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ABSTRACT 

This thesis describes work on the development of several novel stimuli-responsive 

porous hydrogels prepared from oil-in-water (o/w) high internal phase emulsion 

(HIPE) as injectable scaffolds for soft tissue engineering. Firstly, by copolymerising 

glycidyl methacrylate (GMA) derivatised dextran and N-isopropylacrylamide 

(NIPAAm) in the aqueous phase of a toluene-in-water HIPE, thermo-responsive 

polyHIPE hydrogels were obtained. The temperature depended modulus of these 

porous hydrogels, as revealed by oscillatory mechanical measurements, indicated 

improvements of the mechanical properties of these hydrogels when heated from 

room temperature to human body temperature, as the polyNIPAAm copolymer 

segments starts to phase separate from the aqueous phase and causes the hydrogel to 

form a more compact structure within the aqueous phase of the polyHIPE. Secondly 

ion responsive methacrylate modified alginate polyHIPE hydrogels were prepared. 

The physical dimensions, pore and pore throat sizes as well as water uptakes of these 

ion responsive hydrogels can be controllably decreased in the presence of Ca2+ ions 

and are fully recovered after disruption of the ionic crosslinking using a chelating 

agent (sodium citrate). These ion-responsive polyHIPE hydrogels also possess good 

mechanical properties (modulus up to 20 kPa). Both of these polyHIPE hydrogels 

could be easily extruded through a hypodermic needle while breaking into small 

fragments (about 0.5 to 3.0 mm in diameter), but the interconnected porous 
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morphology was maintained after injection as revealed by SEM characterisation. 

Furthermore, the hydrogel fragments produced during injection can be crosslinked 

into a coherent scaffold under very mild condition using Ca2+ salts and alginate 

aqueous solution as the ionically crosslinkable adhesive. 

In order to increase the pore size of these covalently crosslinked polyHIPE hydrogels 

and also find a biocompatible nontoxic emulsifier as substitution to traditional 

surfactants, methyl myristate-in-water and soybean oil-in-water HIPEs solely 

stabilised by hydroxyapatite (HAp) nanoparticle were prepared. These Pickering-

HIPEs were used as template to prepare polyHIPE hydrogels. Dextran-GMA, a water 

soluble monomer, was polymerised in the continuous phase of the HAp Pickering 

HIPEs leading to porous hydrogels with a tunable pore size varying from 1.5 μm to 

41.0 μm. HAp is a nontoxic biocompatible emulsifier, which potentially provides 

extra functions, such as promoting hard tissue cell proliferation.  

HIPE-templated materials whose porous structure is maintained solely by the 

reversible physical aggregation between thermo-responsive dextran-b-polyNIPAAm 

block polymer chains in an aqueous environment (for this type of HIPE templated 

material we coined the name thermo-HIPEs) were prepared. No chemical reaction is 

required for the solidification of this porous material. This particular feature should 

provide a safer route to injectable scaffolds as issues of polymerisation/crosslinking 

chemistry or residual initiator fragments or monomers potentially being cytotoxic do 
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not arise in our case, as all components are purified polymers prior to HIPE formation. 

Thermo-HIPEs with soybean oil or squalene as dispersed oil phase were prepared. 

Also in this HIPE system it was possible to replace the original surfactant Triton 

X405 with colloidal HAp nanoparticles or pH/thermo-responsive polyNIPAAm-co-

AA microgel particles. The pore sizes and the mechanical properties of colloidal 

particles stabilised thermo-HIPEs showed improvement compared with thermo-HIPEs 

stabilised by Triton X405. 

In summary new injectable polyHIPEs have been prepared which retain their pore 

morphology during injection and can be solidified by either a thermal or ion (Ca2+) or 

chelating ion (Ca2+) stimulus. The materials used are intrinsically biocompatible and 

thus makes these porous injectable scaffolds excellent candidates for soft tissue 

engineering. 
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CHAPTER 1 

 

INTRODUCTION 

The focus of the work described in this thesis is the preparation of injectable 3 

dimensional (3D) scaffolds for soft tissue engineering by using biocompatible 

hydrophilic natural polysaccharides as the molecular building blocks of the scaffold. 

Oil in water (o/w) high internal phase emulsion (HIPE) act as a pore template, 

stimulus-responsive particles as emulsifier both to create highly porous injectable 

scaffolds with an environmental stimulus to trigger gelation as solidification method 

(Figure 1-1). 

 

Figure 1-1: General scheme illustrating the key features of stimuli-responsive 
injectable polysaccharide scaffolds for soft tissue engineering. 



Chapter 1: Introduction 

~33~ 

A general introduction to the motivation of this project follows in Section 1.1. The 

major objective of the project was the development of novel stimuli-responsive 

injectable scaffolds and the strategy for achieving this objective is summarised in 

Section 1.2. 

1.1 MOTIVATION 

Nowadays, a comfortable and long life has become most peoples’ desire and 

expectation. Medical technologies, such as surgical techniques and pharmaceutical 

developments which extend life and improve the quality of life have shouldered a 

majority of these demands. But correspondingly, the increase of human life span and 

quality has created a great demand for organ transplants and tissue replacements. By 

performing transplant surgeries, organ or tissue loss can be treated by transplanting 

organs from one individual to another. Although these surgeries have improved and 

saved countless lives, they remain imperfect solutions. Transplantation is severely 

limited by a critical donor shortage.1 It has been reported that 77 people receive 

transplants in the United States every day in 2009, but nearly 20 die because of organ 

shortages.2 Moreover, over 98,000 patients spend more than three years on average 

waiting for a suitable transplant.2 The situation is obviously considerably worse in 

some developing or undeveloped countries.  

Currently, transplants or medical prosthetics only offer a partial solution in 

comparison to the healthy, undamaged physiological state. As an alternative treatment, 
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tissue engineering, defined as “understanding the principles of tissue growth, and 

applying this to produce functional replacement tissue for clinical use”3, offers 

another solution to organ transplantation. By combining the latest technologies in cell 

proliferation and porous extracellular matrices (scaffold), it is possible to create living 

tissue either in the laboratory4 or in vivo5. It is reported that over 20 different tissues, 

such as bone, cartilage or skin, have already been engineered.1,6-7 These engineered 

tissues could greatly reduce the need for organ transplants and could help to 

accelerate the development of new drugs.8 

 

Figure 1-2: Two ways of regenerating tissue using different 3D scaffolds: Left: in 
vitro tissue engineering where cells are firstly seeded on a 3D scaffold and then left to 
proliferate in vitro. Thereafter the cell containing scaffold is transferred in vivo 
through invasive implantation surgery. Right: in vivo tissue engineering where cells 
are firstly seeded on a 3D scaffold and then injected into the human body together 
with the scaffold. After the scaffold solidifies, cells start to proliferate and generate 
tissue in vivo which ultimately integrates into the surrounding tissues. 
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Scaffolds, a critical element in tissue engineering, are usually made from a 

biocompatible and biodegradable matrix that offers physical support as well as a 3D 

environment to create living tissue through cell proliferation.4,6,9 These highly porous 

matrices are used to foster tissues in vitro or in vivo to repair or replace diseased 

organs10-11. Constructs of living cells can be formed by seeding cells either within a 

preformed scaffold or through injection of a solidifiable porous scaffolds together 

with a cell mixture into the defective tissue12-13 (Figure 1-2). Compared with 

preformed scaffolds, injectable scaffolds possess many advantageous features from a 

clinical perspective, such as minimising cost of treatment, patient discomfort, risk of 

infection and scar formation.11,14 In addition to cells, also drugs or growth factors 

could be loaded into the scaffold prior to injection as well providing additional 

benefits.11 Moreover, injectable scaffolds can be used to fill irregular defects, which is 

difficult to achieve with preformed scaffolds.14 

However the main problem limiting the application of injectable scaffolds for tissue 

engineering is the difficulty to achieve good injectability and well-defined porous 

structures for cell proliferation after injection simultaneously. Currently injectable 

scaffolds that could be easily injected through needles usually possess porous 

structures with low interconnectivity, or cause irritations to the surrounding tissue 

during in vivo solidification. On the other hand, scaffolds, which have well-defined 

and controlled porous structure lack either injectability or a mild (non-irritating) in 

vivo solidification mechanism15-18, and can only be used as preformed scaffolds. 
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1.2 PROJECT OBJECTIVES 

The objectives of this project were to identify and develop novel injectable scaffolds 

for soft tissue engineering prepared by oil in water (o/w) high internal phase emulsion 

(HIPE) templating. The overall research objectives were as follows: 

● Develop biocompatible scaffolds for soft tissue engineering with a suitable 

mechanical properties (with modulus between 60 Pa to 3 MPa) and well-defined 

interconnected porous structure suitable for nutrient/waste diffusion to support cell 

growth and migration. 

● Prepare HIPE templated porous scaffolds fabricated through different types of 

crosslinking (e.g., covalent crosslinking, thermo-induced physical aggregation or 

ion crosslinking) compatible with their use as injectable porous scaffold materials. 

● Develop and investigate solidification methods that allow o/w HIPE templated 

injectable scaffolds to be solidified in vivo after injection into a 3D porous structure.  

● Identify a biocompatible emulsifier (such as nontoxic colloidal particles) to stabilise 

o/w HIPEs and investigate their application in fabricating porous scaffolds for tissue 

engineering. 
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1.3 THESIS STRUCTURE 

This thesis presents work on the development of several polysaccharide based 

injectable scaffolds for soft tissue engineering prepared from o/w HIPE. The 

injectability, stimuli responsiveness, in vivo solidification, cytoxicity and porous 

structure of these scaffolds were investigated. In Chapter 2, the relevant background 

literature is comprehensively reviewed: scaffolds for tissue engineering (Section 2.2) 

and important elements in the design of injectable scaffolds for soft tissue engineering 

(Section 2.3, 2.4 & 2.5). A brief overview of tissue engineering and regenerative 

technology (Section 2.1) is also provided. In Chapter 3 and Chapter 4, two types of 

novel stimuli-responsive covalently crosslinked hydrogel scaffolds fabricated from 

o/w HIPEs are discussed: thermo-responsive poly((dextran-GMA)-co-polyNIPAAm) 

polyHIPE hydrogels (Chapter 3) and ion-responsive methacrylate-modified alginate 

polyHIPE hydrogel (Chapter 4). The injectability and in vivo solidification methods 

of these two covalently crosslinked hydrogel scaffolds are discussed in Chapter 5. A 

new type of non-covalently crosslinked injectable HIPEs based on dextran-b-

polyNIPAAm is described in Chapter 6. The use of biocompatible colloidal particles 

as emulsifiers for o/w HIPEs and the fabrication of porous scaffolds for tissue 

engineering is described in Chapter 7. Chapter 8 draws overall conclusions from the 

study and makes suggestions for future work.  
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CHAPTER 2 

 

BACKGROUND 

2.1 INTRODUCTION TO TISSUE ENGINEERING 

Tissue engineering is the method of creating 3D living tissues to improve or replace 

biological functions.1 It is an interdisciplinary field that aims to create whole tissue, 

such as cartilage, bone, lung or blood vessel by utilizing combinations of engineering 

methods and life sciences, to replace damaged or lost organs (Figure 2-1).19 The 

fabrication of new physiologically fully functioning tissue involves the combined 

efforts of material scientists, biologists, mathematicians, engineers, geneticists, and 

clinicians.20 The first reported example of tissue engineering was recorded in 1933 

where mouse tumour cells were encased in a polymer membrane and inserted into a 

pig abdominal cavity7,21. The tumour cells were not destroyed by the immune system. 

Nowadays, due to the progress in stem cell biology and recognition of the unique 

biological properties of stem cells, tissue can be engineered either in vitro or in vivo 

using stem cells comprising a diverse selections from epithelial surfaces to skeletal 

tissues.22 The list of tissue that can potentially be engineered is growing steadily every 

year.22 
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Figure 2-1: Approaches to tissue engineering and regenerative medicine (reproduced 
from Langer, R. Adv. Mater. 21, 3235-3236 (2009)) 

In tissue engineering and regenerative medicine, three general strategies have been 

developed to create new tissues:  

1. Isolated cells or cell substitutes. This approach allows replacement of only those 

cells that supply the required function and permits manipulation and expansion of the 

cells before infusion. This method avoids the complications of surgery, but the 

potential limitation is the ability of maintaining the function of infused cells in the 

recipient or immunological rejection of the injected cells.1 
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2. Tissue-inducing substances. This approach is based on the introduction of 

appropriate signal molecules, such as growth factors, and the methods to deliver these 

molecules to their targets.1 

3. Cell seeded scaffolds. Cells are initially seeded onto a porous scaffold in vitro or in 

vivo. The scaffold should allow permeation of nutrients and waste but be “invisible 

physiologically” do that antibodies or immune cells will not be triggered to destroy 

the transplant. These systems then can be used as extracorporeal devices or implanted 

directly into the patient and allowed integration with the surrounding tissue.1 

2.2 SCAFFOLDS FOR TISSUE ENGINEERING 

As already mentioned, scaffolds play a very important role in tissue reconstruction. It 

is known that isolated cells cannot form new tissue by themselves.23 Numerous 

strategies currently used to engineer tissue depend on employing a scaffold. Scaffolds 

serve as templates for cell interaction and the formation of extracellular matrix to 

provide structural support to the newly formed tissue.  

Most of the scaffolds for tissue engineering are biocompatible 3D porous matrices, 

because in a living organism, cells are surrounded by other cells and the in situ 

environment of such cells is 3D.24-26 In such an environment, extracellular ligands 

including collagens and laminin, are involved in providing a matrix which develops 

between cells and the basal membrane; nutrient diffusion as well as waste exchange 

can occur easily due to the interconnectivity of the 3D matrices.11,27 When seeded 
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onto two dimensional (2D) scaffolds, cells lack the ability to grow in their favoured 

3D orientations which defines the anatomical shape of the tissue. Instead, they 

randomly migrate to form a 2D layer of cells.28 There are several major drawbacks to 

2D scaffolds:  

1. Chemical signals or molecular gradients that guide cells differentiation, organ 

development and other biological processes are absent from a 2D environment23 

2. The production of the extracellular matrix proteins and the morphological change 

(e.g., spreading speed) of cells can be significantly changed when the cells are 

proliferating in a 2D culture. The cells directly exposed to the culture medium have 

more opportunities to obtain nutrients. On the other hand, the cells attached to the 

surface may have fewer opportunities for clustering. The asymmetric spreading of 

cells in 2D culture might lead to the wrong orientation and clustering and also affect 

communication between cells;  

3. In 2D environment, cells isolated directly from higher organisms frequently alter 

metabolism and gene expression patterns, which results in the adaption of cells to 2D 

cultures.  

The requirements for a scaffold are numerous and often different for different 

applications; however, there are some general properties a scaffold must fulfil to be 

considered for tissue engineering applications:  
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1. The material used as the solid constituent of the scaffold must be biocompatible 

and biodegradable, possess suitable hydrophilic surface properties for cell adhesion;  

2. The scaffold should possess a 3D interconnected pore structure to support cell 

growth and provide a mass-transport environment for optimal diffusion of nutrients 

and waste;  

3. The modulus of human tissue ranges from 50 Pa29 for skin or subcutaneous tissue 

to 100 GPa30 for trabecular bone (Table 2-1). The appropriate mechanical properties 

of a scaffold are required to temporarily substitute those of the native tissue and 

support everyday functional demands within a defect until sufficient tissue has formed 

to take over the function.4 Scaffolds must be designed not only to avoid failure of 

providing sufficient mechanical strength to withstand biomechanical loading to and 

offer reliable yet temporary support for the growing cell culture but should also not be 

too stiff compared to surrounding and regenerating tissues to cause adverse 

physiological responses, such as tissue resorption;  

4. The scaffold, both preformed or injectable, should initially fill complex 3D defects, 

subsequently guiding the tissue to shape itself to match the original 3D defect 

structure.31 
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Table 2-1: Tangent/Young’s modulus range of biologic tissues from the stiffest tissue 
(bone) to the most compliant tissue (skin). (Table adapted from Scott, J. H. Scaffold 
Design and Manufacturing: From Concept to Clinic. Adv. Mater. 21, 3330-3342 
(2009)) 

Tissue (Species) Tangent/Young’s Modulus Range in MPa References 

Trabecular Bone 100-100000 [30] 

Meniscus 1.6-3.2 [32] 

Articular Cartilage 0.3-2.1 [32] 

Medial Collateral Ligament 0.3 [33] 

Intervertebral Disc – Fibrocartilage 0.05-0.07 [34] 

Fat 0.002 [35] 

Heart Valve 0.00153 [36] 

Skin/Subcutaneous Tissue 0.000057 [29] 

2.2.1 PREFORMED SCAFFOLDS 

When the porous scaffold is preformed outside the human body, the living tissue is 

engineered within this matrix in vitro and then implanted into patients through 

invasive surgery, the scaffold is classified unsurprisingly as a preformed scaffold. 

Preformed scaffolds are investigated either in therapeutic applications as tissue 

substitute, in diagnostic applications, for instance for drug testing13 or even in edible 

meat production37. A flow chart that describes the general approach of repairing 
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defects and generating native tissues by using preformed scaffolds is shown in Figure 

2-1. 

As mentioned before, compared with injectable scaffolds, preformed scaffolds can be 

fabricated into complex 3D matrices by many methods without the requirement of 

injectability. As the solidification of preformed scaffolds is triggered in vitro, the 

processing conditions of preformed scaffolds (e.g. pressure, temperature, solvent and 

devices) are less limited compared with injectable scaffolds. Harmful chemicals that 

are used or produced during scaffolds preparation can be easily removed before cell 

seeding. Surface modifications that improve cell-surface adhesion can also be 

preformed after the porous scaffold was fabricated, which enlarges the materials 

selection considerably since some synthetic polymers (e.g. poly(styrene) (PS)38) do 

not posses proper biocompatible surfaces for cell adhesion but could also be modified 

and used as scaffolds in this way. Porogen leaching39, emulsion templating40, gas 

foaming41, freeze drying42, fiber mesh fabrication43, molding44, phase separation45 or 

even computer-aided prototyping4,46 have been used to produce preformed scaffolds.44 

Details about the fabrication of preformed scaffolds will be given in Section 2.5.  
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Figure 2-2: Flow chart illustrating the general approach of using preformed scaffolds 
to generate tissue in vitro, which subsequently are being implanted in a patient to take 
over biological functions. 

2.2.2 INJECTABLE SCAFFOLDS 

Clinically, there is a great demand for minimal invasive surgery procedures in order to 

minimise patient discomfort and risk of infection11. Surgical micro-techniques have 

proven to be effective and are frequently used for many operations. 
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Biocompatible/biodegradable matrixes with open porous structures and designed as 

carrier systems for cell transplants, also known as injectable scaffolds, meet this 

demand for minimal invasive surgery procedures. A flow chart describing one 

possible approach of repairing defects by using an injectable scaffold is shown in 

Figure 2-3. Compared with preformed scaffolds, injectable scaffolds, owing to their 

injectability, offer many advantages such as minimising cost of treatment, scar 

formation, patient discomfort, and risk of infection.11 Moreover, injectable scaffolds 

can easily be used to fill irregular defects, which is much more difficult to achieve 

when using preformed scaffolds. Also cells, drugs and other bioactive molecule can 

easily be incorporated into the matrix. 

The challenges in designing and producing an injectable scaffold are also clear. After 

injection, it is impossible to use any machines or apparatus to fabricate an 

interconnected porous structure during the solidification in vivo and therefore the pore 

structure has to be in place before injection or during the injection process. Many 

methods of fabricating 3D porous scaffolds, such as fibre spinning or moulding, are 

not amenable for direct injection of porous structures. Also surface modification of 

such potential scaffolds is impossible in vivo. Imposing severe limits on the selection 

and processing of materials for scaffold fabrication. Materials that are naturally 

biocompatible and biodegradable, such as alginate or fibrin, became therefore first 

choice for producing injectable scaffolds.11 The variability in the mechanical 

properties between the liquid state before injection and the solid state in vivo also 
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limits the choice of materials. Moreover, minimising cytotoxicity and inflammation to 

damage the surrounding tissue also limits the choice of solidification mechanism. And 

finally the methods and the process with which cells can be safely loaded into the 

scaffolds without exposure to any hazard chemicals also need to be carefully 

considered.  

 

Figure 2-3: A flow chart that illustrates a possible approach of using injectable 
scaffold to fixed defect. 

In contrast to scaffolds for hard tissue engineering (such as bone), scaffolds for soft 

tissue engineering, such as muscle, cartilage, liver or kidney, often have to fill large 

volumes but require only moderate mechanical strength. When engineering soft 

tissues which have specific biomechanical requirements, such as mechanical 

simulation modulated cell differentiation or increase extracellular matrix synthesis, 

the mechanical properties of the scaffolds can be crucial to obtain full tissue 
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function.47-48 In accordance with the general design principles of scaffolds, the 

requirements for injectable scaffolds follow the basic design principles as summarised 

in Table 2-2.  

Table 2-2: Requirements for injectable scaffolds used in soft tissue engineering11,14,27 

Requirements Explanation 

Injectability 
The porous scaffolds should be injectable through the needle prior to 
solidification. 

Solidification in 
vivo 

A mild and safe solidification process is required to avoid damage to 
the surrounding tissues and while retaining high bioactivity and cell 
viability. 

Pore morphology 

In situ formed injectable scaffolds should possess a 3D porous 
structure with a interconnected pore morphology with pore throats 
between pores in order to support the growth of cells and facilitate the 
exchange of nutrients and cellular waste. Normally, the diameter of 
pores should be at least 3 times as big as the cell size. 

Biocompatibility 

Scaffolds should be nontoxic and have similar hydrophilic surface 
properties to human living system. The solid constituents of scaffolds 
should naturally integrate with the host tissue and their degradation 
products should not demonstrate cytotoxicity or immunogenicity, or 
elicit an inflammatory response. 

Degradation 
property 

During tissue development, the scaffolds should be able to degrade at a 
rate in accordance with the generation of new tissue. Degradation 
products should also be biocompatible.  

Bioactivity  

The scaffold should be bioactive so as to guide and promote 
proliferation and differentiation of cells. It should retain the bioactivity 
of growth factors and release them to the target with optimal dosage, 
timing and in the correct sequence. 

Mechanical 
strength 

The scaffolds should possess good dimensional stability in the body 
after injection and solidification. It should also provide sufficient 
mechanical strength to withstand biomechanical loading and offer 
reliable yet temporary support for the growing cell culture. The 
mechanical parameter of the scaffolds, such as modulus or strength, 
scaffolds should be similar to native tissues. 
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2.3 INJECTABLE MATERIALS FOR SOFT TISSUE 

ENGINEERING 

As shown in Table 2-1, the modulus of soft tissue (tissue with lower mechanical 

properties compared to bone or cartilage) range from around 50 Pa to 3.2 MPa. 

Considering the requirement of mechanical robustness (including elastic behaviour), 

polymers are better candidates for soft tissues when compared to ceramics or metals. 

The high stiffness of ceramics or metals may lead to mechanical stimulation49 or some 

other problems (such as stress-shielding and subsequent implant loosening50) to the 

surrounding tissue. Polymers used in the preparation of injectable scaffolds for soft 

tissue can be divided into two categories: synthetic and natural. 

2.3.1 SYNTHETIC POLYMERS 

The long and successful history of synthetic polymers in regenerative medicine 

combined with the ability to tailor their properties has attracted much interest for their 

application as injectable scaffolds for soft tissue engineering. The most widely 

investigated synthetic biodegradable polymers for soft tissue repair are poly (α-

hydroxy esters) such as poly(glycolic acid) (PGA)51, poly(L-lactic acid) (PLLA)52, 

and their copolymers poly(L-lactide-co-glycolide) PLGA53-56. Also poly(ethylene 

glycol) (PEG)57-59, poly(vinyl alcohol) (PVA)60, poly(propylene fumarate) (PPF)61-65 

and their copolymer such as PLLA-b-PEG, PEG-b-PPO-b-PEG have been used to 

develop injectable scaffolds through radical polymerisation or crosslinking and 
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alternatively by self-assembly (Figure 2-4). Most of these synthetic polymers are 

biologically inert, non-immunogenic and able to degrade through hydrolysis into 

metabolic products.11 The majority of these materials can be processed in solutions 

for injection and in vivo polymerised or crosslinked at the site of defect. Since surface 

modification post injection is very difficult, some synthetic polymers selected for the 

fabrication of preformed scaffolds, such as polystyrene, are seldom used as injectable 

scaffolds.  

 

Figure 2-4: Chemical structures of synthetic polymer materials that can be 
polymerised or crosslinked to create 3D porous scaffolds and used as injectable 
scaffolds. A: PGA; B: PLLA; C: PLGA; D: PEG; E: PVA; F: PPF; G:HDPE; H: 
PMMA. 

Perhaps surprisingly, biodegradability is not always required. The biocompatible 

“non-degradable” synthetic polymers high-density polyethylene (HDPE)66 and 

poly(methyl methacrylate) (PMMA)67 are also used as permanent implants or 

injectable microspheres/scaffolds for tissue reconstruction. But the limitation is that 
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these permanent and rigid materials cannot adapt to a growing craniofacial skeleton 

for instance and should be used with caution in children.67 

2.3.2 NATURAL POLYMERS 

Research focusing on natural polymer as injectable scaffolds most commonly 

investigates polysaccharides such as chitosan68-69, dextran70-74, pullulan75, agarose76 

alginate77-78 and cellulose11; polysaccharides with additional functionqal groups such 

as glycosaminoglycans (e.g. hyaluronic acid79); and poly(α-amino acid)s 

(polypeptides) such as fibrin80-81 and gelatin82-83. These natural polymers may present 

a more natural biological environment to the cells, since they usually contain domains 

that can provide important receptor sites to guide cells at various stages during their 

growth. Most of these natural polymers are highly hydrophilic, and therefore better 

tolerated by the human body than synthetic polymers. By functionalising natural 

polymers with polymerisable groups they can be radical polymerised/crosslinked and 

form highly porous hydrogels. Some of these natural materials, such as chitosan84 or 

alginate85, are also stimuli-responsive and such that they can be crosslinked and 

thereby form hydrogels triggered through environment signals such as temperature 

and Ca2+ concentration. 
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Figure 2-5: Chemical structures of natural polymers that have been used to prepare 
injectable scaffolds. A: chitosan; B: dextran; C: pullulan; D: agarose; E: alginate; F: 
cellulose; G: hyaluronic acid. 
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2.4 SOLIDIFICATION METHODS USED TO 

SYNTHESISE INJECTABLE SCAFFOLDS  

The solidification of injectable scaffolds normally means solidifying the constituent 

precursors or monomers into an interconnected 3D scaffold in the presence of living 

cells within a limited time period.11 During the solidification of the precursors of 

biomaterials should be a very mild process and proceed close to physiological 

conditions to retain high cell viability as well as to avoid damage to the surrounding 

native tissues. The temperature and the pH of the scaffold should be close to 37˚C and 

pH 7.4 during solidification and should not be significantly changed. After 

solidification, a scaffold with an existing interconnected porous structure should have 

been formed. Currently the reported solidification methods of injectable scaffolds for 

soft tissue engineering mainly include thermo-initiated radical polymerisation14,61-64,86-

88, photo-initiated polymerisation89-93, thermo-gelation80-81,83-84,94-96 and ionic 

crosslinking14,97.  

2.4.1 IN VIVO RADICAL CROSSLINKING 

A series of synthetic polymers, such as PPF61-64,86, oligo(polyethylene glycol) 

fumarate (OPF)87 or poly(propylene fumarate-co-ethylene glycol) (P(PF-co-EG))88 

can be solidified by free radical crosslinking by thermally initiated or redox initiation 

free. This initiation polymerisation/crosslinking system can be triggered simply by a 

temperature change. The time it takes to solidify must be as short as possible in order 
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to avoid tissue necrosis around the injected material. Some cytocompatible initiators, 

such as ammonium persulfate/N,N,N’,N’-tetramethylethylenediamine (APS/TEMED), 

produce radicals in aqueous environments at 37˚C14, which provides the possibility of 

radical polymerisation of monomers with unsaturated bonds in vivo. 

Controlled by the presence of light, photo-initiated polymerisations can provide more 

precise control of the initiation process compared to other initiation methods, such as 

thermo-initiated free radical or redox initiation.89 Photo-crosslinkable polymers 

reported as injectable scaffolds include PPF93, PEG90, PVA91 and their copolymers 

and phosphoester-derived polymers92. The concentration of photo-initiator, the 

wavelength and intensity of light can be used to control the polymerisation time.89 

Crosslinking can be used to adjust the mechanical properties of the scaffolds to obtain 

the desirable stiffness for different soft tissues. Radically crosslinkable materials are 

often used in the form of hydrogels or microparticles in order to fabricate 3D porous 

structure and retain their injectability at the same time. 
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2.4.2NON-COVALENT STIMULUS-RESPONSIVE SOLIDIFICATION 

OF INJECTABLE SCAFFOLDS 

Many polymers, both synthetic and natural, exhibit environmentally responsive 

behaviour. They undergo drastic conformational changes upon experiencing a trigger, 

e.g. pH, ion concentration or temperature.98-99 This conformational change occurs 

within a narrow range around a certain critical point (e.g. a narrow temperature or pH 

range, or the presence of ions). Stimuli-responsive polymers are also referred as 

“smart” materials, in some cases mimicking basic functions of biological systems. 

They are successfully applied in a broad-range of soft matter applications, specific 

examples being outside the area of injectable scaffolds11, drug release systems100, 

microfluidic devices101 and actuators102. Stimulus-responsive polymers can be 

prepared by employing environmentally available stimuli as automatic triggers for 

scaffold formation by utilizing the human physiology (e.g. body temperature or ions 

in body fluids) chemical signals in vivo. As the chemistry for solidification is non-

covalent in nature, it is not only much milder than the use of covalent strategies such 

as radical polymerisation but also no additional chemicals such as initiators or 

crosslinkers are required either. 

2.4.4.1 Thermo-responsive Solidification of Injectable Scaffolds 

Triggered by a change in temperature, some polymer solutions undergo gelation and 

form hydrogels in an aqueous environment. Both natural (such as chitosan84, 
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gelation83 and fibrin80-81) and synthetic (such as PEG, PLGA, polyNIPAAm and its 

copolymers94) thermo-gelling polymer systems have been developed and tested for 

soft tissue engineering. 

Among the thermo-reversible polymers, 

copolymers of NIPAAm (Figure 2-6) are 

most widely used because as its lower critical 

solution temperature (LCST) leads to 

solidification at around 32°C (near body temperature) in aqueous solution.103-104 The 

LCST is the temperature at which thermo-reversible polymers undergo a solution-to-

gelation transition when heated across this temperature. Below LCST, polyNIPAAm 

is able to absorb water and exists as isolated, flexible extended coils in aqueous 

solution; when the temperature is raised above LCST, the polymer reconstructs with 

abrupt sudden decrease in volume and become hydrophobic (Figure 2-7). This 

temperature dependent solubility change is due to the enthalpic contribution of water 

hydrogen-bonded to the polymer chain is overtaken by the entropic gain of the system 

as a whole and consequently, hydrogen bonding between water and polyNIPAAm is 

disrupted thereby leading to an increase in entropy as the driving force behind such a 

transition.98-99 The conformationally amphiphilic polyNIPAAm chains hide their 

hydrophilic amide groups and expose the hydrophobic isopropyl groups in the 

compact globule conformation.105 

 

Figure 2-6: N-isopropylacrylamide 
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 The LCST of polyNIPAAm (and other polymers showing a LCST) can be tuned to a 

certain extent (about 20°C to more than 100°C106) by making polyNIPAAm 

copolymers and thereby changing the composition of functional groups. The LCST of 

polyNIPAAm copolymers can be raised by copolymerizing NIPAAm with 

hydrophilic monomers (e.g. sulfonic acid-containing polyNIPAAm copolymers have 

LCST more than 100°C106) and can be reduced by introducing hydrophobic (e.g. after 

copolymerised with p-acrylamido-benzoic acid, its LCST could be lowered to 

25°C106).98 Once the gels are formed, the gelation is still thermo-reversible.11 Thermo-

reversible hydrogels derived from polyNIPAAm copolymers, such as poly(NIPAAm-

co-AA)95, poly(chitosan-g-NIPAAm) copolymer107 and poly(NIPAAm-co-

poly(ethyleneglycol) dimethacrylate)96, are frequently reported as injectable scaffolds 

or drug-carrier matrices.  

 

Figure 2-7: Simplified illustration of the structural changes of a polyNIPAAm 
copolymer hydrogel at temperatures below and above its LCST. 

Hydrophilic component

Stimuli responsive (NIPAAm) componentPolyNIPAAm Copolymer Hydrogel

Below LCST Above LCST
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2.4.4.2 Ion-responsive Solidification of Injectable Scaffolds 

 

Figure 2-8: Gelation of alginate aqueous solution by addition of calcium ions and 
formation of “egg box” structure. A: a schematic diagram of the gelation progress; B: 
Ca2+-crosslinked alginate gels of various molded shapes (adapted from Kuo, C. & Ma, 
P. Biomaterials 22, 511-521, (2001).). 

Ion-responsive hydrogels can utilise the presence of ions as trigger for gelation. In the 

presence of divalent or trivalent cations, aqueous solution of polysaccharides, such as 



Chapter 2: Background 

~59~ 

alginate, crosslink and form gels.97 Ubiquitous divalent ions, such as Ca2+, are 

typically used as the trigger for gelation.97 By controlling parameters, such as the 

concentration and molecular weight of the polysaccharide, type and concentration of 

cations, it has been shown that hydrogels with desirable mechanical properties and 

injectability can be formed.14,97 

Alginate is a particularly attractive naturally derived ion-responsive polysaccharide 

and has been studied widely for its biocompatibility, biodegradability and reversible 

aqueous gelation chemistry with di- or trivalent cations (Figure 2-8).85,108-109 

Applications include adsorbents for removal of heavy metals from contaminated 

environments110-112, scaffolds for tissue engineering113-115, wound dressings116-117 and 

as delivery vehicles for drugs118-119. Alginate is a block copolymer composed of (1-4)-

linked β-D-mannuronic acid (M units) and α-L-guluronic acid (G units). Divalent 

cations such as Ca2+ ions cooperatively bind between the G-units of adjacent alginate 

chains, creating ionic interchain links which cause gelling of aqueous alginate 

solutions.120-121 The typical level of Ca2+ concentration in the human body is 

1.8 mM122-123, the Ca2+ concentration in a human knee joint however is equivalent to 

4.0 mM CaCl2
124, so that the Ca2+ needed for gelation could be supplied directly by 

the human body. Thus the Ca2+-induced gelling of alginate under very mild aqueous 

conditions makes alginate a very attractive stimuli-responsive material for use in vivo.  
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2.4.2 PARTICLES METHOD 

Different from the two solidification methods described above, when using particles 

to prepare injectable scaffolds, the crosslinking of the matrix and the fabrication of the 

porous structure are usually triggered before injection. After cell seeding and in vitro 

cell growth, the particles having particle sizes between 100 μm and 200 μm, usually 

prepared from PLGA125-127 , PLA128-129 or PPF65, were injected into the body together 

with the entrapped cells and aggregate at the site of the defect (Figure 2-9).125 In 

order to improve the in vivo mechanical performance and durability of these particles 

and to keep them highly cohesive at the injection site, a “biocompatible adhesive”, 

such as fibrin130, polycarbonate (PCL) 131, poly(lactide-co-glycolide)(PLG)65 or 

PVA126, were used as bonding agents to glue these particles together and to form a 

continuous scaffold in vivo. Currently the development of injectable microspheres is 

moving from using solid particles128,132-133 to open porous particles129,134-135. 

Compared with solid particles, microparticles with an open porous structure are able 

to carry cells and provide much more suitable physical support for cell proliferation. 

These open porous spheres are usually prepared by emulsion-solvent evaporation129, 

double emulsion templating135, and grafting–coating method134. 
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Figure 2-9: A schematic diagram of biodegradable porous microcarriers for injectable 
cell therapy. Porous microcarriers are seeded with cells, expanded in vitro in a 
bioreactor and injected into the patients’ body at the site of the defect. (reproduced 
from Chung, H. J., Kim, I. K., Kim, T. G. & Park, T. G. Tissue Eng. Part A 14, 607-
615, (2008).) 

2.5 METHODS FOR THE FABRICATION OF POROUS 

MATERIALS 

According to the classification made by IUPAC (International Union of Pure and 

Applied Chemistry)136, porous materials can be categorized according to their pore 

sizes: (a) nanoporous materials (pore sizes < 2 nm); (b) mesoporous material (2 nm < 

pore sizes < 50 nm); (c) macroporous materials (pore sizes > 50 nm). The diameter of 

cells ranges from 1 μm (nerve cells) to 100 μm (human eggs) and the minimum 
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average pore size of scaffolds for tissue engineering should be larger than the cell 

diameter137, which means only macroporous materials can be used for tissue 

engineering scaffolds. 

Also the in vivo formed macroporous scaffolds should not only possess pores large 

enough to accommodate cells, but also have interconnections which allow nutrient 

and waste diffusion making porosity, pore size and the dimensions of the pore 

interconnects the most important parameters of a porous network. 

Considering the fact that a hydrophilic surface provides usually better cell adhesion4, 

hydrogels are the most interested scaffolds for soft tissue engineering and a large 

proportion of research into scaffold fabrication focuses on to the creation and tailoring 

of 3D interconnected porous structures of hydrogels. Hydrogels are crosslinked 

polymer networks that swell, but do not dissolve in water. Normally the hydrophilic 

functional groups in the polymeric backbone give hydrogels the ability to absorb 

water, with the chemical crosslinks defining the dimensions of the hydrogel and the 

level to which it can shrink and swell in water. Usually hydrogel precursors are mixed 

with cells in vitro and then the mixture is injected and gelled in situ triggered by a 

physical (such as temperature84, ion-concentration138 or UV irradiation139) or chemical 

(such as initiator140) trigger to form a 3D scaffold in vivo.  

A variety of methods exists to prepare injectable macroporous hydrogels for soft 

tissue engineering. These can be classified into “non-porous structure controlled” 
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polymerisation/crosslinking, gas forming, leaching, prototyping, fibre architectures 

and HIPE templating, which will be introduced in the following sections (Section 

2.5.1-2.5.5). 

2.5.1 LEACHING METHODS TO FABRICATE POROUS 

STRUCTURES 

The process of porogen leaching is one of the most common techniques used to 

fabricate scaffolds, especially preformed scaffolds.28,31 Briefly, salt, sugar, polymers 

(such as chitosan) or paraffin141 are first ground into small particles and these 

porogens of a desired size are transferred into a mould. A biodegradable polymer 

dissolved in a volatile solvent is then cast into the porogen-filled mould. After the 

evaporation of the solvent, the porogens are leached away by solvent to form the 

pores of the scaffold (Figure 2-10). The porosity of scaffold fabricated with this 

technique can be even higher than 95%141. Having to use solvents for the removal of 

the porogens is the drawbacks of the leaching method and limits its applications as 

injectable scaffolds fabrication. 
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Figure 2-10: SEM micrographs of A: paraffin particles used as porogen; B: PLGA 
foams prepared by leaching of paraffin spheres. (reproduced from Ma, P. X. & Choi, 
J.-W. Tissue Eng. 7, 23-33, (2001).) 

2.5.2 ”NON-POROUS-STRUCTURE CONTROLLED” 

POLYMERISATION/CROSSLINKING 

One of the simplest ways to prepare a hydrophilic scaffold is to polymerise or 

crosslink water soluble monomers/precursors in an aqueous environment to form a 

hydrogel. When no special porous fabrication methods (e.g. leaching, freeze drying) 

are applied during the solidification of the scaffolds, the porous fabrication methods 

could be classified to “non-porous-structure controlled” polymerisation/crosslinking. 

As the high degree of swelling ensures hydrogels to possess relatively large pores 

when swollen hydrogels are the most frequently investigated scaffolds employing this 

fabrication method. Both natural polymers (such as crosslinked dextran84, fibrin138 

and collagens84) and synthetic copolymers (such as PEG-PLGA copolymer142 and 

PPF-PEG copolymer143) have produced such hydrogel.144 Because of the poor ability 

to create and turn 3D interconnected porous structure, these hydrogels were only for 
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the study of cytoxicity or biodegradability of the material, but not as scaffold for cell 

proliferation. 

 

Figure 2-11: Morphologies of different injectable hydrogels fabricated though “non- 
porous-structure controlled” polymerisation/crosslinking: A: N-palmitoyl chitosan 
based pH-responsive hydrogel (reproduced from Chen, J. & Cheng, T. Macromol. 
Biosci. 6, 1026-1039 (2006).) B: thermo-responsive polyNIPAAm based hydrogel 
(reproduced from Chiu, Y.-L. et al. Biomaterials 30, 4877-4888 (2009).) 

Hydrogels used in regenerative medicine may also be formed by using the junctions 

or tie points that cause gel formation as stimuli-responsive non-covalent crosslinks 

(e.g. crosslinks formed though physical entanglements, microcrystallites, ion-bonds, 

or hydrogen-bonded structures)145 similar in  behaviour to those formed with covalent 

crosslinks.2 Compared with covalently crosslinked hydrogels, “non-porous structure 

controlled” stimulus-responsive crosslinking methods are more practical for the 

preparation of injectable scaffolds (Figure 2-11). Its relatively mild solidification 

chemistry would allow cell encapsulation in the hydrogel prior to the formation of a 

porous structure.  
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2.5.3 GAS FOAMING METHODS TO FABRICATE POROUS 

STRUCTURES 

Gas foaming is a method using a gas as a porogen to prepare porous materials. Gases 

could be obtained either from physical or chemical blowing agents or produced during 

the polymerisation/crosslinking of monomers/pre-polymer. A polyurethane based 

injectable scaffold system is selected as an example and showed in Figure 2-12.  A 

highly porous structure, either closed or open cell, can be produced by trapped gas 

bubbles (usually CO2 gas146). This method avoids the use of organic solvents or high 

temperatures. It is also possible to control the porosity and pore structure of the 

resulting foams.147 On the other hand, some types of gas produced during foaming are 

potentially harmful to human and should not be injected into human body together 

with the matrix. The volume change during foaming and in vivo solidification (Figure 

2-12 A) also limits the application of gas foaming in scaffold preparation, especially 

for the preparation of injectable hydrogels. 
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Figure 2-12: Injection of a gas formed polyurethane scaffold: A: A series of time-
lapse photographs showing the injection of a reactive liquid system; B: SEM image of 
the polyurethane foam. (reproduced from Hafeman, A. et al. Pharm. Res. 25, 2387-
2399 (2008).)  

2.5.4 RAPID PROTOTYPING METHODS TO FABRICATE POROUS 

STRUCTURES 

By combing computer aided design and advanced polymer manufacturing, rapid 

prototyping enables scaffolds to be fabricated with precise control over micro- and 

macrostructure (Figure 2-13). The main advantage of rapid prototyping is the ability 

to produce complex 3D scaffolds with pore size ranges from 10 μm to 1000 μm148 

from a computer model rapidly by joining liquids, powders and sheet materials. Rapid 

prototyping offers the potential to precisely control the pore morphology and overall 

shape of the scaffold to match the anatomical defect site.4,46 However the required 

processing conditions of rapid prototyping, such as machines used for selective laser 
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sintering and 3D printing, makes it unsuitable for the preparation of injectable 

scaffolds.148  

 

Figure 2-13: Example of using a rapid prototyping technique to fabricate both the 
exterior shape and dimension of a scaffold shape and an internal 3D porous structure. 
a) A global design domain is created according to the shape of the defect (white 
circle). b) A global view of material distribution within the design domain. c) A basic 
unit used to create porous microstructures. d) & e) Final scaffold. (Reproduced from 
Scott, J. H. Adv. Mater. 21, 3330-3342 (2009).) 

2.5.5 FIBRE ARCHITECTURE METHODS TO FABRICATE POROUS 

STRUCTURES 

Fibres, the basic materials unit of textile and fabrics, are usually produced by spinning 

technologies (such as electro spinning, melt spinning and solution spinning). Fibres 

can be used to create porous scaffolds with pore size more than 60 μm from a number 

of natural and synthetic polymers.149-153 Fibre-based structures allow for a wide range 

of morphologies and geometric structures, from textile to fibrous, to be created. These 
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structures can be tailored for specific tissue engineering applications (Figure 2-14). 

For example, many tissues, such as nerve, muscle, have tubular or fibrous bundle 

architectures and anisotropic properties.149 The assembled fibre usually possesses a 

highly porous interconnected pore structures and good mechanical strength (elastic 

modulus up to 100 MPa154). 

 

Figure 2-14: Scanning electron micrograph of fibrous scaffolds A: Poly(glycolic acid) 
(PGA) nonwoven scaffold (reproduced from (Ma, P. X. Materials Today 7, 30-40 
(2004).); B: PGA anisotropic woven fibrous scaffold (reproduced from Moutos, F. T., 
Freed, L. E. & Guilak, F. Nat Mater 6, 162-167 (2007).).  

2.5.6 HIGH INTERNAL PHASE EMULSION TEMPLATING 

METHODS TO FABRICATE POROUS STRUCTURES 

High internal phase emulsion (HIPE) templating is a method to produce porous 

materials with interconnected pore structures.15 The pore size/pore throat size of the 

HIPE templated materials can be turned by changing the emulsifier concentrations, 

dispersion speed or ripening time during HIPE preparation.155-156 In this research, high 

internal phase emulsion templating is the method that being explored and exploited to 
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fabricate the porous structure of injectable scaffolds for soft tissue engineering and 

will be detailed introduced in the following paragraphs. 

An emulsion is a mixture of two immiscible liquids. One liquid, the dispersed phase, 

is dispersed in the other, the continuous phase, in the form of droplets. Usually, at 

least one of these two phases is water or an aqueous solution. If the organic phase of 

the emulsion consists of monomers (o/w or water-in-oil (w/o) emulsions), it can be 

polymerised in three ways to obtain different products: colloidal particles, poly(high 

internal phase emulsion) (polyHIPE) materials and polymer composites (Figure 2-15).  

 

Figure 2-15: Schematic representation of polymerisation of the dispersed phase, 
continuous phase, or both phases simultaneously in an emulsion for the preparation of 
colloids, porous materials and composites. (Reproduced from Zhang, H. & Cooper, A. 
I.  Soft Matter 1, 107 (2005).) 
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When only the monomers in the dispersed phase are polymerised, colloidal particles 

will be obtained; when the polymerisation is initiated in the dispersed phase and the 

internal phase is removed afterwards, polyHIPE materials will be obtained and if both 

phases of emulsion contain the monomers are polymerised, polymer composites will 

be produced. 

 

Figure 2-16: Two droplet packing and ordering systems in HIPEs: A: Rhomboidal 
dodecahedral packing (usually occurring in emulsions containing 74% to 
approximately 94% internal phase ratio); B: Tetrakaidecahedral packing (usually 
occurring in emulsions with an internal phase above 94%) (reproduced from Lissant, 
K. J. The geometry of high-internal-phase-emulsion ratios. J. Colloid Interface Sci. 22, 
462-468 (1966).) 

The defining feature of a HIPE is its internal phase volume defined as being greater 

than 74%, which corresponds to the maximum packing fraction (rhomboidal 

dodecahedral packing and tetrakaidecahedral packing, Figure 2-16) of mono-

dispersed droplets.15,157 When the internal phase ratio of the emulsion exceeds 74%, 

either the droplets have to be flattened or the emulsion must be become 

polydisperse.158 If monomers in the continuous phase of a HIPE are polymerised, the 
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emulsion droplets are embedded in the remaining material and the is porous matrix 

characterised by a final high porosity in the range 70% to 90% produced after 

removing the internal phase (usually through solvent drying or extraction).15 A 

polyHIPE preparation method is shown in Figure 2-17. PolyHIPE materials have a 

interconnected porous structure. Prior to the polymerisation of HIPEs, the emulsion 

droplets are separated by a very thin monomer film and normally the thickness of 

these films is inverse to the surfactant concentration. Then after curing the continuous 

phase and removing the dispersed phase, a polyHIPE with interconnecting pore 

throats (windows) may be formed induced due to mechanical action exerted during 

the post-synthesis processing of the porous polyHIPE monolith. The mechanical 

action leads to the rupture of the thinnest sections of the polymer film, which are 

those covering the faces between the closest neighbouring droplets.159 The pore 

diameter of a polyHIPE is usually determined by the droplet diameter of HIPEs. 

Increased emulsion stability usually accompanied by a smaller interfacial tension will 

lead to smaller droplets, which means that the pore size of a polyHIPE can be 

enlarged by lowering the emulsion stability, such as changing the concentration or 

type of surfactant160, or adding specific solvents into the emulsion to promote Ostwald 

ripening.161 The average void diameter in a polyHIPE material can vary from around 

1 µm to more than 100 µm.15  
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Figure 2-17: Schematic diagram of a polyHIPE preparation method: A: dropwise 
addition of the dispersed phase into the continuous phase (usually containing 
polymerisable monomers and surfactants) under stirring; B: the dispersed phase 
volume ratio is increased to 0.74 or greater; C: a HIPE is obtained after the addition 
of the disperse phase; D: a polyHIPE material is obtained after polymerisation of the 
monomer in the continuous phase of the HIPE. 

HIPEs can be divided into four categories: w/o HIPE, o/w HIPE, oil-in-oil (o/o) and 

CO2-in-water (c/w) HIPE. Except for the o/o HIPE (such as petroleum ether in 

dimethyl sulfoxide HIPE15), the other three types were reported as templates for the 

fabrication of porous scaffolds for tissue engineering (Table 2-3).40,155,162 the 

preparation of c/w HIPEs usually requires specialised and therefore expensive 

equipment and very harsh preparation conditions (usually refers to high pressure)162-
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164. w/o and o/w HIPEs are those which have been most widely studied. The 

interconnected porous structure of polyHIPEs meets the pore morphology 

requirements for scaffolds for tissue engineering. Based on the pore morphology 

control methods described above, it is possible to prepare polyHIPE materials with 

pore sizes in the range from 20 µm to 80 µm. The pores of these polyHIPEs are 

interconnected and suitable for cell seeding.  

Table 2-3: Three different types of HIPEs used for porous scaffolds fabrication for 
tissue engineering 

 w/o HIPE o/w HIPE c/w HIPE 

Continuous Phase hydrophobic monomers: hydrophilic monomers: hydrophilic monomers: 

Constituent of the 

Solid Foam 

styrene, divinylbenzene, 

propylene fumarate 

acrylic acid, dextran, 

pullulan, alginate 
acrylamide, dextran, 

Dispersed Phase Water organic solvent supercritical CO2 

Phase Order water-in-oil oil-in-water supercritical CO2-in-water 

2.5.5.1 W/O HIPEs for the Fabrication of Interconnected Porous 

Structure 

One of the most widely investigated systems of polyHIPEs prepared from w/o HIPE 

templates is the styrene system crosslinked using divinylbenzene (DVB) (Figure 2-18 

A). Styrene is a water-immiscible liquid monomer, which is used as the continuous 

phase of the HIPE. In the presence of a suitable emulsifier, usually a non-ionic 
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surfactants such as Span 80165 or particles such as titania nanoparticles166, water is 

slowly added into styrene and emulsified yielding w/o HIPEs. The internal phase 

(water) is usually removed after the dispersed phase is completely solidified. If these 

polystyrene based polyHIPEs were coated with aqueous solutions of for example 

poly-D-lysine and laminin, their biocompatibility has been dramatically improved 

providing a better surface suitable for the attachment of cells.167 

 

Figure 2-18: Two types of w/o polyHIPEs: A: PS-DVB based polyHIPE (reproduced 
from Zhang, S., Chen, J. & Perchyonok, V. T. Polymer 50, 1723-1731 (2009).) B: 
PPF based polyHIPE (reproduced from Christenson, E. M., Soofi, W., Holm, J. L., 
Cameron, N. R. & Mikos, A. G. Biomacromolecules 8, 3806-3814 (2007).) 

Besides polystyrene based polyHIPEs, some other polymers, such as PPF40 (Figure 2-

18 B) and polyurethane168, have been studied to prepare w/o polyHIPE scaffolds for 

tissue engineering. Rat skin explants, individual human skin stem or osteoblast cells 

were used in the studies of cell seeding on to these scaffolds.16,169 The results showed 

that cells seeded onto the polymer attached and proliferated on these scaffolds. 16,169-

170  
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But all these polymers are hydrophobic, which is considered not be a very suitable 

environment for cell growth without surface modification. The wettability of a 

scaffold for tissue engineering is considered very important for cell seeding171, 

because cells do not grow into hydrophobic areas and so it is difficult to uniformly 

distribute cells throughout hydrophobic scaffolds. Because the major constituents of 

human body are hydrophilic, it is recognised that the materials, with similar 

hydrophilic surface to the surrounding tissue, are more biocompatible and easier to be 

accepted by the body. To this end, the hydrophobic polyHIPEs were surface modified 

with other polymers, such as poly-D-lysine, to enhance biocompatibility.167 But the 

remaining unreacted toxic monomers, additives and organic solvents are still not easy 

to be removed completely, which may bring damage to the surrounding tissue and 

some growth factors may be inactivated. 

2.5.5.2 O/W HIPEs for the Fabrication of Interconnected Porous 

Structures 

In order to avoid the problems outlined above for the w/o polyHIPEs, hydrophilic 

polyHIPEs were prepared by polymerisation of o/w HIPEs. K. Naotaka172-173 first 

reported the production of polyHIPEs produced from entirely hydrophilic monomers. 

Normally o/w HIPEs contain a hydrophilic/water-soluble monomer and a water-

soluble/hydrophilic crosslinker in the aqueous continuous phase, an organic solvent as 

dispersed phase and an emulsifier with high HLB value (usually 7 to 10) to stabilise 
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the o/w emulsion. Once a stable o/w HIPE was prepared, the monomers in the 

aqueous phase were polymerised to form a porous solid. The constituent of these solid 

foams are derived from hydrophilic polymers, such as poly(acrylic acid)174 (Figure 2-

19 A), derivatized polysaccharides155 (Figure 2-19 B), gelatin137 and 

poly(hydroxyethyl methacrylate)175. The dispersed phase is usually toluene155 or 

cyclohexane175, which are completely removed after solidification. 

 

Figure 2-19: Two types of w/o polyHIPEs: A: Poly(acrylic acid) based polyHIPE 
(reproduced from Krajnc, P., Stefanec, D. & Pulko, I. Macromol. Rapid Commun. 26, 
1289 (2005)); B: Alginate based polyHIPE hydrogel (reproduced from Barbetta, A., 
Barigelli, E. & Dentini, M. Biomacromolecules 10, 2328-2337, (2009).) 

Barbetta has extended the application of inverse polyHIPE for scaffolds in tissue 

engineering by using derivatised polysaccharide and gelatin.18,137,155,162 These natural 

polymers with hydrophilic surfaces provide a suitable environment to nerve cells, 

since they are very hydrophilic and are better tolerated by the human body than 

synthetic polymers. They can provide important signals to guide cells at different 

stages of growth.176 However, it is worth to mention that all these inverse polyHIPEs 

need to be solidified and the dispersed phase has to be removed afterwards. These still 
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provide some challenges that need to be addressed, such as in vivo solidification and 

mechanical strength, to render o/w polyHIPEs into injectable scaffolds for soft tissue. 

2.5.5.3 Pickering HIPEs for the Fabrication of Interconnected Porous 

Structures 

Conventional o/w HIPEs are usually stabilised by large amount of surfactant, such as 

polyethylene glycol tert-octylphenyl ether (Triton X405)156,174-175,177-179, sodium 

dodecyl sulphate178 or polyethylene glycol dodecyl ether (Brij 35)180, most of which 

are not biocompatible or even toxic181-186. Besides surfactant, colloidal particles, such 

as inorganic particles166,187-189, carbon nanotube (CNT)190-191 or microgel particles192, 

have also been used to stabilize HIPEs (also referred to as Pickering-HIPEs). 

Compared with conventional surfactant stabilised HIPEs, particle stabilised HIPEs or 

Pickering HIPEs possess a number of advantages: firstly, the particles are absorbed at 

the interface between the continuous and dispersed phase and act as a barrier to 

droplet coalescence, since due to their high energy of attachment they render the 

resulting emulsion extremely stable.193-194 Secondly, the use of particles as emulsifiers 

can also be used to functionalise the pore walls of the macroporous materials 

produced by polymerisation of the continuous emulsion phase with a layer of particles 

and in this way introduce additional properties, e.g. improved biocompatibility, 

electrical conductivity and/or slow drug release properties, etc., which may lead to a 

variety of applications in the future (such as scaffolds for tissue engineering with 



Chapter 2: Background 

~79~ 

particle functionalised inner surface). Currently several hydrophobic particles, such as 

surface modified silica particles187, bacterial celluloses195 and titania nanoparticles166 

were reported to stabilise w/o Pickering HIPEs, which could be used to produce 

hydrophobic macroporous materials. Only silica particles189 and poly(N-

isopropylamide)-co-(methacrylic acid) microgel particles192 have been reported as 

effective emulsifiers for o/w Pickering HIPEs. As mentioned above, o/w Pickering 

HIPE possesses several advantages compared with surfactant stabilised HIPE, it can 

be used to prepare hydrogels as scaffolds for tissue engineering. But so far the 

application of  o/w Pickering HIPE templating in tissue engineering is not explored 

yet and no covalently crosslinked hydrogel prepared from Pickering HIPE was 

reported, which is most universal porous materials for tissue engineering produced 

from HIPE templating.196 

2.6 OVERALL ASSESSMENTS 

In summary, currently the main problem in injectable scaffolds for soft tissue 

engineering, is that scaffolds possess interconnected pore structure (such as scaffolds 

prepared by HIPE templating or leaching) are usually not injectable or lack of safety 

solidification methods; injectable scaffolds (such as stimuli responsive hydrogels) do 

not have proper pore structure (their pores are usually not well interconnected) for 

tissue engineering. This research aims at solving this problem and preparing injectable 

scaffolds systems for soft tissue engineering. The scaffolds should be able to be 
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injected through a hypodermic needle and be able to solidified in a mild environment 

(e.g. no toxic chemicals will be produced during solidification), should be fabricated 

by biocompatible materials, and should have turntable interconnected pore structure 

for the proliferation of different cells. 
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CHAPTER 3 

 

THERMO-RESPONSIVE 

POLY((DEXTRAN-GMA)-CO-

NIPAAM) POLYHIPE HYDROGEL 

SCAFFOLDS 

3.1 INTRODUCTION 

In this chapter, a injectable macroporous thermo-responsive polyNIPAAm based 

polyHIPE hydrogel made from o/w HIPE templates is described. Thermo-responsive 

polyNIPAAm was used to fabricate this hydrogel. Because polyNIPAAm and its 

copolymer became hydrophobic after being heated above their LCST103-104 and lead to 

lower biocompatibility, in order to improve the biocompatibility of this injectable 

scaffold system, dextran, a hydrophilic naturally occurring polysaccharide, which is 

better tolerated by the human body than most synthetic polymers and exhibits good 

biocompatibility197, was employed as part of the constituents of the hydrogel matrix 

together with polyNIPAAm. The pore structure, thermo-responsiveness behaviour and 

cytoxicity of this thermo-responsive polyHIPE hydrogel are being studied and 

discussed in this chapter. The injectability and “in vivo” solidification of this thermo-
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responsive polyHIPE hydrogel will be discussed in Chapter 5 together with another 

stimuli-responsive alginate based polyHIPE hydrogel, as similar solidification method 

could be applied in both of these two hydrogels. 

Scaffolds for tissue engineering, either preformed or injectable, have to mimic the in 

vivo environment as accurately as possible and offer physical support as well as a 3D 

environment to create functional tissue through cell proliferation to regenerate, repair 

or replace biological functions.12-13 In spite of the great variety of fabrication methods 

of scaffolds for tissue engineering, HIPEs, especially oil-in-water (o/w) HIPEs, which 

can be used to produce highly interconnected hydrophilic macroporous materials, 

have been recently studied extensively to prepare scaffolds.16,40,137,164,169-170,198-203 A 

high degree of interconnectivity, a feature of polyHIPEs, is considered to be a 

necessary requirement for nutrient/waste diffusion to support cell growth. In the case 

of o/w HIPEs156,174-175,177-180,189,192, if water soluble monomers contained in the 

continuous aqueous phase were polymerised and the dispersed phase was removed 

afterwards, highly macroporous hydrogels with a well-defined porous structure can be 

obtained.156,162-164,174-175,177-180,189,192  

PolyNIPAAm is a typical thermo-sensitive polymer with a lower critical solution 

temperature (LCST) in aqueous solution of about 32 °C.103-104 Below LCST, 

polyNIPAAm chains have a random coil structure in water, but at a temperature 

above LCST, polyNIPAAm expel water and start to collapse204. With its swelling and 
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de-swelling behaviour being close to body temperature, which could be utilised to 

control and release drugs or as a in vivo solidification methods triggered by heating to 

human body temperature, polyNIPAAm and its copolymers are widely investigated in 

tissue engineering and drug delivery.14 Moreover, the temperature dependent 

modulation of hydrophilic/hydrophobic surface properties of polyNIPAAm hydrogels 

was found to be useful for the controlled detachment of cultured cells.205-206 Confluent 

cell sheets used for tissue engineering may be detached from the culture substrate 

without enzymes or chelating agents, which damage cells.207 

3.2 RESULTS AND DISCUSSIONS 

Dextran is commercially available with a molecular weight of 40 kg mol-1 and it is 

reported that the viscosity of a 20 % w/v dextran aqueous solution is easy to be 

dispersed and suitable for o/w polyHIPE preparation.155 Glycidyl methacrylate (GMA) 

was chose to functionalise dextran because using dextran-GMA to prepare polyHIPE 

hydrogel is reported as a very good method.155 The synthesis of dextran-GMA was 

carried out following an established procedure.208 and the details of the reaction and 

analysis are described in 9.2. Dextran-GMA can be copolymerised with NIPAAm in 

an aqueous environment to obtain a hydrogel. Because dextran-GMA and NIPAAm 

are water soluble, a toluene-in-water HIPE could be used as template to prepare 

poly(dextran-GMA) and poly((dextran-GMA)-co-NIPAAm) polyHIPE hydrogels. 

Dextran-GMA itself acts as covalent crosslinker for the hydrogel209. Triton X405 
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(hydrophilic-lipophilic balance, HLB ≈ 18[32]) was used as surfactant, because it was 

proved to be the one of the most effective surfactants to stabilise o/w HIPEs.155  A 

covalently crosslinked hydrogel porous network was obtained after radical 

copolymerisation of dextran-GMA and NIPAAm in the aqueous phase of the HIPE 

(Figure 3-1), a poly(dextran-GMA) polyHIPE hydrogel is also prepared as control 

(the experimental details are in 9.3). 

 

Figure 3-1: A schematic of the preparation of poly((dextran-GMA)-co-NIPAAm) 
polyHIPE hydrogel and its thermo-responsive behaviour in an aqueous environment: 
A & B: dextran was functionalised with GMA and then radically copolymerised with 
NIPAAm in the aqueous phase of an o/w HIPE in an oven at 60 °C for 24 h ((i), 
dextran, (ii), GMA, (iii) NIPAAm); C: poly((dextran-GMA)-co-NIPAAm) hydrogel 
undergoes a phase change to form a more compact structure within the aqueous phase 
of t he polyHIPE after being heated above the LCST of polyNIPAAm. 

A poly(dextran-GMA) polyHIPE (DG1) and two poly((dextran-GMA)-co-NIPAAm) 

based polyHIPEs with different NIPAAm/dextran-GMA weight ratios (DGN1 & 
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DGN2) were prepared (Table 3-1). In order to investigate the effect of introducing 

NIPAAm on thermo-responsiveness of the polyHIPE, the weight ratio of NIPAAm to 

dextran-GMA was varied from 0 (DG1) to 1 (DGN1) until 4(DGN2). The ratio was 

stopped at 4 because dextran-GMA was used as crosslinker of the hydrogel, higher 

NIPAAm to dextran-GMA ratio may result in lower mechanical performance of the 

porous scaffold. The composition of poly((dextran-GMA)-co-NIPAAm) polyHIPEs 

was determined by elemental analysis. The ratio of NIPAAm/glucose units is 0.8:1 in 

DGN1 and 1.73:1 in DGN2. 

Table 3-1: Emulsion compositions, pore size and pore throat size (determined from 
SEM images) of poly(dextran-GMA) and poly((dextran-GMA)-co-NIPAAm) 
polyHIPE hydrogels.  

Sample 

Code 

Aqueous 

phase a 

(volume 

fraction) 

Aqueous phase composition b: 

Dextran-GMA/ NIPAAm/ Triton X405/ AIBN 

(% w/v : % w/v : % w/v: % w/v) 

Pore 

diameter 

rangec 

(µm) 

Pore throat 

diameter 

rangec (µm) 

DG1 10 20 : 0 : 8.5 : 9 10-30 1-11 

DGN1 10 10 : 10 : 8.5: 9 6-28 1-11 

DGN2 10 4 : 16 : 8.5: 9 5-15 1-9 

a Volume of the organic phase relative to the total volume of the emulsion. 

b Concentration of dextran-GMA, NIPAAm, Triton X405 and initiator AIBN in distilled water. 

c Pore and pore throat diameter ranges were determined from the SEM images of freeze dried 

hydrogels (in their swollen state in water).   
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SEM images of the polyHIPEs with the same nominal pore volume (the volume 

fraction of the oil phase) but different dextran-GMA and NIPAAm contents have the 

characteristic open porous structure of typical polyHIPEs155 (Figure 3-2). PolyHIPE 

hydrogel DG1 and DGN1 have similar pore size (in the range from 6 µm to 30 µm) 

and pore throat size (1 µm to 11 µm). When the weight ratio of NIPAAm to dextran-

GMA was increased to 4, the pore throat size of DGN2 slightly decreased to 1 µm to 

9 µm, but its pore size fallen to 5 µm to 15 µm.  The small pore size/pore throat size 

of DGN2 (compared with DG1 and DGN2) might be caused by the relative high ratio 

of amphiphilic NIPAAm monomer in the continuous phase of DNG2 before radical 

polymerisation and resulted in smaller droplets and thus produced smaller pores. 

 

Figure 3-2: SEM images of poly(dextran-GMA) and poly((dextran-GMA)-co-
NIPAAm) polyHIPE hydrogels: A: DG1; B: DGN1; C: DGN2.  



Chapter 3: Thermo-responsive poly((dextran-GMA)-co-NIPAAm) polyHIPE hydrogel scaffolds 

~87~ 

In order to gain insight into the mechanical properties of these polyHIPE hydrogels, 

oscillatory mechanical measurements were performed to determine the shear modulus 

of these polyHIPEs a function of temperature (the experimental details are in 9.5). 

Changes in the shear storage modulus G’ and shear loss modulus G” as a function of 

temperature are shown in Figure 3-3. G’ of polyHIPE DG1 slightly decreases from 

28 Pa to 25 Pa with increasing temperature from 25 oC to 50 oC while G” remains 

unaffected. When NIPAAm was introduced into the system, the G’ of DGN1 

increased by 34% and the G’ of DGN2 increased by 300% with temperature changed 

from 25 oC to 50 oC. The slope of the G’ and G” curves sharply increased around 

30 °C to 35 °C, which indicates that the polyNIPAAm segments of the  copolymer 

had started to phase separate from the aqueous phase, which caused the entire 

hydrogel to form a more compact structure within the aqueous phase of the polyHIPE. 

The observed transition temperature is around 34 oC to about 38 oC is similar to value 

for the LCST of most polyNIPAAm based hydrogels210-212. The higher the 

polyNIPAAm weight ratio, the more pronounced is the thermo-responsive behaviour. 

At the same time, the moduli, especially the storage shear modulus G’, drops 

dramatically (up to 78% at 25 oC) as compared with the shear modulus of 

poly(dextran-GMA) polyHIPEs. Dextran-GMA also is a crosslinker and the crosslink 

density decreases with the weight content of dextran-GMA, which explains the 

decrease in G’ with decreasing dextran-GMA content. 
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Figure 3-3: Change in storage G’ and loss G” modulus as a function of temperature 
for polyHIPE hydrogel DG1, DGN1 and DGN2. 

In order to assess the biocompatibility of poly((dextran-GMA)-co-NIPAAm) 

polyHIPE hydrogels, an in vitro cytoxity study was performed by cultivating A549 

human alveolar adenocarcinoma cells on the surface of a hydrogel monolith (Figure 

3-4) (the experimental details are in 9.32). A549 cells are human pneumocyte-like 

cells derived from an alveolar cell carcinoma, which have previously been used as a 

model to study cell-material interactions.213-214 However, it could be observed in 

Figure 3-4 that, the relative small pore throat size (less than 11 µm) limited the 
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penetration/migration of cells into the interior of the scaffold resulting in fewer cells 

to be found inside the scaffold. 

 

Figure 3-4: SEM images of A549 cells growing on poly((dextran-GMA)-co-
NIPAAm) DGN2  
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3.3 CONCLUSIONS 

Highly macroporous, biocompatible and thermo-responsive poly((dextran-GMA)-co-

NIPAAm) polyHIPE hydrogels with a well-defined interconnected pore structure 

were prepared by copolymerising dextran-GMA and NIPAAm in the aqueous phase 

of a toluene-in-water HIPE. The thermo-responsive behaviour, attributed to the 

NIPAAm units in the dextran copolymer, was clearly observed in oscillatory 

mechanical measurements. With increasing temperature, the hydrogels undergo a 

phase transition in water to form a more compact structure, which lead to a clear 

increase (up to 300%) of the storage modulus. The thermally induced transition, 

which occurred between 30 °C to 35 °C, is below but relatively close to body 

temperature. The research of poly((dextran-GMA)-co-NIPAAm) polyHIPE hydrogels 

is the initial work toward the development of stimuli-responsive polyHIPE hydrogels 

as injectable scaffolds for soft tissue engineering. The injectability of this polyHIPE 

hydrogel will be detailed discussed in detail in Chapter 5. The methods used to 

enlarge/improve the pore size/pore throat size of polyHIPE hydrogels are introduced 

in Chapter 6. Moreover, based on this thermo-responsive polyHIPE hydrogel, a 

improved thermo responsive injectable hydrogel system is introduced in Chapter 7, 

which used reversible physical aggregation between polyNIPAAm chains to replace 

covalently crosslinking in order to obtain better injectability. 
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CHAPTER 4  

 

ION-RESPONSIVE 

METHACRYLATE-MODIFIED 

ALGINATE POLYHIPE HYDROGEL 

SCAFFOLDS 

4.1 INTRODUCTION 

In this chapter, the preparation of a novel ion-responsive biocompatible methacrylate-

modified alginate hydrogel produced from o/w HIPE templating is described. The 

approach reported here is novel as the interconnected pore features of polyHIPEs is 

combined with the excellent biocompatibility and ionic crosslinking feature of 

alginate. A covalently crosslinked methacrylate-modified alginate polyHIPE hydrogel 

(sample code: PHMA) was prepared. The covalent crosslinks gives it permanent 

porosity. Ion-responsiveness is achieved via ionic crosslinking of alginate segments, 

leading to hydrogels which can be swollen and shrunk controllably while possessing a 

high degree of permanent porosity and a well-defined interconnected pore structure. 

Besides scaffolds for tissue engineering, other potential uses for this hydrogel could 

be controlled drug release215, microactuators,216 filtration or separation devices to 
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remove heavy metal ions217 and generally biomedical applications requiring a 

responsive material that can be controllably swollen and shrunk.  

Beside thermo-responsive hydrogels, ion-responsive hydrogels, which can utilise Ca2+ 

ions from the surrounding tissue as a very safe trigger for gelation, have also been 

widely investigated as scaffolds for soft tissue engineering.85 Alginate is a particularly 

attractive naturally derived ion-responsive polysaccharide widely investigated for its 

biocompatibility and reversible gelation chemistry with aqueous di- or trivalent 

cations.85,108-109 Rapid Ca2+-induced gelling of alginate under very mild aqueous 

conditions makes this a very attractive stimuli-responsive material for use in vivo.  

Ion-responsive hydrogels that have been studied previously include poly(acrylic acid-

co-2-hydroxyethylmethacrylate)218, poly(methacrylic acid-co-acrylonitrile)219-220 and 

poly(acrylamide-co-maleic acid)221. Ion-responsive hydrogels undergo abrupt changes 

in volume in response to changes in ionic strength218,222-223. The simplest way to 

prepare ion-responsive covalently crosslinked hydrogels is to polymerise and thus 

covalently crosslink ion-responsive water soluble monomers and a crosslinker in an 

aqueous environment219-220. Other ion-responsive hydrogels  preparation methods 

include lyotropic surfactant phases218 and nanofibre crosslinking221. Most of these 

hydrogels possess relatively low porosity (less than 60%) or poorly interconnected 

pore morphology, which limits the application of these hydrogels as scaffolds for 

tissue engineering.218,221  
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The preparation of Ca2+-crosslinked alginate based polyHIPEs has been recently 

reported198, but the focus was on ionic crosslinking as substitute for the conventional 

covalent crosslinking used for polyHIPEs.155,174 Neither ion-response behaviour nor 

injectability was investigated. 

4.2 RESULTS AND DISCUSSION 

Similar to the strategy used to prepare poly((dextran-GMA)-co-NIPAAm) polyHIPE 

hydrogel in Chapter 3, the first step to prepare alginate based polyHIPE concerns the 

introduction of vinylic functionalities onto the biopolymeric chains of alginate in 

order to covalently crosslink alginate in the aqueous phase of an o/w HIPE. This 

allowed us to obtain a physically stable porous hydrogel monolith after the oil 

template was removed. Etherification of hydroxyl groups of alginate with methacrylic 

anhydride to synthesis methacrylated alginate proved to be a relative easy and 

effective method to vinyl functionalises alginate for covalently corsslinking.224-225 The 

synthesis of methacrylate-modified alginate was carried out following an established 

procedure (the chemistry of the modification was shown in Figure 4-1 and the 

experimental details are in 9.6).225 With the same reason as described in Chapter 3, a 

toluene-in-water HIPE stabilised by Triton X405 was employed to prepare 

methacrylated-modified alginate polyHIPE. Because methacrylate-modified alginate 

with a degree of substitution of 1.00:0.44 (glucose to methacrylate groups, quantified 

using 1H-NMR and the calculation method is described in 9.6) is water soluble, a 
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toluene-in-water HIPE was used as template to prepare methacrylate-modified 

alginate based macroporous hydrogels. Compared with other water-soluble monomers 

used to prepare o/w polyHIPEs, such as acrylic acid174 or dextran155, the viscosity of 

our alginate solution is relatively high to be dispersed (the viscosity of 2% alginate 

from brown algae at 25 °C is about 250 mPa.s). A compromise between the need for a 

high concentration of methacrylate-modified alginate to obtain a mechanically robust 

gel on the one hand209 and a sufficiently low viscosity to be able to prepare a stable 

and homogeneous HIPE with full incorporation of the oil phase on the other hand had 

to be identified. After several trials, it was found that the appropriate methacrylate-

modified alginate concentration in the aqueous phase of the o/w HIPE was 7.0 % w/v. 

Above this concentration, the viscosity of the aqueous continuous phase made it 

extremely difficult to be dispersed using just an overhead stirrer and therefore no 

homogeneous emulsion was obtained. Also we had to extend the duration of the 

dropwise addition of the organic phase from 30 min to 4 h (at 500 rpm stirring speed 

at room temperature) in order to avoid phase inversion during emulsification, higher 

dropwise addition speed could lead to phase separation. Once the stable o/w HIPE 

was obtained it was then heated to 60 °C for 24 h for radical polymerisation. 

Afterwards, the polymerised hydrogel was soxhlet extracted with methanol followed 

by acetone to remove the dispersed phase and then dried in an oven at 60 °C for 

another 24 h to remove acetone. The product was finally re-swollen in deionised 
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water. (Figure 4-1 A & B). The experimental details of methacrylate-modified 

alginate polyHIPE hydrogel preparation are in 9.7. 

 

Figure 4-1: A schematic of the preparation of a methacrylate-modified alginate 
polyHIPE hydrogel PHMA and its ion-responsive behaviour in an aqueous 
environment: A: functionalisation of alginate with methacrylate groups ((i), alginate, 
(ii), methacrylic anhydride); B: methacrylate-modified alginate covalently crosslinked 
in the aqueous phase of an o/w HIPE after radically polymerised at 60 °C for 24 h.; C: 
methacrylate-modified alginate polyHIPE hydrogel PHMA in its shrunken state after 
ionic crosslinking with a CaCl2 solution. 

Alginate can be ionically crosslinked in the presence of divalent cations such as Ca2+ 

ions to form stable hydrogels. A purely Ca2+-crosslinked alginate based polyHIPE 

hydrogel has already been reported.198 In this study ionic crosslinking serves solely as 

a non-covalent mode of crosslinking instead of the more conventional covalent 

approach and no swelling/shrinking of the hydrogel that was caused by the change of 

the ion concentration was reported .155,174 
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In our work, the main purpose of introducing methacrylate functionalities into 

alginate is to allow the hydrogel to be crosslinked in two different ways: one is  

covalently to maintain the porous structure generated during emulsion templating and 

the other is ionically through formation of ionic crosslinking sites between alginate 

chains 120-121, which imparts the ability to response to divalent or trivalent cations in a 

aqueous environment and consequently allow us to control the external dimension and 

internal pore size/pore throat size of the porous structure as well as the mechanical 

properties of macroporous hydrogels. Our experiments on ion responsiveness showed 

that the polyHIPE hydrogel starts to shrink after immersing it into aqueous CaCl2 

solution with Ca2+ concentration ranging from 1.8 mM to 100 mM (1.8 mM CaCl2 

concentration was chosen because it is the typical level of Ca2+ concentration in the 

human122-123, 100 mM CaCl2 concentration was chosen to facilitate the observation of 

shrinking phenomenon). Upon exposure to Ca2+, the hydrogel polyHIPE turns from 

translucent to pale white (Figure 4-2). As shown in Figure 4-2 A, the diameter of the 

polyHIPE gradually decreases from 2.1 cm to 1.2 cm in a 100 mM CaCl2 aqueous 

solution. A series of experiments indicated that, as long as there was a high enough 

supply of Ca2+ (200 ml 1.8 mM CaCl2 is enough to ionically crosslink 0.1 g 

methacrylate-modified alginate), the final shrunken dimension of methacrylate-

modified alginate polyHIPE hydrogel PHMA was constant independent from whether 

it had been immersed in 1.8 mM or 100 mM CaCl2 solution. Before ionic crosslinking, 

the water uptake of the only covalently crosslinked alginate polyHIPE hydrogel 
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PHMA was approximately 8000% w/w (determined by gravimetrically comparing 

the weight of fully swollen hydrogel before and after freeze drying), which is high 

while the water uptake of other porous alginate based materials ranges from 

500% w/w to 3000% w/w226-228. Consistent with the volume shrinkage during the 

ionic crosslinking, water was expelled from the hydrogel and the water content 

decreased to approximately 3000% w/w (Table 4-1). The details of these experiments 

are in 9.8, 9.10 and 9.11. 

 

Figure 4-2: Reversible shrinking and swelling of a methacrylate-modified alginate 
polyHIPE PHMA monolith triggered by an alternating exposure to a 100 mM 
aqueous CaCl2 solution followed by a 100 mM aqueous sodium citrate solution. A: 
change of diameter of the cylindrical polyHIPE monolith with time during shrinking; 
B: change of diameter of the cylindrical polyHIPE monolith with time during swelling; 
C: digital image of a hydrogel after Ca2+-crosslinking; D: digital image of a hydrogel 
after removal of Ca2+ ions with excess sodium citrate. 
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Figure 4-3 allows the comparison of SEM images of methacrylate-modified alginate 

polyHIPE hydrogel PHMA before and after Ca2+-crosslinking. The typical polyHIPE 

pore structure is clearly observed in all cases. Consistent with the volume shrinkage 

(50% shrinkage in its diameter), the pore sizes of the polyHIPE hydrogel, which were 

determined from the SEM images of the freeze dried hydrogels (in their swollen state 

in water before freeze drying), decreased from 14~31 µm (Figure 4-3 A) to 7 ~12 µm 

(Figure 4-3 B, C & D) after Ca2+-crosslinking. Ca2+-crosslinking also led to a slight 

decrease (about 50%) in the pore throat size (Table 4-1). The decrease in pore size 

and pore throat size of methacrylate-modified alginate polyHIPE are consistent with 

the external dimension change before and after ionic crosslinking. Moreover, the 

macroporous alginate hydrogel was a closed cell type after preparation (Figure 4-3 A) 

and gradually produced interconnections between pores evident after already one 

shrinking cycle. 

Table 4-1: Properties of cylindrical methacrylate-modified alginate polyHIPE 
hydrogel PHMA with 80% nominal pore volume in its fully swollen state and fully 
shrunken state. 

Methacrylate-modified 

alginate polyHIPE 

hydrogel PHMA  

Pore size 

range[a] (µm)

Pore throat 

size range[a] 

(µm) 

Water 

uptake[b] 

(% w/w) 

Diameter of 

hydrogel 

monolith (cm) 

fully swollen 14.4~31.6 2.5~12.3 8000250 2.1 

fully shrunken 6.8~11.8 1.9~5.9 3000100 1.2 

[a] Pore size and pore throat sizes of the polyHIPE hydrogel was determined from the 
corresponding SEM micrographs. [b] Determined by gravimetrically comparing the 
weight of fully swollen hydrogel with freeze dried hydrogel. 
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Figure 4-3: SEM images of methacrylate-modified alginate polyHIPE hydrogel 
PHMA: A: before shrinking and swelling experiments and after being exposed to B: 
1.8 mM, C: 4.0 mM and D: 100 mM CaCl2 solutions; E: after 2 cycles of sequential 
exposure to a 100 mM aqueous CaCl2 solution followed by 100 mM aqueous sodium 
citrate solution after final immersion in 100 mM aqueous CaCl2 solution (i.e. 
shrunken state); F: after 3 cycles of sequential exposure to a 100 mM aqueous CaCl2 
solution followed by 100 mM aqueous sodium citrate solution (i.e. swollen state). 
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Sodium citrate is a strong tridentate chelator for  divalent cations at very mild 

conditions229-230 and is commonly used as anticoagulant in blood transfusions231. 

When the covalently and Ca2+-crosslinked methacrylate-modified alginate polyHIPE 

hydrogel PHMA was exposed to an aqueous solution of sodium citrate (100 mM), 

Ca2+ ions were chelated and thus removed from the hydrogel network leading to the 

removal of the ionic crosslinks expressed physically as swelling of the cylindrical 

hydrogel monolith. In this swelling experiments, the excess water from the Ca2+-

crosslinked monolith was firstly wiped out by tissue paper, and then the monolith was 

immersed in a beaker contained 200 ml 100 mM aqueous citrate solution. After about 

3 h of exposure sodium citrate solution, its diameter finally recovered to 2.1 cm 

(Figure 4-2 B). The SEM image (Figure 4-3 F) confirms that also the pore sizes of 

the methacrylate-modified alginate polyHIPE hydrogel PHMA recovered from about 

2~6 µm to its original dimension before Ca2+-crosslinking. The swelling-shrinking 

cycle could be repeated at least three times without visually observing any volume 

loss or changes in colour or physical dimensions.  

The results of the oscillatory mechanical measurements on cylindrical methacrylate-

modified alginate polyHIPE hydrogel PHMA are shown in Figure 4-4 and the 

experimental details are in 9.9. Before any shrinking-swelling cycle, the storage 

modulus of the hydrogels was approximately 20 kPa, which is larger than the storage 

modulus of 1% alginate crosslinked by Ca2+ ions 232-233 (approximately 1~ 12 kPa 

depended in the molecular weight or M to G unit). After the first exposure to Ca2+, a 



Chapter 4: Ion-responsive methacrylate-modified alginate polyHIPE hydrogel scaffolds 

~101~ 

sharp decrease in the shear storage modulus to 5 kPa was observed and remained at 

this value after subsequent swelling-shrinking cycles. It is evident from the SEM 

images that after 3 shrinking-swelling cycles, both in the shrunk (Figure 4-3 E) and 

in the swollen state (Figure 4-3 F), the pore walls became thinner compared to the 

hydrogel polyHIPE prior to shrinking-swelling experiments (Figure 4-3 A). The 

reason for the fourfold drop of the shear storage modulus after the first Ca2+-

crosslinking is that the thin films initially separating the pores in the polyHIPE234 

ruptured and so the structure becomes open porous. Another possible reason might be 

that the methacrylate-modified alginate in the hydrogel polyHIPEs were initially 

conformationally strained and the first Ca2+-crosslinking/Ca2+-sequestration process 

allowed for the relaxation of the alginate chains, leading to a lower modulus. 

 

Figure 4-4: Change in shear storage modulus G’ and shear loss modulus G” of 
methacrylate-modified alginate polyHIPE hydrogel PHMA triggered by alternating 
exposure to a 100 mM CaCl2 solution followed by citrate chelation/extraction of Ca2+ 
with a 100 mM sodium citrate solution. 
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Figure 4-5: SEM images of A549 cells cultured on methacrylate-modified alginate 
polyHIPE PHMA: A: cells attached on the surface after culture; B: cells that 
proliferated into the pores of polyHIPE hydrogel after culture. 

In order to assess the biocompatibility of the hydrogel, in vitro cytoxicity evaluation 

was performed by culturing A549 human alveolar adenocarcinoma cells on the 

methacrylate-modified alginate polyHIPE hydrogels (the experimental details are in 

9.32). Extensive colonisation of cells was clearly observed on the surface of the 

porous hydrogel (Figure 4-5 A) and even inside of the hydrogel (Figure 4-5 B). Most 
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cells had assumed squamous epitheloid morphologies. But compared with A549 cell 

size, the relative small pore throat size limited the penetration/migration of cells into 

the inside of the scaffold resulting in fewer cells to be found inside the scaffold. 

However, judging from the rapid colonisation of the scaffolds by A549, and the 

typical squamous, epithelial morphologies, A549s are able to establish connections 

with the hydrophilic network of methacrylate-modified alginate polyHIPE PHMA.  

4.3 CONCLUSIONS 

Highly porous and biocompatible methacrylate-modified alginate hydrogel polyHIPE 

PHMA with a well-defined porous structure were prepared. The introduction of 

methacrylate allowed to covalently crosslink the alginate based hydrogel which also 

maintains the ability to be ionically crosslinked. The second but ionic crosslinking 

could be easily reversed using the chelating agent sodium citrate. Both the ionic 

crosslinking and disruption of ionic crosslinking could be trigged in a mild 

environment and led to shrinking and swelling phenomenon of polyHIPE hydrogel, 

which also resulted in the change of the dimension, water uptake and pore size of the 

hydrogel. After first shrinking, the pore structure of methacrylate-modified alginate 

polyHIPE was interconnected regardless whether the polyHIPE was in the shrunken 

or swollen state. The controllable ion-responsive feature and well-controlled pore 

morphology makes this methacrylate-modified alginate hydrogel polyHIPEs 

promising scaffolds for soft tissue engineering. The initial data suggests this porous 
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scaffold is not preventing cell growth but more cytoxicity assessment need to be 

carried out. Other potential applications in bioseparation, drug delivery, as artificial 

muscles biosensors, actuators and immobilization of enzymes and cells could also be 

considered. 
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CHAPTER 5 

 

INVESTIGATION OF THE 

INJECTABILITY AND 

SOLIDIFICATION OF STIMULI-

RESPONSIVE POLYHIPE 

HYDROGELS 

5.1 INTRODUCTION 

In tissue engineering, constructs of living cells can be formed either by seeding cells 

onto a preformed scaffold or by injection of a solidifiable porous scaffolds together 

with a cell mixture to the tissue to be regenerated12-13. Compared with preformed 

scaffolds, injectable scaffolds possess many attractive features from a clinical 

perspective, such as minimising cost of treatment, patient discomfort, risk of infection 

and scar formation11,14. In addition, cells, drugs or growth factors can be loaded quite 

simply into the scaffold by mixing prior to injection.11 Moreover, injectable scaffolds 

are capable of filling irregular defects, which is difficult to achieve with preformed 

scaffolds.14 Because it is usually believed that covalently crosslinked polyHIPEs are 
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not injectable, most activities concerning the use HIPE-templated monoliths as 

scaffolds for tissue engineering concentrated on preformed scaffolds16,164,199-201 in 

contrast to the work reported here.  

An injectable scaffold should be able to solidify in vivo after injection without any 

irritation to the surrounding tissue and possess a interconnected 3D porous structure 

with proper pore size and sufficient mechanical strength to withstand biomechanical 

loading.11 Typical solidification mechanisms during the scaffold formation usually 

include radical polymerisation/crosslinking235-237, ceramic setting238, self-assembly 

mechanisms239 and environmental-stimuli triggered solidification, which usually 

includes thermal gelation11,240, ionic cross-linking198,241. Considerable attention has 

been given to environmentally-stimuli-responsive materials, or so-called smart 

hydrogels, as in vivo solidification for injectable scaffold for tissue engineering 

because these toxic monomers can be avoided and relative mild solidification 

condition can be applied. As mentioned in Section 2.4.4.2, among these stimuli-

responsive materials, the rapid Ca2+-induced gelation of alginate makes it a very 

attractive stimuli-responsive material for in vivo use. 97 

In Chapter 2 and Chapter 3, two novel stimuli-responsive polyHIPE hydrogels 

namely: a thermo-responsive poly((dextran-GMA)-co-NIPAAm) polyHIPE hydrogel 

and an ion-responsive methacrylate-modified alginate polyHIPE hydrogel have been 
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introduced. Both of these hydrogels posses a well-defined interconnected porous 

structure and good biocompatibility as revealed by a preliminary cytoxicity 

assessment, which makes them good candidates as preformed scaffolds for soft tissue 

engineering. In this Chapter, the injectability and solidification of these two types of 

stimuli-responsive hydrogels are being discussed. 

5.2 RESULTS AND DISCUSSION 

5.2.1 INJECTABILITY OF METHACRYLATE-MODIFIED ALGINATE 

POLYHIPE HYDROGEL PHMA  

A very simple experiment was conducted in order to investigate the injectability of 

methacrylate-modified alginate polyHIPE hydrogel PHMA (the experimental details 

are in 9.12). Several pieces of PHMA (diameter > 1 cm) were loaded into a syringe 

and gently squeezed through a hypodermic needle (inner diameter = 1.1 mm). As 

expected from a covalently crosslinked hydrogel, the gel particles broke up into 

smaller fragments during extrusion through the needle. The SEM images (Figure 5-2 

A) of the extruded gel show that the diameter of the hydrogel fragments produced by 

extrusion of the polyHIPE gel through the needle ranged from 1 mm to 3 mm. The 

sizes greater than the needle diameter are a result of the very compliant nature of the 

porous soft polyHIPE which can be deformed and compressed to a smaller size 

reversibly upon exerting physical pressure. The pore morphology of these polyHIPEs 
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was not destroyed by the extrusion process as is evident from the corresponding SEM 

images (Figure 5-2 B). The interconnected pore structure was retained without 

change of size of pores or pore throats. (The experimental details are in 9.12.)  

Some target areas for injectable scaffolds are confined defects surrounded by soft 

tissue. Ideally after injection, these 1 mm to 3 mm fragments of polyHIPE hydrogel 

would fill the confined space fully and act as a continuous (i.e. monolithic) scaffold in 

vivo. At the same time, the surrounding soft tissue would confine and compress the 

porous hydrogel fragments and force/hold them together (Figure 5-1). One simple 

experiment was carried out for demonstration. The hydrogel was injected into a piece 

of fresh dead pork muscle (purchased from local supermarket), which was then freeze 

dried within the muscle after injection. After freeze drying, the interconnected porous 

structure of the polyHIPE was still clearly observable in the pork muscle (Figure 5-2 

C & E). The surrounding soft tissue tightly packed the porous hydrogels fragments 

(Figure 5-2 C) and no gap could be observed at the boundary between the pork 

muscle and the hydrogel (Figure 5-2 D).This experiment demonstrated that 

covalently crosslinked methacrylate-modified alginate polyHIPE PHMA is injectable 

and  its porous structure is not changed before and after injection. 
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Figure 5-1: A schematic diagram of polyHIPE injection into soft tissues. 
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Figure 5-2: SEM images of methacrylate-modified alginate polyHIPE hydrogel 
PHMA after injection through the needle: A & B: hydrogel passed through a needle 
with 1.1 mm inner diameter (A: low magnification, B: high magnification); C, D & E: 
hydrogel after being injected into a dead pork muscle. 
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5.2.2 SOLIDIFICATION OF METHACRYLATE-MODIFIED 

ALGINATE POLYHIPE HYDROGEL PHMA AFTER INJECTION 

Considering the possibility that the target area of injectable scaffold maybe not 

confined space, another potential approach of producing a monolithic structure from 

fragmented polyHIPE hydrogel particles after injection is explored to utilise the Ca2+-

responsive feature of the alginate. If a sufficient number of interparticle Ca2+ 

crosslinks could be introduced through exposure of the fragments to a CaCl2 solution, 

methacrylate-modified alginate polyHIPE PHMA as a coherent monolithic scaffold 

should form after injection. However only hydrogel fragments were found when the 

hydrogel PHMA was injected into a 50 mM CaCl2 solution (Figure 5-4 D). As soon 

as the particle came in contact with the Ca2+ ions, they will crosslink at the surface of 

the individual particle and make them shrink and with the shrinking one will not get 

cohesion/adhesion between particles. As the crosslinking is directly associated with 

shrinking of the particles, it seems likely that the latter process prevented any 

significant interparticle crosslinks from forming.  
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Figure 5-3: A schematic of using Ca2+ crosslinkable alginate to bond polyHIPE 
hydrogel fragments. A: aqueous alginate solution diffused into polyHIPE hydrogel 
fragments; B: aqueous alginate solution gelled in the presence of Ca2+ and bonded 
polyHIPE hydrogel fragments together. 
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Figure 5-4: Attempts of reforming injected methacrylate-modified alginate polyHIPE 
hydrogel PHMA fragments by bringing the hydrogel particles into contact with either 
a Ca2+ solution alone or a combination of Ca2+ solution plus alginate. A: reforming 
set-up composed by a syringe plunger and a cellulose extraction thimble; B: one piece 
of scaffold after the reforming step (the width of the spatula is 1.0 cm); C: reformed 
scaffold immersed in distilled water; D: the same methacrylate-modified alginate 
hydrogel being injected into a CaCl2 solution (50 mM) but without using alginate in 
the presence of Ca2+ as adhesive to bind the hydrogel fragments produced during 
extrusion together; E & F: SEM pictures of the inner structure of a reformed scaffold.  

In order to reform a hydrogel monolith from the extruded hydrogel fragments under 

very mild conditions, a solution of unmodified alginate was used as adhesive to bind 

hydrogel fragments together in the presence of Ca2+ ions (Figure 5-3). A cellulose 

soxhlet thimble was chosen as the mould for forming a monolithic scaffold because in 

addition to offering confinement it is also permeable to Ca2+ ions and alginate (Figure 
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5-4 A). After methacrylate-modified alginate polyHIPE hydrogel were immersed in 

distilled water to reach equilibrium and were then soaked in 50 ml aqueous alginate 

solution with difference alginate concentrations (0.2 % w/v or 1.0 % w/v) for 24 h. 

The alginate solution acted as adhesive and an aqueous CaCl2 solution acted as 

crosslinker to solidify the alginate solution, and so the hydrogel monolith fragments 

were stuck together and remodelled in to one cylindrical piece of hydrogel 

(diameter ≈ 1.3 cm, height ≈ 1 cm) (Figure 5-4 B & C) (the details of this experiment 

is in 9.13). When handling the reformed hydrogel, it seems to have a similar strength 

and toughness to the touch compared with the same polyHIPE hydrogel before 

injection. Increasing the concentration of alginate from 0.2 % w/v to 1.0 % w/v led to 

a slight enhancement of the mechanical performance. The reformed scaffold did 

maintain its shape in water (Figure 5-4 C) without breaking into the original 

polyHIPE hydrogel fragments after gently shaking the glass tube. In sharp contrast, 

only hydrogel fragments could be observed when the same hydrogel was injected into 

thimble and soaked in CaCl2 solution but without using alginate solution as adhesive 

to bond the hydrogel fragments produced during extrusion together (Figure 5-4 D). 

Ca2+-crosslinked alginate thin films (Figure 5-4 E dashed circle), which act as binder 

for the whole scaffold, could be clearly observed between individual hydrogel 

fragments (Figure 5-4 E). Meanwhile, the interconnected porous structure could be 

clearly observed throughout the reformed scaffold without obvious pore size change 
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compared with the scaffold before injection (Figure 5-4 F). When the concentration 

of alginate “adhesive” used was 1.0 % w/v (higher alginate concentration was not 

selected because of the worries of the blockage of the pores caused by Ca2+-

crosslinked alginate), Ca2+-crosslinked alginate films also could be observed in part of 

the pores inside the methacrylate-modified alginate polyHIPE PHMA and the pore 

walls became slightly thicker (Figure 5-4 F, dashed circle). However when the 

concentration of the alginate “adhesive” was decreased to 0.2 % w/v (lower alginate 

concentration was not selected because the worries of low mechanical strength of the 

reformed hydrogel), the change in pore morphology of the methacrylate-modified 

alginate polyHIPE hydrogel that brought by alginate adhesive was obviously lowered 

and so that it was difficult to notice the change in the morphology of polyHIPE matrix 

that brought by similar Ca2+-crosslinked alginate films. 

It is important to note that Ca2+-crosslinked alginate is degradable in vivo within 

several days after implantation242-243, which means these thin films will gradually 

disappear and will not affect the growth the cells loaded into the porous scaffolds 

before reforming. It has also been reported that the mechanical strength of the cell-

seeded scaffolds increases substantially with the continuous construction of living 

tissue244, which means the loss of alginate “adhesive” may be compensated by the 

growing tissue which may not necessarily lead to a overall loss of mechanical strength 

of the scaffolds during cell growth. 
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5.2.3 INJECTABILITY OF POLY((DEXTRAN-GMA)-CO-NIPAAM)  

POLYHIPE HYDROGELS 

As described in 5.1, the investigate of poly(dextran-GMA) polyHIPE hydrogels were 

focus on preformed scaffolds but not injectable scaffolds155,162, because it is usually 

believed that covalently crosslinked polyHIPEs are not injectable. This section 

described the investigation of the injectability of poly((dextran-GMA)-co-NIPAAm) 

polyHIPE hydrogels and a safe solidification methods for these hydrogels.  

Similar to the injectability experiment of ion-responsive methacrylate-modified 

alginate polyHIPE hydrogel PHMA, the injectability of thermo-responsive 

poly((dextran-GMA)-co-NIPAAm) polyHIPE hydrogel was studied as follows: 

several pieces of poly((dextran-GMA)-co-NIPAAm) hydrogel DGN1 (diameter > 

1 cm) were loaded into a syringe and gently squeezed through a hypodermic needle 

with inner diameter of 1.1 mm. The result of this type of injectability experiment of 

poly((dextran-GMA)-co-NIPAAm) polyHIPEs was similar to the methacrylated 

alginate polyHIPEs: the covalently crosslinked poly((dextran-GMA)-co-NIPAAm) 

hydrogel broke into smaller hydrogel fragments after being extruded through the 

needle. As expected the polyHIPE hydrogel easily deformed and could be compressed 

through the needle which resulted in 0.5 mm to 2.0 mm hydrogel polyHIPE fragments 

during extrusion (Figure 5-5 A). The sizes greater than the needle diameter are a 
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result of the highly porous soft foam nature of the polyHIPE which can be deformed 

and compressed to a smaller size reversibly upon exerting physical pressure. Despite 

the compression and shear the polyHIPE was exposed to during extrusion, the pore 

morphology and dimensions of the resulting polyHIPE fragments were not affected 

by the extrusion process (Figure 5-5 B), which attributes to the elasticity of the 

material. The interconnected pore structure of the polyHIPE hydrogel was retained 

without change of pore/pore throat size. 

Similar to the investigation of injectability of methacrylate-modified alginate 

polyHIPEs, a follow-up experiment was designed to simulate a target area for 

injectable scaffolds, therefore we simulated the injection of the polyHIPE hydrogels 

into a piece of pork meat. A poly((dextran-GMA)-co-NIPAAm)  polyHIPE hydrogel 

DGN1 was injected into a piece of dead pork, which was then freeze dried within the 

muscle. An SEM image (Figure 5-5 D) shows that after freeze drying, the 

interconnected porous structure of poly((dextran-GMA)-co-NIPAAm)  hydrogels was 

still clearly observable in the pork muscle. The surrounding soft tissue tightly 

surrounded the porous hydrogels (Figure 5-5 C) and no gap could be observed at the 

boundary between the pork muscle and hydrogel (Figure 5-5 E). No chemical 

reaction was required to generate the scaffold or an agglomeration scaffolds in the 

body, which should provide a safer route to injectable scaffolds as issues with in situ 
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polymerisation/crosslinking or residual initiator fragments or monomer do not arise 

during this injection and solidification procedure. 

 

Figure 5-5: SEM images of a poly((dextran-GMA)-co-NIPAAm) polyHIPE hydrogel 
extruded through a needle. A & B: SEM image of hydrogel DGN1 (the hydrogel was 
firstly freeze dried and then was immersed in distilled water to reach equilibrium 
before injection) passed through a needle with 1.1 mm inner diameter (A: low 
magnification, B: high magnification); C, D & E: hydrogel DGN1 after being injected 
into a dead pork muscle. 
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5.2.4 SOLIDIFICATION OF POLY((DEXTRAN-GMA)-CO-NIPAAM)  

POLYHIPE HYDROGELS AFTER INJECTION 

Aqueous alginate was used as adhesive to bond the hydrogel fragments produced 

during injection together into a monolithic scaffold because it can form hydrogel in 

the presence of Ca2+ (Figure 5-6). The Ca2+ needed for the gelation of the alginate 

solution could be directly obtained from the human body because the normal level of 

Ca2+ in the human body is 1.8 mM122-123. As illustrated in Figure 5-6 B, after being 

triggered by Ca2+ after injection, the solidified thermo-responsive poly((dextran-

GMA)-co-NIPAAm) polyHIPE hydrogel fragments were embedded in a matrix of 

Ca2+-crosslinked alginate.  And the temperature rise caused by body temperature of 

the injected thermo-responsive polyHIPE might lead to the improvement of the 

mechanical performance of the scaffold. As mentioned before, Ca2+-crosslinked 

alginate is degradable within several days in an aqueous environment242-243. But 

simultaneously it is expected that the mechanical strength of the cell-seeded scaffold 

increases substantially with the continuous construction of tissue244 which means the 

loss of alginate adhesive could be compensated by the growing tissue which may not 

necessarily lead to a loss of the mechanical strength of the scaffold required to support 

the cells (Figure 5-6 C) 244.  
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Figure 5-6: Schematic diagram of stimuli-responsive solidification of a thermo-
responsive poly((dextran-GMA)-co-NIPAAm) polyHIPE hydrogel using a Ca2+ 
crosslinkable aqueous alginate solution as “adhesive” to bond the hydrogel fragments 
produced during injection/extrusion. (1): polyHIPE hydrogel is injected into the target 
area together with an aqueous alginate solution (hydrogel breaks into fragments 
during injection); (2): aqueous alginate solution gels in the presence of Ca2+ which 
bonds the generated polyHIPE hydrogel fragments together; meanwhile, the modulus 
of the thermo-responsive hydrogel increases triggered by body temperature; (3): Ca2+-
crosslinked alginate is degradable in vivo within several days after implantation while 
the mechanical strength of the cell-seeded scaffolds increases substantially with the 
continuous construction of tissue. 
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Similar to the experiment of reforming methacrylate-modified alginate polyHIPE 

hydrogels, a cellulose soxhlet thimble was chosen as the mould to reform 

poly((dextran-GMA)-co-NIPAAm) polyHIPE scaffold. 1.0 % w/v aqueous alginate 

solution was used as adhesive and 50 mM aqueous CaCl2 solution (this concentration 

is higher than the average Ca2+ concentration in human body in order short gelation 

time to facilitate observation) as crosslinker to solidify the alginate solution. The 

polyHIPE hydrogel fragments were bonded together and remodelled into a single 

cylindrical piece of hydrogel with a diameter of about 0.8 cm and height of about 

1 cm (Figure 5-7 A). After removing it from the mould and immersing it in a glass 

container filled with water, the reformed scaffold did maintain its shape without 

disintegrating into fragments even after shaking the container. When handling the 

reformed hydrogel, it seems to have a similar strength and toughness to the touch 

compared with the hydrogel before injection. Some thin films, which could be Ca2+-

crosslinked alginate, were clearly observed throughout the reformed scaffold (Figure 

5-7 B). Although parts of the pore walls of polyHIPE hydrogel became thicker 

because of the presence of Ca2+-crosslinked alginate, the interconnected porous 

structure could still be clearly observed without changing the pore size in the 

reformed scaffold together with some Ca2+-crosslinked alginate films (Figure 5-7 B).  
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Figure 5-7: Reformed polyHIPE hydrogel DGN1 scaffold fragments bonded by 
aqueous alginate solution in presence of Ca2+ ions: A: one piece of scaffold after re-
crosslinking; B: SEM image of reformed scaffold. 

5.3 CONCLUSIONS 

It was shown that the well-defined pore structure of two different types of covalently 

crosslinked polyHIPEs hydrogel could be maintained after extrusion through a 

hypodermic needle. The resulting polyHIPE hydrogel particles could be reformed into 

a monolithic scaffold with a solution-based alginate “adhesive” in biocompatible 

conditions. This approach is a generic and potentially versatile method to produce 

porous hydrogels intended as injectable scaffolds for soft tissue engineering. 



Chapter 6: Thermo-HIPEs as injectable scaffolds for tissue engineering 

~123~ 

CHAPTER 6 

 

THERMO-HIPES AS INJECTABLE 

SCAFFOLDS FOR TISSUE 

ENGINEERING 

6.1 INTRODUCTION 

In Chapter 3 and Chapter 4, o/w HIPEs have been used to produce stimuli-

responsive highly interconnected porous scaffolds for tissue engineering through 

covalent crosslinking as a means of introducing and maintaining the desired pore 

structure and a stimuli-responsive methods. We also have demonstrated that the well-

defined pore structure of these two covalently crosslinked polyHIPEs could be 

maintained even after injection through a needle in Chapter 5. In this Chapter, we 

describe injectable HIPEs produced by using only thermo-responsive dextran-b-

polyNIPAAm with a lower critical solution temperature (LCST) close to body 

temperature providing the function of crosslinking and thermo-responsiveness at the 

same time. 

 In most cases, crosslinking of HIPEs is carried out by radical polymerisation15-16, sol-

gel reaction17 or enzymatic crosslinking18. If significant crosslinking occurs before 
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injection, one will have reached the point at which solidification causes the polyHIPE 

scaffold to break into smaller gel particles after extrusion through a hypodermic 

needle, as shown in Chapter 5; if radical polymerisation or sol-gel reactions of HIPEs 

occur in vivo after injection, irritation may be brought to the surrounding tissue. In the 

case of enzymatic crosslinking18, HIPEs may not solidify fast enough in vivo to 

provide sufficient mechanical support. Producing a HIPE through a phase change of a 

thermo-sensitive polymer may offer a solution to the limitations of currently 

employed crosslinking chemistries. 

We speculated that the physical aggregation between thermo-reversible polymer 

chains, such as polyNIPAAm, upon phase transition (LCST) may provide enough 

interpolymer chain interactions to maintain a porous structure such as the one 

generated in a HIPE. The gel or emulsion system can then be moulded (shaped) below 

the LCST of the polyNIPAAm components.  

In our design we also tried to take account of the fact that the wettability of a scaffold 

for tissue engineering is very important for cell seeding in three dimensions.171 Cell 

adhesion on synthetic polymer surfaces is generally poor due to their low 

hydrophilicity and lack of cell recognition sites on the scaffold surface.245-247 In order 

to improve the biocompatibility of scaffolds, NIPAAm was grafted to dextran, a 

hydrophilic naturally occurring polysaccharide, which is better tolerated by the human 

body than most synthetic polymers and exhibits good biocompatibility.197 Indeed by 
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using the HIPE templating method to this general approach, we were able to produce 

thermo-responsive scaffolds with solely interconnected pores.  

6.2 RESULTS AND DISCUSSION 

Following the strategy outlined in Section 6.1, we describe a versatile method to 

prepare thermo-responsive o/w HIPEs and solid-HIPEs (i.e. porous interconnected 

solids produced from HIPEs without covalent crosslinking) from thermo-responsive 

linear polymers, which can potentially be used as injectable scaffolds for tissue 

engineering (Figure 6-1). 

 

Figure 6-1: Scheme illustrating the proposed formation of crosslinked o/w HIPEs 
(“Thermo-HIPEs”) employing the temperature-triggered phase transition (LCST) of 
polyNIPAAm segments and their aggregation as non-covalent crosslinking strategy.  
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We synthesised polyNIPAAm grafted dextran using ammonium cerium (IV) nitrate as 

a radical redox initiator, as described by Wang et al.248 (the experimental details with 

NMR analysis are in 9.14). According to detailed investigations by Chauvierre et 

al.249 and Bertholon et al.250, the product of the radical polymerisation between 

dextran and water-soluble vinyl monomers initiated by the redox system dextran and 

cerium (IV) salts at low pH, leads to linear block copolymers. A block copolymer 

(dextran-b-polyNIPAAm) was synthesised in this way with molecular weight 

averages of Mw = 28,000 Da and Mn = 13,600 Da as determined by aqueous gel 

permeation chromatography (GPC). The LCST of this block copolymer was 

determined to be 34 °C by turbidometry of a 0.2 % w/v aqueous solution heated from 

24 °C to 38 °C (this experiment is described in 9.16). It was observed that the 

viscosity/mechanical properties of a 20 % w/v dextran-b-polyNIPAAm aqueous 

solution clearly increased after being heated from room temperature to 38 °C (Figure 

6-2). 
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Figure 6-2: 20 % w/v dextran-b-polyNIPAAm aqueous solution: A: at room 
temperature; B: 10 min after being placed in oven at 38 °C. 

Several thermo-responsive solid-HIPEs with different nominal pore volume or 

polymer concentration in the aqueous phase (i.e. solid-HIPEs prepared with thermo-

responsive linear block copolymer) were prepared by o/w high internal phase 

emulsion templating with dextran-b-polyNIPAAm copolymer as the constituent of the 

continuous aqueous phase. Octylphenol ethoxylate (Triton X405, hydrophilic-

lipophilic balance, HLB ≈ 18251) was chosen as the surfactant. In order to obtain solid-

HIPEs, p-xylene was used as oil phase as it can be removed directly by freeze drying, 

unlike other water-immiscible solvents (e.g. toluene). The emulsification was carried 

out under stirring at 450 rpm and the formulations studied are listed in Table 6-1. 

Prior to lyophilisation of the HIPE, a syringe was filled with the HIPE and the 

emulsion was injected into a flask, followed by heating to 38 °C for 30 min to be 

above the LCST of the polyNIPAAm copolymer. A HIPE (DN0) purely made from 
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dextran (Mw=40,000) was also prepared as a reference. The experimental details are 

in 9.20. 

Table 6-1: Composition of dextran and dextran-b-polyNIPAAm copolymer HIPE 
formulations 

Sample 

Code 

Aqueous 

phase /oil 

phase 

(v:v) 

Polymer in 

aqueous phase 

Aqueous phase composition[a]: 

Polymer/Triton X405 

(% w/v : % w/v) 

Organic 

Phase 

DN0 1 : 9 dextran 20 : 8.5 p-xylene 

DN1 1 : 9 
dextran-b-

polyNIPAAm 
20 : 8.5 p-xylene 

DN2 1 : 4 
dextran-b-

polyNIPAAm 
20 : 8.5 p-xylene 

DN3 1 : 9 
dextran-b-

polyNIPAAm 
25 : 8.5 p-xylene 

[a] Concentration of dextran or dextran-b-polyNIPAAm copolymers and Triton X405 
in distilled water  

In the SEM images of dextran solid-HIPEs and dextran-b-polyNIPAAm thermo-

responsive solid-HIPEs, the open-porous structure typical for polyHIPEs can be seen 

clearly (Figure 6-3 A, B, D & E). It was visually observed that the dimensions of 

HIPEs were not changed before and after freeze drying and it could believe that freeze 

drying allowed to maintain the pore dimensions. The pore diameters range from 

4~7 µm (Table 6-2). Compared to the dextran-b-polyNIPAAm thermo-responsive 

solid-HIPEs (DN1, DN2 and DN3), the dextran solid-HIPE possesses no clear pore 

throats (Figure 6-3 C) and its pore size is smaller (approx. 2 µm). 
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Figure 6-3: SEM images of dextran solid-HIPE and dextran-b-polyNIPAAm thermo-
responsive solid-HIPEs showing the changes in pore size, pore morphology and 
connectivity for the three polyHIPEs DN0, DN1 and DN2: A & B. dextran-b-
polyNIPAAm thermo-responsive solid-HIPE with 90 % v/v nominal pore volume and 
20 % w/v polymer concentration (DN1); C. dextran solid-HIPE with 90 % v/v 
nominal pore volume and 20 % w/v polymer concentration (DN0); D. dextran-b-
polyNIPAAm thermo-responsive solid-HIPE with 80 % v/v nominal pore volume and 
20 % w/v polymer concentration (DN2); E. dextran-b-polyNIPAAm thermo-
responsive solid-HIPE with 90 % v/v nominal pore volume and 25 % w/v polymer 
concentration (DN3); F. thermo-responsive solid-HIPE DN1 soaked in 38 °C water 
for 14 d. 
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Table 6-2: Density, porosity, pore volume, pore/pore throat size and pore wall 
thickness of solid-HIPE and thermo-responsive solid-HIPEs DN0-DN3 

Sample 

Code 

Absolute 

Density 

(g/cm3) [a] 

Envelope 

Density 

(g/cm3) [b] 

Porosity 

(%)[b] 

Pore 

Volume 

(cm3/g) [b] 

Pore 

Size 

(µm) [c] 

Pore Throat 

Size (µm) 
[c] 

Pore Wall 

Thickness 

(µm) [c] 

DN0 1.490 0.245 83.6 3.416 1.4~2.4 N/A 0.3~1.4 

DN1 1.438 0.131 90.0 6.928 3.6~7.5 0.4~1.3 0.2~1.6 

DN2 1.500 0.145 90.4 6.243 4.0~7.0 0.5~1.8 0.5~3.4 

DN3 1.466 0.123 91.6 7.448 4.7~7.3 1.0~2.7 0.5~2.5 

[a] Determined using GeoPyc 1360. [b] Determined using AccuPyc 1330. [c] 
Determined from SEM images. 

The pore walls became slightly thicker when the concentration of the dextran-b-

polyNIPAAm in the aqueous phase was increased from 20 % w/v (Figure 6-3 B) to 

25 % w/v (Figure 6-3 E). Reducing the volume percentage of the dispersed phase 

also resulted in thicker pore walls (Figure 6-3 D). 

The LCST of polyNIPAAm is reported to be 32 °C98, whilst we measured the LCST 

of dextran-b-polyNIPAAm copolymer to be 34 °C using turbidity experiments. The 

raise of the LCST of polyNIPAAm copolymers is caused by copolymerising 

NIPAAm with hydrophilic dextran. Several experiments were conducted in order to 

investigate and compare the dissolution behaviour of thermo-responsive solid-HIPEs 

in water below and above their LCST (Figure 6-3) (the experimental details are in 

9.22). A solid-HIPE made of dextran (DN0) was placed in distilled water, which 
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dissolved instantly at 24 °C and 38 °C as was expected for pure dextran. Dextran-b-

polyNIPAAm thermo-responsive solid-HIPE (DN1) was treated in the same way and 

also dissolved completely at 24 °C (below the LCST), but the process took about 

10 min to complete. We compared this with a freeze-dried sample of a polyNIPAAm 

homopolymer (N1) (Mn = 37,600 Da and Mw = 96,200 Da) dehydrated above LCST 

(the experimental details are in 9.21) which required a similar period of time (around 

12 min) to dissolve at 24 °C, whereas covalently crosslinked polyNIPAAm hydrogels 

with relatively similar pore size and/or porosity to our solid-HIPEs, are reported to 

take about 20 s252 in one example (for 10~50 µm pore sizes) and in another one 

1 min253 (10 µm pore size, 80% porosity) to reach their fully swollen state (below 

LCST) starting from a fully shrunken state (above LCST). In stark contrast, at 38 oC 

no volume change of the thermo-responsive solid-HIPE was detected even after 

having been left to float on water for 14 d. This behaviour can be explained because 

the polyNIPAAm block segments phase inverted above the LCST of the block 

copolymer while simultaneously producing physical crosslinks through aggregation of 

neighbouring. The dextran-b-polyNIPAAm thermo-responsive solid-HIPEs were 

freeze dried after this 14 d period of being exposed to water and again characterised 

by SEM. Interestingly the interaction between polymer and water caused the pore 

morphology of the thermo-responsive solid-HIPEs to change. Two different 

morphologies, globular and fibrous (Figure 6-3 F) were observed. The globular 

morphology (diameter ≈ 0.5~0.9 μm) might be caused by the reorganisation/reshaping 
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of the walls around the pore throats into aggregates of globules in the continuous 

phase. The fibrous morphology (width ≈ 0.2~0.9 μm) can be rationalised by 

plasticisation of the polymer through water driven by the minimisation of interfacial 

energy (Figure 6-3 F).  

Table 6-3: Observations made during solubility tests of solid-HIPEs and thermo-
responsive solid-HIPEs in water above and below the LCST of dextran-b-
polyNIPAAm 

 24 °C Water 38 °C Water 

Dextran solid-HIPE 

(DN0) 
Dissolves instantly Dissolves instantly 

Dextran-b-polyNIPAAm 

thermo-responsive solid-

HIPE  

(DN1) 

Disintegrates into small 

pieces which sink to the 

bottom of container and 

dissolve completely within 

10 min 

Floats in water, no 

apparent volume loss 

observed visually 

during a period of 14 d 

In order to assess the biocompatibility of the thermo-HIPE matrix, in vitro cell-

seeding experiment was performed by cultivating A549 human alveolar 

adenocarcinoma cells onto thermo-HIPEs (the experimental details are in 9.32). 

Judging from the colonisation of the cells in the scaffolds in SEM images (Figure 6-

4), and their assumption of typical squamous, epithelial morphologies in these regions, 

A549s will likely be able to populate the inner regions as well should these 

appropriate modifications be made. It seems that some of the cells were encapsulated 

in the thermo-HIPE matrix. 
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Figure 6-4: SEM images of A549 cells growing on thermo-HIPEs: A & B: thermo-
HIPE DN2; C & D: thermo-HIPE DN3. 

6.3 CONCLUSIONS  

Experiments with dextran-b-polyNIPAAm thermo-responsive solid-HIPEs 

demonstrated that it is possible to prepare very high porosity (> 90%) solid 

macroporous hydrogels without the need for chemical crosslinks. The interconnected 

porous structure of the thermo-responsive solid-HIPE forms by aggregation of 

polyNIPAAm blocks within the copolymer. We have shown that the porous structure 

is maintained in an aqueous environment above 37 °C. This is a new, versatile method 

to prepare o/w HIPEs and fabricate interconnected porous hydrogels using a thermal 
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trigger in the guise of thermo-responsive polymers i.e. using non-covalent interactions. 

No chemical reaction is required during the preparation of the solid-HIPEs. This 

particular feature should provide a safer route to injectable scaffolds as issues of 

polymerisation/crosslinking chemistry or residual initiator fragment or monomer 

being biocompatible do not arise in our case, as all components can be supplied pure 

prior to HIPE formation. For the purpose of in vivo use, the internal oil phase can be 

easily displaced by other water-immiscible non-cytotoxic liquids, such as squalene or 

herring oil.254-255  
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CHAPTER 7 

 

POROUS SCAFFOLDS PREPARED 

BY O/W PICKERING-HIPE 

TEMPLATING FOR TISSUE 

ENGINEERING 

7.1 INTRODUCTION 

Conventional o/w HIPEs, including the HIPEs introduced in Chapter 3 & 4, are 

usually stabilised by surfactants, most of which are not biocompatible or even 

toxic181-186. Besides surfactant, colloidal particles, such as inorganic 

nanoparticles166,187-189 or microgel particles192 have also been used to stabilise HIPEs 

(also called Pickering-HIPEs).193 Compared with conventional surfactant stabilised 

HIPEs, particle stabilised HIPEs (i.e. Pickering-HIPEs) possess a number of 

advantages; the resulting emulsions are extremely stable, pore walls of the resulting 

porous materials are functionalised with a layer of particles and so additional 

properties can be introduced in this way, such as improved biocompatibility, electrical 

conductivity and/or drug release properties, etc. are introduced. 
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HAp (hydroxyapatite, Ca10(PO4)6(OH)2) is the main inorganic compound of bones 

and teeth and it is biocompatible, bioactive, biodegradable, nontoxic and 

noninflammatory.256-258 It has been demonstrated that HAp plays an important role in 

biomineral formation257,259 and can be used as a dental filling material260 or implant 

material for periodontal bone defects256. Moreover, as HAp has the advantage of 

absorbability and high binding affinity with a variety of molecules, it have also been 

used as carrier for the delivery of a variety of pharmaceuticals258,261-262, growth 

factors263 or genes264-265. In Pickering-HIPEs, the emulsifying particles are absorbed at 

the interface between the continuous and dispersed phase193-194. It was reported that 

after polymerisation of the continuous phase, the particles are present on the surface 

of pore walls266. Taking account of this fact, using HAp nanoparticles as emulsifier 

for emulsion templating is not only simply looking for a biocompatible biodegradable 

emulsifier as a substitute to conventional surfactants, but also it is possible to 

introduce the biomedical merits of HAp (e.g. noninflammatory.256-258 and promote 

biomineral formation257,259) into the emulsion templated macroporous materials. HAp 

particles are usually hydrophilic267 and hydrophilic particles do stabilise o/w 

Pickering emulsions268. Fujii et al.269 have reported o/w emulsion stabilised by HAp 

nanoparticles with long-axis length ranges of 40 nm to 2320 nm, but the internal 

phase volume of Pickering emulsion did not go above 50%. To date no reports of 

HAp stabilised o/w HIPEs and their resulting polyHIPE hydrogels are available. 
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Beside HAp nanoparticle as stabiliser for emulsions, stimuli-responsive microgel 

particle stabilised emulsions are also a new field of research in Pickering emulsions. 

One advantage of this type emulsifier is that microgels are relatively easy to 

synthesise compared to hybrid particles like surface-modified latices or other 

inorganic/polymer hybrid particles.270 Stimuli-responsive microgel particles, 

especially polyNIPAAm based microgel particles, exhibit an response to changes in 

temperature, pH or ionic strength, which lead to changes in hydrophilicity, particle 

size and water content of the microgels over a small (about 5 °C to 10 °C) 

temperature range.271 The variable properties of this kind of emulsifier provide 

extended emulsion control (e.g. breaking the emulsion on demand). Moreover, these 

stimuli-responsive microgel emulsifiers absorb at the interface between the 

continuous and dispersed phase in Pickering-HIPEs193-194 and therefore, they could 

potentially be used as drug/growth factor carrier. 

In Chapter 3 to 6, we introduced several novel stimuli-responsive HIPE templated 

macroporous scaffolds, including covalently crosslinked polyHIPE hydrogels and 

non-covalently crosslinked thermo-HIPEs. However the desired features introduced 

so far to render these materials suitable as potential scaffolds for tissue engineering 

fall short of what is ultimately required. For example the emulsifier Triton X405 used 

to prepare o/w thermo-HIPEs is not biocompatible or biodegradable. Also the pore 

and pore throat sizes of these porous materials are relatively small for some types of 

cells (e.g. the skin cell size is about 30 μm, which is 10 μm to 20 μm bigger than the 
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pore sizes of polyHIPEs introduced in Chapter 3 to 6).272 A possible approach to 

solve both of these problems is to use particles to substitute conventional surfactants 

in order to stabilise o/w HIPEs. An additional benefit may arise as the use of particles 

as emulsifiers can be exploited to functionalise the pore walls of the monolith with a 

layer of such particles and introduce additional properties, such as improved 

biocompatibility and/or drug release properties. 

In this Chapter, we report o/w Pickering-HIPEs solely stabilised by either 

commercially available hydroxyapatite (HAp) nanoparticles or stimuli-responsive 

poly(N-isopropylamide)-co-(acrylic acid) (PolyNIPAAm-co-AA) microgel particles, 

which could be used as template to prepare surfactant-free thermo-HIPEs. These 

colloidal particles are adsorbed at the o/w interface to hinder extensive droplet 

coalescence. Limited coalescence is still taking place, which depends on the particle 

concentration and the interfacial area generated. The pore dimension and pore 

morphologies of the Pickering-HIPE templated porous materials can be tailored by 

ripening or simply changing the particle concentration. 
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7.2 RESULTS AND DISCUSSION 

7.2.1 HYDROXYAPATITE BASED POLY-PICKERING-HIPES AND 

THERMO-HIPES 

We prepared o/w Pickering-HIPEs solely stabilised by commercially available HAp 

nanoparticles with 150 nm to 200 nm average particle size as determined from its 

SEM image (Figure 7-1). The HAp nanoparticles were used without any modification 

because o/w emulsions were intended to be stabilised and moreover it would be 

desirable to retain the biological merits of HAp (such as noninflammatory.256-258 and 

promote biomineral formation257,259). Methyl myristate-in-water Pickering-HIPEs 

with 80% internal phase volume were prepared simply by homogenising a mixture of 

4.0 ml methyl myristate, and 1.0 ml 1.0 % w/v or 0.5 % w/v HAp particles aqueous 

suspension for 15 s to 25 s (longer dispersion time could lead to destabilisation of 

emulsions). The homogenising speed was more than 5,000 rpm to provide enough 

energy to break droplets and form a HIPE at room temperature (the experimental 

details are in 9.23). With methyl myristate as the internal phase, the Pickering-HIPEs 

were stable at room temperature for more than one month and only a thin layer of the 

oil phase above the sedimented emulsion could be observed after one month. Figure 

7-2 shows the digital photographs of methyl myristate-in-water Pickering-HIPEs with 

80% internal phase volume 20 min after homogenisation stopped. Deformed HIPE 
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droplets157 ranging from 0.5 mm to 2.7 mm could be clearly observed. These results 

show that HAp particles are able to stabilise o/w HIPEs. 

 

Figure 7-1: SEM image of commercial available HAp nanoparticles used. (HAp was 

purchased from Sigma-Aldrich Company Ltd. (Poole, UK) with particle size less than 

200 nm) 
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Figure 7-2: Digital photographs taken 20 min after preparation of methyl myristate-in-water Pickering-HIPE solely stabilised by HAp 
nanoparticles. The emulsions here were prepared by homogenisation at 5,000 rpm for 15 s: A: 1.0 % w/v particle concentration in its aqueous 
phase, B: 0.5 % w/v particle concentration in its aqueous phase. (Bottom row at higher magnification) 
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A smaller droplet size of HAp stabilised Pickering HIPE (decreased from 

1.2 ~ 2.7 mm to 0.5 ~ 1.1 mm) was observed when increasing HAp particle 

concentration in the aqueous phase from 0.5 % w/v (Figure 7-2 B) to 1.0 % w/v 

(Figure 7-2 A), while the dispersion condition (homogenised at 5,000 rpm for 15 s) is 

unchanged. That is because the increased particle concentration allows to stabilise 

more interface273 and also results in denser particle layers which limits coalescence15. 

Meanwhile, using the same nanoparticle concentration (1.0 % w/v) but increasing the 

homogenising speed form 5,000 rpm to 15,000 rpm leads to a sharp decrease of about 

30-40 fold of the droplet size from 1.2 ~ 2.7 mm to 30~130 μm. This is because the 

emulsion is broken up into smaller droplets at a higher input energy. The droplet size 

of the Pickering-HIPE produced by homogenisation at 15,000 rpm is below the 

optical resolution of a standard digital camera and thus was detected using optical 

microscopy (Figure 7-3). 

 

Figure 7-3: Optical microscope image of a methyl myristate-in-water Pickering-HIPE 
solely stabilised by 1.0 % w/v HAp nanoparticles produced through homogenisation 
at 15,000 rpm for 25 s. 
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As we wanted to prepare o/w Pickering-HIPE hydrogels that meet from both a 

chemical composition and processing point of view, the demands placed on porous 

materials for applications in the medical field (e.g. scaffolds in tissue engineering or 

drug carrier in drug delivery), dextran-GMA was polymerised and thus crosslinked in 

the aqueous phase of Pickering-HIPEs. For this water soluble and highly 

biocompatible methacrylated polysaccharide155, a porous hydrogel with tunable pore 

sizes varying from 1.5 μm to 41.0 μm were obtained (Table 7-1). A series dextran-

GMA poly-Pickering-HIPE hydrogels were prepared from HIPE templates stabilised 

by different amounts of HAp nanoparticles (the HAp nanoparticle concentrations in 

the aqueous phase of Pickering HIPEs ranged from 0.3 % w/v to 1.0 % w/v). 

Different homogenising and curing conditions were explored in order to investigate 

their influences on pore size and pore morphology of Pickering polyHIPEs (Table 7-1, 

entries PPH1 to PPH7) (the experimental details are in 9.24). After the oil phase 

(methyl myristate or soybean oil) was removed by soxhlet extraction using methanol 

followed by acetone, the percentage of HAp nanoparticles incorporation into these 

hydrogels was confirmed by thermogravimetric analysis (TGA) (the experimental 

details are in 9.25). The percentage weight of HAp nanoparticles embedded into the 

hydrogel is in proportion to their initial concentration in the original HIPE (Table 7-

1).  
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Figure 7-4: Mixture of 20 % w/v aqueous dextran-GMA solution and methyl 
myristate after homogenising at 20,000 rpm for 60 s (dextran-GMA solution: methyl 
myristate = 1:4 v/v). The maximum nominal internal phase volume of a dextran-GMA 
stabilised emulsion was only close to 70% and excess methyl myristate could not be 
dispersed into the aqueous phase of the emulsion. 

As a control, we also homogenised a mixture of a 20 % w/v aqueous dextran-GMA 

solution and methyl myristate without HAp nanoparticles at 20,000 rpm for 60 s 

(Figure 7-4 and Table 7-1, DGS). Since dextran is hydrophilic and the grafted 

glycidyl methacrylate moiety is hydrophobic, dextran-GMA itself could act as an 

emulsifier to stabilise a methyl myristate-in-water emulsion. But without HAp 

nanoparticles, the maximum nominal internal phase volume of a dextran-GMA 

stabilised emulsion was only close to 70 % v/v (aiming for 80 % v/v) and thus it is 

clear that excess methyl myristate could not be dispersed into the aqueous phase of 

the emulsion (the oil phase volume of the emulsion was calculated from the original 
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composition and the volume of methyl myristate that did not dispersed into the 

aqueous phase). A significant amount (about 30 % v/v) of the internal oil phase was 

expelled after homogenising stopped (Figure 7-4). 

Different form the closed pore morphology in dextran-GMA self-stabilised sample 

DGS (Figure 7-5 A), an open porous structure15 typically for polyHIPEs was clearly 

observed in the SEM micrographs of PPH1 to PPH7 (Figure 7-5 B to Figure 7-5 I). 

The pore size of the dextran-GMA poly-Pickering-HIPEs ranges from 1 μm to 40 μm, 

about 100 times smaller than the droplets size of Pickering-HIPEs PPH1 and PPH2 

(Figure 7-2).  A possible explanation for this change is that the monomer dextran-

GMA also acts as nonionic surfactant and co-stabilises the HIPE together with HAp 

nanoparticles. Introducing dextran-GMA monomer/co-emulsifier into Pickering-HIPE 

may increase emulsion stability and consequently results in a smaller average droplet 

size, due to the (presumed) lower interfacial strength.15 



 

 

C
hapter 7: Porous scaffolds prepared by o/w

 P
ickering-H

IP
E

 tem
plating for tissue engineering 

~146~ 

Table 7-1: Compositions and properties of hydrogel polyHIPEs PPH1-PPH8 obtained from dextran-GMA HAp nanoparticle stabilised poly-
Pickering-HIPEs and a dextran-GMA stabilised emulsion template DGS.  

Sample Aqueous phase composition[a]: 

Dextran-GMA/APS/HAp Particle 

(% w/v:% w/v:% w/v) 

Homogenising speed 
and duration 

Oil phase type Ripening time 
before 
polymerisation 

Average 
pore size 
(μm[d]) 

Average 
pore throat 
size (μm[d]) 

Incorporated 
HAp 
nanoparticle 
proportion (% 
w/v[e]) 

PPH1[b] 20:5:1 15,000 rpm, 25 s methyl myristate 0 d 1.51 0.62 3.9 

PPH2[b] 20:5:1 5,000 rpm, 15 s methyl myristate 0 d 17.27 2.55 4.4 

PPH3[b] 20:5:1 5,000 rpm, 15 s methyl myristate 7 d 27.54 2.61 1.8 

PPH4[b] 20:5:1 5,000 rpm, 15 s methyl myristate 14 d 41.00 7.72 2.3 

PPH5[b] 20:5:0.5 5,000 rpm, 15 s methyl myristate 0 d 16.13 3.82 1.6 

PPH6[b] 20:5:0.3 5,000 rpm, 15 s methyl myristate 0 d 17.12 4.78 1.4 

PPH7[b] 20:5:1 5,000 rpm, 15 s soybean oil 0 d 3.50 1.46 3.9 

PPH8[b] 20:5:1 5,000 rpm, 15 s soybean oil 7 d 13.04 2.95 1.9 

DGS[c] 20:5:0 20,000 rpm, 60 s methyl myristate 0 d 1.64 - 0.3 

[a] The aqueous phase of all samples is a 20 % w/v dextran-GMA aqueous solution with 50 mg/ml ammonium persulfate (APS) as radical 
initiator and HAp nanoparticles as emulsifier. [b] Dextran-GMA poly-Pickering-HIPEs with 80% nominal pore volume. [c] Dextran-GMA 
stabilised emulsion templated hydrogel with about 70% nominal pore volume. [d] Determined from the corresponding SEM micrographs. [e] 
Determined by thermo gravimetric analysis (TGA) in air for temperature range greater than 600 °C 
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Figure 7-5: SEM micrographs of a poly(medium internal phase emulsion) (polyMIPE) produced from a dextran-GMA stabilised MIPE template 
and dextran-GMA HAp stabilised poly-Pickering-HIPE hydrogels: A: DGS; B: PPH1; C: PPH2; D: PPH3; E: PPH4; F: PPH5; G: PPH6; H: 
PPH7; I: PPH8.  
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Different applications require porous materials with different pore dimensions. For 

example, the pore sizes of drug delivery systems vary from 5 nm to 50 μm274-275, but 

the pores of scaffolds in tissue engineering should be in the range of 15 μm to 300 μm 

depending on the cell type to be cultured276. In order to prepare Pickering-HIPE 

templated hydrogels with a range of pore sizes, we demonstrated several simple but 

effective tuning of parameters to control the pore size and pore throat size of dextran-

GMA polyHIPE hydrogels, namely we tried to change the dispersion speed, ripening 

time before polymerisation, HAp nanoparticle concentration and the chemical nature 

of the oil phase. 

 

Figure 7-6: Pore size distributions (left) and pore throat size distributions (right) of 
dextran-GMA poly-Pickering-HIPE HAp nanoparticle stabilised hydrogels as 
measure from the corresponding SEM micrographs: A1 & A2. PPH1; B1 & B2. 
PPH2; C1 & C2. PPH3; D1 & D2. PPH4; E1 & E2. PPH5; F1 & F2. PPH6; 
G1 & G2. PPH7; H1 & H2. PPH8. (the experimental details are in 9.26) 
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Increasing the homogenisation speed from 5,000 rpm to 15,000 rpm during the HIPE 

preparation caused larger droplets to break up into smaller ones and so dramatically 

reduce both the pore and the pore throat dimensions of polyHIPE hydrogels. The 

average pore size decreased form 17.3 μm to 1.5 μm and the average pore throat size 

decreased from 2.5 μm to 0.6 μm (Figure 7-5 B & C). Also the corresponding pore 

size and pore throat size distributions was narrower (Figure 7-6 A1 & A2).  

The droplet size of emulsions is time dependent277 and larger droplets result with time 

caused by 1) limited coalescence189 and 2) Ostwald ripening278. Following this 

strategy, Pickering-HIPEs were polymerised after 7 d (PPH3, Figure 7-5 E) and 14 d 

(PPH4, Figure 7-5 F) of their preparation (emulsification). Compared with a sample 

polymerised within 20 min after preparation (PPH2, Figure 7-5 D), both pore size 

and pore throat size of the polyHIPEs gradually became larger with ripening time of 

the emulsion template and finally reach an average pore of 41 μm size and pore throat 

size of 7.7 μm after ripening for two weeks, which is about 2 times larger than the 

pore size and pore throat size of PPH2. The statistical analysis of the pore size/pore 

throat size dimensions demonstrated a broader distribution with increasing ripening 

time (Figure 7-6). 

Decreasing the HAp nanoparticle concentration from 1.0 % w/v (PPH2, Figure 7-6 C) 

to 0.5 % w/v (PPH5, Figure 7-6 F) did not result in a significant increase of the pore 

size of the resulting poly-Pickering-HIPEs. Actually these two polyHIPEs have 



Chapter 7: Porous scaffolds prepared by o/w Pickering-HIPE templating for tissue engineering 

~150~ 

similar pore size (16 μm to 17 μm) and pore throat size (around 3 μm). This is very 

different from the observed 50% decrease in droplet size in the o/w Pickering-HIPEs 

(Figure 7-2), which is probably because of the co-stabilization of dextran-GMA. 

However after further decreasing the HAp nanoparticle concentration to 0.3 % w/v 

(PPH6), the HIPEs become less stable and limited coalescence produced bigger 

droplets which after polymerisation resulted in large pores with diameters of more 

than 40 μm (Figure 7-5 G). These larger pores are surrounded by many smaller pores 

with a diameter ranging from 10 to 20 μm. Statistical analysis (Figure 7-6 F) showed 

that the diameter of more than 90% of the pores in PPH6 are between 5 to 25 μm, 

which explains that the average pore size was still 17 μm while most of the volume of 

the polyHIPE was occupied by several larger pores with pore size more than 60 μm. 

Moreover, the pore throat size and pore throat size distributions widened for PPH6 

(Figure 7-6 B2, E2 and F2) because of ripening. 

Compared with methyl myristate-in-water Pickering-HIPEs, soybean-in-water 

Pickering-HIPEs are relatively unstable and phase separate within 2 h after 

homogenisation stopped. But again, after adding dextran-GMA, which appears to act 

once again as a co-emulsifier, stable Pickering-HIPEs were obtained. The average 

pore size of the resulting poly-Pickering-HIPE hydrogel (PPH7, Figure 7-5 H) was 

3.5 μm, which was 80% smaller compared to the poly-Pickering-HIPEs made from 

templates with methyl myristate as internal phase (PPH2). After ripening the HIPE 
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template for 7 d, the pore size of poly-Pickering-HIPE PP8 reached 13.0 μm (Figure 

7-5 I) and the distribution became slightly broader because of ripening (Figure 7-6). 

HAp nanoparticles can also be used as a nontoxic stabiliser to replace Triton X405 to 

prepare dextran-b-polyNIPAAm based thermo-HIPEs. The same preparation 

conditions of Pickering thermo-HIPEs, including dispersing conditions, dextran-b-

polyNIPAAm concentration, internal phase ratio, were used as those identified for 

Triton X405 stabilised thermo-HIPEs (as described in Chapter 6). In order to 

characterise the porous structure of Pickering solid-HIPEs, p-xylene was used as oil 

phase as it can be removed directly by freeze drying. A Pickering-solid-HIPE was 

obtained after lyophilisation of the oil phase of a Pickering thermo-HIPE DN-HAp-p-

Xylene and the experimental details are in 9.30. This Pickering solid-HIPE was much 

firmer to the touch than solid-HIPEs obtained from Triton X405 stabilised emulsions. 

In the SEM images of HAp-Pickering dextran-b-polyNIPAAm thermo-responsive 

solid-HIPEs the open-porous structure is clearly observed (Figure 7-7 A & B). The 

pore diameter of this solid-HIPE ranges from 20~40 µm, which is about 5 times larger 

compared to the same Triton X405 stabilised solid-HIPEs (4~7 µm). The diameter of 

the pore throats of Pickering solid-HIPEs is about 8 µm, which is also 5 times larger 

compared to the same Triton X405 stabilised solid-HIPEs (0.4 ~ 2.7 µm) and many of 

small windows could be observed in the pore walls of solid-HIPEs (Figure 7-7 B), 

which may have been produced during lyophilisation of the HIPE (removing both 

aqueous and oil phase). 
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Figure 7-7: SEM images of dextran-b-polyNIPAAm thermo-responsive solid-HIPEs  
DN-HAp-p-Xylene produced from HAp nanoparticles stabilised thermo-HIPEs with 
90 % v/v nominal pore volume and 20 % w/v polymer in the aqueous phase before (A 
& B) and after soaking in 38 °C water for 14 d (C & D). Interconnected porous 
structure could be clearly observed in these SEM images. 

In order to investigate and compare the dissolution behaviour of Pickering thermo-

responsive solid-HIPE in water below and above the LCST of the block copolymer, 

the Pickering solid-HIPE DN-HAp-p-Xylene made from dextran-b-polyNIPAAm 

was placed in distilled water at 24 °C, in which it dissolved slowly and taking more 

than 10 min. Similar to the thermo-HIPEs DN1 to DN3 described in Chapter 6 the 

Pickering thermo-responsive solid-HIPEs floated on water for 14 d at 38 °C without 

any obvious volume change. This is for the same reasons as discussed in Chapter 6, 
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the polyNIPAAm block segments phase inverts above the LCST of the block 

copolymer while simultaneously producing physical crosslinks through aggregation of 

neighbouring segments, As revealed by SEM, some fibrous pore (Figure 7-7 C) 

morphology could be observed after conditioning the solid-HIPE in 38 °C water for 

14 d, which is again may be due to plasticisation of the polymer through water driven 

by minimising the interfacial energy, through reorganisation/reshaping of the pore 

walls. 

Table 7-2: Compositions of dextran-b-polyNIPAAm copolymer HIPEs with soybean 
oil or squalene as oil phase, Triton X405 or HAp nanoparticles as emulsifier. 

Sample Code [a] Oil phase 

Emulsifier [b] 
Polymer 

dissolved in 

aqueous 

phase [c] 

Aqueous phase 

volume/oil 

phase  volume 

(v:v) 

Triton 

X405 

(mg/ml) 

HAp 

nanoparticles 

(mg/ml) 

DN-S-p-Xylene p-Xylene 85 0 

Dextran-b-

polyNIPAAm 
1:4 

DN-S-Soybean Soybean oil 85 0 

DN-S-Squalene Squalene 85 0 

DN-HAp-p-Xylene p-Xylene 0 10 

DN-HAp-Soybean Soybean oil 0 10 

DN-HAp-Squalene Squalene 0 10 

[a] The internal phase volume of all samples 80 % v/v. [b] Concentration of 
emulsifiers in aqueous phase (distilled water). [c] Dextran-b-polyNIPAAm 
concentration in aqueous phase (distilled water) of all samples is 20 % w/v. The 
experimental details are in 9.28. 
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Thermo-HIPEs are intended to be injected with their oil phase into defect area in 

human body. However the oil phase of the thermo-responsive HIPEs has so far been 

limited to p-xylene or toluene to facilitate the morphological investigations. As p-

xylene or toluene is toxic and thus not suitable for in vivo applications other 

hydrophobic molecules to make up the oil phase need to be chosen. For the purpose of 

drug or gene delivery, many oils254, such as lard oil, soybean oil or squalene, have 

been reportedly used as the oil phase in o/w emulsions for in vivo use. Therefore we 

prepared dextran-b-polyNIPAAm thermo-HIPEs with either soybean oil or squalene 

as oil phase (Table 7-2). A set of thermo-HIPEs either stabilised by Triton X405 

(DN-S-Soybean & DN-S-Squalene) or HAp nanoparticles (DN-HAp-Soybean & 

DN-HAp-Squalene) were prepared. The droplet size of DN-HAp-Soybean ranges 

from 15 µm to 40 µm (Figure 7-8 C). All of these thermo-HIPEs are stable at room 

temperature after more than 2 weeks without undergoing phase separation. 

Interestingly at 38 °C DN-HAp-Soybean and DN-HAp-Squalene are much more 

stable than Triton X405 stabilised thermo-HIPEs as no phase separation could be 

observed for more than 10 d. Of all the formulations tested (Table 7-2), only the 

compositions of DN-HAp-Soybean and DN-HAp-Squalene did not contain toxic 

components.  
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Figure 7-8: Thermo-HIPEs with soybean oil or squalene as oil phase: photographs of 
A: DN-HAp-Soybean; B: DN-HAp-Squalene; and C: optical microscope image of 
DN-HAp-Soybean. 

7.2.2 DOUBLE RESPONSIVE PICKERING THERMO-HIPES 

Besides HAp nanoparticle stabilised thermo-HIPEs, we also prepared thermo-

responsive dextran-b-polyNIPAAm based Pickering p-xylene in water (o/w) HIPEs 

by using pH and thermo-responsive polyNIPAAm-co-acrylic acid (polyNIPAAm-co-

AA) microgel particles. One important reason of using stimuli-responsive microgel 

particles as an emulsifier in the preparation of emulsion templates is that these 

particles could be potentially useful as “built-in” drug carriers (Figure 7-9).  
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Figure 7-9: Schematic illustrating the formation of o/w “double responsive Pickering-
HIPEs” (HIPEs that not only are responsive during in their polymer phase but also the 
emulsifier is stimuli-responsive) employing the temperature-triggered polyNIPAAm 
block aggregation as non-covalent crosslinking strategy and pH/temperature 
responsive microgel particles as both emulsifier and potential drug/growth factor 
carrier vehicle. 

PolyNIPAAm-co-AA microgel particles were kindly synthesized by Wei Yuan in the 

following way: an aqueous redox polymerisation using sodium dodecylbenzene 

sulfonate (NaDBS) as a surfactant was employed to prepare polyNIPAAm-co-AA 

microgel particles from a monomer solution containing NIPAAm, AAc and BIS, as 

described by Ito et al279 and the experimental details are in 9.29.The size of this 

microgel particles vary depending on temperature and pH as well as ionic strength.279-

280 Recently, it has been demonstrated that emulsions can be effectively stabilised by 

such stimuli-responsive microgel particles.192,271 
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Two types of double-responsive solid-HIPEs DN-P-1 & DN-P-2 were prepared by 

o/w high internal phase emulsion templating with dextran-b-polyNIPAAm copolymer 

as the constituent of the continuous aqueous phase and stimuli-responsive microgel 

particles as sole emulsifier. In order to obtain solid-HIPEs, p-xylene was used as oil 

phase as it can be removed directly by freeze drying to simplify SEM analysis. The 

emulsification was carried out under stirring at 400 rpm and the formulations studied 

are listed in Table 7-1. Triton X405, (hydrophilic-lipophilic balance, HLB ≈ 18[32]), 

was used to stabilise solid-HIPEs (DN-S-1 & DN-S-2) and dextran based solid-HIPEs 

(Dex-S & Dex-P) were also prepared as control. Prior to lyophilisation of the oil 

phase, a syringe was filled with the HIPE and the emulsion was injected into a flask. 

After injection, samples DN-S-2 and DN-P-2 were heated to 38 °C for 30 min to 

trigger the phase inversion of the polyNIPAAm copolymer. The experimental details 

are in 9.31. 
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Table 7-3: Composition of dextran and dextran-b-polyNIPAAm copolymer HIPEs 
stabilised by polyNIPAAm-co-AA microgel particles 

Sample 

Code [a] 

Polymer in 

aqueous 

phase [b] 

Aqueous phase[c] 

Post treatment after 

HIPE was prepared 

Pore size 

range 

(μm)[d] 

Triton 

X405 

(mg/ml) 

Microgel 

Particles 

(mg/ml) 

KCl 

(mg/ml)

Dex-S Dextran 85 0 0 Freeze dried directly  1.4～5.9 

DN-S-1 
Dextran-b-

polyNIPAAm
85 0 0 Freeze dried directly 1.2～4.4 

DN-S-2 
Dextran-b-

polyNIPAAm
85 0 0 

Heated to 38 °C 

before freeze drying 
2.7～7.1 

Dex-P Dextran 0 4.0 1.0 Freeze dried directly 30.4～143.6 

DN-P-1 
Dextran-b-

polyNIPAAm
0 4.0 1.0 Freeze dried directly 8.7～65.0 

DN-P-2 
Dextran-b-

polyNIPAAm
0 4.0 1.0 

Heated to 38 °C 

before freeze drying 
7.4～70.1 

[a] The internal phase all samples is p-xylene and its volume fraction is 80 % v/v. [b] 
The polymer concentration in aqueous phase (distilled water) of all samples is 20 % 
w/v. [c] Concentration in distilled water. [d] Determined from the corresponding SEM 
micrographs. The experimental details are in 9.31. 
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Figure 7-10: SEM images of dextran solid-HIPEs and dextran-b-polyNIPAAm 
thermo-responsive solid-HIPEs stabilised by surfactant Triton X405 or stimuli-
responsive microgel particles; A: Dex-S; B: Dex-P; C: DN-S-1; D: DN-S-2; E: DN-
P-1; F: DN-P-2. 

A very thin layer of the p-xylene (oil phase) above the sedimented emulsion could be 

observed after the Triton X405 stabilised HIPEs being heated to 38 °C for 2 h, which 

indicated the precipitation of emulsions droplets. Microgel particle stabilised 

Pickering-HIPEs on the other hand were more stable at room temperature and no 
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phase separation was observed after being heated to 38 °C for 2 h. That is because the 

particles used as stabilisers in Pickering emulsions are irreversibly adsorbed at the 

interface of emulsions because of their high energy of attachment, which makes the 

resultant Pickering emulsions extremely stable.193 

Turning to the differences in microstructure, SEM images of solid HIPEs (Figure 7-

10) showed that solid-HIPEs obtained from Triton X405 stabilised emulsions (Dex-S, 

DN-S-1 & DN-S-2) have an open porous network structure typical for polyHIPEs15 

with pore size ranges from 1 to 7 μm. However, Pickering solid-HIPEs (Dex-P, DN-

P-1 & DN-P-2) have 20% to 30% larger and partially (and not fully) opened 

combined with closed cell pores, which leads to a relatively low degree of pore 

interconnectivity. Pickering solid-HIPEs were much firmer to the touch than solid-

HIPEs from surfactant stabilised emulsions (as mentioned in Section 7.21), probably 

because of the partially opened combined with closed cell pore structures. The pore 

sizes of all Pickering solid-HIPEs were generally in the range of 30 to 50 μm, 

although a few larger pores (above 70 μm) and smaller pores (below 20 μm) were 

observed. The substructure on the pore wall surface of Pickering solid-HIPEs, 

especially in Dex-P, could have been caused by the sublimation of water during 

freeze drying. The difference in pore structure, i.e. pore size and degree of 

interconnectivity, between solid-HIPEs made from Pickering or from traditional 

surfactant stabilised emulsions is similar to that seen between polyHIPEs produced 

from Pickering or surfactant stabilised emulsion templates166, which are prepared by 
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radical polymerisation of styrene and maintain their porous structure by covalent 

crosslinks.  

Table 7-4: Observations made during solubility tests of solid-HIPEs, thermo-
responsive solid-HIPEs and double responsive solid-HIPEs in water above and below 
the LCST of dextran-b-polyNIPAAm 

Sample Code 24 °C Water 38 °C Water 

Dex-S & Dex-P Dissolve instantly Dissolves instantly 

DN-S-1 & DN-S-2 

Disintegrates into small pieces which 

sink to the bottom of the container and 

dissolve completely within 10 min 

Floats in water, no 

apparent volume loss 

observed visually 

during 14 d 

DN-P-1 & DN-P-2 

Floating in water at first, then 

disintegrates into small pieces which 

slowly sink to the bottom of the 

container and dissolve completely 

within 10 min to 15 min 

Floats in water, no 

apparent volume loss 

observed visually 

during 14 d 

Several experiments were conducted in order to investigate and compare the 

dissolution behaviour of thermo-responsive solid-HIPEs in water below and above the 

LCST of dextran-b-polyNIPAAm (Table 7-4). Solid-HIPEs made of dextran (Dex-S 

& Dex-P), regardless whether they were prepared from Pickering or surfactant 

stabilised emulsions, were placed in distilled water and dissolved instantly at 24 °C 

and 38 °C as was expected for pure dextran. Dextran-b-polyNIPAAm thermo-

responsive solid-HIPEs (DN-S-1 & DN-S-2) were treated in the same way and also 
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dissolved at 24 °C, but the process took more than 10 min to complete. Double 

responsive solid-HIPEs DN-P-1 and DN-P-2 floated in water at 24 °C at the very 

beginning and it took some more time (about 10 to 15 min) to dissolve compared with 

DN-S-1 and DN-S-2 because of the relative low pore interconnectivities. In 38 °C 

water, because the polyNIPAAm block segments phase separated from water above 

the LCST of the block copolymer while simultaneously producing physical crosslinks 

through intermolecular interactions, all the solid-HIPEs made of dextran-b-

polyNIPAAm were found floating in water without apparent volume loss for 14 d. It 

is worth to notice that this experimental results were same no matter whether the 

phase inversion of the polyNIPAAm copolymer was triggered (DN-S-2 & DN-P-2, 

being heated to 38 °C before freeze drying) or not (DN-S-1 & DN-P-1) during 

preparation, that might be because the solid-HIPEs were heated to temperatures above 

the LCST of dextran-b-polyNIPAAm as soon as it was contact with 38 °C warm 

water which triggered the physical aggregation of the polymers before they were 

totally hydrated and dissolved in water. 
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Figure 7-11: SEM images of double responsive solid-HIPEs after soaking in 38 °C 
water for 14 d: A~D. Sample DN-P-1; E~H. Sample DN-P-2. 
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The double responsive solid-HIPEs (DN-P-1 & DN-P-2) were freeze dried after 

being exposed to 38 °C warm water for 14 d and again characterised by SEM. The 

interaction between dextran-b-polyNIPAAm and water caused the pore morphology 

of the solid-HIPEs to change. Several different porous morphologies (Figure 7-11) 

were observed in their SEM images. Similar to other thermo-HIPEs, these pore 

morphologies with about 3~15 μm in diameter might be caused by the 

reorganisation/reshaping of the walls around the pore throats in the continuous phase. 

Also some fibrous morphologies can be rationalised by plasticisation of the polymer 

through water driven by the minimisation of interfacial energy.  

7.3 CONCLUSIONS 

 Stable Pickering-HIPEs with an internal phase of 80 % v/v could be prepared using 

commercially available HAp nanoparticles directly without the need for surface 

modification. We also demonstrated that the pore size/pore throat size of the resulting 

dextran-GMA poly-Pickering-HIPE hydrogels could be adjusted within a certain 

range by changing ripening time, emulsifier concentration or dispersion conditions. 

By adding water soluble monomers in the aqueous phase, these Pickering-HIPEs 

stabilised by nontoxic biocompatible HAp nanoparticles, can be used as templates to 

manufacture highly porous materials. 

HIPEs with thermo-responsive dextran-b-polyNIPAAm as solid constituent in the 

continuous phase and HAp nanoparticle or pH/thermo-responsive microgel particles 
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as sole emulsifier were successfully prepared. Similar to thermo-HIPEs prepared with 

Triton X405, after the oil phase was removed, solid-like foams, which were able to 

maintain their porous structure in an aqueous environment at 38 °C through 

aggregation of polyNIPAAm blocks, were obtained without the need for chemical 

crosslinks. Compared with solid-HIPEs prepared from surfactant stabilised HIPEs, 

these Pickering solid-HIPEs process better mechanical performance and larger pores, 

but lower interconnectivity.  

Besides toluene and p-xylene, soybean oil and squalene could also be used as the oil 

phase of thermo-HIPEs stabilised either with Triton X405 or HAp nanoparticles. 

Soybean oil or squalene based thermo-HIPEs stabilised by HAp nanoparticle process 

higher viscosity and better stability than other thermo-HIPEs (e.g. thermo-HIPEs 

stabilised by Triton X405 or with toluene/p-xylene as oil phase). Moreover, these 

Pickering thermo-HIPEs prepared using nontoxic oils are more suitable for the 

purpose of in vivo application compared with toluene or p-xylene based thermo-

HIPEs. 
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CHAPTER 8 

 

CONCLUSIONS AND FUTURE 

WORK 

In this final chapter, the concluding remarks of all the work in this thesis are presented 

and suggestions of further work are made. This thesis introduced several novel 

polysaccharide based stimuli-responsive polyHIPEs or solid-HIPEs prepared from 

o/w HIPEs either stabilised by traditional surfactant or colloidal particles. These 

stimuli responsive porous materials are intended to be used as injectable scaffolds for 

soft tissue engineering. Generally two thermo-responsive dextran based macroporous 

polymers, one ion-responsive alginate polyHIPE and two poly-Pickering-HIPEs/solid-

HIPEs were prepared and studied. Attention has been focused on achieving 

injectability, suitable pore morphology for potential tissue engineering applications, 

biocompatibility and stimuli responsibility of these porous hydrogels.  

8.1 CONCLUSIONS 

o/w HIPE templating method is very effective in manufacturing porous hydrogels 

with well-defined porous structures. The main aim of this work was to develop 

suitable injectable porous scaffold systems based on o/w HIPE templated 
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macroporous polymers. By changing the crosslinking methods, emulsifiers, oil phases, 

type of stimuli-responsive monomers and macromonomers in the aqueous phase, we 

developed six types of novel scaffolds for soft tissue engineering (Table 8-1). All of 

these macroporous hydrogels possess an interconnected porous structure and 

hydrophilic solid constitute with turntable pore morphologies. 

8.1.1 ION-RESPONSIVE VERSUS THERMO-RESPONSIVE 

MACROPOROUS HYDROGELS 

Two types of stimuli-responsive materials, thermo-responsive polyNIPAAm and ion-

responsive alginate, were used to prepare macroporous hydrogels. The stimuli-

responsive behaviours of these polyHIPE/thermo-HIPE systems could be triggered 

under very mild conditions: ion-responsive methacrylate-modified alginate 

polyHIPEs (Table 8-1 S2) could be shrunk and swelled on demand in the presence of 

Ca2+ (Ca2+ could potentially even supplied by the surrounding tissue) or sodium 

citrate; thermo-responsive poly((dextran-GMA)-co-NIPAAm) polyHIPEs (Table 8-1 

S1) had better mechanical properties after being heated to 38 °C in an aqueous 

environment. Dextran-b-polyNIPAAm based thermo-HIPEs (Table 8-1 S4, S5 & S6) 

could be used to produce interconnected macroporous solids using a thermal trigger 

close to human body temperature, as the polyNIPAAm part of thermo-responsive 

copolymer phase separated from water above the LCST (34 °C). We also 

demonstrated that covalently crosslinked polyHIPE hydrogels are indeed injectable 
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and their fragments produced during injection could be solidified by using Ca2+-

crosslinked alginate as adhesive. We believe this approach is generic and is a 

potentially versatile method that can be applied to produce other macroporous 

hydrogels. These two solidification mechanisms avoid the harsh condition required by 

other solidification methods (e.g. radical polymerisation) and do not need or produce 

toxic chemicals during solidification.  

8.1.2 COVALENT CROSSLINKING VERSUS NON-COVALENT 

CROSSLINKING OF MACROPOROUS EMULSION TEMPLATED 

HYDROGELS 

It was demonstrated that both covalently crosslinked polyHIPE hydrogels (Table 8-1 

S1 & S2) and non-covalently crosslinked thermo-HIPEs (Table 8-1 S3, S4, & S5) 

possess good injectability. Covalently crosslinked polyHIPE hydrogels broke into 

small hydrogel fragments during extrusion through a hypodermic needle, but the well-

defined pore structure characteristic for polyHIPE was maintained. The resulting 

hydrogel polyHIPE particles could be reformed into a monolithic scaffold with a 

solution-based alginate “adhesive” while maintaining the pore structure employing 

mild and biocompatible conditions. Because the aqueous phase of thermo-HIPEs is a 

mainly dextran-b-polyNIPAAm aqueous solution and there is no doubt that the HIPE 

is injectable at room temperature as is expected from an emulsion. The solidification 

of a thermo-HIPE can simply be triggered by heating it above its LCST. The porous 
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structure of the thermo-responsive solid-HIPE was maintained by aggregation of 

polyNIPAAm blocks within the copolymer. We believe that both of these two 

crosslinking methods could be applied in the manufacturing of injectable scaffolds for 

soft tissue engineering.  

8.1.3 TRADITIONAL SURFACTANTS VERSUS COLLOIDAL 

PARTICLES AS EMULSIFIER FOR HIPE TEMPLATES 

Compared with traditional surfactants, such as Triton X405 used to stabilise o/w 

HIPEs, colloidal particles, such as HAp nanoparticles and stimuli-responsive microgel 

particles, possess many advantages for manufacturing HIPE templated macroporous 

hydrogels for biomedical applications. These two types of nontoxic biocompatible 

particles are more suitable for in vivo use compared to the toxic or non-biocompatible 

surfactants and potentially provide extra functions, such as promote hard tissue cell 

proliferation (HAp nanoparticles) or as they could be used as nano-carrier for gene, 

growth factor or drug delivery (stimuli-responsive microgel particles). Compared with 

Triton X405 stabilised polyHIPEs/thermo-HIPEs (Table 8-1 S1 S2, & S4), poly-

Pickering-HIPEs/thermo-HIPEs (Table 8-1 S3 S5 & S6) have much bigger pores 

with diameter exceeding 30 μm, which is more suitable for tissue engineering 

applications. 
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8.1.4 ORGANIC SOLVENTS VERSUS NONTOXIC OILS AS 

INTERNAL/DISPERSED PHASE FOR HIPE TEMPLATES 

Obviously most organic solvents, such as toluene and p-xylene used as oil phase for 

o/w HIPEs, are not suitable for in vivo use. It is intended to inject thermo-HIPEs 

directly into the target area. In this case common water immiscible organic solvents 

cannot be used. Soybean oil and squalene as the oil phase of thermo-HIPEs (Table 8-

1 S5) provide safer options for in vivo use.  

 



 

  

C
hapter 8: C

onclusions and future w
ork 

~171~ 

Table 8-1: 6 types of injectable polyHIPE/thermo-HIPE hydrogels investigated in this thesis 

Code Name Emulsifier Oil phase Solidification method 

  Covalently crosslinked polyHIPE hydrogels  

S1 
Poly((dextran-GMA)-co-NIPAAm) 

polyHIPEs 
Triton X405 Toluene 

Thermo-responsive & ion-

responsive solidification 

S2 Methacrylate-modified alginate polyHIPEs Triton X405 Toluene Ion-responsive solidification 

S3 Dextran-GMA poly-Pickering-HIPEs HAp nanoparticles Toluene or soybean oil Radical polymerisation 

  Thermo-HIPEs (non-covalently crosslinked hydrogels)  

S4 Dextran-b-polyNIPAAm thermo-HIPEs Triton X405 p-Xylene , soybean oil or squalene 
Thermo-responsive 

solidification 

S5 
Dextran-b-polyNIPAAm Pickering thermo-

HIPEs 
HAp nanoparticles p-Xylene , soybean oil or squalene 

Thermo-responsive 

solidification 

S6 
Dextran-b-polyNIPAAm Pickering thermo-

HIPEs 
Microgel particles p-Xylene 

Thermo-responsive 

solidification 
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8.1.5 FINAL CONCLUDING REMARKS 

It was demonstrated that the strategy used to prepare injectable scaffolds for soft 

tissue engineering (Figure 1-1) in this thesis is feasible and reliable. By using o/w 

HIPEs as template, we prepared injectable scaffolds with interconnected porous 

structures, turntable pore size/pore throat size and biocompatible hydrophilic natural 

polysaccharides (dextran or alginate) as the solid constitute of the scaffolds. By 

incorporating environmental stimuli-responsive materials (polyNIPAAm and alginate) 

into the injectable system, the scaffolds could be in vivo solidified triggered by body 

temperature or Ca2+ ions from the body. The use of nontoxic oils (soybean oil or 

squalene) as the oil phase and HAp nanoparticle as the emulsifier eliminated all 

cytotoxic compounds from thermo-HIPEs, which allows them to be potentially used 

directly in vivo. Moreover, using colloidal particles as emulsifiers allowed to tailor the 

pore size of polyHIPEs and thermo-HIPEs to the levels that suitable for cell 

proliferation. 

It is hoped that the promising results obtained for these 6 injectable polysaccharide 

porous scaffolds presented in this thesis will encourage researchers to further explore 

the stimuli-responsive porous materials prepared from o/w HIPEs and their 

applications in tissue engineering and regenerative medicine. 
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8.2 RECOMMENDATIONS FOR FUTURE WORK 

Many challenges remain to be overcome to optimise the performance of the scaffolds 

described in this thesis, the following requires further works: 

● The mechanical performance of stimuli-responsive hydrogels prepared from o/w 

HIPEs, including the strength, stiffness and toughness, can be further diversified to 

meet the requirements of different biologic tissues. 

● Some more studies should be conducted on cell seeding and cultivation on these 

stimuli-responsive scaffolds. 

● Animal studies would provide real in vivo data for macroporous scaffolds. 

● Proper cell encapsulation methods should be developed in order to protect the cells 

during premixing with thermo-HIPEs and provide nutrition or other necessary 

molecular (e.g. growth factors) during in vivo cell proliferation. 

● Some other biological “adhesives” should be explored to bond polyHIPE hydrogel 

fragments in this thesis to meet different mechanical properties needs or in vivo 

degradation requirements 

● Effect of HAp nanoparticles used to prepare macroporous scaffold on soft tissue 

cells should be explored. 
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CHAPTER 9 

 

MATERIALS AND METHODS 

 

9.1 MATERIALS 

The following materials were purchased from Sigma-Aldrich Company Ltd. (Poole, 

UK): dextran from leuconostoc ssp. (Mw ≈ 40,000 Da), alginate from brown algae 

(viscosity of 2 % solution at 25 °C ≈ 250 mPa.s), glycidyl methacrylate (GMA) 

(97+ %), methacrylic anhydride (94%), dimethyl sulfoxide (DMSO), free of water 

(99.9%), N-isopropylacrylamide (97%), p-xylene (99+%), ammonium persulfate 

(APS) (98+%), N,N,N’,N’-tetramethylethylenediamine (TEMED) (99+%), 

triethylamine (GPC grade), sodium dodecylbenzenesulfonate (NaDBS) (technical 

grade), glacial acetic acid (GPC grade), N,N’-methylenebisacrylamide (BIS) (99.5+%), 

Triton X405 solution (polyethylene glycol tert-octylphenyl ether, 70% in H2O), 

hydroxyapatite (HAp) nanoparticles (particle size < 200 nm), methyl myristate 

(99+ %), 2,2’-azobis(isobutyronitrile) (AIBN) (98+%), Amberlyst 15 ion exchange 

resin, dialysis tubing (diameter: 27 mm, molecular weight cut off (MWCO): 

12,000 Da), acrylic acid (AA) (99+%), soybean oil (soya oil from glycine max), 

squalene (98+%), glutaraldehyde (25%), sodium phosphate monobasic (99+%), 
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sodium phosphate dibasic (99+%). sodium citrate (99+%) and ammonium cerium (IV) 

nitrate (99+ %) was obtained from Acros (Thermo Fisher Scientific Ltd., 

Loughborough, UK). Toluene (99+%), nitric acid (69+%), N,N-dimethylformamide 

(DMF) (GPC grade), sodium chloride (99+%), hydrochloride acid (HCl) (36+%), 

calcium chloride (94+%), sodium hydroxide (99+%), ethanol (99.7+%), acetone 

(99.8%), methanol (99.8%), potassium hydroxide (KOH) (99+%), potassium chloride 

(KCl) (99+ %) and 12-well BD Falcon™ cell culture insert companion plates (BDH-

brand, Cat. No. 353503) were purchased from VWR (Leics., UK). 4-

(Dimethylamino)pyridine (DMAP) (99%) was purchased from Alfa Aesar Ltd. 

(Lancashire, UK). Cellulose extraction soxhlet thimbles (inner diameter = 19 mm, 

outer length = 90 mm) were bought from Whatman (Whatman International Ltd. 

Maidstone, England). Deuterium oxide (D2O) (99.8 atom% D) was supplied by Merck 

Ltd. (Darmstadt, Germany). Dialysis tubing (diameter: 29 mm, MWCO: 1,000 Da) 

was purchased from Spectrum Laboratories, Inc. (Breda, NL). A549 human type II 

tumour cells (A549) were obtained from American Type Culture Collection (# CCL 

183; American Type Culture Collection, Virginia, USA); Dulbecco’s Modified Eagle 

Medium (DMEM) was purchased from Invirtogen Ltd (Paisley, UK); Foetal Bovine 

Serum (FBS) was obtained from PAA Laboratories, (Somerset, UK). 

Osmiumtetroxide aqueous solution (4%) was purchased from TAAB (TAAB 

Laboratories, Berkshire, UK) and 1,1,1,3,3,3-hexamethyldisilazane (HMDS) (98+%) 

was from AVOCADO (AVOCADO Research Chemical Ltd., Lancashire UK). 
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Dialysis tubing with 12,000-14,000 MWCO was purchased from Medicell (Medicell 

International Ltd., UK). Pork muscle was purchased from my local Sainsbury’s 

Supermarket Ltd. (London, UK). Piped nitrogen was supplied by BOC and passed 

through a calcium carbonate, sodium hydroxide and self-indicating-silica drying 

column. All materials were used as received. 

9.2 SYNTHESIS OF DEXTRAN-GMA 

Dextran-GMA was synthesis following the procedure described by Dijk-Wolthuis et 

al.208 Dextran (25.0 g, 0.625 mmol) was dissolved in 225 ml DMSO. An atmosphere 

of nitrogen atmosphere was maintained throughout the reaction. DMAP (5.0 g, 

0.041 mol) was added. After DMAP was dissolved in DMSO, GMA (6.2 g, 0.041 mol) 

was added in one portion. The solution was stirred at room temperature for 48 h. The 

reaction was stopped by adding 7.0 ml of a 36% aqueous HCl. The reaction mixture 

was transferred to a dialysis tube (MWCO = 12,000 Da) and dialysed against distilled 

water for 3 d (distilled water was changed twice a day until no impurities can be 

found in the 1H-NMR spectra). Finally, dextran-GMA was freeze dried and a white 

fluffy product was obtained, which was stored at -20 °C in a freezer prior use.  

The degree of substitution of dextran by GMA was quantified using 1H-NMR spectra 

of dextran and dextran-GMA.281 1H-NMR spectra were recorded on a Bruker DRX 

400 (400 MHz) in D2O at room temperature. 1H-NMR spectra were processed using 

the software MestReNova (version 6.1.0). The NMR analysis was carried out 
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according to reference208. Specifically, the anomeric proton of the glucose ring of 

dextran (Ha) was clearly observed at δ = 4.9 ppm and the proton at the anomeric 

carbon of the α-1, 3 linkages (Ha’) was at δ = 5.1 ppm. The signals from the 

methacryloyl protons of glyceryl methacrylate (Hc) were observed (CH3 at δ=1.8 ppm 

and =CH2 at δ 5.7 ppm and δ 6.1 ppm. The results (Figure 9-1) are in agreement with 

the lH-NMR spectra in van Dijk-Wolthuis et al.s work.281 

The degree of substitution of dextran-GMA was calculated by measuring the ratio 

between the average value of the integrals of the double-bond protons (δ = 5.6 to 6.3 

ppm) and the integrals of the anomeric protons signals (δ = 4.8 to 5.6 ppm) in the 1H-

NMR spectrum of dextran-GMA in deuteroxide (Figure 9-1). The formula to 

calculate the degree of vinylic substitution to glucose unit is: 

6.13 5.628

5.1 4.9

1
( )

2DS
 

 




                                                                                9.1 

The degree of substitution of dextran-GMA prepared is 34%. 
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Figure 9-1: The 1H-NMR spectra of dextran-GMA dissolved in D2O. 

9.3 DEXTRAN-GMA AND POLY((DEXTRAN-GMA)-CO-

NIPAAM) POLYHIPE HYDROGEL PREPARATION (DG1, 

DN1 & DN2) 

HIPEs were prepared in a 100 ml glass reaction vessel and stirred by a D-shaped 

PTFE paddle (the length of the paddle is 3.5 cm) connected to an overhead stirrer in 
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air atmosphere. During the preparation of the emulsions the stirring rate was kept 

constant at 450 rpm. The continuous aqueous phase of the HIPE contained up to two 

monomers (dextran-GMA and NIPAAm) and Triton X405 as surfactant. The 

dispersed phase, a 1.0 % w/v AIBN toluene solution, was slowly added to the 

homogeneous continuous phase (the compositions of continuous phase are listed in 

(Table 9-1). The duration of the dropwise addition of the dispensed phase was about 

30 min and at the end of the addition, stirring was prolonged for a further 15 min to 

allow better homogenisation of the HIPE. The resulting emulsion was transferred into 

a soda glass sample tube with 2.5 cm outside diameter. The height of the emulsion 

level in the sample tube was controlled to be 0.5 cm in order to obtain cylindrical 

polyHIPE hydrogel with around 2.3 cm diameter and 0.5 cm height for oscillatory 

mechanical measurements. Then the sample was polymerised in a preheated oven at 

60 °C for 24 h in air. A glass cutter was used to gently break the soda glass tube 

without damaging the cylindrical hydrogel. The foams were then soaked in DMSO in 

order to replace toluene. DMSO was exchanged three times a day with fresh DMSO 

for one week. Finally, the foams were soxhlet extracted with water for 2 d and then 

freeze dried for another 2 d. The compositions of the HIPEs are summarised in Table 

9-1: 
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Table 9-1: Emulsion compositions of poly(dextran-GMA) and poly((dextran-GMA)-
co-NIPAAm) polyHIPE hydrogels.  

Sample 

Code 

Aqueous phase a 

(volume fraction) 

Aqueous phase composition b: 

Dextran-GMA/ NIPAAm/ Triton X405/ AIBN 

(% w/v : % w/v : % w/v: % w/v) 

DG1 10 20 : 0 : 8.5 : 9 

10 : 10 : 8.5: 9 

4 : 16 : 8.5: 9 

DGN1 10 

DGN2 10 

a Volume of the organic phase relative to the total volume of the emulsion. 
b Concentration of Dextran-GMA, NIPAAm, Triton X405 and initiator AIBN in distilled 
water. 

9.4 ELEMENTAL ANALYSIS OF POLY((DEXTRAN-

GMA)-CO-NIPAAM) POLYHIPE HYDROGELS 

Elemental analysis of poly((dextran-GMA)-co-NIPAAm) polyHIPEs was carried out 

by Mr. Stephen Boyer at the London Metropolitan University. It is used to determine 

the NIPAAm content in the polyHIPE hydrogel. And the results of elemental analysis 

are listed in Table 9-2: 

. 
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Table 9-2: Elemental analysis results of poly((dextran-GMA)-co-NIPAAm) 
polyHIPEs  

Sample C (%) H (%) N (%)

DN1 47.16 6.68 3.25 

DN2 49.91 7.44 5.32 

 

The analysis of the ratio of dextran/NIPAAm is based on the molecular formula of 

poly((dextran-GMA)-co-NIPAAm) and calculated as follow: 

sub

sub sub

C% 6 C% 6
( N%) ( N%) GMA %N% 12 14 12 14X : Y : Z : :

14 7 GMA % 6 7 GMA % 6

  


   
                               9.2 

Where X is the molecular ratio of NIPAAm units of dextran-b-polyNIPAAm; Y is the 

molar percentage of glucose units of dextran; and Z is the molar percentage of GMA. 

C% is the weight percentage of carbon; N% is the weight percentage of nitrogen, as 

determined by elemental analysis; GMAsub is the degree of substitution of dextran-

GMA. The results of the calculation are as follows:  

DN1: NIPAAm units: glucose units: GMA units = 0.8:1:0.36;  

DN2: NIPAAm units: glucose units: GMA units =1.73:1:0.36. 
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9.5 OSCILLATORY MECHANICAL MEASUREMENTS 

OF POLY(DEXTRAN-GMA) AND POLY((DEXTRAN-

GMA-CO-NIPAAM) POLYHIPE HYDROGELS.  

Cylindrical dextran-GMA and poly((dextran-GMA)-co-NIPAAm) polyHIPE 

hydrogels with a diameter of 2.3 cm, and a height of 0.5 cm were used for this 

experiment. A TA Instruments AR1000 rheometer equipped with 2.0 cm standard 

steel parallel plates and a steel hotplate was used to record the storage modulus G’ 

and loss modulus G” change of polyHIPE hydrogels. The shear modulus G’ and the 

loss modulus G” were measured by heating samples from 25 °C to 50 °C at 

0.5 °C/min at 1.0 Hz with 3.0% strain. This method is adapted from by the 

literature282-283. The result are shown in Figure 3-3. 

9.6 SYNTHESIS OF METHACRYLATE-MODIFIED 

ALGINATE  

The synthesis and characterisation of methacrylate-modified alginate followed the 

procedure reported by Smeds et al.225 Briefly, after alginate (4.0 g) was dissolved in 

distilled water (200 ml) to make a 2.0 % w/v solution, methacrylic anhydride (15 ml) 

was added at once at room temperature. The pH of the solution was adjusted to 8 by 

dropwise addition of concentrated NaOH (5.0 M) (the pH of this solution was 

monitored by using a pH meter (CyberScan pH11, Eutech Instrument, Singapore)). 

The solution was incubated at 5 °C for 24 h. The polysaccharide was purified by 
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precipitation into ethanol (400 ml) and subsequently washed with ethanol (about 1 L). 

The sample was dried under vacuum at room temperature for 3 d. 3.0 g product was 

obtained and the yield was 75%.  

The degree of methacrylation of methacrylate-modified alginate was determined from 

the 1H-NMR spectrum in D2O (Figure 9-1). 1H-NMR spectra were recorded on a 

Bruker DRX 400 (400 MHz) in D2O at room temperature. 1H-NMR spectra were 

processed using the software MestReNova (version 6.1.0). The relative integrations of 

the anomeric protons of the glucose ring of alginate at δ = 4.9 ppm to methacrylate 

proton peaks (methylene protons at δ = 6.1 and 5.7 ppm and the methyl group peak, δ 

= 1.9 ppm) were used to determine the degree of substitution of alginate with 

methacrylate units. The molar ratio of glucose to methacrylate groups to glucose units 

was determined to be 1.00:0.44. 
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Figure 9-2: The 1H-NMR spectra of methacrylate-modified alginate dissolved in D2O. 
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9.7 PREPARATION OF HYDROGEL POLYHIPES PHMA 

FROM METHACRYLATE-MODIFIED ALGINATE  

Methacrylate-modified alginate (0.35 g) obtained in Section 9.6 was dissolved in 

distilled water (5.0 ml) together with Triton X405 (0.44 g) at room temperature. A 

solution of AIBN in toluene (1.0 wt%, 20 ml) was added under stirring (500 rpm) at 

room temperature for 4 h. The shear force necessary for the dispersion of the organic 

phase into the aqueous phase was provided by an IKA RW 20 Digital overhead stirrer 

(IKA Labortechnik, Germany) with a D-shaped PTFE paddle (the width of the paddle 

was 3.5 cm). A HIPE was obtained after complete addition of the organic phase. The 

resulting emulsion was transferred to soda glass sample tube with 2.5 cm outside 

diameter. The filling level of the emulsion (liquid) in the sample tube was 0.5 cm in 

order to obtain cylindrical polyHIPE hydrogel with about 2.1 to 2.3 cm diameter and 

0.5 cm height for oscillatory mechanical measurements. The sample was cured in an 

oven at 60 °C for 24 h in air. The polyHIPE was soxhlet-extracted with methanol for 

24h, then with acetone for a further 24 h. Finally, the methacrylate-modified alginate 

polyHIPE was dried in an oven at 60 °C for 24 h. Then the sample was immersed in 

distilled water (100 ml) for more than 6 h to reach its equilibrium swelling and freeze 

dried for 2 d. 
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9.8 IONIC CROSSLINKING AND DE-CROSSLINKING 

OF A HYDROGEL POLYHIPE MADE FROM 

METHACRYLATE-MODIFIED ALGINATE 

9.8.1 IONIC CROSSLINKING OF A METHACRYLATE-MODIFIED 

ALGINATE POLYHIPE HYDROGEL PHMA 

A piece of freeze-dried methacrylate-modified alginate polyHIPE hydrogel PHMA 

was equilibrated in 100 ml distilled water for 6 h. The hydrogel was taken out of the 

water and thoroughly shaken to remove excess water until no water could be visually 

observed on the surface of the hydrogel. PHMA was then soaked in 200 ml either 

1.8 mM, 4 mM or 100 mM aqueous CaCl2 solution for 24 h. The ionically crosslinked 

sample was soaked in about 100 ml distilled water for 2 h before being freeze dried 

for more than 3 d. 

9.8.2 IONIC DE-CROSSLINKING OF IONICALLY CROSSLINKED 

METHACRYLATE-MODIFIED ALGINATE BASED POLYHIPE 

HYDROGEL PHMA 

A piece of freeze-dried ionically and covalently crosslinked methacrylate-modified 

alginate polyHIPE PHMA were equilibrated in distilled water (100 ml) for 6 h. The 

hydrogel was taken out of the water and thoroughly shaken to remove excess water 

until no water could be visually observed in the surface of the sample. It was then 
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soaked in 200 ml 100 mM sodium citrate aqueous solution for 24 h. The ionically de-

crosslinked sample was soaked in distilled water (about 100 ml) for 2 h before freeze 

drying.  

9.9 OSCILLATORY MECHANICAL MEASUREMENTS 

OF METHACRYLATE-MODIFIED ALGINATE 

POLYHIPE HYDROGEL PHMA  

Cylindrical methacrylate-modified alginate polyHIPE hydrogel PHMA with a 

diameter of 2.2 cm and a height of 0.5 cm were used for oscillatory rheology. A TA 

Instruments AR1000 rheometer equipped with a 2.0 cm standard steel parallel plate 

was used to record the storage modulus (G’) and loss modulus (G”) of methacrylate-

modified alginate polyHIPE hydrogel. The frequencies scanned ranged from 20 to 

120 rad/s. This method is similar to that used by Fernandez et al.282 and Bajomo et 

al.283. The ionically crosslinked methacrylate-modified alginate polyHIPE hydrogel 

was prepared by soaking in 100 ml 100 mM aqueous CaCl2 solution for 24 h. After 

ionic crosslinking, the hydrogel shrunk to 1.8 cm in diameter and 0.3 cm height. The 

crosslinked hydrogel was soaked in distilled water (50 ml) to remove any residual 

CaCl2. Similarly to disrupt the ionic crosslinking, the ionically crosslinked samples 

were soaked in aqueous sodium citrate solution (100 ml, 100 mM) for 24 h. The 

hydrogel recovered its initial physical dimensions of 2.2 cm in diameter and 0.5 cm in 

height. The resulting sample was then washed with distilled water (50 ml) to remove 
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any remaining sodium citrate. Samples were stored in 100 ml distilled water at room 

temperature. 

9.10 EQUILIBRIUM WATER UPTAKE RATIO OF 

METHACRYLATE-MODIFIED ALGINATE POLYHIPE 

HYDROGEL PHMA 

The water uptake of methacrylate-modified alginate polyHIPE hydrogel PHMA was 

determined gravimetrically. The weight of the dry sample was measured directly. The 

weight of swollen samples was measured by weighing methacrylate-modified alginate 

hydrogels, which were equilibrated in 200 ml distilled water for 24 h after wiping off 

any excess water with tissue from the monolith surface. The water uptake ratio (Rw) 

was calculated as follows: 

%100



d

dw
w W

WW
R                                                                                  9.3 

where Ww is the weight of the hydrogel swollen to equilibrium in distilled water and 

Wd is the weight of the freeze-dried hydrogel. The water uptake of polyHIPE PHMA 

was 8000250 % w/w at fully swollen state and 3000100 % w/w at fully shrunken 

state. 
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9.11 RATE OF SHRINKING AND SWELLING OF 

METHACRYLATE-MODIFIED ALGINATE POLYHIPE 

HYDROGEL PHMA 

Cylindrical methacrylate-modified alginate polyHIPE hydrogel PHMA (obtained in 

Section 9.7) with a diameter of 2.1 cm was used for these experiments. A Sony W55 

digital camera (in video mode) was used to record a sample’s shrinking behaviour in 

100 ml 100 mM CaCl2 and swelling behaviour in 100 ml 100 mM sodium citrate at 

room temperature. The diameter of the sample was measured from the video every 

minute during shrinking and every 30 s during swelling. The dimensions of 

methacrylate-modified alginate polyHIPE hydrogels were calibrated by a ruler placed 

next to the monolith in the video. After 3 h, the dimensions of the sample did not 

show any further changes in both swelling and shrinking experiments. 

9.12 INJECTABILITY OF POLY((DEXTRAN-GMA)-CO-

NIPAAM) POLYHIPE HYDROGEL DN2 AND 

METHACRYLATE-MODIFIED ALGINATE POLYHIPE 

HYDROGEL PHMA 

Several pieces (about 3 ml in volume) of polyHIPE hydrogel (poly((dextran-GMA)-

co-NIPAAm) polyHIPE hydrogel DN2 or methacrylate-modified alginate polyHIPE 

hydrogel PHMA) were immersed in distilled water for 24 h. They were loaded into a 

5 ml syringe (Becton, Dickinson U.K. Limited, Oxford UK) and gently pressed 
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through a hypodermic needle with an inner diameter of 1.1 mm in to a round bottom 

flask containing about 10 ml distilled water. The resulting injected hydrogel 

fragments were then lyophilised for 3 d for SEM characterisation. Hydrogel DN2 or 

PHMA was also injected into a 1.5 cm×1.5 cm×1.5 cm pork muscle at room 

temperature which was then freeze dried with hydrogel present in the muscle tissue. 

In order to observe the injected hydrogel within the muscle in SEM, one part of the 

muscle was sliced away. The injected hydrogels were then lyophilised for 3 d together 

with the muscle for SEM characterisation. 

9.13 REFORMING OF INJECTED HYDROGEL DN2 OR 

PHMA SCAFFOLDS 

Several pieces (about 3 ml in volume ) of polyHIPE hydrogel (poly((dextran-GMA)-

co-NIPAAm) polyHIPE hydrogel DN2 or methacrylate-modified alginate polyHIPE 

hydrogel (PHMA)) were immersed in distilled water to reach equilibrium and were 

then soaked in 50 ml aqueous alginate solution with two difference alginate 

concentrations separately (0.2 % w/v and 1.0 % w/v) for 24 h. The hydrogel was 

loaded into a 5 ml syringe and gently passed through a hypodermic needle (inner 

diameter = 1.1 mm) into a cellulose extraction thimble (inner diameter = 19 mm, 

outer length = 90 mm, Whatman International Ltd. Maidstone, England). The injected 

polyHIPE hydrogel fragments were confined within the closed end of a soxhlet 

thimble using a plastic syringe plunger (diameter = 1.3 cm), which was tightly fixed 

inside the thimble (acting as a shape template) with the help of two plastic cable ties. 
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The whole set-up was soaked in a 100 ml 50 mM aqueous CaCl2 solution for 24 h to 

trigger the solidification of the alginate solution in these polyHIPE hydrogel 

fragments. After the soxhlet thimble was removed, the injected polyHIPE hydrogel 

fragments had formed a single cylinder shaped hydrogel monolith (diameter ≈ 1.3 cm, 

height ≈ 1 cm). The reforming procedure is illustrated in Figure 9-3. 

 

Figure 9-3: Reforming of injected hydrogel scaffolds: A: hydrogel pieces were 
soaked in aqueous alginate solution for 24 h; B: the hydrogels were loaded in a 5 ml 
syringe and gently passed through a hypodermic needle into a cellulose extraction 
thimble; C: the injected hydrogel fragments were confined in the soxhlet extraction 
thimble using the plunger of the plastic syringe, which was tightly fixed in the thimble 
by two plastic cable ties. The whole set-up was soaked in aqueous CaCl2 solution for 
24 h. 
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9.14 SYNTHESIS OF DEXTRAN-b-POLYNIPAAM 

COPOLYMER 

Dextran (5.00 g; 0.125 mmol) was dissolved in distilled water (50 ml) in a three 

necked flask. The solution was placed in an oil bath at 27 °C and purged with nitrogen. 

The nitrogen atmosphere was maintained throughout the copolymerisation reaction. 

Cerium (IV) ammonium nitrate (5.50 g, 0.01 mol), nitric acid (6.10 g, 69%) and 

NIPAAm (5.00 g, 0.043 mol) were added to the reaction system. After 4 h, the 

reaction was stopped through addition of sodium hydroxide solution (1 N). The 

reaction mixture was transferred to a dialysis tube (MWCO = 12,000 Da) and 

dialysed against distilled water for 3 d (distilled water was changed twice a day). A 

white fluffy product was obtained after freeze drying and the yield is 44%. The ratio 

of dextran glucose units to NIPAAm repeat units was determined by comparing the 

1H-NMR spectra of dextran, NIPAAm and dextran-b-NIPAAm copolymer in D2O. 

1H-NMR spectra were recorded on a Bruker DRX 400 (400 MHz) in D2O at room 

temperature. 1H-NMR spectra were processed using the software MestRe-C (version 

4.8.1.1). The NMR analysis was carried out according to reference248. Specifically, 

signals corresponding to the anomeric proton of the glucose ring of dextran at δ = 

4.9 ppm and the proton at the anomeric carbon of the α-1,3 linkages at δ = 5.1 ppm 

were clearly observed both in the 1H-NMR spectra of dextran and the dextran-b-

polyNIPAAm copolymer. The proton signals of NIPAAm, such as the two isopropyl 

group methyl signals (δ = 1.1 ppm), the isopropyl methine group (δ =3.8 ppm) and the 
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backbone CH & CH2 groups (δ = 1.8 ppm & δ = 1.5 ppm), were identified in the 1H-

NMR spectra of NIPAAm and dextran-b-polyNIPAAm block copolymer. The ratio of 

glucose units of dextran to NIPAAm units was 1.00:0.67. The 1H-NMR spectra of 

dextran-b-polyNIPAAm dissolved in D2O is shown in Figure 9-4. 

 

 

Figure 9-4: The 1H-NMR spectra of dextran-b-polyNIPAAm dissolved in D2O. 
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9.15 GPC ANALYSIS OF DEXTRAN AND DEXTRAN-b-

POLYNIPAAM 

The molecular weight of dextran-b-polyNIPAAm was measured by aqueous GPC by 

Smithers RAPRA Technology Ltd. (UK) using their standard procedures. The GPC 

system was calibrated with pullulan polysaccharide. The GPC results were listed in 

Table 9-3. 

Table 9-3: GPC results of dextran and dextran-b-polyNIPAAm. 

Sample Description Mw Mn Polydispersity

Dextran Purchased from Sigma-Aldrich 40,000 18,500 2.2 

Dextran-b-polyNIPAAm Obtained in Section 9.14 28,000 13.600 2.1 

9.16 DETERMINATION OF THE LOWER CRITICAL 

SOLUTION TEMPERATURE OF DEXTRAN-b-

POLYNIPAAM 

A 0.2 % w/v dextran-b-polyNIPAAm block copolymer solution in water (10 ml) was 

placed into a glass test tube. The tube was placed in a thermostated water bath and 

heated from 24 °C to 38 °C at a rate of 4 °C/h and then allowed to cool to room 

temperature. The transparent solution became cloudy suddenly when the temperature 
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reached 34 °C. It became transparent again when the temperature dropped below 

34 °C, indicating the LCST of dextran-b-polyNIPAAm block copolymer to be 34 °C. 

9.17 SYNTHESIS OF POLYNIPAAM HOMOPOLYMER 

N1 

The aqueous redox polymerisation of NIPAAm was adapted from a procedure 

reported by Schild et al.[1] The polymerisation was carried out at 0 °C. Briefly, 

NIPAAm (2.22 g, 20.0 mmol) and APS (0.83 g, 3.6 mmol) were dissolved in 60 ml 

phosphate buffer (buffer composition: distilled water (500 ml), Na2HPO4 (0.576 g), 

NaH2PO4 (0.758 g), NaCl (4.2417 g); titrated to pH 7.4 using 0.1 M NaOH) and then 

TEMED (4.32 ml, 28.3 mmol) was added in one portion. The reaction mixture was 

stirred using a magnetic stirrer for 15 h under nitrogen at 0 °C in an ice bath. The 

resulting mixture was dialysed (MWCO = 1,000 Da) against distilled water for 48 h 

(and exchanged for freshly distilled water 4 times per day) at room temperature. A 

white fluffy product 1.82 g (82%) was obtained after freeze drying.  

9.18 GPC ANALYSIS OF POLYNIPAAM 

HOMOPOLYMER N1 

A PL-GPC 50 fitted with a PL-BV 400RT Viscometer was used, fitted with a PLgel 

5 µm MIXED-D 300 × 7.5 mm GPC column (Polymer Laboratories, Shropshire, UK). 

The mobile phase was DMF with 1 % v/v triethylamine and 1 % v/v glacial acetic 
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acid. The standards used to calibrate GPC system were poly(methyl methacylate) 

(Polymer Laboratories).The GPC result of polyNIPAAm N1 is as follow: Mn = 37,600 

and Mw = 96,200. 

9.19 DENSITY AND POROSITY OF SOLID HIPE DN0 

AND THERMO-HIPE DN1, DN2 AND DN3 

The matrix or skeleton density of solid-HIPEs and thermo-responsive solid-HIPEs (ρm) 

was measured by helium pycnometry (Accupyc 1330, Micromeritics, Dunstable UK). 

The envelop density ρH and the porosity were obtained using an envelope density 

analyzer (Geopyc 1360, Micromeritics, Dunstable, UK). The porosity was calculated 

using the following equation:  

(1 ) 100%H

m

porosity



  
 

The results are lisetd in following table:  
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Table 9-4: Density, porosity, pore volume of solid-HIPE and thermo-responsive 
solid-HIPEs. 

Sample Code Absolute Density 

(g/cm3) [a] 

Envelope Density 

(g/cm3) [b] 

Porosity 

(%)[b] 

Pore Volume 

(cm3/g) [b] 

DN0 1.490 0.245 83.6 3.416 

DN1 1.438 0.131 90.0 6.928 

DN2 1.500 0.145 90.4 6.243 

DN3 1.466 0.123 91.6 7.448 

[a] Determined using GeoPyc 1360. [b] Determined using AccuPyc 1330.  

9.20 PREPARATION OF DEXTRAN, DEXTRAN-b-

POLYNIPAAM AND POLYNIPAAM SOLID-HIPES 

Preparation of thermo-responsive solid-HIPE DN1 serves as an example: Dextran-b-

polyNIPAAm copolymer (0.050 g) was dissolved in 2.5 ml distilled water together 

with Triton X405 (0.21 g) at room temperature. The solution was placed into a 

reaction vessel equipped with an overhead stirrer with a D-shaped paddle. p-Xylene 

(22.5 ml; dispersed phase) was added using an addition funnel under stirring (450 rpm) 

at room temperature. The duration of the dropwise addition of the dispensed phase 

was about 30 min. A HIPE was obtained after the addition of p-xylene was complete. 

Approximately 2.5 ml of the p-xylene-containing HIPE was taken up in a 5 ml 

syringe and gently passed through a hypodermic needle (inner diameter = 1.1 mm) 
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into a round bottom flask. The emulsion was heated to 38 °C for 30 min in an oil bath, 

and the resulting material was lyophilised for 2 d. The final product was a white soft 

solid. The yield was approximately 73% (attributed to the loss caused of the HIPE by 

incomplete transfer of the very viscous HIPE from the reaction vessel into the 

container for the freeze dryer). The compositions of dextran and dextran-b-

polyNIPAAm HIPEs are listed as follow: 

Table 9-5: Composition of dextran and dextran-b-polyNIPAAm copolymer HIPE 
formulations. 

Sample 

Code 

Aqueous 

phase /oil 

phase 

(v:v) 

Polymer in 

aqueous phase 

Aqueous phase composition[a]: 

Polymer/Triton X405 

(% w/v : % w/v) 

Organic 

Phase 

DN0 1 : 9 dextran 20 : 8.5 p-xylene 

DN1 1 : 9 
dextran-b-

polyNIPAAm 
20 : 8.5 p-xylene 

DN2 1 : 4 
dextran-b-

polyNIPAAm 
20 : 8.5 p-xylene 

DN3 1 : 9 
dextran-b-

polyNIPAAm 
25 : 8.5 p-xylene 

[a] Concentration of dextran or dextran-b-polyNIPAAm copolymers and Triton X405 
in distilled water  
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9.21 PREPARATION OF A POLYNIPAAM SOLID ABOVE 

ITS LCST 

PolyNIPAAm N1 (0.30 g) was dissolved in 1.5 ml distilled water and water was 

removed from the solution using a rotary evaporator with the water bath set to 40 °C 

to yield a transparent solids which was freeze-dried prior to use.  

9.22 SOLUBILITY TESTS OF THERMO-RESPONSIVE 

SOLID-HIPES AND POLYNIPAAM 

Approx 0.09 g of the thermo-responsive solid-HIPE DN1 (and similarly for 

polyNIPAAm N1) was placed into a glass beaker containing distilled water (200 ml) 

at either 24 °C or 38 °C. The time of dissolution was defined as the time when the 

solid came in contact with water until the visual disappearance of all solid. 

Dissolution times of thermo-responsive solid-HIPE DN1 are listed in Table 6-3. The 

dissolution time of polyNIPAAm N1 at 24 °C is around 12 min. 

9.23 PREPARATION OF HAP NANOPARTILCE 

STABILISED HIPES 

HAp nanoparticles purchased Sigma-Aldrich Company Ltd. (Poole, UK) with particle 

size less than 200 nm (10 mg or 5 mg), 1.0 ml distilled water and 4.0 ml methyl 

myristate were added into a soda glass tube with a diameter of 2.5 cm. The mixture 

was then homogenised at 5,000 rpm for 15 s or 15,000 rpm for 25 s using a Polytron 
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PT10–35 GT batch homogenizer (Kinematica, Switzerland with a 9 mm rotor). 

Optical pictures of HIPEs were taken using a Canon 20D digital camera with Canon 

60mm EF-S macro lens and Canon Speedlite 580EX flash light. These optical 

pictures can be found in Figure 7-2. 

9.24 PREPARATION OF HAP NANOPARTICLE 

STABILISED DEXTRAN-GMA POLY-PICKERING-

HIPES PPH1 TO PPH8 AND DEXTRAN-GMA 

POLYMIPE DGS 

0.20 g dextran-GMA was dissolved in 1.0 ml distilled water together with different 

amount of HAp nanoparticles (Table 9-6) and 50 mg APS in a 25 mm diameter soda 

glass tube. 4.0 ml of oil phase (either methyl myristate or soybean oil) was added at 

on portion into the glass tube and homogenised at 2,000 rpm for 1.0 min. The 

emulsion was cured in an oven at 60 °C for 24 h followed by soxhlet extraction with 

methanol for 24 h and acetone for a further 24 h. Finally, the product was dried in an 

oven at 60 °C for 24 h. Then the sample was immersed in distilled water (100 ml) for 

24 h and finally freeze dried for 2 d. The compositions and dispersion conditions are 

listed in Table 9-6. 
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Table 9-6: Compositions of hydrogel polyHIPEs PPH1-PPH8 obtained from 
dextran-GMA HAp nanoparticle stabilised poly-Pickering-HIPEs and a dextran-GMA 
stabilised emulsion template DGS 

Sample Aqueous phase 

composition[a]: 

Dextran-

GMA/APS/HAp 

Particle (% w/v:% 

w/v:% w/v) 

Homogenising 
speed and duration 

Oil phase type Ripening time 
before 
polymerisation 

PPH1[b] 20:5:1 15,000 rpm, 25 s methyl myristate 0 d 

PPH2[b] 20:5:1 5,000 rpm, 15 s methyl myristate 0 d 

PPH3[b] 20:5:1 5,000 rpm, 15 s methyl myristate 7 d 

PPH4[b] 20:5:1 5,000 rpm, 15 s methyl myristate 14 d 

PPH5[b] 20:5:0.5 5,000 rpm, 15 s methyl myristate 0 d 

PPH6[b] 20:5:0.3 5,000 rpm, 15 s methyl myristate 0 d 

PPH7[b] 20:5:1 5,000 rpm, 15 s soybean oil 0 d 

PPH8[b] 20:5:1 5,000 rpm, 15 s soybean oil 7 d 

DGS[c] 20:5:0 20,000 rpm, 60 s methyl myristate 0 d 

[a] The aqueous phase of all samples is a 20 % w/v dextran-GMA aqueous solution 
with 50 mg/ml ammonium persulfate (APS) as radical initiator and HAp nanoparticles 
as emulsifier. [b] Dextran-GMA poly-Pickering-HIPEs with 80% nominal pore 
volume. [c] Dextran-GMA stabilised emulsion templated hydrogel with about 70% 
nominal pore volume.  
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9.25 THERMO GRAVIMETRIC ANALYSIS (TGA) OF 

HAP STABILISED DEXTRAN-GMA POLYHIPE 

HYDROGELS 

The amount of HAp nanoparticles incorporated into the dextran-GMA poly-

Pickering-HIPE hydrogels was determined using a thermo gravimetric analyser (TGA 

Q500, TA Instruments, UK). Approximately 4 mg of the dried hydrogel obtained in 

Section 9.24 were placed on a platinum holder and heated to 800 °C at a heating rate 

of 10 °C min-1 under a flow of air (60 ml min-1). The HAp nanoparticle content was 

taken as the residual weight above 600°C (above the degradation temperature of 

crosslinked dextran-GMA). At least 3 individual samples were investigated to obtain 

an average value for each polyHIPE. The results are listed in Table 9-7. 

Table 9-7: The amount of HAp nanoparticles incorporated into the dextran-GMA 
poly-Pickering-HIPE hydrogels as determined by TGA 

Sample PPH1 PPH2 PPH3 PPH4 PPH5 PPH6 PPH7 PPH8 

Incorporated HAp 

nanoparticle 

proportion (% w/v) 

3.9 4.4 1.8 2.3 1.6 1.4 3.9 1.9 
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9.26 DETERMINATION OF THE PORE SIZE/PORE 

THROAT SIZE DISTRIBUTION OF HAP STABILISED 

DEXTRAN-GMA POLY-PICKERING-HIPE 

HYDROGELS 

The average pore size and pore throat size of all HAp stabilised dextran-GMA 

polyHIPEs were measured from SEM images using of Image-Pro Plus 6.0. In practice, 

several SEM micrographs were prepared of each specimen and more than 150 pores 

(or pore throats) were measured to determine the number distribution of pore and pore 

throat sizes. 

9.27 DROPLET SIZE OF HAP NANOPARTICLE 

STABLISED PICKERING-HIPES DETERMINED BY 

OPTICAL MICROSCOPY 

Optical microscopy images of HAp stabilised Pickering-HIPEs stabilised by 

1.0 % w/v HAp nanoparticles produced through homogenisation at 15,000 rpm for 

25 s were taken with an optical microscope (Olympus BX51M) by placing an 

emulsion sample onto a glass slide. The droplet size of the emulsion templates was 

determined by using image tool software (Image-Pro Plus 6.0). The image of this 

HIPE can be found in Figure 7-3. 
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9.28 PREPARATION OF HAP NANOPARTICLE OR 

TRITON X405 STABILISED DEXTRAN- b-POLYNIPAAM 

BASED THERMO-HIPES WITH SOYBEAN OIL OR 

SQUALENE AS OIL PHASE 

The composition of dextran-b-polyNIPAAm copolymer HIPEs stabilised by Triton 

X405 and independently HAp nanoparticles are listed in Table 9-8. 

Preparation of HIPE DN-HAp-Soybean serves as an example:  

Dextran-b-polyNIPAAm copolymer (0.050 g) was dissolved in 2.5 ml distilled water 

together with HAp nanoparticles (0.025 g) at room temperature. The solution was 

placed into a reaction vessel equipped with an overhead stirrer equipped with a D-

shaped paddle. 10 ml of the dispersed phase (soybean oil) was added (the duration of 

the dropwise addition of the dispensed phase was about 30 min) with an addition 

funnel under stirring (450 rpm) at room temperature. A HIPE was obtained after the 

addition of soybean oil was complete. 

The composition of dextran-b-polyNIPAAm copolymer HIPEs with soybean oil or 

squalene as oil phase, Triton X405 or HAp nanoparticles as emulsifier are listed as 

follow: 
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Table 9-8: Compositions of dextran-b-polyNIPAAm copolymer HIPEs with soybean 
oil or squalene as oil phase, Triton X405 or HAp nanoparticles as emulsifier 

Sample Code [a] Oil phase 

Emulsifier [b] 
Polymer 

dissolved in 

aqueous 

phase [c] 

Aqueous phase 

volume/oil 

phase  volume 

(v:v) 

Triton 

X405 

(mg/ml) 

HAp 

nanoparticles

(mg/ml) 

DN-S-p-Xylene p-Xylene 85 0 

Dextran-b-

polyNIPAAm 
1:4 

DN-S-Soybean Soybean oil 85 0 

DN-S-Squalene Squalene 85 0 

DN-HAp-p-Xylene p-Xylene 0 10 

DN-HAp-Soybean Soybean oil 0 10 

DN-HAp-Squalene Squalene 0 10 

[a] The internal phase volume of all samples 80 % v/v. [b] Concentration of 
emulsifiers in aqueous phase (distilled water). [c] Dextran-b-polyNIPAAm 
concentration in aqueous phase (distilled water) of all samples is 20 % w/v.  

9.29 SYNTHESIS OF POLYNIPAAM-CO-AA MICROGEL 

PARTICLES 

PolyNIPAAm-co-AA gel particles were kindly prepared by Wei Yuan. The 

polyNIPAAm-co-AA gel particles were synthesised in a surfactant-containing 

aqueous medium279-280. NIPAAm (6.38 g; 54.8 mmol), BIS (0.093 g, 0.6 mmol) and 

AA (0.216 g; 3.0 mmol) were mixed with 150 ml of a 0.01 M solution of odium 

dodecylbenzenesulfonate (NaDBS) in a 250 ml round-bottom flask equipped with 
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condenser. The monomer-containing solution was purged with nitrogen for 2 h. 

Polymerisation was initiated by adding 0.5 ml of a 7.5 % w/w aqueous ammonium 

persulfate (APS) solution and was terminated by blowing air into the flask after the 

polymerisation was allowed to proceed for 2 h at 60 °C at a stirring speed of 200 rpm. 

The reaction mixture was purified by dialysis (MWCO = 12,000-14,000) followed by 

ion exchange (Amberlyst 15 resin) and then freeze-dried. Dialysis against distilled 

water was carried out at 60 °C until the conductivity of the aqueous media became 

constant (the conductivity of the distilled water was monitored by using HANNA HI 

8733 conductivity meter, HANNA Instruments Hellas, Greece). The exchange resin 

was regenerated with 5 % w/v HCl solution and washed to neutral in a column prior 

to use. 

9.30 PREPARATION OF HAP NANOPARTICLE 

STABILISED DEXTRAN- b-POLYNIPAAM SOLID 

THERMO-HIPE  DN-HAP-P-XYLENE 

Dextran-b-polyNIPAAm copolymer (0.050 g) was dissolved in 2.5 ml distilled water 

containing an aqueous suspension of HAp nanoparticles at a concentration of 

10 mg/ml at room temperature. The mixture was placed in a reaction vessel equipped 

with an overhead stirrer with a D-shaped paddle. 10 ml of a dispersed phase (either p-

xylene or soybean oil or squalene) was added (the duration of the dropwise addition 

of the dispensed phase was 30 min) with an addition funnel under stirring (450 rpm) 
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at room temperature. A HIPE was obtained after the addition of the dispersed phase 

was complete.   

In order to obtain solid HIPEs for SEM characterisation, approximately 2.5 ml of a p-

xylene-containing HAp nanoparticle stabilised HIPE was taken up in a 5 ml syringe 

and gently passed through a hypodermic needle (inner diameter = 1.1 mm) into a 

round bottom flask. The emulsion was heated to 38 °C for 30 min in an oil bath and 

the resulting material lyophilised for 2 d. 

9.31 PREPARATION OF MICROGEL STABILISED 

DEXTRAN AND DEXTRAN- b-POLYNIPAAM 

PICKERING SOLID-HIPES 

A 0.4 % w/v polyNIPAAm-co-AA gel particle suspension was prepared employing a 

1 mM KCl solution using 50 ml free standing centrifuge tubes for HIPE preparation. 

The pH of this suspension was adjusted to 6.8 through dropwise addition of a 0.1 M 

aqueous solution of KOH solution into this suspension (the pH of thes suspension was 

monitored by a pH meter CyberScan pH11, Eutech Instrument, Singapore). Dextran 

(or dextran-b-polyNIPAAm copolymer) (0.050 g) was dissolved in 2.5 ml of the 

suspension at room temperature. The mixture was placed into a reaction vessel 

equipped with an overhead stirrer with a D-shaped paddle. 10 ml of the dispersed 

phase (p-xylene) was slowly added (the drop wise duration was about 30 min) with an 

addition funnel under stirring (400 rpm) at room temperature. A HIPE was obtained 
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after the addition of p-xylene was complete. The resulting HIPE was divided into two 

parts: the first part, about 2.5 ml HIPE was lyophilised for 2 d after emulsification 

was stopped; the second part, approximately 2.5 ml of the HIPE was firstly loaded 

into a 5 ml syringe and gently passed through a hypodermic needle (inner diameter = 

1.1 mm) into a round bottom flask, before the emulsion was heated to 38 °C for 

30 min in an oil bath. The resulting material was lyophilised for 2 d. The yield was 

approximately 81% (attributed to the loss caused by incomplete transfer of the very 

viscous HIPE from the reaction vessel to freeze dryer). The composition of dextran 

and dextran-b-polyNIPAAm HIPEs stabilised by polyNIPAAm-co-AA gel particles 

are listed in as follow:   

  



Chapter 9: Materials and methods 

~209~ 

Table 9-9: Composition of dextran and dextran-b-polyNIPAAm copolymer HIPEs 
stabilised by polyNIPAAm-co-AA microgel particles 

Sample 

Code [a] 

Polymer in 

aqueous 

phase [b] 

Aqueous phase[c] 

Post treatment 

after HIPE was 

prepared 

Triton 

X405 

(mg/ml) 

Microgel 

Particles 

(mg/ml) 

KCl 

(mg/ml)

Dex-S Dextran 85 0 0 
Freeze dried 

directly  

DN-S-1 
Dextran-b-

polyNIPAAm 
85 0 0 

Freeze dried 

directly 

DN-S-2 
Dextran-b-

polyNIPAAm 
85 0 0 

Heated to 38 °C 

before freeze 

drying 

Dex-P Dextran 0 4.0 1.0 
Freeze dried 

directly 

DN-P-1 
Dextran-b-

polyNIPAAm 
0 4.0 1.0 

Freeze dried 

directly 

DN-P-2 
Dextran-b-

polyNIPAAm 
0 4.0 1.0 

Heated to 38 °C 

before freeze 

drying 

[a] The internal phase all samples is p-xylene and its volume fraction is 80 % v/v. [b] 
The polymer concentration in aqueous phase (distilled water) of all samples is 20 % 
w/v. [c] Concentration in distilled water. [d] Determined from the corresponding SEM 
micrographs. 
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9.32 CELL CULTURE AND CYTOXICITY ASSESSMENT 

OF O/W HIPE TEMPLATED SCAFFOLDS.  

The cytoxicity assessment work was kindly performed by Andrew Chong, and the 

procedure is as follow: Poly((dextran-GMA)-co-NIPAAm) polyHIPE (DNG2), 

methacrylate-modified alginate based polyHIPE PHMA and thermo-HIPEs (DN2 and 

DN3) were cut to about 4×4×4 mm3 sized cubes using a scalpel and subsequently 

sterilized under UV light for 90 min at 0.120 J and 80 W (BLX-254, Vilber Lourmat, 

France). The scaffold was immersed in DMEM supplemented with 10% FBS (2 ml 

per well) in a 12-well plate and left in an incubator (37 °C, 5% CO2) overnight. The 

following day, a suspension of A549 cell (2 μl, 1x105 cells/μl, labeled with a Vybrant 

cell tracer kit) was seeded on the scaffolds and incubated at 37 °C, 5% CO2. The 

culture medium (DMEM supplemented with 10% FBS) was changed every 2 d by 

removing the inserts and replacing them. 

On day 4, the culture medium was removed, scaffolds washed twice with phosphate 

buffer (1:5.25 of 0.2 M NaH2PO4 to 0.2 M Na2HPO4, pH 7.5) and fixed with 2.5% 

glutaraldehyde in phosphate buffer (as above) for 40 min at 37 °C. For the purpose of 

cell fixation, the phosphate buffer was then removed and replaced with phosphate 

buffer (as above) containing 1% osmium tetroxide and left at 37 °C for a further 1 h. 

Subsequently, the scaffolds were dehydrated by 3 sequential washes of ethanol (100%) 
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for 5 min each and then incubated twice in HMDS for 5 min each to remove water 

completely.  

9.33 SEM CHARACTERISATION OF SCAFFOLDS WITH 

ENTRAPPED CELLS  

The internal structure of all polyHIPEs, thermo-HIPEs or solid HIPEs samples and 

entrapped cells in these samples after cell culture were studied by scanning electron 

microscopy (Hitachi S-3400N, Berkshire, UK). All samples were sputtered with gold 

(Edwards Pirani 501 scancoat) for 2 min in an argon atmosphere to guarantee 

sufficient electrical conductivity. 
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