∈ R, set

Σλ ≡ Σλ(τ) := {ξ ∈ Rn : τ(ξ) = λ} .

In the case where τ(ξ) is homogeneous of order 1, write Στ := Σ1(τ)—for

such τ , we then have Σλ(τ) = λΣτ .

Definition 3.2. A smooth function τ : Rn → R is said to satisfy the

convexity condition if Σλ is convex for each λ ∈ R. Note that the empty set

is considered to be convex.

Another important notion is that of the maximal order of contact of a

hypersurface:

Definition 3.3. Let Σ be a hypersurface in Rn (i.e. a manifold of codimen-

sion n−1); let σ ∈ Σ, and denote the tangent plane at σ by Tσ. Now let P be
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a plane containing the normal to Σ at σ and denote the order of the contact

between the line Tσ ∩ P and the curve Σ ∩ P by γ(Σ; σ, P ). Then set

γ(Σ) := sup
σ∈Σ

sup
P

γ(Σ; σ, P ) .

Examples 3.2.1:

(a) γ(Sn) = 2, as γ(Sn; σ, P ) = 2 for all σ ∈ Sn and all planes P containing

σ and the origin.

(b) If ϕl(ξ) is a characteristic root of an mth order homogeneous strictly

hyperbolic constant coefficient operator, then γ(Σϕl
) ≤ m—see [Sug96]

for a proof of this.

Also, let us introduce some useful notation for a family of cut-off func-

tions gR ∈ C∞
0 (Rn), R ∈ [0,∞): suppose g ∈ C∞

0 (Rn) such that, for some

constants c0, c1 ≥ 0, it is supported in the set

{ξ : c0 < |ξ| < c1} ,

and let g0 ∈ C∞
0 (Rn \ {0}) be another (arbitrary) compactly supported

function. Then, for R ≥ 0, set

gR(ξ) :=





g(ξ/R) if R ≥ 1,

g0(ξ) if 0 ≤ R < 1.
(3.34)

Now we can prove the main convexity theorem:

Theorem 3.2.4. Suppose τ : Rn → R satisfies the convexity condition;

furthermore, assume:

(i) for all multi-indices α there exists a constant Cα > 0 such that

|∂α
ξ τ(ξ)| ≤ Cα(1 + |ξ|)1−|α| for all ξ ∈ Rn ;

(ii) there exist constants M,C > 0 such that for all |ξ| ≥ M we have

|τ(ξ)| ≥ C|ξ|;
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(iii) there exists a constant C0 > 0 such that |∂ωτ(λω)| ≥ C0 for all ω ∈
Sn−1, λ > 0; in particular, |∇τ(ξ)| ≥ C0 for all ξ ∈ Rn \ {0};

(iv) there exists a constant R1 > 0 such that, for all λ > 0,

Σ′λ :=
1
λ

Σλ(τ) ⊂ BR1(0) .

Also, set γ := supλ>0 γ(Σλ(τ)) and assume this is finite and let a(ξ) be a

symbol of order n−1
γ − n of type (1, 0) on Rn. Then, the following estimate

holds for all R ≥ 0, x ∈ Rn, t > 1:

∣∣∣
∫

Rn

ei(x·ξ+τ(ξ)t)a(ξ)gR(ξ) dξ
∣∣∣ ≤ Ct

−n−1
γ , (3.35)

where gR(ξ) is as given in (3.34) and C > 0 is independent of R.

Remark 3.2.4: For an integral of this type with some specific compactly

supported function, χ ∈ C∞
0 (Rn) say, in place of gR, then use the results

for R = 0.

Proof. We may assume throughout, without loss of generality, that either

τ(ξ) ≥ 0 for all ξ ∈ Rn or τ(ξ) ≤ 0 for all ξ ∈ Rn. Indeed, hypothesis (ii)

and the continuity of τ ensure that either τ(ξ) is positive for all |ξ| ≥ M or

negative for all |ξ| ≥ M . In the case where τ(ξ) is positive for all |ξ| ≥ M ,

set

τ+(ξ) := τ(ξ) + min(0, inf
|ξ|<M

τ(ξ)) ≥ 0 for all ξ ∈ Rn.

Now, τ(ξ) − τ+(ξ) is a constant (in particular, it is independent of ξ) and

|ei[τ(ξ)−τ+(ξ)]t| = 1, so it suffices to show

∣∣∣
∫

Rn

ei(x·ξ+τ+(ξ)t)a(ξ)gR(ξ) dξ
∣∣∣ ≤ Ct

−n−1
γ .

In the case where τ(ξ) is negative for |ξ| ≥ M , set τ̃(ξ) := −τ(ξ) and by

similar reasoning to above, it is sufficient to show

∣∣∣
∫

Rn

ei(x·ξ−τ̃+(ξ)t)a(ξ)gR(ξ) dξ
∣∣∣ ≤ Ct

−n−1
γ ,

where −τ̃+(ξ) ≤ 0 for all ξ ∈ Rn.
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We begin by dividing the integral into two parts: near to the wave-front

set, i.e. points where ∇ξ[i(x · ξ + τ(ξ)t)] = 0, and away from such points. To

this end, we introduce a cut-off function κ ∈ C∞
0 (Rn), 0 ≤ κ(y) ≤ 1, which

is identically 1 in the ball of radius r > 0 (which will be fixed below) centred

at the origin, Br(0), and identically 0 outside the ball of radius 2r, B2r(0).

Then we estimate the following two integrals separately:

I1(x, t) :=
∫

Rn

ei(x·ξ+τ(ξ)t)a(ξ)gR(ξ)κ
(
t−1x +∇τ(ξ)

)
dξ ,

I2(x, t) :=
∫

Rn

ei(x·ξ+τ(ξ)t)a(ξ)gR(ξ)(1− κ)
(
t−1x +∇τ(ξ)

)
dξ .

For I2(x, t) we have the following result:

Lemma 3.2.5. Suppose a(ξ) is a symbol of order j ∈ R. Then, for each

l ∈ N with l > n + j, we have, for all t > 1,

|I2(x, t)| ≤ Cr,lt
−l , (3.36)

where the constants Cr,l > 0 are independent of R.

Proof. In the support of (1 − κ)(t−1x + ∇τ(ξ)), |x + t∇τ(ξ)| ≥ rt > 0, so

we can write

(x + t∇τ(ξ))
i|x + t∇τ(ξ)|2 · ∇ξ(ei(x·ξ+τ(ξ)t)) = ei(x·ξ+τ(ξ)t) ;

therefore, denoting the adjoint to P ≡ (x+t∇τ(ξ))
i|x+t∇τ(ξ)|2 · ∇ξ by P ∗,

I2(x, t) =
∫

Rn

ei(x·ξ+τ(ξ)t)(P ∗)l
[
a(ξ)gR(ξ)(1− κ)

(
t−1x +∇τ(ξ)

)]
dξ

for each l ∈ N. We claim that for each l there exists some constant Cr,l > 0

independent of R so that, when t > 1,

(P ∗)l
[
a(ξ)gR(ξ)(1− κ)

(
t−1x +∇τ(ξ)

)] ≤ Cr,lt
−l(1 + |ξ|)j−l ; (3.37)
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assuming this, we obtain,

|I2(x, t)| ≤ Cr,lt
−l

∫

Rn

1
(1 + |ξ|)l−j

dξ .

Noting that
∫
Rn

1
(1+|ξ|)l−j dξ converges for l − j > n yields the desired esti-

mate (3.36).

It remains to prove (3.37). Let f ≡ f(ξ;x, t) be a function that is zero

for |x + t∇τ(ξ)| ≤ rt and is continuously differentiable with respect to ξ;

then,

P ∗f = ∇ξ ·
[ (x + t∇τ(ξ))
i|x + t∇τ(ξ)|2 f

]
=

t∆τ(ξ)
i|x + t∇τ(ξ)|2 f +

(x + t∇τ(ξ))
i|x + t∇τ(ξ)|2 · ∇ξf

− 2t(x + t∇τ(ξ)) · [∇2τ(ξ) · (x + t∇τ(ξ))]
i|x + t∇τ(ξ)|4 f . (3.38)

Hence, using |x + t∇τ(ξ)| ≥ rt (hypothesis on f) and |∂ατ(ξ)| ≤ C(1 +

|ξ|)1−|α| (hypothesis (i)),

|P ∗f | ≤ Crt
−1[(1 + |ξ|)−1|f |+ |∇ξf |] . (3.39)

Now, for all multi-indices α and for all ξ ∈ Rn,

• |∂αa(ξ)| ≤ Cα(1 + |ξ|)j−|α| for all ξ ∈ Rn as a ∈ Sj
1,0(Rn);

• |∂α
ξ

[
(1 − κ)

(
t−1x + ∇τ(ξ)

)]| ≤ Cα(1 + |ξ|)−|α|, for all ξ ∈ Rn—here we

have used hypothesis (i) once more. Also, it is zero for each α when

|x + t∇τ(ξ)| ≤ rt by the definition of κ.

Furthermore, |∂αgR(ξ)| = |∂αg0(ξ)| ≤ Cα(1 + |ξ|)−|α| for 0 ≤ R < 1, since

C∞
0 (Rn \ {0}) ⊂ S0

1,0(Rn). For R ≥ 1, we have:

∂αgR(ξ) = ∂α[g(ξ/R)] = R−|α|(∂αg)(ξ/R) and g ∈ S0
1,0(R

n)

=⇒ |∂αgR(ξ)| ≤ CαR−|α|(1 + |ξ/R|)−|α| ≤ Cα(1 + |ξ|)−|α| .

Therefore,

|∂αgR(ξ)| ≤ Cα(1 + |ξ|)−|α| for all ξ ∈ Rn and multi-indices α , (3.40)
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where the Cα > 0 are independent of R.

Hence, by (3.39),

∣∣P ∗[a(ξ)gR(ξ)(1− κ)
(
t−1x +∇τ(ξ)

)
]
∣∣ ≤ Crt

−1(1 + |ξ|)j−1 .

To prove (3.37) for l ≥ 2 we do induction on l. Note that

|(P ∗)lf | ≤ Crt
−1[(1 + |ξ|)−1|(P ∗)l−1f |+ |∇ξ{(P ∗)l−1f}|] .

The first term satisfies the desired estimate by the inductive hypothesis.

For the second term, repeated application of the properties of a(ξ), g(ξ) and

(1 − κ)(t−1x + ∇τ(ξ)) noted above to inductively estimate derivatives of

(P ∗)l′f , 1 ≤ l′ ≤ l− 2 yields the desired estimate. This completes the proof

of the lemma.

This lemma, with j = n−1
γ − n, means that it suffices to prove (3.35) for

I1(x, t), where |t−1x +∇τ(ξ)| < 2r.

Let {Ψ`(ξ)}L
`=1 be a partition of unity in Rn where Ψ`(ξ) ∈ C∞(Rn)

is supported in a narrow (the breadth is fixed below) open cone K`, ` =

1, . . . , L—we may take the partition to be finite due to the compactness

of Sn−1; let us assume that K1 contains the point en = (0, . . . , 0, 1) (if

necessary, relabel the cones to ensure this) and also that each K`, ` =

1, . . . , L, can be mapped onto K1 by rotation. Then, it suffices to estimate

I ′1(x, t) =
∫

Rn

ei(x·ξ+τ(ξ)t)a(ξ)gR(ξ)Ψ1(ξ)κ
(
t−1x +∇τ(ξ)

)
dξ , (3.41)

since the properties of τ(ξ), a(ξ), gR(ξ) and κ(t−1x+∇τ(ξ)) used throughout

are invariant under rotation.

By hypothesis (iii), the level sets Σλ = {ξ ∈ Rn : τ(ξ) = λ} are all non-

degenerate (or empty). Furthermore, the Implicit Function Theorem allows

us to parameterise the intersection of the surface Σ′λ ≡ 1
λΣλ and the cone K1:

K1 ∩ Σ′λ = {(y, hλ(y)) : y ∈ U} ;

here U ⊂ Rn−1 is the bounded open set for which p(U) = Sn−1 ∩ K1

where p(y) = (y,
√

1− |y|2), and hλ : U → R is a smooth function for each
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λ > 0; in particular, each hλ is concave due to τ(ξ) satisfying the convexity

condition, i.e. Σ′λ is convex for each λ ∈ R. Then, in the case that τ(ξ) ≥ 0

all ξ ∈ Rn, the cone K1 is parameterised by

K1 = {(λy, λhλ(y)) : λ > 0, y ∈ U} ,

and when τ(ξ) ≤ 0 for all ξ ∈ Rn,

K1 = {(λy, λhλ(y)) : λ < 0, y ∈ U} .

Now, let n : K1 ∩ Σ′λ → Sn−1 be the Gauss map,

n(ζ) =
∇τ(ζ)
|∇τ(ζ)| .

By the definition of κ(t−1x +∇τ(ξ)), we have

|t−1x− (−∇τ(ξλ))| < 2r

for each ξλ ∈ K1 ∩Σ′λ that is also in the support of the integrand of (3.41).

Hence, provided r > 0 is taken sufficiently small, the convexity of Σ′λ ensures

that the points t−1x/|t−1x| and −n(ξλ) are close enough so that there exists

z(λ) ∈ U (for each ξλ ∈ K1 ∩ Σ′λ) satisfying

n
(
z(λ), hλ(z(λ))

)
= −t−1x/|t−1x| = −x/|x| ∈ Sn−1 .

Also, (−∇yhλ(y), 1) is normal to Σ′λ at (y, hλ(y)), so, writing x = (x′, xn),

− x

|x| =
(−∇yhλ(z(λ)), 1)
|(−∇yhλ(z(λ)), 1)| =⇒ −xn

|x| =
1

|(−∇yhλ(z(λ)), 1)|
and − x′

|x| =
−∇yhλ(z(λ))

|(−∇yhλ(z(λ)), 1)| =
xn∇yhλ(z(λ))

|x| ;

therefore, −x′ = xn∇yhλ(z(λ)). We claim that xn is away from 0 provided

the breadth of the cone K1 is chosen to be sufficiently narrow, so

x′

xn
= −∇yhλ(z(λ)) . (3.42)
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To prove this claim, first recall that Σ′λ ⊂ BR1(0) for all λ > 0 (hypoth-

esis (iv)) and note that ∂ξnτ(ξ) is absolutely continuous on BR1(0) (it is

continuous in Rn): taking C0 > 0 as in hypothesis (iii),

there exists δ > 0 so that |η1 − η2| < δ, where η1, η2 ∈ BR1(0),

implies |∂ξnτ(η1)− ∂ξnτ(η2)| < C0/4 .
(3.43)

Then, fix the breadth of K1 so that the maximal shortest distance from a

point ξ ∈ K1 ∩ (
⋃

λ>0 Σ′λ) to the ray {µen : µ > 0} is less than this δ, i.e.

sup

{
inf
µ>0

|ξ − µen| : ξ ∈ K1 ∩
( ⋃

λ>0

Σ′λ
)
}

< δ .

Now, observe that for any ξ0 ∈ Rn, µ > 0,

∣∣xn
t

∣∣ ≥ |∂ξnτ(µen)| − |∂ξnτ(ξ0)− ∂ξnτ(µen)| − |xn
t + ∂ξnτ(ξ0)| .

Choose ξ0 ∈ K1∩Σ′λ∩supp[κ(t−1x+∇τ(ξ))] and µ > 0 so that |ξ0−µen| < δ

and, hence,

|∂ξnτ(ξ0)− ∂ξnτ(µen)| < C0/4;

also, by hypothesis (iii), |∂ξnτ(µen)| ≥ C0, so

|t−1xn| ≥ 3C0/4− 2r.

Taking r sufficiently small, less than C0/8 say, (ensuring r > 0 satisfies the

earlier condition also) we get

|xn| ≥ ct > 0 (3.44)

proving the claim.

Before estimating (3.41), we introduce some useful notation: by the

definition of gR(ξ), (3.34), when R ≥ 1

ξ ∈ supp gR =⇒ Rc0 < |ξ| < Rc1;

also, if 0 ≤ R < 1, then there exist constants c̃0, c̃1 > 0 so that c̃0 < |ξ| < c̃1
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for ξ ∈ supp gR. Thus, by hypotheses (i) and (ii), there exist constants

c′0, c
′
1 > 0 such that





Rc′0 < |τ(ξ)| < Rc′1 if R ≥ 1 and ξ ∈ supp gR,

c′0 < |τ(ξ)| < c′1 if 0 ≤ R < 1 and ξ ∈ supp gR.

Let G ∈ C∞
0 (R) which is identically one on the set {s ∈ R : c′0 < s < c′1} and

identically zero in a neighbourhood of the origin; writing R = max(R, 1),

this then satisfies

gR(ξ) = gR(ξ)G(τ(ξ)/R) .

Also, for simplicity, write

ã(ξ) ≡ ãR(ξ) := a(ξ)gR(ξ)Ψ1(ξ) ; (3.45)

this is a type (1,0) symbol of order n−1
γ −n supported in the cone K1, and the

constants in the symbolic estimates are all independent of R as each gR(ξ),

R ≥ 0, is a symbol of order 0 with constants independent of R (see (3.40)).

We now turn to estimating (3.41). Using the change of variables ξ 7→
(λy, λhλ(y)) and equality (3.42), it becomes

I ′1(x, t) =
∫ ∞

0

∫

U
ei[λx′·y+λxnhλ(y)+τ(λy,λhλ(y))t]a(λy, λhλ(y))

gR(λy, λhλ(y))Ψ1(λy, λhλ(y))κ
(
t−1x +∇τ(λy, λhλ(y))

) dξ

d(λ, y)
dy dλ

=
∫ ∞

0

∫

U
eiλxn[−∇yhλ(z(λ))·y+hλ(y)+tx−1

n ]ã(λy, λhλ(y))

G(λ/R)κ
(
t−1x +∇τ(λy, λhλ(y))

) dξ

d(λ, y)
dy dλ,

(3.46)

where we have used τ(λy, λhλ(y)) = λ (definition of Σλ) in the last line.

Here, note that

dξ

d(λ, y)
=

∣∣∣∣∣
λI y

λ∇yhλ(y) ∂λ[λhλ(y)]

∣∣∣∣∣ = λn−1(∂λ[λhλ(y)]− y · ∇yhλ(y)) ,

where I is the identity matrix. Differentiating τ(λy, λhλ(y)) = λ with re-
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spect to λ in the first case and with respect to y in the second, gives

y · ∇ξ′τ(λy, λhλ(y)) + ∂λ[λhλ(y)]∂ξnτ(λy, λhλ(y)) = 1 ,

λ∇ξ′τ(λy, λhλ(y)) + λ∇yhλ(y)∂ξnτ(λy, λhλ(y)) = 0 ;

Substituting the second of these equalities into the first yields

(
∂λ[λhλ(y)]− y · ∇yhλ(y)

)
∂ξnτ(λy, λhλ(y)) = 1 .

We claim that

|∂ξnτ(λy, λhλ(y))| ≥ C > 0 . (3.47)

To see this, first note that

|∂ξnτ(λy, λhλ(y))| ≥ |∂ξnτ(λµen)| − ∣∣∂ξnτ(λµen)− ∂ξnτ(λy, λhλ(y))
∣∣

where µ > 0 is chosen as above so that |µen − (y, hλ(y))| ≤ δ; now,

|∂ξnτ(λµen)| ≥ C0 by hypothesis (iii). Also, by the Mean Value Theorem,

there exists ξ̄ lying on the segment between (λy, λhλ(y)) and λµen such that

|∂ξnτ(λµen)− ∂ξnτ(λy, λhλ(y))| ≤ C|∇ξ∂ξnτ(ξ̄)|λδ ≤ C|ξ̄|−1λδ ≤ Cδ ;

choosing δ > 0 small enough (also ensuring it satisfies condition (3.43)

above) completes the proof of the claim. Hence,

∣∣∣ dξ

d(λ, y)

∣∣∣ =
∣∣∣ λn−1

∂ξnτ(λy, λhλ(y))

∣∣∣ ≤ Cλn−1 . (3.48)

Also, note that this Jacobian is bounded below away from zero because

|∂ξnτ(ξ)| ≤ C for all ξ ∈ Rn (hypothesis (i)), which this means that the

transformation above is valid in K1.

Next, using the change of variables λ̃ = λxn = λx̃nt in (3.46), writing
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h(λ, y) ≡ hλ(y) and setting x̃ := t−1x (so x̃n = t−1xn), we obtain

∫ ∞

0

∫

U
eiλ̃(−∇yh

(
λ̃

x̃nt
,z
(

λ̃
x̃nt

))
·y+h

(
λ̃

x̃nt
,y
)
+x̃−1

n )ã
(

λ̃
x̃nty, λ̃

x̃nth
(

λ̃
x̃nt , y

))

G
(

λ̃
Rx̃nt

)
κ
(
x̃ +∇τ

(
λ̃

x̃nty, λ̃
x̃nth

(
λ̃

x̃nt , y
))) dξ

d(λ, y)
t−1x̃−1

n dy dλ̃ .

Therefore, using
∣∣ dξ
d(λ,y)

∣∣ ≤ Cλ̃n−1|x̃n|−(n−1)t−(n−1) (by (3.48)) and recalling

that |κ(η)| ≤ 1, we have,

|I ′1(x, t)| ≤ Ct
−n−1

γ |x̃n|−
n−1

γ

∫ ∞

0

∣∣∣I
(
λ̃, λ̃

x̃nt ; z
(

λ̃
x̃nt

))
G

(
λ̃

Rx̃nt

)
λ̃

n−1
γ
−1

∣∣∣ dλ̃ ,

(3.49)

where,

I
(
λ̃, λ̃

x̃nt ; z
(

λ̃
x̃nt

))
=

∫

U
eiλ̃

[
h
(

λ̃
x̃nt

,y
)
−h

(
λ̃

x̃nt
,z
)
−(y−z)·∇yh

(
λ̃

x̃nt
,z
)]

ã
(

λ̃
x̃nty, λ̃

x̃nth
(

λ̃
x̃nt , y

))(
λ̃

t|x̃n|
)n−n−1

γ
dy .

With Theorem 3.2.1 in mind, let us rewrite this in the form of (3.23):

I(λ, µ; z) =
∫

Rn−1

eiλΦ(y,µ;z)a0(µy, µhµ(y))b(y) dy ,

with arbitrary λ > 0, µ > 0 and z ∈ Rn−1, where

• Φ(y, µ; z) = hµ(y)− hµ(z)− (y − z) · ∇yhµ(z);

• a0(ξ) := ã(ξ)|ξ|n−n−1
γ ;

• b ∈ C∞
0 (Rn−1) with support contained in U .

We shall show that the following conditions (numbered as in Theorem 3.2.1

and Corollary 3.2.3) are satisfied by I(λ, µ; z):

(I1) there exists a bounded set U ⊂ Rn−1 such that b ∈ C∞
0 (U);

(I2) ImΦ(y, µ; z) ≥ 0 for all y ∈ U , µ > 0;

(I3′) F (ρ, ω, µ; z) = Φ(ρω+z, µ; z), ω ∈ Sn−2, ρ > 0, is a function of convex

type γ (see Definition 3.1);
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(I4) there exist constants Cα such that |∂α
y [a0(µy, µhµ(y))]| ≤ Cα for all

y ∈ U , µ > 0 and |α| ≤ [n−1
γ ] + 1.

Assuming for now that these hold, Theorem 3.2.1 (or, more precisely, Corol-

lary 3.2.3) states that, for all λ > 0, µ > 0,

|I(λ, µ; z)| ≤ C(1 + λ)−
n−1

γ ≤ Cλ
−n−1

γ .

This, together with (3.49), gives

|I ′1(x, t)| ≤ Ct
−n−1

γ |x̃n|−
n−1

γ

∫ ∞

0
λ̃
−n−1

γ G
(

λ̃
Rx̃nt

)
λ̃

n−1
γ
−1

dλ̃ ;

then, setting ν = λ̃
Rx̃nt , we have

|I ′1(x, t)| ≤ Ct
−n−1

γ |x̃n|−
n−1

γ

∫ ∞

0
(Rx̃ntν)−1G(ν)Rx̃nt dν

= Ct
−n−1

γ |x̃n|−
n−1

γ

∫ ∞

0
ν−1G(ν) dν ≤ Ct

−n−1
γ for all t > 1 .

Here we have used that G is identically zero in a neighbourhood of the origin

and that it is compactly supported and also (3.44) (|x̃n| ≥ C > 0); also, note

the constant here is independent of R. Since this inequality holds for I ′1(x, t),

it also holds for I1(x, t); thus, together with Lemma 3.2.5, this proves the

desired estimate (3.35), provided we show that the four properties (I1)–(I4)

above hold.

Now, clearly (I1) holds automatically and (I2) is true since hµ(y) is real-

valued, so Im Φ(y, µ; z) = 0 for all y ∈ U , µ > 0.

For (I3′) and (I4), we need an auxiliary result about the boundedness of

the derivatives of hλ(y):

Lemma 3.2.6. All derivatives of hλ(y) with respect to y are bounded uni-

formly in y. That is, for each multi-index α there exists a constant Cα > 0

such that

|∂α
y hλ(y)| ≤ Cα for all y ∈ U, λ > 0 .
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Proof. By definition, τ(λy, λhλ(y)) = λ. So,

(∇ξ′τ)(λy, λhλ(y)) + (∂ξnτ)(λy, λhλ(y))∇yhλ(y)

= λ−1∇y[τ(λy, λhλ(y))] = 0 ,

or, equivalently,

∇yhλ(y) = −(∇ξ′τ)(λy, λhλ(y))
(∂ξnτ)(λy, λhλ(y))

. (3.50)

Hypothesis (i) (|∂α
ξ τ(ξ)| ≤ Cα(1 + |ξ|)1−|α| for all ξ ∈ Rn) and (3.47)

(|∂ξnτ(λy, λhλ(y))| ≥ C > 0) then ensure that |∇yhλ(y)| ≤ C for all y ∈ U ,

λ > 0.

For higher derivatives, note that |(y, hλ(y))| ≤ R1 by hypothesis (iv);

so, using hypothesis (i) once more, for all multi-indices α, there exists a

constant Cα > 0 such that

|(∂α
ξ τ)(λy, λhλ(y))| ≤ Cαλ1−|α| .

Then, differentiating (3.50), this ensures, by an inductive argument, that the

desired result for higher derivatives of hλ(y) holds, proving the Lemma.

Returning to the proof of (I4), note that,

|∂α
ξ a0(ξ)| ≤ Cα(1 + |ξ|)−|α| for all ξ ∈ Rn ,

since, ã(ξ) is a symbol of order n−1
γ −1 (see (3.45) for its definition). Together

with Lemma 3.2.6, this ensures that ∂α
y [a0(µy, µhµ(y)) is absolutely bounded

for all y ∈ U , µ > 0 and |α| ≤ [n−1
γ ] + 1 as required.

Finally, we show (I3′): observe that for |ρ| < δ′, some suitably small

δ′ > 0,

F (ρ, ω, µ; z) = hµ(ρω + z)− hµ(z)− ρω · ∇yhµ(z)

=
γ+1∑

k=2

[ ∑

|α|=k

1
α!

(∂α
y hµ)(z)ωα

]
ρk + Rγ+1(ρ̄, ω, µ; z)ργ+2 .

So, F (ρ, ω, µ; z) is a function of convex type γ if (using the numbering of
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Definition 3.1)

(CT2)
∑γ+1

k=2

∣∣∣∑|α|=k
1
α!(∂

α
y hµ)(z)ωα

∣∣∣ ≥ C > 0 for all ω ∈ Sn−2, µ > 0,

z ∈ Rn−1.

(CT3) |∂ρF (ρ, ω, µ; z)| is increasing in ρ for 0 < ρ < δ, for each ω ∈ Sn−2,

µ > 0;

(CT4) for each k ∈ N, ∂k
ρF (ρ, ω, µ; z) is bounded uniformly in 0 < ρ < δ′,

ω ∈ Sn−2, µ > 0.

Condition (CT4), follows straight from Lemma 3.2.6.

The concavity of hµ(y) means that

∂2
ρF (ρ, ω, µ; z) = ∂2

ρ [hµ(ρω + z)] = ωt Hesshµ(ρω + z)ω ≤ 0

for all 0 < ρ < δ′ and for each ω ∈ Sn−1, µ > 0, z ∈ Rn−1; coupled with the

fact that ∂ρF (0, ω, µ; z) = 0, this ensures Condition (CT3) holds.

Lastly, recall that, by definition, γ ≥ γ(Σλ) for all λ > 0, which is the

maximal order of contact between Σλ and its tangent plane; furthermore, γ

is assumed to be finite; thus, for some k ≤ γ + 1 < ∞,

∂k
ρ [hµ(z + ρω)]

∣∣
ρ=0

6= 0 .

Now, ∂k
ρ [hµ(z + ρω)]

∣∣
ρ=0

=
∑
|α|=k

k!
α!∂

α
y hµ(z)ωα, so for some k ≤ γ + 1,

|∑|α|=k
k!
α!∂

α
y hµ(z)ωα| ≥ C > 0 for all ω ∈ Sn−1 (the function achieves its

minimum, which is non-zero, by compactness of the sphere). Thus, condi-

tion (CT2) holds.

This completes the proof of conditions (I1)–(I4), and, hence, the Theo-

rem.

3.3 Results without Convexity

Theorem 3.2.4 requires the phase function to satisfy the convexity condition

of Definition 3.2; however, we will also investigate solutions to hyperbolic

equations for which the characteristic roots do not necessarily satisfy such a

condition. In this section we state and prove a theorem for this case. First,

64



we give the key results that replaces Theorem 3.2.1 in the proof, the well-

known Van der Corput Lemma; in addition, we study the case where the

phase function is complex-valued with the imaginary part non-negative.

3.3.1 Van der Corput Lemma

The standard Van der Corput Lemma is given in, for example, [Sog93,

Lemma 1.1.2]:

Lemma 3.3.1. Let Φ ∈ C∞(R), a ∈ C∞
0 (R) and m ≥ 2 be an integer such

that Φ(j)(0) = 0 for 0 ≤ j ≤ m− 1 and Φ(m)(0) 6= 0; then

∣∣∣
∫ ∞

0
eiλΦ(x)a(x) dx

∣∣∣ ≤ Cλ−1/m ,

provided the support of a is sufficiently small. The constant on the left-hand

side is independent of λ and Φ.

Remark 3.3.1: If m = 1, then the same result holds provided Φ′(x) is

monotonic on the support of a.

We extend this to the case where the phase function is complex-valued:

Lemma 3.3.2. Let φ ∈ C∞(R), ψ(x, ν) ∈ C∞(R×R) be real-valued smooth

functions and a ∈ C∞
0 (R+) that satisfy the following conditions for some

integer m ≥ 2:

(i) φ(j)(0) = 0 for 0 ≤ j ≤ m− 1;

(ii) |φ(m)(x)| ≥ 1 for all x ∈ supp a;

(iii) ψ(x, ν) ≥ 0 for all x ∈ supp a, ν ∈ R;

(iv) |∂k
xψ(x, ν)| ≤ Ck for all k ≥ 2, x ∈ supp a and all ν ∈ R.

Set Φ(x, ν) = φ(x) + iψ(x, ν); then,

∣∣∣
∫ ∞

0
eiλΦ(x,ν)a(x) dx

∣∣∣ ≤ Cλ−1/m for all ν ∈ R ; (3.51)

the constant C is independent of φ, ψ and λ.
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Proof. The proof given here is an extension of the method used in [Ste93,

VIII, 1.2, Proposition 2] where the phase function Φ(x) is real-valued.

First, assume m = 2. Let ρ(y) ∈ C∞(R) that is identically 1 on y ≤ 1

and identically 0 on y ≥ 2; then, for some δ > 0 (to be chosen later), split

the integral into two parts:

I1 + I2 :=
∫ ∞

0
eiλΦ(x,ν)a(x)ρ(x/δ) dx +

∫ ∞

0
eiλΦ(x,ν)a(x)[1− ρ(x/δ)] dx .

The integral I1 is straightforward to estimate since ψ(x, ν) ≥ 0 for all x, ν:

|I1| ≤
∫ 2δ

0
|e−λψ(x,ν)||a(y)ρ(y/δ)| dy ≤ 2δ sup|a| .

For I2, integrating by parts, after noting that

(iλ∂xΦ(x, ν))−1∂xeiλΦ(x,ν) = eiλΦ(x,ν) ,

yields

I2 =
1
iλ

∫ ∞

δ
eiλΦ(x,ν)∂x

[a(x)(1− ρ(x/δ))
∂xΦ(x, ν)

]
dx

=
1
iλ

∫ ∞

δ
eiλΦ(x,ν)(∂xΦ(x, ν))−2

[
∂xΦ(x, ν)

(
a′(x)(1− ρ(x/δ))−

a(x)δ−1ρ′(x/δ)
)− a(x)(1− ρ(x/δ))∂2

xΦ(x, ν)
]
dx ;

there are no boundary terms since (i) a ∈ C∞
0 (R) and (ii) ρ(1) = 1. Now,

by hypothesis φ′(x) = φ′′(0)x + O(x2) as x → 0, and φ′′(0) 6= 0; so, on

[δ,∞) ∩ supp a,

|∂xΦ(x, ν)| ≥ |Re ∂xΦ(x, ν)| = |φ′(x)| ≥ Cx > 0

and

|∂2
xΦ(x, ν)| ≤ |φ′′(x)|+ |∂2

xψ(x, ν)| ≤ C .
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Therefore, because the integrand is compactly supported,

|I2| ≤ C

λ

∫ c

δ
[x−1 + δ−1x−1 + x−2] dy ≤ Ccλ−1(δ−1 + δ−2) ≤ Cλ−1δ−1 ,

(we are implicitly assuming that δ ≤ 1 in the last inequality). Thus,

∣∣∣
∫ ∞

0
eiλΦ(x,ν)a(x) dx

∣∣∣ ≤ C(λ−1δ−1 + δ) ,

which achieves its minimum when the two expressions on the right-hand

side are equal, i.e. when λ−1δ−1 = δ, or δ = λ−1/2. Hence, for m = 2,

we have shown (3.51) when λ ≥ 1 (we needed δ ≤ 1); furthermore, the

estimate clearly holds when λ < 1 since the integral is bounded above by

C ′ = |supp a||sup a|, so also by C ′λ−1/2.

For m ≥ 3 this integration by parts cannot be carried out since we

have no control over ∂xΦ′(x, ν) away from the origin; instead, we do induc-

tion on m: assume the theorem holds for m = K and that the hypothesis

holds for m = K + 1. As in the case for m = 2, split the integral into I1

and I2 and estimate I1 as before. For I2, let z ∈ [δ,∞) ∩ supp a be the

point such that |φ(K)(x)| achieves its minimum—this point is unique since

|φ(K+1)(x)| ≥ 1, so φK(x) is either increasing or decreasing everywhere.

Now, introduce another cut-off function around z, ρ2(y) ∈ C∞
0 (R), which

is identically 1 in (z − 1, z + 1) and identically zero outside (z − 2, z + 2),

and split I2 into two parts: (set ã(x) := [1− ρ(x/δ)]a(x))

∫ ∞

δ
eiλΦ(x,ν)ã(x)ρ2(x/δ) dx +

∫ ∞

δ
eiλΦ(x,ν)ã(x)[1− ρ2(x/δ)] dx =: I1

2 + I2
2 .

Integral I1
2 can be estimated in the same way as I1, namely |I1

2 | ≤ Cδ.

For I2
2 , we use the inductive hypothesis. On the support of its integrand,

|φ(K)(x)| ≥ δ. Indeed,

(i) if φ(K)(z) = 0, then φ(K)(x) = (x − z)φ(K+1)(z) + O(|x − z|2), as

x → z, |x− z| ≥ δ and |φ(K+1)(z)| ≥ 1, so |φ(K)(x)| ≥ δ;

(ii) on the other hand, if φ(K)(z) 6= 0 (in which case, either z = δ or z

is a boundary point of supp a) then φ(K)(x) = xφ(K+1)(0) + O(x2) as

x → 0, |x| ≥ δ and |φ(K+1)(0)| ≥ 1, so, again, |φ(K)(x)| ≥ δ.
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Therefore,

|I2
2 | =

∣∣∣
∫ ∞

δ
ei(λδ)[Φ(x,ν)/δ]ã(x)[1− ρ2(x/δ)] dx

∣∣∣ ≤ C(λδ)−1/K .

Hence, ∣∣∣
∫ ∞

0
eiλΦ(x,ν)a(x) dx

∣∣∣ ≤ C(λ−1/Kδ−1/K + δ) .

This achieves its minimum when the two expressions on the right-hand side

are equal, i.e. when λ−1/Kδ−1/K = δ, or δ = λ−1/(K+1), thus proving (3.51)

for m = K + 1, completing the induction step.

3.3.2 Real-Valued Phase Function

In the case when the convexity condition holds the estimate of Theo-

rem 3.2.4 is given in terms of the constant γ; as in the case of the homoge-

neous operators (see the Introduction, Section 1.3) we introduce an analog

to this in the case where the convexity condition does not hold.

Definition 3.4. Let Σ be a hypersurface in Rn; set

γ0(Σ) := sup
σ∈Σ

inf
P

γ(Σ;σ, P ) ≤ γ(Σ)

where γ(Σ;σ, P ) is as in Definition 3.3.

Remark 3.3.2:

(a) When n = 2, γ0(Σ) = γ(Σ);

(b) If p(ξ) is a polynomial of order m and Σ = {ξ ∈ Rn : p(ξ) = 0} is

compact then γ0(Σ) ≤ γ(Σ) ≤ m; this is useful when applying the result

below to hyperbolic differential equations and is proved in [Sug96].

An important result for calculating this value is the following:

Lemma 3.3.3 ([Sug96]). Suppose Σ = {(y, h(y)) : y ∈ U}, h ∈ C∞(U),

U ⊂ Rn−1 is an open set, and let

F (ρ) = h(η + ρω)− h(η)− ρ∇h(η) · ω
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where η ∈ U , ω ∈ Sn−2. Taking σ = (η, h(η)) ∈ Σ, ω ∈ Sn−2 and

P = {σ + s(ω,∇h(η) · ω) + t(−∇h(η), 1) ∈ Rn : s, t ∈ R} ,

then

γ(Σ;σ, P ) = min
{

k ∈ N : F (k)(0) 6= 0
}

=: γ(h; η, ω) .

Therefore,

γ(Σ) = sup
η

sup
ω

γ(h; η, ω),

γ0(Σ) = sup
η

inf
ω

γ(h; η, ω) .

Now we are in a position to state and prove the result for oscillatory

integrals with a real-valued phase function that does not satisfy the earlier

convexity condition:

Theorem 3.3.4. Suppose τ : Rn → R satisfies the following conditions:

(i) for all multi-indices α there exists a constant Cα > 0 such that

|∂α
ξ τ(ξ)| ≤ Cα(1 + |ξ|)1−|α| for all ξ ∈ Rn ;

(ii) there exist constants M,C > 0 such that for all |ξ| ≥ M we have

|τ(ξ)| ≥ C|ξ|;

(iii) there exists a constant C0 > 0 such that |∂ωτ(λω)| ≥ C0 for all ω ∈
Sn−1, λ > 0;

(iv) there exists a constant R1 > 0 such that, for all λ > 0,

Σ′λ :=
1
λ

Σλ(τ) ⊂ BR1(0) .

Set γ0 := supλ>0 γ0(Σλ(τ)) and assume it is finite; also, let a(ξ) be a symbol

of order 1
γ0
− n of type (1, 0) on Rn. Then, the following estimate holds for

all R ≥ 0, x ∈ Rn, t > 1:

∣∣∣
∫

Rn

ei(x·ξ+τ(ξ)t)a(ξ)gR(ξ) dξ
∣∣∣ ≤ Ct

− 1
γ0 ,

69



where gR(ξ) is as given in (3.34) and C > 0 is independent of R.

Proof. We follow the proof of Theorem 3.2.4 as far as possible, and shall

show how the absence of the convexity condition affects the estimate. Thus,

as in that proof, we may first assume, without loss of generality, that either

τ(ξ) ≥ 0 for all ξ ∈ Rn or τ(ξ) ≤ 0 for all ξ ∈ Rn.

Divide the integral into two parts:

I1(x, t) :=
∫

Rn

ei(x·ξ+τ(ξ)t)a(ξ)gR(ξ)κ
(
t−1x +∇τ(ξ)

)
dξ ,

I2(x, t) :=
∫

Rn

ei(x·ξ+τ(ξ)t)a(ξ)gR(ξ)(1− κ)
(
t−1x +∇τ(ξ)

)
dξ ,

where κ ∈ C∞
0 (Rn), 0 ≤ κ(y) ≤ 1, which is identically 1 in the ball of

radius r > 0 centred at the origin, Br(0), and identically 0 outside the ball

of radius 2r, B2r(0). By Lemma 3.2.5 (which does not require the phase

function to satisfy the convexity condition),

|I2(x, t)| ≤ Crt
−1/γ0 for all t > 1.

To estimate |I1(z, t)| we introduce, as before, a partition of unity {Ψ`(ξ)}L
`=1

and restrict attention to

I ′1(x, t) =
∫

Rn

ei(x·ξ+τ(ξ)t)a(ξ)gR(ξ)Ψ1(ξ)κ
(
t−1x +∇τ(ξ)

)
dξ ,

where Ψ1(ξ) is supported in a cone, K1, that contains en = (0, . . . , 0, 1).

Parameterise this cone in the same way as above: with U ⊂ Rn−1,

K1 =




{(λy, λhλ(y)) : λ > 0, y ∈ U} if τ(ξ) ≥ 0 for all ξ ∈ Rn

{(λy, λhλ(y)) : λ < 0, y ∈ U} if τ(ξ) ≤ 0 for all ξ ∈ Rn .

Here the Implicit Function Theorem ensures the existence of a smooth func-

tion hλ : U → R for each λ > 0, but there is one major difference: the

functions hλ are not necessarily concave, in contrast to the earlier proof.

Using the change of variables ξ 7→ (λy, λhλ(y))—note that

0 < C ≤
∣∣∣ dξ

d(λ, y)

∣∣∣ ≤ Cλn−1
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by the same argument as in the proof of Theorem 3.2.4, providing the width

of K1 is taken to be sufficiently small—gives

I ′1(x, t) =
∫ ∞

0

∫

U
ei[λx′·y+λxnhλ(y)+τ(λy,λhλ(y))t]a(λy, λhλ(y))

gR(λy, λhλ(y))Ψ1(λy, λhλ(y))κ
(
t−1x +∇τ(λy, λhλ(y))

) dξ

d(λ, y)
dy dλ .

Once again, let G ∈ C∞
0 (R) so that gR(ξ) = gR(ξ)G(τ(ξ)/R) (where R =

max(R, 1)) and ã(ξ) = a(ξ)gR(ξ)Ψ1(ξ), which is a symbol of order 1
γ0
−

n supported in K1 and with all the constants in the symbolic estimates

independent of R. So, recalling that τ(λy, λhλ(y)) = λ and writing h(λ, y) ≡
hλ(y),

I ′1(x, t) =
∫ ∞

0

∫

U
eiλ[x′·y+xnhλ(y)+t]ã(λy, λhλ(y))

G(λ/R)κ
(
t−1x +∇τ(λy, λhλ(y))

) dξ

d(λ, y)
dy dλ

=
∫ ∞

0

∫

U
eiλ̃[ x̃′

x̃n
·y+h

(
λ̃

x̃nt
,y
)
+x̃−1

n ]ã
(

λ̃
x̃nty, λ̃

x̃nth
(

λ̃
x̃nt , y

))

G
(

λ̃
Rx̃nt

)
κ
(
x̃ +∇τ

(
λ̃

x̃nty, λ̃
x̃nth

(
λ̃

x̃nt , y
))) dξ

d(λ, y)
x̃−1

n t−1 dy dλ̃ ,

where λ̃ = λxn = λx̃nt. Thus, using |κ(η)| ≤ 1,

|I ′1(x, t)| ≤ C|x̃n|−1/γ0t−1/γ0

∫ ∞

0

∣∣∣I
(
λ̃, λ̃

x̃nt ; x̃
−1
n x̃

)
G

(
λ̃

Rx̃nt

)
λ̃−1+(1/γ0)

∣∣∣ dλ̃

(3.52)

where

I
(
λ̃, λ̃

x̃nt ; x̃
−1
n x̃′

)

=
∫

U
eiλ̃

[
x̃−1

n x̃′·y+h
(

λ̃
x̃nt

,y
)]

ã
(

λ̃
x̃nty, λ̃

x̃nth
(

λ̃
x̃nt , y

))(
λ̃

|x̃n|t
)n− 1

γ0 dy .

At this point, we diverge from the proof of the earlier theorem since we

cannot apply Theorem 3.2.1; instead, note that, for some b ∈ C∞
0 (Rn−1)
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with support contained in U ,

∣∣∣I
(
λ̃, λ̃

x̃nt ; x̃
−1
n x̃′

)∣∣∣ ≤
∫

Rn−2

∣∣∣
∫

R
eiλ̃

[
x̃−1

n x̃′·y+h
(

λ̃
x̃nt

,y
)]

ã
(

λ̃
x̃nty, λ̃

x̃nth
(

λ̃
x̃nt , y

))(
λ̃

|x̃n|t
)n− 1

γ0 b(y) dy1

∣∣∣ dy′ .

We wish to apply the Van der Corput Lemma, Lemma 3.3.2, to the inner

integral. Set Φ(y, µ; z) := z · y + hµ(y), which is real-valued, and consider

the integral ∫

R
eiλΦ(y,µ;z)a0(y, µ)b(y) dy1

where a0(y, µ) := µn−(1/γ0)ã(µy, µhµ(y)). Recall that

Σµ = {(y, hµ(y)) : y ∈ U} ,

so by Lemma 3.3.3,

min
{

k ∈ N : ∂k
y1

Φ(y, µ; z)
∣∣
y1=0

6= 0
}

= γ(hµ; 0, (1, 0, . . . , 0)) =: m .

Fixing the size of U so that |∂(m)
y1 Φ(y, µ; z)| ≥ ε > 0 for all y ∈ U ensures

that the hypotheses of Lemma 3.3.2 are satisfied. Thus, since the support

of b is compact in Rn−1 and a0 is smooth,

∣∣∣
∫

R
eiλΦ(y,µ;z)a0(y, µ)b(y) dy1

∣∣∣ ≤ Cλ−1/m .

Carry out a suitable change of coordinates so that m = infω γ(hµ; 0, ω) (this

is possible due to the rotational invariance of all properties used); then, since

m ≤ γ0 by definition,

∣∣∣I
(
λ̃, λ̃

x̃nt ; x̃
−1
n x̃′

)∣∣∣ ≤ Cλ̃−1/γ0 ,

for all λ̃ such that λ̃
Rx̃nt ∈ suppG (this is to ensure λ̃ is away from the
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origin). Combining this with (3.52) then gives the required estimate:

|I ′1(x, t)| ≤ C|x̃n|−
1

γ0 t
− 1

γ0

∫ ∞

0

∣∣∣λ̃−1G
(

λ̃
Rx̃nt

)∣∣∣ dλ̃

=C|x̃n|−
1

γ0 t
− 1

γ0

∫ ∞

0
(νR−1x̃nt)−1G(ν)Rx̃nt dν ≤ Ct

− 1
γ0 .

3.3.3 Complex-Valued Phase Function

Having studied the case where the phase function τ(ξ) is real-valued

(which will correspond to the case where the characteristic roots of the

strictly hyperbolic operator are real), we now turn to the situation where it is

complex-valued—of particular interest in the situation where characteristic

roots tend asymptotically to the real axis (see Chapter 4), and for this

reason, we only need consider the case where the imaginary part is non-

negative.

We shall show that under suitable conditions on the imaginary part, a

similar result to Theorem 3.3.4 holds:

Theorem 3.3.5. Suppose τ : Rn → C is a smooth function with Im τ(ξ) ≥ 0

that satisfies:

(i) for all multi-indices α there exist constants Cα, C ′
α > 0 such that

|∂α
ξ Re τ(ξ)| ≤ Cα(1 + |ξ|)1−|α|

and

|∂α
ξ Im τ(ξ)| ≤ C ′

α(1 + |ξ|)−|α|

for all ξ ∈ Rn;

(ii) there exist constants M,C > 0 such that for all |ξ| ≥ M we have

|Re τ(ξ)| ≥ C|ξ|;

(iii) there exists a constant C0 > 0 such that |∂ω Re τ(λω)| ≥ C0 for all

ω ∈ Sn−1 and λ > 0;

(iv) there exists a constant R1 > 0 such that, for all λ > 0,

1
λ
{ξ ∈ Rn : Re τ(ξ) = λ} ⊂ BR1(0) .
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Set γ0 := supλ>0 γ0(Σλ(Re τ)) and assume it is finite and let a(ξ) be a symbol

of order n− 1
γ0

of type (1, 0) on Rn. Then, the following estimate holds for

all R ≥ 0, x ∈ Rn, t > 1:

∣∣∣
∫

Rn

ei(x·ξ+τ(ξ)t)a(ξ)gR(ξ) dξ
∣∣∣ ≤ Ct−1/γ0 ,

where gR(ξ) is as given in (3.34) and C > 0 is independent of R.

Remark 3.3.3: Note that here the level sets under consideration are those

of the real part; we use the same notation as before:

Σλ ≡ Σλ(Re τ) = {ξ ∈ Rn : Re τ(ξ) = λ} .

Proof. For the most part, we once again follow the proof of Theorem 3.2.4;

however, there are a few significant differences—some of which we deal with

similarly to those resolved in the proof of Theorem 3.3.4, and others that

must be considered separately since they arise due to the imaginary part of

the phase function being non-zero.

First, we may assume without loss of generality that either Re τ(ξ) ≥ 0

for all ξ ∈ Rn or Re τ(ξ) ≤ 0 for all ξ ∈ Rn in the same way as in the earlier

proofs. Then, split the integral into the usual two parts:

I1(x, t) :=
∫

Rn

ei(x·ξ+τ(ξ)t)a(ξ)gR(ξ)κ
(
t−1x +∇τ(ξ)

)
dξ ,

I2(x, t) :=
∫

Rn

ei(x·ξ+τ(ξ)t)a(ξ)gR(ξ)(1− κ)
(
t−1x +∇τ(ξ)

)
dξ ,

where κ ∈ C∞
0 (Rn), 0 ≤ κ(y) ≤ 1, which is identically 1 in the ball of

radius r > 0 centred at the origin, Br(0), and identically 0 outside the ball

of radius 2r, B2r(0).

Now, the result of Lemma 3.2.5 continues to hold, so

|I2(x, t)| ≤ Crt
−1/γ0 ;

indeed, hypothesis (i) ensures that

|∂α
ξ τ(ξ)| ≤ Cα(1 + |ξ|)1−|α| for all ξ ∈ Rn ,
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and the assumption Im τ(ξ) ≥ 0 for all ξ ∈ Rn implies that

|eiτ(ξ)t| = |e− Im τ(ξ)t| ≤ 1 ,

which is sufficient to prove Lemma 3.2.5 when τ(ξ) is complex-valued.

For I1(ξ, t), we again introduce the conic partition of unity {Ψ`}L
`=1 and

focus on the integral supported in cone K1 that contains en = (0, . . . , 0, 1):

I ′1(x, t) =
∫

Rn

ei(x·ξ+τ(ξ)t)a(ξ)gR(ξ)Ψ1(ξ)κ
(
t−1x +∇τ(ξ)

)
dξ .

In order to parameterise K1, first note that hypothesis (iii) ensures that the

level sets of the real part of the phase function,

Σλ = {ξ ∈ Rn : Re τ(ξ) = λ} , λ > 0 ,

are all non-degenerate or empty; then, K1 may be written as

K1 =




{(λy, λhλ(y)) : λ > 0, y ∈ U} if Re τ(ξ) ≥ 0 for all ξ ∈ Rn

{(λy, λhλ(y)) : λ < 0, y ∈ U} if Re τ(ξ) ≤ 0 for all ξ ∈ Rn ;

here the functions hλ : U → R, λ > 0, are smoothly parameterise the

surfaces Σλ.

Again, take G ∈ C∞
0 (R) and R = max(R, 1) so that

gR(ξ) = gR(ξ)G(Re τ(ξ)/R) ,

and write ã(ξ) = a(ξ)gR(ξ)Ψ1(ξ); this is valid by the earlier reasoning as

hypotheses (ii) and (i) ensure that, with the earlier notation,





Rc′0 < |Re τ(ξ)| < Rc′1 when R ≥ 1 and ξ ∈ supp gR,

c′0 < |Re τ(ξ)| < c′1 when 0 ≤ R < 1 and ξ ∈ supp gR.
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Then, changing variables ξ 7→ (λy, λhλ(y)) gives

I ′1(x, t) =
∫ ∞

0

∫

U
ei[λx′·y+λxnhλ(y)+τ(λy,λhλ(y))t]a(λy, λhλ(y))gR(λy, λhλ(y))

Ψ1(λy, λhλ(y))κ
(
t−1x +∇τ(λy, λhλ(y))

) dξ

d(λ, y)
dy dλ

=
∫ ∞

0

∫

U
eiλ[x′·y+xnhλ(y)+t+itλ−1 Im τ(λy,λhλ(y))]ã(λy, λhλ(y))

G(λ/R)κ
(
t−1x +∇τ(λy, λhλ(y))

) dξ

d(λ, y)
dy dλ ,

where we have used Re τ(λy, λhλ(y)) = λ by the definition of Σλ; note the

difference in the phase function. Once again, it is straightforward to show

that the Jacobian is absolutely bounded above by Cλn−1 and is bounded

from below away from zero using hypotheses (i) and (iii) (replace occur-

rences of τ(λy, λhλ(y)) = λ by Re τ(λy, λhλ(y)) = λ and the argument in

Theorem 3.2.4 carries straight through).

Next, setting x̃ = t−1x and h(λ, y) = hλ(y) and changing variables with

λ 7→ x−1
n λ̃ = (x̃nt)−1λ̃, yields

I ′1(x, t) =
∫ ∞

0

∫

U
eiλ̃

[
x̃′
x̃n
·y+h

(
λ̃

x̃nt
,y
)
+x̃−1

n +itλ̃−1 Im τ
(

λ̃
x̃nt

y, λ̃
x̃nt

h
(

λ̃
x̃nt

,y
))]

G
(

λ̃
Rx̃nt

)

ã
(

λ̃
x̃nty, λ̃

x̃nth
(

λ̃
x̃nt , y

))
κ
(
x̃ +∇τ

(
λ̃

x̃nty, λ̃
x̃nth

(
λ̃

x̃nt , y
)))

dξ

d(λ, y)
t−1x̃−1

n dy dλ̃ .

Hence,

|I ′1(x, t)| ≤ C|x̃n|−1/γ0t−1/γ0

∫ ∞

0

∣∣∣I
(
λ̃, λ̃

x̃nt ; x̃
−1
n x̃

)
G

(
λ̃

Rx̃nt

)
λ̃−1+(1/γ0)

∣∣∣ dλ̃

(3.53)

(recall |κ(η)| ≤ 1), where

I
(
λ̃, λ̃

x̃nt ; x̃n, x̃−1
n x̃′

)
=

∫

U
eiλ̃

[
x̃−1

n x̃′·y+h
(

λ̃
x̃nt

,y
)
+itλ̃−1 Im τ

(
λ̃

x̃nt
y, λ̃

x̃nt
h
(

λ̃
x̃nt

,y
))]

ã
(

λ̃
x̃nty, λ̃

x̃nth
(

λ̃
x̃nt , y

))(
λ̃

|x̃n|t
)n− 1

γ0 dy .

As in the proof of Theorem 3.3.4, we will use Lemma 3.3.2 to estimate this

final integral, so we observe that there exists b ∈ C∞
0 (Rn−1) with support
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contained in U such that

∣∣∣I
(
λ̃, λ̃

x̃nt ; x̃nx̃−1
n x̃′

)∣∣∣

≤
∫

Rn−2

∣∣∣
∫

R
eiλ̃

[
x̃−1

n x̃′·y+h
(

λ̃
x̃nt

,y
)
+itλ̃−1 Im τ

(
λ̃

x̃nt
y, λ̃

x̃nt
h
(

λ̃
x̃nt

,y
))]

ã
(

λ̃
x̃nty, λ̃

x̃nth
(

λ̃
x̃nt , y

))(
λ̃

|x̃n|t
)n− 1

γ0 b(y) dy1

∣∣∣ dy′ .

Set φ(y, µ; z) := z · y + hµ(y) and ψ(y, µ, x̃n) := µ−1x̃−1
n Im τ(µy, µhµ(y));

we shall show that these, as functions of (y1, ν), satisfy the hypotheses of

Lemma 3.3.2:

• By Lemma 3.3.3 and the definition of Σµ,

min
{

k ∈ N : ∂k
y1

φ(y, µ; z)
∣∣
y1=0

6= 0
}

= γ(hµ; 0, (1, 0, . . . , 0)) =: m,

so the first two hypotheses are satisfied providing U is chosen sufficiently

small;

• ψ(y, µ, x̃n) ≥ 0 for all y, µ and x̃n by our initial assumption on the posi-

tivity of Im τ(ξ);

• to show |∂k
y1

ψ(y, µ, x̃n)| ≤ Ck for all k ≥ 2, µ ∈ R and y ∈ supp a, we note

that

∂k
y1

ψ(y, µ, x̃n) = x̃nµk−1[(∂ξ1 Im τ)(µy, µhµ(y))

+ ∂y1hµ(y)(∂ξn Im τ)(µy, µhµ(y))] ;

then, an analog of Lemma 3.2.6 for this hλ(y) (possible due to hypothe-

ses (i) and (iv)) and the assumption that Im τ(ξ) is a symbol of order 0

(hypothesis (i)) ensure that

|∂k
y1

ψ(y, µ, x̃n)| ≤ C
µk−1

(1 + µ)k
≤ Ck for all y ∈ U, µ > 0 ;

we have |x̃n| ≥ C > 0 by a similar argument to that in the proof of

Theorem 3.2.4.
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So, with a0(y, µ) := µn−(1/γ0)ã(µy, µhµ(y)), Lemma 3.3.2 implies that

∣∣∣
∫

R
eiλ[φ(y,µ;z)+iψ(y,µ,ν)]a0(y, µ)b(y) dy1

∣∣∣ ≤ Cλ−1/m .

Thus, ∣∣∣I
(
λ̃, λ̃

x̃nt , tλ̃
−1; x̃−1

n x̃′
)∣∣∣ ≤ Cλ̃−1/γ0 ,

for all λ̃ such that λ̃
Rx̃nt ∈ suppG (this is to ensure λ̃ is away from the

origin). Combining this with (3.53) completes the proof:

|I ′1(x, t)| ≤ C|x̃n|−
1

γ0 t
− 1

γ0

∫ ∞

0

∣∣∣λ̃−1G
(

λ̃
Rx̃nt

)∣∣∣ dλ̃

=C|x̃n|−
1

γ0 t
− 1

γ0

∫ ∞

0
(νR−1x̃nt)−1G(ν)Rx̃nt dν ≤ Ct

− 1
γ0 .
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Chapter 4:

Proof of Main Theorem

4.1 Step 1: Representation of the Solution

Recall that we begin with the Cauchy problem with solution u = u(x, t) as

stated in Section 1.2:

Dm
t u +

m∑

j=1

Pj(Dx)Dm−j
t u +

m−1∑

l=0

∑

|α|+r=l

cα,rD
α
xDr

t u = 0, t > 0,

Dl
tu(x, 0) = fl(x) ∈ C∞

0 (Rn), l = 0, . . . ,m− 1, x ∈ Rn ,





(4.1)

where Pj(ξ), the polynomial obtained from the operator Pj(Dx) by replacing

each Dxi by ξi, is a constant coefficient homogeneous polynomial of order j,

and the cα,r are constants.

Applying the partial Fourier transform with respect to x yields an ordi-

nary differential equation for û = û(ξ, t) :=
∫
Rn e−ix·ξu(x, t) dx:

Dm
t û +

m∑

j=1

Pj(ξ)D
m−j
t û +

m−1∑

l=0

∑

|α|+r=l

cα,rξ
αDr

t û = 0 , (4.2a)

Dl
tû(ξ, 0) = f̂l(ξ), l = 0, . . . ,m− 1, (4.2b)

where (ξ, t) ∈ Rn × [0,∞). Let Ej = Ej(ξ, t), j = 0, . . . , m − 1, be the

solutions to (4.2a) with initial data

Dl
tEj(ξ, 0) =





1 if l = j,

0 if l 6= j.
(4.2c)

Then the solution u of (4.1) can be written in the form

u(x, t) =
m−1∑

j=0

(F−1EjFfj)(x, t), (4.3)
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where F and F−1 represent the partial Fourier transform with respect to x

and its inverse respectively.

Now, as (4.2a), (4.2c) is the Cauchy problem for a linear ordinary differ-

ential equation, we can write, denoting the characteristic roots of (4.1) by

τ1(ξ), . . . , τm(ξ) (see Definition 0.3),

Ej(ξ, t) =
m∑

k=1

Ak
j (ξ, t)e

iτk(ξ)t

where Ak
j (ξ, t) are polynomials in t whose coefficients depend on ξ. Moreover,

for each k = 1, . . . , m and j = 0 . . . , m− 1, the Ak
j (ξ, t) are independent of t

at points of the (open) set {ξ ∈ Rn : τk(ξ) 6= τl(ξ)∀ l 6= k}; when this is the

case, we write Ak
j (ξ, t) ≡ Ak

j (ξ). In particular, by Lemma 3.1.4, there exists

N > 0 such that if |ξ| > N , the roots are pairwise distinct. For Ak
j (ξ), we

have the following properties:

Lemma 4.1.1. Suppose ξ ∈ Sk := {ξ ∈ Rn : τk(ξ) 6= τl(ξ)∀ l 6= k}; then we

have the following formula:

Ak
j (ξ) =

(−1)j
∑k

1≤s1<···<sm−j−1≤m

m−j−1∏

q=1

τsq(ξ)

m∏

l=1,l 6=k

(τl(ξ)− τk(ξ))

, (4.4)

where
∑k means sum over the range indicated excluding k. Furthermore,

we have, for each j = 0, . . . , m− 1 and k = 1, . . . , m,

(i) Ak
j (ξ) is smooth in Sk;

(ii) Ak
j (ξ) = O(|ξ|−j) as |ξ| → ∞.

Proof. The representation (4.4) follows from Cramer’s rule (and is done

explicitly in [Kli67]): Ak
j (ξ) =

det V k
j

det V , where V :=
(
τ l−1
i (ξ)

)m

i,l=1
is the Van-

dermonde matrix and V k
j is the matrix obtained by taking V and replacing

the kth column by (0 . . . 0 1︸ ︷︷ ︸
j

0 . . . 0)T.

Smoothness of Ak
j (ξ) then follows by Proposition 3.1.3 and the asymp-

totic behaviour is a consequence of Part I of Proposition 3.1.5 since (4.4)
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holds for all |ξ| > N .

4.2 Step 2: Division of the Integral

In view of Lemmas 3.1.4 and 4.1.1, choose N1 > 0 so that the τk(ξ), k =

1, . . . , n, are distinct for |ξ| > N1. Also, choose N2 > 0 so that all points

at which any of the roots, τk(ξ), meet the real axis—i.e. points ξ ∈ Rn

such that, for all ε > 0, there exist ξ1, ξ2 ∈ Bε(ξ) with Im τk(ξ1) = 0 and

Im τk(ξ2) 6= 0—lie in BN2(0). Set N = max(N1, N2).

Let χ(ξ) = χN (ξ) ∈ C∞
0 (Rn), 0 ≤ χ(ξ) ≤ 1, be a cut-off function that is

identically 1 for |ξ| < N and identically zero for |ξ| > 2N . Then, using the

linearity of the (inverse) Fourier transform, (4.3) can be rewritten as:

u(x, t) =
m−1∑

j=0

F−1(EjχFfj)(x, t) +
m−1∑

j=0

F−1(Ej(1− χ)Ffj)(x, t) . (4.5)

Large |ξ|: The second term of (4.5) is the most straightforward to study:

by the choice of N ,

Ej(ξ, t)(1− χ)(ξ) =
m∑

k=1

Ak
j (ξ)(1− χ)(ξ)eiτk(ξ)t ;

therefore, since each summand is smooth in Rn,

m−1∑

j=0

F−1(Ej(1− χ)Ffj)(x, t)

=
1

(2π)n

m−1∑

j=0

m∑

k=1

∫

Rn

ei(x·ξ+τk(ξ)t)Ak
j (ξ)(1− χ)(ξ)f̂j(ξ) dξ .

Each of these integrals may be studied separately. Note that, unlike in

the cases of the wave equation, Brenner [Bre75], and the general mth order

homogeneous strictly hyperbolic equations, Sugimoto [Sug94], we may not

assume that t = 1 (see Lemma 1.3.1 for the homogeneous case). The Lp −
Lq estimates obtained under different conditions on the phase function for

operators of this type are calculated in Section 4.4 below.
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Bounded |ξ|: We turn our attention to the terms of the first sum in (4.5),

the case of low frequencies,

F−1(EjχFf)(x, t) =
1
2π

∫

Rn

eix·ξ
( m∑

k=1

eiτk(ξ)tAk
j (ξ, t)

)
χ(ξ)f̂(ξ) dξ . (4.6)

Unlike in the case above, here the characteristic roots τ1(ξ), . . . , τm(ξ) are

not necessarily distinct at all points in the support of the integrand (which

is contained in the ball of radius 2N about the origin); in particular, this

means that the Ak
j (ξ, t) genuinely depend on t and we have no simple formula

valid for them in the whole region.

For this reason, we begin by systematically separating neighbourhoods

of points where roots meet—referred to henceforth as multiplicities—from

the rest of the region, and then considering the two cases separately. In

Section 4.5 we find Lp−Lq estimates in the region away from multiplicities

under various conditions; in Section 4.6 we show how these differ in the

neighbourhoods of singularities, to give us the final results in Theorem 2.1.1.

First, we need to understand in what type of sets the roots τk(ξ) can

intersect:

Lemma 4.2.1. The complement of the set of multiplicities of a linear

strictly hyperbolic constant coefficient partial differential operator L(Dx, Dt),

S := {ξ ∈ Rn : τj(ξ) 6= τk(ξ) for all j 6= k} ,

is dense in Rn.

Proof. First note

S = {ξ ∈ Rn : ∆L(ξ) 6= 0} ,

where ∆L is the discriminant of L(ξ, τ) (see the proof of Lemma 3.1.4 for

definition and some properties). Now, by Sylvester’s Formula (see, for ex-

ample, [GKZ94]), ∆L is a polynomial in the coefficients of L(ξ, τ), which are

themselves polynomials in ξ. Hence, ∆L is a polynomial in ξ; as it is not

identically zero (for large |ξ|, the characteristic roots are distinct, and hence

it is non-zero at such points), it cannot be zero on an open set, and hence

its complement is dense in Rn.
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Corollary 4.2.2. Let L(ξ, τ) be a linear strictly hyperbolic constant coeffi-

cient partial differential operator with characteristic roots τ1(ξ), . . . , τm(ξ).

Suppose Mkl ⊂ Rn is a set such that τk(ξ) = τl(ξ), for some k 6= l, for all

ξ ∈Mkl. For ε > 0, define

Mε
kl := {ξ ∈ Rn : dist(ξ,Mkl) ≤ ε} ;

denote the minimal ν ∈ N such that meas(Mε
kl) ≤ Cεν for all sufficiently

small ε > 0 by codimMkl. Then codimMkl ≥ 1.

Proof. Follows straight from Lemma 4.2.1: the fact thatMkl has non-empty

interior ensures that its ε-neighbourhood is bounded by Cε in at least one

dimension for all small ε > 0.

With this in mind, we shall subdivide the integral (4.6): suppose L roots

meet on a set M with codimM = `; without loss of generality, assume the

coinciding roots are τ1(ξ), . . . , τL(ξ). By continuity, there exists an ε > 0

such that only characteristic roots coinciding with τk(ξ), k ∈ {1, . . . , L}, in

Mε are τ1(ξ), . . . , τL(ξ). Furthermore, we may assume that ∂Mε ∈ C1: for

each ε > 0 there exists a set Sε with C1 boundary such that Mε ⊂ Sε and

meas(Mε) → meas(Sε) as ε → 0. Then:

1. Let χM,ε ∈ C∞(Rn) be a smooth function identically 1 on Mε and

identically zero outside M2ε; now consider the subdivision of (4.6):

∫

B2N (0)
eix·ξEj(ξ, t)f̂(ξ) dξ =

∫

B2N (0)
eix·ξEj(ξ, t)χM,ε(ξ)f̂(ξ) dξ

+
∫

B2N (0)
eix·ξEj(ξ, t)(1− χM,ε)(ξ)f̂(ξ) dξ ;

for the second integral, simply repeat the above procedure around any

root multiplicities in B2N (0) \Mε.

2. For the first integral, the case where the integrand is supported on Mε,
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split off the coinciding roots from the others:

∫

B2N (0)
eix·ξEj(ξ, t)χM,ε(ξ)f̂(ξ) dξ

=
∫

B2N (0)
eix·ξ

( L∑

k=1

eiτk(ξ)tAk
j (ξ, t)

)
χM,ε(ξ)f̂(ξ) dξ

+
∫

B2N (0)
eix·ξ

( m∑

k=L+1

eiτk(ξ)tAk
j (ξ, t)

)
χM,ε(ξ)f̂(ξ) dξ. (4.7)

3. For the first integral, we use techniques discussed in Section 4.6 below to

estimate it.

4. For the second there are two possibilities: firstly, two or more of the roots

τL+1(ξ), . . . , τm(ξ) coincide in M2ε—in this case, repeat the procedure

above for this integral. Alternatively, these roots are all distinct inM2ε—

in this case, it suffices to study each integral separately as the Aj
k(ξ, t)

are independent of t, and thus the expression (4.4) is valid and we can

write

∫

B2N (0)
eix·ξ

( m∑

k=L+1

eiτk(ξ)tAk
j (ξ, t)

)
χM,ε(ξ)f̂(ξ) dξ

=
m∑

k=L+1

∫

B2N (0)
ei[x·ξ+τk(ξ)t]Ak

j (ξ)χM,ε(ξ)f̂(ξ) dξ ;

estimates for integrals of the type on the right-hand side are found in

Section 4.5—note that in this case we may use that the region is bounded

to ensure the continuous functions are also bounded.

Continue this procedure until all multiplicities are accounted for in this way.

4.3 Step 3: Interpolation

The following result can be found in [BL76, Theorem 6.4.5]:

Theorem 4.3.1. Suppose T is a linear map such that it maps

T : Lq0 → W s0
p0

, T : Lq1 → W s1
p1

,
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where s0 6= s1, 1 ≤ p0, p1 < ∞; then T also maps:

T : Lqθ → W sθ
pθ

,

where

1
pθ

=
1− θ

p0
+

θ

p1
,

1
qθ

=
1− θ

q0
+

θ

q1
, sθ = (1− θ)s0 + θs1 .

That is, ‖Tf‖Lqθ ≤ C‖f‖W
sθ
pθ

and C is independent of f ∈ W sθ
pθ

.

In particular, this means that if we have estimates

‖Tf‖L∞ ≤ Ctd0‖f‖
W

N0
1

, ‖Tf‖L2 ≤ Ctd1‖f‖
W

N1
2

,

then

‖Tf‖Lq ≤ C(1 + t)dp‖f‖
W

Np
p

where p−1 + q−1 = 1, Np = N0

(
1
p − 1

q

)
+ 2

qN1 and dp = d0

(
1
p − 1

q

)
+ 2

qd1.

This reduces our task to finding L1−L∞ and L2−L2 estimates in each

case.

4.4 Step 4: Estimates for Large |ξ|
Via the division of the integral above, it suffices to find Lp − Lq estimates

for integrals of the form

∫

Rn

ei(x·ξ+τ(ξ)t)aj(ξ)f̂(ξ) dξ ,

where aj(ξ) = O(|ξ|−j) as ξ →∞ is smooth and is zero in a neighbourhood

of 0, and τ(ξ) is a complex-valued, inhomogeneous smooth function which

is O(|ξ|) as ξ →∞ and Im τ(ξ) ≥ 0 for all ξ ∈ Rn.

By further judicious use of cut-off functions, it is clear that we can split

the considerations into three main cases:

1. τ(ξ) is separated from the real axis, i.e. there exists δ > 0 such that

Im τ(ξ) ≥ δ for all |ξ| > N ;

2. τ(ξ) lies on the real axis;
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3. τ(ξ) tends asymptotically to the real axis as |ξ| → ∞.

Let us look at each of these in turn.

4.4.1 Phase function separated from the real axis

In this section, we consider the case where characteristic root τ(ξ) is

separated from the real axis for large |ξ|; let us define δ > 0 to be a constant

such that Im τ(ξ) ≥ δ for all |ξ| ≥ N .

We claim that, for all t > 0,

∥∥∥Dr
t D

α
x

(∫

Rn

ei(x·ξ+τ(ξ)t)aj(ξ)f̂(ξ) dx
)∥∥∥

L∞
≤ Ce−δt‖f‖

W
N1+|α|+r−j
1

,

∥∥∥Dr
t D

α
x

(∫

Rn

ei(x·ξ+τ(ξ)t)aj(ξ)f̂(ξ) dx
)∥∥∥

L2
≤ Ce−δt‖f‖

W
|α|+r−j
2

,

where N1 > n, r ≥ 0, α multi-index. Indeed, these follow immediately from:

Proposition 4.4.1. Let τ : U → C be a smooth function, U ⊂ Rn open,

and aj(ξ) ∈ S−j
(1,0)(U). Assume:

(i) there exists δ > 0 such that Im τ(ξ) ≥ δ for all ξ ∈ U ;

(ii) |τ(ξ)| ≤ C(1 + |ξ|) for all ξ ∈ U .

Then,

∥∥∥
∫

U
ei(x·ξ+τ(ξ)t)aj(ξ)ξατ(ξ)rf̂(ξ) dξ

∥∥∥
L∞(Rn

x)
≤ Ce−δt‖f‖

W
N0+|α|+r−j
1

and

∥∥∥
∫

U
ei(x·ξ+τ(ξ)t)aj(ξ)ξατ(ξ)rf̂(ξ) dξ

∥∥∥
L2(Rn

x)
≤ Ce−δt‖f‖

W
|α|+r−j
2

for all t > 0, N0 > n, multi-indices α, r ∈ R and f ∈ C∞
0 (U).
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Proof. By the hypotheses on τ(ξ) and aj(ξ),

∣∣∣
∫

U
ei(x·ξ+τ(ξ)t)aj(ξ)ξατ(ξ)rf̂(ξ) dξ

∣∣∣ ≤
∫

U
|eiτ(ξ)taj(ξ)||ξ||α||τ(ξ)|r|f̂(ξ)|dξ

=
∫

U
e− Im τ(ξ)t|aj(ξ)||ξ||α||τ(ξ)|r|f̂(ξ)|dξ ≤ Ce−δt

∫

U
|ξ||α|+r−j |f̂(ξ)| dξ

≤ Ce−δt

∫

U
|ξ|−N0dξ

∥∥|ξ|N0+|α|+r−j |f̂(ξ)|∥∥
L∞ ≤ Ce−δt‖f‖

W
N0+|α|+r−j
1

.

This proves the first inequality. For the second, note the Plancherel Theorem

implies

∥∥∥
∫

U
ei(x·ξ+τ(ξ)t)aj(ξ)ξατ(ξ)rf̂(ξ) dξ

∥∥∥
L2(Rn

x)
=

∥∥eiτ(ξ)taj(ξ)ξατ(ξ)rf̂(ξ)
∥∥

L2(U)
;

then,

∫

U

∣∣eiτ(ξ)taj(ξ)ξατ(ξ)rf̂(ξ)
∣∣2 dξ

≤
∫

U
e−2 Im τ(ξ)t|aj(ξ)|2|ξ|2|α||τ(ξ)|2r|f̂(ξ)|2dξ

≤ Ce−2δt

∫

U
|ξ|2(|α|+r−j)|f̂(ξ)|2 dξ ≤ Ce−2δt‖f‖2

W
|α|+r−j
2

.

Taking square roots on both sides completes the proof.

So, by the interpolation Theorem 4.3.1,

∥∥∥Dr
t D

α
x

(∫

Rn

ei(x·ξ+τ(ξ)t)aj(ξ)f̂(ξ) dx
)∥∥∥

Lq
≤ Ce−δt‖f‖

W
Np+|α|+r−j
p

,

where p−1 + q−1 = 1, 1 ≤ p ≤ 2, Np ≥ n
(

1
p − 1

q

)
, r ≥ 0, α a multi-index and

f ∈ C∞
0 (Rn). Thus, in this case we have exponential decay of the solution.

This proves Part I of the main Theorem 2.1.1 for roots away from the

real axis.

4.4.2 Phase function lies on the real axis

This case subdivides into the following subcases, each of which yields a

different decay rate:

(i) detHess τ(ξ) 6= 0; in this case we use the method of stationary phase;
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(ii) detHess τ(ξ) = 0 and τ(ξ) satisfies the convexity condition of Defini-

tion 3.2; in this case we use Theorem 3.2.4;

(iii) the general case when det Hess τ(ξ) = 0 (i. e. τ(ξ) does not satisfy the

convexity condition); in this case, we use Theorem 3.3.4.

We assume throughout that τ(ξ) ≥ 0 for all ξ ∈ Rn or τ(ξ) ≤ 0 for all

ξ ∈ Rn. This is valid because for the characteristic roots lying on the real

axis, there exists τ̃(ξ) such that τ̃k(ξ) := τk(ξ) − τ̃(ξ) is either everywhere

non-negative or everywhere non-positive, and, if τk(ξ) satisfies the convexity

condition, so does τ̃k(ξ). A proof for this in the homogeneous case is given

in [Sug94]; the generalisation to the nonhomogeneous case follows using the

perturbation results in Chapter 3.

4.4.2.1 detHess τ(ξ) 6= 0

In this section, we consider the case where we have

∫

Rn

eit(x̃·ξ+τ(ξ))aj(ξ)f̂(ξ) dξ ,

and Hess τ(ξ) 6= 0 for all ξ ∈ supp aj , To estimate this, we first consider the

oscillatory integral ∫

Rn

ei(x̃·ξ+τ(ξ))ta(ξ) dξ ,

where a(ξ) ∈ S−µ
(1,0), some µ ∈ R, Im τ(ξ) ≥ 0 for all ξ ∈ Rn, and, for

some ξ0 ∈ Rn, x̃ + ∇ξτ(ξ0) = 0 and Hess τ(ξ0) 6= 0; we refer to ξ0 as

a (non-degenerate) critical point. Let us assume that ξ0 is the only such

critical point—if there are more than one, we use suitable cut-off functions

to localise around each separately (we assume the set of critical point has

no accumulation points). Indeed, let χ ∈ C∞
0 (Rn) which is supported in a

neighbourhood U of ξ0 so that there are no other critical points in U . Then

consider separately

∫

Rn

ei(x̃·ξ+τ(ξ))ta(ξ)χ(ξ) dξ and
∫

Rn

ei(x̃·ξ+τ(ξ))ta(ξ)(1− χ)(ξ) dξ .

The second integral, which we may assume contains no critical points in its

support (otherwise introduce further cut-off functions around those), can be
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shown to decay exponentially: note that away from the critical points,

ei(x̃·ξ+τ(ξ))t =
x +∇τ(ξ)

it|x +∇τ(ξ)|2 · ∇ξ[ei(x̃·ξ+τ(ξ))t] ;

so, integrating by parts repeatedly shows that for any N ∈ N sufficiently

large, ∣∣∣
∫

Rn

ei(x̃·ξ+τ(ξ))ta(ξ)(1− χ)(ξ) dξ
∣∣∣ ≤ Ct−N .

Let us return to the case when there is a critical point.

We claim

∣∣∣
∫

Rn

ei(x̃·ξ+τ(ξ))ta(ξ)χ(ξ) dξ
∣∣∣ ≤ Ct−n/2|det Hess(ξ0)|−1/2|a(ξ0)χ(ξ0)|

≤Ct−n/2|detHess(ξ0)|−1/2(1 + |ξ0|)−µ . (4.8)

This is a consequence of the following theorem, found in [Hör83a, Theorem

7.7.12, p. 228]:

Theorem 4.4.2. Suppose Φ(x, y) ∈ Rn × Rp is a complex-valued smooth

function in a neighbourhood of the origin (0, 0) ∈ Rn ×Rp such that :

(i) ImΦ ≥ 0; (ii) Im Φ(0, 0) = 0; (iii) Φ′x(0, 0) = 0; (iv) det Φ′′xx(0, 0) 6= 0.

Also, suppose u ∈ C∞
0 (K) where K is a small neighbourhood of (0, 0). Then

∣∣∣
∫

Rn

eiωΦ(x,y)u(x, y) dx−

(
(det(ωΦ′′xx/2πi))0

)−1/2
eiωΦ0

N−1∑

j=0

(LΦ,ju)0ω−j
∣∣∣ ≤ CNω−N−n/2 ,

where the notation G0(y) (where G(x, y) is the function) means the function

of y only which is in the same residue class modulo the ideal generated by

∂Φ/∂xj, j = 1, . . . , n.

The proof of this result uses the method of stationary phase; similar

results (with slightly differing conditions and conclusions) can be found

in [Sog93, (1.1.20), p. 49], [Ste93, Ch. VIII, 2.3, Proposition 6, p. 344],

[Dui96, Proposition 1.2.4, p. 14] and [Trè80, p. 432, Ch. VIII, (2.15)–(2.16)],

for example.
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So, we have (4.8) as a simple consequence of this theorem; now, in order

to show that ∣∣∣
∫

Rn

ei(x̃·ξ+τ(ξ))ta(ξ)χ(ξ) dξ
∣∣∣ ≤ Ct−n/2 ,

we must choose µ ∈ R suitably. Assume that |det Hess τ(ξ)| ≥ C(1+ |ξ|)−M

for some M ∈ R; then taking µ = M/2, we have this estimate. Compare this

to the case of Klein–Gordon equation (which is done in [Hör97] pp.146–155)

where det Hess τ(ξ) = (1 + |ξ|)−n−2, so M = n + 2.

Let us now apply this result to our situation. We have

∫

Rn

ei(x·ξ+τ(ξ)t)aj(ξ)f̂(ξ) dξ ,

where aj(ξ) = O(|ξ|−j) as ξ →∞; we assume |detHess τ(ξ)| ≥ C(1+|ξ|)−M .

Now, for each ν ∈ R, we have

aj(ξ) = (1 + |ξ|)−2ν(1 + |ξ|)2νaj(ξ)

=
∑

|α|≤ν

(1 + |ξ|)−2νξαaj(ξ)ξα =
∑

|α|≤ν

aj,α(ξ)ξα ,

where aj,α ∈ S−j−2ν+|α|. Taking ν = M/2− j, ensure that the worst order

of any of these symbols is −M/2. Then,

∫

Rn

ei(x·ξ+τ(ξ)t)aj(ξ)f̂(ξ) dξ =
∑

|α|≤ν

∫
eit((x̃−ỹ)·ξ+τ(ξ))aj,α(ξ)D̂αf(ξ) dξ

=
∑

|α|≤ν

∫
eit((x̃−ỹ)·ξ+τ(ξ))aj,α(ξ) dξ ∗Dαf(x) ,

since ξαf̂(ξ) = D̂αf(ξ). Then

∥∥∥
∑

|α|≤ν

∫
eit((x̃−ỹ)·ξ+τ(ξ))aj,α(ξ) dξ ∗Dαf(x)

∥∥∥
L∞

≤
∑

|α|≤ν

∥∥∥
∫

eit((x̃−ỹ)·ξ+τ(ξ))aj,α(ξ) dξ
∥∥∥

L∞
‖Dαf‖L1 ≤ Ct−n/2‖f‖

W
M/2−j
1

Thus, we have an L1−L∞ estimate in this case. To find an L2−L2 estimate
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is simpler: by the Plancherel Theorem,

∥∥∥
∫

Rn

ei(x·ξ+τ(ξ)t)aj(ξ)f̂(ξ) dξ
∥∥∥

L2(Rn
x)

= C
∥∥eiτ(ξ)taj(ξ)f̂(ξ)

∥∥
L2(Rn

ξ )

≤ C
∥∥|ξ|−j f̂(ξ)

∥∥
L2 ≤ C‖f‖

W−j
2

.

Using the interpolation Theorem 4.3.1, this gives us Theorem 2.1.1, Part I,

for roots on the real axis with det Hess τk(ξ) 6= 0.

Behaviour of Critical Points: Above, we assumed that ξ0 was the only

critical point of the phase function; this is not such an unreasonable assump-

tion as the following result shows:

Lemma 4.4.3. If Hess τ(ξ) is positive definite for all ξ, then the integral

∫

Rn

ei(x̃·ξ+τ(ξ))ta(ξ) dξ ,

has only one critical point.

Proof. Suppose ξ1, ξ2 ∈ Rn are two such critical points. So x̃ +∇ξτ(ξ1) =

x̃ + ∇ξτ(ξ2), or ∇ξjτ(ξ1) = ∇ξjτ(ξ2) for each j = 1, . . . , n. Thus, by the

fundamental theorem of calculus, for all j = 1, . . . , n,

0 = ∂ξjτ(ξ1)− ∂ξjτ(ξ2) =
∫ 1

0
(ξ2 − ξ1) · ∇ξ(∂ξj )τ(ξ1 + s(ξ2 − ξ1) ds .

But this means that (ξ2 − ξ1)Hess τ(ξ1 + s(ξ2 − ξ1))(ξ2 − ξ1) = 0 for all s

since the Hessian is positive definite; and since it is never zero, we have that

ξ2 − ξ1 = 0, which shows that there is at most one critical point.

An example of such an operator is the Klein–Gordon equation.

Remark 4.4.1: Another consequence of Hess τ(ξ) being positive definite

is that the level sets {ξ ∈ Rn : τ(ξ) = λ}, λ ∈ R are all strictly convex;

indeed, if we parameterise the set by ξ(s), s ∈ [0,∞), where ξ(0) = ξ0 and,

by assumption, ξ̇(s) 6= 0, then ∇τ(ξ(s)) · ξ̇(s) = 0 (differentiate τ(ξ(s)) = λ),

and (differentiating again)

ξ̇(s)T ·Hess τ(ξ(s)) · ξ(s) +∇τ(ξ(s)) · ξ̈(s) = 0.
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Then, since Hess τ(ξ) is positive definite, the first term in this sum is positive,

hence the second is negative—which means that the angle between∇τ(ξ(s)),

that is, the normal to the level set, and ξ̈(s) is strictly greater than π/2, so

the level set is strictly convex. In particular, this shows that imposing the

condition Hess τ(ξ) positive definite is stronger than imposing the convexity

condition of Definition 3.2, and making it clear why we get a faster rate of

decay in this case (see the next section for that case).

Finally, we remark on the differences in the general case, det Hess τ(ξ) 6=
0. In this case, there may be many critical points; let us assume that

they are all isolated, so there is a small neighbourhood around each critical

point ξ0, Uξ0 , such that ξ0 is the only critical point in it and chosen so that

|x̃+∇τ(ξ)| ≤ r for some r > 0 (outside of this set we use the integration by

parts argument above). We estimate the volume of Uξ0 : suppose ξ1, ξ2 ∈ Uξ0 ;

then, by the mean value theorem,

∂ξjτ(ξ1)− ∂ξjτ(ξ2) = ∂2
ξjξk

τ(ξ′)(ξ1
k − ξ2

k) ,

for some ξ′ . Now, by assumption,

∣∣∂2
ξjξk

τ(ξ′)
∣∣ ≥ C(1 + |ξ′|)−M and

∣∣∂ξjτ(ξ1)− ∂ξjτ(ξ2)
∣∣ ≤ 2r .

Therefore, |ξ1
k − ξ2

k| ≤ Cr(1 + |ξ′|)M , and |ξ′| ≤ max(|ξ1|, |ξ2|). Thus,

choosing r sufficiently small, we see that the volume of Uξ0 is bounded

by C(1 + |ξ1|)Mn. So, using this in the above argument, we see that the

regularity of f must be made greater—take [Mn] + 1 more derivatives—to

compensate that the amplitude is a symbol of order −M/2−Mn.

Remark 4.4.2: If rankHess τ(ξ) = n − 1, then a similar argument can

be used to prove the corresponding part of Theorem 2.1.1, i.e. that there

is decay of order −n−1
2 . This is a consequence of an extension to Theo-

rem 4.4.2—see

4.4.2.2 detHess τ(ξ) = 0 and τ(ξ) satisfies the convexity condition

Assume that τ(ξ) satisfies the convexity condition of Definition 3.2. Set
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γ ≡ γ(τ) := supλ>0 γ(Σλ(τ)), where, as before,

Σλ(τ) = {ξ ∈ Rn : τ(ξ) = λ} .

and

γ(Σλ(τ)) := sup
σ∈Σλ(τ)

sup
P

γ(Σλ(τ);σ, P )

where the second supremum is over planes P containing the normal to Σλ(τ)

at σ and γ(Σλ(τ);σ, P ) denotes the order of the contact between the line

Tσ ∩ P—Tσ is the tangent plane at σ—and the curve Σλ(τ) ∩ P .

We have the following results which ensures that this is finite:

Lemma 4.4.4. Suppose τ : Rn → R is a characteristic root of a linear

mth order constant coefficient strictly hyperbolic partial differential operator ;

then, there exists a homogeneous function of order 1, ϕ(ξ), a characteristic

root of the principal symbol, such that

γ(Σλ(τ)) → ` ≤ γ(Σ1(ϕ)) as λ →∞ .

In particular, γ(τ) < ∞.

Proof. This is true because:

(a) by Proposition 3.1.5, Part II, Σλ(τ) is near to Σλ(ϕ) for large λ in a

suitable metric;

(b) by the homogeneity of ϕ, if |λ− λ′| is sufficiently small, then Σλ(ϕ) is

near to Σλ′(ϕ) for large λ in the same metric;

(c) Proposition 3.1.5, Part IV, ensures that Tσ(τ) is near to Tσ(ϕ) (because

derivatives of τ tend to those of ϕ) for large λ;

(d) so, with Σλ(τ) and Tσ(τ) near to (in a suitable sense) the corresponding

data of ϕ for large λ, it is clear that the γ(Σλ(τ);σ, P ) is near to

γ(Σλ(ϕ);σ, P ), and hence γ(Σλ(τ)) is near to γ(Σλ(ϕ));

(e) finally, γ(Σ1(ϕ)) = γ(Σλ(ϕ)) by homogeneity.
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We shall show

∥∥∥
∫

Rn

ei(x·ξ+τ(ξ)t)aj(ξ)f̂(ξ) dξ
∥∥∥

Lq

≤ C(1 + t)−
n−1

γ

(
1
p
− 1

q

)
‖f‖

W
Np,j
p

, (4.9)

for all t ≥ 0, where p−1 + q−1 = 1, 1 < p ≤ 2, Np,j ≥ n(p−1 − q−1)− j and

f ∈ C∞
0 (Rn).

Besov Space Reduction: We begin by following Brenner [Bre75] and

Sugimoto [Sug94] in using the theory of Besov spaces to reduce this to

showing, for all t ≥ 0,

∥∥∥F−1(eiτ(ξ)taj(ξ)Φl(ξ)f̂(ξ))(x, t)
∥∥∥

Lq
≤ C(1+t)−

n−1
γ

(
1
p
− 1

q

)
‖f‖

W
Np,j
p

; (4.10)

here {Φl(ξ)}∞l=0 is a Hardy–Littlewood partition: let Φ ∈ C∞
0 (Rn) such that

suppΦ =
{

ξ ∈ Rn :
1
2
≤ |ξ| ≤ 2

}
, Φ(ξ) > 0 for

1
2

< |ξ| < 2 ,

and
∞∑

k=−∞
Φ(2−kξ) = 1 for ξ 6= 0 ,

and set

Φ0(ξ) = 1−
∞∑

l=1

Φ(2−lξ) , Φl(ξ) := Φ(2−lξ) , l ∈ N .

Now, recall the definition of a Besov space, as given in, for example, Bergh

and Löfström [BL76]:

Definition 4.1. For suitable p, q, s ∈ R define the Besov norm by

‖f‖Bs
p,q

:= ‖F−1(Φ0(ξ)f̂(ξ))‖Lp +
( ∞∑

l=1

(2sl‖F−1(Φl(ξ)f̂(ξ))‖Lp)p
)1/q

;

the Besov space Bs
p,q is the space of functions in S(Rn) for which this norm

is finite.

This result is the main one we shall need:
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Theorem 4.4.5 ([BL76], Theorem 6.4.4). The following inclusions hold :

Bs
pp ⊂ W s

p ⊂ Bs
p2 and Bs

q2 ⊂ W s
q ⊂ Bs

qq

for all s ∈ R, 1 < p ≤ 2, 2 ≤ q < ∞.

Using this theorem, we have

∥∥∥
∫

Rn

ei(x·ξ+τ(ξ)t)aj(ξ)f̂(ξ) dξ
∥∥∥

Lq(Rn)
= (2π)n

∥∥F−1(eiτ(ξ)taj(ξ)f̂(ξ))(x, t)
∥∥

Lq

≤ C
∥∥F−1(eiτ(ξ)taj(ξ)f̂(ξ))(x, t)

∥∥
B0

q,2

= C
( ∞∑

l=0

∥∥F−1(eiτ(ξ)taj(ξ)Φl(ξ)f̂(ξ))(x, t)
∥∥2

Lq

)1/2

= C
( ∞∑

l=0

∥∥∥F−1(eiτ(ξ)taj(ξ)Φl(ξ)
l+1∑

r=l−1

Φr(ξ)f̂(ξ))(x, t)
∥∥∥

2

Lq

)1/2
;

in the final line we have used that
∑l+1

r=l−1 Φr(ξ) = 1 on suppΦl(ξ) by the

structure of the partition of unity. Now, assuming that (4.10) holds, this

can be further estimated:

( ∞∑

l=0

∥∥∥F−1(eiτ(ξ)taj(ξ)Φl(ξ)
l+1∑

r=l−1

Φr(ξ)f̂(ξ))(x, t)
∥∥∥

2

Lq

)1/2

≤ C(1 + t)−
n−1

γ

(
1
p
− 1

q

)( ∞∑

l=0

( l+1∑

r=l−1

‖F−1(Φr(ξ)f̂(ξ))‖
W

Np,j
p

)2)1/2

≤ C(1 + t)−
n−1

γ

(
1
p
− 1

q

)( ∞∑

l=0

l+1∑

r=l−1

‖F−1(Φr(ξ)f̂(ξ))‖2

W
Np,j
p

)1/2

≤ C(1 + t)−
n−1

γ

(
1
p
− 1

q

)( ∞∑

l=0

‖F−1(Φl(ξ)f̂(ξ))‖2

W
Np,j
p

)1/2
.
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Finally, using Theorem 4.4.5 once again,

( ∞∑

l=0

‖F−1(Φl(ξ)f̂(ξ))‖2

W
Np,j
p

) 1
2 ≤ C

( ∞∑

l=0

∑

|α|≤Np,j

‖Dα
x [F−1(Φl(ξ)f̂(ξ))]‖2

Lp

) 1
2

= C
∑

|α|≤Np,j

( ∞∑

l=0

‖F−1(Φl(ξ)D̂αf(ξ))]‖2
Lp

)1/2

= C
∑

|α|≤Np,j

‖Dαf‖B0
p,2
≤ C‖f‖

W
Np,j
p

.

Combining these estimates produces (4.9) as desired. So, it suffices to

prove (4.10); indeed, as shown above, this requires us to show two estimates

and then interpolate—Theorem 4.3.1 yields:

∥∥F−1(eiτ(ξ)taj(ξ)Φl(ξ)f̂(ξ))(x, t)
∥∥

L∞ ≤ C(1 + t)−
n−1

γ ‖f‖
W

N1−j
1

, (4.11)
∥∥F−1(eiτ(ξ)taj(ξ)Φl(ξ)f̂(ξ))(x, t)

∥∥
L2 ≤ C‖f‖

W−j
2

, (4.12)

where N1 > n.

L2 − L2 estimate: By Plancherel’s Theorem,

∥∥F−1(eiτ(ξ)taj(ξ)Φl(ξ)f̂(ξ))(x, t)
∥∥

L2 = C
∥∥eiτ(ξ)taj(ξ)Φl(ξ)f̂(ξ)

∥∥
L2 .

Then, since τ(ξ) is real-valued and aj(ξ) = O(|ξ|−j) as |ξ| → ∞,

∫

Rn

|eiτ(ξ)taj(ξ)Φl(ξ)f̂(ξ)|2 dξ ≤ C

∫

|ξ|≥N
|ξ|−2j |f̂(ξ)|2 dξ ≤ C‖f‖

W−j
2

.

Note that C is independent of l because aj(ξ)|ξ|j is uniformly bounded

in Rn. This proves the required estimate (4.12).
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L1 − L∞ estimate: First, suppose 0 ≤ t < 1; then

∥∥∥
∫

Rn

ei(x·ξ+τ(ξ)t)aj(ξ)Φl(ξ)f̂(ξ) dξ
∥∥∥

L∞
≤ C

∫

|ξ|≥N
|ξ|−j |f̂(ξ)| dξ

≤ C

∫

|ξ|≥N
|ξ|−N1 dξ

∥∥|ξ|N1−j f̂(ξ)
∥∥

L∞

≤ C‖DN1−jf‖L1 = C‖f‖
W

N1−j
1

, (4.13)

where N1 > n.

For t ≥ 1, we show

∥∥∥
∫

Rn

ei(x·ξ+τ(ξ)t)aj(ξ)Φl(ξ)f̂(ξ) dξ
∥∥∥

L∞
≤ Ct−(n−1)/γ‖f‖

W
n−n−1

γ −j

1

; (4.14)

we claim it suffices to prove that there exists a constant C > 0 which is

independent of l such that, for all t ≥ 1,

∥∥∥∥
∫

Rn

ei(x·ξ+τ(ξ)t)aj(ξ)|ξ|
n−1

γ
−n+jΦl(ξ) dξ

∥∥∥∥
L∞

≤ Ct−(n−1)/γ . (4.15)

Indeed,

∫

Rn

ei(x·ξ+τ(ξ)t)aj(ξ)Φl(ξ)f̂(ξ) dξ = (2π)nF−1(eiτ(ξ)taj(ξ)Φl(ξ)f̂(ξ))

= (2π)nF−1
ξ→x[eiτ(ξ)taj(ξ)Φl(ξ)](x, t) ∗ f(x)

=
(∫

Rn

ei(x·ξ+τ(ξ)t)aj(ξ)Φl(ξ) dξ
)
∗ f(x) ,

where we have used F−1[ĝĥ] = g ∗ h, and

(∫

Rn

ei(x·ξ+τ(ξ)t)aj(ξ)Φl(ξ) dξ
)
∗ f(x)

=
(∫

Rn

|Dx|n−
n−1

γ
−j

ei(x·ξ+τ(ξ)t)aj(ξ)Φl(ξ)|ξ|
n−1

γ
−n+j

dξ
)
∗ f(x)

= |Dx|n−
n−1

γ
−j

(∫

Rn

ei(x·ξ+τ(ξ)t)aj(ξ)Φl(ξ)|ξ|
n−1

γ
−n+j

dξ
)
∗ f(x)

=
(∫

Rn

ei(x·ξ+τ(ξ)t)aj(ξ)Φl(ξ)|ξ|
n−1

γ
−n+j

dξ
)
∗ |Dx|n−

n−1
γ
−j

f(x) ;

also,

‖g ∗ h‖L∞ ≤ ‖g‖L∞‖h‖L1 ,
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for all g ∈ L∞(Rn), h ∈ L1(Rn). Combining all these proves the claim.

In order to show (4.15), we can Theorem 3.2.4 as τ : Rn → R is assumed

to satisfy the convexity condition; let us check each hypothesis holds:

• Hypothesis (i): by Proposition 3.1.5, Part III,

|∂α
ξ τ(ξ)| ≤ Cα|ξ|1−|α| for all |ξ| ≥ N ,

for all multi-indices α; this suffices for the hypothesis to hold since aj(ξ)

is supported away from the origin.

• Hypothesis (ii) and hypothesis (iii): these follow by using perturbation

methods. By Proposition 3.1.5, Part IV, there exists a homogeneous

function ϕ(ξ) of order 1 such that, for all |ξ| ≥ N and k = 1, . . . , n,

|τ(ξ)− ϕ(ξ)| ≤ C0 and |∂ξk
τ(ξ)− ∂ξk

ϕ(ξ)| ≤ Ck|ξ|−1 ,

for some constants C0, Ck > 0. Now, the homogeneity of ϕ(ξ) implies that

ϕ(ξ) = |ξ|ϕ( ξ
|ξ|) and ek ·∇ϕ(ek) = ϕ(ek), where ek = (0, . . . , 0, 1︸ ︷︷ ︸

k

, 0, . . . , 1),

so

|ϕ(ξ)| ≥ C ′|ξ| for all ξ ∈ Rn and |∂ωϕ(λω)| ≥ C ′ for all ω ∈ Sn−1, λ > 0 ,

for some constant C ′ > 0. Thus,

|τ(ξ)| ≥ |ϕ(ξ)| − |τ(ξ)− ϕ(ξ)| ≥ C ′|ξ| − C0 ≥ C|ξ| for |ξ| ≥ M , (4.16)

some constants M,C > 0, and

|∂ωτ(λω)| ≥ |∂ωϕ(λω)| − |∂ωϕ(λω)− ∂ωτ(λω)| ≥ C ′ − Ckλ
−1 ≥ C > 0

for all ω ∈ Sn−1 and suitably large λ; for small λ > 0, ∂ωτ(λω) is separated

from 0 by the convexity condition, so |∂ωτ(λω)| ≥ C > 0 for all ω ∈ Sn−1,

λ > 0, as required.

• Hypothesis (iv)—there exists a constant R1 > 0 such that, for all λ > 0,
1
λΣλ(τ) ⊂ BR1(0)—holds by Proposition 3.1.5, Part II, and the fact that
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1
λΣλ(ϕ) = Σ1(ϕ) for the characteristic root of the principal symbol ϕ

corresponding to τ . Also, γ < ∞ by Lemma 4.4.4 above.

• aj(ξ)|ξ|
n−1

γ
−n+j is a symbol of order n−1

γ − n since a(ξ) = O(|ξ|−j) as

|ξ| → ∞ and because it is zero in a neighbourhood of the origin.

• the partition of unity {Φl(ξ)}∞l=1 is in the form of gR(ξ) as required by

Theorem 3.2.4.

Therefore, for t ≥ 1,

∣∣∣
∫

Rn

ei(x·ξ+τ(ξ)t)aj(ξ)|ξ|
n−1

γ
−n+jΦl(ξ) dξ

∣∣∣ ≤ Ct−(n−1)/γ .

Hence, we have (4.14), which, together with (4.13), proves (4.11); this com-

pletes the proof of Theorem 2.1.1, Part I, for roots on the real axis with

convexity condition γ.

4.4.2.3 General case when detHess τ(ξ) = 0

The general case depends upon Theorem 3.3.4, just as the case where

the convexity condition holds depends upon Theorem 3.2.4; for this reason

we introduce ga0 ≡ γ0(τ) := supλ>0 γ0(Σλ(τ)), where,

γ0(Σλ(τ)) := sup
σ∈Σλ(τ)

inf
P

γ(Σλ(τ);σ, P )

(all notation as before). For this quantity we have the analogous result to

Lemma 4.4.4, which can be proved in the same way:

Lemma 4.4.6. If τ : Rn → R is a characteristic root of a linear mth or-

der constant coefficient strictly hyperbolic partial differential operator, then,

there exists a homogeneous function of order 1, ϕ(ξ), a characteristic root

of the principal symbol, such that

γ0(Σλ(τ)) → ` ≤ γ0(Σ1(ϕ)) as λ →∞ .

In particular, γ0(τ) < ∞.
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We shall show

∥∥∥
∫

Rn

ei(x·ξ+τ(ξ)t)aj(ξ)f̂(ξ) dξ
∥∥∥

Lq

≤ C(1 + t)−
1

γ0

(
1
p
− 1

q

)
‖f‖

W
Np,j
p

,

for all t ≥ 0, where p−1 + q−1 = 1, 1 < p ≤ 2, Np,j ≥ n(p−1 − q−1)− j and

f ∈ C∞
0 (Rn).

As in the case of above, this can be reduced, via a Besov space reduction

the interpolation Theorem 4.3.1, to showing

∥∥F−1(eiτ(ξ)taj(ξ)Φl(ξ)f̂(ξ))(x, t)
∥∥

L∞ ≤ Ct
− 1

γ0 ‖f‖
W

N1−j
1

,

∥∥F−1(eiτ(ξ)taj(ξ)Φl(ξ)f̂(ξ))(x, t)
∥∥

L2 ≤ C‖f‖
W−j

2
,

where the partition of unity {Φl(ξ)}∞l=1 is as above and N1 > 1.

The L2 estimate follows by the Plancherel Theorem in the same way as

before.

For the L1 − L∞ estimate, the case 0 ≤ t < 1 is as in (4.13); for t ≥ 1 it

suffices to show (see the earlier argument),

∥∥∥∥
∫

Rn

ei(x·ξ+τ(ξ)t)aj(ξ)|ξ|
1

γ0
−n+jΦl(ξ) dξ

∥∥∥∥
L∞

≤ Ct−1/γ0 .

This follows by Theorem 3.3.4: the hypotheses of this hold by the same argu-

ments as above—the convexity condition is not required for the perturbation

methods employed—and Lemma 4.4.6.

This completes the proof of Theorem 2.1.1 for roots on the real axis.

4.4.3 Phase function asymptotic to real axis

Here we consider the case where the phase function τ(ξ) satisfies

Im τ(ξ) → 0 as |ξ| → ∞ ;

we remark that the results here are consistent with those when Im τ(ξ) ≡ 0.

As in the case of the phase function lying on the real axis, we split into

subcases; we consider the following two:

(i) detHess τ(ξ) 6= 0; in this case we use the method of stationary phase;
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(ii) detHess τ(ξ) = 0; in this case, we use Theorem 3.3.5.

Remark 4.4.3: Unlike in the case of the phase function τ(ξ) lying on

the real axis, we do not consider a case where the phase function satisfies

a “convexity condition”. The reason for this is twofold: firstly, there is

no straightforward analog of the convexity condition for real-valued phase

functions as the presence of the non-zero imaginary part causes problems;

secondly, there are no common examples of this situation, and hence it does

not seem worthwhile developing a complicated theory for a situation which

may not arise.

4.4.3.1 detHess τ(ξ) 6= 0

This can be done in exactly the same way as that in Section 4.4.2.1,

since Theorem 4.4.2 holds for integrals with complex phase functions.

4.4.3.2 detHess τ(ξ) = 0

The result for this case is similar to that for the general case when the

imaginary part is zero; instead, though, we shall use Theorem 3.3.5; this

time, set γ0 = γ0(Re τ) = supλ>0 γ0(Σλ(Re τ)), and note that

Lemma 4.4.7. If τ : Rn → C is a characteristic root of a linear mth order

constant coefficient strictly hyperbolic partial differential operator such that

Im τ(ξ) → 0 as |ξ| → ∞, then, there exists a homogeneous function of

order 1, ϕ(ξ), a characteristic root of the principal symbol, such that

γ0(Σλ(Re τ)) → ` ≤ γ0(Σ1(ϕ)) as λ →∞ .

In particular, γ0(Re τ) < ∞.

Proof. The hypothesis that the imaginary part goes to zero as |ξ| → ∞ im-

plies that |τ(ξ)−Re τ(ξ)| → 0 as |ξ| → ∞. With this additional observation,

the proof of Lemma 4.4.4 can then be used once more.

We claim that, as in the general case when τ is real-valued,

∥∥∥
∫

Rn

ei(x·ξ+τ(ξ)t)aj(ξ)f̂(ξ) dξ
∥∥∥

Lq
≤ C(1 + t)−

1
γ0

(
1
p
− 1

q

)
‖f‖

W
Np,j
p

,
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for all t ≥ 0, where p−1 + q−1 = 1, 1 < p ≤ 2, Np,j ≥ n(p−1 − q−1)− j and

f ∈ C∞
0 (Rn).

Again, a Besov space reduction and Theorem 4.3.1 mean that it suffices

to show

∥∥F−1(eiτ(ξ)taj(ξ)Φl(ξ)f̂(ξ))(x, t)
∥∥

L∞ ≤ Ct
− 1

γ0 ‖f‖
W

N1−j
1

,

∥∥F−1(eiτ(ξ)taj(ξ)Φl(ξ)f̂(ξ))(x, t)
∥∥

L2 ≤ C‖f‖
W−j

2
.

As Im τ(ξ) ≥ 0 for all ξ ∈ Rn, the L2 estimate, and the L1−L∞ estimate in

the case 0 ≤ t < 1, hold just as in the case for a real-valued phase function.

To prove the L1 − L∞ estimate for t ≥ 1, for which it suffices to show

∥∥∥∥
∫

Rn

ei(x·ξ+τ(ξ)t)aj(ξ)|ξ|
1

γ0
−n+jΦl(ξ) dξ

∥∥∥∥
L∞

≤ Ct−1/γ0 , (4.17)

we use Theorem 3.3.5; we must check that the phase function satisfies the

hypotheses of this theorem:

• Hypothesis (i) follows by Proposition 3.1.5: Part III implies that for all

|ξ| ≥ N and multi-indices α,

|∂α
ξ Re τ(ξ)| ≤ |∂α

ξ τ(ξ)| ≤ C|ξ|1−|α| ,

which suffices for the first part of the hypothesis to hold. Furthermore,

Part IV tells us that for all |ξ| ≥ N and multi-indices α,

|∂α
ξ [Re τ(ξ)− ϕ(ξ)] + i∂α

ξ Im τ(ξ)| = |∂α
ξ τ(ξ)− ∂α

ξ ϕ(ξ)| ≤ C|ξ|−|α| ,

where ϕ(ξ) is a characteristic root of the principal part (and is thus real-

valued by definition of hyperbolicity); this implies that, for all |ξ| ≥ N

and multi-indices α,

|∂α
ξ [Re τ(ξ)− ϕ(ξ)]| ≤ C|ξ|−|α| and |∂α

ξ Im τ(ξ)| ≤ C|ξ|−|α| . (4.18)

The second of these gives us the second part of the hypothesis.

• For hypothesis (ii), note that there exist constants C, C ′, C ′′, M > 0 such
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that, for all |ξ| ≥ M ,

|Re τ(ξ)| ≥ |τ(ξ)| − |Im τ(ξ)| ≥ C ′|ξ| − C ′′ ≥ C|ξ| .

Here we have used (4.16), which did not require τ to be real-valued (nor

to satisfy the convexity condition), simply to be a characteristic root of a

linear constant coefficient strictly hyperbolic partial differential equation,

and the second part of (4.18).

• Hypothesis (iii) is shown to hold in a similar way: using the corresponding

hypothesis for the real-valued case above (which does not use that τ is

real-valued) and (4.18), we have, for λ ≥ M , some M > 0,

|∂ω Re τ(λω)| ≥ |∂ωτ(λω)| − |∂ω Im τ(λω)| ≥ C ′ − C ′′λ−1 ≥ C .

For small λ > 0, we simply extend Re τ(ξ) so that this holds—this is

possible as the integrand is supported for large |ξ| only.

• Hypothesis (iv) follows from |Re τ(ξ) − ϕ(ξ)| ≤ C for all ξ ∈ Rn (see

earlier—this holds in all Rn by Part II of Proposition 3.1.5. We have

γ0 < ∞ by Lemma 4.4.7. Finally, aj(ξ) and Φl(ξ) satisfy the required

conditions in the same way as for the real-valued case.

So, all the hypotheses of Theorem 3.3.5 hold, and hence we have (4.17).

This completes the proof of Theorem 2.1.1, Part I.

4.5 Step 5: Estimates for Bounded |ξ| Away

from Multiplicities

In this section we find Lp − Lq estimates for integrals of the kind

∫

Ω
ei(x·ξ+τ(ξ)t)a(ξ)f̂(ξ) dξ ,

where Ω ⊂ Rn is open and bounded, f ∈ C∞
0 (Rn), a ∈ C∞

0 (Ω), τ ∈ Cω(Ω)

(by Proposition 3.1.3) and Im τ(ξ) ≥ 0 for all ξ ∈ Ω.

As in the case of large |ξ|, we can further split this into three main cases

by using suitable cut-off functions:
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1. τ(ξ) is separated from the real axis for all ξ ∈ Ω;

2. τ(ξ) meets the real axis with order s < ∞ at a point ξ0 ∈ Ω;

3. τ(ξ) lies on the real axis for all ξ ∈ Ω.

We look at each in turn.

4.5.1 Phase function separated from the real axis

Similarly to the case for large |ξ|, we show that when the phase func-

tion τ(ξ) is separated from the real axis (here, for ξ ∈ Ω),

∥∥∥Dr
t D

α
x

(∫

Ω
ei(x·ξ+τ(ξ)t)a(ξ)f̂(ξ) dx

)∥∥∥
Lq
≤ Ce−δt‖f‖Lp , (4.19)

where p−1 + q−1 = 1, 1 ≤ p ≤ 2, Np ≥ n
(

1
p − 1

q

)
, r ≥ 0, α a multi-index,

f ∈ C∞
0 (Rn), δ > 0 is a constant such that Im τ(ξ) ≥ δ for all ξ ∈ Ω and

C ≡ CΩ,r,α,p > 0. So, in this case we have also have exponential decay of

the solution.

By interpolating (Theorem 4.3.1), it suffices to show for such τ(ξ)

∥∥∥Dr
t D

α
x

(∫

Ω
ei(x·ξ+τ(ξ)t)a(ξ)f̂(ξ) dx

)∥∥∥
L∞

≤ Ce−δt‖f‖L1 ,

∥∥∥Dr
t D

α
x

(∫

Ω
ei(x·ξ+τ(ξ)t)a(ξ)f̂(ξ) dx

)∥∥∥
L2
≤ Ce−δt‖f‖L2 ,

for t > 0, where N1 > n, r ≥ 0 and α is a multi-index.

These are proved in a similar way to Proposition 4.4.1, but noting that

the boundedness of Ω and the continuity in Ω of τ(ξ)ra(ξ) ensure there exists

a constant CΩ,r,α ≡ C > 0 such that |τ(ξ)|r|a(ξ)||ξ||α| ≤ C for all ξ ∈ Ω.

Then, for all t > 0 and r, α as above,

∣∣∣Dr
t D

α
x

(∫

Ω
ei(x·ξ+τ(ξ)t)a(ξ)f̂(ξ) dx

)∣∣∣ =
∣∣∣
∫

Ω
ei(x·ξ+τ(ξ)t)a(ξ)ξατ(ξ)rf̂(ξ) dx

∣∣∣

≤ C

∫

Ω
e− Im τ(ξ)t|a(ξ)||ξ||α||τ(ξ)|r|f̂(ξ)| dx

≤ C

∫

Ω
e− Im τ(ξ)t|f̂(ξ)| dx ≤ Ce−δt‖f̂‖L∞(Ω) ≤ Ce−δt‖f‖L1 ,
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and

∥∥∥Dr
t D

α
x

(∫

Ω
ei(x·ξ+τ(ξ)t)a(ξ)f̂(ξ) dx

)∥∥∥
L2(Rn

x)
=

∥∥eiτ(ξ)ta(ξ)ξατ(ξ)rf̂(ξ)
∥∥

L2(Ω)

=
(∫

Ω
e−2 Im τ(ξ)t|a(ξ)|2|ξα|2|τ(ξ)|2r|f̂(ξ)|2 dx

)1/2

≤ Ce−δt‖f̂‖L2(Ω) ≤ Ce−δt‖f‖L2 .

We have proved Theorem 2.1.1, Part II for roots away from the axis with

no multiplicities.

4.5.2 Phase function meeting the real axis with finite order

In the case of bounded |ξ|, we must also consider the situation where the

phase function τ(ξ) meets the real axis. Suppose ξ0 ∈ Ω is such a point, i.e.

Im τ(ξ0) = 0, while in each punctured ball around ξ0, B′
ε(ξ0) ⊂ Ω, ε > 0,

there exists ξ ∈ B′
ε(ξ0) so that Im τ(ξ) > 0. Then, we claim that ξ0 is a root

of Im τ(ξ) of finite order s: indeed, if ξ0 were a zero of Im τ(ξ) of infinite

order, then, by the analyticity of Im τ(ξ) at ξ0 (which follows straight from

the analyticity of τ(ξ) at ξ0) it would be identically zero in a neighbourhood

of ξ0, contradicting the assumption.

Furthermore, we claim s ≥ 2, s is even, and that there exist constants

c0, c1 > 0 such that, for all ξ sufficiently close to ξ0,

c0|ξ − ξ0|s ≤ |Im τ(ξ)| ≤ c1|ξ − ξ0|s .

The Taylor expansion of Im τ(ξ) around ξ0,

Im τ(ξ) =
n∑

i=1

∂ξi Im τ(ξ0)(ξi − (ξ0)i) + O(|ξ − ξ0|2) ,

is valid for ξ ∈ Bε(ξ0) ⊂ Ω for some small ε > 0. Now, if ξ ∈ Bε(ξ0), then

−ξ + 2ξ0 ∈ Bε(ξ0) also. However,

Im τ(−ξ + 2ξ0) = −
n∑

i=1

∂ξi Im τ(ξ0)(ξi − (ξ0)i) + O(|ξ − ξ0|2) ;

thus, for ε > 0 chosen small enough, this means that either Im τ(ξ) ≤ 0
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or Im τ(−ξ + 2ξ0) ≤ 0—contradicting the hypothesis that Im τ(ξ) ≥ 0 for

all ξ ∈ Ω; hence, ∂ξi
Im τ(ξ0) = 0 for each i = 1, . . . , n. In conclusion,

Im τ(ξ) = O(|ξ − ξ0|2) for all ξ ∈ Bε(ξ0), which means that the zero is

of order s ≥ 2, and a similar argument shows that s must be even; also,

this means that there exist c0, c1 > 0 so that the above inequality holds for

ξ ∈ Bε(ξ0), proving the claim.

Now, we need the following result, which is based in the calculation of

the Lp − Lq decay estimate for the dissipative wave equation in [Mat76],

but is here extended to a more general situation so that it can be used on a

wider class of equations:

Proposition 4.5.1. Let φ : U → R, U ⊂ Rn open, be a continuous function

and suppose ξ0 ∈ U such that φ(ξ0) = 0 and that φ(ξ) > 0 in a punctured

open neighbourhood of ξ0, denoted by V \ {ξ0}. Furthermore, assume that,

for some s > 0, there exists a constant c0 > 0 such that, for all ξ ∈ V ,

φ(ξ) ≥ c0|ξ − ξ0|s .

Then, for any function a(ξ) that is bounded and compactly supported in U ,

and for all t ≥ 0, f ∈ C∞
0 (Rn), and r ∈ R,

∫

V
e−φ(ξ)t|ξ − ξ0|r|a(ξ)||f̂(ξ)| dξ ≤ C(1 + t)−(n+r)/s‖f‖L1 , (4.20)

and

∥∥e−φ(ξ)t|ξ − ξ0|ra(ξ)f̂(ξ)
∥∥

L2(V )
≤ C(1 + t)−r/s‖f‖L2 . (4.21)

Proof. First, we give a straightforward result that is useful in proving each

of the estimates:

Lemma 4.5.2. For each ρ,M ≥ 0 and ς, c > 0 there exists C ≡ Cρ,ς,M,c ≥ 0

such that, for all t ≥ 0,

∫ M

0
xρe−cxς t dx ≤ C(1 + t)−(ρ+1)/ς and sup

0≤x≤M
xρe−cxς t ≤ C(1 + t)−ρ/ς .

Proof. For 0 ≤ t ≤ 1, each is clearly bounded: the first by Mρ+1

ρ+1 and the
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second by Mρ. For t > 1, set y = xt1/ς ; with this substitution, the first

becomes

∫ Mt1/ς

0
yρt−ρ/ςe−cyς

t−1/ς dy ≤ t−(ρ+1)/ς

∫ ∞

0
yρe−cyς

dy ,

while the second becomes

sup
0≤y≤Mt1/ς

yρt−ρ/ςe−cyς ≤ t−ρ/ς sup
y≥0

yρe−cyς
;

that the right-hand side of each is then bounded follows from standard

results.

Returning to the proof of (4.20), as a(ξ) is bounded in U by assumption,

we have

∫

V
e−φ(ξ)t|ξ − ξ0|r|a(ξ)||f̂(ξ)| dξ ≤ C

∫

V ′
e−φ(ξ)t|ξ − ξ0|r|f̂(ξ)| dξ ,

where V ′ = V ∩ supp a; this, in turn, can be estimated in the following

manner using the hypothesis on φ(ξ) and Hölder’s inequality:

∫

V ′
e−φ(ξ)t|ξ − ξ0|r|f̂(ξ)| dξ ≤ C

∫

V ′
e−c0|ξ−ξ0|st|ξ − ξ0|r|f̂(ξ)| dξ

≤ C

∫

V ′
e−c0|ξ−ξ0|st|ξ − ξ0|r dξ‖f̂‖L∞(V ′) .

Then, transforming to polar coordinates and using the Hausdorff–Young

inequality, we find that, for some ε > 0 (chosen so that V ′ ⊂ Bε(ξ0), possible

since a(ξ) is compactly supported),

∫

V ′
e−c0|ξ−ξ0|st|ξ − ξ0|r dξ‖f̂‖L∞(V ′)

≤ C

∫

Sn−1

∫ ε

0
|η|r+n−1e−c0|η|st d|η|dω‖f‖L1(Rn) ,

Finally, by the first part of Lemma 4.5.2, we find

∫

V
e−φ(ξ)t|ξ − ξ0|r|a(ξ)||f̂(ξ)| dξ ≤ C

∫ ε

0
yr+n−1e−c0yst dy‖f‖L1(Rn)

≤ C(1 + t)−(n+r)/s‖f‖L1 .
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This completes the proof of the first part.

Now let us look at the second part. By the second part of Lemma 4.5.2,

∥∥e−φ(ξ)t|ξ − ξ0|ra(ξ)f̂(ξ)
∥∥2

L2(V )
≤

∫

V ′
e−2c0|ξ−ξ0|st|ξ − ξ0|2r|f̂(ξ)|2 dξ

≤ C(1 + t)−2r/s

∫

V ′
e−c0|ξ−ξ0|st|f̂(ξ)|2 dξ .

The Hölder inequality implies that

∫

V ′
e−c0|ξ−ξ0|st|f̂(ξ)|2 dξ ≤ sup

V ′

∣∣e−c0|ξ−ξ0|st
∣∣‖f̂‖2

L2(V ′) ≤ C‖f‖2
L2 .

Together these give the required estimate (4.21).

So, using this proposition, we have, for all t > 0, and sufficiently small

ε > 0,

∥∥∥Dr
t D

α
x

∫

Bε(ξ0)
ei(x·ξ+τ(ξ)t)a(ξ)f̂(ξ) dξ

∥∥∥
L∞(Rn

x)

≤
∫

Bε(ξ0)
e− Im τ(ξ)t|a(ξ)||τ(ξ)|r|ξ|α|f̂(ξ)| dξ ≤ C(1 + t)−n/s‖f‖L1 ,

and, using the Plancherel Theorem,

∥∥∥Dr
t D

α
x

∫

Bε(ξ0)
ei(x·ξ+τ(ξ)t)a(ξ)f̂(ξ) dξ

∥∥∥
L2(Rn

x)

= C
∥∥eiτ(ξ)tτ(ξ)rξαa(ξ)f̂(ξ)

∥∥
L2(Bε(ξ0))

≤ C‖f‖L2 ;

here we have used that |ξ||α||τ(ξ)|r ≤ C for ξ ∈ V ′ for r ∈ N, α a multi-index.

Thus, by Theorem 4.3.1, for all t > 0,

∥∥∥Dr
t D

α
x

∫

Bε(ξ0)
ei(x·ξ+τ(ξ)t)a(ξ)f̂(ξ) dξ

∥∥∥
Lq(Rn

x)
≤ C(1 + t)−

n
s

(
1
p
− 1

q

)
‖f‖Lp ,

(4.22)

where 1 ≤ p ≤ 2, p−1 +q−1 = 1. This completes the proof of Theorem 2.1.1,

Part II for roots meeting the axis with finite order and no multiplicities.
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Remark 4.5.1: If ξ0 = 0, then Proposition 4.5.1 further tells us that

∥∥∥Dr
t D

α
x

∫

Bε(0)
ei(x·ξ+τ(ξ)t)a(ξ)f̂(ξ) dξ

∥∥∥
Lq(Rn

x)
≤ C(1 + t)−

n+|α|
s

(
1
p
− 1

q

)
‖f‖Lp ,

while, if Re τ(ξ0) = 0, and so |τ(ξ)| ≤ |Im τ(ξ)| ≤ c1|ξ − ξ0|s for ξ near ξ0,

then we get

∥∥∥Dr
t D

α
x

∫

Bε(ξ0)
ei(x·ξ+τ(ξ)t)a(ξ)f̂(ξ) dξ

∥∥∥
Lq(Rn

x)
≤ C(1+ t)−

(
n
s
+r

)(
1
p
− 1

q

)
‖f‖Lp .

4.5.3 Phase function lies on the real axis

As in the case of large |ξ|, we can subdivide into several subcases:

(i) detHess τ(ξ) 6= 0;

(ii) detHess τ(ξ) = 0 and τ(ξ) satisfies the convexity condition;

(iii) the general case when det Hess τ(ξ) = 0.

For the first case, the approach used in Section 4.4.2.1 can be used here also,

since there we do not use that |ξ| is large other than to ensure that τ(ξ) was

smooth; here, we are away from multiplicities, so that still holds. Therefore,

the conclusion is the same, giving Theorem 2.1.1, Part II for roots on the

axis, with no multiplicities satisfying det Hess τk(ξ) 6= 0

The other two cases are considered in the next section alongside the case

where there are multiplicities since it is important precisely how the integral

is split up for such cases.

4.6 Step 6: Estimates for Bounded |ξ| Around

Multiplicities

Finally, let us turn to finding estimates for the first term of (4.7), which we

may write in the form

∫

Ω
eix·ξ

( L∑

k=1

eiτk(ξ)tAk
j (ξ, t)

)
χ(ξ)f̂(ξ) dξ ,
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where the characteristic roots τ1(ξ), . . . , τL(ξ) coincide on a set M ⊂ Ω of

codimension ` (in the sense of Corollary 4.2.2), Ω ⊂ Rn is a bounded open

set and χ ∈ C∞
0 (Ω).

As in Section 4.6, we must consider the cases where the image of the

phase function(s) either lie on the real axis, are separated from the real axis

or meet the real axis. One additional thing to note in this case is that the

order of contact at points of multiplicity may be infinite as the roots are not

necessarily analytic at such points; we have no examples of such a situation

occurring, so it is not worth studying too deeply unless such an example can

be found—for now, we can use the same technique as if the point(s) were

points where the roots lie entirely on the real axis, and the results in these

two situations are given together in Theorem 2.1.1.

Unlike in the case away from multiplicities of characteristic roots, we

have no explicit representation for the coefficients Ak
j (ξ, t), which in turn

means we cannot split this into L separate integrals. To overcome this, we

first show, in Section 4.6.1, that a useful representation for the above integral

exists that allows us to use techniques from earlier. Using this alternative

representation, it is a simple matter to find estimates in the case where the

image of the set M is separated from the real axis and when it arises on the

real axis as a result of all the roots meeting the axis with finite order, and

these are done in Sections 4.6.2 and 4.6.3 respectively.

The situations where the roots meet on the real axis and at least one

has a zero of infinite order there (either because it fully lies on the axis, or

because it meets the axis with infinite order) is slightly more complicated;

this is discussed in Section 4.6.4.

4.6.1 Resolution of multiple roots

In this section, we find estimates for

L∑

k=1

eiτk(ξ)tAk
j (ξ, t) ,

where τ1(ξ), . . . , τL(ξ) coincide on a set M of codimension `. For simplicity,

first consider the simplest case, L = 2 and M = {ξ0}; the general case works
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in a similar way, and we shall show how it differs below. So, assume

τ1(ξ0) = τ2(ξ0) and τk(ξ0) 6= τ1(ξ0) for k = 3, . . . , m ;

by continuity, there exists a ball of radius ε > 0 about ξ0, Bε(ξ0), in which

the only root which coincides with τ1(ξ) is τ2(ξ). Then:

Lemma 4.6.1. For all t ≥ 0 and ξ ∈ Bε(ξ0),

∣∣∣
2∑

k=1

eiτk(ξ)tAk
j (ξ, t)

∣∣∣ ≤ C(1 + t)e−min(Im τ1(ξ),Im τ2(ξ))t . (4.23)

Proof. First, note that in the set

S := {ξ ∈ Rn : τ1(ξ) 6= τk(ξ) ∀k = 2, . . . , m and τ2(ξ) 6= τl(ξ)∀l = 3, . . . ,m}

the formula (4.4) is valid for A1
j (ξ) and A2

j (ξ). Now, recall that Ej(ξ, t) =
∑m

k=1 eiτk(ξ)tAk
j (ξ, t) is the solution to the Cauchy problem (4.2a), (4.2c),

and thus is continuous; therefore, for all η ∈ Rn such that τ1(η) 6= τk(η) and

τ2(η) 6= τk(η) for k = 3, . . . , m (but allow τ1(η) = τ2(η)),

2∑

k=1

eiτk(η)tAk
j (t, η) = lim

ξ→η

(
eiτ1(ξ)tA1

j (ξ) + eiτ2(ξ)tA2
j (ξ)

)
,

provided ξ varies in the set S (thus, ensuring eiτ1(ξ)tA1
j (ξ) + eiτ2(ξ)tA2

j (ξ) is

well-defined). Hence, to obtain (4.23) for all ξ ∈ Bε(ξ0), it suffices to show

∣∣eiτ1(ξ)tA1
j (ξ) + eiτ2(ξ)tA2

j (ξ)
∣∣ ≤ Cte−min(Im τ1(ξ),Im τ2(ξ))t

for all t ≥ 0, ξ ∈ B′
ε(ξ0) = Bε(ξ0) \ {ξ0}.
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Now, note the following trivial equality:

K1e
iy1+K2e

iy2 = K1e
iy2ei(y1−y2) + K2e

iy1e−i(y1−y2)

=
ei(y1−y2) − e−i(y1−y2)

2
K1e

iy2 +
ei(y1−y2) + e−i(y1−y2)

2
K1e

iy2

+
e−i(y1−y2) − ei(y1−y2)

2
K2e

iy1 +
e−i(y1−y2) + ei(y1−y2)

2
K2e

iy1

= sinh(y1 − y2)[K1e
iy2 −K2e

iy1 ] + cosh(y1 − y2)[K1e
iy2 + K2e

iy1 ] .

Using this, we have, for all ξ ∈ B′
ε(ξ0), t ≥ 0,

eiτ1(ξ)tA1
j (ξ) + eiτ2(ξ)tA2

j (ξ)

= sinh[(τ1(ξ)− τ2(ξ))t](eiτ2(ξ)tA1
j (ξ)− eiτ1(ξ)tA2

j (ξ))

+ cosh[(τ1(ξ)− τ2(ξ))t](eiτ2(ξ)tA1
j (ξ) + eiτ1(ξ)tA2

j (ξ)) . (4.24)

We estimate each of these terms:

(a) “sinh” term: The first term is simple to estimate: since

sinh[(τ1(ξ)− τ2(ξ))t]
(τ1(ξ)− τ2(ξ))

→ t as (τ1(ξ)− τ2(ξ)) → 0 ,

or, equivalently, as ξ → ξ0 through S, and Ak
j (ξ)(τ1(ξ)− τ2(ξ)) is con-

tinuous in Bε(ξ0) for k = 1, 2, it follows that, for all ξ ∈ B′
ε(ξ0), t ≥ 0,

∣∣sinh[(τ1(ξ)− τ2(ξ))t](A1
j (ξ)e

iτ2(ξ)t −A2
j (ξ)e

iτ1(ξ)t)
∣∣

≤ Ct[|eiτ2(ξ)t|+ |eiτ1(ξ)t|] ≤ Cte−min(Im τ1(ξ),Im τ2(ξ))t . (4.25)

(b) “cosh” term: Estimating the second term is slightly more complicated.

First, recall the explicit representation (4.4) for the Ak
j (ξ) at points

away from multiplicities of τk(ξ):

Ak
j (ξ) =

(−1)j
∑k

1≤s1<···<sm−j−1≤m

m−j−1∏

q=1

τsq(ξ)

m∏

l=1,l 6=k

(τl(ξ)− τk(ξ))

.
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So, we can write

cosh[(τ1(ξ)− τ2(ξ))t](A1
j (ξ)e

iτ2(ξ)t + A2
j (ξ)e

iτ1(ξ)t)

=
cosh[(τ1(ξ)− τ2(ξ))t]∏m

k=3(τk(ξ)− τ1(ξ))(τk(ξ)− τ2(ξ))
eiτ2(ξ)tF 1,2

j+1(ξ)− eiτ1(ξ)tF 2,1
j+1(ξ)

τ1(ξ)− τ2(ξ)
,

where

F ρ,σ
i (ξ) :=


 ∑ρ

1≤s1<···<sm−i≤m

m−i∏

q=1

τsq(ξ)




m∏

k=1,k 6=ρ,σ

(τk(ξ)− τσ(ξ)).

Now,
(
cosh[(τ1(ξ) − τ2(ξ))t]

)/(∏m
k=3(τk(ξ) − τ1(ξ))(τk(ξ) − τ2(ξ))

)
is

continuous in S, hence it is bounded there, and, thus, absolutely con-

verges to a constant, C ≥ 0 say, as ξ → ξ0 through S. This leaves the

[eiτ2(ξ)tF 1,2
j+1(ξ)− eiτ1(ξ)tF 2,1

j+1(ξ)]/(τ1(ξ)− τ2(ξ)) term.

For this, write

F ρ,σ
i (ξ) =

m−1∑

κ=0

Qρ,σ
κ,i (ξ)τσ(ξ)κ,

where the Qρ,σ
κ,i (ξ) are polynomials in the τk(ξ) for k 6= ρ, σ (which

depend on i); also, note Qρ,σ
κ,i (ξ) = Qσ,ρ

κ,i (ξ). Then,

eiτ2(ξ)tF 1,2
j+1(ξ)− eiτ1(ξ)tF 2,1

j+1(ξ)
τ1(ξ)− τ2(ξ)

=

∑m−1
κ=0

[
Q1,2

κ,j+1(ξ)(τ2(ξ)κeiτ2(ξ)t − τ1(ξ)κeiτ1(ξ)t)
]

τ1(ξ)− τ2(ξ)
. (4.26)

Let us show that this is continuous in Bε(ξ0) and is bounded absolutely

by Cte−min{λ1,λ2}: for y1 6= y2, and for all r, s ∈ N, t ≥ 0,

ys
2y

r
1e

iy2t − ys
1y

r
2e

iy1t

y1 − y2
=

ys
2y

r
1(e

iy2t − eiy1t)
y1 − y2

+
ys
2e

iy1t(yr
1 − yr

2)
y1 − y2

+
eiy1tyr

2(y
s
2 − ys

1)
y1 − y2

.
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Furthermore, for all y1, y2 ∈ C, t ∈ [0,∞), s ∈ N,

∣∣∣e
iy2t − eiy1t

y1 − y2

∣∣∣ ≤ C0te
−min(Im y1,Im y2)t and

∣∣∣y
s
1 − ys

2

y1 − y2

∣∣∣ ≤ Cs ,

for some constants C0, Cs. Using these with y1 = τ1(ξ), y2 = τ2(ξ),

r = κ, and s chosen appropriately for Q1,2
κ,j+1(ξ), the continuity and

upper bound follow immediately. Thus, for all ξ ∈ B′
ε(ξ0), t ≥ 0,

|cosh[(τ1(ξ)− τ2(ξ))t](A1
j (ξ)e

iτ2(ξ)t + A2
j (ξ)e

iτ1(ξ)t)|
≤ Cte−min(Im τ1(ξ),Im τ2(ξ))t . (4.27)

Combining (4.24), (4.25) and (4.27) we have (4.23), which completes the

proof of the lemma.

Now we show that a similar result holds in the general case: sup-

pose the characteristic roots τ1(ξ), . . . , τL(ξ), 2 ≤ L ≤ m, coincide on

a set M of codimension `, and that τ1(ξ) 6= τk(ξ) for all ξ ∈ M when

k = L + 1, . . . , m. By continuity, we may take ε > 0 so that the set Mε =

{ξ ∈ Rn : dist(ξ,M) < ε} contains no points η at which τ1(η), . . . , τL(η) =

τk(η) for k = L + 1, . . . ,m. With this notation, we have:

Lemma 4.6.2. For all t ≥ 0 and ξ ∈Mε,

∣∣∣
L∑

k=1

eiτk(ξ)tAk
j (ξ, t)

∣∣∣ ≤ C(1 + t)L−1e−t mink=1,...,L Im τk(ξ) . (4.28)

Remark 4.6.1: Note that this estimate does not depend on the codimen-

sion of M.

Proof. First note that, just as in the previous proof, for all η ∈ Rn such

that τ1(η) . . . , τL(η) 6= τk(η) when k = L + 1, . . . , m (but allowing any or all

of τ1(η), . . . , τL(η) to be equal),

L∑

k=1

eiτk(η)tAk
j (t, η) = lim

ξ→η

(
eiτ1(ξ)tA1

j (ξ) + · · ·+ eiτL(ξ)tAL
j (ξ)

)
,
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provided ξ to varies the set S :=
⋃L

l=1 Sl, where

Sl := {ξ ∈ Rn : τl(ξ) 6= τk(ξ) ∀k 6= l},

to ensure that each term of the sum on the right-hand side is well-defined.

Note that Lemma 4.2.1 ensures every point inM is the limit of a sequence of

points in S. Thus, we must simply show, for all t ≥ 0, ξ ∈ (Mε)′ = Mε\M,

∣∣eiτ1(ξ)tA1
j (ξ) + · · ·+ eiτL(ξ)tAL

j (ξ)
∣∣ ≤ CtL−1e−t mink=1,...,L Im τk(ξ) .

Now, we claim that we can write
∑L

k=1 eiτk(ξ)tAk
j (ξ, t), for ξ ∈ (Mε)′ and

t ≥ 0, as a sum of terms involving products of (L−1)L
2 sinh and cosh terms of

differences of coinciding roots; to clarify, (4.24) is this kind of representation

for L = 2, while for L = 3, we want sums of terms such as

sinh[α1(τ1(ξ)− τ2(ξ))t] cosh[α2(τ1(ξ)− τ3(ξ))t] sinh[α3(τ2(ξ)− τ3(ξ))t] ,

where the αi are appropriately chosen constants; incidentally, a comparison

to the L = 2 case suggests that the term above is multiplied by

(
A1

j (ξ)e
iτ2(ξ)t −A2

j (ξ)e
iτ1(ξ)t

)

in the full representation.

To show this, we do induction on L; the previous Lemma gives us the case

L = 2 (note that the proof holds with ξ0 and Bε(ξ0) replaced throughout

by M and Mε respectively). Assume there is such a representation for

L = K ≤ m− 1. Observe,

K+1∑

k=1

eiτk(ξ)tAk
j (ξ) =

1
K

K∑

k=1

eiτk(ξ)tAk
j (ξ) +

1
K

K+1∑

k=1,k 6=K

eiτk(ξ)tAk
j (ξ)

+ · · ·+ 1
K

K+1∑

k=2

eiτk(ξ)tAk
j (ξ) ;

by the induction hypothesis, there is a representation for each of these terms
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by means of products of (K−1)K
2

sinh[αk,l(τk(ξ)− τl(ξ))t] and cosh[βk,l(τk(ξ)− τl(ξ))t] terms,

where 1 ≤ k, l ≤ K +1 and the αk,l, βk,l are some non-zero constants. Next,

note that we can write (τ1(ξ) − τ2(ξ)) (or, indeed, the difference of any

pair of roots from τ1(ξ), . . . , τK+1(ξ)) as a linear combination of the K(K+1)
2

differences τk(ξ)− τl(ξ) such that 1 ≤ k < l ≤ K + 1; that is

sinh[α1,2(τ1(ξ)− τ2(ξ))t] = sinh
[ ∑

1≤k<l≤K+1

α′k,l(τk(ξ)− τl(ξ))t
]
,

for some non-zero constants α′k,l; similarly, there is such a representation for

cosh[β1,2(τ1(ξ) − τ2(ξ))t]. Lastly, repeated application of the double angle

formulae

sinh(a± b) = sinh a cosh b± cosh a sinh b ,

cosh(a± b) = cosh a cosh b± sinh a sinh b ,

yields products of K(K+1)
2 terms, which completes the induction step.

Now, as in the previous proof, each of these terms must be estimated.

The key fact to observe is that

Ak
j (ξ)

L∏

l=1,l 6=k

(τl(ξ)− τk(ξ))

is continuous in Mε for all k = 1, . . . , L. Then, using the same arguments as

for each of the terms in the earlier proof, and observing that the exponent

of t is determined by the products involving either

(a) (sinh[αk,l(τk(ξ)− τl(ξ)t)])/(τk(ξ)− τl(ξ)) terms, or

(b) (eiτk(ξ)t − eiτl(ξ)t)/(τk(ξ)− τl(ξ)) terms (see (4.26)),

the estimate (4.28) is immediately obtained.

4.6.2 Phase function separated from the real axis
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We now turn back to finding Lp − Lq estimates for

∫

Ω
eix·ξ

( L∑

k=1

eiτk(ξ)tAk
j (ξ, t)

)
χ(ξ)f̂(ξ) dξ ,

when τ1(ξ), . . . , τL(ξ) coincide on a set M of codimension `; choose ε > 0 so

that these roots do not intersect with any of the roots τL+1(ξ), . . . , τm(ξ) in

Mε.

In this section, we assume that there exists δ > 0 such that Im τk(ξ) ≥ δ

for all ξ ∈ Mε—so, mink Im τk(ξ) ≥ δ. For this, we use the same approach

as in Section 4.5.1, but using Lemma 4.6.2 to estimate the sum. Firstly, the

L1 − L∞ estimate:

∥∥∥Dr
t D

α
x

(∫

Ω
eix·ξ

( L∑

k=1

eiτk(ξ)tAk
j (ξ, t)

)
χ(ξ)f̂(ξ) dx

)∥∥∥
L∞(Rn

x)

=
∥∥∥
∫

Ω
eix·ξ

( L∑

k=1

eiτk(ξ)tAk
j (ξ, t)τk(ξ)r

)
ξαχ(ξ)f̂(ξ) dx

∥∥∥
L∞(Rn

x)

≤ max
k

sup
Ω
|τk(ξ)|r

∫

Ω

∣∣∣
L∑

k=1

eiτk(ξ)tAk
j (ξ, t)

∣∣∣|ξ||α||f̂(ξ)| dx

≤ C(1 + t)L−1e−δt‖f̂‖L∞(Ω) ≤ C(1 + t)L−1e−δt‖f‖L1 .

Similarly, the L2 − L2 estimate:

∥∥∥Dr
t D

α
x

( ∫

Ω
eix·ξ

( L∑

k=1

eiτk(ξ)tAk
j (ξ, t)

)
χ(ξ)f̂(ξ) dx

)∥∥∥
L2(Rn

x)

=
∥∥∥
( L∑

k=1

eiτk(ξ)tAk
j (ξ, t)τk(ξ)r

)
ξαχ(ξ)f̂(ξ)

∥∥∥
L2(Ω)

≤ C(1 + t)L−1e−δt‖f̂‖L2(Ω) ≤ C(1 + t)L−1e−δt‖f‖L2 .

Then, Theorem 4.3.1 yields

∥∥∥Dr
t D

α
x

(∫

Ω
eix·ξ

( L∑

k=1

eiτk(ξ)tAk
j (ξ, t)

)
χ(ξ)f̂(ξ) dx

)∥∥∥
Lq(Rn

x)

≤ C(1 + t)L−1e−δt‖f‖Lp ,
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where p−1 + q−1 = 1, 1 ≤ p ≤ 2. Once again, we have exponential decay.

This, together with (4.19) gives the statement when there are multiplicities

away from the axis in Theorem 2.1.1, Part II.

4.6.3 Phase function meeting the real axis with finite order

We next look at the case where the characteristic roots τ1(ξ), . . . , τL(ξ)

that coincide on the set M of codimension ` meet the real axis in M with fi-

nite orders. Suppose ξ0 ∈M satisfies Im τ1(ξ0) = 0; then by the assumption

that it is a finite zero for each root, there exists ε > 0 such that Im τk(ξ) > 0

for all ξ ∈ Bε(ξ0), k = 1, . . . , L. If there are more points in M at which the

above roots meet the axis with finite order (or even with infinite order/lying

on the axis), they may be considered separately in the same way (or using

the method below where necessary), while away from such points, the roots

are separated from the axis, and the previous argument may be used.

Since the characteristic roots are not necessarily analytic (or even differ-

entiable) on M, we must look at each branch of the roots as they approach

the real axis; set sk to be the maximal order of the contact with the real

axis for τk(ξ), that is, the maximal value for which there exist constants

c0,k, c1,k > 0 such that

c0,k|ξ − ξ0|sk ≤ |Im τk(ξ)| ≤ c1,k|ξ − ξ0|sk ,

for all ξ sufficiently near ξ0. Set s = max(s1, . . . , sL). Then, by Proposi-

tion 4.5.1, using Lemma 4.6.2 to estimate the sum in the amplitude, for all

t > 0,

∥∥∥Dr
t D

α
x

(∫

Bε(ξ0)
eix·ξ

( L∑

k=1

eiτk(ξ)tAk
j (ξ, t)

)
χ(ξ)f̂(ξ) dx

)∥∥∥
L∞(Rn

x)

=
∥∥∥
∫

Bε(ξ0)
eix·ξ

( L∑

k=1

eiτk(ξ)tAk
j (ξ, t)τk(ξ)r

)
ξαχ(ξ)f̂(ξ) dx

∥∥∥
L∞(Rn

x)

≤
∫

Bε(ξ0)
tL−1e−t mink=1,...,L Im τk(ξ)|χ(ξ)||f̂(ξ)| dξ

≤ C(1 + t)L−1−(n/s)‖f‖L1 ,
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and, also using the Plancherel Theorem,

∥∥∥Dr
t D

α
x

(∫

Bε(ξ0)
eix·ξ

( L∑

k=1

eiτk(ξ)tAk
j (ξ, t)

)
χ(ξ)f̂(ξ) dx

)∥∥∥
L2(Rn

x)

=
∥∥∥
∫

Bε(ξ0)
eix·ξ

( L∑

k=1

eiτk(ξ)tAk
j (ξ, t)τk(ξ)r

)
ξαχ(ξ)f̂(ξ) dx

∥∥∥
L2(Rn

x)

=
∥∥∥
( L∑

k=1

eiτk(ξ)tAk
j (ξ, t)τk(ξ)r

)
ξαχ(ξ)f̂(ξ)

∥∥∥
L2(Bε(ξ0))

≤ CtL−1
∥∥e−t mink=1,...,L Im τk(ξ)|χ(ξ)||f̂(ξ)|∥∥

L2(Bε(ξ0))

≤ C(1 + t)L−1‖f‖L2 .

Therefore, interpolation Theorem 4.3.1 says, for all t > 0,

∥∥∥Dr
t D

α
x

(∫

Bε(ξ0)
eix·ξ

( L∑

k=1

eiτk(ξ)tAk
j (ξ, t)

)
χ(ξ)f̂(ξ) dx

)∥∥∥
Lq(Rn

x)

≤ C(1 + t)−
n
s

(
1
p
− 1

q

)
+L−1‖f‖Lp ,

where p−1 + q−1 = 1, 1 ≤ p ≤ 2; this, together with (4.22) proves Theo-

rem 2.1.1, Part II for roots meeting the axis with finite order.

4.6.4 Phase function lies on the real axis for bounded |ξ|

Recall that in the division of the integral in Section 4.2, we have

∫

B2N (0)
eix·ξ

( m∑

k=1

eiτk(ξ)tAk
j (ξ, t)

)
f̂(ξ) dξ ,

which we then subdivide around and away from multiplicities. The cases

where the root or roots are either separated from the real axis or meet it

with finite order have already been discussed; here we shall complete the

analysis by proving estimates for the situation where a root or roots lie on

the real axis, or, in the case of multiple roots, meet it with a zero of infinite

order.

To have any possibility of obtaining estimates, we must impose additional

conditions on the characteristic roots at low frequencies—for large |ξ|, these
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properties were obtained by using perturbation results, but naturally such

results are no longer valid for |ξ| < N . Also, we can impose the convexity

condition on the roots to obtain a better result than the general case.

Again, throughout we assume that either τ(ξ) ≥ 0 for all ξ ∈ Ω or

τ(ξ) ≤ 0 for all ξ ∈ Ω. The key point is to use a carefully chosen cut off

function to isolate the multiplicities and then use Theorem 3.2.4 or Theo-

rem 3.3.4 to estimate the integrals where there are no multiplicities (and

hence the coefficients Ak
j (ξ, t) are independent of t) and use suitable adjust-

ments around the singularities. For these purposes, let us assume that the

only multiplicity is at a point ξ0 ∈ B2N (0) and τ1(ξ0) = τ2(ξ0) are the only

coinciding roots. Then, we must consider the sum of the first two roots,

where we have a multiplicity at ξ0,

∫

B2N (0)
eix·ξ

( 2∑

k=1

eiτk(ξ)tAk
j (ξ, t)

)
χ(ξ)f̂(ξ) dξ ,

and terms involving the remaining roots, which are all distinct,

m∑

k=3

∫

B2N (0)
eix·ξ+τk(ξ)tAk

j (ξ, t)χ(ξ)f̂(ξ) dξ .

Case of no multiplicities: For the second of these, we apply wish to

apply Theorem 3.2.4 if τk(ξ) satisfies the convexity condition, and 3.3.4

otherwise.

In order to ensure the hypotheses of these theorems are satisfied, how-

ever, we need to impose an additional regularity condition on the behaviour

of the characteristic roots for small frequencies (i.e. ξ ∈ BN (0)) to avoid

pathological situations:

Assume |∂ωτk(λω)| ≥ C0 for all ω ∈ Sn−1, λ > 0. (4.29)

Since this is satisfied for large |ξ| and for roots of homogeneous operators,

it is quite a natural extra assumption.

The other hypotheses of these theorems hold: hypothesis (i) is satisfied

because |∂α
ξ τk(ξ)| ≤ Cα for all ξ since the characteristic roots are smooth

in Rn; hypothesis (ii) only requires information about high frequencies; and
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hypotheses (iv) holds by the same argument as for large |ξ|, where only

Part II of Proposition 3.1.5 is needed, and that holds for all ξ ∈ Rn. Also,

the coefficients Aj
k(ξ) are smooth away from multiplicities, so the symbolic

behaviour (i.e. bounded for small frequencies) holds.

Now L1 − L∞ and L2 − L2 estimates can be found as in the case for

large |ξ|, and the interpolation theorem used to give the desired results.

Thus, with condition 4.29, we have proved the on axis, no multiplicities

case of Theorem 2.1.1, Part II.

Case of multiplicities: Now we can turn to the other integral. First,

introduce a cut off function ψ ∈ C∞
0 ([0,∞)), 0 ≤ ψ(s) ≤ 1, which is identi-

cally 0 for s > 1 and 1 for s < 3
4 ; then it can be rewritten as the sum of two

integrals:

I1 = (2π)−n

∫

Rn

eix·ξψ(t|ξ − ξ0|)χ(ξ)
2∑

k=1

Ak
j (ξ, t)e

iτk(ξ)tf̂(ξ) dξ ,

I2 = (2π)−n

∫

Rn

eix·ξ(1− ψ)(t|ξ − ξ0|)χ(ξ)
2∑

k=1

Ak
j (ξ, t)e

iτk(ξ)tf̂(ξ) dξ .

To study I1, we use the resolution of multiplicities technique above: by

Lemma 4.6.1,
∣∣∣

2∑

k=1

Ak
j (ξ, t)e

iτk(ξ)t
∣∣∣ ≤ Ct

in |ξ− ξ0| < t−1. Now, we may estimate the integral using the compactness

of the support of ψ(s): for 0 ≤ t ≤ 1, I1 is clearly bounded; for t > 1,

|I1| ≤ Ct

∫

Rn

|ψ(t|ξ − ξ0|)||f̂(ξ)| dξ

= Ct1−n‖f̂‖L∞

∫

Rn

ψ(|η|) dη ≤ C(1 + t)1−n‖f‖L1 .

Similarly, ‖I2‖L2 ≤ C(1 + t)‖f‖L2 (using the Plancherel Theorem as usual).

We remark that such a calculation generalises to the case when L roots

meet on a set of codimension `—clearly the cut off function must be adjusted,

but using Lemma 4.6.2, we can show that the corresponding integral is

bounded above by CtL−`.
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For I2 we are away from the singularity, so

2∑

k=1

Ak
j (ξ, t)e

iτk(ξ)t = A1
j (ξ)e

iτ1(ξ)t + A2
j (ξ)e

iτ2(ξ)t ;

Now, we would like to apply Theorem 3.2.4 (for the case where the root

satisfies the convexity condition) and 3.3.4 (for the general case), as in the

case of simple roots; however, the proximity of the multiplicity brings the

additional cut-off function, (1−ψ)(t|ξ−ξ0|), into play, and this depends on t.

Therefore, the aforementioned results cannot be used directly. However, a

similar result does hold, provided we impose some additional conditions:

Proposition 4.6.3. Suppose τk(ξ), k = 1, 2, satisfy the following assump-

tions:

(i) for each multi-index α there exists a constant Cα > 0 such that, for

some δ > 0,

|∂α
η [(∇ξτk)(ξ0 + sη)]| ≤ Cα(1 + |η|)−|α| , for small s, |η| > δ ;

(ii) there exists a constant C0 > 0 such that |∂ωτk(ξ0 + t−1λω)| ≥ C > 0

for all ω ∈ Sn−1; in particular, each of the level sets

λΣ′λ ≡ Σλ =
{
η ∈ Rn : τk(ξ0 + t−1η) = λ

}

is non-degenerate;

(iii) there exists a constant R1 > 0 such that, for all λ > 0,

Σ′λ :=
1
λ

Σλ(τ) ⊂ BR1(0) .

Furthermore, assume that Ak
j (ξ) satisfies the following condition: for each

multi-index α there exists a constant Cα > 0 such that

(iv)

|∂α
η [Ak

j (ξ0 + sη)]| ≤ Cαs−j(1 + |η|)−j−|α| , for small s, |η| > δ .
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Then, the following estimate holds for all R ≥ 0, x ∈ Rn, t > 1:

∣∣∣
2∑

k=1

∫

Rn

ei(x·ξ+τk(ξ)t)Ak
j (ξ)(1−ψ)(t|ξ−ξ0|)χ(ξ)κ

(
t−1x+∇τk(ξ)

)
dξ

∣∣∣ ≤ Ctj−n ,

(4.30)

for j ≥ n− n−1
γ , where γ := supλ>0 γ(Σλ(τk)), if τ j

k(ξ) satisfies the convexity

condition, and for j ≥ n− 1
γ0

, where γ0 := supλ>0 γ0(Σλ(τk)), if it does not.

Remark 4.6.2: Conditions (i), (ii) and (iv) arise naturally when τk(ξ) is

a homogeneous function of order 1—for example, the wave equation.

Remark 4.6.3: Assumption (iv) is needed because, Ak
j (ξ) has a singularity

at ξ0, so we must ensure we are away from that—this is the role of the cut-off

function (1− ψ)(|η|) in this proposition; similarly,

Proof. As before, cut-off near the wave front: let κ ∈ C∞
0 (Rn) be a cut-off

function supported in B(0, r). Then, consider

I1(x, t) :=
2∑

k=1

∫

Rn

ei(x·ξ+τk(ξ)t)Ak
j (ξ)(1− ψ)(t|ξ − ξ0|)χ(ξ)

κ
(
t−1x +∇τk(ξ)

)
dξ,

and

I2(x, t) :=
2∑

k=1

∫

Rn

ei(x·ξ+τk(ξ)t)Ak
j (ξ)(1− ψ)(t|ξ − ξ0|)χ(ξ)

(1− κ)
(
t−1x +∇τk(ξ)

)
dξ.

Away from the wave front set: First, we estimate I2(x, t); we claim

that

|I2(x, t)| ≤ Crt
j−n for all t > 0 , x ∈ Rn . (4.31)

In order to show this, we consider each term of the sum separately,

Ik
2 (x, t) =

∫

Rn

ei(x·ξ+τk(ξ)t)Ak
j (ξ)(1−ψ)(t|ξ−ξ0|)χ(ξ)(1−κ)

(
x
t +∇τk(ξ)

)
dξ ,

and imitate the proof of Lemma 3.2.5 (in which the corresponding term was

estimated in Theorem 3.2.4), but noting that in place of gR(ξ) ∈ C∞
0 (Rn)
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we have (1−ψ)(t(ξ−ξ0)), which depends also on t; in particular, this means

that care must be taken when carrying out the integration by parts when

derivatives fall on (1−ψ)(t|ξ−ξ0|). To take this into account, use the change

of variables ξ = ξ0 + t−1η:

Ik
2 (x, t) = eix·ξ0

∫

Rn

ei(t−1x·η+τk(ξ0+t−1η)t)Ak
j (ξ0 + t−1η)(1− ψ)(|η|)

χ(ξ0 + t−1η)(1− κ)
(
t−1x + (∇ξτk)(ξ0 + t−1η)

)
t−n dη.

Integrating by parts, with respect to η gives

Ik
2 (x, t) = eix·ξ0t−n

∫

Rn

ei(t−1x·η+τk(ξ0+t−1η)t)P ∗[Ak
j (ξ0 + t−1η)(1− ψ)(|η|)

χ(ξ0 + t−1η)(1− κ)
(
t−1x + (∇ξτk)(ξ0 + t−1η)

)]
dη ,

where P ∗ is the adjoint operator to P = t−1x+(∇ξτk)(ξ0+t−1η)

i|t−1x+(∇ξτk)(ξ0+t−1η)|2 · ∇η; this

integration by parts is valid as |t−1x + (∇ξτk)(ξ0 + t−1η)| ≥ r > 0, in the

support of (1 − κ)
(
t−1x + ∇τk(ξ0 + t−1η)

)
. For suitable functions f ≡

f(ξ; x, t),

P ∗f =∇η ·
[ t−1x + (∇ξτk)(ξ)
i|t−1x + (∇ξτk)(ξ)|2 f

]

=
∇η · (∇ξτk)(ξ)

i|t−1x + (∇ξτk)(ξ)|2 f +
t−1x + (∇ξτk)(ξ)

i|t−1x + (∇ξτk)(ξ)|2 · ∇ηf

− 2(t−1x + (∇ξτk)(ξ)) · [∇η[(∇ξτk)(ξ)] · (t−1x + (∇ξτk)(ξ))]
i|t−1x + (∇ξτk)(ξ)|4 f.

Comparing this to (3.38), observe that the first and third terms have one

power of t fewer in the denominator due to the transformation; this is critical

in this case where we are approaching a singularity in Ak
j (ξ0 + t−1η) when

t →∞. By hypothesis (i), for η in the support of the integrand of Ik
2 (x, t),

∇η· [(∇ξτk)(ξ0 + t−1η)]
|t−1x + (∇ξτk)(ξ0 + t−1η)|2 ≤ Cr(1 + |η|)−1 ;

thus,

|P ∗f | ≤ Cr[(1 + |η|)−1|f |+ |∇ηf |] .
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In Lemma 3.2.5, we carried out this integration by parts repeatedly

in order to estimate the integral. Here, however, note that differentiating

(1− ψ)(|η|) once is sufficient: by definition of ψ(s),

∂ηj [(1− ψ)(|η|)] = − ηj

|η|(∂sψ)(|η|)

is supported in 3
4 ≤ |η| ≤ 1, so

|∂ηj [(1− ψ)(|η|)]| ≤ C1|η|≥3/4(η) ,

where 1|η|≥3/4(η) denotes the characteristic function of {η ∈ Rn : |η| > 3/4};
hence, by hypothesis (iv),

∫

Rn

∣∣∣ t−1x + (∇ξτk)(ξ0 + t−1η)
i|t−1x + (∇ξτk)(ξ0 + t−1η)|2

∣∣∣|Ak
j (ξ0 + t−1η)||∂ηj [(1− ψ)(|η|)]|

|χ(ξ0 + t−1η)||(1− κ)
(
t−1x +∇τk(ξ0 + t−1η)

)|t−n dη

≤ Cr

∫
3
4
≤|η|≤1

|Ak
j (ξ0 + t−1η)|t−n dη

≤ Crt
j

∫
3
4
≤|η|≤1

1
(1 + |η|)j

t−n dη ≤ Crt
j−n , (4.32)

which is the desired estimate (4.31).

On the other hand, if, when integrating by parts, the derivative does not

fall on ψ(|η|), we use a similar argument to that in the earlier proof; let us

look at the effect of differentiating each of the other terms: in the support

of ψ(|η|), for each multi-index α and t > 0,

• |∂α
η [Ak

j (ξ0 + t−1η)]| ≤ Cαtj(1 + |η|)−j−|α| by hypothesis (iv);

• |∂α
η [χ(ξ0 + t−1η)]| ≤ Cα(1 + |η|)−|α|: for α = 0, take Cα = 1; for |α| ≥ 1,

note that

∂α
η [χ(ξ0 + t−1η)] = t−|α|(∂α

ξ χ)(ξ0 + t−1η) ,

and that (∂α
ξ χ)(ξ0 + t−1η) is supported in N ≤ |ξ0 + t−1η| ≤ 2N , so

t−1 ≤ CN,ξ0 |η|−1;

• |∂α
η [(1 − κ)

(
t−1x + (∇ξτk)(ξ0 + t−1η)

)
]| ≤ Cα(1 + |η|)−|α|: obvious for
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α = 0; for |α| ≥ 1, note

∂α
η [(1− κ)(t−1x + (∇ξτk)(ξ0 + t−1η))]

= −(∂α
ξ κ)(t−1x +∇ξτk(ξ))∂α

η [(∇ξτk)(ξ0 + t−1η)] ,

which yields the desired estimate by hypothesis (i).

Summarising, this means

∣∣(1−ψ)(|η|)∂α
η

[
Ak

j (ξ0+t−1η)χ(ξ0+t−1η)(1−κ)
(
t−1x+(∇ξτk)(ξ0+t−1η)

)]∣∣

≤ Cr(1 + |η|)−|α|−jtj1|η|> 3
4
(η) .

So, repeatedly integrating by parts we find that either a derivative falls on

(1−ψ)(|η|) (in which case a similar argument to that in (4.32) above works)

or we eventually get the integrable function C(1 + |η|)−n−11|η|>3/4(η) as an

upper bound; in either case, we have (4.31).

On the wave front set: Next, we look at the term supported in the wave

front set, I1(x, t). As in the case away from the wave front, set ξ = ξ0+t−1η:

consider, for k = 1, 2,

Ik
1 (x, t) := eix·ξ0

∫

Rn

ei(t−1x·η+τk(ξ0+t−1η)t)Ak
j (ξ0 + t−1η)(1− ψ)(|η|)

χ(ξ0 + t−1η)κ
(
t−1x + (∇ξτk)(ξ0 + t−1η)

)
t−n dη .

As in the proof of Theorems 3.2.4 and 3.3.4, let {Ψ`(η)}L
`=1 be a conic

partition of unity, where the support of Ψ`(η) is a cone K`, and each cone

can be mapped by rotation onto K1, which contains en = (0, . . . , 0, 1). Then,

it suffices to estimate

t−n

∫

Rn

ei(t−1x·η+τk(ξ0+t−1η)t)Ak
j (ξ0 + t−1η)(1− ψ)(|η|)

Ψ1(η)χ(ξ0 + t−1η)κ
(
t−1x + (∇ξτk)(ξ0 + t−1η)

)
dη ,

for k = 1, 2.

Let us parameterise the cone K1: by hypothesis (ii), each of the level
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sets

λΣ′λ ≡ Σλ =
{
η ∈ Rn : τk(ξ0 + t−1η) = λ

}

is non-degenerate; so, for some U ⊂ Rn−1, and smooth function hk(λ, ·) :

U → R,

K1 = {(λy, λhk(λ, y)) : λ > 0, y ∈ U} .

If τk(ξ) satisfies the convexity condition, then hk is also a concave function

in y. Now, change variables η 7→ (λy, λhk(λ, y)), to obtain:

t−n

∫ ∞

0

∫

U
eiλ(t−1x′·y+t−1xnhk(λ,y)+t)Ak

j (ξ0 + t−1λ(y, hk(λ, y)))

(1− ψ)(λ|(y, hk(λ, y))|)Ψ1(λ(y, hk(λ, y)))χ(ξ0 + t−1λ(y, hk(λ, y)))

κ
(
t−1x + (∇ξτk)(ξ0 + t−1λ(y, hk(λ, y)))

) dη

d(λ, y)
dλdy, (4.33)

where we have used τk(ξ0 + t−1(λy, λhk(λ, y))) = λ. As in the earlier proofs,

we ensure xn is away from zero in the cone—this requires hypotheses (i)

and (iii)). So, in the general case, we can write this as, with x̃ = t−1x,

λ̃ = λx̃n = λt−1xn,

t−n

∫ ∞

0

∫

U
eiλxn(t−1x−1

n x′·y+t−1hk(λ,y)+x̃−1
n )Ak

j (ξ0 + t−1λ(y, hk(λ, y)))

(1− ψ)(λ|(y, hk(λ, y))|)Ψ1(λ(y, hk(λ, y)))χ(ξ0 + t−1λ(y, hk(λ, y)))

κ
(
t−1x + (∇ξτk)(ξ0 + t−1λ(y, hk(λ, y)))

) dη

d(λ, y)
dλdy .

If the convexity condition holds, then, as in the proof of Theorem 3.2.4,

we have the Gauss map

nk : K1 ∩ Σ′λ → Sn−1, nk(ζ) =
∇ζ [τk(ξ0 + t−1ζ)]
|∇ζ [τk(ξ0 + t−1ζ)]| =

(∇ξτk)(ξ0 + t−1ζ)
|(∇ξτk)(ξ0 + t−1ζ)| ,

and, as before, can define zk(λ) ∈ U so that

nk(zk(λ), hk(λ, z(λ))) = −x/|x| .
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Then,
x′

xn
= −∇yhk(λ, z(λ)) .

So, in this case, (4.33) becomes:

(Ik
1 )′ := t−n

∫ ∞

0

∫

U
eiλxn[−t−1∇yhk(λ,z(λ))·y+t−1hk(λ,y)+x̃−1

n ]

Ak
j (ξ0 + t−1λ(y, hk(λ, y)))(1− ψ)(λ|(y, hk(λ, y))|)Ψ1(λ(y, hk(λ, y)))

χ(ξ0 + t−1λ(y, hk(λ, y)))κ
(
x̃+(∇ξτk)(ξ0 + t−1λ(y, hk(λ, y)))

) dη

d(λ, y)
dλdy,

Let us estimate the second (i.e. the case where the convexity condition

holds):

• The same argument as in the earlier proof (which uses hypothesis (ii)),

shows ∣∣∣ dη

d(λ, y)

∣∣∣ ≤ Cλn−1 ;

• Now, with Ãj
k(ν) = Aj

k(ν)χ(ν)κ
(
x̃ + (∇ξτk)(ν)

)
Ψ1(λ(y, hk(λ, y))), where

ν = ξ0 + t−1λ(y, hk(λ, y)),

|(Ik
1 )′| ≤ tj−n

∫ ∞

0

∣∣∣
∫

U
eiλx̃n[−(y−z(λ))∇yhk(λ,z(λ))·y+hk(λ,y)+hk(λ,z(λ))]

t−jλjÃk
j (ξ0 + t−1λ(y, hk(λ, y)))(1− ψ)(λ|(y, hk(λ, y))|) dy

∣∣∣λn−1−j dλ .

• Now, applying Theorem 3.2.1—this may be used due to the properties of

Ak
j (ξ) and τk(ξ) stated in hypotheses (iv) and (i)—we find that

∣∣∣
∫

U
eiλx̃n[−(y−z(λ))∇yhk(λ,z(λ))·y+hk(λ,y)+hk(λ,z(λ))]

t−jλjÃk
j (ξ0+t−1λ(y, hk(λ, y)))(1−ψ)(λ|(y, hk(λ, y))|) dy

∣∣∣ ≤ Cλj−nχ̃(λ) ,

where χ̃(λ) is a compactly smooth function that is zero in a neighbourhood

of the origin.

• Hence,

|(Ik
1 )′| ≤ tj−n

∫ ∞

0
χ̃(λ)λ−1 dλ ≤ Ctj−n .
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Finally, the general case can be estimated in exactly the same way, with

the necessary changes used in the proof of Theorem 3.3.4 to account for the

change in the phase function—in particular, the use of the Van der Corput

Lemma, Lemma 3.3.2, in place of Theorem 3.2.1. This completes the proof

of (4.30).

Using this, it is clear that

∥∥∥
∫

Rn

eix·ξ(1− ψ)(t|ξ − ξ0|)χ(ξ)
2∑

k=1

Ak
j (ξ, t)e

iτk(ξ)tf̂(ξ) dξ
∥∥∥

L∞

≤ C(1 + t)−
n−1

γ ‖f‖
W

n−1
γ −n−j

1

if the roots satisfy the convexity condition, and

∥∥∥
∫

Rn

eix·ξ(1− ψ)(t|ξ − ξ0|)χ(ξ)
2∑

k=1

Ak
j (ξ, t)e

iτk(ξ)tf̂(ξ) dξ
∥∥∥

L∞

≤ C(1 + t)−
1

γ0 ‖f‖
W

1
γ0
−n−j

1

otherwise. The L2−L2 estimates are simple via the Plancherel Theorem as

in other cases.

Finally, we must consider the case where L roots meet on a set of codi-

mension `; the above proof can easily be adapted for such a case, leaving the

same results. Due to the earlier bound near the multiplicity, we can combine

the results and the interpolation Theorem 4.3.1 to complete the proof of the

final part of Theorem 2.1.1.
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Chapter 5:

Examples and Extensions

5.1 Introduction

Theorem 2.1.1 give estimates for operators provided the characteristic roots

satisfy certain hypotheses. However, in order to test the validity of such

an estimate for an arbitrary linear, constant coefficient mth order strictly

hyperbolic operator with lower order terms, it is desirable to find conditions

on the structure of the lower order terms under which certain conditions

for the characteristic roots hold. For the case m = 2 a characterisation for

wave-type equations with (possibly negative) mass and dissipation terms

can be given, and this is done in Section 5.2. However, for large m, it is

difficult to do such an analysis; nevertheless, certain conditions can be found

that do make the task of checking the conditions of the characteristic roots,

and these are discussed in Section 5.3, where a method is also given that

can be used to find many examples. Finally, in Section 5.4, we give a few

applications of our results.

5.2 Complete Analysis of Wave Equation with

Mass and Dissipation

Consider the general Cauchy problem for the wave equation with lower order

terms 



∂2
t u− c2∆u + δ∂tu + µu = 0 ,

u(0, x) = 0, ut(0, x) = g(x) .

Then the associated characteristic polynomial is

τ2 − c2|ξ|2 − iδτ − µ = 0 ,

130



which has roots

τ±(ξ) =
iδ

2
±

√
c2|ξ|2 + µ− δ2/4 .

Now, we have the following cases and apply Theorem 2.1.1 in each:

• δ = µ = 0. This is the wave equation.

• δ = 0, µ > 0. This is the Klein–Gordon equation.

• µ = 0, δ > 0. This is the dissipative wave equation.

• δ < 0. In this case, Im τ−(ξ) ≤ δ
2 < 0 for all ξ, hence we cannot expect

any decay in general.

• δ, µ > 0. In this case the discriminant is always strictly greater than

−δ2/4, and thus the roots always lie in the half plane Im z > 0 and are

separated from the real axis. So we have exponential decay.

• δ ≥ 0, µ < 0. In this case we note that Im τ−(ξ) ≥ 0 if and only if

c2|ξ|2 + µ ≥ 0, i.e. the critical value is |ξ| =
√
|µ|
c . We must, therefore,

look at the space in which the initial condition g (or, more precisely, its

Fourier transform) lies. If no function under consideration has Fourier

transform with support in c2|ξ|2 + µ < 0, then we may get decay of some

type. That is:

– if we have initial data g such that supp ĝ ∩ B(0,

√
|µ|
c ) 6= ∅, then we

cannot expect decay;

– if, for some ε > 0, supp ĝ ⊂ Rn \ B(0,
√
|µ|
c + ε), then the roots are

either separated from the real axis (if δ > 0), and we get exponential

decay, or lie on the real axis (if δ = 0), and we get Klein-Gordon type

behaviour since the Hessian of τ is

Hess τ±(ξ) =

(
c2δjk√

c2|ξ|2 − |µ| −
c4ξjξk

(c2|ξ|2 − |µ|)3/2

)n

j,k=1

.

– if, for all g, supp ĝ ⊂ Rn \ B(0,
√
|µ|
c ) , then again we must consider

δ = 0 and δ > 0 separately.
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If δ > 0, then the root τ− comes to the real axis at |ξ| =
√
|µ|
c , in which

case we get decay (1+ t)−( 1
p
− 1

q
): the order with which it meets the axis

is s = 2 and the codimension of the set
{

ξ ∈ Rn : |ξ| =
√
|µ|
c

}
is ` = 1.

If δ = 0, then the roots lie completely on the real axis, and they meet

on the sphere |ξ| =
√
|µ|
c , thus we get decay 1− (1

p − 1
q ).

5.3 Higher Order Equations

5.3.1 Coefficient of Dm−1
t u

Let us now derive a simple consequence of the condition that Im τk(ξ) ≥
0, for all k = 1, . . . ,m and ξ ∈ Rn, for the coefficient of the Dm−1

t u term

in (1.6) .

Let L = L(Dx, Dt) be an mth order constant coefficient, linear strictly

hyperbolic operator such that Im τk(ξ) ≥ 0 for all k = 1, . . . , m and for

all ξ ∈ Rn. Recall that the characteristic polynomial corresponding to the

principal part of L is of the form

Lm = Lm(ξ, τ) = τm +
m∑

k=1

Pk(ξ)τm−k = 0 ,

where the Pk(ξ) are homogeneous polynomials of order k. Then, by the strict

hyperbolicity of L, Lm has real roots ϕ1(ξ) ≤ ϕ2(ξ) ≤ · · · ≤ ϕm(ξ) (where

the inequalities are strict when ξ 6= 0). By the Vièta formulae, observe that

P1(ξ) = −
m∑

k=1

ϕ(ξ) ∈ R . (5.1)

On the other hand, the characteristic polynomial of the full operator is

L(ξ, τ) = τm +
m∑

k=1

Pk(ξ)τm−k +
m−1∑

j=0

∑

|α|+l=j

cα,lξ
ατ l = 0 . (5.2)

In particular, the coefficient of the τm−1 term is

P1(ξ) + c0,m−1 = −
m∑

k=1

τk(ξ), (5.3)
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where the τk(ξ), k = 1, . . . , m are the roots of (5.2). Comparing (5.1)

and (5.3), we see that Im
( ∑m

k=1 τk(ξ)
)

= − Im c0,m−1. Therefore, since

Im τk(ξ) ≥ 0 for all k = 1, . . . ,m and ξ ∈ Rn, it follows that Im c0,m−1 ≤ 0,

or, equivalently, ic0,m−1 ≥ 0 (note that we are looking at an operator which

has real coefficients in the form L(∂t, ∂x)). Furthermore, if Im c0,m−1 = 0

then it must be the case that Im τk(ξ) = 0 for all ξ ∈ Rn and k = 1, . . . , m

since the characteristic roots are continuous. Hence we have shown the

following:

Proposition 5.3.1. Let L = L(Dx, Dt) be an mth order linear constant coef-

ficient strictly hyperbolic operator such that all the characteristic roots τk(ξ),

k = 1, . . . , m, satisfy Im τk(ξ) ≥ 0 for all ξ ∈ Rn. Then the imaginary part

of the coefficient of Dm−1
t u is non-positive. Furthermore, if in addition the

(imaginary part of the) coefficient of Dm−1
t u is zero then each of the char-

acteristic roots lie completely on the real axis.

Remark 5.3.1: If we transform our operator back to the form L(∂x, ∂t),

this result tells us that in order for the characteristic polynomial to be stable,

that is Im τk(ξ) ≥ 0 for all k = 1, . . . , m, ξ ∈ Rn, it is necessary for the

coefficient of ∂m−1
t u to be non-negative; this is the case for the dissipative

wave equation. This gives a notion of higher order dissipation, since it is

necessary for the characteristic roots to behave geometrically like those of

the wave equation with a dissipative term, i.e they lie in the half-plane

Im z ≥ 0 and lie away from Im z = 0 for large |ξ|.

In the next section, we look at the case where c0,m−1 = 0, in which case

the characteristic roots must lie completely on the real axis. First, though,

let us consider the case where a root lies completely on the real axis but the

coefficient c0,m−1 6= 0;

Consider a constant coefficient strictly hyperbolic operator of the form

Lm(∂x, ∂t) + Lm−1(∂x, ∂t) + Lm−2(∂x, ∂t) = 0, (5.4)

where Lr = Lr(∂x, ∂t) denotes a homogeneous operator of degree r with real

coefficients. Furthermore, assume that Lm−1 is not identically zero. Let

τ(ξ) be a characteristic root of (5.4) which lies completely on the real axis.
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So, noting Dxj = −i∂xj , Dt = −i∂t, we have that τ(ξ) is a root of

Lm(ξ, τ)− iLm−1(ξ, τ)− Lm−2(ξ, τ) = 0.

This means that Lm−1(ξ, τ(ξ)) = 0, and so τ(ξ) is homogeneous of order 1,

and thus the Hessian of τ(ξ) is nonsingular, and by Theorem 2.1.1, we obtain

decay of order −n/2.

5.3.2 Hyperbolic triples

We now turn to the case c0,m−1 = 0 where, by Proposition 5.3.1, all

the characteristic roots lie completely on the real axis. In order to study

this case we cite some results of Volevich–Radkevich [VR03] on the theory

of hyperbolic pairs and triples. Throughout this section, Lr(ξ, τ) denotes

a homogeneous polynomial in τ and ξ = (ξ1, . . . , ξn) of order r such that

Lr(iξ, τ, ) has real coefficients.

Definition 5.1. Suppose Lm = Lm(ξ, τ) and Lm−1 = Lm−1(ξ, τ) are (ho-

mogeneous) polynomials as above. Furthermore, assume that the roots of

Lm, τ1(ξ), . . . , τm(ξ), and those of Lm−1, σ1(ξ), . . . , σm−1(ξ), are real-valued

(in which case we say Lm and Lm−1 are hyperbolic polynomials). Then,

(Lm, Lm−1) is called a hyperbolic pair if (possibly after reordering)

τ1(ξ) ≤ σ1(ξ) ≤ τ2(ξ) ≤ · · · ≤ τm−1(ξ) ≤ σm−1(ξ) ≤ τm(ξ). (5.5)

If, in addition, the roots of Lm, Lm−1 are pairwise distinct for ξ 6= 0 (in which

case they are called strictly hyperbolic polynomials) and the inequalities in

(5.5) are all strict, then we say (Lm, Lm−1) is a strictly hyperbolic pair.

Definition 5.2. Let

Lm = Lm(ξ, τ) , Lm−1 = Lm−1(ξ, τ) , Lm−2 = Lm−2(ξ, τ)

be (homogeneous) hyperbolic polynomials. If (Lm, Lm−1) and (Lm−1, Lm−2)

are both hyperbolic pairs then we say that (Lm, Lm−1, Lm−2) is a hyperbolic

triple. If, in addition, all the polynomials and all the pairs are strictly hy-

perbolic (in the sense of Definition 5.1) then (Lm, Lm−1, Lm−2) is called a
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strictly hyperbolic triple.

Theorem 5.3.2 ([VR03]). Suppose that (Lm, Lm−1, Lm−2) is a strictly hy-

perbolic triple. Then Lm(ξ, τ)+Lm−1(ξ, τ)+Lm−2(ξ, τ) 6= 0 for all Im τ ≤ 0.

Furthermore, Lm, Lm−1, Lm−2 pairwise have no common purely imaginary

zeros.

We also cite a theorem of Hermite (see, for example, [Nis00]):

Theorem 5.3.3. Suppose pm(z), pm−1(z) are real polynomials of degree

m,m−1 respectively and that all the zeros of p(z) = pm(z)− ipm−1(z) lie in

the upper half-plane (that is, if p(z) = 0 then Im z > 0). Then all the zeros

of pm(z) and pm−1(z) are real and distinct.

Assume that L is of the form Lm(Dx, Dt)+Lm−2(Dx, Dt), where the Lr

are as in Definition 5.2 and neither is identically zero. Suppose that there

exists a homogeneous operator of order m − 1, Lm−1(Dx, Dt), such that

the characteristic polynomials Lm(ξ, τ), Lm−1(ξ, τ) and Lm−2(ξ, τ) form a

strictly hyperbolic triple. Then, by Theorem 5.3.2,

Lm(ξ, τ) + Lm−1(ξ, τ) + Lm−2(ξ, τ) 6= 0 for Im τ ≤ 0 .

Thus, by Theorem 5.3.3, all the zeros of Lm(ξ, τ) + Lm−2(ξ, τ) are real,

but clearly non-homogeneous. So, using this construction, we can obtain

examples of operators for which all the characteristic roots lie completely on

the imaginary axis, but for which we cannot expect the standard Sugimoto

decay rate to hold, where homogeneity is relied upon.

5.4 Further Extensions and Applications

5.4.1 Inhomogeneous Equations and Application to Semi-linear Equations

So far we have looked at the homogeneous Cauchy problem. In [Sug94]

the result is then used to find estimates for the inhomogeneous Cauchy
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problem:

Dm
t u +

m∑

j=1

Pj(Dx)Dm−j
t u +

m−1∑

l=0

∑

|α|+r=l

cα,rD
α
xDr

t u = f, t > 0,

Dl
tu(x, 0) = 0, l = 0, . . . , m− 1, x ∈ Rn ,





where the right-hand side function f ∈ C∞
0 (Rn).

With the results for the linear Cauchy problem, it is then a matter of

routine to show existence and uniqueness for semilinear equations with small

data,

Dm
t u +

m∑

j=1

Pj(Dx)Dm−j
t u +

m−1∑

l=0

∑

|α|+r=l

cα,rD
α
xDr

t u = H(u), t > 0,

Dl
tu(x, 0) = fl(x) ∈ C∞

0 (Rn), l = 0, . . . , m− 1, x ∈ Rn .





This was first done for nonlinear wave equations by Strichartz in [Str70b],

and has been since made a standard procedure—see, for example, [Rac92],

[Mat76] and [Sug94]. For full results, see [Sug94]—there is no change in our

situation.

5.4.2 Strictly Hyperbolic Systems

Our results can now be used to find Lp−Lq estimates for strictly hyper-

bolic systems:

Let

iUt = A(D)U , U(0) = U0 ,

be an m × m first order strictly hyperbolic system of PDEs. That is, the

associated system of polynomials may be written as A(ξ) = A1(ξ) + A0(ξ)

and the roots ϕ1(ξ), . . . , ϕm(ξ) of det(ϕI − A0(ξ)) = 0 are all real and dis-

tinct away from the origin. Also, A0(ξ) ∈ S0
1,0(Rn). Denote the roots of the

equation det(τI−A(ξ)) = 0 (an mth order polynomial in τ with smooth co-

efficients) by τ1(ξ), . . . , τm(ξ). Now, by analogy to the case of the mth order

equation, we can, via perturbation methods, show that for large |ξ| the τk(ξ)

behave similarly to the ϕk(ξ), in that they are distinct, analytic and belong

to S1
1,0(Rn). For bounded |ξ| we will need similar regularity assumptions on
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the characteristic roots τk(ξ) as for the equations. Furthermore, we must

assume that there exists Q ∈ S0
1,0(Rn) such that |det Q(ξ)| ≥ C > 0 so

Q−1AQ = diag(τ1(ξ), . . . , τm(ξ)) =: T .

Then, we use the transformation U = QV ; so

Ut = QVt =⇒ iQVt = A(D)QV =⇒ iVt = TV ; U(0) = QV (0).

This is now m independent equations:

∂tVk = τk(D)Vk, k = 1, . . . ,m, Vk(0) = (Q−1U(0))k

each of which is solved by

Vk(x, t) =
∫

ei(τk(ξ)t+x·ξ)V̂k(0, ξ) dξ .

Now, Q ∈ S0(Rn), so it is a bounded map Lq 7→ Lq, and we can get our

estimates for Vk as in the case of mth order equations; thus

‖U‖Lq = ‖QV ‖Lq ≤ C‖V ‖Lq ≤ CK(t)‖V ‖Lp =

CK(t)‖Q−1U‖Lp ≤ CK(t)‖U‖Lp ,

where K(t) is as in Theorem 2.1.1.

5.4.3 Fokker–Planck Equation

In [VR04], there are examples from that arise from the Fokker–Planck

equation, ∇c · (c +∇c)f = S(f), where S(f) = ∇c · (c +∇c)f , which give

systems where Im τj(ξ) ≥ 0 for all ξ 6= 0.

Indeed, using standard techniques they reduce the problem to studying

the system
P (τ, ξ) ≡ det(τI +

∑

j

Ajξj − iB) = 0

P (τ, 0) = det(τI − iB) = τ

N∏

j=1

(τ − ji)γj ,
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and give conditions and examples for which each of the roots Im τj(ξ) ≥ 0 for

all ξ 6= 0; when the polynomial is stable, i.e. Im τj(ξ) ≥ 0 and Im τj(ξ) = 0

implies ξ = 0, then we simply must calculate the order with which the root

(there is only one such root) meets the axis. This is the multi-index α with

smallest |α| such that ∂α
ξ P (0, 0) 6= 0. So, by Theorem 2.1.1,

‖u(·, t)‖Lq ≤ C(1 + t)−
n
|α| (

1
p
− 1

q
)

m−1∑

l=0

‖fl‖W
Np−l
p

,

where 1 < p ≤ 2, 1
p+ 1

q = 1, and Np is some constant which can be calculated.

In certain cases—see the paper cited above—we can ensure |α| = 2, in which

case we have the same decay as for dissipative wave equation.
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Part II

Second Order Equations with

Time Dependent Coefficients
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Chapter 6:

Introduction and Main

Results

6.1 Introduction

In this part, we give a result for second order strictly hyperbolic linear

operators with time-dependent coefficients; this work formed a joint paper,

[RS05], between the author and Professor Reissig, of TU Bergakademie,

Freiberg.

The influence of a time-dependent coefficient on decay estimates for such

operators was studied in a series of papers [RY99], [RY00a], [RY00b]. A

classification for decay estimates of solutions to the Cauchy problem

∂2
t u(t, x)− b(t)2λ(t)2∆xu(t, x) = 0, (t, x) ∈ [0,∞)×Rn,

u(0, x) = ϕ(x), ∂tu(0, x) = ψ(x), x ∈ Rn, ϕ, ψ ∈ C∞
0 ,



 (6.1)

is given, where b(t) is a bounded function and λ(t) is a strictly increas-

ing function which satisfy, for some positive constants C0, C1, C, c, ck (k =

0, 1, 2, . . . ),

0 < C0 ≤ b(t)2 ≤ C1 , for large t ; Λ(t) :=
∫ t

0
λ(s) ds →∞ as t →∞ ;

c(log Λ(t))−c ≤ c0
λ(t)
Λ(t)

≤ λ′(t)
λ(t)

≤ c1
λ(t)
Λ(t)

≤ C(log Λ(t))C , for large t ;

|Dk
t λ(t)| ≤ ckλ(t)

(
λ(t)
Λ(t)

)k

, for k = 2, 3, . . . and t large .

This classification is based on the interplay between b(t) and λ(t), that is

the so-called speed of oscillations; more precisely, the condition

|Dk
t b(t)| ≤ Cb,k

(
λ(t)
Λ(t)

(log Λ(t))β

)k

, for all k ∈ N and large t , (6.2)
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plays the fundamental rôle: if (6.2) holds for β ∈ [0, 1] then estimates of the

form

‖ut(t, ·)‖Lq + ‖λ(t)∇xu(t, ·)‖Lq

≤ C(1 + Λ(t))−
n−1

2

�
1
p
− 1

q

�
+β0(‖ϕ‖W L+1

p
+ ‖ψ‖W L

p
) (6.3)

hold for the solution u = u(t, x) to (6.1) for some constant β0 which depends

on β; here L = n
(

1
p − 1

q

)
+ 1, 1 < p < 2 and 1

p + 1
q = 1. Furthermore,

if (6.2) does not hold for β = 1 then no such estimate can be found: a

counterexample is constructed in [RY99].

In [RY00c] the Cauchy problem for general second order strictly hyper-

bolic operators with increasing time-dependent coefficients is studied. That

is, the problem

∂2
t u(t, x) +

n∑

i=1

bi(t)∂2
xitu(t, x)−

n∑

i,j=1

aij(t)∂2
xixj

u(t, x) = 0 ,

u(0, x) = ϕ(x) , ut(0, x) = ψ(x) ,

where the quadratic form
∑n

i,j=1 aij(t)ξiξj satisfies

d0ν(t)2|ξ|2 ≤
n∑

i,j=1

aij(t)ξiξj ≤ d1ν(t)2|ξ|2 ,

for some positive function ν ∈ C∞(0,∞) and positive constants d0, d1. Also,

the following conditions, which are analogous to those above for the operator

in (6.1), are assumed to hold:

c0
ν(t)
N(t)

≤ ν ′(t)
ν(t)

≤ c1
ν(t)
N(t)

and |Dk
t ν(t)| ≤ ck

(
ν(t)
N(t)

)k

ν(t) for k = 2, 3, . . . and t large,

where N(t) :=
∫ t

0
ν(s) ds →∞ as t →∞ .

For this problem, only the case which corresponds to that of β = 0

in (6.2) is studied; that is, if the following conditions are assumed for the
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coefficients for ξ ∈ Rn, large t, and each k = 0, 1, 2, . . . :

∣∣∣Dk
t

n∑

i=1

bi(t)ξi

∣∣∣ ≤ Ckν(t)
(

ν(t)
N(t)

)k

|ξ| ,

∣∣∣Dk
t

n∑

i,j=1

aij(t)ξiξj

∣∣∣ ≤ Ckν(t)2
(

ν(t)
N(t)

)k

|ξ|2 ,

stabilization conditions: lim
t→∞

bi(t)
ν(t)

, lim
t→∞

aij(t)
ν(t)2

exist ,

then an estimate of the form (6.3) with a, in general, nonnegative β0 holds.

However, in contrast to the problem (6.1), no classification involving the

“log-effect” (i.e. an analogue to the condition (6.2) for β ∈ (0, 1)) is currently

known. A detailed discussion of all these results with proofs can be found

in [RY].

In this part, we study the limiting case of (6.1) where λ(t) ≡ 1, which

is not covered by the above results. For this limiting case we will give

a more precise classification of oscillations and describe the corresponding

more precise classification of decay estimates. Indeed, we consider the fol-

lowing Cauchy problem for u = u(t, x):

∂2
t u− a(t)∆u = 0, (t, x) ∈ [0,∞)×Rn,

u(0, x) = ϕ(x), ∂tu(0, x) = ψ(x), ϕ, ψ ∈ C∞
0 (Rn), x ∈ Rn ,



 (6.4)

where a = a(t) is a bounded, smooth function which satisfies a(t) ≥ C > 0

for all t ≥ 0, so the equation from (6.4) is strictly hyperbolic.

Definition 6.1. Classification of Oscillations: Let a = a(t) be a smooth

function satisfying

|Dk
t a(t)| ≤ Ck

( 1
t + e3

(
log(t + e3)

)γ)k
, k ∈ N . (6.5)

The parameter γ controls the oscillations of a. We say that the oscillations

of a are very slow, slow or fast if γ = 0, 0 < γ < 1 or γ = 1 respectively.

If (6.5) is not satisfied for γ = 1, then we say a has very fast oscillations.

We show that if we have very slow, slow or fast oscillations, then Lp−Lq
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decay estimates can be proved for the solutions of (6.4):

Theorem 6.1.1. Consider the strictly hyperbolic Cauchy problem (6.4)

where the coefficient a = a(t) satisfies (6.5) with γ ∈ [0, 1]. Then there

exists a constant C such that the following Lp − Lq estimate holds for the

solution u = u(t, x):

‖(ut(t, ·),∇xu(t, ·))‖Lq ≤ C(1 + t)−
n−1

2

(
1
p
− 1

q

)
+s0‖(∇xϕ,ψ)‖

W
Np
p

,

where 1
p + 1

q = 1, 1 < p ≤ 2, Np ≥ n
(

1
p − 1

q

)
and

• s0 = 0 if γ = 0; in this case C only depends on p, n;

• s0 = ε if γ ∈ (0, 1) for all ε > 0; in this case C depends on p, n and ε;

• s0 is a fixed constant (which can be determined) if γ = 1; in this case C

is independent of ϕ,ψ.

Example 6.1.1: Let us consider the Cauchy problem

∂2
t u− (2 + sin(2π(log(t + e3))α))∆u = 0 ,

u(0, x) = ϕ(x), ∂tu(0, x) = ψ(x) .



 (6.6)

The coefficient is smooth and bounded. The oscillations are very slow, slow,

fast if α = 1, α ∈ (1, 2), α = 2, respectively. Consequently, Theorem 6.1.1

can be applied to (6.6).

If α > 2, then the oscillations in (6.6) are very fast. We show that, from

the point of view of Lp −Lq decay estimates, the behaviour of solutions for

(6.6) changes in a rigorous way from α = 2 to α > 2:

Theorem 6.1.2. Let us consider the Cauchy problem

∂2
t u− (2 + sin(2π(log(t + e3))α))2∆u = 0 ,

u(t0, x) = ϕ(x), ∂tu(t0, x) = ψ(x) ,



 (6.7)

with α > 2. There do not exist constants p, q, M, C1, C2 such that, for all

initial times t0 and for all initial data ϕ,ψ ∈ C∞
0 (Rn), the following Lp−Lq
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estimate holds for all t ≥ t0:

E(u)(t)
∣∣
Lq ≤ C1 exp(C2(log(t + e3))r)E(u)(t0)

∣∣
W M

p
, (6.8)

where r < α− 1. Here the (non-standard) energy E(u)(t)
∣∣
W M

p
is defined by

E(u)(t)
∣∣
W M

p
:= ‖σ(t)∇xu(t, ·)‖W M

p
+

∥∥∥ 1
σ(t)2

∂t(u(t, ·)σ(t))
∥∥∥

W M
p

with σ(t) :=
√

α(log(t+e3))α−1

t+e3 .

Remark 6.1.1: The heart of the proof of Theorem 6.1.2 is the use of

Floquet’s theory which is applied to, amongst other things, Hill’s equation

wtt + λb(t)2w = 0 (see [MW66]). The function b = b(t) is periodic; λ is a

constant. In the proof we show that there is a relation between the equation

from (6.7) and Hill’s equation. For this reason we use the square in the

coefficient of (6.7).
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Chapter 7:

Proof of Theorem 6.1.1

In order to prove this, we first derive a WKB representation for the

solution to the auxiliary problem

∂2
t v + a(t)|ξ|2v = 0, v(0, ξ) = ϕ̂(ξ), ∂tv(0, ξ) = ψ̂(ξ), (7.1)

which is obtained from (6.4) by partial Fourier transformation with respect

to x. Then we use standard techniques from the theory of Fourier multipliers

to obtain Lp − Lq estimates.

7.1 WKB Representation of Solution

7.1.1 Division of phase space into zones

To find a WKB representation for the solution of (7.1) we divide the

phase space [0,∞)×Rn
ξ into two zones, the hyperbolic zone and the pseudodif-

ferential zone, denoted Zhyp(N), Zpd(N) respectively. These enable us to use

the hyperbolicity of our starting problem (6.4) and tools from hyperbolic

theory only in the hyperbolic zone.

Definition 7.1. Several Zones: For a given N > 0, define the zones

Zhyp(N) and Zpd(N) of the phase space [0,∞)×Rn by

Zhyp(N) := {(t, ξ) ∈ [0,∞)×Rn : |ξ|(t + e3) ≥ N(log(t + e3))γ} ,

Zpd(N) := {(t, ξ) ∈ [0,∞)×Rn : |ξ|(t + e3) ≤ N(log(t + e3))γ} .

Here γ is the parameter from (6.5).

We shall denote the line that separates these zones by tξ = t(|ξ|) which

is defined for {ξ : |ξ| ≤ p0}, p0 := Ne−33γ , implicitly by the formula

|ξ|(tξ + e3) = N(log(tξ + e3))γ .
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Lemma 7.1.1. For tξ as defined above we have, for all multi-indices α with

|α| ≥ 1, the inequality

|∂α
ξ tξ| ≤ Cα,N |ξ|−1−|α|(log(tξ + e3))γ .

We also subdivide Zhyp(N) into two smaller zones, the oscillations sub-

zone Zosc(N) and the regular subzone Zreg(N).

Definition 7.2. Several Subzones: For a given N > 0 define the subzones

Zosc(N) and Zreg(N) of Zhyp(N) by

Zosc(N) := {(t, ξ) : N(log(t + e3))γ ≤ |ξ|(t + e3) ≤ 2N(log(t + e3))2γ} ,

Zreg(N) := {(t, ξ) : |ξ|(t + e3) ≥ 2N(log(t + e3))2γ} .

We denote the separating line by t̃ξ = t̃(|ξ|) which is defined for {ξ :

|ξ| ≤ p1}, p1 := 2Ne−332γ , implicitly by the formula

|ξ|(t̃ξ + e3) = 2N(log(t̃ξ + e3))2γ .

Lemma 7.1.2. For t̃ξ as defined above we have, for all multi-indices α with

|α| ≥ 1, the inequalities

|∂α
ξ t̃ξ| ≤ Cα,N |ξ|−1−|α|(log(t̃ξ + e3))2γ .

7.1.2 Representation in the pseudodifferential zone

In Zpd(N) it is straightforward to get a representation for the solution;

observe that (7.1) can be written as the first order system

DtU =

(
0 |ξ|

a(t)|ξ| 0

)
U, U(0, ξ) = U0(ξ) :=

(
|ξ|ϕ̂(ξ)

ψ̂(ξ)

)
,

where Dt = 1√−1
∂t and

U = U(t, ξ) :=

(
|ξ|v(t, ξ)

Dtv(t, ξ)

)
.
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Hence, we can write U(t, ξ) = E(t, 0, ξ)U0(ξ) where E = E(t, s, ξ), 0 ≤ s ≤ t,

solves

DtE =

(
0 |ξ|

a(t)|ξ| 0

)
E, E(s, s, ξ) = I :=

(
1 0

0 1

)
.

Naturally, this can be written as an infinite sum via the matrizant represen-

tation:

E(t, s, ξ) = I +
∞∑

j=1

∫ t

s
A(t1, ξ)

∫ t1

s
A(t2, ξ) . . .

∫ tj−1

s
A(tj , ξ) dtj . . . dt1 ,

(7.2)

where A(t, ξ) =
√−1

( 0 |ξ|
a(t)|ξ| 0

)
. Observing that ‖A(t, ξ)‖ ≤ Ca(t)|ξ|, we

see

‖E(t, s, ξ)‖ ≤ exp
(∫ t

s
‖A(r, ξ)‖ dr

)
≤ eCaN(log(t+e3))γ

,

with Ca := C supt a(t), for 0 ≤ s ≤ t ≤ tξ. Later we need, for special

representations of solutions to (7.1) in subzones of the phase space, the

behaviour of ‖∂α
ξ E(tξ, 0, ξ)‖.

Lemma 7.1.3. The following estimates hold for all multi-indices α:

‖∂α
ξ E(tξ, 0, ξ)‖ ≤ Cα,N |ξ|−|α|(log(tξ + e3))|α|γeCaN(log(tξ+e3))γ

.

Proof. The proof follows from the representation (7.2) and from the state-

ment of Lemma 7.1.1.

Summarising all the above information we have

Proposition 7.1.4. For 0 ≤ t ≤ tξ the following representation holds:

|ξ|v(t, ξ) = E11(t, 0, ξ)|ξ|ϕ̂(ξ) + E12(t, 0, ξ)ψ̂(ξ),

Dtv(t, ξ) = E21(t, 0, ξ)|ξ|ϕ̂(ξ) + E22(t, 0, ξ)ψ̂(ξ),

and

|∂α
ξ Ekl(tξ, 0, ξ)| ≤ Cα,N |ξ|−|α|(log(tξ + e3))|α|γeCaN(log(tξ+e3))γ

,

for each multi-index α, for all 0 ≤ t ≤ tξ and for all k, l = 1, 2.
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7.1.3 Symbol classes in the hyperbolic zone

The hyperbolic zone Zhyp(N) consists of two parts Z
(1)
hyp(N) := {(t, ξ) ∈

[tξ,∞) × {ξ : |ξ| ≤ p0}} and Z
(2)
hyp(N) := {(t, ξ) ∈ [0,∞) × {ξ : |ξ| ≥

p0}}. In what follows, we shall restrict our considerations to Z
(1)
hyp(N). In

order to give a representation for the solution to (7.1) in Zhyp(N), we carry

out a diagonalisation procedure with suitable remainder at each step. The

following definition of symbol classes exactly characterises the necessary

properties of the remainders.

Definition 7.3. For each m1 ∈ R and m2, N ≥ 0 we define SN{m1, m2}
to be the set of functions σ = σ(t, ξ) ∈ C∞(Z(1)

hyp(N)) such that, for all

(t, ξ) ∈ Z
(1)
hyp(N), multi-indices α and k ∈ N

|Dk
t Dα

ξ σ(t, ξ)| ≤ Ck,α|ξ|m1−|α|
(

1
t+e3

(
log(t + e3)

)γ
)m2+k

,

with nonnegative constants Ck,α depending only on k and α.

Lemma 7.1.5. The classes SN{m1,m2} have the following properties:

(i) if σ ∈ SN{m1,m2} then

Dα
ξ σ ∈ SN{m1 − |α|,m2} ,

and Dk
t σ ∈ SN{m1,m2 + k} ;

(ii) if σ1 ∈ SN{m1,m2}, σ2 ∈ SN{p1, p2} then σ1σ2 ∈ SN{m1 + p1,m2 +

p2};

(iii) for all r ≥ 0 we have SN{m1, m2} ⊂ SN{m1 + r,m2 − r}.

Proof. Properties (i) and (ii) are clear by the definition of SN{m1,m2}. To

show (iii), simply observe that, by the definition of Zhyp(N),

(log(t + e3))γ

|ξ|(t + e3)
≤ 1

N
.

148



Hence, if σ ∈ SN{m1, m2} then

|Dk
t Dα

ξ σ(t, ξ)|

≤ Ck,α|ξ|m1+r−|α|
(

1
t + e3

(log(t + e3))γ

)m2−r+k (log(t + e3))γr

(|ξ|(t + e3))r

≤ Ck,αN−r|ξ|m1+r−|α|
(

1
t + e3

(log(t + e3))γ

)m2−r+k

,

so σ ∈ SN{m1 + r,m2 − r}.

7.1.4 Diagonalisation modulo SN{0, 1}

The equation from (7.1) is equivalent to the first order system

DtV =

(
0

√
a(t)|ξ|√

a(t)|ξ| 0

)
V +

Dta(t)
2a(t)

(
1 0

0 0

)
, (7.3)

where

V = V (t, ξ) =

(√
a(t)|ξ|v(t, ξ)

Dtv(t, ξ)

)
for t ≥ tξ.

Note that the leading matrix is in SN{1, 0}, and the remainder lies in

SN{0, 1}. In order to have a useful representation for the solution to (7.1)

in Z
(1)
hyp(N), we must diagonalise this system. Since the eigenvalues of the

first matrix are τ1 = τ1(ξ) = −
√

a(t)|ξ| and τ2 = τ2(ξ) =
√

a(t)|ξ|, it is

simple to show that

M

(
τ1 0

0 τ2

)
M−1 =

(
0

√
a(t)|ξ|√

a(t)|ξ| 0

)
,

where

M =

(
1 1

−1 1

)
and M−1 =

1
2

(
1 −1

1 1

)
.

Setting V0 = V0(t, ξ) := M−1V (t, ξ), we obtain the following system for V0:

DtV0 =


τ1(ξ) + Dta(t)

4a(t) 0

0 τ2(ξ) + Dta(t)
4a(t)


V0 +

Dta(t)
4a(t)

(
0 1

1 0

)
V0 . (7.4)
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We shall use the notation:

D :=


τ1(ξ) + Dta(t)

4a(t) 0

0 τ2(ξ) + Dta(t)
4a(t)


 , R0 :=

Dta(t)
4a(t)

(
0 1

1 0

)
. (7.5)

The system (7.4) has diagonal leading part D ∈ SN{1, 0} with remainder

R0 ∈ SN{0, 1}. Thus, we have obtained in Z
(1)
hyp(N) the diagonalisation of

the system (7.3) modulo remainder R0 ∈ SN{0, 1}.

7.1.5 Further considerations in the oscillations subzone: Diagonalisation

modulo SN{−1, 2}

The oscillations subzone Zosc(N) consists of two parts,

Z(1)
osc(N) := {(t, ξ) ∈ [tξ, t̃ξ]× {ξ : |ξ| ≤ p0}}

and Z(2)
osc(N) := {(t, ξ) ∈ [0, t̃ξ]× {ξ : p0 ≤ |ξ| ≤ p1}}.

In what follows, we restrict our considerations to Z
(1)
osc(N) if we have in

mind the oscillations subzone. In Z
(1)
hyp(N) we carry out one more step of

the diagonalisation procedure. Let

N (1) = N (1)(t, ξ) := −Dta(t)
4a(t)

(
0 1

τ1−τ2
1

τ2−τ1
0

)
∈ SN{−1, 1}.

Now set N1 = N1(t, ξ) := I +N (1); this is invertible since

‖N (1)‖ ≤ C
(log(t + e3))γ

|ξ|(t + e3)
≤ C/N by definition of Zhyp(N),

and we choose N in the definition of Zhyp(N), Zpd(N) large enough so that

C/N < 1/2 here. Let V1 = V1(t, ξ) := N−1
1 M−1V ; then we obtain the

following equivalent problem to (7.3) for V1 for t ≥ tξ:

(Dt−D−R1)V1 = 0, V1(tξ, ξ) = V1,0(ξ) := N−1
1 (tξ, ξ)M−1V (tξ, ξ), (7.6)

where R1 ∈ SN{−1, 2}. This is a consequence of

Lemma 7.1.6. Let R1 := −N−1
1 (DtN (1) −R0N (1)). Then in Z

(1)
hyp(N) the
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following identity holds:

(Dt −D −R0)N1 = N1(Dt −D −R1),

where D,R0 are as in (7.5).

Proof. Follows immediately from the observation that [N (1),D] = R0.

Thus, we have obtained in Z
(1)
hyp(N) the diagonalisation of the system

(7.3) modulo remainder R1 ∈ SN{−1, 2}.

7.1.6 Further considerations in regular subzone: Diagonalisation

modulo SN{−m,m + 1}

In Z
(1)
osc(N) there is no point in carrying out any more steps of diagonali-

sation since there is no useful improvement of regularity between amplitudes

from the classes SN{−(l − 1), l} and SN{−l, l + 1} when l ≥ 2. However,

we get such an improvement of regularity in the regular subzone Zreg(N).

There we carry out m steps of the diagonalisation procedure. The number

m is chosen and motivated in Section 7.2. The step depends on the next

result, which generalises Lemma 7.1.6.

Proposition 7.1.7. For each m ∈ N there exist matrix-valued functions

Nm = Nm(t, ξ) ∈ SN{0, 0}, Fm = Fm(t, ξ) ∈ SN{−1, 2} ,

and Rm = Rm(t, ξ) ∈ SN{−m,m + 1}

such that Fm is diagonal and the following identity holds in Z
(1)
hyp(N):

(Dt −D −R0)Nm = Nm(Dt −D + Fm −Rm),

where D, R0 are as in (7.5). Also, for N (in the definition of Zhyp(N))

chosen large enough, Nm is invertible and its inverse also lies in SN{0, 0}.

Proof. We seek representations for Nm, Fm in the form

Nm =
m∑

r=0

N (r), Fm =
m−1∑

r=0

F (r) .
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To do this, define inductively the matrix-valued functions B(r) =
(

B
(r)
11 B

(r)
12

B
(r)
21 B

(r)
22

)
,

N (r) and F (r) in the manner below:

N (0) := I, B(0) := R0 , F (r) := diag B(r), N (r+1) :=


 0 B

(r)
12

τ1−τ2
B

(r)
21

τ2−τ1
0


 ,

B(r+1) := (D1 −D −R0)
( r+1∑

ρ=0

N (ρ)

)
−

( r+1∑

ρ=0

N (ρ)

)(
Dt −D +

r∑

ρ=0

F (ρ)

)
.

We claim that N (r) ∈ SN{−r, r} and B(r) ∈ SN{−r, r + 1}. For r = 1 this

is clear from Lemma 7.1.6. Assume it holds for r = k; then, observing that

τ2− τ1 = 2
√

a(t)|ξ| ∈ SN{1, 0} and noting by the induction hypothesis that

B
(k)
12 , B

(k)
21 ∈ SN{−k, k+1}, we see that N (k+1) ∈ SN{−(k+1), k+1}. Also,

B(k+1) =B(k) + (Dt −D −R0)N (k+1) −
k∑

ρ=0

N (ρ)F (k)

−N (k+1)

(
Dt −D +

k∑

ρ=0

F (ρ)

)
= B(k) −F (k) − [D,N (k+1)] + S,

where S = DtN (k+1) − R0N (k+1) − N (k+1)
∑k

ρ=0F (ρ) − ∑k
ρ=1N (ρ)F (k),

which lies in SN{−(k + 1), k + 2} by the induction hypothesis and the rules

of the symbolic calculus of Lemma 7.1.5. Furthermore, by definition of F (k)

and N (k+1),

B(k) −F (k) − [D,N (k+1)] = 0 .

Therefore, B(k+1) = S proving the induction step. So the claim is proved.

Now we claim that Nm :=
∑m

r=0N (r) is invertible; this is true because

‖N (r)‖ ≤ Cr

((
log(t + e3)

)γ

(t + e3)|ξ|
)r

≤ Cr

N r
,

by the definition of Zhyp(N). Choose N in the definition of Zhyp(N) so that

Cr

N r
≤ 1

2r+1
for r = 1, . . . , m.

The value of m shall be chosen later, but since it is fixed, this fixes N .
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Hence,

‖Nm − I‖ ≤
m∑

r=1

‖N (r)‖ ≤
m∑

r=1

1
2r+1

<
1
2
,

thus proving the invertibility of Nm. Finally, noting that F (0) = 0, so F (m) ∈
SN{−1, 2}, and setting Rm := −N−1

m B(m) ∈ SN{−m,m + 1} completes the

proof of the proposition.

The regular subzone Zreg(N) consists of three parts Z
(1)
reg(N) := {(t, ξ) ∈

[t̃ξ,∞) × {ξ : |ξ| ≤ p0}}, Z
(2)
reg(N) := {(t, ξ) ∈ [t̃ξ,∞) × {ξ : p0 ≤ |ξ| ≤ p1}}

and Z
(3)
reg(N) := {(t, ξ) ∈ [0,∞)×{ξ : |ξ| ≥ p1}}. In what follows we restrict

our considerations to Z
(1)
reg(N) if we have in mind the regular subzone. Now

we set Vm = Vm(t, ξ) := N−1
m V0 for t ≥ t̃ξ and see that the system (7.4) for

V0 is equivalent in Z
(1)
reg(N) to

(Dt −D + Fm −Rm)Vm = 0,

Vm(t̃ξ, ξ) = Vm,0(ξ) := N−1
m (t̃ξ, ξ)N1(t̃ξ, ξ)V1(t̃ξ, ξ).

(7.7)

Thus, we have obtained in Z
(1)
reg(N) the diagonalisation of the system

(7.3) modulo remainder Rm ∈ SN{−m, m + 1}, while in Z
(1)
osc(N) it is suffi-

cient to carry out the diagonalisation of the system (7.3) modulo remainder

R1 ∈ SN{−1, 2}.

7.1.7 Fundamental solutions and their properties

Now let us construct representations for the fundamental solutions to

the matrix-valued operators appearing in (7.6) and (7.7). First, let E2 =

E2(t, s, ξ) solve

DtE2 −DE2 = 0, E2(s, s, ξ) = I,

where t, s ≥ tξ and the matrix D is as in (7.5). We see that

E2(t, s, ξ) =
(

a(t)
a(s)

)1/4
(

ei
R t

s τ1(r,ξ) dr 0

0 ei
R t

s τ2(r,ξ) dr

)
.

Hence, by the strict hyperbolicity of our starting Cauchy problem (6.4) we
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get

‖E2(t, s, ξ)‖ ≤
( a(t)

a(s)

)1/4
≤ Ca for all t, s ≥ tξ. (7.8)

Later we need, for special representations of solutions to (7.1) in Z
(1)
osc(N)

and in Z
(1)
reg(N), the behaviour of ‖∂α

ξ E2(tξ, 0, ξ)‖ and of ‖∂α
ξ E2(t̃ξ, tξ, ξ)‖.

Lemma 7.1.8. The following estimates hold for all multi-indices α:

‖∂α
ξ E2(tξ, 0, ξ)‖ ≤ Cα,N |ξ|−|α|(log(tξ + e3))|α|γ ,

‖∂α
ξ E2(t̃ξ, tξ, ξ)‖ ≤ Cα,N |ξ|−|α|(log(t̃ξ + e3))2|α|γ .

Proof. Follows immediately from Lemmas 7.1.1 and 7.1.2 together with as-

sumption (6.5) and estimate (7.8).

Now we define Eosc = Eosc(t, s, ξ), tξ ≤ s ≤ t ≤ t̃ξ to be the fun-

damental solution to (7.6) in Z
(1)
osc(N). This can be written in the form

Eosc = E2(t, s, ξ)Q1(t, s, ξ) where Q1 = Q1(t, s, ξ) solves

DtQ1 = E2(s, t, ξ)R1(t, ξ)E2(t, s, ξ)Q1, Q1(s, s, ξ) = I.

Letting P1 = P1(t, s, ξ) :=
√−1E2(s, t, ξ)R1(t, ξ)E2(t, s, ξ), we have the

matrizant representation for Q1:

Q1(t, s, ξ) = I +
∞∑

j=1

∫ t

s
P1(t1, s, ξ) . . .

∫ tj−1

s
P1(tj , s, ξ) dtj . . . dt1 .

Now R1 ∈ SN{−1, 2}; therefore, using (7.8), we see that

‖P1(t, s, ξ)‖ ≤ C|ξ|−1

(
(log(t + e3))γ

t + e3

)2

.

Hence,

‖Q1(t, s, ξ)‖ ≤ exp
(∫ t

s
‖P1(r, s, ξ)‖ dr

)
≤ eCN,γ(log(tξ+e3))γ

for all tξ ≤ s, t ≤ t̃ξ.

We need, for a special representation of solution to (7.1) in Z
(1)
osc(N) and
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in Z
(1)
reg(N), the behaviour of ‖∂α

ξ Q1(t, tξ, ξ)‖ for t ∈ [tξ, t̃ξ].

Lemma 7.1.9. The following estimate holds for all multi-indices α and for

all t ∈ [tξ, t̃ξ]:

‖∂α
ξ Q1(t, tξ, ξ)‖ ≤ Cα,N |ξ|−|α|(log(t + e3))2|α|γeCN,γ(log(tξ+e3))γ

.

Proof. Follows immediately from the above representation and estimate for

Q1 = Q1(t, s, ξ), and from Lemma 7.1.1 together with assumption (6.5) and

estimate (7.8).

Similarly, in Z
(1)
reg(N) we define Ereg = Ereg(t, s, ξ), t̃ξ ≤ s, t, to be the

fundamental solution to (7.7). We write this in the form Ereg(t, s, ξ) =

Ẽ2(t, s, ξ)Qm(t, s, ξ), where Qm = Qm(t, s, ξ) solves

DtQm = Ẽ2(s, t, ξ)Rm(t, ξ)Ẽ2(t, s, ξ)Qm, Qm(s, s, ξ) = I.

Here we define for t̃ξ ≤ s, t,

Ẽ2(t, s, ξ)

=
(

a(t)
a(s)

)1/4
(

ei
R t

s τ1(r,ξ) dr−R t
s f

(1)
m (r,ξ) dr 0

0 ei
R t

s τ2(r,ξ) dr−R t
s f

(2)
m (r,ξ) dr

)
,

where Fm :=
(

f
(1)
m 0

0 f
(2)
m

)
. Using Fm ∈ SN{−1, 2} we have |∫ t

s f
(l)
m (r, ξ) dr| ≤

Cm for all t̃ξ ≤ s, t and for l = 1, 2. Then, observing thatRm ∈ SN{−m,m+

1}, we see that the following estimate holds:

‖Qm(t, s, ξ)‖ ≤ Cm for all t̃ξ ≤ s, t.

We also need, for a special representation of solution to (7.1) in Z
(1)
reg(N),

the behaviour of ‖∂α
ξ Qm(t, t̃ξ, ξ)‖ for t ≥ t̃ξ.

Lemma 7.1.10. The following estimate holds for all multi-indices α with

|α| ≤ m−1
2 and for all t̃ξ ≤ t:

‖∂α
ξ Qm(t, t̃ξ, ξ)‖ ≤ Cα,m|ξ|−|α| for all t̃ξ ≤ t .
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Proof. It is sufficient to discuss the derivatives with respect to ξ of the term

g(t, ξ) := a(t̃ξ)−
1
4 e

i
tR̃

tξ

√
a(r) dr|ξ|−

tR̃
tξ

f
(1)
m (r,ξ) dr

rm(t, ξ)

with rm ∈ SN{−m,m + 1}. Such terms appear in the matrizant represen-

tation for Qm. We have

|g(t, ξ)| ≤ Cm |ξ|−m

(
1

t + e3
(log(t + e3))γ

)m+1

.

Derivatives of rm with respect to ξ generate |ξ|−|α|. By Lemma 7.1.2, as-

sumption (6.5) and the definition of Zreg(N) we conclude that

|∂ξ1a(t̃ξ)−1/4| ≤ C
(log(t̃ξ + e3))3γ

|ξ|2(t̃ξ + e3)
≤ CN (log(t̃ξ + e3))γ |ξ|−1 .

In the same way one can show

|∂α
ξ a(t̃ξ)−1/4| ≤ Cα,N (log(t̃ξ + e3))|α|γ |ξ|−|α| .

Differentiating
∫ t
t̃ξ

f
(1)
m (r, ξ) dr with respect to ξ1 gives

∫ t

t̃ξ

∂ξ1 f (1)
m (r, ξ) dr − f (1)

m (t̃ξ, ξ)
∂t̃ξ
∂ξ1

.

The integral can be estimated by Cm|ξ|−1. Using f
(1)
m ∈ SN{−1, 2} gives

the estimate

∣∣∣f (1)
m (t̃ξ, ξ)

∂t̃ξ
∂ξ1

∣∣∣ ≤ Cm
(log(t̃ξ + e3))4γ

|ξ|3(t̃ξ + e3)2
≤ Cm,N |ξ|−1 .

Higher derivatives of t̃ξ give rise to log terms. Thus, we get

∣∣∣∂α
ξ e

−
tR̃

tξ

f
(1)
m (r,ξ) dr∣∣∣ ≤ Cα,N (log(t̃ξ + e3))2|α|γ |ξ|−|α| .

The main problem arises from
∫ t
t̃ξ

√
a(r) dr|ξ|. Differentiation ∂ξ1 allows
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only an estimate like

∣∣∣∂ξ1

(∫ t

t̃ξ

√
a(r) dr |ξ|

)∣∣∣ ≤ Ca(t + e3) .

But now we can use that rm ∈ SN{−m,m + 1}. If we differentiate α times,

then for all t ≥ t̃ξ we have

|(t + e3)|α|rm(t, ξ)| ≤ Cm
(log(t + e3))γ(m+1)

|ξ|m(t + e3)m+1−|α|

≤ Cm

|ξ||α|
(log(t + e3))γ(m+1)

|ξ|m−|α|(t + e3)m+1−|α|

≤ Cm

|ξ||α|
(log(t + e3))γ(m−1)(log(t + e3))2γ

(|ξ|(t + e3))m−1−|α||ξ|(t + e3)2

≤ Cm,N

|ξ||α|
(log(t + e3))2γ

|ξ|(t + e3)2

if |α| ≤ m−1
2 . Consequently we earn |ξ|−|α| and a term which is integrable

over [t̃ξ, t] for all t. It remains to explain how we proceed with the terms

(log(t̃ξ + e3))2|α|γ arising in the above estimates. These terms we couple

with rm also and get, for |α| ≤ m−1
2 ,

|(log(t̃ξ + e3))2|α|γrm(t, ξ)| ≤ Cm

∣∣∣(log(t + e3))(m−1)γ (log(t + e3))(m+1)γ

|ξ|m(t + e3)m+1

∣∣∣

≤ Cm
(log(t + e3))2(m−1)γ

(|ξ|(t + e3))m−1

(log(t + e3))2γ

|ξ|(t + e3)2
.

Using the definition of Zreg(N), the first factor is uniformly bounded. The

second one is integrable over [t̃ξ, t]. This completes the proof of our lemma.

7.1.8 Representation of solutions in subzones

Now we are in position to give representations for the solution to (7.1)

in Z
(1)
osc and Z

(1)
reg. The vector-function V = V (t, ξ) is a solution of (7.3).
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In Z
(1)
osc(N): For tξ ≤ t ≤ t̃ξ we have

V (t, ξ) = MN1(t, ξ)E2(t, 0, ξ)E2(0, tξ, ξ)Q1(t, tξ, ξ)N1(tξ, ξ)−1M−1

·
(√

a(tξ) 0

0 1

)
E(tξ, 0, ξ)U0(ξ), (7.9)

where we recall E(tξ, 0, ξ) is obtained in the representation of the solution

in the pseudodifferential zone.

In Zreg(N): For t ≥ t̃ξ we have

V (t, ξ) = MNm(t, ξ)E2(t, 0, ξ)E2(0, t̃ξ, ξ)F̃m(t, t̃ξ, ξ)

·Qm(t, t̃ξ, ξ)Nm(t̃ξ, ξ)−1N1(t̃ξ, ξ)E2(t̃ξ, tξ, ξ)Q1(t̃ξ, tξ, ξ)N1(tξ, ξ)−1

·M−1

(√
a(tξ) 0

0 1

)
E(tξ, 0, ξ)U0(ξ),

with

F̃m(t, t̃ξ, ξ) =


e

− R t
t̃ξ

f
(1)
m (r,ξ) dr

0

0 e
− R t

t̃ξ
f
(2)
m (r,ξ) dr


 ,

where we have used the representation (7.9) at t = t̃ξ.

Before we discuss the representation of the solution to (7.1) we collect

together some useful estimates.

Lemma 7.1.11. The following estimates hold for all multi-indices α:

‖∂α
ξ N1(tξ, ξ)‖ ≤ Cα|ξ|−|α|(log(tξ + e3))|α|γ ,

‖∂α
ξ Nm(t̃ξ, ξ)‖ ≤ Cα|ξ|−|α|(log(t̃ξ + e3))2|α|γ ,

‖∂α
ξ F̃m(t, t̃ξ, ξ)‖ ≤ Cα|ξ|−|α|(log(t̃ξ + e3))2|α|γ , for all t ≥ t̃ξ.

Proof. Follows from the above representation for F̃m = F̃m(t, t̃ξ, ξ) imme-

diately, by Lemmas 7.1.1 and 7.1.2 together with assumption (6.5) and the

definition of zones.

Summarising all the above results we have
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Proposition 7.1.12. The following WKB representations hold for the so-

lution to (7.1):

|ξ|v(t, ξ) = b
(1)
11 (t, ξ)e

−i|ξ|
tR
0

√
a(s) ds

|ξ|ϕ̂(ξ) + b
(1)
12 (t, ξ)e

−i|ξ|
tR
0

√
a(s) ds

ψ̂(ξ)

+ b
(1)
21 (t, ξ)e

i|ξ|
tR
0

√
a(s) ds

|ξ|ϕ̂(ξ) + b
(1)
22 (t, ξ)e

i|ξ|
tR
0

√
a(s) ds

ψ̂(ξ),

Dtv(t, ξ) = b
(2)
11 (t, ξ)e

−i|ξ|
tR
0

√
a(s) ds

|ξ|ϕ̂(ξ) + b
(2)
12 (t, ξ)e

−i|ξ|
tR
0

√
a(s) ds

ψ̂(ξ)

+ b
(2)
21 (t, ξ)e

i|ξ|
tR
0

√
a(s) ds

|ξ|ϕ̂(ξ) + b
(2)
22 (t, ξ)e

i|ξ|
tR
0

√
a(s) ds

ψ̂(ξ).

Here the amplitudes b
(p)
kl (t, ξ), p, k, l = 1, 2, satisfy the following estimates:

• in Zpd(N) ∪ Z
(1)
osc(N) : |b(p)

kl (t, ξ)| ≤ CN,a,γeCN,a,γ(log(t+e3))γ
;

• in Z
(1)
reg(N): |∂α

ξ b
(p)
kl (t, ξ)| ≤ CN,a,γ,α|ξ|−|α|(log(t+e3))2|α|γeCN,a,γ(log(t+e3))γ

for all |α| ≤ m−1
2 , where m is the number of steps of diagonalisation in

Z
(1)
reg(N).

We obtain similar representations in the other parts of the phase space.

The amplitudes satisfy at worst the estimates above.

7.2 Lp − Lq Estimates for Fourier Multipliers1

Using Proposition 7.1.12 we can write down the following Fourier multiplier

representation for the solution u = u(t, x) to (6.4):

|Dx|u(t, x)

= F−1
(
b
(1)
11 (t, ξ)e

−i|ξ|
tR
0

√
a(s) ds

|ξ|ϕ̂(ξ) + b
(1)
12 (t, ξ)e

−i|ξ|
tR
0

√
a(s) ds

ψ̂(ξ)

+ b
(1)
21 (t, ξ)e

i|ξ|
tR
0

√
a(s) ds

|ξ|ϕ̂(ξ) + b
(1)
22 (t, ξ)e

i|ξ|
tR
0

√
a(s) ds

ψ̂(ξ)
)
, (7.10)

1The results in this section were obtained by the co-author of the joint paper.
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Dtu(t, x)

= F−1
(
b
(2)
11 (t, ξ)e

−i|ξ|
tR
0

√
a(s) ds

|ξ|ϕ̂(ξ) + b
(2)
12 (t, ξ)e

−i|ξ|
tR
0

√
a(s) ds

ψ̂(ξ)

+ b
(2)
21 (t, ξ)e

i|ξ|
tR
0

√
a(s) ds

|ξ|ϕ̂(ξ) + b
(2)
22 (t, ξ)e

i|ξ|
tR
0

√
a(s) ds

ψ̂(ξ)
)
, (7.11)

where F−1 denotes the inverse to the partial Fourier transform with re-

spect to x. Here the amplitudes b
(p)
kl (t, ξ), p, k, l = 1, 2, satisfy the following

estimates:

• in Zpd(N) ∪ Zosc(N) : |b(p)
kl (t, ξ)| ≤ CN,a,γeCN,a,γ(log(t+e3))γ

;

• in Zreg(N): |∂α
ξ b

(p)
kl (t, ξ)| ≤ CN,a,γ,α|ξ|−|α|(log(t+e3))2|α|γeCN,a,γ(log(t+e3))γ

for all |α| ≤ m−1
2 , where m is the number of steps of diagonalisation in

Z
(1)
reg(N).

Our next goal is to estimate these Fourier multipliers. We use the approach

from [RY] and from [RY00b].

7.2.1 Lp − Lq estimates for Fourier multipliers with amplitudes vanishing in

regular subzone

Let us choose a function ψ ∈ C∞(Rn) satisfying ψ(ξ) ≡ 0 for |ξ| ≤
1, ψ(ξ) ≡ 1 for |ξ| ≥ 2 and 0 ≤ ψ(ξ) ≤ 1. Further, denote K(t) :=

N(log(t + e3))2γ/(t + e3).

Theorem 7.2.1. Let us consider Fourier multipliers which are defined by

F−1
(
e
i|ξ|

tR
0

√
a(s)ds

(1− ψ(ξ/K(t)))|ξ|−2ra(t, ξ)F(ϕ)(ξ)
)

.

Suppose that a = a(t, ξ) satisfies the following assumption:

• in Zpd(N) ∪ Zosc(N) : |a(t, ξ)| ≤ CN,a,γ exp(CN,a,γ(log(t + e3))γ).

Then we have the Lp − Lq estimate

∥∥F−1
(
e
i|ξ|

tR
0

√
a(s)ds

(1− ψ(ξ/K(t)))|ξ|−2ra(t, ξ)F(ϕ)(ξ)
)∥∥

Lq

≤ CN,a,γK(t)−2r+n
(

1
p
− 1

q

)
eCN,a,γ(log(t+e3))γ‖ϕ‖Lp ,
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provided that 0 ≤ 2r ≤ n(1
p − 1

q ), 1 < p ≤ 2, 1
p + 1

q = 1.

Proof. Let us consider

I0 :=
∥∥∥F−1

(
e
i|ξ|

tR
0

√
a(s)ds

(1− ψ(ξ/K(t)))|ξ|−2ra(t, ξ)F(ϕ)(ξ)
)∥∥∥

q

Lq
.

Using the transformations ξ = K(t)η and z = K(t)x we conclude

I0 = K(t)nq−2rq−n

∥∥∥F−1
(
e
i K(t)|η|

tR
0

√
a(s)ds

(1− ψ(η))|η|−2ra(t,K(t)η)F(ϕ)(K(t)η)
)∥∥∥

q

Lq
.

The point (t,K(t)η) with |η| ≤ 2 (support of 1 − ψ) belongs to Zpd(N) ∪
Zosc(N). Therefore |a(t,K(t)η)| ≤ CN,a,γ exp(CN,a,γ(log(t + e3))γ). For I0

we obtain

I
1/q
0 ≤

K(t)n−2r−n
q

∥∥∥F−1
(
e
i K(t)|η|

tR
0

√
a(s)ds

(1− ψ(η))|η|−2ra(t, K(t)η)
)

∗ F−1(F(ϕ)(K(t)η))
∥∥∥

Lq
.

Now let us denote

Tt := F−1
(
e
i K(t)|η|

tR
0

√
a(s)ds

(1− ψ(η))|η|−2ra(t,K(t)η)
)

exp(−CN,a,γ(log(t + e3))γ).

We have, together with the estimate for a(t,K(t)η),

meas{η : |F(Tt)| ≥ l} ≤ meas{η : |η| ≤ C l−
1
2r } ≤ C l−

n
2r .

Due to Theorem 1.11 from [Hör60] we have F(Tt) ∈ M q
p for all 2r ≤ n(1

p− 1
q ).

Here M q
p denotes the set of Fourier transforms F(T ) of distributions T ∈ Lq

p,

where Lq
p denotes the space of tempered distributions such that ‖T ∗u‖Lq ≤
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C‖u‖Lp with a constant C independent of u. Hence Tt ∈ Lq
p and

‖Tt ∗ F−1(F(ϕ)(K(t)η))‖Lq ≤ Cp K(t)−n+n
p ‖ϕ‖Lp .

Thus, we have proved

I
1/q
0 ≤ C K(t)−2r+n( 1

p
− 1

q
)
eCN,a,γ(log(t+e3))γ‖ϕ‖Lp ,

and

∥∥∥F−1
(
e
i|ξ|

tR
0

√
a(s)ds

(1− ψ(ξ/K(t)))|ξ|−2ra(t, ξ)F(ϕ)(ξ)
)∥∥∥

Lq

≤ C K(t)−2r+n( 1
p
− 1

q
)
eCN,a,γ(log(t+e3))γ‖ϕ‖Lp ,

respectively. Thus, we have derived the statement of our theorem.

7.2.2 Lp − Lq estimates for Fourier multipliers with amplitudes supported in

regular subzone

Theorem 7.2.2. Let us consider Fourier multipliers which are defined by

F−1
(
e
i|ξ|

tR
0

√
a(s)ds

ψ(ξ/(2K(t)))|ξ|−2ra(t, ξ)F(ϕ)(ξ)
)

.

Suppose that a = a(t, ξ) satisfies the following assumption:

• in Zreg(N):

|∂α
ξ a(t, ξ)| ≤ CN,a,γ,α|ξ|−|α|(log(t + e3))2|α|γ exp(CN,a,γ(log(t + e3))γ)

for all |α| ≤ m−1
2 .

Then we have the Lp − Lq estimate

∥∥∥F−1
(
e
i|ξ|

tR
0

√
a(s)ds

ψ(ξ/(2K(t)))|ξ|−2ra(t, ξ)F(ϕ)(ξ)
)∥∥∥

Lq

≤ C K(t)−2r+n( 1
p
− 1

q
)(log(t + e3))2MγeCN,a,γ(log(t+e3))γ‖ϕ‖Lp
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provided that 1 < p ≤ 2, 1
p + 1

q = 1, n+1
2 (1

p − 1
q ) ≤ 2r ≤ n(1

p − 1
q ) and with

a suitable positive constant M .

Proof. We generalise the proof of [Pec76] to Fourier multipliers depending on

a parameter. If (t, ξ) ∈ suppψ(ξ/(2K(t))), then (t, ξ) ∈ Zreg(N). We choose

a nonnegative function φ = φ(ξ) having compact support in {ξ ∈ Rn : 1/2 ≤
|ξ| ≤ 2}. We set φk(ξ) := φ(2−kξ) for k ∈ N while φ0(ξ) := 1 −

∞∑
k=1

φk(ξ).

The function φ0 has its support in {ξ ∈ Rn : |ξ| ≤ 2}. The Lq-norm of

F−1
(
e
i|ξ|

tR
0

√
a(s)ds

ψ(ξ/(2K(t)))φ0(ξ/(2K(t)))|ξ|−2ra(t, ξ)F(ϕ)(ξ)
)

can be estimated as in Theorem 7.2.1. Thus we can restrict ourselves to

considering the integral

∥∥∥F−1
(
e
i|ξ|

tR
0

√
a(s)ds

ψ(ξ/(2K(t)))φk(ξ/(2K(t)))|ξ|−2ra(t, ξ)F(ϕ)(ξ)
)∥∥∥

Lq

with k ∈ N. First we study this integral for t ≥ t0, t0 large.

a) L1 − L∞ continuity: To estimate

Ik :=
∥∥∥F−1

(
e
i|ξ|

tR
0

√
a(s)ds

ψ(ξ/(2K(t)))

· φk(ξ/(2K(t)))|ξ|−2ra(t, ξ)F(ϕ)(ξ)
)∥∥∥

Lq

we set ξ/(2K(t)) = 2kη. We are going to use Lemma 3 from [Bre75].

For this reason we use the inequality

∥∥∥F−1
(
e
i|ξ|

tR
0

√
a(s)ds

ψ(ξ/(2K(t)))φk(ξ/(2K(t)))|ξ|−2ra(t, ξ)
)∥∥∥

L∞

≤ C 2k(n−2r)(2 K(t))n−2r

∥∥∥F−1
(
e
i2k2K(t)|η|

tR
0

√
a(s)ds

ψ(2kη)φ(η)|η|−2ra(t, 2k+1K(t)η)
)∥∥∥

L∞
.

Let us denote vk(t, η) := φ(η)ψ(2kη)a(t, 2k+1K(t)η). These functions

have their supports in {η ∈ Rn : 1/2 ≤ |η| ≤ 2}. According to [Lit63]
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(see also [Bre75] or [Pec76]) we have (here we need t0 large)

∥∥∥F−1
(
e
i2k+1K(t)|η|

tR
0

√
a(s)ds

|η|−2rvk(t, η)
)∥∥∥

L∞

≤ C
(
2k+1K(t)

∫ t

0

√
a(s)ds

)−n−1
2

∑

|α|≤M

‖Dα
η (|η|−2rvk(t, η))‖L∞ .

According to the assumption for a = a(t, ξ) we have

‖Dα
η (|η|−2rvk(t, η))‖L∞ ≤ CN,a,γ,M (log(t + e3))2|α|γeCN,a,γ(log(t+e3))γ

for all |α| ≤ m−1
2 . If we use m = 2M + 1 steps in our diagonalisation

procedure in Zreg(N), then the last inequality holds for all |α| ≤ M .

Hence,

∥∥∥F−1
(
e
i2k+1K(t)|η|

tR
0

√
a(s)ds

|η|−2rvk(t, η)
)∥∥∥

L∞

≤ CN,a,γ,M2−
k
2
(n−1)

(
K(t)

∫ t

0

√
a(s)ds

)−n−1
2

(log(t + e3))2MγeCN,a,γ(log(t+e3))γ
.

All together we have shown

∥∥∥F−1
(
e
i|ξ|

tR
0

√
a(s)ds

ψ
( ξ

2K(t)

)
· φk

( ξ

2K(t)

)
|ξ|−2ra(t, ξ)F(ϕ)(ξ)

)∥∥∥
L∞

≤ CN,a,γ,M2k(n+1
2
−2r)K(t)n−2r

(
K(t)

∫ t

0

√
a(s)ds

)−n−1
2

· (log(t + e3))2MγeCN,a,γ(log(t+e3))γ‖ϕ‖L1 .

b) L2 − L2 continuity: To estimate L2–norms we apply Lemma 3 from

[Bre75]. To this end we take into consideration

∥∥∥e
i|ξ|

tR
0

√
a(s)ds

ψ
( ξ

2K(t)

)
φk

( ξ

2K(t)

)
|ξ|−2ra(t, ξ)

∥∥∥
L∞

≤ sup
2k−1≤ |ξ|

2K(t)
≤2k+1

|a(t, ξ)|
|ξ|2r

≤ CN,a,γ,02−2krK(t)−2reCN,a,γ(log(t+e3))γ
.
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Hence,

∥∥∥F−1
(
e
i|ξ|

tR
0

√
a(s)ds

ψ
( ξ

2K(t)

)
· φk

( ξ

2K(t)

)
|ξ|−2ra(t, ξ)F(ϕ)(ξ)

)∥∥∥
L2

≤ CN,a,γ,02−2krK(t)−2reCN,a,γ(log(t+e3))γ‖ϕ‖L2 .

c) Interpolation argument: An interpolation argument between L1 − L∞

and L2 − L2 estimates from a) and b) yields

∥∥∥F−1
(
e
i|ξ|

tR
0

√
a(s)ds

ψ
( ξ

2K(t)

)
· φk

( ξ

2K(t)

)
|ξ|−2ra(t, ξ)F(ϕ)(ξ)

)∥∥∥
Lq

≤ CN,a,γ,M2k(n+1
2

( 1
p
− 1

q
)−2r)

K(t)n( 1
p
− 1

q
)−2r(log(t + e3))2Mγ

· eCN,a,γ(log(t+e3))γ‖ϕ‖Lp

for t ≥ t0, t0 large, provided 1 < p ≤ 2, 1
p + 1

q = 1, n+1
2 (1

p − 1
q ) ≤ 2r ≤

n(1
p − 1

q ). Applying Lemma 2 from [Bre75] proves the statement of the

theorem for t ≥ t0, t0 large.

d) Estimates for small t: It remains to estimate the Lq–norms of

F−1
(
e
i|ξ|

tR
0

√
a(s)ds

ψ(ξ/(2K(t)))φk(ξ/(2K(t)))|ξ|−2ra(t, ξ)F(ϕ)(ξ)
)

for t ∈ [0, t0]. Here we will not use the stationary phase method, the key

tool to get the above estimates for t ≥ t0. Instead we apply the Hardy–

Littlewood inequality as we did to get the estimates in Theorem 7.2.1.

Let us sketch the differences in the proof. Using the transformations

ξ = 2k+1K(t)η and z = 2k+1K(t)x we conclude for k ∈ N

Ik := (2k+1K(t))nq−2rq−n
∥∥∥F−1

(
e
i K(t)|η|

tR
0

√
a(s)ds

ψ(2kη)φ(η)|η|−2r

× a(t, 2k+1K(t)η)F(ϕ)(2k+1K(t)η)
)∥∥∥

q

Lq
.

The point (t, 2k+1K(t)η) with |η| ∈ [1/2, 2] (support of φ) belongs

to Zreg(N). Therefore |a(t, 2k+1K(t)η)| ≤ CN,a,γ,0 exp(CN,a,γ(log(t +
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e3))γ). For Ik we obtain

I
1/q
k ≤ (2k+1K(t))n−2r−n

q

∥∥∥F−1
(
e
i K(t)|η|

tR
0

√
a(s)ds

ψ(2kη)φ(η)|η|−2r

× a(t, 2k+1K(t)η)
)
∗ F−1(F(ϕ)(2k+1K(t)η))

∥∥∥
Lq

.

Now let us denote

Tt,k := F−1
(
e
i K(t)|η|

tR
0

√
a(s)ds

ψ(2kη)φ(η)|η|−2ra(t, 2k+1K(t)η)
)

× exp(−CN,a,γ(log(t + e3))γ).

Then Tt,k has the same properties as described for Tt in the proof to

Theorem 7.2.1. Thus we can derive

∥∥∥F−1
(
e
i|ξ|

tR
0

√
a(s)ds

ψ
( ξ

2K(t)

)
· φk

( ξ

2K(t)

)
|ξ|−2ra(t, ξ)F(ϕ)(ξ)

)∥∥∥
Lq

≤ C(2kK(t))−2r+n( 1
p
− 1

q
)
eCN,a,γ(log(t+e3))γ‖ϕ‖Lp .

Lemma 2 from [Bre75] proves with 2r ≥ n(1
p − 1

q ) the statement of the

theorem for t ∈ [0, t0]. This completes the proof.

7.3 End of the Proof

Proof. The statements of Theorems 7.2.1 and 7.2.2 applied to the repre-

sentations (7.10) and (7.11) enable us to derive the estimates from Theo-

rem 6.1.1. If t ∈ (0, t0], then we choose in the estimates from Theorems 7.2.1

and 7.2.2 the parameter 2r = n(1
p − 1

q ). This fixes the necessary regularity

Np = n(1
p − 1

q ). If t ∈ [t0,∞), then we choose in Theorem 7.2.2 the para-

meter 2r = n+1
2 (1

p − 1
q ). Now let us distinguish the different cases for γ.

If γ = 0, then we directly obtain the classical Strichartz’ Lp − Lq decay

estimate from Theorem 6.1.1 with s0 = 0. If γ ∈ (0, 1), then the main influ-

ence on changes to the classical Strichartz’ decay rate comes from the term

exp(CN,a,γ(log(t + e3))γ in Theorems 7.2.1 and 7.2.2. For each ε this term

can be estimated by Cε(1 + t)ε. Thus s0 = ε for all ε > 0. Finally, if γ = 1,

then this term produces, together with the log terms, a factor like (1 + t)s0 ,
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where s0 eventually becomes a large positive constant.

Let us formulate a corollary of Theorem 6.1.1. At first sight, the state-

ment of this corollary does not seem to be very surprising, but its meaning

lies in a comparison of the cases γ ∈ [0, 1] and γ > 1 in (6.5).

Corollary 7.3.1. Consider the strictly hyperbolic Cauchy problem

∂2
t u− a(t)∆u = 0, (t, x) ∈ [0,∞)×Rn,

u(t0, x) = ϕ(x), ∂tu(t0, x) = ψ(x), t0 ≥ T,





where T is large and the coefficient a = a(t) satisfies (6.5) with γ ∈ [0, 1].

Then there exists a constant C which is independent of t0 ≥ T and t ≥ t0

such that the following Lp − Lq estimate holds for the solution u = u(t, x):

‖(ut(t, ·),∇xu(t, ·))‖Lq ≤ C(1 + t)s0‖(∇xϕ,ψ)‖
W

Np
p

,

where 1
p + 1

q = 1, 1 < p ≤ 2, Np ≥ n
(

1
p − 1

q

)
and

• s0 = 0 if γ = 0; in this case C only depends on p, n;

• s0 = ε if γ ∈ (0, 1) for all ε > 0; in this case C depends on p, n and ε;

• s0 is a fixed constant (which can be determined) if γ = 1; in this case C

is independent of ϕ,ψ.

Proof. The transformation t := t0 + τ transfers the above Cauchy problem

to

∂2
τ u− at0(τ)∆u = 0, u(0, x) = ϕ(x), ∂τu(0, x) = ψ(x),

where at0(τ) := a(t0 + τ). The coefficients at0(τ) satisfy, for all t0 ≥ T , the

estimates (6.5) with the same constants Ck. Thus we can follow the proof

of Theorem 6.1.1 and obtain the Lp − Lq estimate

‖(uτ (τ, ·),∇xu(τ, ·))‖Lq ≤ C(1 + τ)−
n−1

2

(
1
p
− 1

q

)
+s0‖(∇xϕ,ψ)‖

W
Np
p

.

Setting τ = t− t0 in the last inequality gives the statement of the corollary.
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Chapter 8:

Proof of Theorem 6.1.2
The proof is based on an application of Floquet’s theory, an idea used in

[Tar95] to show that the Cauchy problem for ∂2
t − exp(−2t−α)b(t−1)∂2

x is

not C∞ well-posed when 0 < α < 1/2, where b = b(t) is a positive, smooth,

1-periodic function. A similar idea is used in [RY99] to study Lp − Lq

estimates for hyperbolic equations with increasing coefficients.

Proof. In order to apply Floquet’s theory, it is necessary to first transform

(6.7) so that the coefficient is periodic. This idea is used in [Hir03] when

studying the C∞ well-posedness of strictly hyperbolic equations with non-

Lipschitz coefficients. Then, a lower bound is found for a suitable energy

of the solution of the transformed problem via estimates for an auxiliary

problem. Finally, we derive a contradiction to (6.6) by obtaining a lower

bound for the non-standard energy of Theorem 6.1.2 of the solution to (6.7).

8.1 Transformation of the Cauchy Problem

(6.7)

Let

s = s(t) := (log(t + e3))α, (with inverse t(s) := es1/α − e3),

w = w(s, x) :=
√

τ(s)u(t(s), x),

where τ(s) := ds
dt (t(s)) = αs1−(1/α)e−s1/α

, and, instead of (6.7), consider the

Cauchy problem obtained after this transformation. By simple calculations,
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we have

ws(s, x) =
1
2

τ ′(s)
τ(s)

w(s, x) +
1√
τ(s)

ut(t(s), x);

wss(s, x)

=
1
4

(
2τ ′′(s)τ(s)− τ ′(s)2

τ(s)2

)
w(s, x) +

1
τ(s)2

(2 + sin(2πs))2∆w(s, x)

=
1

4α2s2
(s2/α − α2 + 1)w +

1
α2

e2s1/α
s(2/α)−2(2 + sin(2πs))2∆w,

since t′(s) = 1/τ(s). Transforming the initial data, we obtain the following

conditions for w(s, x) at s = s0:

w(s0, x) =
√

τ(s0)ϕ(x) =: ϕ̃(x),

ws(s0, x) =
1
2

τ ′(s0)√
τ(s0)

ϕ(x) +
1√

τ(s0)
ψ(x) =: ψ̃(x).





(8.1)

The problem is now in the form

wss − ν(s)2b(s)2∆w + µ(s)w = 0,

w(s0, x) = ϕ̃(x), ws(s0, x) = ψ̃(x),



 (8.2)

where

ν(s) := es1/α
s(1/α)−1, b(s) := (2 + sin(2πs))/α,

µ(s) :=
1

4α2s2
(α2 − 1− s2/α) = O(s(2/α)−2) as s →∞.

Note that b(s) is a non-constant, smooth, positive, periodic function with

period 1. This is now in a form where the application of Floquet’s theory is

possible.

8.2 Application of Floquet’s Theory

Consider the second order ordinary differential equation for v = v(s),

vss + λb(s)2v = 0.
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Let X be the fundamental matrix corresponding to this problem. That is,

X = X(s, s0) solves the first order system of ordinary differential equations

dsX =

(
0 −λb(s)2

1 0

)
X, X(s0, s0) =

(
1 0

0 1

)
. (8.3)

We recall the following lemma from Floquet’s theory (see, for example,

[MW66] and [Tar95]):

Lemma 8.2.1. Suppose b(s) is a 1-periodic, non-constant, positive and

smooth function on R and s0 ∈ N ∪ {0}. Then there exists λ0 > 0 such

that the fundamental matrix X(s, s0) corresponding to vss + λ0b(s)2v = 0

evaluated at s = s0 + 1 (i.e. X(s0 + 1, s0)) has eigenvalues µ0, µ
−1
0 and

|µ0| > 1.

We use this to approximate the solution to the ordinary differential equa-

tion

vss + λ(s, ξ)b(s)2v = 0, (8.4)

with suitable Cauchy data, where λ(s, ξ) = λ1(s, ξ) + λ2(s) and

λ1(s, ξ) := |ξ|2ν(s)2 = |ξ|2s(2/α)−2e2s1/α
, λ2(s) :=

µ(s)
b(s)2

=
α2 − 1− s2/α

4α2s2b(s)2
.

Observe that ∂sλ1(s, ξ) = |ξ|2e2s1/α(
((2/α)−2)s(2/α)−3 +(2/α)s(3/α)−3

)
> 0

for s > T0 for large enough T0. Henceforth, we shall always assume s > T0.

So, for each ξ ∈ Rn, λ1(s, ξ) is a monotonically increasing function in s on

its domain [s0,∞). Also, it is clear that λ2(s) → 0 as s →∞.

We also define sξ ∈ N implicitly by the formula λ(sξ, ξ) = λ0, where λ0

is from Lemma 8.2.1. In addition, we require that sξ > T where T is large

enough to ensure that sξ →∞ as |ξ| → 0:

Lemma 8.2.2. There exists T > 0 such that for sξ as defined

sξ →∞ as |ξ| → 0.

Proof. Since λ2(s) → 0 as s → ∞, we can choose T1 > 0 such that s > T1
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implies that |λ2(s)| < λ0/2. Then, by definition, as we insist sξ > T1,

λ1(sξ, ξ)
|ξ|2 =

λ0

|ξ|2 −
λ2(sξ)
|ξ|2 ≥ λ0

2|ξ|2 →∞ as |ξ| → 0.

Now, since λ1(s, ξ)/|ξ|2 is monotonically increasing for s > T0, by setting

T := max{T0, T1} it follows that lim|ξ|→0 sξ = ∞.

We remark that this result allows us to take sξ ∈ N for any (large)

integer—simply choose |ξ| appropriately small enough.

8.3 Properties of λ(s, ξ) and X(sξ + 1, sξ)

For the function λ(s, ξ) we have the following result.

Lemma 8.3.1. There exist constants 0 < ρ < 1 and K > 0 such that if

0 ≤ δ ≤ ρs−K then

|λ1(s, ξ)− λ1(s− δ, ξ)| ≤ Cδλ1(s, ξ)s(1/α)−1

and |λ2(s)− λ2(s− δ)| ≤ Cs(1/α)−1,

for some positive constant C.

Proof. For the first part we apply the mean value theorem; this implies that

there exists a constant s̃ ∈ (s− δ, s) such that

|λ1(s, ξ)− λ1(s− δ, ξ)| = |ξ|2∣∣s(2/α)−2e2s1/α − (s− δ)(2/α)−2e2(s−δ)1/α∣∣

≤ 2
α
|ξ|2δe2s̃1/α

s̃3((1/α)−1)
∣∣1 + (1− α)s̃−1/α

∣∣

≤ Cδs(1/α)−1λ1(s, ξ)e2(s̃1/α−s1/α)(s/s̃)3(1−(1/α)) ≤ Cδs(1/α)−1λ1(s, ξ),

since e2s1/α
s−3(1−(1/α)) is monotonically increasing for large s (we define K

so that this is for s > K) and s− δ > K by hypothesis.
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For the second part, simply observe that, with b0 := mins b(s),

|λ2(s)−λ2(s− δ)|

≤ 1
4α2b2

0

(
(α2 − 1)|s−2 − (s− δ)−2|+ |s(2/α)−2 − (s− δ)(2/α)−2|)

≤ Cs(2/α)−2
(
(α2 − 1)s−2/α

∣∣∣1−
( s

s− δ

)2∣∣∣ +
∣∣∣1−

( s

s− δ

)2−(2/α)∣∣∣
)

≤ Cs(1/α)−1,

when 0 ≤ δ ≤ ρs−K for some 0 < ρ < 1.

Now consider the fundamental matrix X(s, s0), which was defined as the

solution of the system of ordinary differential equations (8.3), evaluated at

the point s = sξ + 1, s0 = sξ. We write this matrix as

X(sξ + 1, sξ) =

(
x11 x12

x21 x22

)
.

By Lemma 8.2.1 this matrix has eigenvalues µ0, µ
−1
0 where |µ0| > 1. Observe

that

µ0 + µ−1
0 = trX(sξ + 1, sξ) = x11 + x22,

and so,

|µ−1
0 − µ0| ≤ |x11 − µ0|+ |x22 − µ0|.

Hence,

max{|x11 − µ0|, |x22 − µ0|} ≥ 1
2
|µ−1

0 − µ0| > 0.

The last inequality follows from |µ0| > 1. We can assume, without loss of

generality, that

|x11 − µ0| ≥ 1
2
|µ−1

0 − µ0|, (8.5)

and then we also have

|x22 − µ−1
0 | ≥ 1

2
|µ−1

0 − µ0|. (8.6)
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8.4 Auxiliary Family of ODEs

Consider the family of ODEs

vss + λ(sξ − k + s, ξ)b(sξ + s)2v = 0, k ∈ N ∪ {0},

where sξ ∈ N is as in Section 8.2 and λ0 is as given in Lemma 8.2.1. Here

we are using the 1-periodicity of b(s).

To each problem associate the fundamental matrix Xk(s, s1) which sat-

isfies

dsXk =

(
0 −λ(sξ − k + s)b(sξ + s)2

1 0

)
Xk, Xk(s1, s1) =

(
1 0

0 1

)
.

We study these matrices evaluated at (s, s1) = (1, 0); write

Xk(1, 0) =

(
x11(k) x12(k)

x21(k) x22(k)

)
. (8.7)

Denote the eigenvalues of this matrix by µk, µ
−1
k where |µk| ≥ 1 (in fact,

later we see that |µk| > 1 for all suitable k). That this matrix has determi-

nant 1 is an immediate consequence of the formula for the derivative of the

determinant of a matrix and the fact that tr(Ak(s, ξ)) = 0 where

Ak(s, ξ) =

(
0 −λ(sξ − k + s, ξ)b(sξ + s)2

1 0

)
. (8.8)

The matrices Xk(1, 0) are uniformly bounded for suitably large k:

Lemma 8.4.1. Let F (s) be a function satisfying

lim
s→∞ s(1/α)−1F (s) = 0. (8.9)

Then we have

max
s,s1∈[0,1]

‖Xk(s, s1)‖ ≤ eCλ0

for 1 ≤ k ≤ cF (sξ) and some positive constants C, c.

Remark 8.4.1: Note that F (s) := sβ, where β < 1 − (1/α), satisfies
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requirement (8.9).

Proof. We have the following representation for Xk(s, s1):

Xk(s, s1) =

I +
∞∑

j=1

∫ s

s1

Ak(r1, ξ)
∫ r1

s1

Ak(r2, ξ) . . .

∫ rj−1

s1

Ak(rj , ξ) drj . . . dr2dr1,

where Ak(s, ξ) is as in (8.8). Now, by Lemma 8.3.1,

‖Ak(s, ξ)‖ ≤ 1 + b2
1 sup

s∈[0,1]
|λ(sξ − k + s, ξ)|

≤ 1 + b2
1

∣∣∣λ1(sξ − k + 1, ξ) + sup
s>s0

λ2(s)
∣∣∣

= 1 + b2
1

∣∣∣λ1(sξ − k + 1, ξ)− λ1(sξ, ξ)− λ2(sξ) + λ0 + sup
s>s0

λ2(s)
∣∣∣

≤ 1 + b2
1

(
C(k − 1)λ1(sξ, ξ)s

(1/α)−1
ξ + λ0 + 2 sup

s>s0

|λ2(s)|
)

provided 0 ≤ k−1 ≤ ρsξ−K; here b1 = maxs b(s). So, by (8.9), ‖Ak(s, ξ)‖ ≤
1+C1b

2
1λ0 for large sξ when 1 ≤ k ≤ cF (sξ); here c is chosen to ensure that

k − 1 ≤ ρsξ −K is satisfied when k ≤ cF (sξ). Therefore,

max
s,s1∈[0,1]

‖Xk(s, s1)‖ ≤ exp
(∫ s

s1

‖Ak(r, ξ)‖dr
)
≤ C0e

C1b21λ0 = eCλ0 ,

provided 1 ≤ k ≤ cF (sξ). The lemma is proved.

The next lemma shows that in some sense X(sξ + 1, sξ) is “near” to the

Xk(1, 0) for suitable k.

Lemma 8.4.2. Under the assumptions of Lemma 8.4.1 we have

‖Xk(1, 0)−X(sξ + 1, sξ)‖ ≤ Cλ0s
(1/α)−1
ξ F (sξ)

for 1 ≤ k ≤ cF (sξ) and some positive constants C, c.

Proof. First, note that X(sξ + s, sξ) = X(s, 0), since sξ ∈ N and b(s) is
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1-periodic. Now, Xk(s, 0) satisfies

dsXk(s, 0) =

(
0 −λ(sξ, ξ)b(s)2

1 0

)
Xk(s, 0)

+

(
0

(
λ(sξ, ξ)− λ(sξ − k + s, ξ)

)
b(s)2

0 0

)
Xk(s, 0) ,

with Xk(0, 0) = I. Thus,

ds

(
Xk(s, 0)−X(s, 0)

)
=

(
0 −λ(sξ, ξ)b(s)2

1 0

)
(
Xk(s, 0)−X(s, 0)

)

+

(
0

(
λ(sξ, ξ)− λ(sξ − k + s, ξ)

)
b(s)2

0 0

)
Xk(s, 0) ,

with initial data Xk(0, 0) − X(0, 0) = 0; here 0 denotes the zero matrix.

Now, by Lemma 8.3.1,

|λ1(sξ, ξ)− λ1(sξ − k + s, ξ)| ≤ C(k − s)λ1(sξ, ξ)s
(1/α)−1
ξ

and |λ2(sξ)− λ2(sξ − k + s)| ≤ Cs
(1/α)−1
ξ ≤ Cλ−1

0 ks
(1/α)−1
ξ λ(sξ, ξ)

for 0 ≤ k − s ≤ ρsξ −K. Therefore,

|λ(sξ, ξ)− λ(sξ − k + s, ξ)| ≤ Ckλ0s
(1/α)−1
ξ

for 0 ≤ k − s ≤ ρsξ −K. Hence,

‖Xk(s, 0)−X(s, 0)‖

≤
∫ s

0
Cλ0‖Xk(r, 0)−X(r, 0)‖ dr +

∫ s

0
Ckλ0s

(1/α)−1
ξ ‖Xk(r, 0)‖ dr .

So, by Lemma 8.4.1, Gronwall’s inequality and the hypotheses on k,

‖Xk(1, 0)−X(1, 0)‖ ≤ Ckλ0s
(1/α)−1
ξ eCλ0 ≤ Cλ0s

(1/α)−1
ξ F (sξ) ,

where 1 ≤ k ≤ cF (sξ); c here is chosen as in the proof of Lemma 8.4.1 This

completes the proof of the lemma.
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Also, the Xk(1, 0) are, in a similar sense, “near” to each other.

Lemma 8.4.3. The following inequality holds for all 1 ≤ k ≤ cF (sξ), with

c as in Lemma 8.4.1,

‖Xk+1(1, 0)−Xk(1, 0)‖ ≤ Cλ0s
(1/α)−1
ξ ,

where C is a positive constant and F (s) satisfies (8.9).

Proof. Observe

ds

(
Xk(s, 0)−Xk+1(s, 0)

)

=

(
0 −λ(sξ − (k + 1) + s, ξ)b(s)2

1 0

)
(
Xk(s, 0)−Xk+1(s, 0)

)

+

(
0

(
λ(sξ − (k + 1) + s, ξ)− λ(sξ − k + s, ξ)

)
b(s)2

0 0

)
Xk(s, 0) ,

By Lemma 8.3.1,

|λ1(sξ − (k + 1) + s, ξ)− λ1(sξ − k + s, ξ)|
≤ Cλ1(sξ − k + s, ξ)(sξ − k + s)(1/α)−1

and

|λ2(sξ − (k + 1) + s)− λ2(sξ − k + s)| ≤ C(sξ − k + s)(1/α)−1

for 1 ≤ ρ(sξ − k + s) −K. This latter condition is satisfied when 1 ≤ k ≤
cF (sξ), where c is as in Lemma 8.4.1, for sξ chosen large enough. Now,

λ1(t, ξ)t(1/α)−1 is increasing for large t (see the proof of Lemma 8.3.1); in

particular, it is increasing for t ≥ sξ − k + s when sξ is chosen large enough

since

sξ − k + s ≥ sξ − cF (ξ) ≥ sξ − 1
2
s
1−(1/α)
ξ ≥ 1

2
sξ

by the hypotheses on k and F (s). Also, using the argument above and the
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hypothesis on F (s),

(sξ − k + s)(1/α)−1 ≤
( 2

sξ

)1−(1/α)
≤ Cλ0s

(1/α)−1
ξ

when k ≤ cF (sξ). Thus,

|λ(sξ − (k + 1) + s, ξ)− λ(sξ − k + s, ξ)| ≤ Cλ0s
(1/α)−1
ξ

for 1 ≤ k ≤ cF (sξ). So, by a similar argument to that used in the proof of

Lemma 8.4.2,

‖Xk+1(1, 0)−Xk(1, 0)‖ ≤ Cλ0s
(1/α)−1
ξ eCλ0 ≤ Cλ0s

(1/α)−1
ξ

for 1 ≤ k ≤ cF (sξ), as required.

These “nearness” lemmas give information about the relations of the

eigenvalues of these matrices.

Corollary 8.4.4. For 1 ≤ k ≤ cF (sξ), where F (s) satisfies (8.9) and c > 0

is as in Lemma 8.4.1, the following relations hold for suitably large sξ:

1. for each ε > 0, we can choose sξ large enough so that

|µk − µ0| < ε, (8.10)

hence, for suitably chosen ε,

|µk| ≥ |µ0| − ε > 1; (8.11)

2. there exists C > 0 such that

|µk − µk−1| ≤ Cλ0s
(1/α)−1
ξ ; (8.12)

3. there exists C > 0 such that

|µk − µ−1
k | ≥ C; (8.13)
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4. there exist constants C1, C2 > 0 such that

|µk − x11(k)| ≥ C1, (8.14)

|µ−1
k − x22(k)| ≥ C2. (8.15)

Proof. 1. By Lemma 8.4.2,

|µk + µ−1
k − µ0 − µ−1

0 | = |x11(k) + x22(k)− x11 − x22|
≤ |x11(k)− x11|+ |x22(k)− x22| ≤ Cλ0s

(1/α)−1
ξ F (sξ) → 0 as sξ →∞.

On the other hand

|µk + µ−1
k − µ0 − µ−1

0 | = |(µk − µ0)(1− (µkµ0)−1)| ≥ C|µk − µ0|,

where C > 0, since |µ0| > 1. Combining these two observations proves

(8.10).

2. By Lemma 8.4.3

|µk − µk−1 + µ−1
k − µ−1

k−1|
= |x11(k)− x11(k − 1) + x22(k)− x22(k − 1)| ≤ Cλ0s

(1/α)−1
ξ .

Choosing sξ large enough so that (8.11) holds, we see, by a similar argument

to 1., that (8.12) also holds.

3. This is clear since (8.11) holds for large enough sξ.

4. By (8.5), Lemma 8.4.2 and part 1. of this corollary we have the

following for large enough sξ:

|µk − x11(k)| = |µk − µ0 + µ0 − x11 + x11 − x11(k)|
≥ |µ0 − x11| − |µk − µ0| − |x11 − x11(k)|

≥ 1
2
|µ0 − µ−1

0 | − 1
8
|µ0 − µ−1

0 | − 1
8
|µ0 − µ−1

0 | = 1
4
|µ0 − µ−1

0 | > 0.

This proves (8.14). The proof of (8.15) is similar, but we use (8.6) in place

of (8.5).
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Henceforth, we assume that sξ is chosen large enough so that all of the

inequalities in Corollary 8.4.4 hold.

8.5 Lower Bound for Solution to Auxiliary

Cauchy Problem

We are now in a position to give a lower bound for the solution to a Cauchy

problem for (8.4).

Proposition 8.5.1. Consider the Cauchy problem

vss + λ(s, ξ)b(s)2v = 0,

v(sξ − n0, ξ) = 1, vs(sξ − n0, ξ) =
x12(n0)

µn0 − x11(n0)
,





(8.16)

where csβ
ξ − 1 ≤ n0 ≤ csβ

ξ for 1/α < β < 1 − 1/α and c is some positive

constant. Then the following estimate holds for the solution v = v(s, ξ) at

s = sξ:

|v(sξ, ξ)|+ |vs(sξ, ξ)| ≥ C exp
(
a(log|1ξ |)γ

)
,

where γ = αβ ∈ (1, α− 1) and C, a are positive constants.

Proof. Throughout this proof we assume that k ≤ n0 at each occurrence

of k.

Observe that

(
vs(sξ, ξ)

v(sξ, ξ)

)
= X1(1, 0)X2(1, 0) . . . Xn0(1, 0)

(
vs(sξ − n0, ξ)

v(sξ − n0, ξ)

)
, (8.17)

where Xk(1, 0) is as in (8.7). Now,

Bk =




x12(k)
µk−x11(k) 1

1 x21(k)

µ−1
k −x22(k)


 ,

is a diagonaliser for Xk(1, 0). This is a consequence of the facts that

detXk(1, 0) = 1 and trXk(1, 0) = x11(k) + x22(k) = µk + µ−1
k .

Observe that

‖Bk‖ ≤ C, (8.18)
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for some constant C independent of k; this follows from Lemma 8.4.1 and

inequalities (8.14) and (8.15). Furthermore, Bk is invertible for each k since

detBk =
µk − µ−1

k

µ−1
k − x22(k)

,

and (8.13) ensures that this is non-zero, together with Lemma 8.4.1 and

|µ−1
k | < 1. From this and (8.18), it follows that, in addition, ‖B−1

k ‖ ≤ C for

some constant independent of k.

Also, by (8.14), (8.15), Lemma 8.4.1 and (8.12),

‖Bk+1 −Bk‖
≤ max

1≤k≤n0

‖Xk(1, 0)‖(C1|µk − µk+1|+ C2|µ−1
k − µ−1

k+1|) ≤ Cλ0s
(1/α)−1
ξ .

(8.19)

Hence, (8.17) can be rewritten as

(
vs(sξ, ξ)

v(sξ, ξ)

)

= B1

(
µ1 0

0 µ−1
1

)
B−1

1 B2

(
µ2 0

0 µ−1
2

)
B−1

2 . . . Bn0

(
µn0 0

0 µ−1
n0

) (
1

0

)

= B1

(
y11 y12

y21 y22

)(
1

0

)
.

Set B−1
k Bk+1 = I + Gk. So,

(
y11 y12

y21 y22

)

=

(
µ1 0

0 µ−1
1

)
(I + G1)

(
µ2 0

0 µ−1
2

)
. . . (I + Gn0−1)

(
µn0 0

0 µ−1
n0

)
(8.20)

=

(∏n0
k=1 µk 0

0
∏n0

k=1 µ−1
k

)
+ M1 + · · ·+ Mn0−1,

where Ml is the matrix which is the sum of all the products of matrices from
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(8.20) containing exactly l of the Gk matrices; observe

‖Ml‖ ≤
(

n0∏

k=1

|µk|
)

 ∑

1≤i1<···<il≤n0−1

l∏

j=1

‖Gij‖

 .

By (8.18) and (8.19)

‖Gk‖ = ‖B−1
k Bk+1 − I‖ = ‖B−1

k (Bk+1 −Bk)‖
≤ ‖B−1

k ‖‖Bk+1 −Bk‖ ≤ Cλ0s
(1/α)−1
ξ .

Therefore,

‖Ml‖ ≤
( n0∏

k=1

|µk|
)(

n0 − 1
l

)
(Cλ0s

(1/α)−1
ξ )l.

Thus,

|y11| ≥
( n0∏

k=1

|µk|
)(

2− (
1 + Cλ0s

(1/α)−1
ξ

)csβ
ξ

)
.

Taking account of β < 1− 1/α gives immediately

|y11| ≥ 1
2

( n0∏

k=1

|µk|
)

.

On the other hand, |y21| is very small—it is less than ν
∏n0

k=1|µk|, where we

can take ν as small as we like. Hence, using

(
vs(sξ, ξ)

v(sξ, ξ)

)
=




x12(1)
µ1−x11(1) 1

1 x21(1)

µ−1
1 −x22(1)




(
y11

y21

)

and (8.11), it follows that

|vs(sξ, ξ)|+ |v(sξ, ξ)| ≥ C(|µ0| − ε)n0 ≥ Ceasβ
ξ ,

for some positive constants a,C. Finally, for large sξ,

sξ ∼
(

log
1
|ξ|

)α
, (8.21)

and so we have the desired inequality. The proposition is proved.
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8.6 Lower Bound for the Energy of w(sξ, x)

We return to the transformed Cauchy problem (8.2) with initial time chosen

as s0 = sξ − n0 and seek a representation for the solution at time s = sξ

in the unit ball B1(0). By the existence of a cone of dependence, this

only depends on the initial data in the ball BR(0) at s = sξ − n0, where

R = R(n0, b) ≤ Cn0 mins b(s). Set

ϕ̃(x) = eix·ξχ(x/R2), ψ̃(x) =
x12(n0)

µn0 − x11(n0)
eix·ξχ(x/R2) (8.22)

to be the data at s = s0, where χ(x) is a smooth cut-off function which is

identically 1 on |x| < 1. By the uniqueness of solutions to strictly hyperbolic

equations, the solution can be represented in the cone of dependence, and

therefore in B1(0) at s = sξ, by

w = w(s, x) = eix·ξv(s, ξ);

here v(s, x) is the solution to (8.16) at time s. Use w(sξ, x, ξ) = eix·ξv(sξ, ξ)

to denote this solution. Then the following lower bound holds for w:

‖∇xw(sξ, ·)‖Lq +‖ws(sξ, ·)‖Lq ≥ ‖∇xw(sξ, ·)‖Lq(B1(0))+‖ws(sξ, ·)‖Lq(B1(0))

= (|ξ||v(sξ, ξ)|+ |vs(sξ, ξ)|)meas(B1(0))1/q ≥ C|ξ| exp
(
a(log 1

|ξ|)
γ
)
, (8.23)

where Lq = Lq(Rn).

8.7 Lower Bound for the Energy of u(τξ, x)

Finally, we return to the original problem (6.7).

Set t0 = t(s0) = t(sξ − n0) = e(sξ−n0)1/α − e3 and choose the following
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initial data:

ϕ(x) =
1√

τ(s(t0))
eix·ξχ(x/R2) =

1
σ(t0)

eix·ξχ(x/R2) , (8.24)

ψ(x) =
(√

τ(s(t0))
x12(n0)

µn0 − x11(n0)
− τ ′(s(t0))

2
√

τ(s(t0))

)
eix·ξχ(x/R2)

=
(

σ(t0)
x12(n0)

µn0 − x11(n0)
− σ′(t0)

σ(t0)2

)
eix·ξχ(x/R2) , (8.25)

where σ(t) is as in Theorem 6.1.2. Here we have taken into account (8.1) and

(8.22). Now, by (8.23), the energy defined in Theorem 6.1.2 for u = u(t, x)

at t = τξ := t(sξ) = es
1/α
ξ − e3 can be estimated as follows:

E(u)(τξ)
∣∣
Lq =

∥∥∥σ(τξ)∇xu(τξ, ·)
∥∥∥

Lq
+

∥∥∥ 1
σ(τξ)2

∂t

(
u(t, ·)σ(t)

)∣∣
t=τξ

∥∥∥
Lq

= ‖∇xw(sξ, ·)‖Lq + ‖ws(sξ, ·)‖Lq ≥ C|ξ| exp
(
a(log 1

|ξ|)
γ
)

≥ C exp
[− c1s

1/α
ξ + ac2s

β
ξ

]

= C exp
[− c1 log(τξ + e3) + ac2

(
log(τξ + e3)

)γ]
, (8.26)

and 1 < γ < α − 1; here we have used (8.21) in the final equality. If

we now assume (6.8) holds with the initial data (8.24), (8.25), then, for

1 < r < γ < α− 1,

E(u)(τξ)
∣∣
Lq ≤ C1 exp

(
C2(log(τξ + e3))r

)
E(u)(t0)

∣∣
W M

p

= C1e
C2(log(τξ+e3))r

(
1 +

x12(n0)
µn0 − x11(n0)

)
‖eix·ξχ(x/R2)‖W M+1

p
,

which contradicts (8.26) since r < γ. The proof of Theorem 6.1.2 is com-

plete.

Remark 8.7.1: We observe that the Lp−Lq estimate from Corollary 7.3.1

derived for the cases very slow, slow, fast oscillations is of the form

E(u)(t)
∣∣
Lq ≤ C (1 + t)s0E(u)(t0)

∣∣
W

Np
p

(8.27)

with a positive constant C independent of t0 ≥ T and t ≥ t0. However,

Theorem 6.1.2 states that in the case of very fast oscillations we cannot
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have an estimate of the form

E(u)(t)
∣∣
Lq ≤ C1 exp(C2(log(t + e3))r)E(u)(t0)

∣∣
W

Np
p

(8.28)

for 1 < r < α− 1 with positive constants C1 and C2 independent of t0 ≥ T

and t ≥ t0. Comparing (8.27) with (8.28) we have indeed an essential change

in the behaviour of solutions to (6.4) from fast to very fast oscillations.
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