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Abstract

Chemotaxis is a fundamental cellular process by which cells sense and navigate in their

environment. The molecular signalling pathway in the bacterium Escherichia coli is ex-

perimentally well-characterised and, hence, ideal for quantitative analysis and modelling.

Chemoreceptors sense gradients of a multitude of substances and regulate an intracellular

signalling pathway, which modulates the swimming behaviour. We studied the chemotaxis

pathway in E. coli (i) to quantitatively understand molecular interactions in the signalling

network, (ii) to gain a systems view of the workings of the pathway, including the effects

of noise generated by biomolecular reactions during signalling, and (iii) to understand

general design principles relevant for many sensory systems. Specifically, we investigated

the adaptation dynamics due to covalent chemoreceptor modification, which includes nu-

merous layers of feedback regulation. In collaboration with an experimental group, we

undertook quantitative experiments using wild-type cells and mutants for proteins in-

volved in adaptation using in vivo fluorescence resonance transfer (FRET). We developed

a dynamical model for chemotactic signalling based on cooperative chemoreceptors and

adaptation of the sensory response. This model quantitatively explains an interesting

asymmetry of the response to favourable and unfavourable stimuli observed in the exper-

iments. In a whole-pathway description, we further studied the response to controlled

concentration stimuli, as well as how fluctuations from the environment and due to intra-

cellular signalling affect the detection of input signals. Finally, the chemotaxis pathway

is characterised by high sensitivity, a wide dynamic range and the need for information

transmission, properties shared with many other sensory systems. Based on FRET data,

we investigated the emergence, limits and biological significance of Weber’s law which pre-

dicts that the system detects stimuli relative to the background stimulus. Furthermore, we

studied the information transmission from input concentrations into intracellular signals.

We connect Weber’s law, as well as information transmission, to swimming bacteria and

predict typically encountered chemical inputs.
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1. Introduction

1.1 The biology of chemotaxis

Chemotaxis is a basic cellular process by which cells sense particular molecules in their

environment and direct their motility along chemical gradients of those molecules. For

unicellular organisms, chemotaxis is a means to navigate their physical environment, in

order to find and colonise more favourable habitats. Besides nutrients and toxic substances

a multitude of stimuli can be sensed, such as pH, temperature, oxygen, and light (Lux et al.,

2000), reflecting the various sources of information cells need to integrate to generate an

appropriate response to their environment. Often, chemotaxis is implicated in pathogenic,

as well as symbiotic associations with host organisms (Pittman et al., 2001; O’Toole et al.,

1999; Kim and Farrand, 1998; Pandya et al., 1999). Chemotaxis has also been implicated in

social behaviours of unicellular organisms. For instance, the amoeba Dictyostelium secretes

the molecule cAMP under starvation, which serves as a chemoattractant to other cells,

triggering cellular aggregation (Gerisch, 1982). In multicellular organisms, chemotaxis

occurs during development, and in the adult organisms it is normally only retained in

specialised cells with crucial physiological functions, e.g. the cells of the immune system

and sperm cells. However, it can become relevant in cancer metastasis when normally

non-motile cells become motile, invasive tumour cells (Condeelis et al., 2001). The study

of bacterial chemotaxis, specifically that of Escherichia coli, has progressed immensely,

and is a paradigm for chemosensing in general (Lux et al., 2000).

Bacteria live in a variety of habitats, such as soil or the human intestines, and are

typically faced with a dynamic chemical environment of temporal and spacial gradients.

Furthermore, the colonisation of habitats often depends on the successful competition for

nutrients with other microorganisms (Kennedy, 1987). The bacterium Escherichia coli

is a member of the highly stable commensal microbiota inhabiting the gastrointestinal

tract of humans and animals, where it grows in the mucus layer secreted by the intestinal

epithelium (Poulsen et al., 1994; Gauger et al., 2007). The commensal microbiota, which

17



CHAPTER 1. INTRODUCTION

consists of hundreds of different bacterial species present at high cell densities (Poulsen

et al., 1994), has important functions for the host, breaking down undigested food and

thereby providing additional energy sources, as well as providing resistance against coloni-

sation by pathogens (Nataro, 2005). On the other hand, there are a variety of pathogenic E.

coli strains which can cause serious infections of the gastrointestinal and urinary tract (in-

cluding enteropathogenic, enterohaemorrhagic, and uropathogenic E. coli, or short EPEC,

EHEC and UPEC, respectively), as well as neonatal meningitis. These pathogenic strains

have up to 106 bases larger genomes than commensal strains after acquiring so-called

pathogenicity islands, i.e. large genetic clusters of virulence genes which are not found

in non-pathogenic strains (Croxen, 2010). The intestinal mucus layer is highly dynamic,

being constantly secreted by epithelial cells, degraded by the microbiota and washed into

the lumen of the intestine. Colonisation, i.e. stable persistence, of microorganisms in

this environment requires them to compete with the indigenous flora for nutrients, as

well as replenishing their numbers at a rate equal to the rate of turnover of the mucus

layer (Gauger et al., 2007).

The role of motility, and indeed chemotaxis, in the colonisation of the intestines is

complex (Gauger et al., 2007; Girón, 2005). Microbial chemotaxis in the intestines can

generally have several roles, including taxis to food or components of the mucus layer,

penetration and persistence in the mucus layer, which is constantly washed into the lumen

of the intestines, and finally to adhere to or invade epithelial cells. Chemotaxis has been

implicated in the successful colonisation of the gastrointestinal tract of host animals by a

number of pathogenic bacteria species, e.g. Helicobacter pylori and Campylobacter jejeuni,

which do not attach to the epithelium and instead use chemotaxis to stay within the mucus

layer (Lee et al., 1986; Blaser, 1997; Butler and Camilli, 2005). Interestingly, for the cholera

bacterium Vibrio cholerae it has been suggested there exists a chemical gradient guiding

cells to a specific part of the intestinal tract (Butler and Camilli, 2005). Furthermore,

V. cholerae uses chemotaxis to penetrate the mucus layer and move specifically to the

intestinal crypts, sites of epithelial cells generation and enzyme production (Butler and

Camilli, 2005).

The exact role of chemotaxis for E. coli in the intestines is unknown. However, similar

mechanisms as those just described could be important and enable cells to remain in spe-

cific niches within the mucus layer (Kennedy, 1987; Hao and Lee, 2004; Rawls et al., 2007;

Gauger et al., 2007). Alternatively, it may also have advantages for the survival outside

18



1.1. THE BIOLOGY OF CHEMOTAXIS

Figure 1.1.: Chemotaxis strategy and signalling pathway in Escherichia coli. (A) Swimming
path consists of consecutive “runs” interrupted by “tumbles”. Runs are biased to be longer when
swimming up attractant gradient, and shorter when swimming down attractant gradient. (B)
The chemical concentration sampled by the bacterium along the swimming path in the gradient
in panel A. (C) Chemotaxis signalling pathway from receptors to rotary motors and flagella, in-
cluding phosphotransfer from CheA to CheY and CheB, CheY-P diffusion to rotary motors, and
dephosphorylation of CheY-P by phosphatase CheZ. Adaptation involves receptor methylation by
CheR and demethylation by CheB-P.

the host. Recent advances in experimental methods, such as in vivo endomicroscopy (Kim

et al., 2010), may be used to elucidate the physiological role of chemotaxis in bacterial

species in the intestines in the future.

Like most bacteria, E. coli senses gradients temporally, detecting the concentration of

chemicals along its swimming path, rather than spatially by comparing concentration

differences along its circumference. Temporal sensing is thought to be exhibited by small

organisms as thermal fluctuations render concentration differences along the cell length

unreliable (Berg and Purcell, 1977). The swimming strategy is a biased random walk

towards a nutrient source or away from a toxin source (Berg, 2000; Falke and Hazelbauer,

2001; Sourjik, 2004; Wadhams and Armitage, 2004). The swimming path consists of runs,

i.e. straight swimming of the cell, and tumbles characterised by lack of net movement and

random reorientation of the cell (Fig. 1.1 A and B).

The molecular components of the chemotaxis signalling pathway and relationships be-

tween them are well-characterised (Kentner and Sourjik, 2009), and are shown schemati-

cally in Fig. 1.1 C. Transmembrane chemoreceptors sense various different ligands. Ligand

binding to receptors induces their signalling across the membrane to the histidine kinase
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CheA (chemotaxis protein A). When active, CheA autophosphorylates and rapidly passes

on a phosphoryl group to its response regulators CheY and CheB. Phosphorylated CheY

(CheY-P) diffuses to rotary motors, each of which drives a flagellum, i.e. a helical ap-

pendage protruding from the cell membrane. Upon binding to the motors, CheY-P induces

a switch in their rotary direction, resulting in tumbling. CheZ is a phosphatase of CheY-P.

Attractant binding reduces the activity of CheA, lowering the concentration of CheY-P in

the cell, and therefore suppressing tumbling. In contrast, repellents cause an increase of

activity, enhancing tumbling. There is also a mechanism for sensory adaptation, i.e. the

reversal of the initial signalling response in the presence of a persistent stimulus. Adapta-

tion is catalysed by the enzymes CheR and CheB. CheR methylates receptors to enhance

their signalling activity. Phosphorylated CheB (CheB-P) demethylates receptors, which

reduces their activity. During persistent stimulation by a chemical, the combined effect

of receptor methylation by CheR and demethylation by CheB-P leads to adaptation of

the kinase activity to a steady-state, allowing the sensing of new changes in attractant or

repellent concentrations.

Chemotaxis belongs to a typical class of bacterial sensory systems, so-called two-com-

ponent systems (Laub and Goulian, 2007). Two-component systems consist of a kinase

activating a response regulator. Kinase and response regulators share structural similari-

ties across different two-component systems and are responsible for wide ranging functions,

such as sensing of nutrients, osmolarity, antibiotics, as well as quorum sensing.

1.1.1. Chemosensory clusters

Chemoreceptors span across the inner membrane with a ligand-binding domain facing the

periplasm between inner and outer membrane, a transmembrane domain and a cytoplasmic

domain. There are five different types of chemoreceptors in Escherichia coli, which sense a

multitude of nutrients, such as amino acids, sugars and dipeptides, which act as attractants

in chemotaxis. On the other hand, also toxins, like benzonate or indole, can be sensed and

act as repellents. The two most abundant receptor types, Tar and Tsr, bind respectively

the amino acids aspartate (and its non-metabolisable analogue MeAsp) and serine. Tsr

also binds aspartate and MeAsp with much lower affinity. Besides specific chemicals,

numerous other stimuli can be sensed, such as pH, temperature and oxygen (Lux et al.,

2000).

Receptors form homodimers, and furthermore, mixed-type trimers of dimers (Ames

20



1.1. THE BIOLOGY OF CHEMOTAXIS

Figure 1.2.: Imaging chemoreceptors clusters. (A) Large chemoreceptor clusters located at the
cell poles are conserved across various bacteria and archaea species. Cells were treated with an-
tibodies against Trg receptor and subsequently visualised by a fluorescently labelled secondary
antibody. Branches indicate evolutionary relationships. Duplicate images on the right outline
the cell bodies. Scale bars indicate 2 µm. Image taken from Gestwicki et al. (2000). (B) Polar
chemoreceptor clusters form partially hexagonally ordered arrays in Caulobacter crescentus cells as
measured by cryo-electron tomography. The left image shows a tomographic slice of a subregion
of the polar cluster. The right image schematically shows the position of chemoreceptor trimers
of dimers derived from the left image. The scale bars indicate 50 nm. Image taken from Khursi-
gara et al. (2008a). (C) Single-molecule imaging revealed various sized receptor clusters. The top
row shows images of a single cell using differential interference contrast microscopy (DIC; “A”),
epi-fluorescence microscopy (epi; “B”), and a super-resolution microscopy image from so-called
photoactivated localisation microscopy (PALM) using two different variants (total internal reflec-
tion, TIR; “C”, and epi-fluorescence; “D”). The middle image (“E”) shows a combined image of
the two PALM images. The bottom row of images are zooms into three small regions indicated
by the boxes in (“E”): single proteins (“F”), small cluster (“G”), and large polar cluster (“H”).
Scale bars in (“A”-“E”) indicate 1 µm. Scale bars in (“F”-“H”) indicate 50 nm. Image taken from
Greenfield et al. (2009).

et al., 2002; Studdert and Parkinson, 2005; Boldog et al., 2006; Studdert and Parkinson,

2007). Chemoreceptors localise predominantly at the cell poles, where they form large

clusters of thousands of molecules (Sourjik, 2004). This feature is conserved in many

bacteria and archaea species (Gestwicki et al., 2000; Fig. 1.2 A). Receptors in these clusters

are closely packed, and form partially ordered hexagonal lattices of densities consistent
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Figure 1.3.: Signalling by chemoreceptors. (A) Schematic representation of signalling by chemore-
ceptors, which is thought to involve the interaction of three distinct receptor modules: A stimulus
is sensed by the “sensing and transmembrane signalling module”, and passes it on to the “signal
conversion” module. The latter signals to the “kinase control module” (see text). Image taken
from Parkinson (2010). (B) Trimers of receptor dimers assume one of two possible conformations.
3D-averaged cryo-electron tomography image of Tsr receptor trimer of dimers. The large images
on the left show the trimer in a side view in the two distinct conformations (“A” and “B”, respec-
tively), which differ in the expansion of their HAMP domains (denoted by “2”). Smaller images
on the right show the arrangement of the HAMP domains within the trimer in a top-down view.
Image taken from Khursigara et al. (2008b).

with trimers (Khursigara et al., 2008a; Briegel et al., 2008; Fig. 1.2 B). Recently, single-

molecule experiments revealed that besides these large clusters, receptors also associate

in smaller complexes which are distributed across the cell membrane (Greenfield et al.,

2009; Fig. 1.2 C).

Transmembrane signalling of receptors is thought to consist of the interaction of three

distinct receptor modules (Khursigara et al., 2008b; Hazelbauer and Lai, 2010): a sensing

module, which consists of the periplasmic and transmembrane portion of the receptor and

contains the ligand binding site, a signal conversion module and kinase control module

in the cytoplasmic region. Ligand binding results in a small conformational change in

the sensing module, impinging on the signal conversion module (Fig. 1.3 A). The signal
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conversion module contains a highly conserved HAMP (histidine kinase, adenylyl cyclases,

methyl-binding proteins, and phosphatases) domain, which is thought to convert signals

between the sensing and kinase control module. This module was found to assume two

different arrangements within trimers of chemoreceptor dimers in cryo-electron microscopy

experiments by Khursigara et al. (2008b) (Fig. 1.3 B). The relative abundance of these

states changes after addition of the attractant serine. The authors of that study suggest

that the two conformations correspond to two specific signalling states, “kinase-on” and

“kinase-off”, respectively. The kinase control module contains specific methyl-accepting

residues, as well as interaction sites for the kinase CheA. Chemoreceptor methylation and

demethylation reverses the conformational changes induced by ligand binding (Lai et al.,

2006b). Tar and Tsr receptor monomers have four major residues which can be reversibly

methylated. In addition, Tsr has two minor modification sites which are methylated less

strongly (Chalah and Weis, 2005).

Most chemotaxis proteins associate with the receptor cluster. CheA, as well as the

protein CheW (not shown in Fig. 1.1 C), have been suggested to be involved in receptor-

receptor coupling and signal integration (Li and Weis, 2000; Gestwicki and Kiessling,

2002; Kentner and Sourjik, 2009). The histidine kinase CheA exists in a long (CheAL)

form, as well as a short (CheAS) form, which lacks part of the protein domain which

is phosphorylated and responsible for subsequent phosphotransfer to response regulators

CheY and CheB (O’Connor and Matsumura, 2004). CheA forms homodimers and mixed

dimers of the different forms of CheA. Autophosphorylation of CheA is based on binding

an ATP molecule by one monomer of the dimer and phosphorylation of the histidine

residue of the other monomer. CheY and CheB bind competitively to CheA (Li et al.,

1995). CheZ binds specifically to CheAS, while still retaining its ability to interact with

phosphorylated CheY (Sourjik, 2004). The main function of CheAS appears to be the

localisation of CheZ to the sensory complex (Sourjik, 2004).

To modify receptors, CheR and CheB molecules bind to a specific tether sequence at

the carboxyl-terminus of Tar and Tsr receptors, and act on several nearby receptors, so-

called assistance neighbourhoods (Li and Hazelbauer, 2005). The various components

of the chemoreceptor cluster have different molecule exchange dynamics consistent with

their identified functions (Schulmeister et al., 2008). Receptors, CheA, CheW and CheZ

were found to incorporate new components into the chemosensory cluster very slowly on

the time scale of minutes (hours for receptors), and hence are stable during chemotactic
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Figure 1.4.: Schematics of the E. coli rotary motor. (Left) Side view of the motor, including
membrane structures (OM - outer membrane, PG - peptidoglycan layer, CM - cytoplasmic [inner]
membrane), as well as proposed location and stoichiometry of motor components. Rotor compo-
nents include C-ring (FliG, FliM, FliN), and rod, which are connected to the hook and flagellar
filament. Stator components include MotA and MotB, which are bound to the PG layer. Further
ring structures include MS-, P- and L-ring. (Right) Molecular structure of truncated FliG, FliM
and FliN proteins, and proposed fit into the C-ring structure. The number of amino acids missing
at the N- and C-termini are indicated. Figure taken from Sowa and Berry (2008).

responses and adaptation. CheR and CheB exchange on a time scale of several seconds,

i.e. on the time scale of adaptation to saturating stimuli, which is suggested to ensure

a uniform distribution of the enzymes in the cluster while providing sufficiently stable

association to receptors during the slow adaptation process. CheY was found to exchange

very fast, consistent with its role as diffusible response regulator.

1.1.2. The rotary motor

CheY-P is the rotational switching signal for the rotary motors which drive cell motility.

The rotary motor (Fig. 1.4) is a protein complex consisting of about 13 different proteins,

and a further 25 proteins are involved in its assembly (Macnab, 1996). It is embedded

in the bacterial cell wall with some components remaining stationary (stator), and other

components rotating (rotor) with respect to the cell body. Several ring structures have

been observed in electron microscopy, which span from the cell interior (cytoplasmic (C-)
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Figure 1.5.: Experimental data for rotary motor stepping. (A) Two experimental assays for motor
rotation. (A, Left) Cell is attached to a microscope slide by a flagellum and the rotation of the cell
body is observed. (A, Right) Cell body is stuck to a microscope slide and the rotation of a bead
attached to the flagellum is observed. (B) Steps of the rotary motor observed for slow rotation
and low IMF. Trajectories of the stepping angle (blue and black lines) measured by observing
the rotation of a bead attached to the flagellum for different speeds, indicated by the slope of
the trajectories, are shown. Insets show the positions of the beads in a plane for two example
trajectories (scale in nm). Radial lines indicate angle increments of 13.8◦. (C) Histogram of step
sizes (black) obtained from a step-finding algorithm applied to the trajectory (cf. inset). A multiple
Gaussian fit (red) is shown as well. Figures taken from Sowa and Berry (2008).

ring) across the various layers of the cell wall, including the membrane and supramembra-

neous (MS-) ring found at the inner membrane, peptidoglycan (P-) ring in the periplasmic

space, and lipopolysaccharide (L-) ring in the outer membrane. At least the C- and MS-

ring form part of the rotor; it is not known whether P- and L-ring rotate. The rotor is

attached to the flagellar filament by a flexible hook.

The stator in E. coli consists of 10-12 complexes of MotA and MotB proteins, which

form ion channels across the inner membrane around the periphery of the rotor. The

stator complexes are anchored to the peptidoglycan layer through MotB. The torque, that

drives the flagellar rotation is generated by the interaction of MotA with FliG, which is

part of the C-ring. The motor rotation is driven by a so-called ion motive force (IMF), i.e.

ions passing through an electrochemical gradient. Two different IMFs have been observed

for different species: proton gradients (e.g. in E. coli) and sodium-ion gradients. The ion

motive force is generated by an electrical potential due to a charge difference between the

two sides of the membrane, as well as a chemical concentration gradient of ions. There are

two main assays which have been used to study the motor rotation, shown in Fig. 1.5 A.
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Figure 1.6.: Rotation speed as a function
of the number of torque-generating units.
In “resurrection experiments” expression of
functional stator units (Mot proteins) was
induced in cells with defective stator units.
High load (1 µm beads; top), low load
(0.3 µm beads; middle) and near-zero load
(60 nm gold beads attached to the hook; bot-
tom) was applied to the cells. The result-
ing rotation speed is plotted as a function
of time in the left panels, and as function
of the number of torque-generating units (as
deduced from the number of steps observed
in panel A) in the right panels. Figure taken
from Sowa and Berry (2008).

Firstly, cells can be tethered by a filament, and the rotation of the cell body is observed.

Secondly, the cell is attached to the surface of a microscope slide, and the rotation of a

filament or a bead attached to one filament is observed. The latter assay allows to vary

the load on the motor by changing the bead size.

Using a chimeric motor driven by sodium ions in E. coli at slow motor rotation by a

single stator unit, individual steps of the motor could be resolved (Sowa et al., 2005). The

step size was measured to be 13.7◦ on average, and a histogram of dwelling angles showed

that the rotor visits consistent discrete angles during successive rotation cycles (Fig. 1.5

B and C).

In so-called resurrection experiments, in which the expression of stator components is

induced in mutants lacking the Mot genes, the speed of rotation increases in discrete

increments, thought to be related to the number of independent stator units expressed

(Fig. 1.6). At high load, the speed increase was found to be linear with the number of

stator units, whereas at low load the relationship is nonlinear. At near-zero load, the

speed of rotation is independent of the number of stator units (Yuan and Berg, 2008).

This result has been interpreted as each torque-generating element having a rate-limiting

step in the mechanochemical cycle, which cannot be sped up by the torque exerted by

other elements (Sowa and Berry, 2008).
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Figure 1.7.: Experimental data for motor switching. (A and B) Histograms of time intervals of
clockwise (CW) and counter-clockwise motor rotation of adapted cells. Figures taken from Block
et al. (1983). (C) Non-exponential distribution of time intervals of CW (black) and CCW (grey) at
CW motor bias of 0.5. Figure taken from Korobkova et al. (2006). (D) Experimental measurement
of CW bias as a function of CheY-P concentration (symbols) and fit to Hill function (line). Figure
taken from Cluzel et al. (2000).

The motor switches rotational direction due to chemotactic signalling, when CheY-P

binds to FliM on the C-ring. The dynamics of switching in the presence of CheY-P has

been studied extensively. Observing rotating bacteria cells tethered by a flagellum, the

distribution of time intervals spent in the CW or CCW state were found to be exponential

with mean interval times of 1.33 s (CW) and 1.22 s (CCW), respectively (Fig. 1.7 A and B;

Block et al., 1983; Bai et al., 2010). In other experiments, marked deviations from exponen-

tial distributions were measured observing beads attached to full-length flagella (Fig. 1.7 C;

Korobkova et al., 2006). These cells showed distinct maxima in their interval distributions,

which were well-fit by Gamma distributions. These peaks are not due to correlations be-

tween intervals, as re-shuffling of intervals yields the same distributions. It is not clear

where the differences between these data sets originate. Besides using wild-type and mu-

tant CheY respectively, the studies also differ in the experimental set-up. Block et al.

(1983) used an assay where the rotation of the tethered cell body was observed and Bai
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Figure 1.8.: Response function and power spectrum of the motor. (A) Time course of the motor
bias in response to a short pulse of attractant (dots: measured data; line: fit). (B) Fourier transform
of the time course in A (right data points) and response to periodic stimulation (left data points).
The line is the Fourier transform of the smooth line in panel A. Figures taken from Segall et al.
(1986). (C) Noise power spectrum of wild type cells (black line) and mutant lacking the signalling
pathway (grey line). Figure taken from Korobkova et al. (2004).

et al. (2010) observed the rotation of truncated flagella, whereas Korobkova et al. (2006)

visualised the rotation of full-length flagella.

Using a constitutively active mutant CheY, the rates of switching between CW and

CCW were measured as a function of CheY concentration (Turner et al., 1999). The

motor bias, i.e. the probability to spin in one direction, was measured as a function of

CheY-P concentration (Fig. 1.7 D; Cluzel et al., 2000). It was found that the CW bias

increases steeply around the steady-state concentration of 3.2 µM CheY-P of unstimulated

cells. This nonlinearity of the bias, however, is not due to cooperative binding of CheY-P

to FliM (Sourjik and Berg, 2002a). The signalling response of the motor to chemotactic

stimuli has been measured. Using impulse or periodic stimuli, the Fourier transformed

linear response function of the motor bias was obtained (Fig. 1.8 A and B; Block et al.,

1982; Segall et al., 1986). The chemotaxis pathway acts as a bandpass filter, transmitting

best signals that change on a time scale of 1-10 s (corresponding to frequencies 0.1-1 Hz)

and filtering out slowly changing, as well as rapidly changing stimuli. This can be seen

from the Fourier transformed response function which decreases both, at low and high fre-

quencies (Fig. 1.8 B). Furthermore, to characterise fluctuations in motor switching due to

chemotactic signalling as well as intrinsic switching of the motor, the power spectrum has

been measured by Korobkova et al. (2004). The power spectrum captures the correlations

of motor rotation at two different time points. The signalling pathway filters out high-

frequency fluctuations as the power spectrum decreases at high frequencies (Fig. 1.8 C).

Interestingly, the power spectrum of wild-type cells has a larger low-frequency component

than mutants lacking the signalling pathway, i.e. the pathway introduces long correlations

in motor switching.
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The structural basis for the two rotational directions was hypothesized to be FliN, which

is part of the C-ring and forms tetramers in the structure of puckered rings. Tetramers

could stack in two different ways corresponding to CW and CCW rotation (Sowa and

Berry, 2008).

1.1.3. Robustness of chemotaxis

Chemotaxis protein levels can vary considerably, e.g. due to gene expression noise (Elowitz

et al., 2002) and gene regulation under various conditions. Li and Hazelbauer (2004) found

that the cellular content varies over an order of magnitude between growth in minimal and

rich medium respectively. However, cellular stoichiometry of proteins and chemotaxis effi-

ciency remains roughly constant. Alon et al. (1999) found that swimming behaviour shows

precise adaptation, i.e. cells return precisely to their pre-stimulus swimming behaviour

after a attractant concentration, when varying the CheR protein expression level over an

order of magnitude. In a study by Kollmann et al. (2005), the chemotaxis efficiency was

found to be affected little when chemotaxis protein levels co-varied by varying the level

of an effector of their transcription. In addition, co-variation of either CheB and CheR,

or CheY and CheZ, had little effect on the chemotaxis efficiency (Løvdok et al., 2007).

Hence, mechanisms to keep CheY-P robustly in the working range of the rotary motor

must be at work (Løvdok et al., 2007). It has been suggested that the organisation of

protein expression in operons, as well as the pathway architecture of opposing enzymes,

i.e. methylation and demethylation of receptors, as well as phosphorylation and dephos-

phorylation of CheY-P, keeps the proportion of the functional states constant over a large

range of protein levels when these vary in concert (Kollmann et al., 2005; Løvdok et al.,

2007).

1.1.4. In vivo fluorescence resonance energy transfer (FRET)

The interactions between different proteins in the chemotaxis pathway during signalling

have been well characterised. Specifically, fluorescence resonance energy transfer (FRET)

measurements of the response regulator CheY-P and its phosphatase CheZ have elucidated

the signalling in the chemotaxis pathway (Sourjik and Berg, 2002b, 2004; Kentner and

Sourjik, 2009). The method is illustrated in Fig. 1.9: FRET is based on the energy

transfer from a fluorophore, which is excited by a laser, to a fluorophore of lower-frequency

excitation spectrum. This process is strongly dependent on the distance between the two
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Figure 1.9.: In vivo fluorescence resonance energy transfer applied to measure the intracellular
signalling activity in chemotaxis. CheY and CheZ are tagged with fluorescent protein tags. Cyan
fluorescent protein (CFP) is excited. When CheY-P is dephosphorylated, CFY and yellow fluores-
cent protein (YFP) come close, and energy from excited CFP is transferred to YFP. A change in
yellow (as well as blue) fluorescence is detected. Image taken from Sourjik (2004).

fluorophores (Wouters and Bastiaens, 2001). Here, chemotaxis proteins were fused with

cyan and yellow fluorescent protein tags (CFP and YFP, respectively) and changes in

FRET monitored during stimulation with chemoeffectors. In the case of CheY and CheZ,

FRET is highly specific to the interaction of the two proteins during dephosphorylation,

and hence is a read-out of the kinase activity when assuming a quasi steady-state with

phosphorylation of CheY (Sourjik and Berg, 2002b).

1.2 Previous modelling work on chemotaxis signalling

The chemotaxis pathway has attracted immense interest not only from biologists, but also

from modellers. In the following, we briefly review several mathematical models, including

signal amplification by cooperative chemoreceptors, precise sensory adaptation, and the

operation of the rotary motor, which are relevant as background for this thesis.

1.2.1. Two-state model for independent chemoreceptors

In the simplest model for chemoreceptor signalling, receptors signal independently and

each receptor has two possible states (conformations), on (active) and off (inactive) (Asakura

and Honda, 1984). As a microscopic object, the receptor constantly switches between on

and off conformation due to thermal fluctuations (Fig. 1.10). Each of the states is as-

signed an energy fi, with the receptor being more likely in the state with lower energy.
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The equilibrium properties of this model are determined by the free-energy difference be-

tween the on and off states. The probability to be in either of the states is determined by

the Boltzmann distribution, with the probability for the on state given by e−fon/Z, and

for the off state by e−foff/Z. The normalising factor Z = e−fon + e−foff is the partition

function which sums over the Boltzmann factors e−fi of all states i, where fi denotes their

respective energies (all energies are given in units of kBT with kB the Boltzmann constant

and T temperature). The probability of the on state is interpreted as the activity A of

the receptor,

A(c,m) =
1

1 + e∆f(c,m)
(1.1)

∆f(c,m) = fon − foff = ∆ϵ(m) + ln

(
1 + c/Koff

D

1 + c/Kon
D

)
. (1.2)

The free-energy difference ∆f(c,m) is determined by the receptor methylation level m and

the concentration of ligand c. This result is derived below in more detail. Briefly, the term

∆ϵ(m) is the free-energy difference between the on and off state in the absence of ligand.

The concentration-dependent term describes the energetics of ligand binding and is due to

a gain of binding energy upon ligand-receptor binding and loss of volume entropy due to

removing ligand from the solvent. Receptors with different methylation levels are thought

to bind ligand with the same dissociation constant (Skoge et al., 2006). Therefore, the

dissociation constants K
on/off
D are assumed to not depend on receptor methylation level.

For attractants, the off state is assumed to bind ligand at lower concentration compared

to the on state, which is expressed by the dissociation constants Koff
D < Kon

D . Hence,

increasing the ligand concentration favours the off state. Methylation of receptors reverses

the effect of attractant binding (adaptation), i.e. increasing the methylation level favours

the on state.

Derivation of receptor activity I: Chemical equilibrium of ligand-receptor binding. To

understand the different contributions to the free-energy difference in Eq. 1.2, we first look

at the simpler case of ligand-receptor binding. Binding and unbinding of ligand molecules

L to a receptor R can be described in terms of the chemical equation

R+ L
k1−⇀↽−
k2

R− L, (1.3)
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Figure 1.10.: Two-state model for receptor. (A) Receptor can assume two different conformations,
which yield it active (on) or inactive (off), and switches constantly between them due to thermal
fluctuations. The probability to be on is determined by the free-energy difference ∆f . (B) In
the adapted state the on state is slightly less probable than the off state (left panel). When
attractant is added, the probability of the on state decreases (centre panel), whereas it increases
when attractant is removed (right panel). Adaptation reverses the effect of ligand binding and
restores the probabilities to match the left graph.

which can be translated into an ordinary differential equations for the concentrations of

ligand c = [L], unbound receptors [R], and bound receptors [R − L]. The differential

equation for [R− L] is
d[R− L]

dt
= k1c[R]− k2[R− L]. (1.4)

We are interested in the fraction of bound receptors at equilibrium Pb, hence we set the

time derivative to zero, and obtain for Pb

Pb =
[R− L]

[R− L] + [R]
=

c/KD

1 + c/KD
, (1.5)

where KD = k2/k1 = c[R]/[R−L] is the dissociation constant of ligand-receptor binding.

From the above equation, the meaning of the dissociation constant is clear: at a concentra-

tion c = KD the fraction of occupied receptors is 1/2. Hence, KD is a typical concentration

for ligand-receptor interaction. Comparing Eq. 1.5 to Eq. 1.1, the free-energy difference

associated with ligand-receptor binding is

∆fb = − ln

(
c

KD

)
. (1.6)

Comparing this result to a statistical mechanical derivation (Phillips et al., 2009), the

dissociation constant can be understood as the concentration at which gain of binding

energy ∆ϵb and the loss of volume entropy balance each other, KD = 1
ν e

∆ϵb with ν being

the typical volume taken up by a ligand.

Derivation of receptor activity II: Combining bound and unbound on states. Assuming

that the receptor has two conformational states, on and off, and in each of them can

bind ligand molecules, results in four possible states of the receptor: (on, bound), (on,
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unbound), (off, bound), and (off, unbound) with associated energies

fon,0 (1.7)

fon,b = fon,0 − ln

(
c

Kon
D

)
(1.8)

foff,0 (1.9)

foff,b = foff,0 − ln

(
c

Koff
D

)
, (1.10)

where “0” denotes the receptor state without ligand bound, and “b” the receptor state

with ligand bound. We assume that ligand binding equilibrates faster than switching

between the states, so we can write the free energy of the bound state as the sum of the

energy of the unbound state and the free-energy difference due to ligand-receptor binding

in terms of the dissociation constants K
on/off
D as derived in Eq. 1.6. We are interested in

the probability of the on state. Therefore, we sum over the probabilities of the on state

with and without ligand bound, respectively,

Pon =
e−fon,0 + e−fon,b

e−fon,0 + e−fon,b + e−foff,0 + e−foff,b
(1.11)

=
1 + c/Kon

D

1 + c/Kon
D + e(fon,0−foff,0)(1 + c/Koff

D )

=
1

1 + e∆f
,

where we obtain Eq. 1.2 and identify ∆ϵ = fon,0 − foff,0.

1.2.2. Signal amplification by cooperative chemoreceptors

Two main classes of models for cooperative chemoreceptor signalling can be distinguished:

lattice models of weakly interacting receptors and complexes of strongly interacting re-

ceptors, which will be described in the following paragraphs. These models of receptor-

receptor interactions have been developed to explain the extreme sensitivity of chemosens-

ing to small concentration changes. Broadly, in both classes of models, receptors influence

the signalling state of their neighbours. By this mechanism, a conformational change

caused by ligand binding to one receptor can spread to its neighbouring receptors to

change their signalling state although being unoccupied. This cooperativity of receptors

leads to signal amplification as ligand binding to one receptor affects signalling of more

than one receptor.
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Receptor lattice model for chemoreceptors. Lattice-type models for chemoreceptors

were first introduced by Bray et al. (1998), and put in terms of an Ising model (known

from physics as a model for ferromagnets) by Shi and Duke (1998) and Duke and Bray

(1999). Later, Mello and Tu (2003a) used a mixed receptor lattice model with interactions

between different receptor types to explain FRET signalling data. Individual receptors can

assume two states as described above. Furthermore, neighbouring receptors interact such

that if they are in the same state the total energy of the system decreases. This is equivalent

to favouring aligned neighbouring receptors. The energy of a specific configuration k of

receptors on a lattice of M receptors is

Fk =

M∑
i=1

σk
i ∆f +

1

2

∑
⟨i,j⟩

(
σk
i − 1

2

)(
σk
j − 1

2

)
J, (1.12)

with σk
i denoting the state of receptor i in the lattice configuration k, σ = 1 (on) or

σ = 0 (off), and ⟨i, j⟩ denoting neighbouring receptors. The interaction energy J < 0

lowers the energy of the lattice configuration when neighbouring receptors are in the same

signalling state, and increases it when receptors are in different signalling states. Adding

attractant concentration corresponds to adding a magnetic field in the equivalent model

for ferromagnets, and tends to bias receptors towards the off state (Skoge et al., 2006;

Fig. 1.11). The activity of the system is given by averaging over the state of each receptor

in each lattice configuration, and over all receptors of the lattice,

A =
1

MZ

M∑
i=1

2M∑
k=1

σk
i e

Fk , (1.13)

where Z is the partition function for the receptor lattice, i.e. the sum over the Boltzmann

factors of all lattice configurations. There is a phase transition in two-dimensional square

lattices at a critical interaction energy (Jcrit ≈ −0.44 in units of kBT ), below which one

of the activity states is favoured even if the free-energy difference ∆f = 0.

While extended lattices of weakly interacting receptors are consistent with a number

of experimental observations, they cannot reproduce signalling data for low-activity mu-

tants (Skoge et al., 2006). These mutants lack the methylation enzyme CheR, i.e. receptors

tend to be fully demethylated, resulting in a very low adapted activity. However, they

show sensitivity (very low KD) similar to that of adapted wild-type cells. It was shown

by Skoge et al. (2006) that extended lattices of weakly interacting receptors have a high
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Figure 1.11.: Lattice model for
chemoreceptors (A) and analogy to
ferromagetism (B). (A, Left) Switch-
ing of chemoreceptors between con-
formational states and associated en-
ergies. Receptors switch between
on (grey) and off (black) states. Their
relative energies are represented by
the height along the energy axis.
Ligand binding (L) lowers the en-
ergy of the off state, and methyla-
tion (M) reduces the energy of the
on state, favouring the lower energy
state. (A, Right) Lattice of recep-
tors. Receptor-receptor interactions
reduce the energy of the lattice state
if neighbouring receptors are in the
same states. Hence, neighbouring re-
ceptors tend to be in the same confor-
mational state. (B, Left) Switching of
magnetic spins between spin-up and
spin-down state and associated ener-
gies.

A magnetic field lowers the energy of spins aligned along the field, favouring these spin
states. (B, Right) Lattice of coupled spins as model for ferromagnet. Cooperative interac-
tion between adjacent spins lowers the energy of the spin configuration when spins have
the same direction. Hence, neighbouring spins tend to be aligned. Image taken from Duke
and Bray (1999).

sensitivity to ligand only when the free-energy difference between on and off state in the

absence of ligand is close to zero, i.e. when the adapted activity is about 1/2, as only in

this case the effective receptor clustering size (cooperativity) is significant.

Monod-Wyman-Changeux model for chemoreceptors. The Monod-Wyman-Changeux

(MWC) model was developed to describe the allosteric activation of protein complexes con-

sisting of several homogeneous subunits (Monod et al., 1965). In the context of chemore-

ceptors, receptors are thought to form small signalling complexes of strongly interacting

receptors. Instead of the individual receptors in Sec. 1.2.1, complexes ofN receptors switch

cooperatively between two signalling states, on and off. The free-energy difference of the

complex is ∆F (c,m) = N ·∆f(c,m), N times the free-energy difference of an individual

receptor given by Eq. 1.2. The activity is

A(c,m) =
1

1 + e∆F (c,m)
. (1.14)
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The MWC model was first proposed as a model for chemoreceptor signalling by Sourjik

and Berg (2004), and later studied by various groups, successfully explaining detailed ex-

perimental data of various signalling mutants measured by FRET (see Sec. 1.1.4; Sourjik

and Berg, 2002b, 2004; Mello and Tu, 2005; Keymer et al., 2006; Endres and Wingreen,

2006; Endres et al., 2008). Keymer et al. (2006) identified two regimes of behaviour for

homogeneous receptor complexes, (i) at large positive free-energy differences between on

and off states (low activity in the absence of ligand), receptor coupling leads to high sensi-

tivity to ligand, and (ii) at large negative free-energy differences between on and off states

(activity≈1 in the absence of ligand), receptor coupling yields large Hill coefficients. The

first property explains the high sensitivity to ligand of low-activity signalling mutants, as

there is a fixed complex size irrespective of the free-energy difference of individual recep-

tors (Skoge et al., 2006), as opposed to lattice models with weakly interacting receptors

(see above).

The MWC model emerges from a lattice model of interacting receptors in the limit of

large interaction energies between receptors. Hence, while lattices of weakly interacting

receptors seem to be inadequate to describe all experimental data, lattices of receptors

with a domain structure, where receptors interact strongly within domains but not across

domain borders, could be a realistic model for how chemoreceptors act in small signalling

complexes (Skoge et al., 2006).

1.2.3. Robust and precise adaptation

Barkai and Leibler (1997) introduced the concept of robustness of biochemical networks,

i.e. the invariance of certain system properties such as steady-state concentrations with

respect to changes in parameter values. Guided by the example of the precise adaptation

of bacterial chemotaxis, they studied a two-state receptor whose switching rates between

active and inactive states are affected by ligand concentration and receptor methylation

level. They assumed that CheB only demethylates active receptors, while CheR affects

active and inactive receptors. The robustness of this system against wide variations of rate

constants is due to the dynamics of modification depending only on the activity state of

the receptor, but not on system variables such as methylation level or ligand concentration.

The idea of robust precise adaptation in E. coli chemotaxis was further studied by others.

Yi et al. (2000) placed the model by Barkai and Leibler in a more general framework

of engineering principles and showed that integral feedback is the basic mechanism for
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precise adaptation in this model. In a more detailed model for chemotactic signalling,

taking into account explicitly phosphorylation and methylation reactions, Mello and Tu

(2003a) identified conditions required for precise and near-precise adaptation.

Kollmann et al. (2005) studied the robustness of different network architectures to vari-

ations in protein levels, and showed that the accepted pathway of chemotaxis has the

smallest structure which yields robust buffering against varying expression protein levels.

According to their analysis, robustness against concerted variations of all protein levels

is due to the principle of opposing enzymes, i.e. kinase and phosphatase, which activate

and deactivate the response regulator CheY, and receptor methylation and demethylation

enzymes, which activate and deactivate the receptors.

Endres and Wingreen (2006) and Hansen et al. (2008) discussed that “assistance neigh-

bourhoods”, i.e. groups of receptors that are accessible for modification by methylation

and demethylation, are necessary to achieve precise adaptation. This is due to more mod-

ification sites being available within a neighbourhood than on an individual receptor; fully

methylated or demethylated assistance neighbourhoods rarely occur, and hence the rates

of modification of receptors in an assistance neighbourhood remain independent of their

methylation level.

1.2.4. Models for the rotary motor

Early models for the motor focused on describing the two-state switching dynamics. Based

on the exponential interval distributions of CW and CCW states, Block et al. (1982)

discussed the switching dynamics as a Poisson process, i.e. switching between the two

states occurring with constant mean rates. Scharf et al. (1998) and Turner et al. (1999)

discussed two-state models based on an energy barrier between CW and CCW state.

Turner et al. (1999) used an MWC model where the motor comprises of 26 units able to

bind CheY-P shifting the free-energy difference between the two states, and all system

units switch cooperatively between CW and CCW rotational state. Duke et al. (2001)

devised an Ising-type model to study the conformational spread in rings of proteins, and

applied it to the motor switch. They also discussed the limiting case of the MWC model.

The non-exponential distributions of the switching times measured by Korobkova et al.

(2006) could be fit by Gamma distributions. The authors discuss that this is due to a

number of underlying hidden steps before a rotational switch occurs.

Recently, a number of mechanistic models have been developed. In particular, the
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stepping mechanism has been the focus of study, i.e. how the coupling of an electrochemical

ion gradient, contact forces between the near-periodic structures of rotor and stators, and

external load give rise to the (noisy) generation of torque which drives the rotation of the

motor in one direction (Xing et al., 2006; Meacci and Tu, 2009; Mora et al., 2009a,b). van

Albada et al. (2009) considered a model which integrates the dynamics of stepping and

switching between CW and CCW states, as well as polymorphic transitions of flagellar

filaments between right- and left-handed helices after switching. The dynamics of stepping

is modelled along the lines of the above references. Switching occurs according to an MWC

model, i.e. all rotor units switch conformation in concert. The mechanical feedback of the

flagellar filament and load on the motor dynamics is integral to the model: The flagellum

transitions between different morphological states, which are associated with a position in

an energy landscape feeding back into the dynamics of the load, and transitions between

morphological states occur with rates determined by their differences in energy. Excluding

the mechanical feedback from flagella, this model shows exponential distributions for the

CW and CCW interval times. Including the mechanical feedback, it yields peaked interval

distributions similar to experimental measurements by Korobkova et al. (2006).

1.3 Aims of this work

In this thesis, we investigate sensing by cell surface chemoreceptors, cell signalling and

cell behaviour during chemotaxis in E. coli. The chemotaxis pathway is an ideal model

system for cell sensing and signalling processes. Based on the wealth of published data

and collaboration with experimentalists, we aim to address several fundamental topics:

Sensory adaptation of receptors. Sensory pathways often have a large working range as

biochemical mechanisms allow for adaptation to a background stimulus. We aim to develop

a detailed model for signalling and adaptation of chemoreceptors, which quantitatively

describes time-course data from fluorescence resonance energy transfer.

Weber’s law. In many sensory systems, e.g. human vision, it is found that the smallest

noticeable change in stimulus increases with the background stimulus intensity. Weber’s

law states that this relation is roughly linear. For chemotaxis this relates to a small

change in activity upon concentration changes. Using experimental data and our model

for receptor signalling and adaptation, we study Weber’s law in chemotaxis, and aim to
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establish its molecular origin, limits, and biological significance in this system.

Signal transmission and noise filtering. We aim to model the complete signalling path-

way from receptors to rotary motors, which drive the bacterium’s flagella. Having a

reasonable description of signalling by chemoreceptors, we will establish the various steps

of the signalling cascade. We are going to study the effects of noise from input stimuli,

as well as signal transduction. The question is what types of time-varying signals are

transduced to the motors, and to what degree signalling noise is filtered out. Ultimately,

we aim to study how the signalling pathway is optimised for efficient chemotaxis.

Information transmission. The chemotaxis sensory system has to transmit information

about the bacterium’s external environment to the intracellular signalling pathway, which

results in a behavioural response. We argue that chemotaxis may be optimised for infor-

mation transmission and aim to predict typical concentration inputs to characterise the

bacterial microenvironment.
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2. Sensory adaptation of receptors

2.1 Synopsis

Adaptation of the chemotaxis sensory pathway of the bacterium Escherichia coli is es-

sential for detecting chemicals over a wide range of background concentrations, as it ul-

timately allows cells to swim towards sources of attractant and away from repellents. Its

biochemical mechanism based on methylation and demethylation of chemoreceptors has

long been known. Despite the importance of adaptation for cell memory and behaviour,

the dynamics of adaptation is difficult to reconcile with current models of precise adapta-

tion. In this chapter, we follow time courses of signalling in response to concentration step

changes of attractant using in vivo fluorescence resonance energy transfer (FRET) mea-

surements. To quantitatively explain the data, we develop a dynamic model for signalling

and adaptation based on the attractant flow in the experiment, signalling by cooperative

receptor complexes, and multiple layers of feedback regulation for adaptation. We use

a condensed representation of adaptation time courses to quantify imprecision in adap-

tation, to efficiently evaluate different adaptation models and to extract the kinetics of

the receptor methylation level. We experimentally confirm the predicted effects of chang-

ing the enzyme-expression level and bypassing the negative feedback for demethylation.

Our data analysis suggests significant imprecision in adaptation for large concentration

increases. Furthermore, our model predicts highly regulated, ultrafast adaptation in re-

sponse to removal of attractant, which may be useful for fast reorientation of the cell and

noise reduction in adaptation. This work was done in collaboration with Victor Sourjik’s

lab at the university of Heidelberg and has been published (Clausznitzer et al., 2010).

Experiments were performed by Olga Oleksiuk and Linda Løvdok.
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2.2 Motivation & open questions

Cells are able to sense and respond to various external stimuli. To extend the working

range of their sensory pathways, biochemical mechanisms allow for adaptation to persis-

tent stimulation, i.e. the reversal of an initial signalling response to a stimulus, resulting

in only a transient response. The dynamics of adaptation is important as it often rep-

resents the cells’ memory of previous environmental conditions, directly affecting cellular

behaviour (Jaasma et al., 2007; Marwan et al., 1995; Hilliard et al., 2005; Zigmond and

Sullivan, 1979; Shi and Zusman, 1994; Spehr et al., 2009; Muzzey et al., 2009). Fast

adaptation means that cells stop responding and that their biochemical pathways quickly

“forget” the stimulus. In contrast, slow adaptation leads to long-lasting effects in the cells.

The dynamics of adaptation is often difficult to understand in detail, since it emerges from

multiple, simultaneously occurring processes. In higher organisms, adaptation is best doc-

umented in the insect and vertebrate visual system, where multiple mechanisms adjust

the receptor sensitivity to ambient light levels. For instance, phototransduction in the

vertebrate eye involves up to nine different mechanisms for adaptation (Pugh Jr et al.,

1999; cf. chapter 4). However, even in the well-characterised chemotaxis sensory system

in Escherichia coli (Berg, 2000; Falke and Hazelbauer, 2001; Sourjik, 2004; Wadhams and

Armitage, 2004; Baker et al., 2006), adaptation, in particular its molecular mechanism

and dynamics, is not well understood. This constitutes a huge deficit as there has recently

been immense interest in the chemotactic behaviour of bacteria (Clark and Grant, 2005;

Vladimirov et al., 2008; Emonet and Cluzel, 2008; Zonia and Bray, 2009; Vladimirov and

Sourjik, 2009) and noise filtering (Emonet and Cluzel, 2008; Andrews et al., 2006; Tu

et al., 2008). Here, we use adaptation time-course data from in vivo fluorescence reso-

nance energy transfer (FRET; see Sec. 1.1.4) measurements of chemotactic E. coli cells

and quantitative modelling to address this problem.

Adaptation in E. coli is based on reversible methylation and demethylation of re-

ceptors at specific modification sites, catalysed by enzymes CheR and phosphorylated

CheB (CheB-P), respectively. Receptor modification regulates the receptor activity and

provides a recording of experienced concentration changes (Koshland, 1981; Li and Stock,

2009; Vladimirov and Sourjik, 2009). As a consequence, the rate of tumbling was found

to adapt precisely for different ligand concentrations (Berg and Brown, 1972; Alon et al.,

1999). To achieve the return of the receptor activity to its pre-stimulus value, receptor
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activity-dependent phosphorylation of CheB provides a negative feedback on the receptor

activity. In addition, the rates of methylation and demethylation depend on the recep-

tor activity (Toews et al., 1979; Li and Hazelbauer, 2006; Lai et al., 2006a), representing

further layers of feedback regulation. Although a lot is known about the components of

the chemotaxis pathway, several open questions remain to be answered in adaptation: (i)

Despite its importance for cell behaviour, memory and noise filtering, the dynamics of

adaptation and the methylation level are largely unknown. This is because the methy-

lation level is difficult to measure precisely, relying on quantification of receptor protein

and radioactively labelled methylation substrate (methionine) incorporated into recep-

tors (Kort et al., 1975; Chelsky et al., 1984; Lai and Hazelbauer, 2005; Chalah and Weis,

2005). So far, only the initial rate of adaptation was inferred from the rate of change

in motor bias in response to saturating amounts of added attractant (Berg and Brown,

1972). (ii) The molecular mechanism of adaptation, in particular demethylation, remains

unclear. While CheR binds strongly to the tether, suggested to increase its concentration

in the vicinity of methyl-accepting sites (Wu et al., 1996), the binding affinity of CheB was

found to be very low (Barnakov et al., 2002). Instead, binding of CheB-P to the tether in-

duces an allosteric activation of the receptor, increasing the demethylation rate (Barnakov

et al., 2002). Furthermore, while the receptor activity-dependence of the methylation and

demethylation rates is believed to be a requirement for robust precise adaptation, it is not

known if adaptation is precise at the receptor level. Time-course data from in vivo FRET

experiments, monitoring receptor activity upon stimulation, is ideally suited to study the

adaptation dynamics and address these questions.

2.3 Details of experimental measurements

Bacteria strains. To probe the dynamics and molecular mechanism of adaptation experi-

mentally, we used different strains of E. coli. Two different wild-type strains and a mutant

in adaptation were used. Wild-type strain 1 (WT1) expresses the FRET pair consisting

of CheY-YFP and its phosphatase CheZ-CFP from a plasmid. Wild-type strain 2 (WT2)

additionally expresses wild-type CheB from a plasmid. The CheB-mutant strain expresses

non-regulatable CheBD56E instead. The D56E mutation prevents CheB phosphorylation,

but allows the protein to retain a basal level of activity. Expression of CheB in WT and

CheB mutant strains was induced such that they produced comparable kinase activity,

as assessed by the change in FRET signalling activity upon saturating stimulation. The
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CheB protein level was estimated using Western blots with CheB antibodies, and was at

approximately 0.5-fold (WT2) and approximately 5-fold (CheBD56E mutant) the native

level of CheB1.

Fluorescence resonance energy transfer (FRET) measurements. Cells were tethered to

a microscope cover slip, placed in a flow chamber and then subject to a constant fluid flow

of buffer or the non-metabolisable attractant α-methylaspartate (MeAsp) at indicated

concentrations (flow speeds 1000µl/min for WT1, and 500µl/min for WT2 and CheB

mutant, respectively). The concentration was changed abruptly by switching between

buffer and MeAsp or between different MeAsp concentrations, resulting in concentration

step changes (cf. Fig. 2.1 A and 2.2 C). FRET between excited donor, CheZ-CFP, and

acceptor, phosphorylated CheY-YFP, in a population of 300-500 cells was monitored using

an epifluorescence microscopy setup. Emission light from CFP and YFP was collected.

The procedure is detailed in Sourjik and Berg (2002b).

The ratio R of YFP and CFP fluorescence intensity was used to calculate the time-

dependent number of interacting FRET pairs of CheZ-CFP and phosphorylated CheY-

YFP in the cell population, which reflects the intracellular kinase activity (Sourjik and

Berg, 2002b): The number of FRET pairs n normalised by its adapted pre-stimulus value

npre (after adaptation to the ambient concentration, but before concentration step changes)

n

npre
=

R−R0

(∆Y/∆C)−R

(∆Y/∆C)−Rpre

Rpre −R0
. (2.1)

The parameters R0 and Rpre are the ratio for a saturating dose of attractant and the

pre-stimulus value, respectively, both of which are measured in each experiment. The flu-

orescence efficiency ratio ∆Y/∆C is determined by the experimental setup (Sourjik et al.,

2007), and was 0.43 for WT1 (WT2 and CheB mutant) experiments. FRET measurements

were taken with a time resolution of 0.2 s (1 s) for WT1 (WT2 and CheB mutant).

1Details of mutations and induction: Wild-type strain 1 is VS104 ∆(cheY cheZ); expression of cheY and
cheZ from a pTrc-based plasmid pVS88, which carries pBR replication origin and ampicillin resistance
and is inducible by isopropyl β-D-thiogalactoside (IPTG) (Sourjik and Berg, 2002b). Wild-type strain
2 is VS124 ∆(cheB cheY cheZ) transformed with pVS88 and pVS91, which carries pACYC replication
origin and chloramphenicol resistance and encodes wild-type CheB under control of pBAD promoter
inducible by L-arabinose. The CheB-mutant strain is VS124 ∆(cheB cheY cheZ) transformed with
pVS88 and pVS97, which is identical to pVS91 except it encodes the non-regulatable CheBD56E. The
D56E mutation was introduced into CheB by PCR. Cells were grown at 275 rpm in a rotary shaker to
mid-exponential phase (OD600 ≈ 0.48) in tryptone broth (TB) medium supplemented with 100µg/ml
ampicillin, 34µg/ml chloramphenicol, and 50µM IPTG. WT and CheB mutant strains were induced
by 0 and 0.0003% arabinose, respectively.
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Figure 2.1.: Time courses and dose-response curves from FRET. (A) Time course of the applied
concentration of attractant MeAsp. The ambient concentration is c0 = 100 µM. A series of concen-
tration step changes ∆c of increasing size is added and subsequently removed. (B) Time course of
the corresponding FRET activity (calculated as the number of FRET pairs). Cells are adapted to
the ambient concentration, and respond and adapt to the concentration step changes applied. The
red and white circles indicate the initial response to one added and removed example concentration
step change, respectively. (C) A dose-response curve plots the initial signalling responses to a series
of concentration step changes as a function of concentration step size ∆c (indicated by the pair
of circles in panel B for one example step change). The lower curve (red circles) is the addition
dose-response curve, and the upper curve (white circles) is the removal dose-response curve.

Time courses and dose-response curves from FRET. Figure 2.1 shows a typical set of

experimental data. Wild-type cells are adapted to an ambient concentration c0 of attrac-

tant MeAsp, and then a series of concentration step changes ∆c of increasing size is added

and, once cells are adapted, removed (Fig. 2.1 A). Cells respond by chemotactic signalling

with an initial drop in signalling activity (characterised by the number of FRET pairs)

when the concentration is increased, and then adapt roughly to their pre-stimulus activ-

ity. When the concentration step is removed again cells respond by a jump in chemotactic

signalling activity, before adapting to their pre-stimulus activity (Fig. 2.1 B).

Dose-response curves summarise the initial response to attractant (Fig. 2.1 C). They

are obtained by extracting the minimum (added steps) and maximum response (removed

steps) from the response time course in Fig. 2.1 B, and plotting them as a function of the

size of concentration steps (Sourjik and Berg, 2002b).
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2.4 Dynamic Monod-Wyman-Changeux (MWC) model for chemo-

tactic signalling

In our model for chemotactic signalling, which we call dynamic MWC model, we take into

account the signalling of receptors in response to changes in concentration and receptor

methylation level, the dynamics of adaptation, and the kinetics of concentration changes

in the experiment. In this section, the components of the model are described in detail.

Model for chemoreceptors. Our starting point for modelling is the MWC model (de-

noted here by static MWC model), which has been successful in describing the chemotac-

tic signalling response of non-adapting cells (Sourjik and Berg, 2004; Mello and Tu, 2005;

Keymer et al., 2006; Endres and Wingreen, 2006; Endres et al., 2008). In the static MWC

model, we consider mixed receptor complexes composed of the two main receptor types

Tar (aspartate receptor) and Tsr (serine receptor, which also binds aspartate with lower

affinity) in their in vivo ratio. The activity of a two-state receptor complex is given by its

probability to be on, which depends on the free-energy difference F = Fon − Foff between

its on and off state (cf. Eq. 1.14; Keymer et al., 2006; Endres et al., 2008),

A(c,m) =
1

1 + eF (c,m)
. (2.2)

Note that we drop the ∆ in the notation for energy differences compared to the Introduction

for simplicity. The free-energy difference F (m, c) for a mixed receptor complex of Tar and

Tsr is given by

F (c,m) = N

[
ϵ(m) + νa ln

(
1 + c/Koff

a

1 + c/Kon
a

)
+ νs ln

(
1 + c/Koff

s

1 + c/Kon
s

)]
. (2.3)

The free-energy difference is determined by two contributions, one from methylation (in

terms of receptor methylation level m) favouring the on state, and one from attractant

binding at MeAsp concentration c favouring the off state. Similar free-energy based two-

state models were recently used to describe clustering of ion channels (Ursell et al., 2007)

and small GTPases in eukaryotic cells (Gurry et al., 2009). The parameters of this equation

are explained in the following in detail:

The parameter N is the number of receptor dimers per complex. It was determined

as follows: First, the receptor complex size was obtained for each ambient concentration
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using a least-squares fit to addition dose-response curves (cf. Fig. 2.2 A). Consistent with

previous modelling results, we find that the receptor complex size increases with increas-

ing ambient concentration (Mello and Tu, 2007; Endres et al., 2008). As the simplest

assumption, we used a linear relationship between receptor complex size and ambient

concentration (Fig. 2.2 A). This linear fit is given by N(c0)=a0 + a1c0 with a0=17.5

and a1=3.35mM−1. Note that the complex size for removal may be different for each

data point as cells are adapted to the increased concentration after each step change. Us-

ing the linear relationship allows us to interpolate the receptor complex size for removal

dose-response curves.

The free-energy contribution ϵ(m) is attributed to methylation, and was recently ex-

tracted from dose-response curves for mutants resembling fixed methylation states (Fig. 2.2 B;

Endres et al., 2008). We used the interpolating function

ϵ(m) = 1− 0.5 m. (2.4)

The indexes a and s denote Tar and Tsr receptor, respectively. We assumed fractions of

Tar and Tsr in a complex according to their wild-type ratio, νa :νs=1:1.4. The ligand

dissociation constants for MeAsp are Kon
a =0.5mM, Koff

a =0.02mM, Kon
s =106mM, and

Koff
s =100mM (Keymer et al., 2006). All energies are measured in units of kBT (kB being

the Boltzmann constant and T the absolute temperature).

Tar and Tsr receptor dimers have 8 major residues which can be reversibly methylated

(except for minor modification sites on Tsr which are methylated less strongly; cf. Intro-

duction). The adapted methylation level m∗ at ambient concentration c0 according to the

MWC model is given by

m∗ = 2− 2

[
F ∗

N(c0)
− νa ln

(
1 + c0/K

off
a

1 + c0/Kon
a

)
− νs ln

(
1 + c0/K

off
s

1 + c0/Kon
s

)]
, (2.5)

where the F ∗ indicates the adapted free energy difference, which is given by the adapted re-

ceptor complex activity according to F ∗ = ln(1/A∗−1). The adapted activity is A∗=1/2.9

for wild-type cells as assessed from the maximum and minimum values of the experimen-

tal dose-response data (described in the next section). The receptor complex size N(c0)

changes with ambient concentration as discussed above. The adapted receptor methyla-

tion level is shown in Fig. 2.3. As can be seen from the figure, the receptor methylation

level lies in the physiological range at ambient concentrations used in FRET experiments.
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Figure 2.2.: Model ingredients. (A) Size of adapted receptor complex N (total number of Tar
and Tsr receptors per complex) as function of ambient concentration c0 (corresponding to adapted
methylation level m). Individual complex sizes (symbols) were obtained by fitting the static MWC
model to dose-response curves for addition of MeAsp. These values were fitted by a linear func-
tion (line). (B) Energy contribution to receptor complex free energy from methylation level m per
receptor dimer. Shown are fitting parameters for Tar receptors from Endres et al. (2008) (sym-
bols), as well as linear fit ϵ(m)=1− 0.5m (in units of kBT with kB the Boltzmann constant and T
absolute temperature). (C) Profile of concentration step change as measured experimentally using
fluorescent marker (solid black line; Sourjik and Berg, 2002b), exponential fit used in dynamic
MWC model for WT1 MeAsp profile (grey line; rate constants λadd=0.6/s and λrem=0.5/s), and
perfect step change (black dashed line). Addition and removal times are marked by arrows. (C
Inset) Response of mixed receptor complex to MeAsp removal for perfect (black dashed line) and
exponentially fitted step change (grey line). FRET and receptor complex activities were normalised
by their adapted pre-stimulus values before addition of MeAsp.

Dynamics of ligand concentration and down-stream signalling. In experiments, changes

in MeAsp concentration are established over several seconds, due to the finite flow speed

and mixing effects in the flow chamber (Fig. 2.2 C). In our model, we assume exponentially

rising and falling concentration changes upon addition and removal in line with previous

measurements by Sourjik and Berg (2002b)2.

As shown in Appendix A, analysing the signalling pathway of E. coli we found that the

phosphorylation reactions are sufficiently fast to assume that concentrations of phospho-

rylated (and unphosphorylated) proteins are in quasi-steady state during concentration

step changes. Furthermore, the concentrations of activated proteins are approximately

proportional to the receptor complex activity. Both these conditions allow us to use the

receptor complex activity as a substitute for the down-stream activity measured by FRET,

reducing greatly the number of model parameters for fitting to data. This approximation

was also used in previous work, but was never explicitly tested (Endres and Wingreen,

2The time course of the ligand flow for an added and removed step follows respectively cadd(t) = c0+(1−
exp(−λaddt))∆c and crem(t) = c0+exp(−λremt)∆c. Exponential rate constants were obtained from fits
to ligand flow profiles (cf. Fig. 2.2 C), with λadd=0.6 s

−1 and λrem=0.5 s
−1 for flow speed 1000µl/min,

and λadd=0.27 s
−1 and λrem=0.28 s

−1 for flow speed 500µl/min.
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Figure 2.3.: Adapted receptor methylation level m∗ as a function of ambient concentration c0
according to the static MWC model (cf. Eq. 2.5).

2006; Keymer et al., 2006; Endres et al., 2008).

In contrast, adaptation occurs on a similar time scale as the kinetics of the MeAsp

concentration flow, and therefore needs to be modelled explicitly.

Model for precise adaptation. Adaptation is mediated by methylation and demethy-

lation enzymes CheR and CheB, respectively. We describe the kinetics of the average

receptor methylation level m in a receptor complex by

dm

dt
= gR(1−A)− gBA

3. (2.6)

The first term describes the rate of methylation and the second term the rate of demethy-

lation. The parameters gR and gB are the methylation and demethylation rate constants,

which incorporate the total concentrations of CheR and CheB in a cell, respectively. The

variable A is the receptor complex activity. Methylation and demethylation rates do not

depend directly on the concentration of MeAsp or the methylation level, only on the recep-

tor complex activity A. As discussed in the Introduction (Sec. 1.2.3), such dynamics leads

to precise adaptation of the receptor complex activity to adapted level A∗ for a constant

MeAsp stimulus (Barkai and Leibler, 1997; Endres and Wingreen, 2006).

We determined the demethylation rate for WT1 to be gB=0.11 s
−1 from a least-squares

fit to addition and removal dose-response curves (WT1) using the receptor complex size

N(c0) from the static MWC model. The methylation rate gR=0.0069 s−1 is given by the

condition that at steady state (dm/dt=0) the activity equals A∗ (Fig. 2.4-2.9). Alter-
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natively, least-square fitting the model to the data collapse (Fig. 2.11, 2.12) resulted in

gR=0.0019 s
−1 (and gB=0.030 s

−1). For WT2 (Fig. 2.12 A), we used the same methylation

rate constant as for WT1, but adjusted the demethylation rate constant to account for

the increased adapted activity A∗.

We assumed an adapted receptor complex activity A∗=1/2.9≈0.34 for WT1 as assessed

from the maximum and minimum values of the experimental dose-response data in Fig. 2.4.

Steady-state activities for WT2 and CheB mutant were estimated to be A∗≈1/2. For

comparison of model and data, we normalised the receptor-complex activity for WT1, WT2

and CheB mutant by their respective activities when adapted to ambient concentration.

The adapted receptor-complex activity A∗ is determined by the steady-state condition

dm/dt = 0 = gR(1 − A∗) − gBA
∗3. According to our model, receptors are methylated

when the complex is inactive, and demethylated when it is active. Furthermore, we pos-

tulate a very strong sensitivity of the demethylation rate on activity due to the intrinsic

receptor-activity dependence of the demethylation rate, as well as additional layers of

feedback regulation for demethylation by CheB, including the activation of demethylation

enzyme CheB by phosphorylation and potential cooperativity between phosphorylated

CheB molecules (see below and Appendix A, Eq. A.7). This mechanism leads to a strong

asymmetry, where adaptation of inactive receptors (methylation) is slow compared to the

rapid adaptation of active receptors (demethylation). This corresponds to experimental

time courses (cf. next section; Fig. 2.7). Note that the asymmetry between slow adaptation

of inactive and active receptors, respectively, cannot simply be achieved by adjusting the

rate constants of methylation and demethylation individually, since they are constrained

by the adapted activity A∗.

Although our adaptation model is independent of biochemical details, our predicted fast

demethylation at high activities may be due to cooperativity of two CheB-P molecules. Ac-

cording to in vitro experiments, CheB-P binding to the carboxyl-terminus of chemorecep-

tors induces an allosteric activation of the receptor, increasing the demethylation rate (Bar-

nakov et al., 2002). However, in contrast to CheR, CheB-P binds only weakly to the

tether (Barnakov et al., 2002). Reconciling these two observations, it is conceivable that

two CheB-P molecules are necessary for efficient demethylation at high activities: one

CheB-P molecule may bind to a tether to allosterically activate a group of receptors (as-

sistance neighbourhood), while another CheB-P molecule demethylates the receptors in

the neighbourhood. As two CheB-P molecules are not required to bind to the same recep-
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Figure 2.4.: Response of wild-type cells to step changes ∆c of MeAsp concentration at differ-
ent ambient concentrations. Dose-response curves: Symbols represent averaged response from
FRET data (WT1) after adaptation to ambient concentrations 0, 0.1, 0.5 and 2 mM as mea-
sured by Sourjik and Berg (2002b) (filled and open circles correspond to response to addition
and removal of attractant, respectively). Solid lines represent the dynamic MWC model of mixed
Tar/Tsr-receptor complexes including ligand rise (addition) and fall (removal), as well as adap-
tation (receptor methylation) dynamics. (Inset) Dose-response curves for MWC model without
adaptation dynamics (lines). FRET and receptor complex activities were normalised by adapted
pre-stimulus values at each ambient concentration. Squared errors between model and experimen-
tal data for the four dose-response curves shown are 0.64 (dynamic MWC model) and 3.95 (static
MWC model), respectively. For comparison, fitting to eight addition and removal dose-response
curves using Kon

a(s), K
off
a(s), as well as a linear function N(c0) as fitting parameters, yields squared

errors 0.83 (dynamic MWC model) and 2.09 (static MWC model).

tor, this mechanism is not contradicted by the small number of CheB molecules in a cell.

An alternative, simpler mechanism for cooperativity is dimerisation of CheB-P molecules,

which, however, has not been observed experimentally (Anand et al., 1998; Kentner and

Sourjik, 2009).

2.5 Comparison of experiment and theory

Dose-response curves. The dynamic MWC model, which includes the effects of adap-

tation and MeAsp flow, quantitatively describes the experimental dose-response curves

in Fig. 2.4 (additional, dose-response curves are provided in Appendix B). Specifically,

adaptation leads to a non-saturated response for large MeAsp step changes ∆c at high

ambient concentrations, which is not seen in the static MWC model without adaptation

dynamics (Fig. 2.4, Inset)3. This is due to adaptation reducing the initial response am-

3Note, however, that responses eventually do saturate according to the dynamic MWC model for even
larger concentration step changes due to the presence of Tsr receptors (at 0.5 mM ambient for ∆c >
40mM; not shown).
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Figure 2.5.: Changes in the free-energy difference δF = F−F ∗ of a mixed-receptor complex upon
concentration step changes ∆c of MeAsp (lines), where F ∗ is the adapted free-energy difference.
The curves correspond to ambient concentrations c0=0, 0.03, 0.1, 0.3, 0.5, 1, 2 and 5 mM with
free-energy differences for experimental concentration step changes indicated by symbols (filled
circles for addition, open circles for removal of MeAsp).
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Figure 2.6.: Residual absolute squared errors per addition (left panel) and removal (right panel)
dose-response curve for the static and dynamic MWC model as shown in Fig. 2.4 and B.1 A in
Appendix B. Note the different axis scales for addition and removal plots.

plitude of receptor complexes during a concentration step change, which is particularly

important for removal of concentration (cf. Fig. 2.2 C).

Figure 2.5 shows the free-energy change associated with each concentration step change.

For increasing ambient concentrations, the free-energy changes generally decrease at a fixed

concentration step change ∆c. This is the reason for the reduced response amplitudes in

the dynamic MWC model at large MeAsp step removals, because adaptation compensates

for smaller free-energy changes at increasing ambient concentrations.

The dynamic MWC model describes the dose-response data significantly better than the

static MWC model. Figure 2.6 quantifies the difference between measured dose-response

curves and the static, as well as the dynamic MWC model, respectively. We plot squared

errors for each addition and removal dose-response curve. While the error for the dy-
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Figure 2.7.: Typical time courses of receptor complex activity in response to two different MeAsp
concentration step changes, ∆c=0.05mM (top) and ∆c=0.4mM (bottom), at ambient concentra-
tion c0=0.1mM. Experimental FRET measurement (thin black line), as well as dynamic MWC
model for precise (grey lines) and imprecise adaptation (black lines; mmax=4.1 and K=0.5). FRET
and receptor complex activities were normalised by adapted pre-stimulus values before addition of
MeAsp.

namic MWC model is slightly larger for addition curves, its error for removal curves is

much smaller than that for the static MWC model. Hence, the dynamic MWC model is

suited better to describe the experimental data. Note also their overall squared errors are

indicated in the caption of Fig. 2.4.

Time courses. Figure 2.7 shows example time courses for two different concentration

steps (time points of addition and removal are indicated by arrows) from experiment and

our precise adaptation model. Our model describes well the asymmetry of the adaptation

dynamics for added and removed concentration step changes, the latter being much faster.

However, there are discrepancies in the long-term behaviour of adaptation to added steps;

namely, our model predicts precise adaptation and a faster dynamics than observed in

experiment. Also plotted in Fig. 2.7 are time courses for a model of imprecise adaptation,

which fits the experimental data better than the precise adaptation model. This model is

discussed in detail in the next section, (cf. Eq. 2.9).

2.6 Model predictions, verification and adjustments

2.6.1. Data collapse of time courses for adaptation dynamics

The short-term behaviour in the time-course data in Fig. 2.7 is essential in deriving our

adaptation model, used to quantitatively describe dose-response curves (Fig. 2.4). How

well does our adaptation model describe the long-term behaviour in the time-course data,
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Figure 2.8.: Effect of ligand concentration-dependent receptor complex size N(c) on the predicted
data collapse according to Eq. 2.7. Plotted are the predicted functions f(A) for N corresponding to
ambient concentration c = 0.1 mM (thick grey line), zero ambient (buffer; black dotted line), and
concentration upon small (∆c=0.03mM; red line) and large (∆c=2mM; blue line) concentration
changes.

and hence the complete adaptation dynamics? Our model for precise adaptation predicts

that the observable rate of activity change is given by

dA

dt
=

∂A

∂m

dm

dt
+

∂A

∂c

dc

dt
, (2.7)

where the rate of change of the methylation level dm/dt is described by Eq. 2.6, and dc/dt

is the rate of change of the MeAsp concentration. After a concentration step change, the

MeAsp concentration is constant with dc/dt=0, and the rate of activity change is given by

dA

dt
=

∂A

∂m

dm

dt
= A(1−A)

N

2

[
gR(1−A)− gBA

3
]
≡ f(A), (2.8)

where we used ∂A/∂m=(∂A/∂F )(∂F/∂m)=A(1−A)N/2. This expression depends on the

receptor complex size N , which we found from fitting the MWC model to dose-response

curves from FRET to increase with ambient concentration (Fig. 2.2 A).

Dependence of the data collapse on receptor complex size. As we do not have a model

which describes how receptor complex size changes in time in response to concentration

changes, we plot in Fig. 2.8 the data collapse for different N corresponding to the concen-

trations used in the experiments. This provides the envelope in which the data collapse

is expected to change with N . We find that the data collapse does not change very much

compared to the data collapse for ambient concentration c0. Hence, we neglect this minor

dependence on the receptor complex size on ligand concentration in the following, and
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Figure 2.9.: Adaptation dynamics as function of receptor activity for WT1 at ambient concen-
tration c0=0.1mM for addition and subsequent removal of small (red lines and symbols) and
large (blue lines and symbols) MeAsp concentration step changes, as well as removal of MeAsp
back to zero ambient concentration (buffer; green lines and symbols). (A) Rate of change of re-
ceptor complex activity dA/dt as occurs during adaptation. Thick grey line is the analytical result
from the dynamic MWC model, where activity change is purely from adaptation (methylation)
dA/dt=(dA/dm)(dm/dt)=f(A). coloured lines show results from simulated time series for small
(∆c=0.03mM) and large (∆c=0.4mM) concentration step changes in MeAsp concentration, with
activity dynamics recorded starting 10 s after the onset of concentration step change. Precise (solid
lines), as well as imprecise adaptation (dashed lines; mmax=4.1 and K=0.5) are considered. (A In-
set) Rate of FRET activity change from experimental time-course data. Small (∆c=0.03mM)
and large (∆c=2mM) concentration step changes. (B) Rate of change of the methylation level
dm/dt corresponding to panel A (normalised by adapted activity A∗ and C=N/2, where N is the
receptor complex size). Effective rate of change of methylation level for all time courses is obtained
by (dA/dt)/[A(1 − A)]. (B Inset) Effective rate of change of methylation level from experimen-
tal time-course data. FRET and receptor complex activities, as well as activity rate changes were
normalised by adapted pre-stimulus activities at ambient concentrations before addition of MeAsp.

the rate of activity change is a function f(A) of the activity only, independent of ligand

concentration and receptor methylation level.

Properties of predicted data collapse. This predicts a data collapse of all adaptation

time courses, independent of the duration, size and number of concentration step changes,

onto a single curve dA/dt=f(A) (Fig. 2.9 A, thick grey line).

This non-monotonous function of the activity has three fixed points: the adapted ac-

tivity A=A∗, where methylation and demethylation rates exactly balance each other, as

well as A=0 and A=1, where the receptor complex activity is saturated in the off and on

state, respectively. Figure 2.9 A, Inset shows the experimental rate of activity change as

extracted from our quantitative time-course data from FRET for different concentration

step changes at an ambient concentration. We observe that, in contrast to the prediction

of the model, the rate of activity change depends on the magnitude of the concentration

step changes. For addition of large concentration step changes (blue symbols), the rate
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is reduced and the activity stays below the pre-stimulus value. Furthermore, for total

removal of MeAsp concentration (replacement with buffer medium, green symbols), the

magnitude of the rate is reduced and the activity remains above the pre-stimulus value.

Ligand flow. To explain the deviations from the predicted data collapse, we consider

the effects of MeAsp flow and imprecise adaptation in our model. According to Eq. 2.7,

each of the two effects contribute independently to the rate of activity change. First, we

include the MeAsp flow for concentration step changes as described, and simulate time

courses based on the precise adaptation model (Fig. 2.9 A, solid lines). We find that in

the demethylation regime (negative rate of activity change), the kinetics of concentration

step removal gives rise to minor deviations from the curve f(A) in qualitative agreement

with experiment. However, in the methylation regime (positive rate of activity change),

unlike the experimental data, all time courses lie accurately on the f(A) curve.

Imprecise adaptation. Next, we consider imprecise adaptation, i.e. the incomplete re-

turn of the activity to pre-stimulus level, which is apparent in the time courses (Fig. 2.7).

In our model for imprecise adaptation, the kinetics of the methylation level dm/dt

depends explicitly on the receptor methylation level:

dm

dt
= gR

mmax −m

mmax −m+K
(1−A)− gB

m

m+K
A3. (2.9)

The parameter mmax is the maximum number of methylation sites per receptor, K is the

lower bound for the number of sites, which need to be available for efficient methylation or

demethylation. We use mmax=4.1 to only allow Tar (not Tsr) receptors to become methy-

lated (the total number of methylation sites of a receptor homodimer being 8). Further,

we use K=0.5 to implement reduced efficiency of methylation or demethylation at a low

number of available sites. Note that time courses for this imprecise adaptation model are

also shown in Fig. 2.7 (gR and gB are the same in both models). The imprecise adap-

tation model fits the time courses shown far better. However, there is a large variability

of imprecision seen in different data sets and more experiments are needed to produce a

general model of imprecise adaptation. This is quantified below in the next section.

Using the imprecise adaptation model leads to significant deviations from the data

collapse (Fig. 2.9 A, dashed lines). Adaptation after addition of increasing concentration

step changes results in a reduced adapted receptor complex activity (adapted activity
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after removal is always the same as the concentration is the ambient concentration). Total

removal of MeAsp concentration (buffer) results in an increased adapted activity. Our

imprecise adaptation model is in line with the experimental data, showing that the data

collapse is an effective way to compare experimental and theoretical time courses and to

quantify the effects of ligand flow and imprecise adaptation.

Kinetics of the receptor methylation level. In addition to the adaptation dynamics, the

data collapse allows us to determine the kinetics of the receptor methylation level, which is

difficult to measure directly. Figure 2.9 B shows the rate of change of the methylation level

as a function of the receptor complex activity for experimental data, as well as the dynamic

MWC model. The data and curves were obtained by dividing the rate of activity change

dA/dt following concentration step changes by A(1−A). If the activity change is caused

only by the adaptation dynamics, this procedure yields a function proportional to the rate

of change of the methylation level, dm/dt. According to our precise adaptation model

Eq. 2.6, the rate of change of the methylation level is a monotonically decreasing function of

activity with one steady state, marking the adapted receptor complex activity (Fig. 2.9 B,

thick grey line). Corresponding to the rate of activity change in Fig. 2.9 A, the kinetics

of ligand flow upon concentration step changes, as well as imprecise adaptation result in

deviations from this curve. As before, we mainly find signatures of imprecise adaptation

in the experimental data in Fig. 2.9 B, Inset.

2.6.2. Quantification of adaptation imprecision

In Fig. 2.10 we quantify the imprecision of adaptation. Cells were adapted to 100 µM

ambient concentration with adapted pre-stimulus activity A∗
pre measured by FRET. Con-

centration step changes of various sizes were added, and cells adapted to the new con-

centration with post-stimulus adapted activity A∗
post. We define a measure of imprecision

as

Imprecision =
A∗

post −A∗
pre

A∗
pre

. (2.10)

We find that adaptation is highly variable from experiment to experiment (high standard

deviation). However, cells are found to consistently adapt imprecisely at high concen-

trations. In the following sections, we assume small concentrations and, therefore, that

adaptation is precise.
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Figure 2.10.: Imprecision of adaptation. FRET time courses were measured for cells adapted
to c0 = 0.1 mM ambient concentration, and subject to various concentration step changes ∆c.
Levels of adapted FRET activity were determined before and after each added concentration step
change, and the imprecision was calculated as (A∗

post − A∗
pre)/A

∗
pre. Symbols correspond to mean

values of imprecision, and error bars indicate the standard mean error based on three replicates.
The star indicates statistically significant difference from zero with Student’s t-test p-value smaller
than 0.05. (Inset) Example FRET time course for ∆c=2 mM with adapted pre- and post-stimulus
activity indicated.

2.6.3. Comparison of different adaptation models

The data collapse of experimental time courses enables the efficient evaluation of different

adaptation models, including our model and other models from the literature (Fig. 2.11 A).

In all models considered here the rates of methylation and demethylation only depend on

the receptor complex activity. Hence, they show precise adaptation. The explicit activity

dependencies given respectively by the first and second term in the legend of Fig. 2.11.

For instance, the first model (solid red line) is given by Eq. 2.6. Two classes of models

are analysed here. The first class of models, including our model, is based on a linear

activity-dependence of the methylation and demethylation rates for binding of CheR and

CheB to inactive and active receptor, respectively. Feedback from the activity-dependent

phosphorylation of CheB is accounted for by additional factors of the receptor complex

activity. Our model includes cooperative CheB feedback (solid red line), while linear

CheB feedback (dashed red line) and no CheB feedback (dotted red line) are considered

as well (Endres and Wingreen, 2006; Hansen et al., 2008; Vladimirov et al., 2008; Kalinin

et al., 2009). Another class of models has been proposed, showing ultrasensitivity with

respect to CheR and CheB protein levels. In these models, the activity-dependence of the

methylation and demethylation rates for enzyme binding is described by Michaelis-Menten

kinetics, and linear CheB feedback (solid blue line) and no CheB feedback (dashed blue
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Figure 2.11.: Comparison of different adaptation models. (A) Rate of activity change during
adaptation as a function of activity for FRET data (WT1; symbols) and different adaptation
models (coloured lines). Experimental FRET activity change is measured at ambient concentration
c0=0.1mM for added and subsequently removed concentration step changes ∆c=0.03, 0.05, 0.1,
0.4 and 2 mM. For the five models, the dependencies of the methylation and demethylation rates
on the receptor complex activity A are given in the legend and are explained in the text. Models
were fitted to the experimental dA/dt data using a least-squares fit, where the methylation rate
constant gR was the only fitting parameter. The demethylation rate gB was determined to produce
the adapted activity A∗≈1/3. The parameters K1 and K2 were converted from Emonet and Cluzel
(2008). (B) Representative time courses for the different models in panel A for a concentration
step change ∆c=0.1mM at ambient concentration c0 =0.1mM. FRET and receptor complex
activities, as well as activity rate changes were normalised by adapted pre-stimulus activities at
ambient concentrations before addition of MeAsp. Least-squares errors between experimental
data and model in panel A are 0.0021 [1 − A,A3], 0.0022 [1 − A,A2], 0.0025 [1 − A,A], 0.0025
[(1−A)/(1−A+K1), A

2/(A+K2)], and 0.0036 [(1−A)/(1−A+K1), A/(A+K2)].

line) is considered (Emonet and Cluzel, 2008). The last model has the property that the

rate of change of methylation level becomes independent of activity around the steady-

state, leading to extremely long adaptation times. Details of the alternative adaptation

models and the fitting procedure are given in Appendix E. While several models are

consistent with the experimental data, our model compares most favourably. The ul-

trasensitive Michaelis-Menten model without CheB feedback seems not to be consistent

with the data. Comparing simulated time courses for the different adaptation models

in Fig. 2.11 B, our model is best to capture the experimentally observed asymmetry be-

tween adaptation to addition and removal of concentration step changes. The quality of

fit between the respective models and data is indicated by their least-squares errors in the

caption of Fig. 2.11.

2.6.4. Demethylation dynamics

To further validate our adaptation model, we experimentally tested two predictions about

how changing the demethylation rate affects the adaptation dynamics. First, in our
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Figure 2.12.: Effects of (A) steady-state activity and (C) CheB regulation by phosphorylation.
(A) Black and orange dots correspond to the rate of FRET activity change from experimental time-
course data for WT1 (Fig. 2.11) and for WT2 (addition and subsequent removal of concentration
step change ∆c= 0.03mM at zero ambient concentration), respectively. Red lines correspond
to the predicted rate of activity change dA/dt=f(A) purely from adaptation (solid and dashed
lines correspond to steady-state activities A∗ ≈ 1/3 and 1/2, respectively). The methylation rate
constant gR=0.0019 s

−1 is the same in each case, whereas the demethylation rate constant gB was
adjusted to yield the adapted activity. Dotted lines indicate bins used to quantify the difference
between data sets in panel B. (B) Distribution of squared errors (χ2) between predicted rate of
activity change and experimental data sets for WT1 and WT2, when randomly permuting 104

pairs of data points between the data sets, one pair chosen within each bin in panel A. The error
is calculated as the sum of errors for each data set (including the permuted data points) against
its respective model. The error of the unpermuted data sets is indicated by the arrow. (C) Green
squares represent the rate of FRET activity change from experimental time-course data for CheB
mutant (addition and subsequent removal of concentration step changes ∆c=0.03mM and 0.1 mM
at zero ambient concentration). Orange dots and red dashed line are the same as in panel A.
The green line represents the rate of change of receptor complex activity for CheB mutant purely
from adaptation. The methylation rate gR(1−A) of the mutant is the same as for wild-type cells,
whereas the demethylation rate is g̃BA. The rate constant g̃B was adjusted to yield the same
adapted activity as in wild-type cells. Dotted lines indicate bins used to quantify the difference
between data sets in panel D. (D, left) Distribution of data points of the rate of activity change for
activities above A=1.1 WT2 and CheB mutant data in panel C. (D, right) Distribution of squared
errors between predicted rate of activity change and experimental data sets for WT2 and CheB
mutant, when randomly permuting 104 pairs of data points between the data sets, one pair chosen
within each bin in panel C. The error is calculated as the sum of errors for each data set (including
the permuted data points) against its respective model. The error of the unpermuted data sets is
indicated by the arrow.
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precise-adaptation model the data collapse depends strongly on the steady-state activ-

ity. For instance, increasing the steady-state activity from A∗≈1/3 to 1/2 changes the

data collapse from the solid to the dashed red line in Fig. 2.12 A. Such an increase in the

steady-state activity can be achieved by decreasing CheB expression level, correspond-

ing to a decreasing demethylation rate constant, at constant CheR expression level. To

validate this prediction, a different wild-type strain (WT2) was created, in which CheB

expression was induced from a plasmid, while all other chemotaxis proteins were expressed

as before (WT1). The steady-state activity was estimated to be A∗≈1/2 (compared to 1/3

in WT1). The data collapse (Fig. 2.12 A, orange circles) corresponds well to the predicted

curve (dashed red line).

Second, considering adaptation without feedback through activity-dependent CheB phos-

phorylation, while keeping the steady-state activity constant (Fig. 2.12 C, green line), leads

to the following dynamics:
dm

dt
= gR(1−A)− g̃BA, (2.11)

where the activity-dependence of the demethylation rate is diminished. We assume that

the methylation rate is the same as for wild-type cells. This prediction can be tested

using a mutant strain, which contains non-regulatable CheB with about 10 percent of

CheB-P activity. The CheB expression level was increased to produce the kinase activity

of WT2 (A∗≈ 1/2). All other chemotaxis proteins are expressed as in WT2 cells. In

Eq. 2.11 these conditions translate into the demethylation rate constant being g̃B=gBA
∗2=

gB/4, which incorporates the basal activity of non-phosphorylatable CheB, and the only

dependence of the demethylation rate on receptor complex activity is due to binding of

CheB to active receptors. We find that the experimental rate of FRET-activity change

from time-course data (Fig. 2.12 C, green squares) is consistent with our prediction. Hence,

for both predictions our model fits experimental data for the rate of activity change by

adjusting only one parameter in the receptor demethylation dynamics.

The statistical significance for each of the two predictions (Fig. 2.12 A and C) was tested

as follows: For each prediction, we randomly permuted a number of data points from the

control experiment and the prediction-testing experiment. Then we calculated the distri-

bution of squared errors between the rates of activity change from the model and FRET

measurement for the permuted data sets (Fig. 2.12 B and D). For four permuted pairs of

data points the error is always above the error for the unpermuted data sets (Fig. 2.12).

For fewer permutations the error lies at the lower bound of the distribution (not shown).
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This confirms that the control and prediction-testing data sets are significantly different

and match our model.

2.7 Discussion

Sensing and adaptation are fundamental biological processes, enabling cells to respond

and adjust to their external environment. Adaptation extends the range of stimuli a sen-

sory pathway can respond to, while its dynamics determines how long a stimulus will

affect the cell’s behaviour. In this chapter, we developed a model to quantitatively de-

scribe experimental dose-response curves, as well as time courses of chemotaxis signalling

in adapting wild-type cells. Our model includes (i) the signalling activity of two-state

mixed chemoreceptor complexes in response to added or removed attractant concentra-

tion step changes based on the Monod-Wyman-Changeux model, (ii) the kinetics of the

ligand concentration in the flow chamber, and (iii) a detailed mechanism for adaptation,

including multiple layers of feedback regulation and imprecise adaptation. In particular,

we find that the finite ligand flow speed and fast, activated demethylation explains for

the first time the gradually reduced amplitudes in removal dose-response curves for in-

creasing ambient concentrations (Fig. 2.4). Our adaptation model introduces a strong

receptor-activity dependence of the demethylation rate, and hence is able to reproduce

the observed asymmetry of slow adaptation to addition of attractant and fast adaptation

to removal of attractant (Fig. 2.2 C). Such dynamics yields long runs up the gradient

and short tumbles, sufficient for random reorientation of the cell and escape from po-

tential toxins. Furthermore, this strong activity dependence has the additional benefit

of reducing the fluctuations in receptor methylation level introduced by the adaptation

mechanism itself. We found for the total variance of the receptor-complex methylation

level ⟨δM2⟩=0.87 compared to 2 for a previous model for precise adaptation with weaker

activity dependence (details of the calculation can be found in Appendix F). This is

because a fluctuation in the receptor methylation level leads to an increased change in

activity and hence increased rate to return to the adapted activity.

Our model for precise adaptation predicts the data collapse of adaptation time-courses,

allowing the convenient study of the adaptation dynamics (Fig. 2.9 A). Specifically, the

data collapse allows to evaluate the effects of ligand flow and adaptation dynamics, as well

as imprecise adaptation. We found that adaptation to large concentration step changes is

significantly imprecise (Fig. 2.10). We also extracted the kinetics of the receptor methyla-
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tion level dm/dt from experimental time courses from the data collapse (Fig. 2.9 B), which

is difficult to measure directly when relying on the quantification of the receptor methy-

lation level using standard biochemical methods (Lai and Hazelbauer, 2005; Chalah and

Weis, 2005). According to our model, the activity dependence of the receptor methylation

level is a monotonously decreasing function of the receptor complex activity. Ultimately,

this kinetics determines the compromise between long memory of previous concentrations

and quick recovery for sensing new concentration changes (Clark and Grant, 2005). Fur-

thermore, we experimentally tested two predictions to validate our adaptation model. We

analysed the effect on the adaptation dynamics when changing the adapted receptor activ-

ity, as well as introducing a non-regulatable CheB mutant to remove the negative feedback

from phosphorylation of CheB by the kinase CheA. In both cases, our model is consistent

with experimental measurements (Fig. 2.12), supporting the finding of multiple layers of

feedback regulation in adaptation.

While the MWC model is relatively well established (Sourjik and Berg, 2004; Mello and

Tu, 2005; Keymer et al., 2006; Endres and Wingreen, 2006; Endres et al., 2008), we also

considered alternative models for receptor signalling. These include a phase-separation

model with mixed complexes separating into homogeneous complexes of Tar and Tsr

at high ambient concentrations, as well as a lattice model with finite coupling between

neighbouring receptors (Appendix C). Lattice models were previously suggested by Duke

and Bray (1999) and Mello and Tu (2003b), including a lattice formed by coupled CheA

molecules considered by Goldman et al. (2009), but were found to be inconsistent with

FRET data by Skoge et al. (2006). We found that the dynamic MWC model describes

dose-response curves far better than the alternative receptor signalling models investigated,

particularly the reduced response amplitudes upon removal of attractant. Furthermore,

the data collapse we introduced in this paper enabled us to compare different adaptation

models proposed in the literature with FRET time-course data (Fig. 2.11). We found that

while several models are consistent with the data, our model compared most favourably

with the data.

We chose a simple model for adaptation with very few fitting parameters to explain

the observed asymmetry in adaptation time-courses, i.e. slow adaptation to addition

and fast adaptation to removal of attractant. Compared to the static MWC model,

there are minor discrepancies between our model and experimental addition dose-response

curves (Fig. 2.4). However, these can be rectified by refitting the dynamic MWC model
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by adjusting adaptation rates and receptor complex size simultaneously (Appendix B),

or by choosing an adaptation model with a more complex activity dependence. It should

also be noted that adaptation rates needed to accurately describe dose-response curves are

larger than those found when fitting the adaptation dynamics to the data collapse. This

discrepancy may in part be due to using only a single set of experimental data for the

data collapse, while dose-response curves were averaged over at least three sets. In addi-

tion, more complex processes not taken into account in our simple adaptation model, e.g.

limited supply of substrate (methionine) for methylation, or the binding and unbinding

kinetics of ligand, may be important for describing the dynamics.

Our adaptation model likely also applies to attractants other than MeAsp, since the

dynamics of adaptation only depends on the activity of receptor complexes, independent

of the details of external ligand concentration. According to the MWC model, different

attractants (or their mixture) are integrated at the level of the free-energy of a receptor

complex, which determines its activity. However, the imprecision of adaptation we found

in FRET time courses at large MeAsp concentrations is in contrast to earlier experiments,

which showed that the frequency of tumbling adapts precisely to aspartate, but not ser-

ine (Berg and Brown, 1972; Alon et al., 1999). The imprecision in adaptation to serine is

readily explained if the number of Tsr receptors is larger than the number of Tar receptors

per complex, since the available receptor methylation sites in a complex are more quickly

used up in response to serine binding to Tsr receptors (Endres and Wingreen, 2006; Hansen

et al., 2008). However, the ratio of Tar and Tsr per complex is strongly dependent on the

growth conditions, making a definitive conclusion difficult (Kalinin et al., 2010). Future

experiments may show if the imprecision observed in adaptation to MeAsp in FRET is

reflected also in the tumbling frequency, or if imprecise adaptation is compensated for in

order to yield perfect adaptation at the behavioural level.
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3. Weber’s law

3.1 Synopsis

Weber’s law of sensation describes the relationship between the physical magnitude of a

stimulus and its perceived intensity. This phenomenological law applies well to many sen-

sory systems, including human vision and sound perception, suggesting a general design

principle. However, how the law emerges from signalling pathways and molecular compo-

nents is not understood. In this chapter, we consider the well-characterised sensory system

of Escherichia coli chemotaxis to understand the molecular origin, limits, and biological

significance of Weber’s law in this system. We combine in vivo FRET data with our model

for signalling and adaptation of cooperative two-state receptor complexes. We find an an-

alytical expression for Weber’s law in terms of physically intuitive parameters, such as the

number of receptors per complex and ligand dissociation constants, and quantify the law’s

limits due to noise. Perception in chemotaxis is identified as the free-energy difference

between the two signalling states of a receptor complex. Comparing perception of differ-

ent concentration gradients suggests that Weber’s law might be important for survival in

dense competitive microbial communities.

3.2 Motivation & open questions

Sensory systems enable organisms to gain information about their environment by re-

sponding to external stimuli, such as mechanical, chemical, thermal or electromagnetic

cues. However diverse these detected stimuli are, sensory systems share common design

principles (Martin, 2000). An often cited example is Weber’s law, which describes the rela-

tionship between the physical magnitude of a stimulus and its perceived intensity (Johnson

et al., 2002). Specifically, the law states that the smallest noticeable difference ∆S (thresh-

old stimulus) between a stimulus and the background stimulus S0 increases directly pro-
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portional to S0,

∆S = K · S0, (3.1)

where K is the constant Weber fraction (Johnson et al., 2002). The ratio of threshold

stimulus and background stimulus remains therefore constant,

∆S

S0
= const., (3.2)

representing coding of contrast, i.e. stimuli relative to the background. For instance,

the human eye copes with 8 orders of magnitude of brightness from low light during

a moonless night to bright daylight (Olshausen and Field, 2000; Dunn and Rieke, 2006).

However, to distinguish objects from their background the visual system efficiently exploits

the statistical similarity of light intensities in natural scenes, with the relative difference

between light reflected from the object compared to the background being largely invariant

under different illumination (Laughlin, 1987, 1989; Olshausen and Field, 2000). In its

integrated form, Weber’s law predicts an internal representation of the stimulus in the

sensory system, the perception R. This scale of perceived stimulus magnitude is postulated

to increase logarithmically with the stimulus S,

R ∼ lnS. (3.3)

This relationship, known as the Weber-Fechner law (Johnson et al., 2002), results in a

logarithmic stimulus compression and hence a large dynamic range, found, e.g., in the

visual and auditory system (Dunn and Rieke, 2006) and in the neural representation of

numbers (Dehaene, 2003).

While Weber’s law applies to many sensory systems, an explanation at the molecular

level is difficult due to the complexity of the underlying molecular and neural processes.

In higher organisms, Weber’s law is best documented in the insect and vertebrate visual

system, where multiple sensory adaptation mechanisms adjust the receptor sensitivity to

ambient light levels. In the insect compound eye, receptor cells remain sensitive to light

over a wide range of intensities due to adaptation, as voltage-dependent potassium chan-

nels repolarise the cell and restrict the response amplitude at higher light intensities for

stimulus compression (Laughlin, 1989). In addition, further optical, cellular and neural

adaptation mechanisms have been described, among them pigment migration, reduction of
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response latency in the transduction process, and transient activation of synaptic transmit-

ter. Phototransduction in the vertebrate eye involves even up to nine different mechanisms

for adaptation (Pugh Jr et al., 1999). Activation of the photopigment following photon

absorption leads to a drop in the concentration of second messenger cGMP and closure of

cGMP-gated ion channels, hyperpolarising the cell. The decline in the intracellular calcium

concentration associated with closed ion channels activates the production of cGMP and

increases the binding affinity of cGMP to channels. This shifts the maximal sensitivity of

the response to higher light levels and leads to adaptation. The compression of response

amplitudes with increasing brightness is believed to be due to the calcium-dependent

shortening of the lifetime of activated photopigment or cGMP, and the bleaching of pho-

topigment. Several models have been developed to describe the complicated biochemical

processes, but mostly speculate about the emergence of Weber’s law (Dawis, 1991; Tamura

et al., 1991; van Hateren and Snippe, 2007).

Compared to the complexity of the visual system, the chemotaxis system in Escherichia

coli is relatively simple and well-characterised. Weber’s law in this system was first studied

using micropipette assays by Mesibov et al. (1973). In their work, bacteria accumulation

was monitored in capillaries filled with an attractant (or repellent) of concentration dif-

ferent from the surrounding solution, which is a measure of the response to concentration

gradients. It was found that bacteria show a response of similar magnitude for similar

fractional concentration differences. Furthermore, there is a threshold of concentration

below which bacteria do not accumulate significantly. This threshold is different for dif-

ferent receptors. The authors speculate that Weber’s law may be observed for some

attractants. Quantitative measurements and mathematical modelling were done recently

by Kalinin et al. (2009), where swimming bacteria were tracked in linear concentration

gradients. The authors found that bacteria drift velocity depends on the gradient of the

logarithm of the concentration, termed logarithmic tracking. Recently, the topic has also

attracted renewed theoretical interest. Tu et al. (2008) developed a model for chemotaxis

signalling based on data from Block et al. (1983), who studied single-cell responses to

time-dependent concentration signals at the level of the rotary motor. In particular, Tu

et al. (2008) discuss logarithmic tracking by bacteria, i.e. that bacteria respond to the

temporal gradient of the logarithm of the concentration rather than the gradient of the

concentration itself. Logarithmic tracking in turn results in Weber’s law, as a change

in response is proportional to the fractional change in concentration. They discuss how
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Figure 3.1.: Illustration of the method to determine the threshold stimulus ∆ct. A dose-response
curve is shown (thick solid black line), as well as the adapted activity A∗ and the threshold activities
A∗±∆A for removal (upper curve) and addition (lower curve) of concentration step changes. The
threshold stimulus ∆ct corresponds to the concentration change ∆c where the activity reaches the
threshold activity (intersection of dose-response curves with activity thresholds). We use a linear
interpolation between closest data points above and below the threshold activities to calculate ∆ct.

Weber’s law emerges due to precise adaptation and receptors responding to the logarithm

of the concentration. Furthermore, they state another condition necessary for logarithmic

tracking, namely the logarithmic mapping between the concentration and the methylation

level of adapted receptors.

While the molecular origin of Weber’s law has been discussed by Tu et al. (2008), its

limits due to noise in the signalling pathway are unexplored. Furthermore, it is not known

what constitutes the perception in chemotaxis. Finally, the physiological microenviron-

ment in the mammalian intestines which E. coli encounters is not well characterised. In

this chapter, we comprehensively investigate Weber’s law using the FRET data and our

detailed model for receptor signalling and adaptation from chapter 2. We use Weber’s law

to predict typical gradients the bacterium may have evolved to detect.

3.3 Weber’s law in chemotactic signalling

Weber’s law states that the threshold stimulus, i.e. the smallest noticeable difference

in stimulus, grows linearly with background stimulus. We use the FRET dose-response

curves and the dynamic MWC model with fitted parameters in Fig. 2.4 to extract the

threshold stimulus for different background concentrations. The procedure is exemplified

in Fig. 3.1: we devise the threshold stimulus ∆ct to be the concentration increment which

produces the activity response ∆A relative to the adapted level A∗. According to the
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Figure 3.2.: Weber’s law in the chemotaxis sensory system. (A) Threshold stimulus ∆ct of
MeAsp to achieve a given response threshold ∆A=0.08A∗ (change in receptor complex activity),
where A∗ is the adapted activity, plotted as function of ambient concentration c0. Experimental
data points (symbols) were obtained from FRET dose-response curves by linear interpolation be-
tween measurement points close to threshold activity. Thick lines represent MWC model including
ligand and adaptation dynamics. Solid and dashed lines are for addition or removal stimuli, respec-
tively. Threshold stimulus ∆ct calculated from a linear expansion around the steady state receptor
complex activity (static MWC model) and a linear fit of the experimental data points (dotted line)
are shown as well. (A Inset) Experimental data points (symbols) and linear fits (dotted lines) are
plotted on a linear scale for two different response thresholds. Threshold 1: ∆A=0.08 A∗ (circles),
threshold 2: ∆A=0.16 A∗ (squares). Filled and open symbols represent addition and removal of
MeAsp, respectively. Slopes of linear fits are 0.054 (threshold 1) and 0.115 (threshold 2).

MWC model, the signalling activity of cooperative receptor complexes of N receptors is

given by Eq. 2.2,

A(c,m) =
1

1 + eF (c,m)
(3.4)

with the free-energy difference Eq. 2.3,

F (c,m) = N

[
ϵ(m) + νa ln

(
1 + c/Koff

a

1 + c/Kon
a

)
+ νs ln

(
1 + c/Koff

s

1 + c/Kon
s

)]
. (3.5)

We find from experimental dose-response curves, as well as our modelling that the chemo-

tactic sensory system implements Weber’s law in a range of concentrations (Fig. 3.2).

Analysing the MWC model reveals that this range corresponds to the working range of

the Tar receptor, i.e. between the ligand dissociation constants of the off and on states

Koff
a and Kon

a . To obtain an analytical formula for the threshold stimulus, we expand the

receptor complex activity up to linear order about the steady state activity A∗ (Endres

and Wingreen, 2006)

∆A =
∂A

∂F

∣∣∣∣∣
F ∗

· ∂F

∂ ln c

∣∣∣∣∣
c0

· ∆ct
c0

= α · k · ∆ct
c0

, (3.6)
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where F ∗ is the free-energy difference corresponding to A∗, α = ∂A/∂F |F ∗ = A∗(A∗ − 1)

and k = ∂F/∂ ln c|c0 = νaN [c0/(c0 + Koff
a ) − c0/(c0 + Kon

a )] ≈ νaN for Koff
a <<c<<Kon

a ,

neglecting MeAsp binding to Tsr for simplicity. This results in Weber’s law (Tu et al.,

2008)

∆ct = K · c0 (3.7)

where K = ∆A/(αk) is the constant Weber fraction in chemotaxis, which depends on

the particular threshold activity ∆A. For the thresholds ∆A=0.08 A∗ and ∆A=0.16 A∗

used in Fig. 3.2 the Weber fractions are 5.4 and 11.5 percent, respectively. We find, that

for background concentrations below Koff
a , Weber’s law breaks down and the threshold

stimulus approaches a constant,

∆ct = ∆A ·Koff
a Kon

a /[νaNA∗(1−A∗)(Koff
a −Kon

a )]. (3.8)

At concentrations aboveKon
a , Tar receptors become saturated. In this concentration range,

Weber’s law is maintained due to growing receptor complex size1. At high concentrations

around 10 mM, Weber’s law breaks down as MeAsp binding to Tsr becomes important.

For the complete formula of the threshold stimulus including MeAsp binding to Tsr used

in Fig. 3.2 A (thin solid line), see Appendix G.

3.4 Threshold stimulus

For convenience, we picked a value for the activity threshold ∆A in the linear regime of the

dose-response curves where we had experimental data points for the signalling response

from FRET. In principle, the threshold ∆A arises from the internal noise level of the

signalling system. We estimated the noise in the activity from all chemoreceptors in a cell,

considering fluctuations in ligand concentration and receptor methylation level. Details of

the calculation are shown in Appendix H. Briefly, we calculate the fluctuations in activity

of an individual complex δA according to

δA =
∂A

∂M
δM +

∂A

∂c
δc, (3.9)

1Note that we found the receptor complex size to increase roughly linearly, cf. the discussion of Eq. 2.3
in chapter 2.
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where M is the total methylation level of all receptors in a complex. We can calculate

the fluctuations in methylation level assuming that NR CheR and NB CheB-P molecules

modify receptors in the complex independently and with a constant average rate. Slow

fluctuations in ligand concentration are translated into fluctuations in activity, and hence

are compensated for by the negative feedback of adaptation. For the final result we

neglect these (negative) correlations. The variance of fluctuations in ligand concentration

⟨δc2⟩ has been calculated by numerous researchers (Berg and Purcell, 1977; Bialek and

Setayeshgar, 2005, 2008; Endres and Wingreen, 2008). The total variance of the activity

of all receptors results from the sum over all receptor complexes. We assume fluctuations

at different complexes are uncorrelated. We obtain a response threshold ∆A of about 2

percent of the adapted activity. This is a lower bound for the activity threshold as it was

derived by only considering fluctuations from stochastic methylation and demethylation

events, as well as ligand binding events. Other sources of noise, e.g. from stochastic

phosphorylation and dephosphorylation events, are likely to further increase the threshold

response. In Fig. 3.2 we used a response threshold of ∆A = 0.08 and 0.16, respectively.

3.5 Perception

The Weber-Fechner law predicts the internal representation of the stimulus, the percep-

tion R, to obey R ∼ ln c. This results from the postulate that the threshold stimulus for a

particular background stimulus corresponds to an increment ∆R in the internal represen-

tation of the stimulus in the sensory system. This increment is a function of the fractional

change in stimulus ∆c/c. Hence, integrating ∆R = K̃∆c/c, where K̃ is a constant, yields

R ∼ ln c.

Equation 3.6 cannot be integrated to obtain the perception with its logarithmic depen-

dence, since ∂A/∂F depends implicitly on the attractant concentration. Instead, inte-

grating δF = k · δc/c results in the perception given by the receptor complex free-energy

difference

F ≈ N ·
[
ϵ(m) + νa ln

(
c

Koff
a

)]
, (3.10)

valid for concentrations Koff
a <<c<<Kon

a . (The general, exact formula for the free-energy

difference is given by Eq. 2.3.) As shown in Fig. 3.3 the perception R depends on the

receptor methylation level m. At constant ambient concentration, adaptation leads to

the perception R = F ∗, corresponding to adapted activity A∗ and a unique methylation
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Figure 3.3.: Perception R, represented by receptor complex free-energy difference F , depends on
ligand concentration c and methylation level m. Adapted perception is given by the steady-state
free-energy difference F ∗ (dashed line). Three example curves corresponding to three different
methylation levels are plotted. On each curve, the adapted perception R=F ∗ is indicated (solid
circle) relating adapted methylation level to the respective ambient concentration (dotted lines).

level. Sudden concentration changes move the perception along the curve for a specific

methylation level, whereas adaptation shifts the perception vertically.

3.6 Predicting typical gradients

To identify the typical gradients bacteria may experience in their environment, we com-

pare how moving bacteria perceive different gradients. We predict that spatial gradients

which can be perceived over a range of concentrations, i.e. in which the perception does

not diminish due to adaptation, nor saturate, may be the typical gradients the sensory

system has evolved to detect. We consider a number of spatial gradients which arise from

diffusion processes. Free diffusion of a fixed number of ligand molecules deposited at a

point produces a Gaussian gradient (Berg, 1993; Vladimirov et al., 2008). Diffusion from

a point source expelling particles at a constant rate results in a hyperbolic gradient (Berg,

1993). Diffusion between points of constant-rate production and absorption produces a

linear gradient (van Haastert and Postma, 2007; Vladimirov et al., 2008). Finally, diffu-

sion from a constant source and homogeneous degradation in the medium results in an

exponential gradient (Ibanes and Belmonte, 2008). Figure 3.4 shows these different spatial

concentration gradients, where we have kept the value of the concentration the same at

two points in space to make the gradients comparable.

We consider one-dimensional migration of bacteria with constant velocity vs=20 µm s−1.

Therefore, we can translate the spatial gradient into a temporal gradient easily. We ap-

proximate the free-energy difference by its logarithmic form Eq. 3.10, which is valid for the
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Figure 3.4.: Different spatial concentration profiles with equal concentrations at distances x=0
and x=3 mm. (Inset) Perception along a straight swimming path in the respective concentration
profile for swimming velocity vs=20 µm s−1 and free-energy difference F (m, c) = ϵ(m)+ln(c/Koff

a )
(in units of kBT ).

range of concentrations where Weber’s law applies, i.e. Koff
a <<c<<Kon

a . We find an expo-

nential gradient is perceived as constant. In contrast, the perception in the other gradients

either attenuates by sensory adaptation to the pre-stimulus steady-state value (Gaussian

and linear gradients), or increases, eventually saturating the response (hyperbolic gradient)

along the swimming path (Fig. 3.4, Inset). This indicates that exponential concentration

gradients may commonly occur in the environments where bacteria are chemotactic, ac-

cording to our hypothesis that the E. coli chemotaxis pathway has evolved to maintain

perception over a range of concentrations of gradients, which are typically encountered.

3.7 Discussion

Sensory systems are optimised for the stimuli they typically encounter (Laughlin, 1987).

Weber’s law, which is found in many sensory systems, represents coding of contrast, i.e.

sensing the relative change of stimulus rather than absolute magnitude. To investigate

Weber’s law in E. coli, in particular its molecular origin, limits, and biological significance,

we use in vivo FRET data and our model of the chemotaxis sensory system, which includes

the signalling activity of two-state mixed chemoreceptor complexes in response to added

or removed attractant concentration step changes based on the Monod-Wyman-Changeux

model, the ligand dynamics, and a detailed mechanism for adaptation, including multiple

layers of feedback regulation (cf. chapter 2).

Phenomenological laws such as Weber’s law are difficult to understand at a molecular

level in complex sensory systems. We identified that the free-energy difference between
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the on and off states of a receptor complex has the role of the perception in the Weber-

Fechner law. The perception is a logarithmic function of the concentration in the validity

range of Weber’s law, hence leading to a compressed internal representation of the phys-

ical stimulus magnitude. Weber’s law, contrast coding, and adaptation are related as

follows: Adaptation to attractant by receptor methylation and demethylation adjusts the

absolute sensitivity of the receptor complex activity by shifting the dose-response curve

such that its slope is steepest at the new attractant concentration. The steepness of the

dose-response curve, i.e. the relative sensitivity, is determined by Weber’s law, i.e. con-

stant ∆c/c0 (Eq. 3.7). This property in turn reflects coding of contrast. The resulting

logarithmic dependence of the perception on attractant concentration is ultimately due

to the competition between the gain of binding free-energy and loss of ligand volume en-

tropy upon ligand-receptor binding (Keymer et al., 2006), and is in general a property of

chemical and electro-chemical potentials (Nernst equation). For a detailed discussion in

fly vision, see Laughlin (1989).

We find that Weber’s law applies in the range of concentrations where the designated

receptor type Tar is sensitive to the attractant MeAsp and extends to higher concentra-

tions (Fig. 3.2). Weber’s law breaks down at concentrations below the ligand dissociation

constant of the receptor off state. In this regime, the threshold stimulus approaches a

constant. The response threshold is determined by random fluctuations (noise) of the

receptor complex activity. We estimated the activity noise from random receptor methy-

lation and demethylation (Endres and Wingreen, 2006; Hansen et al., 2008), as well as

ligand-receptor binding events (Berg and Purcell, 1977). As a result, the standard de-

viation of the activity is about 2 percent of the adapted activity in a cell. Other noise

sources are likely to further increase the noise level. Any stimulus must therefore produce

a response significantly above the level of noise in the sensory system for the cell to notice

the difference with certainty (Gregory, 1998; Bialek, 1987). For convenience, we chose a

response threshold ∆A in the linear regime slightly above this estimate. At ambient con-

centrations above the ligand dissociation constant of the receptor on state, Tar receptors

become saturated. However, Weber’s law remains valid for about an additional order of

magnitude because the receptor complex size increases, amplifying the response. Weber’s

law finally breaks down at even higher concentrations, but cells remain somewhat sensitive

due to unspecific binding of MeAsp to Tsr receptors (Endres and Wingreen, 2006).

In the large intestine, hundreds of different bacterial species are present at high cell den-
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sities (Poulsen et al., 1994), forming a dynamic microenvironment with complex spatio-

temporal chemical gradients from partially digested food and host secretions (Mitchell and

Kogure, 2006). Although the exact role of chemotaxis for non-pathogenic strains of E. coli

in the intestines is unknown, it is conceivable that chemotaxis provides a selective advan-

tage enabling cells to remain in their niche despite a highly dynamic turnover of mucosal

surfaces and peristalsis in the gut, particularly in competition for nutrients (Kennedy,

1987; Hao and Lee, 2004; Rawls et al., 2007; Gauger et al., 2007). Alternatively, it might

have advantages for the survival of bacteria when living outside the host. To identify the

typical gradients predicted by Weber’s law, we compare how moving bacteria perceive

different gradients. In a concentration range where Weber’s law is valid, we find an expo-

nential gradient is perceived as constant (invariant). Such a gradient was previously also

called constant-activity gradient (Vladimirov et al., 2008). In contrast, the perception

in the other gradients either attenuates by adaptation to the pre-stimulus steady-state

value (Gaussian and linear gradients), or increases, eventually saturating the response

(hyperbolic gradient) along the swimming path (Fig. 3.4). This indicates that exponential

concentration gradients may commonly occur in the intestines as food particles diffuse

from localised areas of high concentration and are degraded by a consortium of competing

microorganisms. Related gradients may originate from the mucus layer itself, which is

secreted by epithelial cells, and which is constantly degraded by microorganisms. Chemo-

taxis is possibly optimised for moving in these gradients, as bacteria can follow them

without “losing sight” or saturating the receptor response.

An alternative to the Weber-Fechner law is Stevens’ law which proposes that the per-

ception follows a power law of the stimulus magnitude (Johnson et al., 2002). In the

bacterial chemotaxis sensory system, we explicitly found a logarithmic relationship for the

perception in support of the Weber-Fechner law. As logarithmic response functions are

implicated for ligand-receptor interactions, as well as simple membrane potentials, our

findings may apply to a wide range of signal transduction processes in cells (Koshland Jr

et al., 1982; Laughlin, 1989; Koester, 2000).

To establish a connection between Weber’s law and the physiological role of E. coli

chemotaxis in the intestines it will be necessary in the future to better characterise experi-

mentally the microenvironments bacteria are exposed to, including chemical gradients and

inter-species relations. These studies should be augmented by chemotaxis experiments in

well-defined but complex gradients obtained from microfabricated devices (van Haastert
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and Postma, 2007; Wolfaardt et al., 2008; Kang et al., 2008).
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4. Signal transmission and noise filtering

4.1 Synopsis

Noise, i.e. random fluctuations in protein concentrations and signalling states, limits the

external signals a cell can reliably sense. In this chapter, we comprehensively study the

effects of sensing and signalling noise in the E. coli chemotaxis pathway. We develop a

model which includes all signalling levels in the pathway, and discuss a simplified ver-

sion of the model which captures the essential features of the full model. We consider

fluctuations originating from ligand binding, receptor switching between their signalling

states, adaptation, modification of proteins by phosphorylation and dephosphorylation, as

well as the motor switching between its two rotational states. We study how cell-to-cell

variation affects motor behaviour by varying a number of system parameters such as total

protein concentrations. A similar analysis can readily be applied to other two-component

signalling pathways.

4.2 Motivation & open questions

Biological systems respond to signals from their environment and pass them on to intra-

cellular signalling pathways. Typically, signalling molecules are activated by modification,

e.g. phosphorylation and methylation, and they interact in complicated biochemical reac-

tion networks. Biochemical reactions rely on probabilistic collisions of a limited number

of molecules. Hence, the number of signalling molecules fluctuates with time, i.e. the

signal processing is noisy. The effects of noise has been recognised and studied extensively

in gene expression (Elowitz et al., 2002; Pedraza and van Oudenaarden, 2005; Paulsson,

2005; Acar et al., 2010; Eldar and Elowitz, 2010). In contrast, noise in signal transduction

is not well characterised, despite its importance for accurately measuring and adequately

responding to signals. Examples of systems, where signalling noise has been considered

include the ultrasensitive thresholding cascades (Thattai and van Oudenaarden, 2002),
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cell-to-cell variation in yeast resulting from the pheromone response pathway (Colman-

Lerner et al., 2005; Taylor et al., 2009), and feedback loops for noise suppression (Lestas

et al., 2010).

An important class of signalling pathways in bacteria are two-component systems, in-

cluding hundreds of pathways responsible for wide ranging functions such as sensing of

and responding to nutrients, osmolarity, antibiotics, as well as quorum sensing (Laub and

Goulian, 2007). Two-component systems consist of a kinase, which senses a particular

environmental stimulus. Activated of the kinase results in its autophosphorylation, and

subsequently, phosphorylation of its response regulator. Typically, response regulators

are transcription factors, which bind to DNA and induce an appropriate transcriptional

response. Using the E. coli chemotaxis pathway as a well-characterised example of a two-

component pathway, we are interested in the behaviour of the rotary motor, i.e. the final

cellular output, and how its rotation is affected by signalling and noise. We would like to

address the following questions: Firstly, what types of signals are transmitted and what

types are attenuated by the pathway? Early work showed that the system responds to the

time-derivative of the input signal (Block et al., 1982). A number of research groups have

measured the averaged response of cells to chemotactic stimuli (Block et al., 1982; Segall

et al., 1986; Shimizu et al., 2010), and found that slowly, as well as rapidly changing input

signals are not transmitted well by the pathway. The response to slowly changing signals

is attenuated by adaptation, which reverses the activation by ligand binding (Block et al.,

1983; Tu et al., 2008; Shimizu et al., 2010). Rapidly changing signals were conjectured to

be attenuated by a third-order filter (Block et al., 1982; Segall et al., 1986). While the

phosphorylation dynamics of CheY-P has been shown to contribute a first-order filter (Tu

et al., 2008), the exact filtering dynamics of the full pathway has not been addressed.

Secondly, how is noise generated, amplified or filtered in the signalling pathway, and how

do different sources of noise affect the motor behaviour? Time courses of motor rotation

in CW and CCW direction have been measured. Specifically, the power spectrum, which

captures the correlations fluctuations at different time points, was considered for wild-

type cells and mutant cells lacking the chemotaxis signalling pathway (Korobkova et al.,

2004). The spectrum was found higher at low frequencies in the wild-type cells, indicating

that there is a dominant noise source in the signalling pathway with long correlations.

Korobkova et al. (2004) showed, using simulations of the signalling network, that the

adaptation dynamics plays an important role in generating long correlations. However,
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they only analysed the signalling pathway up to CheY-P. The noisy biochemical reactions

of the pathway have been simulated (Morton-Firth and Bray, 1998). Furthermore, a lot

of research has focused on understanding the mechanism of motor rotation (Xing et al.,

2006; Meacci and Tu, 2009; Mora et al., 2009a,b; van Albada et al., 2009), including

thermodynamic modelling of the motor switching (Scharf et al., 1998; Turner et al., 1999;

Tu and Grinstein, 2005). However, the noise generation, filtering and amplification has

not been addressed systematically for the various levels of the signalling pathway from

chemoreceptors to motors.

Finally, how are signals transmitted in the presence of noise? An important task for the

cell is to generate an appropriate response to input signals in the presence of fluctuations

in the input, as well as due to noise in the biochemical signalling network. Furthermore,

cell-to-cell variation in protein expression influence signal transmission and noise filtering.

In this chapter, we present a mathematical model for the chemotaxis signalling path-

way. Specifically, we use stochastic differential equations to describe the dynamics of each

signalling protein. We assume throughout that concentration signals and fluctuations are

small. We use a Langevin approach (van Kampen, 2007), which is based on the determin-

istic dynamics describing the mean concentration of a signalling molecule, and an additive

noise term, which captures fluctuations around the mean value. Hence, our approach is

intermediate between deterministic reaction-diffusion models (e.g. Mello and Tu, 2003a)

and full stochastic simulations of the biochemical signalling network (e.g. Morton-Firth

and Bray, 1998).

4.3 Simplified model for the pathway

Here, we discuss a simplified model for the chemotaxis pathway to illustrate the effects of

signal and noise transmission, and a more detailed description is provided in Appendix J.

The simplified model includes the dynamics of signalling by chemoreceptors, ligand con-

centration and receptor methylation, and the rotary motor. We consider NC receptor

complexes in a cell, each composed of N receptors, which signal independently. Each re-

ceptor signalling complex is described as a two-state system by the MWC model Eq. 2.2 in

chapter 2. We explicitly take into account the magnitude of the signalling activity of re-

ceptor complexes, as opposed to the probability of a complex to be on in previous chapters.
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Hence, we define the activity as

A =
N

1 + eF (c,M)
. (4.1)

The free-energy difference F (c,M) between the active and inactive state is Eq. 2.3

F (c,M) = N − 1

2
M +N

[
νa ln

(
1 + c/Koff

a

1 + c/Koff
a

)
+ νs ln

(
1 + c/Koff

s

1 + c/Koff
s

)]
. (4.2)

It is a function of the concentration c present at the receptor complex site and the total

methylation level M of the receptor complex. Here, we consider two receptor types, Tar

(indicated by index a) constituting the fraction νa of receptors in the complex, and Tsr

(indicated by index s) constituting the fraction νs of receptors. Receptors are sensitive

to attractant MeAsp with dissociation constants, Koff and Kon in the off and on state,

respectively (Koff
a = 0.02mM, Kon

a = 0.5mM, Koff
s = 100mM, Kon

s = 106mM; Keymer

et al., 2006).

The dynamics of the total activity Ac of all receptors in a cell is determined by the sum

over all signalling complexes j,

dAc

dt
=

NC∑
j=1

∂A

∂M

dMj

dt
+

∂A

∂c

dcj
dt

+ ηAj (t). (4.3)

We assume that the dynamics of the complex activity is affected by changes in the receptor

complex methylation level (first term), changes in ligand concentration (second term), as

well as fluctuations due to the switching of the complex between its states (last term). We

will discuss all noise terms η(t) introduced in this section in detail in Sec. 4.5.

Changes in the concentration originate from time-varying input signals ⟨c(t)⟩, as well as

fluctuations due to ligand diffusion. The dynamics of the concentration at the jth receptor

complex is given by
dcj
dt

=
d⟨c(t)⟩
dt

+ ηcj (t), (4.4)

where the first term captures average concentration changes (indicated by angular brackets

⟨· · · ⟩), affecting all receptors, and the second term describes concentration fluctuations at

each receptor complex. Adaptation is provided by reversible receptor methylation and

demethylation, whose dynamics is described by the following equation (cf. Eq. 2.6 in
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chapter 2):
dMj

dt
= γR(N −Aj)− γBA

3
j + ηMj (t). (4.5)

The total methylation level Mj of receptor complex j is changed by methylation of recep-

tors in the inactive state (first term) and demethylation (second term). The latter rate is

assumed to be strongly dependent on the receptor complex activity as only active recep-

tors are demethylated by phosphorylated demethylation enzymes. The last term describes

fluctuations due to the noisy processivity of the methylation and demethylation enzymes.

We model the motor as a two-state system with CW and CCW rotating states, corre-

sponding to running and tumbling modes, respectively. The dynamics of the probability

of tumbling mode (tumble bias) Pt is described by

dPt

dt
= k+(Ac)(1− Pt)− k−(Ac)Pt + ηPt(t), (4.6)

where the first term represents the switching from CCW to CW with the transition rate

k+, the second term represents switching from CW to CCW with transition rate k− and

the third term describes temporal fluctuations in switching rates. The transition rates

are modulated by the intracellular signalling activity. In the full pathway model, CheY-

P represents the intracellular switching signal (see Appendix J). The transition rates

have been derived in experiments using signalling mutants expressing varying amounts of

constitutively active signalling molecule CheY (Turner et al., 1999). Figure 4.1 shows the

switching rates we used, including a fit using the model for motor switching presented

by Turner et al. (1999) (see Appendix J.2). In our simplified pathway model, the total

receptor signalling activity Ac modulates the switching rates of the motor instead of CheY-

P concentration. In the following, we discuss the average (deterministic) response of the

signalling pathway to concentration signals in Sec. 4.4. We define the noise sources ηA,

ηc, ηM and ηPt , and analyse their effects on the dynamics of the signalling pathway in

Sec. 4.5. Finally, we consider the effect of cell-to-cell variation on the noise power spectrum

in Sec. 4.6, and the signal-to-noise ratio in Sec. 4.7.
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Figure 4.1.: Switching rates of the motor from CCW to CW rotation k+ (squares) and from
CW to CCW rotation k− (circles) as a function of the concentration of signalling-active mutant
Y∗∗. A fit using the model of Turner et al. (1999) is shown as well (solid and dashed lines; cf.
Appendix J.2).

4.4 Signal transmission

4.4.1. Definitions

We consider the response to concentration stimuli at various levels in the signalling path-

way to study how signals are transmitted to the rotary motor. An input signal ∆c(t) is

a global concentration change from a constant background concentration c0, which affects

all receptors equally and represents a “meaningful” input to the chemotaxis signalling

pathway, i.e. the concentration is

⟨c(t)⟩ = c0 +∆c(t). (4.7)

Cells are assumed to be adapted to the pre-stimulus concentration, with the various

levels R of the signalling pathway assuming their adapted steady-state R∗. The time-

dependent response ∆R(t), i.e. the deviation from the adapted state due to a small

stimulus ∆c(t), is linear and determined by

∆R(t) =

∫ t

−∞
χR(t− τ)∆c(τ)dτ, (4.8)

where χR(t) is the linear response function. The receptor activity is determined by the

convolution of the linear response function and the stimulus. The linear response function

describes the dynamics of the pathway, and the convolution with the stimulus represents

the fact that the current state of the system is determined by the stimulus history (Kubo,
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1957). The Fourier transform of this equation reads more simply

∆R̂(ω) = χ̂R(ω)∆ĉ(ω), (4.9)

where the notation x̂(ω) indicates the Fourier transform x̂(ω) =
∫∞
−∞ x(t)eiωtdt. For

further analysis, we can write the Fourier transformed linear response function as

χ̂R(ω) = |χ̂R(ω)|eiϕR(ω), (4.10)

where |χ̂R| is the modulus and ϕR is the phase of the response function. The modulus

characterises the amplitude of the response, indicating what frequency-components of in-

put signals are transmitted well or attenuated. The phase of the Fourier transformed

linear response function has an intuitive meaning for periodic stimuli. As responses are

periodic with the stimulus frequency, the phase ϕR(ω) characterises the phase shift be-

tween stimulus and response. For general stimuli, the phase describes the phase shift of a

particular frequency-component of the response. Knowing the response functions allows

us to calculate the response to an arbitrary input signal. Furthermore, we can analyse the

signal filtering at each level of the pathway.

To obtain a succinct measure for the signalling response due to an input concentration

change ∆c(t), we define ∆R2 the integral over the response over frequency

∆R2 =

∫ ∞

−∞
dω|χ̂R(ω)∆ĉ(ω)|2. (4.11)

4.4.2. Experimental determination of the response function

The response function has been measured in rotational assays of the motor (Block et al.,

1982; Segall et al., 1986; cf. Sec. 1.1.2 in the Introduction) and at the level of CheY-P using

fluorescence resonance energy transfer (FRET) (Shimizu et al., 2010; cf. Sec. 1.1.4), using

short impulses of attractant concentration, as well as periodic stimuli. An impulse can be

approximated by a Dirac-delta function, ∆c(t) = A0δ(t), and its Fourier transform is a

constant, ∆ĉ(ω) = A0. Therefore, the Fourier transformed measured response is equal to

the Fourier transformed linear response function except for a constant factor.1 A periodic

1Alternatively, any input signal shorter than any time scales in the dynamical system can be used. For
instance, for the numerical simulation in Fig. 4.3, we applied a triangular pulse whose Fourier transform
is

∆ĉ(ω) =
(cmax − c0)/T

ω2

(
2eiωT − 1− e2iωT

)
, (4.12)
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signal ∆c(t) = A0/(2π) cos(ω0t) has the Fourier transform ∆ĉ(ω) = A0[δ(ω+ ω0) + δ(ω−

ω0)]. Hence, applying a periodic stimulus to a system yields the Fourier transformed linear

response function at the stimulus frequency ω0. We use the response function to calibrate

our model for the full pathway by adjusting the model parameters such that the model

fits the experimental data shown in Fig. 4.2 well (see below).

4.4.3. Analytical results for linear response function

We can analytically calculate the Fourier transformed linear response function from the

dynamical equations Eq. 4.3-4.6 without noise. After linearising around the steady state

and inserting the Fourier transforms we obtain

−iω∆Â = −iω
∂A

∂M
∆M̂ − iω

∂A

∂c
∆ĉ (4.13)

−iω∆M̂ = −ω1∆Â (4.14)

−iω∆P̂t = ω2∆Âc − ωPt∆P̂t. (4.15)

We defined

ω1 = γR + 3γBA
∗2 = γR(3− 2A∗

r)/A
∗
r , (4.16)

with A∗ = N · A∗
r = N/3 being the adapted activity of a receptor complex, A∗

r denoting

the adapted activity of individual receptors. In the second equality we have used that at

the adapted state γR(N − A∗) = γBA
∗3. The parameter ω2 = (1 − P ∗

t )
∂k+
∂Ac

− P ∗
t
∂k−
∂Ac

is

the derivative of the motor switching rates with respect to activity, and ωPt = k+
∗ + k−

∗

is a characteristic frequency due to motor switching at steady state. ∆A is the response

of every receptor signalling complex, and ∆Ac = NC∆A is the activity response of all

receptor complexes in a cell. The Fourier transformed linear response function for the

total activity of all receptors in a cell is

χ̂Ac(ω) =
−iωNC

∂A
∂c

ωM − iω
, (4.17)

where ωM = ω1∂A/∂M is a characteristic frequency due to adaptation. Similarly, the

response of the motor is

χ̂Pt(ω) =
ω2

ωPt − iω
χ̂Ac(ω). (4.18)

with c0 the ambient concentration, cmax the maximum concentration, and 2T the duration of the
pulse. In the range of relevant frequencies, the Fourier transform of the triangular pulse is a con-
stant (cf. Fig. 4.3).
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Figure 4.2.: Measured response function for the chemotaxis pathway. (A) Fourier transformed
linear response function at the level of the rotary motor measured in rotational assays by Block
et al. (1982; black circles) and Segall et al. (1986; red squares). A chemotactic impulse stimulus
was applied, the motor response measured and subsequently Fourier transformed. The fit of our
model is the black solid line. The black dashed line is a 3rd-order filter for comparison. (B)
Response function at the level of the response regulator CheY measured in FRET experiments
by Shimizu et al. (2010). A periodic chemotactic stimulus was applied and the (periodic) response
measured. Modulus (left) and phase (right) are obtained from the amplitude and phase shift of
the response with respect ot the input signal, respectively. Our model was fitted to the modulus
of the response. The blue (red) symbols and lines are measurement and fit for temperature 22 ◦C
(32 ◦C), respectively.

The response functions of the full pathway including the phosphorylation reactions are

shown in Appendix J.

4.4.4. Model calibration

Figure 4.2 shows experimental data for the response function, as well as the fits of our full

pathway model. For the fit of our model to the data by Shimizu et al. (2010), we adjusted

only the adaptation rates, as measurements were restricted to low frequencies. The fit at

32 ◦C yields the same adaptation parameters as obtained from fitting dose-response curves

of adapting cells (cf. chapter 2; Fig. 4.2, Left). The adaptation rates for room temperature

are one order of magnitude smaller. Importantly, fitting to the modulus of the Fourier

transformed response yields a good fit for the phase of the response as well (Fig. 4.2, Right).

Data for the impulse response of the motor were obtained by Block et al. (1982) and Segall

et al. (1986), to which we fit adaptation rates and motor switching rates. Compared to

the data by Shimizu et al. (2010) at the same temperature, adaptation rates are one

order of magnitude larger, i.e. adaptation is faster in these experiments. The parameter

ωPt of the motor switching is 2.1/s, consistent with switching rates of about 1 Hz (Block

et al., 1983). It is not clear where the difference in adaptation rates between the two

sets of experiments originates. Besides different experimental conditions, it may be due

to Shimizu et al. (2010) using populations of cells, whereas measurements in Segall et al.
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(1986) were done on single cells. Fitted parameters are given in Table J.4 in Appendix J.

4.4.5. Model analysis

Figure 4.3 shows simulated time courses of the chemotactic response to an impulse stimulus

and the corresponding Fourier transformed linear response functions. We observe how

the input stimulus is transmitted through the pathway, with pulse durations becoming

progressively longer along the pathway (Fig. 4.3, Left), including total receptor activity in

a cell Ac, phosphorylated kinase CheA, Ap, phosphorylated response regulator CheY, Yp,

and finally the motor, characterised by its probability of tumbling, Pt.

In Fig. 4.3, Right we show the corresponding linear response functions. The receptor

activity acts as a high-pass filter, i.e. it transmits high-frequency signals, but not low-

frequency signals. As can be seen from our simple model (cf. Eq. 4.17), this property

is due to adaptation which introduces the time-derivative of the signal ∆c(t) up to the

characteristic frequency ωM , eliminating the response to slowly changing attractant con-

centrations. The activity of chemoreceptors is the input to further levels in the pathway.

The response of CheA-P is fast, and therefore shows no qualitative difference to the re-

sponse of receptors in the frequency range shown. In contrast, due to the fast, but finite

rates of phosphorylation and dephosphorylation, which prevents the CheY-P concentra-

tion from responding to rapidly changing input signals, the response at the level of CheY

is reduced at high frequencies. Similarly, the motor introduces another high-frequency

filter due to slow switching between its two states. This additional filter can be deduced

from Eq. 4.18, where the motor response function takes the response of chemoreceptors

as input, and additionally introduces a characteristic cut-off frequency ωPt due to slow

motor switching rates. Hence, the chemotaxis pathway acts as a band-pass filter (Block

et al., 1982), which only transmits input signals within a selected frequency range, which

is of the order of 1 to 10 s. This time scale corresponds to the average time between two

tumbles, allowing the sensing of concentration changes during periods of running.

As shown in Fig. 4.3, Right the phase tends to π/2, i.e. a quarter period, at low

frequencies. This has been analysed by Shimizu et al. (2010) only for the receptor complex

activity. It is due to adaptation and represents the fact that the system takes the time

derivative of the stimulus below the characteristic frequency ωM of adaptation. The phase

shift of the receptor activity increases to π at high frequencies, indicating that the activity

simply follows the output (a negative sign is due to the negative response of the activity
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Figure 4.3.: Calculated
chemotaxis pathway re-
sponse upon impulse
stimulation with attractant
MeAsp. (Left) Time courses
for MeAsp concentration
c, total activity of recep-
tors Ac, phosphorylated
CheA and CheY, and
tumble bias Pt. (Right)
Fourier transform of the
concentration, as well as
response functions. Symbols
correspond to numerical
simulations and solid lines
to analytically calculated
response function.

to attractant concentration; Shimizu et al., 2010). The phase of the response of CheA-P

follows the phase of the receptor activity at high frequencies, except for a small increase

of the phase shift. In contrast, the phase of CheY-P and the motor response increase

significantly beyond π indicating that slow rates of modification and motor switching

introduce a lag of the response behind the stimulus.

4.5 Noise creation, amplification and filtering

To understand the noise characteristics of the motor, we consider the noise creation and

transmission in the pathway. Each step in the signalling cascade is essentially probabilis-

tic, hence, noisy: ligand diffusion and binding, receptor switching between its functional

states on and off, as well as receptor methylation and demethylation, phosphorylation

and dephosphorylation of signalling proteins CheA, CheY and CheB, and switching of the

rotary motor between its two states, CW and CCW rotation.

4.5.1. Definitions

To characterise fluctuations δR(t) around the mean value ⟨R(t)⟩, we use the power spec-

trum SR(ω) and the variance ⟨δR2⟩ = ⟨R2(t)⟩ − ⟨R(t)⟩2. The power spectrum is the

absolute square of the Fourier transform of time series δR(t) = R(t) − ⟨R(t)⟩ measured
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over a time interval T ,

SR(ω) = lim
T→∞

⟨δR̂(ω)δR̂∗(ω)⟩
T

, (4.19)

where the Fourier transformation is defined on the finite measurement interval T and the

average ⟨·⟩ is over multiple time series. For stochastic processes whose first and second

moments do not vary with time, i.e. whose mean value ⟨R(t)⟩ and variance ⟨δR2(t)⟩ are

constant, the power spectrum is related to the autocorrelation function

K(τ) = ⟨δR(t)δR(t+ τ)⟩. (4.20)

The Wiener-Khinshin theorem states that the power spectrum is the Fourier transform of

the autocorrelation function (Stratonovich, 1963),

SR(ω) =

∫ ∞

−∞
K(t)eiωtdt. (4.21)

The variance of a stationary process can be calculated as the integral of the power spectrum

over frequency,

⟨δR2⟩ = 1

2π

∫ ∞

−∞
dω SR(ω). (4.22)

4.5.2. Intensities and spectra of noise sources

In the following, we characterise the noise terms in Eq. 4.3-4.6. Typically, we describe a

biomolecular reaction or conformational change using a forward rate r1 and a backward

rate r2, as well as an additive noise term:

dx

dt
= r1 − r2 + η(t). (4.23)

The noise term η(t) is composed of two terms η1(t) and η2(t), which are associated with

the rates r1 and r2, respectively, which in general depend on the variables of the signalling

network. We assume η1 and η2 to be independent, i.e. ⟨η1(t)η2(t)⟩ = 0. In general,

this is justified as different reactions are catalysed by different proteins. Furthermore, we

assume they are Gaussian white noise terms with zero mean and autocorrelation function

⟨ηj(t)ηj(t′)⟩ = Qjδ(t − t′), where Qj is the noise intensity. The noise intensities can

be calculated assuming Poisson processes with average rates r1 and r2 (Thattai and van

Oudenaarden, 2002): Q1 = r1 and Q2 = r2. As the two noises are independent, the noise
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intensity of the total noise η(t) is Q = Q1 +Q2. As forward and backward rate are equal

at steady state, Q is twice the reaction rate in one direction at steady state.

The power spectrum of the white noise ηj(t) is the Fourier transform of the autocorre-

lation function. Hence, the power spectrum Sηj (ω) = Qj does not vary with frequency.

Fluctuations in the protein concentrations are due to the rate fluctuations filtered by the

dynamics of the biomolecular reactions and typically their power spectrum has a frequency

dependence.

Switching noise. The switching noise ηA(t) in Eq. 4.3 is due to the microscopic switching

of each receptor complex between on and off state. We assume the switching to be a fast

process, which can be described by the following dynamics for the microscopic variable a:

da

dt
= k1(N − a)− k2a+ ηa(t). (4.24)

The noise term ηa(t) is a Gaussian white noise with zero mean and noise intensity Qa =

2k2A
∗, where we used that the receptor complex activity is equal to the (quasi) steady-

state activity a, A = ⟨a⟩, and A = A∗ when adapted. The power spectrum of a is

Sa(ω) =
Qa

ω2 + (k1 + k2)2
, (4.25)

where k1+k2 is the characteristic frequency of switching noise. Hence, the high-frequency

component of fluctuations δa(t) is reduced due to averaging by the finite rates of switching.

The dynamics of the receptor complex activity A in Eq. 4.3 is determined by the rate of

change of the microscopic variable, and hence the power spectrum of activity fluctuations

ηA(t) is

SηA(ω) = ω2Sa(ω). (4.26)

Ligand noise. The number of ligand molecules in the vicinity of a receptor complex

fluctuates due to binding/unbinding, and potential rebinding of previously bound ligand

molecules at this complex, as well as diffusion (Bialek and Setayeshgar, 2005). Here, we

use a simplified description of diffusion to calculate the spectrum of noise in the ligand

dynamics ηc(t) in Eq. 4.4. Consider a volume whose dimensions are given by the diameter

of a receptor complex s =
√
NsR, where sR = 1 nm is the size of a receptor dimer (Hazel-

bauer, 1992). The change of ligand-molecule number L in this volume is determined by
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the exchange rate kD = D/s2 due to diffusion:

dL

dt
= kD(c0s

3 − L) + ηL(t) (4.27)

where kDL is the rate of molecules moving out of the volume by diffusion, and kD times

the mean concentration c0 in solution serves as a proxy of the rate of ligand molecules

moving into the volume. The noise term ηL(t) is assumed to be Gaussian and white, with

zero mean and noise intensity QL = 2Dsc0. The power spectra of the number L and

concentration c of molecules at receptor complex j are

SL(ω) =
2Dsc0
ω2 + k2D

; Sc(ω) =
SL(ω)

s6
. (4.28)

where s6 is the squared volume given by the dimension of the receptor complex. The

zero-frequency limit of the power spectrum of the ligand concentration Sc(0) = 2c0/(Ds),

which corresponds to calculations by Berg and Purcell (1977) and Bialek and Setayeshgar

(2005) for the uncertainty in sensing ligand concentration. The noise ηc(t) in Eq. 4.4 is

related to the rate of change of the ligand concentration, similar to the considerations of

the switching noise above. Hence, the power spectrum of the ligand fluctuations ηc(t) is

Sηc(ω) = ω2Sc(ω). (4.29)

Methylation noise. The size of fluctuations in the rate of methylation of a receptor

complex j in Eq. 4.5 is estimated from the average rates of methylation and demethylation

at the adapted state, respectively. The noise ηM (t) is assumed to be Gaussian and white,

with zero mean, noise intensity QM = 2γR(N −A∗) and power spectrum

SηM (ω) = QM . (4.30)

Motor switching noise. The noise in motor switching rate in Eq. 4.6 is assumed to be a

Gaussian white noise term, with zero mean, noise intensity QPt = 2k+(A
∗
c)(1 − P ∗

t ) and

power spectrum

SηPt
(ω) = QPt . (4.31)
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4.5.3. Analytical results for signalling noise spectra

Similar to the calculation of the response function in Sec. 4.4.3, we linearise the determin-

istic parts of Eq. 4.3-4.6 and formally Fourier transform the equations. We obtain

−iωδÂc = −iω
∂A

∂M

∑
j

δM̂j +
∂A

∂c

∑
j

η̂cj +
∑
j

η̂Aj (4.32)

−iωδM̂j = −ω1δÂj + η̂Mj (4.33)

−iωδP̂t = ω2δÂc − ωPtδP̂t + η̂Pt . (4.34)

We solve for the Fourier transformed activity fluctuations δÂc and obtain

δÂc =
∂A
∂M

∑
j η̂Mj +

∂A
∂c

∑
j ηcj +

∑
j η̂Aj

ωM − iω
. (4.35)

Hence, the power spectrum of activity fluctuations is

SAc(ω) = NC

ω2
[
Sa(ω) +

(
∂A
∂c

)2
Sc(ω)

]
+
(
∂A
∂M

)2
QM

ω2
M + ω2

, (4.36)

where we have assumed that fluctuations at different receptor complexes are independent.

Therefore, we obtain the sum of NC identical spectra for all complexes. The parameter

ωM = ω1∂A/∂M , and we used Eq. 4.26 and 4.29. The power spectra of the noises Sa(ω)

and Sc(ω) are given by Eq. 4.25 and 4.28, respectively, and QM is given by Eq. 4.30.

From Eq. 4.34 we obtain for the Fourier transformed fluctuations in the probability of

tumbling mode δP̂t

δP̂t =
ω2δÂc + η̂Pt

ωPt − iω
, (4.37)

and their power spectrum is

SPt(ω) =
ω2
2SAc(ω) +QPt

ω2
Pt

+ ω2
. (4.38)

The noise spectra of the full pathway including the phosphorylation reactions are shown

in Appendix J.
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Figure 4.4.: Calculated
noise spectra for the chemo-
taxis pathway (thick black
lines) for the total activ-
ity of receptors Ac, phos-
phorylated CheA and CheY,
and probability of tum-
bling mode Pt. Contri-
butions to the spectrum
from ligand binding (thin
solid black lines), receptor
switching (thin red lines and
symbols), receptor methy-
lation/demethylation (green
lines), as well as phosphory-
lation/dephosphorylation of
CheA, CheY and CheB (blue
lines) and motor switch-
ing (dashed black lines) are
also shown.

4.5.4. Model analysis

In Fig. 4.4, we show the power spectrum of fluctuations at the various levels of the sig-

nalling pathway, i.e. total receptor activity, CheA-P, CheY-P and the motor. We also

plot the individual contributions from processes generating noise, namely ligand diffusion,

receptor switching, methylation and demethylation of receptors, and phosphorylation and

dephosphorylation of proteins, as well as motor switching, to follow how noise is generated

and transmitted at the various levels.

The noise spectrum of the receptor activity has its highest contribution at low frequen-

cies, which mainly originate in the receptor methylation and phosphorylation dynamics.

Most of the fluctuations from phosphorylation stem from CheB (the separate contribu-

tions to the phosphorylation noise are not shown in Fig. 4.4). At high frequencies, the

activity noise spectrum is flat. This is due to ligand and receptor switching noise, which

is removed at low frequencies by adaptation, but not at high frequencies. The general

behaviour of the noise spectrum can be seen from Eq. 4.36: Intrinsic fluctuations from the
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methylation dynamics (characterised by QM ) are filtered at frequencies higher than the

characteristic frequency ωM of the adaptation dynamics. Ligand and receptor switching

noise are filtered out by adaptation, which acts as a high-pass filter with characteristic

frequency ωM .

The noise spectrum of CheA-P has generally the same shape as the activity spectrum

with a high low-frequency component, mainly due to receptor methylation and CheB

phosphorylation dynamics, and an almost flat high-frequency behaviour in the frequency

range shown. Apart from ligand and receptor switching noise, the flat part of the spectrum

is largely determined by fluctuations from CheA autophosphorylation, which has roughly

the same shape as activity noise at high frequencies because autophosphorylation depends

on the receptor activity.

The noise spectrum of CheY-P is also highest at low frequencies. However, at high

frequencies the spectrum falls off as noise is filtered due to the finite rates of CheY phos-

phorylation and dephosphorylation.

The motor introduces another layer of filtering of transmitted noise with the character-

istic motor switching frequency ωPt (cf. Eq. 4.38). Hence, transmitted noise is filtered by

two filters in the frequency range shown, namely due to the CheY-P and motor dynamics.

However, the main contribution to the spectrum is due to the motor switching itself, which

is filtered only by a first-order filter with characteristic frequency ωPt .

4.6 Cell-to-cell variation of motor behaviour

How are the signal response, fluctuations and the signal-to-noise ratio (SNR) affected by

changing system parameters such as protein concentrations, reaction rate constants, and

the size of receptor complexes?

In this section, we discuss the effect of cell-to-cell variation on the power spectrum of the

motor. In the following section, we discuss the SNR and its contributions, and how they

depend on receptor complex size and adaptation rates. For simplicity, we only discuss the

receptor activity in the text, while in the figures we show the contributions as transmitted

to the motor.

According to our model parameters obtained from fitting the Fourier transformed lin-

ear response, the main contribution to the power spectrum comes from the steady-state

switching of the motor between CCW and CW state. However, cell-to-cell variations in

protein content, as well as motor switching rates, can lead to modifications of the largely
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Figure 4.5.: Effect of cell-to-cell variation on power spectrum of the motor. The black line is
the same as the total motor spectrum in Fig. 4.4. The motor spectra for the increased motor
switching rates (red lines), as well as reduced receptor methylation and demethylation rates (green
line) and the total number of receptors (blue line) are shown as well. Parameters are listed in
Table J.5 in Appendix J. (Inset) Experimentally measured power spectra of wild-type cells (black
line) and mutants lacking the signalling pathway (grey line). Error bars indicate the measurement
uncertainty. Data was traced from Korobkova et al. (2004).

Lorentzian shape of the spectrum: As the transmitted noise from receptor methylation

and phosphorylation dynamics (green and blue lines in Fig. 4.4) becomes more promi-

nent, their high low-frequency contribution to the spectrum becomes apparent. Figure 4.5

shows the motor power spectrum for increased motor switching rates as well as reduced

adaptation rates and number of chemoreceptors in a cell. In all cases the low-frequency

component of the transmitted noise becomes more prominent. Hence, our model is able

to reproduce spectra measured by Korobkova et al. (2004) (Fig. 4.5, Inset), who found

a large low-frequency component in wild-type cells, but not in mutant cells lacking the

chemotaxis signalling pathway.

4.7 Signal-to-noise ratio

4.7.1. Definition

To characterise how signals are transmitted in the presence of noise, we define the signal-

to-noise ratio (SNR) at level R of the signalling pathway as

SNRR =
∆R2

⟨δR2⟩
(4.39)

with ∆R2 and ⟨δR2⟩ as previously defined in Eq. 4.11 and 4.22, respectively.
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Figure 4.6.: Varying ambient concentration and receptor complex size. (Top) Integrated response
of the motor bias ∆P 2

t in response to a concentration step stimulus. The step size is 10 percent
of the background concentration. (Middle) Variance of the motor bias ⟨δP 2

t ⟩ including only from
receptor switching, ligand diffusion, methylation and phosphorylation. The individual contribu-
tions are shown to the right of the main panel. (Bottom left) SNR based on the signal response
and variance shown in the top and middle panel. (Bottom right) SNR as a function of receptor
complex size at ambient concentration 0.02 (solid), 0.03 (dashed) and 0.05 mM (dotted line).

4.7.2. Receptor complex size and ambient concentration

In Fig. 4.6, Top we show the integrated motor response ∆P 2
t (cf. Eq. 4.11) to a concentra-

tion step stimulus for varying background concentration and receptor complex size. We

assume that the step size is a constant fraction of the background concentration. The

integrated response has a characteristic variation with background concentration, with

the maximum in the sensitivity range of Tar receptors (indicated by their dissociation

constants). Furthermore, the response increases with receptor complex size N . As cal-

culated in Appendix K, the integrated signal response of the receptor activity scales as

∆Ac ∝ N , due to coherent addition of the signalling responses of different receptor com-
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plexes, amplification of concentration changes by receptor complexes, as well as filtering

by adaptation.

In the middle panel of Fig. 4.6, we show the variance ⟨δP 2
t ⟩ (cf. Eq. 4.22) of the

transmitted noise of the pathway at the level of the motor. Only the contribution to the

variance from ligand diffusion depends on the background concentration. Compared to the

signal response, the maximum of the variance is shifted to a slightly lower concentration.

The contribution to the variance from switching of receptor complexes is relatively small

compared to the other contributions and roughly constant with receptor complex size,

whereas those from ligand diffusion, receptor methylation and phosphorylation dynamics

increase with receptor complex size.

To see the qualitative behaviour, we consider the variance of the receptor activity. The

details of the calculation are shown in Appendix K. The contribution to the variance of the

receptor activity from receptor switching is indeed constant. The contribution from ligand

diffusion scales as N2, the difference between ligand noise and ligand signal amplification

being due to (i) noise from different complexes being added up incoherently, and (ii) the

main contribution to the variance coming from high-frequency noise, which is not filtered

by adaptation. The contribution from receptor methylation grows approximately linearly

with receptor complex size. The contribution to the variance from phosphorylation pro-

cesses grows with receptor complex size similar to the contribution from the methylation

dynamics. Overall, the total variance of transmitted noise at the level of the motor has

a component from receptor switching, as well as the dynamics of receptor methylation

and phosphorylation processes which is approximately constant or grows slower than the

amplified signal response, whereas the component from ligand diffusion increases steeper

than the signal response with growing receptor complex size.

The resulting SNR, i.e. the ratio of integrated signal response and variance of the

noise, is shown in Fig. 4.6, Bottom. The SNR is best at background concentrations in the

sensitivity range of Tar receptors. Furthermore, due to the different dependencies of the

signal and the noise on the receptor complex size, the SNR has a maximum at a particular

receptor complex size (Fig. 4.6, Bottom right). The SNR grows below that complex size due

to signal amplification while the amplified ligand noise from ligand diffusion is still below

the internal noise level from receptor switching, receptor methylation and phosphorylation

processes. Above the optimal receptor complex size, the SNR decreases because the ligand

noise is amplified more than the signal.
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Figure 4.7.: Varying receptor methylation and demethylation rate constants γR and γB , respec-
tively. (Top left) Integrated response of the motor bias ∆P 2

t in response to a concentration step
stimulus. The step size is 10 percent of the background concentration. (Top right) Illustration of the
effects of vanishing γR and γB on adapted activity (indicated by dot and circle along dose-response
curve; left), as well as on time courses (right) for 3 cases (γR → 0, γR/γB = const, γB → 0).
Vanishing γR and γB result in an adapted activity in the saturated regime unless their ratio is kept
constant. Rate constants are progressively smaller for solid, dashed and dotted lines, respectively.
The initial response is quenched for progressively smaller γB due to saturation (indicated by the
arrow). Keeping the ratio constant results in the same initial response, but progressively longer
adaptation times. Reducing only γR results in progressively longer adaptation times with only a
slight reduction in initial response due to saturation. (Middle) Variance of the motor bias ⟨δP 2

t ⟩
including only from receptor switching, ligand diffusion, methylation and phosphorylation. The
individual contributions are shown to the right of the main panel. (Bottom) SNR based on the
signal response and variance shown in the top and middle panel.

4.7.3. Adaptation rate constants

Figure 4.7 shows the integrated signal response for varying rate constants of receptor

methylation (γR) and demethylation (γB). Varying these parameters corresponds to

changing the concentrations of receptor modification enzymes CheR and CheB. Interest-
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ingly, varying the two parameters has different effects on the integrated signalling response:

the signal increases for vanishing γR, whereas the signal decreases for vanishing γB. There

are two effects to be considered in order to understand this behaviour: Firstly, if the con-

centration of one of the receptor modification enzymes is reduced, the receptors becomes

modified by the other enzyme, hence driving receptors towards their saturated activities

(A∗
r = 0 or A∗

r = 1). This effect would tend to quench the response by receptors. Sec-

ondly, as the concentration of modification enzymes is reduced, adaptation times increase.

Hence, this effect increases the integrated signal as the time the receptor activity deviates

from the adapted state increases. According to calculations shown in Appendix K for the

integrated response of receptors, the first effect dominates in the case of reducing γB. Due

to the strong activity dependence of the demethylation rate, reducing the demethylation

rate constant affects the adapted activity of receptors more strongly than the methylation

rate constant. Hence, receptors are quickly driven into saturation for vanishing γB. At

large γB, the integrated response decreases again as expected, as adaptation times are

reduced.

The variance of fluctuations is shown in the middle panel of Fig. 4.7. The individual

contributions from transmitted noise at the level of the motor look qualitatively similar.

All contributions decrease both for vanishing γR and γB, consistent with calculations for

the variance of the receptor activity in Appendix K.

The SNR is shown in the bottom panel of Fig. 4.7. The SNR increases for vanishing γR

and decreases for vanishing γB. According to Fig. 4.7 a good SNR is obtained for small

γR and large γB, corresponding to the parameters of our model.

4.8 Discussion

Biological signalling pathways employ biochemical reaction networks and molecular state

transitions to sense and process signals from the environment. Fluctuations inherent in

these processes limit the signals which can be reliably transmitted. Here, we studied the

signal and noise propagation in the E. coli chemotaxis signalling pathway, which controls

the bacterial swimming behaviour in chemical gradients. Specifically, we considered the

dynamics of ligand diffusion, receptor methylation and demethylation, receptor complex

switching between on and off states, phosphorylation and dephosphorylation of the kinase

CheA, and response regulators CheY and CheB, as well as from rotary motor switching

between CW and CCW direction. We assume cooperative chemoreceptor signalling com-
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plexes, whose activities depend on ligand concentration and receptor methylation level,

described by the MWC model. We formulated a model which includes all processes in

the signalling pathway (Appendix J). To make results intuitive we presented a simplified

version of the model, which only includes the dynamics of the activity of chemoreceptors,

ligand concentration and receptor methylation level, as well as the motor dynamics.

To calibrate the model, we first collected experimental data sets for the signalling path-

way and rotary motor (Block et al., 1982; Segall et al., 1986; Shimizu et al., 2010), and the

motor switching behaviour (Korobkova et al., 2004, 2006). Using the Fourier transformed

linear response functions, we subsequently fitted our model parameters (Fig. 4.2). We

found a range of parameters fitting different data sets, revealing a striking experimental

variation, which may require further characterisation in the future.

The motor behaviour is the final cell output, which may contain characteristic noise sig-

natures of all upstream signalling components, including the receptors (Fig. 4.4). We found

that motor switching is the dominant contribution to the spectrum of the fluctuations in

motor bias. However, there are also low-frequency contributions from the dynamics of re-

ceptor methylation and phosphorylation processes. Due to cell-to-cell variation of protein

expression levels, this low-frequency component may be resolvable in rotational assays of

the motor (Fig. 4.5). This analysis shows that our model can reproduce spectra similar to

those measured by Korobkova et al. (2004).

Although chemotaxis is one of many capabilities a cell has, and may not be optimised

in isolation without the rest of the cell, we speculate the cell aims to maximise the SNR

for most efficient signalling and chemotaxis (Fig. 4.6 and Fig. 4.7). We found that the

SNR is maximised at receptor complex sizes larger than found from FRET dose-response

curves (Endres et al., 2008). However, the cell may be limited to form larger complexes

than observed experimentally by the physical interactions necessary for receptor coop-

erativity. Furthermore, noise from ligand molecules rebinding to the same receptor com-

plex (Bialek and Setayeshgar, 2005) has not been considered here, which may well increase

the noise level from external noise and hence decrease the predicted “optimal” receptor

complex size. We also analysed the effect of varying the methylation and demethylation

rate constants. We found that a good SNR is obtained for small methylation and large

demethylation rate constant, corresponding to our fitted model parameters from FRET

dose-response curves (cf. chapter 2).

We predict that cell-to-cell variation leads to a high-frequency component in the noise
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power spectrum. These predictions can be tested experimentally. For instance, adaptation

rate constants can be varied using cells expressing different amounts of CheR and CheB

from an inducible plasmid. Alternatively, the natural variability in protein expression

between cells can be exploited. Numerous wild-type cells could be monitored, and by

extracting the adaptation times for chemotactic stimuli, the adaptation rate constants for

individual cells can be inferred. Subsequently, the same cells can be used to measure long

time traces of motor switching and noise spectra can be calculated.

Using Langevin equations for the noisy dynamics of signalling proteins in our model

assumes that their average follows a deterministic equation, and fluctuations around the

average are small and well described by an additive noise term. While such an approach is

expected to work for the phosphorylation and dephosphorylation of the abundant protein

CheY, its applicability is less clear for receptor signalling due to both extrinsic ligand noise

and intrinsic noise from receptor methylation. Furthermore, the switching of the binary

motor constitutes large noise. Hence, the general Master equation, although difficult to

solve, may be a more appropriate approach (Appendix L). However, for small noise both

approaches yield the same results for receptor signalling (Aquino et al., 2011). In the case

of the motor, we explicitly tested that the statistical properties of the time series obtained

for two-state switching and Langevin equation respectively, are the same (Appendix M).

Furthermore, to analytically calculate noise spectra we needed to linearise the dynamical

equations for the signalling pathway. In Appendix N, we show that noise terms are indeed

sufficiently small and linearisation is justified.

Fitting our model to the Fourier transformed linear response function of the motor yields

a discrepancy at large frequencies. Block et al. (1982) and Segall et al. (1986) conjectured

that the pathway is a third-order low-pass filter. In contrast, we find that the only relevant

filters in the frequency range considered are due to CheY-P and motor dynamics, leading

to only a second-order filter. One explanation for the missing filter is that experimental

concentration pulses were not short enough, leaving a signature from the input signal at

large frequencies. Alternatively, additional processes such as a slow release of CheY-P from

the chemosensory complexes as discussed by Blat et al. (1998) could lead to an additional

filter. However, CheY-P/CheZ complex formation and potential oligomerisation of CheY-

P/CheZ complexes (Eisenbach, 2004; Blat and Eisenbach, 1996a,b) are not expected to

contribute to high-frequency filtering (Appendix O).

The bacterial chemotaxis pathway is a member of the large class of two-component, con-
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Figure 4.8.: Comparison of the chemotaxis pathway (left) and other two-component systems
(right). The sensor kinase is activated by a signal, upon which it autophosphorylates and passes
on a phosphoryl group to its response regulator, which typically induces a transcriptional response.
Intermediate steps involving phosphotransfer to a phosphotransferase (indicated by dashed arrow)
before phosphorylation of the response regulator are possible. The time course of the final output,
i.e. gene expression, can be directly mapped onto the binary output of the chemotaxis pathway.

taining hundreds of closely related pathways (Laub and Goulian, 2007). In these pathways,

activation of a sensor histidine kinase results in its autophosphorylation, and subsequently

in the phosphorylation of a response regulator, which typically binds to DNA and regulates

gene expression (Fig. 4.8). Particularly well-studied examples of two-component systems

include the VanS (kinase)/VanR (response regulator) system conferring vancomycin resis-

tance in Gram positive bacteria (Hutchings et al., 2006), quorum sensing in Vibrio harveyi,

where the three kinases LuxN, LuxQ and CqsS respond to different autoinducers and first

phosphorylate the phosphotransferase LuxO (which has no equivalent in the chemotaxis

pathway), which then phosphorylates the response regulator LuxU (Henke and Bassler,

2004), as well as the system controlling sporulation in Bacillus subtilis, where there is

a phosphorelay from at least four kinases KinA-KinB to the phosphotransferase Spo0F,

which phosphorylates the response regulator Spo0A (Jiang et al., 2000). The final out-

put, i.e. activation of gene expression, is again binary and hence similar to the bacterial

chemotaxis pathway. As a result, the analysis presented here may also help elucidate the

design of many other pathways and clarify the computational problems cells try to solve.
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5. Information transmission

5.1 Synopsis

Sensory systems are expected to be optimised for the typical stimuli the organism en-

counters. In this chapter, we use dose-response curves for the E. coli chemotaxis pathway

measured by FRET to predict typical distributions of concentrations as well as resulting

signalling activities. We assume the chemotaxis sensory pathway maximises the informa-

tion transmitted about the input stimulus. We discuss how the predicted distributions of

concentrations may inform us of the gradients bacteria sense.

5.2 Motivation & open questions

Escherichia coli lives in a highly dynamic environment of nutrients and other microorgan-

isms in the mammalian gut. Although of physiological importance, we do not have a good

understanding of the typical chemical gradients microorganisms encounter. On the other

hand, the chemotaxis sensory system, which enables cells to detect and navigate in their

chemical environment, is experimentally well characterised. Thus, the response to spe-

cific input stimuli is known, e.g. from FRET dose-response measurements (cf. Sec. 1.1.4

in the Introduction and chapter 2). As sensory systems have evolved to detect specific

stimuli, we may expect to find a matching between typical stimuli and the corresponding

cellular responses. Specifically, taking into account natural limitations of cellular signal

processing, such as noise and limited energy resources, the cell should translate an input

into an output in such a way as to maximise the information transmission (Detwiler et al.,

2000). An appropriate measure for the information contained in the output about the

input stimulus is Shannon’s mutual information (Detwiler et al., 2000; Ziv et al., 2007;

Tkacik et al., 2008a,b; Tostevin and ten Wolde, 2009). For one input variable I and one
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output variable O the mutual information is given by

I[I;O] =

∫∫
dI dO p(I,O) log2

p(I,O)

pI(I) pO(O)
=

∫
dI pI(I)

∫
dO p(O|I) log2

p(O|I)
pO(O)

. (5.1)

Here, pI(I) and pO(O) are the probability distributions of the input and output, respec-

tively, p(I,O) is the joint probability distribution, and p(O|I) the conditional probability

distribution for the output value O given the input I. For the second definition we used

the equality p(I,O) = p(O|I)pI(I). For simplicity, we use the same symbol p for the joint

and conditional probability distributions, and distinguish them by their arguments.

Several examples have been found in biology where appropriate matching of distri-

butions of relevant inputs, input/output relationships and distributions of outputs ex-

ists (Laughlin, 1981; Detwiler et al., 2000; Tkacik et al., 2008a,b; Mehta et al., 2009).

Laughlin (1981) predicted the input/output relationship for a certain class of neurons in

the fly compound eye based on the measured distribution of visual contrasts from nat-

ural scenes assuming maximum information transmission. He found a good agreement

between the predicted curve and measured dose-response curve. Detwiler et al. (2000)

considered enzymatic amplification. Specifically, they studied the example of phototrans-

duction in vertebrate photoreceptors. Besides characterising engineering properties such

as the gain, variance and response time of the signalling cascade, they also discussed the

role of sensory adaptation as a slow mapping of the input/output relationship to the cur-

rent statistics of input stimuli. For phototransduction, they showed that the dose-response

curves, measured in cells which were adapted to different ambient light levels, correspond

to input/output relationships predicted for typical distributions of light intensities, namely

log-normal distributions. Information theory has been successfully applied in gene regula-

tion (Tkacik et al., 2008a,b). Based on simultaneous measurement of Bicoid, transcription

factor for hunchback, and hunchback during Drosophila embryonic development, Tkacik

et al. (2008a) extracted the input/output relationship, and predicted the distribution of

hunchback assuming maximum information transmission. The predicted distribution and

experimentally measured distribution (Gregor et al., 2007) corresponded quantitatively.

More theoretically, Tkacik et al. (2008b) studied a simple microscopic model for gene reg-

ulation. Assuming various gene-regulatory mechanisms, they investigated the amount of

information that can be transmitted. A major finding is that regulatory elements generally

are able to transmit more than one bit of information, i.e. they have more than two dis-
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tinguishable states. Furthermore, Mehta et al. (2009) studied information transmission in

quorum sensing in the bacterium Vibrio harveyi considering two independently transmit-

ted inputs to a single output. They concluded that interference between the two pathways

needs to be limited for the cell to be able to learn about each input, consistent with exper-

iments (Long et al., 2009). Tostevin and ten Wolde (2009) state that information about

stimuli is not only contained in instantaneous or steady-state values, but also in temporal

correlations. Hence, they used the mutual information rate to calculate the information

transmission for simple biochemical networks. They also studied a linear model for the E.

coli chemotaxis pathway and predicted the power spectrum of input stimuli which is best

transmitted by the pathway.

In this chapter, we aim to use the detailed information about the input/output relation-

ships in E. coli chemotaxis from FRET dose-response measurements to predict the typical

distributions of concentrations E. coli encounters. In the following, we first present some

general results obtained for information transmission for Gaussian channels. We predict

the optimal distributions of concentrations and corresponding signalling activities for the

chemotaxis sensory system. We relate the input distributions to Weber’s law in chapter 3,

and finally discuss how distributions of concentrations may inform us about the typical

gradients bacteria sense.

5.3 Results

5.3.1. Mutual information for a Gaussian channel with small noise

Generally, the mutual information can only be calculated analytically in special cases

(Tkacik et al., 2008a). Here, we use the approximation of a so-called Gaussian channel.

We assume that for a given input value I the output is distributed normally around a

mean output value Ō(I) with variance σ2
O(I). Hence, the input/output relationship is

given by the conditional probability

p(O|I) = 1√
2πσ2

O(I)
exp

{
− [O − Ō(I)]2

2σ2
O(I)

}
. (5.2)

The mutual information can be calculated analytically if we assume that the distributions

are tight, i.e. noise in the output is small, such that higher than linear orders in deviations

of the output from the mean value Ō are negligible. The mutual information for a Gaussian
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channel with small output noise is (Tkacik et al., 2008b)

I[I;O] = −
∫
dŌ pO(Ō) log2

[√
2πeσ2

OpO(Ō)

]
, (5.3)

i.e. the mutual information can be calculated knowing only the distribution of mean

output values and the variance of the output. This result is derived in the following: We

can rewrite Eq. 5.1 into

I[I;O] =

∫
dI pI(I)

∫
dO p(O|I) log2 p(O|I)−

∫
dI pI(I)

∫
dO p(O|I) log2 pO(O). (5.4)

Substituting the Gaussian distribution for p(O|I), the first term evaluates to∫
dI pI(I) log2

[√
2πeσO(I)2

]
. Using that any function f(O) can be expanded around Ō

according to f(O) ≈ f(Ō) + f ′(Ō)(O − Ō) + 1/2f ′′(Ō)(O − Ō)2 + . . . , we obtain for the

second term for small output noise

∫
dO p(O|I) log2 pO(O) =

∫
dO p(O|I) log2

[
pO(Ō) + p′O(Ō)(O − Ō) + . . .

]
≈ log2 pO(Ō), (5.5)

where we took f(O) = log2 pO(O) and only considered terms up to linear order in (O−Ō).

The linear order term in the integral vanishes due to symmetry of the integrand. The

mutual information is given by

I[I;O] =

∫
dI pI(I) log2

[√
2πeσ2

O(I)pO(Ō(I))

]
. (5.6)

Due to the conservation of probability, it is dI pI(I) = dŌ pŌ(Ō), where pŌ(Ō) is the

distribution of mean outputs and we used the relationship Ō = Ō(I). If we assume that

the distribution of outputs at the mean output level Ō is equal to the distribution of mean

outputs, i.e. pO(Ō) = pŌ(Ō), we finally obtain Eq. 5.3.

5.3.2. Optimal distributions of inputs and outputs

In order to calculate the distributions of inputs and outputs which yield maximum infor-

mation transmission, given a specific mean input/output relationship and variance of the

output, we need to maximise the mutual information. Formally, we form the Lagrangian

L[I;O] = I[I;O]−λ
∫
dŌ pO(Ō), where λ is a multiplier which implements the constraint
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Figure 5.1.: Maximising the mutual information for small Gaussian output noise with uniform
(A) and non-uniform variance (B). (A, Top right) Input/output relationship for the mean Ō(I)
(solid line) and constant standard deviation σO of the output states indicated by error bars. (A, Top
left) Distribution of output levels O. (A, Bottom right) Distribution of input values I. For constant
standard deviation, the input/output relationship for the mean Ō(I) is given by the cumulative
distribution of the input distribution. A sample of successive output states (dots) correspond to
integration steps over the input distribution indicated by vertical lines. The distribution of output
levels is uniform between minimum and maximum states. (B, Right) Input/output relationship for
the mean Ō(I) (solid line) and standard deviation σO(I) of the output states indicated by error
bars. (B, Left) Optimal distribution of mean output levels Ō (thick solid line). The case of uniform
output variance (dashed line) is shown for comparison.

that pO(Ō) must be normalised. Calculating the functional derivative δL/δpO(Ō) of the

Lagrangian with respect to the output distribution and setting it to zero yields

0 =
δL[I;O]

δpO(Ō)
=

∫
dŌ log2

[√
2πeσ2

OpO(Ō)

]
−
∫

dŌ pO(Ō)
1

pO(Ō)
− λ

∫
dŌ. (5.7)

This equality is fulfilled if the integrand vanishes. Hence, the optimal distribution of

outputs is

p∗O(Ō) =
1

Z

1

σO(Ō)
, (5.8)

where Z =
∫
1/σO(Ō)dŌ is a normalisation constant. By conservation of probability

dI pI(I) = dŌ pO(Ō) the distribution of inputs, which optimises the mutual information

given the input/output relationship, is

p∗I(I) = p∗O(Ō)
dŌ

dI
. (5.9)

When all output states have the same variance, the optimal distribution of inputs is pro-

portional to the slope of the mean input/output relationship, p∗I(I) ∝ dŌ/dI (Laughlin,

1981). In other words, the optimal mean input/output relationship is given by the cumu-

lative distribution of the input, i.e. Ō(I) =
∫ I

dI ′pI(I
′) (Fig. 5.1 A). pO(Ō) is uniform, i.e.
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Figure 5.2.: FRET dose-response curves for adapting (WT) cells and non-adapting mutants in
specific receptor methylation states. Cells express the Tar receptor only. Data points for various
measurements of the FRET activity at different concentrations of MeAsp (filled symbols), as well
as their mean values are shown (open symbols). Cells used were: WT adapted to zero (black
circles) and 100 µM (black triangles) ambient concentration, QEEE (red), QEQE (green), QEQQ
(blue) and QQQQ (orange) mutant. Corresponding solid and dashed lines are the fits of the static
MWC model.

all output states are used with equal probability. In general, the output states have a non-

uniform variance, and the optimal distribution of mean output levels Eq. 5.8 is inversely

proportional to the standard deviation of the output. This means that output states

corresponding to input signals which can be measured reliably (with low variance in the

output) should be used preferentially. With sigmoidal mean input/output relationships,

this typically leads to bimodal distributions (Fig. 5.1 B).

5.3.3. FRET dose-response curves for Tar only cells

In the following, we apply the general findings presented in the previous subsections to the

chemotaxis pathway. Figure 5.2 shows FRET dose-response measurements for populations

of cells expressing only the Tar receptor (Endres et al., 2008). Adapting wild-type (WT)

cells were used at two different ambient concentrations, as well as signalling mutants

lacking the adaptation enzymes. In the mutants, Tar receptors were genetically engineered

to have the amino acids glutamate (E) or glutamine (Q) at the four receptor modification

sites for methylation and demethylation. E is an unmethylated modification site, while

Q resembles a methylated modification site. The signalling activity was measured several

times for step changes in MeAsp concentration. It is obvious that there is a large variation

in signalling activity at each concentration. Endres et al. (2008) fitted the (static) MWC
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Figure 5.3.: Illustration of principle component analysis (PCA). (A) FRET dose-response curves.
Shown are M curves measured at D concentrations for the QEQE mutant. (B) Representation
of PCA in a scatter plot where each dot represents one dose-response curve. For simplicity, the
projection of principle components onto two dimensions is shown. The eigenvectors of the two main
principle components are indicated by arrows (the length of the vectors indicate the magnitude of
the contribution to the variation by the corresponding principle component). The circle represents
the mean value of the data. Figure taken from Endres et al. (2008).

model to dose-response curves using a principal component analysis. The parameters of

the fit are shown in Appendix P.

5.3.4. Principal component analysis (PCA)

Principal component analysis (PCA) is a method to represent noisy data along inde-

pendent directions of variation. The method is illustrated in Fig 5.3: M dose-response

curves are measured at D concentration (Fig 5.3 A). Hence, in a D-dimensional space

with the coordinates corresponding to the FRET activity at a particular concentration

ci (i = 1, . . . D), each dose-response curve is represented by one data point. Plotting all

dose-response curves results in a scatter plot (Fig. 5.3 B). PCA produces a new coordi-

nate system centred around the mean value of the data, whose axes are orthogonal and a

linear combination of the old axes. The coordinate axes are aligned along the directions of

independent variation in the data (indicated by the arrows in Fig. 5.3 B). The coordinate

transformation is obtained by diagonalising the covariance matrix

Cij =
1

M

M∑
l=1

[xl(ci)− x̄(ci)][xl(cj)− x̄(cj)], (5.10)

where ci are ligand concentrations, xl are the measured FRET activities and x̄(ci) is the

mean FRET activity measured at concentration ci. The covariance matrix is diagonalised

by V −1CV = U , where V is the matrix containing the eigenvectors of C and U is a diagonal

matrix of eigenvalues λi (i = 1, . . . , D). The eigenvectors are the principle components of
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Figure 5.4.: Predicted optimal input and output distributions. (Left) Standard deviation of
activity measured by FRET in Fig. 5.2 (open and filled symbols for including and excluding
receptor expression noise, respectively). Fits to the standard deviations are shown as well (dashed
and solid lines, respectively). (Middle) Predicted distributions of attractant concentrations (input).
(Right) Predicted distributions of signalling activities (output).

the data. Typically, most of the variation in the data is described by a small number of

principle components, such that PCA can be used for a dimensional reduction of the data.

5.3.5. Optimal input and output distributions for Tar only cells

We extracted the variance in the FRET activity in order to predict the input and output

distributions for optimal information transmission. Using PCA enabled us to separate the

largest component to the variation, which is due to an overall amplitude variation related

to variable expression levels of receptors (Endres et al., 2008; supporting information).
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In Fig. 5.4 (first column) we show the standard deviation (SD) for both, including as

well as excluding that component from receptor expression noise (symbols). The two

SD look qualitatively the same, although the SD excluding receptor expression noise is

significantly smaller. The SD has a characteristic shape: WT adapted to zero ambient

and QEEE mutant show a roughly monotonically decreasing SD with increasing MeAsp

concentration as receptors become saturated by attractant. WT cells adapted to a higher

ambient concentration, as well as mutants in higher receptor modification states, show a

peak in the SD in the linear regime of the dose-response curve. In order to obtain smooth

curves for the predicted optimal input and output distributions, we fitted the variance of

the output according to the simple model for fluctuations in FRET activity

σ2
A =

[
α1

√
c
dA

dc

]2
+
[
α2

√
A
]2

, (5.11)

where we assumed that transmitted input fluctuations (first term) and fluctuations from

the intracellular pathway (second term) are independent. Therefore, we add their variances

up. Input fluctuations have a concentration dependence as discussed in chapter 4 (Bialek

and Setayeshgar, 2005), and are transmitted according to the mean input/output rela-

tionship given by the MWC model. Pathway fluctuations are assumed to be Poissonian,

and the number of phosphorylated signalling proteins is assumed to be proportional to

the signalling activity A. The parameters α1 and α2 are adjusted using a χ2-fit to the

variance of the output (including as well as excluding the first principle component; see

Appendix P). The predicted optimal input distributions calculated from the fitted SD

(Fig. 5.4, second column) are monotonically falling for WT cells adapted to zero ambi-

ent concentration and for QEEE mutants, with a maximum at concentration zero. WT

adapted to a higher ambient concentration, as well as mutants in higher receptor mod-

ification states display a peaked distribution with the maximum in the linear range of

the dose-response curve around the ambient concentration corresponding to the receptor

modification state. As the modification state increases, the peak shifts to higher concen-

trations. Simultaneously, the width of the distribution increases. There is no quantitative

difference between the optimal input distributions calculated using SD including and ex-

cluding the component of the variance from receptor expression noise, respectively. The

predicted optimal output distributions are shown in Fig. 5.4 (third column). Remarkably,

in the output distributions, the effect of eliminating the receptor expression noise from the
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variance is obvious. For the variance including receptor expression noise, the distributions

for all cells are largely monotonically falling for increasing activity. Using the variance

excluding the receptor expression noise, we obtain bimodal distributions for receptors in

higher modification states. Note that we did not rescale FRET dose-response curves mea-

sured from populations of cells to account for single cells. Hence, activities and SD are for

populations of cells. In principle, those can be rescaled if the number of cells is known.

However, rescaling does not change the predicted input distributions, and only the range

of output activities would be rescaled for predicted output distributions.

5.3.6. Scaling behaviour of predicted input distributions

The predicted optimal input distributions for high receptor modification states can be fit

by log-normal distributions

pln(x;µ, σ
2) =

1

x
√
2πσ2

exp{− [ln(x)− µ]2

2σ2
} (5.12)

as shown in Fig. 5.5 (parameters of the fits are listed in Appendix P). The log-normal

distribution is characterised by two parameters, µ and σ2. The mean of a log-normally

distributed variable is ⟨x⟩ = eµ+σ2/2 and its variance is ⟨x2 − ⟨x⟩2⟩ = (eσ
2 − 1)e2µ+σ2

.

Hence, the ratio of variance and squared mean can be expressed only in terms of σ2,

⟨x2 − ⟨x⟩2⟩/⟨x⟩2 = eσ
2 − 1. The inset in Fig. 5.5 shows that the distributions for different

receptor modification states almost perfectly collapse onto one curve when scaling the

distribution such that the peak positions coincide, indicating that the mean and width of

the distribution indeed fulfil the scaling behaviour of log-normal distributions. The ratio

of variance and squared mean for the distributions is about 0.05 . . . 0.06.

5.4 Discussion

Sensory systems are expected to be optimised during the course of evolution to sense

the stimuli which are typically encountered by the organism. Here, we assumed that the

chemotaxis sensing process maximises the information transmitted about input stimuli

to a cellular output. Based on this assumption, we used dose-response curves to predict

typical distributions of concentrations sensed by cells in a specific receptor modification

state and corresponding distributions of signalling activities (Fig. 5.2).

To characterise the microenvironment of E. coli we would need to know the spatial

110



5.4. DISCUSSION

0 0.1 0.2
c [scaled; mM]

0

5

10

15

20

25

p(
c)

 [s
ca

le
d;

 m
M

-1
]

10
-2

10
-1

10
0

Concentration c [mM]

0

5

10

15

20

25

p(
c)

 [m
M

-1
]

Figure 5.5.: Log-normal scaling of the optimal input concentrations. Coloured lines are the
predicted input distributions from Fig. 5.4 (QEQE, green; WT 100 µM, black; QEQQ, blue;
QQQQ, orange) and symbols are log-normal fits to the distributions. (Inset) Input distributions
from the main panel scaled to the peak position of the WT input distribution.

and temporal concentration profiles. An easier task is to track bacteria in well-defined

chemical gradients, e.g. in microfabricated devices (van Haastert and Postma, 2007; Wol-

faardt et al., 2008; Kang et al., 2008), and establish the distributions of concentrations

they sample. As illustrated in Fig. 5.6, shallow gradients lead to a narrow distribution

of concentrations sampled by bacteria in a particular receptor modification state. This is

due to adaptation adjusting the receptor methylation level duly corresponding to the con-

centrations encountered. In contrast, steep gradients result in a wide distribution of con-

centrations as adaptation cannot keep up with concentration changes across the gradient.

Distributions are typically skewed towards higher concentrations as bacteria tend to swim

up the gradient. Hence, higher concentrations are sampled more frequently. Comparing

the distributions of concentrations obtained from swimming bacteria in well-characterised

gradients and those predicted from maximum information transmission suggests that E.

coli typically encounters steep gradients, i.e. rapidly changing spatial or temporal gradi-

ents, as those lead to a wide spread of sampled concentrations. It is obvious from Fig. 5.6

that probably not one particular gradient generates the predicted optimal distributions

of concentrations, but different gradients, weighted appropriately, give rise to the distri-

bution. More work would be needed to analyse what types and distributions of gradients

produce the predicted optimal distributions of concentrations.

Celani and Vergassola (2010) argue in a similar fashion that bacteria are optimised to

sense complex and highly variable concentration profiles. They show that optimisation of

the minimum uptake of nutrients in any concentration profile, i.e. without knowledge of
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Figure 5.6.: Input distributions of simulated swimming bacteria using RapidCell (Vladimirov
et al., 2008). (A) Three example traces of bacteria swimming in an exponential gradient in x-
direction (indicated by the graded bar). (B and C) Distribution of sampled input concentrations
in cells with receptor methylation level m=6. 5000 trajectories were simulated with time step
0.001 s. The gradients were c(x) = c∗ exp[γ/c∗(x−Lx/2)], where Lx=5 mm is the dimension in x
and y, and c∗=0.2 mM. The histograms are the distributions sampled by the bacteria in a shallow
(B, γ=0.001 mM/mm) and steep (C, γ=0.2 mM/mm) gradient. The dashed line is the predicted
distribution based on dose-response curves (cf. Fig. 5.4).

the exact statistics of environmental fluctuations, reproduces the experimentally measured

linear response function (cf. chapter 4).

The predicted distributions of input concentrations are roughly log-normal distributions.

Distributions for different receptor modification states coincide when scaled to the same

concentration of the peak of the distribution. This constancy of fractional changes of

concentration stimuli relative to the ambient concentration is reminiscent of Weber’s law in

chapter 3. We showed that the smallest noticeable stimulus the chemotaxis sensory system

responds to grows linearly with the background stimulus. If the predicted distributions

of inputs are indeed encountered by E. coli, Weber’s law represents an adaptation of the

sensory system to its environment; as the width of concentration distributions scales with

ambient concentration, the range of inputs increases. Responding to the fractional change

of stimuli makes sense in order to cover the limited range of outputs, i.e. number of

signalling molecules.

Here, we considered an intermediate, intracellular output of the chemotaxis pathway,

CheY-P/CheZ pairs, which can be measured by FRET. The final cellular output is the

modulation of the swimming behaviour, i.e. running or tumbling. While the activation

of CheY-P is fast (in the order of tenths of seconds), the motor reacts much slower on

the timescale of seconds (cf. chapter 4). Hence, when treating the information transmis-

sion to the motor, temporal correlations between input and output should be taken into

account (Tostevin and ten Wolde, 2009). However, we expect that if information trans-

mission is to be optimised by the whole chemotaxis pathway, this should also be true for
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every intermediate stage, as information can only be lost, not gained.
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6. Conclusions

Chemotaxis in the bacterium Escherichia coli has become a paradigm for sensory and

signalling pathways. Decades of research, including genetic, structural, microscopic, and

biochemical studies have led to one of the most comprehensively understood biological

systems. This makes it a testing field for quantitative modelling aimed at conceptualisa-

tion in biology. In this thesis, we studied sensory adaptation, signal and noise filtering,

as well as information transmission in the E. coli chemotaxis pathway. In chapter 2, we

used experimental FRET measurements to analyse the dynamics of sensory adaptation,

i.e. the reversal of an initial signalling response by receptors after a concentration stim-

ulus. We predict several layers of feedback regulation, which account for the different

time scales found for adaptation to favourable and unfavourable stimuli. Although the

molecular mechanism for the predicted feedback needs to be established in the future,

our study exemplifies that mathematical modelling can reveal shortcomings in our current

understanding. It also highlights that models in biology need to become more complex as

increasingly quantitative experimental measurements are developed.

In chapter 3, we showed that the chemotaxis sensory pathway follows Weber’s law, in

common with many other sensory systems. Again based on experimental data, we ex-

tracted the smallest noticeable concentration stimulus, which is found to increase roughly

linearly with the background stimulus. We explained Weber’s law in chemotaxis as emerg-

ing from the binding properties of ligand molecules to chemoreceptors and sensory adapta-

tion. We argue that Weber’s law may be an evolutionary adaptation mechanism to sense

the typical chemical gradients in the bacteria’s environment. We predict typical gradients

to be exponential as swimming in those gradients yields an invariant response, i.e. no

attenuation by adaptation or saturation of the response along the gradient.

In chapter 4, we investigated the signal and noise filtering properties of the chemotaxis

pathway. We used experimental data from the literature to calibrate our model. We found

that all signalling processes may contribute to noise in the final cellular output of motor
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rotation, hence making this more theoretical study accessible to experimental verification.

Finally, in chapter 5 we studied information transmission in the chemotaxis pathway

in order to predict typical distributions of input concentrations. This study could help

to characterise the chemical environment bacteria typically experience, and augments

our discussion about Weber’s law in chapter 3. We predict that concentrations sampled

by swimming bacteria are roughly log-normally distributed and, furthermore, that steep

gradients lead to the wide distributions of concentrations predicted.

In the future, it will be interesting to build on our understanding of the relatively simple

E. coli chemotaxis pathway to study the dynamics of more complex signalling pathways.

For instance, the photosynthetic bacterium Rhodobacter sphaeroides has several homo-

logues of each of the chemotaxis proteins in E. coli (Porter et al., 2008). Interestingly,

Rhodobacter has two chemotaxis receptor clusters, one polar cluster similar to E. coli and

one cytoplasmic cluster, which is thought to sense the metabolic state of the cell. Both

clusters need to be present for chemotaxis. The soil bacterium Bacillus subtilis has three

adaptation systems (Glekas et al., 2010): one based on methylation and demethylation of

receptors similar to E. coli and two independent of receptor methylation, the CheC/CheD

system and the CheV system. Furthermore, in B. subtilis, sensory adaptation is not de-

termined by the level of receptor methylation but the location of methylation at receptors.

In eukaryotic cells, spatial dynamics play a major role in chemotaxis in addition to the

temporal dynamics of signalling and adaptation. For instance, in the chemotactic organ-

ism Dictyostelium, the chemotaxis is determined by the polarisation of the cell, i.e. the

activation and localisation of several molecules, including kinases and phosphatases of

phospholipids and G-protein coupled receptors in the cell membrane to different sides of

the cell (Funamoto et al., 2002). The dynamics of adaptation has been suggested to be

essential in producing a gradient of signalling molecules across the cell during chemotaxis

in gradients (Xiong et al., 2010).

Modelling E. coli chemotaxis exemplifies that the dynamics of cell signalling cannot al-

ways be described by a mass-action or Michaelis-Menten kinetics typically used for chemi-

cal reactions in diluted solutions and enzyme-catalysed reactions, respectively. As we have

seen for the dynamics of the receptor methylation level, the rates of receptor modification

depend on the activity state of receptors, even though according to a Michaelis-Menten

dynamics, enzymes should be saturated and rates of modification constant, as the number

of receptors exceed the number of modification enzymes by far. This is likely due to the
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modification enzymes being tethered to receptors with slow exchange rates (Schulmeister

et al., 2008).

Understanding chemotaxis in bacteria can be crucial as it is often needed for virulence of

infections by pathological species (O’Toole et al., 1999; Pittman et al., 2001; Williams et al.,

2007). Furthermore, bacteria secrete and sense small molecules of their own and other

species called autoinducers, which trigger collective responses once a critical cell density

is reached, a process called quorum sensing. Chemotaxis has been implicated in quorum

sensing (Park et al., 2003). For instance, Tsr, one of the major chemotaxis receptors,

is needed for quorum sensing of a specific autoinducer in E. coli (Hegde et al., 2010).

This is interesting as quorum sensing has been shown to reduce virulence of pathogenic

species in mixed populations of bacteria, suggesting a possibility of medical therapies (Ng

and Bassler, 2009). Finally, bacteria are remarkable as they can utilise a number of

substances for growth. It is interesting to think about using particular bacteria species, e.g.

Pseudomonas (Liu and Parales, 2009), or reengineering chemotaxis pathways by synthetic

biology approaches (Sinha et al., 2010) for bacteria to sense and transform environmental

pollutants. These are exciting areas of potential medical and industrial applications of

bacterial chemotaxis.
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A. Whole-pathway model for chemotactic

signalling

We consider the following reactions (Fig. A.1): (1) auto-phosphorylation of CheA and

formation of CheA-P (concentrations [Ap]) when receptors are active, (2) phosphorylation

of CheY and formation of CheY-P ([Yp]), (3) association of CheY-P and CheZ ([YpZ]),

leading to the dephosphorylation of CheY-P and dissociation into CheY and CheZ, and

(4) phosphorylation of CheB and formation of CheB-P ([Bp]).

Assuming the law of mass-action, our model comprises the following set of ordinary

differential equations:

d[Ap]

dt
= A · kA ([A]tot − [Ap])︸ ︷︷ ︸

CheA autophosphorylation

− kY ([Y ]tot − [Yp]) [Ap]︸ ︷︷ ︸
CheY phosphorylation

− kB ([B]tot − [Bp]) [Ap]︸ ︷︷ ︸
CheB phosphorylation

(A.1)

d[Yp]

dt
= kY ([Y ]tot − [Yp]) [Ap]︸ ︷︷ ︸

CheY phosphorylation

− k1 ([Z]tot − [YpZ]) [Yp]︸ ︷︷ ︸
CheY-P/CheZ
association

+ k2[YpZ]︸ ︷︷ ︸
CheY-P/CheZ
dissociation

(A.2)

d[YpZ]

dt
= k1([Z]tot − [YpZ])[Yp]︸ ︷︷ ︸

CheY-P/CheZ association

− (k2 + k3) [YpZ]︸ ︷︷ ︸
CheY-P/CheZ dissociation

and CheY-P dephosphorylation

(A.3)

d[Bp]

dt
= kB ([B]tot − [Bp]) [Ap]︸ ︷︷ ︸

CheB phosphorylation

− k−B[Bp],︸ ︷︷ ︸
spontaneous

dephosphorylation of CheB-P

(A.4)

where the ki (with i = 1, 2, 3, A,B,−B and Y ) are kinetic rate constants for the individual

reactions. Modelling the activity of chemoreceptors, we note that the dynamics of receptor

switching between its on and off states, as well as ligand binding, are fast. Therefore,

there is a time-scale separation between fast receptor activity dynamics and the slower

phosphorylation and receptor methylation reactions. Hence, we can use the quasi-steady

state activity A of a receptor complex as a function of ligand concentration and receptor
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A.1. RESCALING OF PARAMETERS

CheA ⇀↽ CheA-P

CheA-P + CheY −→ CheA + CheY-P

CheA-P + CheB −→ CheA + CheY-B

CheY-P + CheZ −→ CheY-P-CheZ

CheY-P-CheZ −→ CheY + CheZ

CheB-P −→ CheB

Figure A.1.: Schematics of the chemotaxis pathway (left) and biochemical reactions for phos-
phorylation and dephosphorylation in the pathway (right). When receptors activate the kinase
CheA, it autophosphorylates. CheA-P can pass on a phosphoryl group to CheY and CheB, which
subsequently become phosphorylated. CheY-P diffuses through the cell to rotary motors, and
promotes tumbling. CheY-P can bind to its phosphatase CheZ (indicated by the dotted line in
the pathway), and is subsequently dephosphorylated. CheB-P dephosphorylates spontaneously.
Additionally, receptors can be modified by methylation and demethylation by enzymes CheR and
CheB, respectively.

methylation level determined by the MWC model:

A =
1

1 + eF
, with (A.5)

F = N

[
ϵ(m) + νa ln

(
1 + c/Koff

a

1 + c/Kon
a

)
+ νs ln

(
1 + c/Koff

s

1 + c/Kon
s

)]
, (A.6)

as described in Eq. 2.2 and 2.3 in chapter 2. Furthermore, the adaptation dynamics by

methylation and demethylation of receptors, catalysed by CheR and CheB-P, respectively,

is given by (cf. Eq. 2.6 in chapter 2),

dm

dt
= gR (1−A)︸ ︷︷ ︸

methylation by CheR

− ĝB[Bp]
2A,︸ ︷︷ ︸

demethylation by CheB-P

(A.7)

= gR(1−A)− gBA
3 (A.8)

where gR and ĝB are effective rate constants, and ĝB[Bp]
2 ≈ gBA

2 as [Bp] is approximately

proportional to the receptor complex activity (Fig. A.2 D). The parameter values we used

for the whole-pathway model are listed in Table A.1.

A.1 Rescaling of parameters

In order to reduce the number of parameters, we normalise the protein concentrations by

their respective total concentrations in the cell, [Ap] → [ap] = [Ap]/[A]tot, [Yp] → [yp] =

[Yp]/[Y ]tot, [YpZ] → [ypz] = [YpZ]/[Y ]tot and [Bp] → [bp] = [Bp]/[B]tot. Furthermore, we
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rescale the time by the autophosphorylation rate of CheA, kA, t → τ = kA ·t, and introduce

rescaled rate constants according to k1 → κ1 = k1[Y ]tot/kA, k2 → κ2 = k2/kA, k3 → κ3 =

k3/kA, kY → κY = kY [A]tot/kA, kB → κB = kB[A]tot/kA and k−B → κ−B = k−B/kA.

Overall, this transformation yields dimensionless kinetic variables and parameters by mea-

suring phosphorylated protein fractions in units of total protein concentrations and rate

constants relative to the autophosphorylation rate constant of CheA. Using the ratios of

total protein concentrations, α1 = [Y ]tot/[A]tot, α2 = [B]tot/[A]tot, and α3 = [Z]tot/[Y ]tot,

we obtain the transformed set of equations

d

dτ
[ap] = A · (1− [ap])− α1κY (1− [yp]) [ap]− α2κB (1− [bp]) [ap] (A.9)

d

dτ
[yp] = κY (1− [yp]) [ap]− κ1 (α3 − [ypz]) [yp] + κ2[ypz] (A.10)

d

dτ
[ypz] = κ1(α3 − [ypz])[yp]− (κ2 + κ3) [ypz] (A.11)

d

dτ
[bp] = κB (1− [bp]) [ap]− κ−B[bp]. (A.12)

The transformed equation for the methylation level of receptors is obtained by replacing

time t → τ , gR → γR = gR/kA and ĝB → γB = ĝBB
2
tot/kA in Eq. A.7, yielding

dm

dτ
= γR (1−A)− γB[bp]

2A. (A.13)

The new parameter values of this transformed model are listed in Table A.1.

A.2 Steady-state concentrations

We analysed the steady-state concentrations of phosphorylated proteins and CheY-P/CheZ

pairs. Setting the time-derivatives of Eq. A.9-A.12 to zero, we solved for the steady-state

concentrations of CheA-P, CheY-P and CheB-P, as well as the concentration of CheY-

P/CheZ pairs as a function of the receptor complex activity A. The results are shown

in Fig. A.2. CheA-P shows a strong non-linear dependence on the activity A, i.e., it is

strongly activated at high receptor complex activity. It is also notable that only a small

fraction of the CheA concentration is phosphorylated at maximal receptor activity A = 1,

which nicely fits estimates from in vitro measurements (Wolanin et al., 2006). All other

phosphorylated fractions of protein, as well as the concentration of CheY-P/CheZ pairs

are approximately proportional to receptor complex activity A.
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Table A.1.: Parameters of the whole-pathway model for chemotaxis signalling for Eq. A.1-A.7,
including references to literature values where possible, and rescaled parameters for Eq. A.9-A.13.
The literature values are given in parentheses where different from our parameter values. k1
was determined by the condition that at steady-state with A∗=1/3, the concentration [Yp]

∗ =
[Y ]tot/3 (Sourjik and Berg, 2002a). gR was determined by the steady-state activity A∗ and the
value for ĝB .

Parameter Value Reference Scaled
parameter

Value

[A]tot 5 µM Sourjik and Berg (2002a) α1 1.94
[B]tot 0.28 µM Li and Hazelbauer (2004) α2 0.056
[Y ]tot 9.7 µM Li and Hazelbauer (2004) α3 0.113
[Z]tot 1.1 µM Sourjik and Berg (2002a) κY 50
kA 10 s−1 Wolanin et al. (2006) κB 7.5
kY 100 µM−1 s−1 Stewart et al. (2000) κ1 4.88
kB 15 µM−1 s−1 Stewart et al. (2000) κ2 0.05
k1 5.0 µM−1 s−1 Sourjik and Berg (2002a) κ3 20
k2 0.5 s−1 Sourjik and Berg (2002a) κ−B 0.135
k3 200 s−1 (30 s−1) Sourjik and Berg

(2002a)
γR 0.0006

k−B 1.35 s−1 (0.35 s−1) Bray and Bour-
ret (1995); Stewart (1993)

γB 0.0246

gR 0.006 s−1 —
ĝB 3.14 µM−2 s−1 —

A.3 Time courses and steady-state assumption

We tested if the phosphorylation and CheY-P/CheZ association reactions, Eq. A.9-A.12,

are in quasi-steady state compared to the slower methylation and demethylation reactions

of receptors, Eq. A.13. For this purpose, we increased all rate constants for phosphory-

lation, dephosphorylation, as well as CheY-P/CheZ association and dissociation by one

order of magnitude, such that concentrations are forced to be in quasi steady-state at each

time point. Comparing the results to the time courses with the original parameter values

shown in Fig. A.3, we found only minor deviations (exemplified in insets). Therefore,

the above mentioned reactions are indeed in quasi-steady state to a good approxima-

tion. This, together with the approximate linearity of the steady-state concentration of

CheY-P/CheZ pairs as function of receptor complex activity A, permits us to replace the

number of FRET (CheY-P/CheZ) pairs by the receptor complex activity (with appro-

priate proportionality factors) as assumed in chapter 2. Similarly, Eq. 2.6 in chapter 2

arises by replacing CheB-P concentration in the demethylation rate in Eq. A.13 by the

receptor complex activity A, where the methylation and demethylation rate constants are
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Figure A.2.: Steady-state concentrations of individual proteins and CheY-P/CheZ pairs for the
whole-pathway model for Eq. A.9-A.12, as a function of the receptor complex activity A. Note the
different scales of the vertical axes.

gR = γRkA and gB = γBkA ([bp]
∗/A)2 ≈ γBkA, respectively. The approximation holds

true as the steady-state value of the rescaled variable [bp]
∗ scales roughly linearly with A

and almost all CheB is phosphorylated at A = 1.
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Figure A.3.: Time courses for the concentrations of phosphorylated proteins and CheY-P/CheZ
pairs according to the whole-pathway model Eq. A.9-A.13, using ambient MeAsp concentration
c0=0.1 mM and two different concentration step sizes, ∆c=0.05 mM (column A) and ∆c=0.4 mM
(column B). Thick solid curves represent the model with parameter values as in table A.1, thin
dashed lines assume the quasi steady-state for all phosphorylation reactions (phosphorylation and
dephosphorylation kinetic constants in the model increased by a factor 20). Insets zoom into the
dynamics around the addition or removal time, respectively. Concentrations were normalised to
their respective adapted values.
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B. Additional data and best fit of dynamic

MWC model

In Fig. B.1 we show additional dose-response data measured as described in chapter 2.

The model in panel A is the dynamic MWC model from chapter 2. Panel B shows the

best fit of the dynamic MWC model, where we used the demethylation rate constant gB,

the coefficients determining the receptor complex size as a linear function of ambient con-

centration, and the ligand dissociation constants of Tar and Tsr as fitting parameters. We

found that parameters overall stay similar to the previously used parameters; in particular

the ligand dissociation constants do not change significantly. The main difference is larger

receptor complex sizes than determined by fitting the static MWC model to individual

addition dose-response curves. To compensate for the larger complex sizes, the adaptation

rates are also slightly increased, marking the trade-off between increased activity responses

by larger complex sizes and reduced activity responses by faster adaptation (controlling

for MeAsp concentration dynamics).
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Figure B.1.: Dynamic MWC model. (A) Same as Fig. 2.4 in chapter 2 (main panel), however
showing additional data. Shown are dose-response curves for wild-type cells to step changes of
MeAsp concentration (after adaptation to ambient concentrations 0, 0.03, 0.1, 0.3, 0.5, 1, 2 and
5 mM). Symbols represent averaged response from FRET data as measured by Sourjik and Berg
(2002b). Filled and open circles correspond to response to addition and removal of attractant,
respectively. Solid lines represent the dynamic MWC model of mixed Tar/Tsr-receptor complexes,
including ligand rise (addition) and fall (removal), as well as adaptation (receptor methylation)
dynamics. (B) Best global fit of dynamic MWC model with fitting parameters gB=0.127 s−1,
Koff

a =0.02 mM, Kon
a =0.50 mM, Koff

s =216 mM, Kon
s =106 mM, as well as a0 = 22 and a1=9.6

mM−1 for the total receptor complex size N = a0 + a1c0.
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C. Unsuitable receptor signalling models

We tested four alternative models for receptor signalling in an attempt to find a model,

which describes the gradually reduced response amplitudes upon MeAsp removals at in-

creasing ambient concentrations (cf. Fig. 2.4 in chapter 2) without relying on adaptation

and MeAsp dynamics. Dose-response curves for each model are shown in Fig. C.1. We

found none of the models produced a satisfying fit to the experimental data.

C.1 Saturation model

While ligand dissociation constants for the Tar receptor were previously determined from

FRET data by Keymer et al. (2006), slightly different values may lead to saturation

of Tar receptors at smaller concentrations of MeAsp and reduced response amplitudes.

Figure C.1 A shows a fit of the static MWC model to addition as well as removal data.

We fitted the parameters of the linear relationship between the receptor complex size and

ambient concentration c0, as well as the ligand dissociation constants for the Tar receptor,

Kon
a andKoff

a . We find an unsatisfying fit, especially for the response to addition of MeAsp.

Furthermore, the determined receptor complex size decreases with ambient concentration

(see Inset). This contradicts experiments which indicate an increasing receptor complex

size (Endres et al., 2008), as well as stabilisation of polar receptor clusters with increasing

receptor methylation level (corresponding to increasing ambient concentration; Shiomi

et al., 2005).

C.2 Imprecise adaptation model

Figure C.1 B shows the effect of imprecise adaptation on the response amplitudes. For sim-

plicity, we assume a linear decline of the adapted activity A∗(c0) with increasing ambient

concentration c0, with A∗(0) = 1/3 and a 20 percent imprecision at concentration 10 mM

(see Inset). We observe that imprecise adaptation has only a small effect on the response
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C.3. PHASE-SEPARATION MODEL

amplitudes. Furthermore, imprecise adaptation tends to increase response amplitudes at

high ambient concentrations due to normalisation by a decreasing value of A∗(c0).

C.3 Phase-separation model

In this model, a fraction w of mixed receptor complexes composed of Tar and Tsr receptors

form homogeneous receptor complexes of only Tar and only Tsr receptors at high ambient

concentrations. This separation reduces activity amplitudes at concentrations below the

ligand dissociation constant Koff
s for Tsr, as complexes of Tsr do not contribute to the

response. The total activity from mixed and homogeneous receptor complexes is

A = [1− w(c0)]A
mixed + w(c0)

(
νaA

Tar + νsA
Tsr
)
. (C.1)

The individual activities of mixed, Amixed, and homogeneous receptor complexes of Tar,

ATar, and Tsr, ATsr, were calculated according to the static MWC model. Mixed receptor

complexes are composed of Tar and Tsr with ratio νa : νs=1:1.4. Homogeneous receptor

complexes of Tar and Tsr, respectively, have the same ratio. The resulting dose-response

curves for this model are shown in Fig. C.1C, assuming the probability of separation w(c0)

from the Inset. As the ambient concentration does not correspond nicely to the data points

with decreasing response, we did not find a well-fitting function w(c0). Furthermore, this

model predicts a smaller response to MeAsp when cells are pre-adapted to a ligand for

which Tsr, but not Tar is sensitive (e.g. Serine). This contradicts experiments, which

show that cells remain sensitive (Sourjik and Berg (2004) and Victor Sourjik, manuscript

in preparation).

C.4 Receptor lattice model

In the static MWC model the absolute cooperativity of the receptors in a complex results

in a saturating response upon removal of attractant (cf. Inset of Fig. 2.4 in chapter 2).

Here, we consider an Ising lattice of NT two-state receptor trimers, where each trimer

is coupled to neighbouring trimers with finite interaction strength. We ask if a weaker

coupling between receptors can describe the dose-response data, and in particular the

reduced response amplitudes for removals.

Figure C.1D shows dose-response curves for different interaction strengths. We find,

that in order to describe the addition data, a strong interaction between neighbouring
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Figure C.1.: Alternative models for receptor signalling. (A) Saturation model. MWC model
with optimised dissociation constants Koff

a = 0.056 mM and Kon
a = 0.15 mM. (A Inset) Total

receptor complex size N = a0 + a1c0 for fitted parameters a0=37 and a1=-0.78 mM−1. (B)
Imprecise adaptation model. (B Inset) The steady-state activity decreases with ambient concen-
tration, A∗(c0)/A

∗(0) = 1 − (0.2/10 mM)c0, where 20% imprecision is reached at 10 mM. (C)
Phase-separation model. Receptor complexes are found in separated complexes with probability w
depending on the ambient concentration c0. Receptor complex size is assumed constant, N =18, for
mixed and homogeneous receptor complexes. (C Inset) The probability w(c0) = p1+p2

c0
c0+p3

, with

p1=0.01, p2=0.99, p3=0.8 mM. (D) Receptor lattice model. Mixed trimers of Tar and Tsr dimers
are arranged on a 4×4 square lattice with periodic boundary conditions. The average activity of
the lattice was calculated by exact enumeration. An attractive interaction between neighbouring
trimers in the same state was assumed, with interaction energy J=-0.4 kBT (solid line), J=-
0.35 kBT (dotted line), and J=-0.3 kBT (dashed line). (D Inset) Corresponding distributions of
activities from all states (lattice configurations) when adapted to zero ambient concentration.
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C.4. RECEPTOR LATTICE MODEL

trimers has to be assumed. In this limit, the lattice model resembles the MWC model

where all lattice sites are infinitely strongly coupled with all other receptors. In the Inset

of Fig. C.1D we show the activity distribution from all lattice states. As expected, the

distribution becomes increasingly bimodal around the two states with all receptors on and

all receptors off.

In the following we describe the details of the model and our simulations. We used a

4-by-4 square lattice of mixed receptor trimers with periodic boundary conditions. Each

trimer consisted of Tar and Tsr receptors with probabilities νa and νs, respectively, where

νa:νs=1:1.4 is the in vivo ratio of Tar and Tsr in a cell. The distribution of Tar and Tsr

in trimers on the lattice was the same in all simulations. Furthermore, each trimer has

only two states, on and off. We numerate all possible states of the whole lattice (in total

n = 216 states for a 4-by-4 lattice, i.e. NT=16 receptor trimers). Assuming the lattice is

in equilibrium, we can calculate the distribution of individual lattice states, and hence the

average activity of the lattice. The probability of each lattice state depends on its energy,

which has a contribution from the free-energy difference between the on and off states

of each trimer and from the interaction between neighbouring trimers. The free-energy

difference of trimer j is computed according to the MWC model

F j = ϵ(mj) +

3∑
l=1

ln

(
1 + c/Koff

l

1 + c/Kon
l

)
, (C.2)

where the index l = a, s describes the receptor type, Tar or Tsr, within a trimer. The

average methylation level of receptors in a trimer j is denoted by mj . The methylation

energy is ϵ(mj) = 3 · (1− 0.5mj).

The interaction energy between neighbouring trimers depends on their respective states.

If they are in the same state (both on or both off), we assign the interaction energy J , if

they are in different states, we assign the interaction energy −J . The total energy Ek of

a lattice state k is determined by summing over all free-energy differences of individual

trimers and interaction energies between neighbouring trimers.

The methylation level mj of each trimer j cannot be calculated analytically due to the

finite coupling strength between receptor trimers, and hence was determined numerically

using our adaptation model

dmj

dt
= gR(1−Aj)− gB(A

j)3. (C.3)
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APPENDIX C. UNSUITABLE RECEPTOR SIGNALLING MODELS

According to this model, the methylation level mj of the trimer j depends on its average

activity

Aj =
1

Z

n∑
k=1

sjke
−Ek , (C.4)

where Z =
∑

k e
−Ek is the partition function, i.e. the sum over all lattice states and

sjk is the state (1=on, 0=off) of trimer j in lattice state k. The steady-state of Eq. C.3

determines the methylation level of each trimer, and therefore the adapted free-energy

difference ϵ(mj) in Eq. C.2. The average activity of the whole lattice is determined by

calculating the average trimer activity

A =
1

NT

NT∑
j=1

Aj , (C.5)

where NT is the number of trimers on the lattice.
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D. Parameters for static and dynamic MWC

model

In Tab. D.1, we list all parameters of the static and dynamic MWC model used for Fig. 2.2-

2.9 in chapter 2 and Fig. B.1 A, as well as Fig. B.1 B and C.1 A in Appendices B and C,

respectively.

Table D.1.: Fitting parameters for the static and dynamic MWC model. Parameters include
dissociation constants for Tar and Tsr receptors in the on and off states, respectively, Koff

a , Kon
a ,

Koff
s , Kon

s (Keymer et al., 2006), the parameters of the linear approximation of the dependence
of the receptor complex size on ambient concentration, N(c0) = a0 + a1c0, as well as methylation
and demethylation constants, gR and gB in Eq. 2.6 in chapter 2, respectively. Fitted parameters
are indicated by crosses.

Parameter
Fig. 2.2-2.9, B.1 A Fig. B.1 B Fig. C.1 A

static dynamic dynamic (best fit) static (best fit)

Koff
a [mM] 0.02 0.02 0.02 x 0.056 x

Kon
a [mM] 0.5 0.5 0.50 x 0.15 x

Koff
s [mM] 100 100 216 x 100

Kon
s [mM] 106 106 106 x 106

a0 17.5 x 17.5 22 x 37 x
a1 [mM−1] 3.35 x 3.35 9.6 x -0.78 x

gR [s−1] N/A 0.0069 0.0079 N/A
gB [s−1] N/A 0.11 x 0.127 x N/A
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E. Comparison of different adaptation

models

In Fig. 2.11 in chapter 2 we compare different adaptation models to FRET data by col-

lapsing the time courses, plotting the rate of activity change dA/dt as a function of the

activity A. Here, we describe in detail the different models analysed. In all of the models

we assume precise adaptation, i.e. that methylation and demethylation rates only depend

on the receptor complex activity. For each adaptation model, we use a least-squares fit to

the FRET data to determine the methylation and demethylation rate constants, assuming

an adapted activity A∗=1/3 and receptor complex size N = 17.8. The parameters and

quality of fit χ2 for each of the models are listed in Table E.1.

Our model Eq. 2.6 in chapter 2

dm

dt
= gR(1−A)− gBA

3 (E.1)

is denoted by “(1− A), A3”, referring to the activity dependence of the methylation and

demethylation rates, respectively. The best fit to the rate of activity change from FRET

(fitting parameter gR=0.0019 s−1, resulting in gB=0.030 s−1 and quality of fit χ2=0.0021),

and a representative time course for this model are shown in Fig. 2.11 A and B in chapter 2,

respectively (red solid lines). Note that this model describes the experimental data well,

even at high activities. This model also shows a strong asymmetry in the time course with

slow adaptation to addition and rapid adaptation to removal of MeAsp (cf. Fig. 2.7 in

chapter 2).

We considered a variation of this model, denoted by “(1−A), A2”, without cooperativity

of CheB-P molecules,
dm

dt
= gR(1−A)− gBA

2, (E.2)

where only one CheB-P molecule is necessary for demethylation of a receptor. Together
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Table E.1.: Parameters of the adaptation models when fitted to the rate of activity change from
FRET shown in Fig. 2.11 A in chapter 2. The size of receptor complexes was assumed to be
N = 17.8 in all models. a K1 = Kr/[T ] and K2 = Kb/[T ], where Kr=0.39 µM and Kb=0.54 µM
are taken from Emonet and Cluzel (2008). b K2 = Kb/[T ] with Kb=1.25 µM (Barkai and Leibler,
1997). The concentration of receptors is [T ]=17 µM.

Adaptation model gR (fitted) other parameters χ2

“(1−A), A3” 0.0019 s−1 gB=0.030 s−1 0.0021

“(1−A), A2” 0.0031 s−1 gB=0.017 s−1 0.0022

“ 1−A
1−A+K1

, A
A+K2

” 0.0188 s−1 gB=0.020 s−1 0.0036

K1= 0.0229a

K2= 0.0318a

“ 1−A
1−A+K1

, A2

A+K2
” 0.0046 s−1 gB=0.014 s−1 0.0025

K1= 0.0229a

K2= 0.0318a

“const, A
A+K2

” 0.00318 s−1 gB=0.014 s−1 0.0032

K2= 0.0735b

with one factor A from the activity of receptors, this leads to a demethylation rate pro-

portional to A2. While this model is almost as well-suited to describe the rate of activity

change from FRET as our main model (fitting parameter gR=0.0031 s−1; gB=0.017 s−1,

χ2=0.0022; see Fig. 2.11 A in chapter 2), the asymmetry of adaptation to addition and

removal of MeAsp is less pronounced (Fig. 2.11 B in chapter 2). Fitting dose-response

data using this adaptation model resulted in adaptation rates which were much higher

than observed in FRET time courses.

Furthermore, the model denoted by “(1−A), A” without CheB-P feedback (Endres and

Wingreen, 2006; Hansen et al., 2008; Vladimirov et al., 2008; Kalinin et al., 2009)

dm

dt
= gR(1−A)− gBA (E.3)

yields the fitting parameter gR=0.0048 s−1, resulting in gB=0.0091 s−1 and quality of fit

χ2=0.0025. Both, the fit of this model to the rate of activity change from FRET, and

time courses, are described worse than with the other two models.

Another class of adaptation models was proposed by Emonet and Cluzel (2008), who

introduced the idea of ultrasensitivity to the adaptation dynamics of CheR and CheB-P.

We denote by “(1−A)/(1−A+K1), A/(A+K2)” the following model

dm

dt
= gR

1−A

1−A+K1
− gB

A

A+K2
. (E.4)
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APPENDIX E. COMPARISON OF DIFFERENT ADAPTATION MODELS

In this model, CheR (CheB) methylates (demethylates) inactive (active) receptors with

Michaelis-Menten-type kinetics with Michaelis-Menten constant K1 (K2). There is no

CheB-P feedback on the demethylation rate. If K1 and K2 are small, the adaptation rate

depends only weakly on the receptor activity. This results in long adaptation (relaxation)

times, as well as strong sensitivity to protein fluctuations of either CheR or CheB through

rates gR and gB. We used K1 = Kr/[T ] = 0.0229 and K2 = Kb/[T ] = 0.0318, where

we took Kr and Kb from Emonet and Cluzel (2008) and the concentration of receptors is

[T ]=17 µM. As shown in Fig. 2.11 A in chapter 2, the model without CheB-P feedback

“(1−A)/(1−A+K1), A/(A+K2)” does not describe the rate of activity change from FRET

(fitting parameter gR=0.0188 s−1; gB=0.020 s−1, χ2=0.0036). Furthermore, the time

course shown in panel B looks qualitatively different from experimental time courses (cf.

Fig. 2.7 in chapter 2).

Adding CheB-P feedback introduces another factor A in the demethylation rate. We

denote this model by “(1−A)/(1−A+K1), A
2/(A+K2)”, which corresponds to

dm

dt
= gR

1−A

1−A+K1
− gB

A2

A+K2
. (E.5)

This model fits the FRET activity change in Fig. 2.11 A in chapter 2 relatively well (fitting

parameter gR=0.0046 s−1; gB=0.014 s−1, χ2=0.0025). However, this model is not very

different from the simpler model “(1 − A), A2”, as the CheB-P feedback introduces a

strong activity dependence.

In the model suggested by Barkai and Leibler (1997) CheR methylation does not depend

on the activity state of receptors, and hence active, as well as inactive receptors get

methylated. The kinetics of the methylation level is described by

dm

dt
= gR − gB

A

A+K2
, (E.6)

where the parameter value K2 = Kb/[T ]=0.074 with Kb=1.25 µM (Barkai and Leibler,

1997), and [T ] as above. Note that this model is a special case of above model “(1−A)/(1−

A+K1), A/(A+K2)” with K1=0. Fitting to the FRET activity change yields gR=0.00318

s−1, resulting in gB=0.014 s−1 and quality of fit χ2=0.0032. The predicted data collapse,

as well as time courses are very similar to the model “(1−A)/(1−A+K1), A/(A+K2)”,

and is therefore not plotted in Fig. 2.11 in chapter 2.
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F. Analysis of adaptation noise

The receptor methylation level is subject to fluctuations due to the random nature of

methylation and demethylation events. However, the adaptation dynamics also filters

fluctuations in ligand concentration (translated into fluctuations of the receptor activity),

averaging over and smoothing high-frequency noise by its slower dynamics. Here, we

estimate the variance of the methylation level of a receptor complex due to these two

noise sources. Equation 2.6 in chapter 2 describes the deterministic kinetics of the average

methylation level of receptors in a mixed receptor complex,

dm

dt
= gR(1−A)− gBA

3. (F.1)

Now, we consider the kinetics of the total methylation level of a receptor complex. The

total methylation levelM is the sum of the individual methylation levelsmi of all receptors

in a complex, M =
∑N

i=1mi, with N the number of receptors per complex. The rate of

change of the total methylation level is

dM

dt
= NRkR(1−A)−NBkBA

3, (F.2)

where we explicitly indicated the number of the modifying CheR and CheB-P molecules,

NR and NB, respectively. The modification rates for a single receptor are related to

the rates for a receptor complex via gR = NRkR/N and gB = NBkB/N , respectively.

To describe fluctuations about the mean total methylation level due to methylation and

demethylation events, we introduce the noise η(t) and write

dM

dt
= NRkR(1−A)−NBkBA

3 + η(t). (F.3)

We assume η(t) is the sum of individual noise terms contributed from each modifying

enzyme CheR and CheB-P acting on groups of receptors, so-called assistance neighbour-
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APPENDIX F. ANALYSIS OF ADAPTATION NOISE

hoods (Li and Hazelbauer, 2005; Endres and Wingreen, 2006; Hansen et al., 2008),

η(t) =

NR∑
i=1

ηR(i)(t) +

NB∑
i=1

ηB(i)(t), (F.4)

where ηR(i) and ηB(i) are independent Gaussian white noises with zero mean ⟨ηR(i)(t)⟩ =

⟨ηB(i)(t)⟩=0, autocorrelations ⟨ηR(i)(t)ηR(i)(t
′)⟩ = qR · δ(t − t′) and ⟨ηB(i)(t)ηB(i)(t

′)⟩ =

qB · δ(t− t′), and vanishing cross-correlations. To estimate the noise intensities qR and qB,

we assume that the number of methyl groups, which are added (removed) by each enzyme

molecule CheR (CheB-P) in a time interval, are Poisson distributed, i.e. their variance

equals the mean number of added (removed) methyl groups. Therefore, the noise intensity

qR associated with each CheR molecule is determined by its mean rate of methylation,

qR = kR(1−A∗). (F.5)

Similarly, the noise intensity qB for demethylation is

qB = kBA
∗3, (F.6)

where we only consider noise from one molecule of CheB-P. We are interested in the steady-

state fluctuations of the total methylation level. Therefore, we linearise Eq. F.2 around

the steady state to obtain the kinetics of the deviation δM from the mean methylation

level

d(δM)

dt
= −

(
NRkR + 3NBkBA

∗2
)
δA+ η(t) (F.7)

= −
(
NRkR + 3NBkBA

∗2
)(∂A

∂F

)(
∂F

∂M
· δM +

∂F

∂c
· δc
)
+ η(t). (F.8)

In the second step, we used that the receptor complex activity is subject to fluctuations

from the methylation level, as well as the ligand concentration. The derivative of receptor

complex activity with respect to the free-energy difference (at steady state) is given by

∂A

∂F
= −A∗(1−A∗). (F.9)

136



The total methylation level of a receptor complex enters the free-energy difference through

F = N − 1

2
M︸ ︷︷ ︸

=
∑N

i=1(1−
1
2
mi)

+νaN ln

(
1 + c/Koff

a

1 + c/Kon
a

)
+ νsN ln

(
1 + c/Koff

s

1 + c/Kon
s

)
, (F.10)

where mi are the methylation levels of receptors i. Therefore, the derivative of the free-

energy difference F with respect to M is given by

∂F

∂M
= −1

2
. (F.11)

The derivative of the free-energy difference F with respect to c is given by

∂F

∂c
= νaN

(
1

c+Koff
a

− 1

c+Kon
a

)
+ νsN

(
1

c+Koff
s

− 1

c+Kon
s

)
≡ µ. (F.12)

In summary, the kinetics of δM is determined by

d(δM)

dt
= −

(
NRkR + 3NBkBA

∗2
)
A∗(1−A∗)︸ ︷︷ ︸

≡λ

·
(
1

2
δM − µδc

)
+ η(t). (F.13)

To calculate the variance of the methylation level, we Fourier transform Eq. F.13,

−iωδM̂ = −λ

(
1

2
δM̂ − µδĉ

)
+ η̂, (F.14)

where the hat symbol denotes the Fourier transform. Hence, the fluctuations in methyla-

tion level and in concentration are correlated, as part of the fluctuations in methylation

level are due to fluctuations in the concentration. The Fourier transform of the (time-

dependent) fluctuations in methylation level is

δM̂ =
η̂ + λµδĉ

−iω + λ/2
. (F.15)

The power spectrum SM of fluctuations in M is defined as the Fourier transform of the

autocorrelation function ⟨δM(0)δM(t)⟩ and is given by

SM (ω) =
QM + λ2µ2⟨|δc|2⟩

ω2 + λ2/4
. (F.16)
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APPENDIX F. ANALYSIS OF ADAPTATION NOISE

Here, QM denotes the noise intensity of methylation and demethylation, and λ2µ2⟨|δc|2⟩

is due to the uncertainty from the ligand concentration1, where we assumed the two

contributions are independent. In this formula, we see explicitly the noise filtering of

fluctuations in ligand concentration by the kinetics of the methylation level, given by the

frequency-dependent factor.

In the following, we calculate the variance of the methylation level of a receptor complex

only due to methylation and demethylation events. The variance of the activity of receptor

complexes due to methylation, as well as ligand noise, will be considered in Appendix H.

As η(t) is composed of independent white noises, its total noise intensity QM is the sum

of the individual noise intensities,

QM = NRqR +NBqB = 2NRqR = 2NRkR(1−A∗). (F.18)

The last equality uses the fact that at steady state methylation and demethylation rates

balance each other in Eq. F.2. To calculate the variance of the methylation level we need

to integrate the power spectrum over all frequencies ω,

⟨δM2⟩ =
∫

dω

2π

QM

ω2 + λ2/4
=

QM

λ
, (F.19)

and obtain

⟨δM2⟩ =
2NRqR(

NRkR + 3NBkBA∗2
)
A∗(1−A∗)

=
2gR(

gR + 3gBA∗2
)
A∗ (F.20)

=
2

A∗ + 3(1−A∗)
= 0.87.

Here, we used that the adapted activity is A∗ ≈ 1/3, and that the relation between the

methylation and demethylation rate constants gR and gB is given by the steady state of

1Fluctuations of the ligand concentration characterised by ⟨δc2⟩ can be quantified as presented in Berg
and Purcell (1977) and Bialek and Setayeshgar (2005) by

⟨δc2⟩ = α

πaDτ
· c, (F.17)

which corresponds to the time-averaged low-frequency limit of the noise power spectrum (Bialek and
Setayeshgar, 2005, 2008). The parameter a is the size of the ligand binding site of a receptor, D is the
ligand diffusion constant, and τ is an averaging time due to slower downstream reactions. The parameter
α is of the order one and depends on further receptor details (Bialek and Setayeshgar, 2005, 2008). Using

α ≈ 1, a=1 nm, D=100 µm2/s, a typical ligand concentration c =
√

Koff
a Kon

a = 0.1 mM (Vladimirov
et al., 2008), and τ = 1/kA = 0.1 s corresponding to slow autophosphorylation of CheA, we obtain
⟨δc2⟩ = 5 · 10−6 mM2.
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the methylation kinetics Eq. F.1,

gB = gR
1−A∗

A∗3 . (F.21)

This result can be compared to results for other adaptation models previously reported in

the literature. Hansen et al. (2008) use a linear dependence of methylation and demethy-

lation rates on the receptor activity, instead of the nonlinear dependence in Eq. F.1,

dm

dt
= gR(1−A)− gBA. (F.22)

In an equivalent approach using assistance neighbourhoods as described above, the authors

calculate the variance of the total methylation level to be

⟨δM2⟩ = 1

|∂F/∂M |
= 2. (F.23)

Hence, the variance of the total methylation level of a receptor complex is reduced for

adaptation kinetics with strong activity dependence of the demethylation rate (Eq. F.1),

compared to the linear adaptation model (Eq. F.22). The reason for this is the stronger

negative feedback, leading to the rapid attenuation of fluctuations in the receptor complex

activity. Mathematically, the prefactor of the linearised demethylation rate in Eq. F.20

leads to the reduction of the variance of the methylation level of the receptor complex.
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G. Weber’s law for Tar and Tsr receptors

For the ambient concentrations of MeAsp used in the FRET experiments, the activity

response and hence the threshold stimulus ∆ct is mainly determined by Tar receptors as

detailed in chapter 3 (Eq. 3.7 and Fig. 3.2). However, at higher ambient concentrations

MeAsp binding to Tsr becomes important and the threshold stimulus is given by

∆ct =
∆A/[NA∗(1−A∗)]

νa

(
c0

c0+Kon
a

− c0
c0+Koff

a

)
+ νs

(
c0

c0+Kon
s

− c0
c0+Koff

s

) · c0. (G.1)

Figure G.1 shows the threshold stimulus for mixed Tar/Tsr receptor complexes, as well

as the threshold stimuli for homogeneous Tar and Tsr receptor complexes as a function

of the ambient concentration. The sizes of homogeneous Tar and Tsr receptor complexes

were set equal to their respective fractions in the mixed receptor complexes. It is apparent

that Tar receptors are responsible for the threshold stimulus at ambient concentrations

below one milli-molar, as their threshold stimulus corresponds to the threshold stimulus

for mixed receptor complexes. In that range homogeneous Tsr complexes have a much

higher and constant threshold stimulus, reflecting the low affinity for MeAsp binding.

In contrast, at high ambient concentrations the threshold stimulus for homogeneous Tsr

receptor complexes equals the threshold stimulus for mixed receptor complexes. This

reflects that Tar receptors are saturated and Tsr receptors are able to bind MeAsp.
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Figure G.1.: Threshold stimulus ∆ct as obtained by linear expansion of the receptor complex
activity around the adapted activity A∗ for threshold response ∆A=0.08 A∗. Shown are the
threshold stimuli for mixed Tar/Tsr receptor complexes (MWC; thick solid line, cf. Fig. 3.2 in
chapter 3), as well as those for homogeneous Tar and Tsr receptor complexes (dashed and dotted
lines, respectively).
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H. Derivation of the threshold activity from

signalling noise

The activity threshold ∆A defined in Fig. 3.1 in chapter 3 defines the minimum activity

response to a stimulus in order for the cell to distinguish the stimulus reliably from the

background noise of the activity. Here, we estimate the magnitude of the threshold,

assuming that the response ∆A due to a stimulus needs to be above random fluctuations

of the activity. We focus on noise from stochastic methylation and demethylation events

by individual CheR and CheB-P molecules (Hansen et al., 2008), as well as ligand binding

noise.

Fluctuations of the receptor methylation level, as well as ligand concentration, translate

into fluctuations of the receptor activity. We first derive the variances of the methylation

level and ligand concentration. Next, we calculate the variance of the activity of an

individual receptor complex. Finally, we estimate the variance of the activity from all

receptor complexes in a cell due to both sources of noise.

Variance of methylation level. As derived in Appendix F, Eq. F.1-F.15, the Fourier

transform of fluctuations in the receptor complex methylation level δM are given by

δM̂ =
η̂ + λµδĉ

−iω + λ/2
, (H.1)

where λ =
(
NRkR + 3NBkBA

∗2)A∗(1 − A∗) is the time scale of adaptation and µ =

νaN
(

1
c+Koff

a
− 1

c+Kon
a

)
+νsN

(
1

c+Koff
s

− 1
c+Kon

s

)
is the derivative of the receptor free-energy

difference with respect to concentration.

Time-averaged and total noise. If for a moment we just consider fluctuations η(t) due to

the methylation and demethylation enzymes, we can estimate the time scale of this noise

by looking at time-averaged noise and total noise. The power spectrum SM of fluctuations
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in M only due to η(t), which is defined as the Fourier transform of the autocorrelation

function ⟨δM(0)δM(t)⟩ is

SM (ω) =
QM

ω2 + λ2/4
. (H.2)

The noise intensity QM of η(t) is Eq. F.18

QM = NRqR +NBqB = 2NRqR. (H.3)

If there is averaging of the noise by down-stream signalling over a typical duration

time τ , longer than the correlation time τc = 2λ−1 of the noise, we can approximate the

variance of the methylation level entering those reactions to lowest order by

⟨δM2⟩ ≈ SM (ω → 0)

τ
=

8NRqR
λ2τ

, (H.4)

as only low frequencies of the methylation noise would contribute to the noise in the down-

stream processes (e.g. activity from FRET). We calculated the correlation time for the

methylation noise and obtain

τc =
2

λ
=

2(
NRkR + 3NBkBA∗2

)
A∗(1−A∗)

=
2

N
(
gR + 3gBA∗2

)
A∗(1−A∗)

≈ 21 s.

(H.5)

This is much longer than the typical time-scales of down-stream reactions, and therefore

we need to calculate the variance of methylation noise by integrating the power spectrum

over all frequencies,

⟨δM2⟩ =
∫

dω

2π
SM (ω) =

QM

λ
, (H.6)

and obtain for the variance of the total methylation level

⟨δM2⟩ = 2NRqR(
NRkR + 3NBkBA∗2

)
A∗(1−A∗)

=
2gR(

gR + 3gBA∗2
)
A∗ . (H.7)

For our parameters the variance of methylation level only due to the dynamics of the

methylation and demethylation enzymes is ⟨δM2⟩ ≈0.87.

Variance of ligand concentration. The variance of the ligand concentration is given

by (Berg and Purcell, 1977; Bialek and Setayeshgar, 2005)

⟨δc2⟩ = α

πaDτ
· c, (H.8)
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where a is the size of the ligand binding site of a receptor, D is the ligand diffusion

constant, and τ is an averaging time due to slower downstream reactions. The parameter

α is of the order one and depends on further receptor details. It is reduced for cooperative

ligand binding by receptors (Bialek and Setayeshgar, 2008) and is increased when ligand,

once receptor-bound, is allowed to rebind to the same or a different receptor again (Bialek

and Setayeshgar, 2005; Endres and Wingreen, 2008). The latter effect is enhanced by

the close proximity of receptors in cell-polar clusters. Using α ≈ 1, a=1 nm, D=100

µm2/s, a typical ligand concentration c =
√

Koff
a Kon

a = 0.1 mM (Vladimirov et al., 2008),

and τ = 1/kA = 0.1 s corresponding to slow autophosphorylation of CheA, we obtain

⟨δc2⟩ = 5 · 10−6 mM2.

Variance of the activity of one receptor complex. The fluctuations of the activity δA

of one receptor complex around its adapted state due to fluctuations of the methylation

level and ligand binding are given by

δA =
∂A

∂M
δM +

∂A

∂c
δc. (H.9)

Fourier transforming this equation and using Eq. H.1, we find

δÂ = −A∗(1−A∗)

(
−1

2

η̂ + λµδĉ

−iω + λ/2
− µδĉ

)
= A∗(1−A∗)

η̂/2 + iωµδĉ

−iω + λ/2
(H.10)

The power spectrum of the activity is then

SA(ω) = (A∗(1−A∗))2
QM/4 + (ωµ)2Sc(ω)

ω2 + λ2/4
, (H.11)

where we assumed that the fluctuations η(t) due to the action of methylation and demethy-

lation enzymes and ligand binding δc(t) are uncorrelated. The variance of the activity of

a receptor complex is the integral over the spectrum,

⟨δA2⟩ ≈ (A∗(1−A∗))2
(
QM/(4λ) + µ2⟨δc2⟩

)
. (H.12)

For the integration of the second term we used that the ligand noise spectrum is mostly

flat up to high frequencies, where it falls off, due to the fast binding dynamics. On the

other hand, the ω-dependent pre-factor varies only at low frequencies and is one at high

frequencies. Hence, we make a small error by neglecting the small interval where the ω-
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dependent pre-factor varies in the integration, as most of the contribution to the activity

noise comes from high frequencies. Integrating the spectrum of the ligand noise yields

the variance ⟨δc2⟩. Effectively, this treatment neglects the reduction of ligand fluctua-

tions by the adaptation dynamics at low frequencies. The activity noise from stochastic

methylation and demethylation events is independent of the size of the receptor complex,

since CheR and CheB-P molecules act on groups of receptors (assistance neighbourhoods;

Hansen et al., 2008). The activity noise from ligand binding is about an order of magni-

tude smaller than the contribution from methylation. For our parameters the variance of

the activity of a receptor complex due to methylation and ligand binding noise is

⟨δA2⟩ ≈ 4/81 · (0.189 + 0.015) = 0.01. (H.13)

Variance of activity of all receptor complexes in a cell. We assume that fluctuations

from individual receptor complexes are independent. There are about 8,000 receptors

(receptor dimers) per cell (Li and Hazelbauer, 2004). Assuming 20 receptors per recep-

tor complex, there are approximately NMWC=400 receptor complexes. The normalised

variance of the activity Acell is then

⟨δA2⟩cell
A2

cell

=
NMWC⟨δA2⟩
(NMWCA∗)2

=
⟨δA2⟩

NMWCA∗2 . (H.14)

For our parameters this yields ⟨δA2⟩cell/A2
cell ≈0.0002, corresponding to a (normalised)

standard deviation of
√
⟨δA2⟩cell/Acell ≈0.015, and an activity threshold

∆A/A∗ =
√

2⟨δA2⟩cell/Acell ≈ 0.021. (H.15)

This is a lower bound for the activity threshold as it was derived by only considering fluc-

tuations from stochastic methylation and demethylation events, as well as ligand binding

events. Other sources of noise, e.g. from stochastic phosphorylation and dephosphoryla-

tion events, are likely to further increase the threshold response. In chapter 2 we used

∆A/A∗=0.08.
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I. Probing the adaptation dynamics using

exponential ramps

Time-dependent concentrations can be used to probe the interplay of signalling and adap-

tation dynamics in the chemotaxis pathway. As shown by Block et al. (1983), exponential

ramps, i.e. exponentially increasing or decreasing concentrations of attractant in time,

lead to approximately constant (time-independent) rotational bias of the motor. Here, we

consider exponential ramps c(t) = c0e
±rt, with the initial concentration c0 and rates +r

and −r for up and down ramps, respectively. This time-dependent stimulus is the input

to the dynamic MWC model with precise adaptation, whose receptor complex activity

A(m, c) =
1

1 + eF (m,c)
(I.1)

is given in terms of the free-energy difference

F (m, c) = N ·
[
1− 0.5m+ νa ln

(
1 + c/Koff

a

1 + c/Kon
a

)
+ νs ln

(
1 + c/Koff

s

1 + c/Kon
s

)]
, (I.2)

depending on the time-dependent concentration c(t) and average receptor methylation

level m(t) (cf. Eq. 3.5 in chapter 3).

Figure I.1 A shows simulated time courses. For slow ramp rates, the adaptation dynam-

ics is able to catch up with the changing concentration, resulting in a new steady-state of

the activity characterised by an approximately constant activity change. For high rates,

the new steady-state is only valid for a short period of time. Specifically, for down ramps

the activity subsequently goes back to the adapted pre-stimulus value, indicating that the

free-energy change due to the adaptation dynamics becomes faster than the free-energy

change due to concentration changes. This is expected as the concentration approaches

zero, and the sensitivity of receptors to detect further concentration changes is impaired.

For up ramps, after an initial drop the activity increases when the concentration increases
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Figure I.1.: Receptor complex activity for exponential concentration ramps, c(t) = c0e
±rt with

ramp rate ±r. Shown are results for up (+r, black) and down (−r, red) ramps for initial con-
centration c0=0.1 mM. (A) Time courses of activity for ramps starting at t=10 s with different
rates r. Dots indicate the times when dA/dt = 0 (steady-state) for the first time. (B) Steady-state
activity as function of rate r. (B Inset) Same as B, only for small rates. The dashed lines represent
the analytical result.

to values above the ligand dissociation constant of the on state of the Tar receptor, Kon
a ,

but below the ligand dissociation constant of the off state of the Tsr receptor, Koff
s . This

is due to the low sensitivity of receptor complexes towards MeAsp at these concentra-

tions. Ultimately, at very high MeAsp concentrations, Tsr starts to bind and the activity

decreases again.

Figure I.1 B shows the steady-state activity, defined as the receptor complex activity

when dA/dt=0 is reached for the first time, as a function of the ramp rate. We do not find

a threshold rate in the dynamic MWC model, below which the receptor complex activity

remains at the pre-stimulus value as was indicated by early experiments (Block et al.,

1983).

To obtain a additional insight, we analytically solve the dynamic MWC model for small

deviations from the adapted activity A∗, e.g. valid for small ramp rates. For this calcu-

lation, we restrict the concentration to Koff
a <<c<<Kon

a . In this regime, the free-energy

difference Eq. I.2 reduces to

F (m, c) = N ·
[
1− 0.5m+ νa ln

(
c/Koff

a

)]
. (I.3)

The rate of change of the free-energy difference is determined by the rates of change of

the receptor methylation level m and the concentration c,

dF

dt
=

∂F

∂m

dm

dt
+

∂F

∂ ln c

d ln c

dt
(I.4)
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with the partial derivatives given by

∂F

∂m
= −N

2
(I.5)

∂F

∂ ln c
=

νaN

Koff
a

. (I.6)

We can approximate the deviation of the rate of change of the methylation level from zero

(i.e., the steady-state) by linearisation

d(δm)

dt
=
(
gR + 3gBA

∗2
)
δA =

(
gR + 3gBA

∗2
) ∂A

∂F
F, (I.7)

where F = F−F ∗ is the deviation of the free-energy difference from its adapted value (cor-

responding to the adapted activity A∗). Furthermore, the derivative of the exponential

concentration c(t) = c0e
±rt is

d ln c

dt
= ±r. (I.8)

Subsequently, we obtain the following dynamics for the deviation of the free-energy differ-

ence from steady-state
dF

dt
= −F

τ
± br, (I.9)

where we introduced the abbreviations

τ =

[
N

2
A∗(1−A∗)

(
gR + 3gBA

∗2
)]−1

(I.10)

b =
νaN

Koff
a

= const. (I.11)

Equation I.9 is solved by the function

F (t) = ±τbr(1− e±t/τ ). (I.12)

For times t larger than the time scale τ , i.e. after a transient period, this yields a time-

independent change in the free-energy difference, which is proportional to the ramp rate

F (t) = ±τb · r ∝ ±r. (I.13)

This result indicates that in the limit of small deviations from steady-state, the activity

assumes a new steady-state, shifted relative to its adapted pre-stimulus value when subject
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to an exponential concentration ramp. Furthermore, the associated free-energy difference

increases or decreases linearly with the rate r of the exponentially increasing or decreasing

concentration, respectively. Consistent with our simulations, we do not obtain a threshold

for the ramp rate, below which F ≈ 0 (cf. Fig. I.1 B, Inset).
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J. Response function and noise spectra for

the full pathway model

J.1 Stochastic differential equations

In chapter 4 we presented a simplified model of the chemotaxis pathway to illustrate

signalling and noise transmission. Here, we discuss a model for the full signalling pathway

and present the response functions and noise spectra. Equation 4.3 in chapter 4 describes

the total signalling activity Ac of all receptor complexes in a cell in response to changes

in the methylation level of the complexes and ligand concentration,

dAc

dt
=

Nc∑
i=1

∂A

∂M

dMj

dt
+

∂A

∂c

dcj
dt

+ ηAj (t). (J.1)

The dynamics of the methylation level of a complex j is described by

dMj

dt
= γR(N −Aj)− γBAjB

2
p + ηMj (t) = γR(N −Aj)−

γB
V 2
cell

AjN
2
Bp

+ ηMj (t) (J.2)

Note that here we explicitly include the number of CheB-P molecules NBp in the demethy-

lation term, with Vcell the cell volume (cf. Eq. 4.5 in chapter 4 and Eq. A.7 in Appendix A).

We denote the activity of complex j by Aj . The dynamics of the concentration according

to Eq. 4.4 in chapter 4 is
dcj
dt

=
d⟨c⟩
dt

+ ηcj (t). (J.3)
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In addition, we take into account phosphorylation and dephosphorylation of CheA, CheY

and CheB, which are described by the following equations:

dNAp

dt
= Ac

(
kA
NcN

)
(NA,tot −NAp)−

(
kY
Vcell

)
(NY,tot −NYp)NAp +

−
(

kB
Vcell

)
(NB,tot −NBp)NAp + ηA,p(t) + ηA,Yp(t) + ηA,Bp(t) (J.4)

dNYp

dt
=

(
kY
Vcell

)
(NY,tot −NYp)NAp − k−Y NYp − ηA,Yp(t) + η−Yp(t) (J.5)

dNBp

dt
=

(
kB
Vcell

)
(NB,tot −NBp)NAp − k−BNBp − ηA,Bp(t) + η−Bp(t) (J.6)

with Ni the number of molecules of species i in a cell volume. These equations are

similar to the model presented in Appendix A. Note, however, that we neglected the

binding of CheY-P to its phosphatase CheZ (cf. Appendix A, Eq. A.3) for simplicity, and

describe dephosphorylation of CheY-P by the effective dephosphorylation rate k−Y NYp .

As shown in Appendix O, this simplification has no qualitative effect on the response

function. ηA,p(t) describes the noise associated with CheA autophosphorylation, ηA,Bp(t)

and ηA,Yp(t) noise generated in phosphorylation of CheB and CheY by CheA, respectively,

and η−Bp(t) and η−Yp(t) the noise associated with dephosphorylation. Note that some

noise terms appear in two equations. This is due to the fact that we assign noise terms

to a specific process, e.g. phosphorylation of CheY by CheA. Hence, the corresponding

noise term ηA,Yp(t) appears in the dynamics of CheA-P and of CheY-P. As a positive

fluctuation in the dynamics of CheA-P due to phosphorylation of CheY corresponds to

a negative fluctuation in the dynamics of CheY-P, they appear with opposite signs. The

noise intensities and parameter values of the model are summarised in Sec. J.6. Finally,

the dynamics of the motor is described in terms of the probability of the tumbling mode

Pt

dPt

dt
= k+(NYp)(1− Pt)− k−(NYp)Pt + ηPt(t), (J.7)

where we use experimentally derived switching rates k+ and k− as a function of CheY-P

concentration (cf. next section and Fig. 4.1 in chapter 4).

J.2 Model for motor switching

Turner et al. (1999) presented a model for motor switching to explain the observed motor

switching rates. The model for motor switching is an MWC model, where 26 subunits
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of the motor assume one of two states corresponding to CW and CCW rotation. While

they bind the signalling molecule CheY-P independently of each other, the switch of states

occurs cooperatively. The authors derive the overall rates of switching (averaging over all

possible CheY-P occupancy states) as

k+(Yp) = k+(0) exp

[
mcoop ln

(
1 +

µ[Yp]
KCCW

1 +
Yp

KCCW

)]
(J.8)

k−(Yp) = k−(0) exp

[
mcoop ln

(
1 +

µ[Yp]
KCCW

1 +
Yp

KCW

)]
, (J.9)

wheremcoop = 26 is the number of motor subunits, −kBT ln(µ) is the free-energy difference

of switching per molecule of CheY-P, and KCCW and KCW are the dissociation constants

for binding CheY-P in the CCW and CW state, respectively.

Motor switching rates k+ and k− have been derived experimentally as a function of

the concentration of a signalling mutant CheY∗∗, which is constitutively active (Turner

et al., 1999), as shown in Fig. 4.1 in chapter 4. To obtain the switching rates in terms of

CheY-P, rather than signalling mutant CheY∗∗, we rescaled the dissociation constants of

CheY binding to the motor such that the switching rates are equal, i.e. CW bias about

1/2, at CheY-P concentration 3.2 µM (Cluzel et al., 2000). We fitted the above model

to the experimental data in Fig. 4.1 and the CW bias at 33 ◦C (Turner et al., 1999) and

used the rates k+ and k− in our full pathway model in Eq. J.7.

J.3 Linearisation of the model

Similar to the presentation for the simplified model in chapter 4, we linearise Eq. J.1-

J.7 and insert the Fourier transforms of the dynamical variables to obtain the Fourier

transformed linear response functions χ̂R(ω) and noise spectra SR(ω) for the signalling
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J.4. RESPONSE FUNCTIONS

pathway. The linearised equations read

d

dt
δAc = −

∑
j

∂A

∂M

(
λ1δAj + λ9δNBp

)
+

∂A

∂c

dδcj
dt

+
∂A

∂M
ηMj (t) + ηAj (t) (J.10)

d

dt
δNAp = λ2δAc − λ3δNAp + λ4δNYp + λ10δNBp + ηAp(t) + ηA,Yp(t) + ηA,Bp(t)(J.11)

d

dt
δNYp = λ5δNAp − λ6δNYp − ηA,Yp(t) + η−Yp(t) (J.12)

d

dt
δNBp = λ11δNAp − λ12δNBp − ηA,Bp(t) + η−Bp(t) (J.13)

d

dt
δPt = λ7δNYp − λ8δPt + ηPt(t) (J.14)

with linearised rate constants given in Table J.3.

J.4 Response functions

The response functions can be calculated from the linearised equations J.10-J.14 with-

out noise after inserting the Fourier transforms of the dynamical variables. The Fourier

transformed response functions of CheA-P, CheY-P and the motor are

χ̂Ac(ω) =
−iωNc

∂A
∂c − λ9Nc

∂A
∂M χ̂NBp

(ω)

λ1
∂A
∂M − iω

(J.15)

χ̂NAp
(ω) =

(
−iωλ2Nc

∂A

dc
(λ6 − iω) (λ12 − iω)

)
·((

λ1
∂A

∂M
− iω

)
· [(λ3 − iω) (λ6 − iω) (λ12 − iω)− λ10λ11 (λ6 − iω)+

−λ4λ5 (λ12 − iω)] + λ2λ9λ11Nc
∂A

∂M
(λ6 − iω)

)−1

(J.16)

χ̂NYp
(ω) =

λ5

λ6 − iω
χ̂Na(ω) (J.17)

χ̂Pt(ω) =
λ7

λ8 − iω
χ̂Ny(ω) (J.18)

χ̂NBp
(ω) =

λ11

λ12 − iω
χ̂NAp

. (J.19)

From these equations, we observe that CheA-P, CheY-P and the motor are in a cascade, as

new filters proportional to (λi − iω)−1 are introduced which simply multiply the response

function of the previous layer of the cascade. The characteristic frequencies λi contain the

forward and backward rates of the relevant processes.
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J.5 Noise spectra

The noise spectra can be calculated from the linearised equations J.10-J.14. After inserting

the Fourier transforms of the dynamical variables, calculating the absolute squared value

and averaging, we obtain the noise spectra for CheA-P, CheY-P and the motor

SAc(ω) =
(
|(λ3 − iω)(λ6 − iω)(λ12 − iω)− λ4λ5(λ12 − iω)− λ10λ11(λ6 − iω)|2 ·

Nc

[
ω2

(
∂A

∂c

)2

Sc(ω) + ω2 (Sa(ω) +QM )

]
+

+

∣∣∣∣−λ9Nc
∂A

∂M
[(λ3 − iω)(λ6 − iω)− λ4λ5]

∣∣∣∣2Q−Bp +

+

∣∣∣∣λ9λ11Nc
∂A

∂M
(λ6 − iω)

∣∣∣∣2QAp +

∣∣∣∣λ4λ9λ11Nc
∂A

∂M

∣∣∣∣2Q−Yp +

+

∣∣∣∣λ9Nc
∂A

∂M
[λ4λ5 + λ11(λ6 − iω)− (λ3 − iω)(λ6 − iω)]

∣∣∣∣2QA,Bp +

+

∣∣∣∣λ9λ11Nc
∂A

∂M
[(λ6 − iω)− λ4]

∣∣∣∣2QA,Yp

)
·∣∣∣∣(λ1

∂A

∂M
− iω

)
[(λ3 − iω)(λ6 − iω)(λ12 − iω)− λ10λ11(λ6 − iω)+

−λ4λ5(λ12 − iω)] + λ2λ9λ11Nc
∂A

∂M
(λ6 − iω)

∣∣∣∣−2

(J.20)

SNAp
(ω) =

(
Ncλ

2
2ω

2

(
∂A

dc

)2

|(λ6 − iω) (λ12 − iω)|2 Sc(ω)+

+ |λ2(λ6 − iω)(λ12 − iω)|2Nc

(
ω2Sa(ω) +QM

)
+

+

∣∣∣∣(λ1
∂A

∂M
− iω

)
(λ6 − iω)(λ12 − iω)

∣∣∣∣2QAp +

+

∣∣∣∣(λ6 − iω)

(
−λ2λ9Nc

∂A

∂M
+ λ10

(
λ1

∂A

∂M
− iω

))∣∣∣∣2Q−Bp +

+

∣∣∣∣λ4

(
λ1

∂A

∂M
− iω

)
(λ12 − iω)

∣∣∣∣2Q−Yp +

+

∣∣∣∣(λ6 − iω)(λ12 − iω)(λ1
∂A

∂M
− iω) + (λ6 − iω)(λ2λ9Nc

∂A

∂M
+

−λ10

(
λ1

∂A

∂M
− iω

)
)

∣∣∣∣2QA,Bp +

+

∣∣∣∣(λ1
∂A

∂M
− iω

)
(λ6 − iω)(λ12 − iω)− λ4

(
λ1

∂A

∂M
− iω

)
(λ12 − iω)

∣∣∣∣2QA,Yp

)
·∣∣∣∣(λ1

∂A

∂M
− iω

)
· [(λ3 − iω) (λ6 − iω) (λ12 − iω)− λ10λ11 (λ6 − iω)+

−λ4λ5 (λ12 − iω)] + λ2λ9λ11Nc
∂A

∂M
(λ6 − iω)

∣∣∣∣−2

(J.21)
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SNYp
(ω) =

λ2
5(ω)

|λ6 − iω|2
·

(
Ncλ

2
2ω

2

(
∂A

dc

)2

|(λ6 − iω) (λ12 − iω)|2 Sc(ω)+

+ |λ2(λ6 − iω)(λ12 − iω)|2Nc

(
ω2Sa(ω) +QM

)
+

+

∣∣∣∣(λ1
∂A

∂M
− iω

)
(λ6 − iω)(λ12 − iω)

∣∣∣∣2QAp +

+

∣∣∣∣(λ6 − iω)

(
−λ2λ9Nc

∂A

∂M
+ λ10

(
λ1

∂A

∂M
− iω

))∣∣∣∣2Q−Bp +

+

∣∣∣∣ λ5

λ6 − iω

[
λ4

(
λ1

∂A

∂M
− iω

)
(λ12 − iω)

]
+ 1

∣∣∣∣2Q−Yp +

+

∣∣∣∣(λ6 − iω)(λ12 − iω)(λ1
∂A

∂M
− iω) + (λ6 − iω)(λ2λ9Nc

∂A

∂M
+

−λ10

(
λ1

∂A

∂M
− iω

)
)

∣∣∣∣2QA,Bp +

+

∣∣∣∣ λ5

λ6 − iω

[(
λ1

∂A

∂M
− iω

)
(λ6 − iω)(λ12 − iω)+

−λ4

(
λ1

∂A

∂M
− iω

)
(λ12 − iω)

]
− 1

∣∣∣∣2QA,Yp

)
·∣∣∣∣(λ1

∂A

∂M
− iω

)
· [(λ3 − iω) (λ6 − iω) (λ12 − iω)− λ10λ11 (λ6 − iω)+

−λ4λ5 (λ12 − iω)] + λ2λ9λ11Nc
∂A

∂M
(λ6 − iω)

∣∣∣∣−2

(J.22)

SPt(ω) =
λ2
7SNYp

(ω) +QPt

|λ8 − iω|2
(J.23)

J.6 Parameters

Rate constants and total cell concentrations of proteins for the full pathway model are

given in Table J.1. The noise terms ηAj , ηcj , ηMj and ηPt are the same as in Eq. 4.26 and

4.29-4.31 in chapter 4 and their power spectra are given there. The noise associated with

phosphorylation and dephosphorylation ηAp , ηA,Bp ,ηA,Yp , η−Bp and η−Yp are assumed to be

Gaussian white noise terms with zero mean and autocorrelations ⟨ηi(t)ηi(t′)⟩ = Qiδ(t− t′)

with noise intensities Qi given in Table J.2. The linearised rate constants for the full

pathway model are given in Table J.3. Fitting parameters of the Fourier transformed

linear response functions in Fig. 4.2 are listed in Table J.4. In Table J.5 we list parameters

for Fig. 4.5 in chapter 4.
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APPENDIX J. RESPONSE FUNCTION AND NOISE SPECTRA FOR THE FULL
PATHWAY MODEL

Table J.1.: Parameters of the full pathway model.

Parameter Value

[A]tot 5 µM
[B]tot 0.28 µM
[Y ]tot 9.7 µM
NA,tot 4215
NB,tot 236
NY,tot 8177
Ntot = NNc 7027
Vcell 1.4 fl
k2 103 s−1

kA 10 s−1

kY 100 µM−1 s−1

kB 15 µM−1 s−1

k−Y 5 s−1

k−B 1.35 s−1

γR 0.006 s−1

γB 3.14 µM−2 s−1

Table J.2.: Intensities of Gaussian white noise terms in the full pathway model. Index “i”
represents the noise term ηi.

process index i noise intensity Qi

receptor switching a 2k2A
∗

ligand diffusion L 2Dsc0
receptor de/methylation M 2γR(N −A∗)

CheA autophosphorylation Ap A∗
c

(
kA
NcN

)
(NA,tot −N∗

Ap
)

CheY phosphorylation A, Yp

(
kY
Vcell

)
(NY,tot −N∗

Yp
)N∗

Ap

CheB phosphorylation A,Bp

(
kB
Vcell

)
(NB,tot −N∗

Bp
)N∗

Ap

CheY dephosphorylation −Yp k−Y N
∗
Yp

CheB dephosphorylation −Bp k−BN
∗
Bp

motor switching Pt
2k∗+k∗−
k∗++k∗−
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J.6. PARAMETERS

Table J.3.: Parameters of the linearised equations for the full pathway.

λi expression

λ1 γR + γBBP
∗2

λ2

(
kA
NcN

)
(NA,tot −N∗

Ap
)

λ3 A∗
c

(
kA
NcN

)
+
(

kY
Vcell

)
(NY,tot −N∗

Yp
) +

(
kB
Vcell

)
(NB,tot −N∗

Bp
)

λ4

(
kY
Vcell

)
N∗

Ap

λ5

(
kY
Vcell

)
(NY,tot −N∗

Yp
)

λ6

(
kY
Vcell

)
N∗

Ap
+ k−Y

λ7
1

Vcell

(
(1− P ∗)∂k+∂Yp

− P ∗ ∂k−
∂Yp

)
λ8 k+

∗ + k−
∗

λ9
2γBA∗B∗

p

Vcell

λ10

(
kB
Vcell

)
N∗

Ap

λ11

(
kB
Vcell

)
(NB,tot −N∗

Bp
)

λ12

(
kB
Vcell

)
N∗

Ap
+ k−B.

Table J.4.: Fitting parameters for response function of the full pathway model for Fig. 4.2 in
chapter 4.

Parameter Block et al. (1982) and Shimizu et al. (2010)
Segall et al. (1986) [s−1] 32 ◦C [s−1] 22 ◦C [s−1]

adaptation:
λ1(∂A/∂M) 0.178 0.018 0.0039
λ9 0.0263 0.0027 5.6 10−4

motor switching:
λ7 4.4 10−4 – –
λ8 2.111 – –

Table J.5.: Parameters for Fig. 4.5 in chapter 4. Parameters apart from those listed are as in
Table J.1.

Parameter standard parameters red line green line blue line
(black line)

k∗+ [s−1] 1.05 52.4 1.05 1.05
k∗− [s−1] 1.06 53.0 1.06 1.06
γR [s−1] 0.0069 0.0069 6.9 10−5 0.0069
γB [µM−2 s−1] 3.14 3.14 3.14 10−2 3.14
Ntot 7000 7000 7000 70
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K. Integrated signal response, variance and

SNR of the total receptor activity

K.1 Receptor complex size

The integrated response of the receptor activity to a step stimulus in chapter 4 is

∆A2
c =

∫ ∞

−∞
dω|χ̂Ac(ω)∆ĉ(ω)|2

=
πN2

C

(
∂A
∂c

)2
(αc)2

ωM
, (K.1)

where we inserted Eq. 4.17. Hence, the activity response scales as

∆A2
c ∝ (Ntot/N)2

(
N2
)2

/N ∝ N, (K.2)

where we used that NC = Ntot/N with Ntot the total number of receptors in a cell.

The variance of the receptor activity is given by the integral over the power spectrum

of activity fluctuations Eq. 4.36

⟨δA2
c⟩ =

NC

2π

∫ τ−1

−τ−1

dω
ω2
[
Sa(ω) +

(
∂A
∂c

)2
Sc(ω)

]
ω2 + ω2

M

+
NC

2π

∫ τ−1

−τ−1

dω

(
∂A
∂M

)2
QM

ω2 + ω2
M

, (K.3)

where we consider the frequency range relevant for motor switching indicated by τ−1.

The contribution from receptor switching is

⟨δA2
c⟩a =

NC

2π

∫ τ−1

−τ−1

dω
ω2Sa(ω)

ω2 + ω2
M

≈ 2k2A
∗
rNtot

πτ(k1 + k2)2
(K.4)

where we used Qa, inserted Eq. 4.25 for the power spectrum of receptor switching noise and

used that it is almost constant and equal to its zero-frequency value over the integration
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K.2. METHYLATION AND DEMETHYLATION RATE CONSTANTS

range. Furthermore, the factor ω2/(ω2+ω2
M ) ≈ 1 and A∗

r = A∗/N is the adapted activity

of an individual receptor. Hence, according to this simple calculation the contribution to

the variance from receptor switching is roughly constant with receptor complex size.

The contribution from ligand diffusion is

⟨δA2
c⟩c =

NC

2π

∫ τ−1

−τ−1

dω
ω2
(
∂A
∂c

)2
Sc(ω)

ω2 + ω2
M

≈ NC

(
∂A

∂c

)2

⟨δc2⟩, (K.5)

where ⟨δc2⟩ = 2c0/(Dsτ) is the variance of the ligand concentration measured during the

time interval τ . We used Eq. 4.28 and the same argument as for the switching noise to

calculate the integral. Hence, the contribution to the variance from the ligand diffusion

grows as ⟨δA2
c⟩c ∝ N3 as a result of incoherent addition of noise from different receptor

complexes and the sensitivity ∂A/∂c increasing as N2.

The contribution to the variance from receptor methylation is

⟨δA2
c⟩M =

NC

2π

(
∂A

∂M

)2 ∫ τ−1

−τ−1

dω
QM

ω2 +
(
ω1

∂A
∂M

)2
≈ 2NtotγR(1−A∗

r)A
∗
r

ω1

∂A

∂M
(K.6)

where we defined ω1 = γR + 3γBN
2(A∗

r)
2, inserted QM = 2γRN(1 − A∗

r) and ωM =

ω1(∂A/∂M). Hence, ⟨δA2
c⟩M grows approximately linearly with receptor complex size.

According to our simplified model, the SNR scales as SNR ∝ N/(const. + N + N3),

resulting in a non-monotonic behaviour.

K.2 Methylation and demethylation rate constants

The integrated signal response of the receptor activity Eq. K.1

∆A2
c =

πN2
C

(
∂A
∂c

)2
(αc)2

ω1
∂A
∂M

, (K.7)

where the numerator expresses the initial response of receptors of concentration changes

and the denominator the filtering by adaptation. The sensitivity ∂A/∂c = NA∗
r(1 −

A∗
r)h(c), where h(c) = ∂F/∂c, ω1 = γR + 3γBN

2(A∗
r)

2, and ∂A/∂M = NA∗
r(1 − A∗

r)/2.

The adapted activity can be obtained analytically for our simplified model from the steady
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APPENDIX K. INTEGRATED SIGNAL RESPONSE, VARIANCE AND SNR OF
THE TOTAL RECEPTOR ACTIVITY

state of the methylation dynamics Eq. 4.5 in chapter 4,

Ar
∗ =

3

√
1

2
β +

√
β2

4
+

β3

27
− β

3
3

√
1
2β +

√
β2

4 + β3

27

, (K.8)

and is only a function of the ratio β = γR/γB. Expanding the adapted activity around

A∗
r = 0 (for γR → 0) yields A∗

r ∝ γ
1/3
R , and around A∗

r = 1 (for γB → 0) yields A∗
r ∝ γB.

Similarly, ω1 ∝ γ
2/3
R (const.+γ

4/3
B ). Hence, ∂A/∂c ∝ γ

1/3
R (γB) and ω1∂A/∂M ∝ γ

4/3
R

(γB). The initial response to concentration changes decreases slower than adaptation

times, resulting in an increased signal response for vanishing γR. For vanishing γB, the

initial response to concentration changes decreases faster than adaptation speed, hence

yielding a vanishing signal response. The overall dependence of the integrated signal

response is ∆A2
c ∝ γ

−1/3
R (γB).

For the contributions to the variance of the receptor activity from receptor switch-

ing, ligand diffusion and receptor methylation dynamics we obtain ⟨δA2
c⟩a ∝ γ

1/3
R (γB),

⟨δA2
c⟩c ∝ γ

2/3
R (γ2B) and ⟨δA2

c⟩M ∝ γR (γ
2/3
B ), respectively.

According to our simplified model the SNR of the receptor activity goes as SNR ∝ γ
−2/3
R

(γ
4/3
B ).
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L. Master equation approach for receptor

signalling

Alternative to the Langevin approach, which assumes small fluctuations, we can write

down a Master equation for the pathway. Here, we focus on ligand and methylation

dynamics at the receptor cluster. Each state of the pathway is described by the variables

[Lj , Mj ] at each of the receptor complexes, where Lj = cjs
3 is the number of molecules in

a small volume at the receptor complex and Mj the total methylation level of the receptor

complex. Assuming for simplicity only one receptor complex, the Master equation for the

probability density p is

∂p(L,M, t)

∂t
= kD(s

3c0)p(L− 1,M, t)

+kD(L+ 1)p(L+ 1,M, t)

+γR[1−A(L,M − 1)]p(L,M − 1, t)

+γB[A(L,M + 1)]3p(L,M + 1, t)

−{kD(s3c0 + L) + kD(s
3c0) + γR[1−A(L,M)]

+γB[A(L,M)]3}p(L,M, t) (L.1)

For small noise, we obtain after expansion of the variables and using van Kampens Ω

expansion (van Kampen, 2007) for the variances of fluctuations in the number of ligand

molecules and the methylation level at steady state (Aquino et al., 2011)

⟨δL2⟩ = c0s
3 (L.2)

⟨δM2⟩ =
1

(3− 2A∗)β
+

γR(3− 2A∗)
(
∂A
∂c

)2
c

A∗2(1−A∗)[kD + γR(3− 2A∗)(1−A∗)β]β
, (L.3)

with β = 1/2 the free-energy difference due to adding one methyl group (in units of kBT ).

The first term is due to the processivity of modification enzymes and the second term is
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APPENDIX L. MASTER EQUATION APPROACH FOR RECEPTOR SIGNALLING

due to transmitted fluctuations in the activity from ligand noise. This corresponds to the

results from the Langevin approach, i.e. for ligand fluctuation we obtain the same variance

after integration of the power spectrum Eq. 4.28. For the receptor complex methylation

level, the power spectrum is according to our approach from Appendix J

SM (ω) =
QM + (γR + 3γBA

∗2)2
(
∂A
∂c

)2
Sc(ω)

ω2 + ω2
M

, (L.4)

and we obtain the same result for the variance of the methylation level after integration

of the power spectrum.
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M. Langevin description for motor dynamics

We chose to describe the dynamics of the motor using the Langevin equation 4.6 in chap-

ter 4
dPt

dt
= k+(1− Pt)− k−Pt + ηPt(t) (M.1)

with switching rates from CCW to CW (first term) and from CW to CCW (second term),

as well as an additive Gaussian white noise term (last term) with zero mean and autocor-

relation ⟨ηPt(t)ηPt(t
′)⟩ = QPtδ(t − t′) with QPt = 2k+(1 − P ∗

t ) = 2k+k−/(k+ + k−). For

constant switching rate constants k+ and k−, the power spectrum Pt is (cf. Eq. 4.38 in

chapter 4)

SPt(ω) =
QPt

ω2 + (k+ + k−)2
. (M.2)

To see that this is a valid description of the binary motor switching process, we can

calculate the spectrum precisely according to the derivation by Stratonovich (1963). For

a stochastic two-state process, whose time interval lengths in each of the two states τ1 and

τ2, respectively, are independent and identically distributed random variables, the power

spectrum is given in terms of the Fourier transforms of the waiting time distributions

Θ1(ω) and Θ2(ω) for each of the states,

S(ω) =
2

ω2(⟨τ1⟩+ ⟨τ2⟩)
ℜ [1−Θ1(ω)][1−Θ2(ω)]

1−Θ1(ω)Θ2(ω)
. (M.3)

Assuming for the motor that switching between the states CW and CCW, respectively,

follows exponential interval distributions determined by rates k+ and k−, the Fourier

transforms of the waiting time distributions are given by,

ΘCW (ω) =
k+

k+ − iω
, ΘCCW (ω) =

k−
k− − iω

, (M.4)
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Figure M.1.: Variance of the motor bias as a function of CheY-P noise intensity for Langevin
and two-state dynamics.

and the power spectrum is

S2(ω) =
2k+k−

(k+ + k−)

1

ω2 + (k+ + k−)2
. (M.5)

This result is equivalent to the spectrum obtained from the Langevin equation. Fur-

thermore, we tested numerically that the statistics of the Langevin equation and binary

process are equivalent for fluctuating rates k+ and k− due to the CheY-P dynamics. We

simulated time courses of CheY-P according to the simplified equation

dNYp

dt
= kY − k−Y NYp + ηYp(t) (M.6)

with rates kY = 5/s and kY such that ⟨NYp⟩∗/Vcell = ⟨[Yp]⟩∗ = 3.2µM . The noise

term ηYp(t) is Gaussian and white with zero mean and autocorrelation ⟨ηYp(t)ηYp(t
′)⟩ =

2kY αδ(t− t′) ≡ QY αδ(t− t′), where we varied α. Fluctuating CheY-P was translated into

the rates k+([Yp]) and k−([Yp]) according to Fig. 4.1 in chapter 4. The Langevin equation

was simulated using a Euler-Maruyama algorithm and the binary process using a Gillespie

algorithm. Figure M.1 shows the variances of both processes as obtained from 102 runs

for each value of α. As can be seen from the figure, the Langevin equation reproduces the

variance of the binary process of motor switching.
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N. Justification for linear noise

approximation for intracellular signalling

noise

To test whether the linearisation of Eq. J.11-J.13, which describe the phosphorylation and

dephosphorylation dynamics of the intracellular signalling proteins in the full pathway

model, is justified, i.e. fluctuations elicit a linear response, we simulated time courses

using a Euler-Maruyama algorithm (Kloeden and Platen, 1992) and numerically calcu-

lated power spectra of CheY-P. We introduced the various noise sources, ηAp , ηA,Yp ,

ηA,Bp ,η−B,η−Y , one by one and calculated spectra. Figure N.1 shows the analytically

and numerically calculated spectra. We found a good correspondence. Hence, the lineari-

sation of equations is justified.
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APPENDIX N. JUSTIFICATION FOR LINEAR NOISE APPROXIMATION FOR
INTRACELLULAR SIGNALLING NOISE
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Figure N.1.: Contributions from CheA autophosphorylation, CheY and CheB phosphorylation
and dephosphorylation to the power spectrum of CheY-P. Numerically calculated spectra from
simulated time courses (black) and analytical spectra (red) are shown. Analytical results from
Eq. J.22 in Appendix J and numerically calculated spectra from simulation and averaging of 100
time courses of duration 100 s (integration time step 0.001 s).
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O. High-frequency filters

In Fig. 4.2 A in chapter 4 it is apparent that our model does not fully reproduce the

high-frequency response. The high-frequency response seems to be a third-order filter in

the frequency range shown, while our model produces a second order filter due to the

CheY-P and motor switching dynamics. Here, we discuss where an additional filter could

originate.

We explicitly consider the CheY-P/CheZ binding step, and write down the equations

for the dynamics of the concentration of CheY-P, denoted by [Yp], and of CheY-P/CheZ

complex, [YpZ],

d[Yp]

dt
= kY ([Y ]tot − [Yp]) [Ap]− k1 ([Z]tot − [YpZ]) [Yp] + k2[YpZ] (O.1)

d[YpZ]

dt
= k1([Z]tot − [YpZ])[Yp]− (k2 + k3) [YpZ], (O.2)

where [Ap] is the concentration of phosphorylated CheA and ki are the rates of phos-

phorylation of CheY (kY ), CheY-P/CheZ complex formation (k1), dissociation of CheY-

P/CheZ complexes (k2) and CheY-P dephosphorylation (k3). Linearising around the

steady state ([Ap]
∗, [Yp]

∗, [YpZ]∗) yields

d∆[Yp]

dt
= kY (Ytot − [Yp]

∗)︸ ︷︷ ︸
λ1

∆[Ap]− (kY [Ap]
∗ + k1 (Ztot − [YpZ]∗))︸ ︷︷ ︸

λ2

∆[Yp]

+ (k1[Yp]
∗ + k2)︸ ︷︷ ︸

λ3

∆[YpZ] (O.3)

d∆[YpZ]

dt
= − (k1[Yp]

∗ + k2 + k3)︸ ︷︷ ︸
λ3+k3

∆[YpZ] + k1 (Ztot − [YpZ]∗)︸ ︷︷ ︸
λ4

∆[Yp]. (O.4)

Hence, we obtain for the Fourier transform of deviations in CheY-P concentration

∆ ˆ[Yp] =
λ1(−iω + λ3 + k3)

(−iω + λ2)(−iω + λ3 + k3)− λ3λ4
∆ ˆ[Ap]. (O.5)
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APPENDIX O. HIGH-FREQUENCY FILTERS

To make the analysis easier, we can factorise the polynomial in the denominator,

∆ ˆ[Yp] =
λ1(−iω + λ3 + k3)

(−iω + a1)(−iω + a2)
∆ ˆ[Ap], (O.6)

with a1,2 = (λ3 + k3 + λ2)/2±
√

(λ3 + k3 + λ2)2/4− λ2(λ3 + k3) + λ3λ4.

We are interested in the behaviour of the frequency-dependent prefactor. Specifically,

we ask if by considering the CheY-P/CheZ complex formation we obtain an additional

high-frequency filter compared to Eq. J.17. It is obvious from Eq. O.6 that under most

parameter combinations we obtain 1/ω behaviour at high frequencies. Hence, no additional

filter is introduced. A special case appears for λ3 + k3 ≫ a1, a2. Then 1/ω2 behaviour is

observed for medium frequencies max(a1, a2) ≫ ω ≫ λ3 + k3. Hence, an additional filter

appears. At high frequencies ω > λ3 + k3, the prefactor has 1/ω behaviour. However,

analysing the expressions for a1 and a2 reveals that max(a1, a2) is always greater or equal

to (λ3 + k3 + λ2)/2. Therefore, this case does not occur for our dynamics. In conclusion,

the CheY-P/CheZ complex formation does not introduce an additional high-frequency

filter.

Other processes in the signalling pathway neglected here are the potential oligomeri-

sation of CheY-P/CheZ complexes (Eisenbach, 2004; Blat and Eisenbach, 1996a,b) and

a potential slow release of CheY-P from the sensory complex as discussed by Blat et al.

(1998). Oligomerisation of CheY-P/CheZ complexes for efficient dephosphorylation is

similar to CheY-P/CheZ complex formation considered above, and by a similar discus-

sion does not introduce an additional high-frequency filter. However, a delayed release of

CheY-P represents effectively a step between CheY phosphorylation and motor switch-

ing in the signalling cascade, and hence could introduce a relevant filter if the process

is sufficiently slow. Another possibility to explain the steep frequency-dependence of the

response function is that the duration of experimental pulses was long enough to leave a

signature in the impulse response.
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P. Parameters for predicted input and

output distributions

Table P.1.: Parameters of the fit of the MWC model to the dose-response curves in Fig. 5.2
in chapter 5. Parameters adjusted were Λ, N and ∆ϵ in the activity A = Λ/(1 + e∆F ), where
∆F = N [∆ϵ+ ln ((1 + c/Koff)/(1 + c/Kon))], Koff = 0.02 mM and Kon = 0.5 mM (Keymer et al.,
2006). All energies are in units of kBT .

Strain ∆ϵ N

WT 0 µM 0.14 8.34
WT 100 µM -1.52 13.61
QEEE 0.24 5.2
QEQE -1.28 13.56
QEQQ -2.08 17.26
QQQQ -2.63 19.48

Λ 0.09

Table P.2.: Number of principle components used for fitting the MWC model to the dose-response
curves in Fig. 5.2 in chapter 5.

Strain #Principle components

WT 0 µM 3
WT 100 µM 4
QEEE 4
QEQE 3
QEQQ 4
QQQQ 3
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APPENDIX P. PARAMETERS FOR PREDICTED INPUT AND OUTPUT
DISTRIBUTIONS

Table P.3.: Parameters for the fit of the variance in the FRET activity in Fig. 5.4 in chapter 5

to the formula σ2
A =

[
α1

√
cdAdc

]2
+
[
α2

√
A
]2
.

Strain α1 α2

WT 0 µM 0.0063 0.0049
WT 100 µM 0.0030 0.0034
QEEE 0.0043 0.0057
QEQE 0.0061 0.0049
QEQQ 0.0243 0.0066
QQQQ 0.0158 0.0199

Table P.4.: Parameters of the fit of log-normal distributions to the predicted optimal input
distributions in Fig. 5.4 in chapter 5.

Strain µ σ2 ⟨x⟩ ⟨x2 − ⟨x⟩2⟩ ⟨x2 − ⟨x⟩2⟩/⟨x⟩2
WT 100 µM 2.399 0.232 0.0932 4.80·10−4 0.0552
QEQE 2.767 0.253 0.0649 2.79·10−4 0.0663
QEQQ 1.554 0.218 0.2166 0.0023 0.0488
QQQQ 0.503 0.224 0.6199 0.0197 0.0513
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D. Muzzey, C. A. Gómez-Uribe, J. T. Mettetal, and A. van Oudenaarden. A systems-level

analysis of perfect adaptation in yeast osmoregulation. Cell, 138:160–171, 2009.

J. P. Nataro. Colonization of mucosal surfaces, chapter 13, pages 179–186. ASM Press,

Washington, D.C., 2005.

W.-L. Ng and B. L. Bassler. Bacterial quorum-sensing network architectures. Annu Rev

Genet, 43:197–222, 2009.

C. O’Connor and P. Matsumura. The accessibility of Cys-120 in CheAS is important for

the binding of CheZ and enhancement of CheZ phosphatase activity. Biochemistry, 43:

6909–6916, 2004.

B. A. Olshausen and D. J. Field. Vision and the coding of natural images. Am Sci, 88:

238–245, 2000.

181



Bibliography

R. O’Toole, S. Lundberg, S. Fredriksson, A. Jansson, B. Nilsson, and H. Wolf-Watz. The

chemotactic response of Vibrio anguillarum to fish intestinal mucus is mediated by a

combination of multiple mucus components. J. Bacteriol., 181:4308–4317, 1999.

S. Pandya, P. Iyer, V. Gaitonde, T. Parekh, and A. Desai. Chemotaxis of rhizobium SP.S2

towards Cajanus cajan root exudate and its major components. Current Microbiology,

38:205–209, 1999.

S. Park, P. M. Wolanin, E. A. Yuzbashyan, P. Silberzan, J. B. Stock, and R. H. Austin.

Motion to form a quorum. Science, 301:188, 2003.

J. S. Parkinson. Signaling mechanisms of HAMP domains in chemoreceptors and sensor

kinases. Ann Rev Microbiol, 64:101–122, 2010.

J. Paulsson. Models of stochastic gene expression. Phys Life Rev., 2:157–175, 2005.

J. M. Pedraza and A. van Oudenaarden. Noise propagation in gene networks. Science,

307:1965–1969, 2005.

R. Phillips, J. Kondev, and J. Theriot. Physical Biology of the Cell, chapter 6.4, pages

219ff, 248ff. Garland Science, Taylor and Francis Group, LLC, 2009.

M. S. Pittman, M. Goodwin, and D. J. Kelly. Chemotaxis in the human gastric pathogen

Helicobacter pylori : different roles for CheW and the three CheV paralogues, and evi-

dence for CheV2 phosphorylation. Microbiology, 147:2493–2504, 2001.

S. L. Porter, G. H. Wadhams, and J. P. Armitage. Rhodobacter sphaeroides: complexity

in chemotactic signalling. Trends in Microbiology, 16:251 – 260, 2008.

L. K. Poulsen, F. Lan, C. S. Kristensen, P. Hobolth, S. Molin, and K. A. Krogfelt. Spatial

distribution of Escherichia coli in the mouse large intestine inferred from rRNA in situ

hybridization. Infect Immun, 62:5191–5194, 1994.

E. N. Pugh Jr, S. Nikonov, and T. D. Lamb. Molecular mechanisms of vertebrate pho-

toreceptor light adaptation. Curr Opin Neurobiol, 9:410–418, 1999.

J. F. Rawls, M. A. Mahowald, A. L. Goodman, C. M. Trent, and J. I. Gordon. In vivo

imaging and genetic analysis link bacterial motility and symbiosis in the zebrafish gut.

Proc Natl Acad Sci U S A, 104:7622–7627, 2007.

182



Bibliography

B. E. Scharf, K. A. Fahrner, L. Turner, and H. C. Berg. Control of direction of flagellar

rotation in bacterial chemotaxis. Proc Natl Acad Sci U S A, 95:201–206, 1998.

S. Schulmeister, M. Ruttorf, S. Thiem, D. Kentner, D. Lebiedz, and V. Sourjik. Protein

exchange dynamics at chemoreceptor clusters in Escherichia coli. Proc Natl Acad Sci U

S A, 105:6403–6408, 2008.

J. E. Segall, S. M. Block, and H. C. Berg. Temporal comparisons in bacterial chemotaxis.

Proc Natl Acad Sci U S A, 83:8987–8991, 1986.

W. Shi and D. R. Zusman. Sensory adaptation during negative chemotaxis in Myxococcus

xanthus. J Bacteriol, 176:1517–1520, 1994.

Y. Shi and T. Duke. Cooperative model of bacterial sensing. Phys Rev E, 58:6399–6406,

1998.

T. S. Shimizu, Y. Tu, and H. C. Berg. A modular gradient-sensing network for chemotaxis

in Escherichia coli revealed by responses to time-varying stimuli. Mol Syst Biol, 6:382,

2010.

D. Shiomi, S. Banno, M. Homma, and I. Kawagishi. Stabilization of polar localization of

a chemoreceptor via its covalent modifications and its communication with a different

chemoreceptor. J Bacteriol, 187:7647–7654, 2005.

J. Sinha, S. J. Reyes, and J. P. Gallivan. Reprogramming bacteria to seek and destroy an

herbicide. Nat Chem Biol, 6:464–470, 2010.

M. L. Skoge, R. G. Endres, and N. S. Wingreen. Receptor-receptor coupling in bacterial

chemotaxis: Evidence for strongly coupled clusters. Biophys J, 90:4317–4326, 2006.

V. Sourjik. Receptor clustering and signal processing in E. coli chemotaxis. Trends

Microbiol, 12:569–576, 2004.

V. Sourjik and H. C. Berg. Binding of the Escherichia coli response regulator CheY to

its target measured in vivo by fluorescence resonance energy transfer. Proc Natl Acad

Sci U S A, 99:12669–12674, 2002a.

V. Sourjik and H. C. Berg. Receptor sensitivity in bacterial chemotaxis. Proc Natl Acad

Sci U S A, 99:123–127, 2002b.

183



Bibliography

V. Sourjik and H. C. Berg. Functional interactions between receptors in bacterial chemo-

taxis. Nature, 428:437–441, 2004.

V. Sourjik, A. Vaknin, T. S. Shimizu, and H. C. Berg. In vivo measurement by FRET of

pathway activity in bacterial chemotaxis. Methods Enzymol, 423:363–391, 2007.

Y. Sowa and R. M. Berry. Bacterial flagellar motor. Q Rev Biophys, 41:103–132, 2008.

Y. Sowa, A. D. Rowe, M. C. Leake, T. Yakushi, M. H. A. Ishijima, and R. M. Berry. Direct

observation of steps in rotation of the bacterial flagellar motor. Nature, 437:916–919,

2005.

J. Spehr, S. Hagendorf, J. Weiss, M. Spehr, T. Leinders-Zufall, and F. Zufall. Ca2+-

calmodulin feedback mediates sensory adaptation and inhibits pheromone-sensitive ion

channels in the vomeronasal organ. J Neurosci, 29:2125–2135, 2009.

R. C. Stewart. Activating and inhibitory mutations in the regulatory domains of the

methylesterase in bacterial chemotaxis. J Biol Chem, 268:1921–1930, 1993.

R. C. Stewart, K. Jahreis, and J. S. Parkinson. Rapid phosphotransfer to CheY from a

CheA protein lacking the CheY-binding domain. Biochemistry, 39:13157–13165, 2000.

R. Stratonovich. Topics in the Theory of Random Noise, volume I. Gordon and Breach,

New York, 1963.

C. A. Studdert and J. S. Parkinson. Insights into the organization and dynamics of

bacterial chemoreceptor clusters through in vivo crosslinking studies. Proc Natl Acad

Sci U S A, 102:15623–15628, 2005.

C. A. Studdert and J. S. Parkinson. In vivo crosslinking methods for analyzing the assem-

bly and architecture of chemoreceptor arrays. Methods Enzymol, 423:414–431, 2007.

T. Tamura, K. Nakatani, and K. W. Yau. Calcium feedback and sensitivity regulation in

primate rods. J Gen Physiol, 98:95–13, 1991.
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