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ABSTRACT 

Recent technological advancements have permitted high-throughput measurement of the 

human genome, epigenome, metabolome, transcriptome, and proteome at the population level. 

We hypothesized that subsets of genes identified from omic studies might have closely related 

biological functions and thus might interact directly at the network level. Therefore, we 

conducted an integrative analysis of multi-omic datasets of non-small cell lung cancer (NSCLC) 

to search for association patterns beyond the genome and transcriptome. A large, complex, and 

robust gene network containing well-known lung cancer-related genes, including EGFR and 

TERT, was identified from combined gene lists for lung adenocarcinoma. Members of the 

hypoxia-inducible factor (HIF) gene family were at the center of this network. Subsequent 

sequencing of network hub genes within a subset of samples from the Transdisciplinary 

Research in Cancer of the Lung-International Lung Cancer Consortium (TRICL-ILCCO) 

consortium revealed a SNP (rs12614710) in EPAS1 associated with NSCLC that reached 

genome-wide significance (OR = 1.50; 95% CI: 1.31-1.72; p = 7.75x10-9). Using imputed data, 

we found that this SNP remained significant in the entire TRICL-ILCCO consortium (p = 0.03). 

Additional functional studies are warranted to better understand interrelationships among 

genetic polymorphisms, DNA methylation status, and EPAS1 expression.  

 

KEYWORDS 

non-small cell lung cancer, lung adenocarcinoma, integrated analysis, network analysis, 

hypoxia-inducible factor 

 

HIGHLIGHTS 

• Identified a HIFs-EGFR-HDAC4-TERT network associated with lung adenocarcinoma 

through integrative multi-omics analysis. 
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• Subsequent sequencing of network hub genes identified a new locus within EPAS1 that 

is associated with lung cancer risk.  

• The hub gene EPAS1 is a key member of the HIF family involved in every aspect of 

cancer development and progression. 

 

RESEARCH IN CONTEXT 

We conducted an integrative analysis of multi-omic datasets of NSCLC to assess associations 

beyond the genome and transcriptome. Through network analysis, we identified a new locus 

associated with lung cancer risk. a new locus associated with lung cancer risk which has 

important implications for further studying in HIF family. 
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INTRODUCTION 

Lung cancer is the leading cause of cancer-related mortality worldwide for both men and 

women.1 Although advances in cancer prevention, early detection, and treatment have been 

made in recent decades, the general prognosis for lung cancer remains poor. The high case–

fatality ratio of lung cancer has been attributed to advanced stage of disease at diagnosis, poor 

response to current therapies, and the aggressive biological nature of lung cancer. Non-small 

cell lung cancer (NSCLC) is the most common type of lung cancer accounting for about 85% of 

all lung cancers.2,3 Histologic subtypes of NSCLC include adenocarcinoma, squamous cell 

carcinoma, and large cell carcinoma.4 Further, previous studies have demonstrated that 

heritable factors are significantly important in lung cancer, independent of smoking history or 

exposure to environmental tobacco smoke.5,6  

 

More recently, genome-wide association studies (GWAS) have been used to identify multiple 

independent loci for most diseases, because GWAS can identify common disease susceptibility 

loci without prior knowledge of locus function or position.7,8 Several GWAS have identified at 

least five loci associated with lung cancer risk—on chromosomes 3q28, 5p15, 6p21, 13q13.1 

and 15q25—in populations with European ancestry.9-14 Additional loci at 22q12 and 15q15 have 

been associated with lung cancer risk.15-17 GWAS can define lung cancer-associated genomic 

loci with low to moderate effects, but cannot identify causal mutations given the complicated 

relationships among disease-associated loci.  

 

Recent technological advances have permitted high-throughput measurement of the human 

genome, epigenome, metabolome, transcriptome, and proteome at the population level. Each 

study can offer complementary analyses of a certain biological function, and integrative multi-

omics analyses are needed to uncover synergistic interactions.18 However, because each omic 



Page 5 of 34 
 

study analyzes a different molecular layer, integrative analyses comparing top-ranked genes 

from different omic studies might not reveal much overlapping genes.  

 

We hypothesized that there are subsets of genes identified from different omic studies that 

might have closely related biological functions and thus might directly interact at the network 

level. Therefore, it is possible to build network(s) with direct interactions among multiple 

molecular layers, characterized by higher network complexity and larger gene ratios, where 

network complexity is defined as the ratio of total number of connections between genes to 

number of genes within a network, and gene ratio is defined as proportion of genes within a 

network to total number of genes used to build a network. In addition, incorporating biological 

functionality from different molecular layers, such as RNA, proteome, and metabolome results, 

can boost the power of genetic mapping.  

 

In this study, we conducted an integrative analysis of GWAS and transcriptomic profiling for 

NSCLC using network building based on an algorithm that searches for direct interactions from 

a high-quality, manually curated database of genetic and physical interactions. To evaluate the 

identified networks, we repeated network building from a large set of randomly generated gene 

lists for distributions of network complexity and gene ratio. We also used hub genes identified 

from significant networks for targeted sequencing and further validation in the Transdisciplinary 

Research in Cancer of the Lung-International Lung Cancer Consortium (TRICO-ILCCO) GWAS 

meta-analysis. 
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MATERIALS AND METHODS 

Study population 

This study was based on data derived from 1,000 NSCLC cases and 1,000 cancer-free controls, 

frequency-matched by age (±5 years), gender, and smoking status (by packyears) as previously 

described.19 All cases were recruited at Massachusetts General Hospital (MGH) from 1992–

2004, were >18 years old, and had newly diagnosed, histologically confirmed primary NSCLC. 

Controls were healthy, non-blood-related family members and friends of patients with cancer or 

with cardiothoracic conditions undergoing surgery. Histological classification was done by two 

staff pulmonary pathologists at MGH according to the International Classification of Diseases for 

Oncology (ICD-O3). For histology analysis, the following codes were used: adenocarcinoma, 

8140/3, 8250/3, 8260/3, 8310/3, 8480/3, and 8560/3; large cell carcinoma, 8012/3 and 8031/3; 

squamous cell carcinoma, 8070/3, 8071/3, 8072/3, and 8074/3; and other non-small cell 

carcinomas, 8010/3, 8020/3, 8021/3, 8032/3, and 8230/3. The Institutional Review Board of 

MGH and the Human Subjects Committee of the Harvard School of Public Health approved the 

study, and all participants signed consent forms. 

 

GWAS dataset 

DNA was extracted from peripheral white blood cells using standard protocols and was 

genotyped using the Human610-Quad BeadChip (Illumina, San Diego, CA). Before association 

tests, we conducted a systematic quality evaluation of raw genotyping data according to a 

general quality control (QC) procedure described by Anderson et al.20 Briefly, unqualified 

samples were excluded if they fit the following QC criteria: (i) overall genotype completion rates 

<95%; (ii) gender discrepancies; (iii) unexpected duplicates or probable relatives (based on 

pairwise identity by state value, PI_HAT in PLINK > 0.185); or (iv) heterozygosity rates >6 

standard deviations from the mean. Unqualified SNPs were excluded if they fit the following QC 

criteria: (i) overall genotype completion rates <95%; (ii) gender discrepancies; (iii) unexpected 
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duplicates or probable relatives (based on pairwise identity by state value, PI_HAT in PLINK > 

0.185); (iv) heterozygosity rates >6 standard deviations from the mean; or (v) individuals were 

non-Caucasians (using the HapMap release 23, including JPT, CEPH, CEU, and YRI 

populations as reference). Unqualified SNPs were excluded if they fit the following QC criteria: 

(i) not mapped on autosomes; (ii) call rate <95% in all GWAS samples; (iii) MAF < 0.01; or (iv) 

genotype distributions deviated from those expected by Hardy-Weinberg equilibrium (p < 

1.0×10-6). After quality evaluation, we had a dataset of 984 cases and 970 controls with 543,697 

autosomal SNPs for epistasis analysis.  

 

Transcriptomic profiling 

FFPE tissues were obtained by surgical biopsy from patients with NSCLC and archived. 

Histopathologic sections were prepared from tumor and non-affected lung parenchyma tissue 

by manual microdissection of FFPE blocks. A pathologist who had no knowledge of the study 

outcome reviewed all tissue sections. Each specimen was evaluated for amount and quality of 

tumor cells and histologically classified using WHO criteria. Specimens with lower than 70% 

cancer cellularity were not included for transcriptomic profiling. Sectioned FFPE tissues were 

sent to Q2 Solutions (formerly Expression Analysis Inc., Morrisville, NC) for RNA extraction, 

quality assessment, and transcriptomic profiling using whole genome-DASL assay.21 The 

Whole-Genome DASL HT assay covered >47,000 annotated transcripts (Illumina, San Diego, 

CA).22  A total of 59 FFPE transcriptomic profiles were obained, including 39 tumor/non-involved 

tissues from adenocarcinomas, 16 tumor/non-involved tissues from squamous cell carcinomas, 

and 4 tumor/non-involved tissues from other types of lung carcer. Among them, there were 18 

pairs of tumor and matched non-involved tissues of adenocarcinomas and 8 pairs of squamous 

cell carcinomas, which were used in the transcriptomic analysis. 

 

External transcriptomic data 
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Two transcriptomic datasets of NSCLC were selected and raw data were downloaded from 

Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo): GSE10072 and 

GSE18842. GSE10072 focused on lung adenocarcinoma and included 180 paired 

adenocarcinoma and non-affected tissue samples.23 GSE18842 included 91 samples of mainly 

squamous cell carcinoma.24 GSE10072 and GSE18842 were generated from fresh snap-frozen 

samples from surgical resection and profiled on Affymetrix Human Genome U133 array 

(Affymetrix, Santa Clara, CA).  

 

Transcriptomic data analysis 

Although FFPE profiles and external data were generated from different platforms, we used 

DNA-Chip Analyzer 2006 (dChip, http://www.dchip.org) software, which applied an invariant set 

of genes for normalization and calculation of expression values across all microarrays, to 

normalize raw microarray signals. This analysis assumed that a subset of genes had constant 

expression among all cell subtypes25 Only paired tumor and non-affected tissue samples were 

used in the analysis, including 18 FFPE adenocarcinomas, 8 FFPE squamous cell carcinomas, 

33 snap-frozen adenocarcinomas (GSE10072), and 32 snap-frozen squamous cell carcinomas 

(GSE18842). 

 

Integrated analysis by network building 

Gene lists from GWAS and/or transcriptomic profiling were uploaded into MetaCore GeneGo 

database (https://portal.genego.com, Thomson Reuters, New York, NY) for network building 

which has more than 1.7 million molecular interactins, 1,600 pathway maps, and 230,000 gene-

disease associations.26 MetaCore is an integrated online software suite for functional analysis of 

omics data that is based on a high-quality, manually-curated database of molecular interactions, 

molecular pathways, gene–disease associations, chemical metabolism, and toxicity information. 

We used direct interaction algorithms on the MetaCore platform to build gene networks 
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consisting only of uploaded genes and their direct interactions, without adding other 

genes/objects from the GeneGo database. Considering that GWAS and transcriptome were 

different molecular layers and would not reveal much overlapping genes, we used less stringent 

criteria to select top-ranked genes from GWAS and transcriptomic profiling without correcting 

the multiple comparisons.  

 

Significant networks were identified and evaluated by two parameters: network complexity and 

gene ratio. Network complexity was defined as ratio of total number of connections among 

genes to number of genes within a network. Gene ratio was defined as proportion of genes 

within a network to total number of genes used to build a network. These parameters allowed us 

to distinguish simple networks driven by a few supergenes. In such simple networks, the 

majority of networked genes only had a single connection to one or several genes, called 

supergenes. Connections of supergenes usually accounted for the majority of connections 

within a network, and removing supergenes often dramatically reduced numbers of networked 

genes or demolished the networks. We also explored different P-value cut offs for the selection 

of genes from GWAS and transcriptomic profiling. With more stringent cut offs, we could not 

build a significant network. and with more relaxed cut offs, the network complexities were 

reduced (data not shown). 

 

Network evaluation by randomly generated gene lists 

SNPs of GWAS data and probes of transcriptomic profiling mapped to a total of 24,847 genes. 

From these genes, we randomly generated 6 sets of gene lists, with each set containing 100 

gene lists, for a total of 600 random gene lists. Lists from each set had the same number of 

genes, but lists from different sets had different numbers of genes—either 50, 100, 200, 300, 

400, or 500 genes. Each random gene list was individually uploaded into MetaCore GeneGo 

database for network building, and network parameters, including network complexity and gene 
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ratio, from the largest networks were recorded. Quantile regression at 95th percentile was 

performed to estimate the 95% confidence interval. 

 

Targeted and whole exome sequencing 

Targeted and whole exome sequencing was performed at the Center for Inherited Disease 

Research.  Ninety-nine custom regions targeted for a total of 17.26Mb of custom content was 

captured and sequenced. BAM files were created by aligning FASTQ files to GRCh37 and joint 

sample variant calling and variant site filtering was performed. Genotypes for biallelic SNPs 

were further refined using CalculateGenotypePosteriors and allele frequency information from 

1000 genomes phase 3 data as well as the Exome Aggregation Consortium data. Further 

details were described in Supplementary Methods. 

 

 

Statistical analysis 

Clinical characteristics were described as mean ± standard deviation (SD) for continuous 

variables or n (%) for categorical variables. Student’s t-test or Fisher’s exact test was used for 

comparison between groups for continuous or categorical variables, respectively. 

 

We carried out gene-based analysis on GWAS data and targeted sequencing data using SKAT-

O.27 SKAT-O aggregates weighted variance-component score statistics for each SNP/SNV 

within a set using a kernel function and tests for associations between groups of SNPs/SNVs 

and a phenotype while adjusting for relevant covariates.28 For GWAS data, initially all SNPs that 

passed QC were mapped to human genes within ±20kb regions based on information curated in 

the RefSeq database(NCBI build GRCh37.p13). Separate analyses were conducted individually 

for all SNPs and rare SNVs with MAF <0.01. Models were adjusted for age (years), gender, 
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smoking status, and top significant eigenvectors. SKAT-O analyses were carried out using the 

SKAT package (R v. 2.13.0). 

 

In meta-analysis of GWAS datasets within TRICL-ILCCO, we combined imputed genotypes 

from 13,479 lung cancer cases and 43,218 controls undertaken by the previous TRICL-ILCCO 

GWAS.22,29,30 We excluded poorly imputed SNPs defined by imputation quality Rsq <0.3 or Info 

<0.4 for each study and conducted fixed effects meta-analysis with inverse variance weighting 

and random effects meta-analysis from the DerSimonian-Laird method.31 We also generated an 

index of heterogeneity (I2) and p-value of Cochran’s Q statistic to assess heterogeneity in meta-

analyses. We only considered SNPs with MAF >0.005 and that showed little evidence for effect 

heterogeneity between studies (Cochran’s Q statistic p > 0.05). All meta-analyses and 

calculations were performed using SAS version 9.4 (SAS Institute Inc., Cary, NC, USA). 

 

  



Page 12 of 34 
 

RESULTS 

Initial screening of GWAS and transcriptomic profiling data 

We produced a genomic dataset of germline polymorphisms (GWAS genotyping data on the 

Illumina 610 Quad platform) and a transcriptomic dataset of tumor and non-affected tissue 

(genome-wide expression profiling on Illumina DASL HT platform) from NSCLC samples.29 The 

GWAS dataset included 543,697 single nucleotide polymorphisms (SNPs) from 984 NSCLC 

cases and 970 healthy controls after quality assessment. Transcriptomic profiling was carried 

out on formalin-fixed paraffin-embedded (FFPE) paired samples of tumor and non-affected 

tissues from 30 NSCLC cases, including 18 adenocarcinoma, 8 squamous cell carcinoma, and 

2 unclassified cases. Eighteen NSCLC cases had both GWAS and transcriptomic data. Patient 

characteristics are described in Table 1. 

 

Instead of analyzing individual SNP, we conducted gene-based analysis of GWAS data using 

the optimal unified sequence kernel association test (SKAT-O) method and applied gene lists in 

the subsequent network analysis.32 Among 21,981 mapped genes of GWAS data, there were 

103 genes with p < 0.005 (Supplementary Table S1), 232 genes with p < 0.01, and 1,007 genes 

with p < 0.05. The top genes associated with risk of developing NSCLC were HYKK (also 

known as AGPHD1, 15q25, p = 2.30x10-6), CLPTM1L (5p15, p = 3.54x10-5), CHRNA3 (15q25, p 

= 6.77x10-5), and DNAJC16 (1p36.1, p = 7.12x10-5), with 3 genes located within the two 

previously identified risk loci at 5p15 and 15q25.29  

 

We also screened transcriptomic data for differentially expressed genes with >2 fold changes 

(FC) between tumor and non-affected lung tissues of 18 pairs of FFPE samples (lung 

adenocarcinoma, including bronchioloalveolar carcinoma) obtained by surgical biopsy. Among 

20,818 genes (29,378 probesets total), there were 75 genes with p < 0.001 (Supplementary 

Table S2), 252 genes with p < 0.005, 402 genes with p < 0.01, and 805 genes with p < 0.05. 
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Top differentially expressed genes were PTPRB (p = 8.65x10-7), SEMA6A (p = 2.03x10-6), and 

PION (p = 4.83x10-6). 

 

We compared gene lists from GWAS analysis and transcriptomic profiling and identified 46 

common genes with p < 0.05 in both analyses, which we called core genes (Table 2). Except for 

SEMA6A [GWAS: p = 0.004; transcriptome: FC = –4.4 (tumor/non-affected tissue), p = 2.03x10-

6] and MYLK (GWAS: p = 0.009; transcriptome: FC = –3.5, p = 3.00x10-4), most genes were 

low-ranked in either GWAS or transcriptomic profiling but high-ranked in the other analysis.  

 

Networks built between GWAS and transcriptomic profiling data 

No significant network could be built from individual or combined lists of top-ranked genes from 

GWAS or transcriptomic profiling. Although no significant network could be built from the list of 

core genes (n = 46), small and simple networks could be built when core genes were combined 

with either GWAS or transcriptomic profiling data. Further, by combining top-ranked GWAS 

genes (103 genes with p < 0.005), top-ranked transcriptomic profiling genes (75 genes with p < 

0.001), and core genes (37 non-overlapped genes out of 46 core genes), we could build a 

single large complex network (Figure 1a). The process of integrated analysis is summarized in 

Supplementary Figure S1.  

 

Thirteen hub genes (≥5 connections within the network) that significantly contributed to 

complexity of the network were identified and were related to lung cancer, including FOS, 

EGFR, HDAC4, and TERT (Figure 1b). Moreover, the network was centered on important 

genes belonging to the hypoxia-inducible factor (HIF) family, including hub genes HIF1A, ARNT 

(also known as HIF1B), and EPAS1 (also known as HIF2A), which are transcription factors that 

respond to changes in available oxygen in the cellular environment.33 We therefore named this 

the HIFs-EGFR-HDAC4-TERT network. Similarly, using top-ranked genes from a GWAS 
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dataset containing only lung adenocarcinomas (597 cases and 970 controls), we built a 

significant network from a combined list of GWAS genes (90 genes with p < 0.005), 

transcriptomic profiling genes (75 genes with p < 0.001), and core genes. 

 

Network evaluation by random gene lists 

To examine the possibility that significant networks were formed by random chance of the 

increased number of genes from combined gene lists, we conducted a series of network 

analyses using randomly generated lists with different numbers of genes (total list: n = 600) and 

evaluated the largest network built from each random list. As the number of genes for network 

building increased, we more frequently observed an increased number of genes and 

connections within networks, resulting in increased gene ratios. However, the complexity of 

these networks remained relatively unchanged (data not shown).  

 

Networks were better evaluated in a two-dimensional space of network complexity and gene 

ratio than any individual parameter we tested. As shown in Figure 2, the large complex network 

built from combined gene lists was located far above from a 95% upper-tail conference interval 

(95% CI) curve, whereas most networks from individual gene lists or combinations of any two 

lists were located either under or around the 95% CI curve. A similar result was observed for 

analysis of top-ranked genes of GWAS including only lung adenocarcinomas (data not shown).  

 

We further examined larger gene lists of GWAS and transcriptomic profiling data with a lower p-

value cut-off. Networks for individual gene lists were all under the 95% CI curve for both GWAS 

(gene list: 232 genes, p < 0.01; network: complexity = 1.36, gene ratio = 0.10) and 

transcriptomic profiling (gene list: 252 genes, p < 0.005; network: complexity = 1.30, gene ratio 

= 0.08) data, and the network for a combination of two lists was just above the 95% CI curve 
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(network: complexity = 1.38, gene ratio = 0.24). Among points outside the 95% CI, the results 

for the hypoxia network we identified had the highest gene ratio. 

 

Network validation by external transcriptomic data 

An external transcriptomic dataset (GSE10072) was generated on a different platform 

(Affymetrix Human Genome U133A array) using 33 fresh-frozen pairs of tumor and non-affected 

tissues from NSCLC adenocarcinomas collected in the Lombardy region of Italy.23 We identified 

85 top-ranked, differentially expressed genes (FC ≥ 2; p < 10-16). Similar to the FFPE dataset, a 

significant network could only be built from combined lists of top-ranked GWAS genes, top-

ranked transcriptomic profiling genes, and a core list of 29 non-overlapping genes 

(Supplementary Figure S2).  

 

This network had a complexity and gene ratio comparable with that from the FFPE dataset and 

also had common hub genes (≥5 connections within the network) shared with the FFPE dataset 

(Table 3). Moreover, we identified 88 common, differentially expressed genes (FC ≥ 2; p < 0.05) 

between FFPE and GSE10072 datasets, with 85 genes (97%) having expression changes in 

the same direction between tumor and non-affected tissues (Supplementary Table S3). 

Although only a simple and small network could be built from this common transcriptomic list, a 

significant network with the same hub genes, including HIF1A, FOS, HDAC4, and EDN1, could 

be built by direct combination with the GWAS list (Table 3).   

 

Hub gene validation by sequencing and meta-analysis of genotyping data 

As a member of the TRICL-ILCCO consortium, we submitted 13 hub genes as candidates for 

next-generation targeted and whole exome sequencing,34 which included 1,059 NSCLC cases 

and 900 unrelated controls genetically enriched with young-onset or positive lung cancer family 

history from four sites (Supplementary Table S4): Harvard School of Public Health, International 
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Agency for Research on Cancer, University of Liverpool, and Mount Sinai Hospital-Princess 

Margaret Hospital study in Toronto, Canada. Using the SKAT-O method to test combined 

effects of all common and rare single nucleotide variants (SNVs) within one gene,32 we found 

that EPAS1 (p = 0.0009) was significantly associated with NSCLC after adjusting for multiple 

comparisons by Bonferroni method (p = 0.05/13 genes = 0.0038). Further, there was no 

significant aggregation of variants with moderate to high functional impacts 

(http://useast.ensembl.org/info/genome/variation/predicted_data.html) in either NSCLC cases or 

controls in the other 12 hub genes (Supplementary Table S5). In EPAS1, sequencing identified 

2,061 SNVs, including 1,617 rare/low-frequency SNVs [minor allele frequency (MAF) ≤ 0.01] 

and 36 SNVs with moderate–high functional impact. One common SNV (SNP: rs12614710) 

located within the first intron and identified by sequencing reached genome-wide significance 

(MAF = 0.45; OR = 1.50; 95% CI: 1.31–1.72; p = 7.75x10-9) (Figure 3).  

 

We further validated SNP rs12614710 in a much larger GWAS dataset using meta-analysis. A 

fixed-effect model was applied to estimate pooled effects of each SNP using the TRICL-ILCCO 

GWAS dataset, which included 13,479 lung cancer cases and 43,218 controls (Supplementary 

Table S6).34 Meta-analysis of SNP rs12614710 had a p-value of 0.03 (imputation accuracy: R2 = 

0.86). 
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DISCUSSION 

In this study, we conducted an integrative analysis of multi-omic datasets of NSCLC to assess 

associations beyond the genome and transcriptome. A large, complex, and robust gene network 

containing well-known lung cancer-related genes, including EGFR and TERT, was identified for 

lung adenocarcinoma from the combined gene lists. However, the framework of this network 

was built by key members of the HIF gene family. Subsequent sequencing of network hub 

genes within a subset of consortium samples revealed a SNP (rs12614710) in EPAS1 

associated with NSCLC that reached genome-wide significance based on whole exome 

sequencing data. Although this SNP was not covered in any GWAS dataset, we used imputed 

data to find that this SNP is borderline significant in the entire TRICL-ILCCO GWAS dataset. 

This discrepancy could be due to differential associations among genetically enriched 

individuals as those in the whole exome sequencing project.  

 

HIFs are a family of proteins that sense and respond to oxygen deficiency by acting as 

heterodimeric transcription factors that regulate expression of multiple genes involved in the 

adaptation and progression of cancer. Hypoxia is a typical cancer microenvironment, particularly 

in rapidly growing tumors, and activation of HIFs is the first step of tumor cells’ adaptive 

responses to hypoxic surroundings.33 HIFs are involved in every aspect of cancer development 

and progression, including cell proliferation, apoptosis, metabolism, immune responses, 

genomic instability, vascularization, invasion, and metastasis. 

 

HIFs consist of two subunits: an oxygen-sensitive α subunit, including HIF-1α (HIF1A), HIF-2α 

(EPAS1 or HIF2A), and HIF-3α (HIF3A) isoforms; and a ubiquitously expressed β subunit 

(HIF1B or ARNT). Hypoxic conditions result in HIF-α stabilization, nuclear translocation, and 

dimerization with HIF-1β to form the HIF transcription factor, which can bind to hypoxia-

response elements (A/GCGTG consensus motif) in numerous target gene promoter regions.35  
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HIFs are attractive therapeutic targets in cancer.33 HIF-1α and HIF-2α are the predominant 

regulators of hypoxic responses at both cellular and organismal levels. Although they share 

highly conserved structural features, each isoform mediates a unique set of target genes and 

even oppositely influences some critical factors, such as c-Myc, p53, and nitric oxide.36 

Expression of HIF-2α has been identified in human lung cells, including type II pneumocytes 

and pulmonary endothelial cells, in response to hypoxia, as well as in epithelium and 

mesenchymal structures that give rise to the vascular endothelium.37 Additional studies report 

that HIF-2α plays a vital role in malignant behavior. In murine models of lung cancer, increased 

tumor size, invasion, and angiogenesis correlate with high levels of HIF-2α expression 

cooperating with RAS.38 Further, high levels of HIF-2α in NSCLC tumor tissue are associated 

with significantly poor patient prognosis.39,40 However, in our transcriptomic data from FFPE 

samples, tumor tissue had low EPAS1 expression compared with non-affected tissue. A similar 

low EPAS1 expression profile was also observed in fresh-frozen samples.  

 

The most significant SNP (rs12614710, p = 7.75x10-9) of EPAS1 identified from sequencing was 

located in the first intron, and several adjacent SNPs within this intron had p-values of 10-5–10-7. 

Previous studies have reported associations of EPAS1 polymorphisms with development of 

renal cell carcinoma (rs11894252, p = 1.8×10-8; rs9679290, p = 5.75×10-8; rs4953346, p = 

4.09×10-14) and prostate cancer.40-42 In a small study of 346 NSCLC patients and 247 controls 

from a Japanese population, SNP rs4953354 was associated with increased risk of lung 

adenocarcinoma (OR = 1.80; 95% CI, 1.16–2.79; p = 0.008).42 In our TRICL-ILCCO GWAS 

dataset of 13,479 cases and 43,218 controls,34 all of these SNPs were significantly associated 

with NSCLC (rs11894252, p = 0.043; rs9679290, p = 0.0011; rs4953346, p = 0.0015; 

rs4953354, p = 0.025). All previously reported SNPs are located in the first intron, except for 
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rs4953354, which is located in the third intron. In addition, some SNPs are not correlated,40 

including rs12614710 from our sequencing project.  

 

Moreover, bioinformatic analyses using Genome Browser (http://genome.ucsc.edu) suggest that 

most of these first intron SNPs are located in histone mark H3K27Ac, which is defined by a 

ChIP-seq assay related to enhanced gene transcription.43 Further, analysis of ChIP-seq 

datasets from ENCODE identified binding sites and binding activities for C/EBP-β, AP-1, and 

MYC families of transcription factors in many cancer cell types within the first intron of EPAS1. 

Further, the A allele of rs13419896 is associated with enhanced EPAS1 expression and poor 

prognosis of 76 NSCLC patients.44 It is likely that genetic polymorphism of EPAS1 may lead to 

varied gene expression through either changes in binding sites and binding activities for certain 

transcription factors or modification of histone epigenetic regulation. In a study of chronic 

obstructive pulmonary disease, hypermethylation of EPAS1 is correlated with decreased EPAS1 

expression and is significantly associated with disease severity.45 

 

Although GWAS has provided useful insights into the genetic architecture of complex diseases, 

there is weak evidence for how GWAS findings improve understanding of molecular pathways 

involved in disease, thus bringing post-GWAS challenges to the characterization of molecular 

data. Therefore, it is important to assess how diverse omic datasets at different biological levels 

can be integrated to exploit the full potential of information to identify causal genes and 

networks, regulatory genes and networks, and predictive markers for complex traits. Using 

direct interaction algorithms for network building, we successfully conducted an integrated study 

of multi-omic data for exploration beyond GWAS. This approach implemented a stringent 

criterion of only searching for direct gene–gene interactions within a manually curated database 

(MetaCore, https://portal.genego.com), while using less strict p-value cut-offs to select gene lists 

from different omic datasets. Thus, we could explore less significant genes, which often do not 
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reach genome-wide significance, in omic datasets. The underlying hypothesis is that, because 

genes are highly networked and coordinated and do not act alone, polymorphisms of several 

genes in one biological process might not reach genome-wide significance.  

 

Initially, we could not find any meaningful networks (with relatively higher complexities and gene 

ratios) from gene lists selected from single omic datasets. This result is reasonable in that a list 

of top genes with small p-values is more likely to contain discrete genes, especially for 

transcriptomic data, as differentially large expressions were often downstream target genes in a 

transcription pathway and might not have direct interactions. Only combined gene lists from 

both GWAS and transcriptomic datasets plus a core list of common genes could build a large, 

complex HIFs-EGFR-HDAC4-TERT network. However, with even less stringent p-value cut-offs, 

we built a large network from genes selected from a single omic dataset. All such networks were 

simple, with the majority of networked genes only having a single connection to one or several 

hub genes, called supergenes. Connections of supergenes usually accounted for the majority of 

connections within a network, and removing supergenes often dramatically reduced numbers of 

networked genes or demolished the networks.  

 

To distinguish from supergene networks, we evaluated the HIFs-EGFR-HDAC4-TERT network 

by investigating networks built from 600 randomly selected gene lists of different sizes. We 

found that a gene network had to be evaluated by two factors: size and complexity. Network 

size was measured by gene ratio of number of networked genes to number of total genes used 

to build a network. Network complexity was measured by the ratio of total number of network 

connections to total number of networked genes. A supergene network always was large in size 

but low in complexity. The HIFs-EGFR-HDAC4-TERT network had a moderate size but high 

complexity without supergenes. From the distribution of network properties of 600 randomly 

selected gene lists plotted for network size against network complexity, the HIFs-EGFR-



Page 21 of 34 
 

HDAC4-TERT network was above the 95% CI curve, suggesting that this network was not 

randomly built. 

 

We further validated the HIFs-EGFR-HDAC4-TERT network generated from multi-omic datasets 

by using different transcriptomic datasets. The GSE10072 dataset was from a study of gene 

expression signatures of cigarette smoking and its role in lung adenocarcinoma development 

and survival, and it contained 33 fresh-frozen pairs of tumor and non-affected tissues from 

NSCLC adenocarcinomas.23 Combined with our GWAS dataset, which contained a majority of 

NSCLC adenocarcinomas, and a core gene list, we also built a network with network size and 

complexity comparable to the HIFs-EGFR-HDAC4-TERT network and several shared hub 

genes. Different combinations of the GWAS dataset, transcriptomic dataset, and core gene list 

provided similar results.  

 

We also analyzed a transcriptomic dataset of squamous cell carcinoma, including our 8 pairs of 

tumor and non-affected tissues from FFPE samples and 32 pairs of fresh-frozen samples from 

GSE18842,24 and found that no complex networks except several supergene networks could be 

built (data not shown). This might be because a majority of our GWAS samples were lung 

adenocarcinomas (60.7%), and squamous cell carcinomas only accounted for ~22% of 

samples. Meanwhile, no identified network from squamous cell GWAS transcriptomic datasets 

suggests that our integrated approach of multi-omic data was sensitive to tumor histology.  

 

Sequencing of hub genes identified a new locus in EPAS1 that reached genome-wide 

significance and was validated in the largest lung cancer consortium, providing additional 

evidence that the HIFs-EGFR-HDAC4-TERT network is associated with NSCLC 

adenocarcinoma. Further, a recent study reported that EPAS1 could specifically bind to tyrosine 

kinase inhibitor (TKI)-resistant T790M EGFR in NSCLC cell lines and enhance amplification of 
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MET.46 These findings suggest that EPAS1 is a key factor in EGFR-MET crosstalk in conferring 

TKI resistance in NSCLC cases and provide in vitro support of the HIFs-EGFR-HDAC4-TERT 

network. 

 

At present, FFPE samples, which represent the greatest stock of archived disease entities, are 

limited mainly to investigations of a small number of genes using quantitative real-time PCR or 

global micro-RNA profiling, which is much more stable than mRNA.47,48 The main reason for this 

restriction is that RNA is often altered and degraded within FFPE samples from the impact of 

collection and storage.49,50 In our study, from the top 808 differentially expressed genes from 

FFPE samples, we identified 88 common, differentially expressed genes between FFPE and the 

GSE10072 dataset, with 85 genes (97%) having expression changes in the same direction 

between tumor and non-affected tissues. This common gene list could be used as a 

transcriptomic list to build a network containing HIFs without incorporating a core gene list. 

These results demonstrate that FFPE samples could generate a transcriptomic profile for 

integrated analysis, as we found similar networks with shared hub genes as compared to fresh-

frozen samples. 

 

Through integrated analysis and subsequent sequencing of the identified network, we identified 

a new locus associated with lung cancer risk. This locus is in hub gene EPAS1, which is a key 

member of the HIF family involved in every aspect of cancer development and progression. 

Because this locus has potential functions related to epigenetic regulation, the observation of 

low EPAS1 expression in tumor compared to non-affected tissues warrants additional functional 

studies to further illustrate interrelationships among genetic polymorphisms, DNA methylation 

status, and EPAS1 expression. 
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FIGURE LEGENDS 

Figure 1. Networks built from GWAS and transcriptomic profiling data. a, Significant 

network built from combining top-ranked GWAS genes (103 genes with p < 0.005), top-ranked 

transcriptomic profiling genes (75 genes with p < 0.001), and a core list of genes (37 non-

overlapping genes out of 46 core genes). Blue indicates genes only identified from 

transcriptomic profiling; green indicates genes only identified from GWAS; and red indicates 

genes from the core list. b, Network of 13 hub genes (≥5 connections within the network).  

 

Figure 2. Distribution of networks built by randomly selected genes. From a total of 24,847 

genes, we randomly generated 6 sets of gene lists, with each set containing 100 gene lists. 

Each set contained 50, 100, 200, 300, 400, or 500 genes, denoted by R50, R100, R200, R300, 

R400, and R500, respectively. Networks were built from each gene list using MetaCore GeneGo 

database and were used to calculate a 95% CI curve. GWAS denotes network from GWAS 

data; FFPE denotes network from transcriptomic profiling data; and GWAS+FFPE+core denotes 

networks built from combining GWAS data, transcriptomic profiling data, and a core gene list.  

 

Figure 3. Manhattan plot of EPAS1 in targeted sequencing project.  
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Table 1. Demographic distribution of study populations  

 GWAS samples FFPE samples 

 Case 

(n = 984) 

Control 

(n = 970) 
p 

Case 

(n = 28) 

Age (years) 65.5 ± 10.6 59.4 ± 11.6 <0.001 67.1 ± 9.6 

≥65 540 (54.9%) 351 (36.2%) <0.001 20 (71.4%) 

Sex (female) 477 (48.5%) 528 (54.4%) 0.010 12 (42.9%) 

Smoking pack-years 49.7 ± 35.7 25.0 ± 26.7 <0.001 53.3 ± 34.8 

≥30  664 (55.1%) 326 (33.6%) <0.001 22 (78.6%) 

Smoking status   <0.001  

Never 92 (9.4%) 161 (16.6%)  2 (7.1%) 

Former 502 (51.0%) 555 (57.2%)  18 (64.3%) 

Current 390 (39.6%) 254 (26.2%)  8 (28.6%) 

Pathology     

Adenocarcinoma* 597 (60.7%)   18 (64.3%) 

Squamous cell 216 (22.0%)   7 (25.0%) 

Small cell 0 (0.0%)   0 (0.0%) 

Other 171 (17.3%)   3 (10.7%) 

*Including adenocarcinoma in situ. 

  



Page 30 of 34 
 

Table 2. Common genes between GWAS and transcriptomic profiling (p < 0.05)  

Gene Chr 
Gene 

ID 
Description 

Transcriptome* GWAS 

Fold 

change 

p SNP p 

ALDH1A1 9 216 Aldehyde dehydrogenase 1 family, member A1 –2.1 0.01294 29 0.02264 

ANGPTL2 9 23452 Angiopoietin-like 2 –2.1 0.01364 5 0.00878 

BBS4 15 585 Bardet-Biedl syndrome 4 –2.1 0.01240 5 0.04792 

C1orf54 1 79630 Chromosome 1 open reading frame 54 –2.2 0.01047 3 0.03904 

CANX 5 821 Calnexin –2.5 0.00366 1 0.04936 

CCDC144A 17 9720 Coiled-coil domain containing 144A –2.0 0.02563 1 0.04716 

CLDN18 3 51208 Claudin 18 –2.0 0.00403 7 0.03534 

CRYZL1 21 9946 Crystallin, zeta (quinone reductase)-like 1 –2.3 0.03630 3 0.03622 

CTSS 1 1520 Cathepsin S –2.2 0.01058 2 0.00318 

DDI2 1 84301 DDI1, DNA-damage inducible 1, homolog 2 (S. cerevisiae) –2.4 0.00707 2 0.00074 

DGKH 13 160851 Diacylglycerol kinase, eta –2.5 0.01353 71 0.04530 

DSG2 18 1829 Desmoglein 2 –2.3 0.00147 12 0.01370 

EGFR 7 1956 Epidermal growth factor receptor [erythroblastic leukemia 

viral (v-erb-b) oncogene homolog, avian) 

–2.4 0.01896 1 0.01781 

EPAS1 2 2034 Endothelial PAS domain protein 1 –2.6 0.04683 35 0.00262 

FOS 14 2353 V-fos FBJ murine osteosarcoma viral oncogene homolog –2.9 0.02894 2 0.03475 
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GPR4 19 2828 G protein-coupled receptor 4 –2.2 0.02893 5 0.01226 

GYPC 2 2995 Glycophorin C (Gerbich blood group) –2.9 0.00198 23 0.03402 

HIF1A 14 3091 Hypoxia-inducible factor 1, alpha subunit (basic helix-loop-

helix transcription factor) 

–2.0 0.01108 8 0.00307 

HIST1H1A 6 3024 Histone cluster 1, H1a 2.1 0.00948 1 0.01148 

HSDL1 16 83693 Hydroxysteroid dehydrogenase like 1 2.1 0.02955 1 0.01549 

IFT81 12 28981 Intraflagellar transport 81 homolog (Chlamydomonas) –2.2 0.04329 6 0.02961 

KIAA1407 3 57577 KIAA1407 –3.1 0.01488 6 0.00387 

LEPR 1 3953 Leptin receptor –2.0 0.02291 1 0.03057 

LYVE1 11 10894 Lymphatic vessel endothelial hyaluronan receptor 1 –2.5 0.02175 2 0.02959 

MED31 17 51003 Mediator complex subunit 31 –2.6 0.01772 1 0.02361 

MS4A6A 11 64231 Membrane-spanning 4-domains, subfamily A, member 6A –2.0 0.04791 4 0.00202 

MYLK 3 4638 Myosin, light chain kinase –3.5 0.00032 1 0.00935 

NAMPT 7 10135 nicotinamide phosphoribosyltransferase –2.1 0.01653 5 0.00979 

NUP50 22 10762 Nucleoporin 50 kDa –2.6 0.00218 4 0.03813 

PAAF1 11 80227 Proteasomal ATPase-associated factor 1 –2.0 0.00515 8 0.00595 

PACRG 6 135138 PARK2 co-regulated –2.0 0.00203 1 0.04082 

PARP1 1 142 Poly (ADP-ribose) polymerase family, member 1 2.2 0.01837 8 0.02273 

PDCD2 6 5134 Programmed cell death 2 –2.3 0.03616 3 0.04564 
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PLEKHB1 11 58473 Pleckstrin homology domain containing, family B (evectins) 

member 1 

–2.5 0.00524 5 0.04509 

PRKAG2 7 51422 Protein kinase, AMP-activated, gamma 2 non-catalytic 

subunit 

–2.3 0.02595 1 0.03415 

PRKCQ 10 5588 Protein kinase C, theta –2.3 0.00363 83 0.02882 

RBMS1 2 5937 RNA binding motif, single stranded interacting protein 1 –2.3 0.00746 26 0.01284 

RRM2B 8 50484 Ribonucleotide reductase M2 B (TP53 inducible) –2.0 0.01162 10 0.02509 

S1PR5 19 53637 Sphingosine-1-phosphate receptor 5 –2.0 0.00713 2 0.01977 

SEMA6A 5 57556 Sema domain, transmembrane domain, and cytoplasmic 

domain, (semaphorin) 6A 

–4.4 2.03E-

06 

60 0.00432 

SMG1 16 23049 PI-3-kinase-related kinase SMG-1 –2.1 0.01381 11 0.00747 

TACC3 4 10460 Transforming, acidic coiled-coil containing protein 3 2.2 0.03279 5 0.02719 

TCIRG1 11 10312 T-cell, immune regulator 1, ATPase, H+ transporting, 

lysosomal V0 subunit A3 

–2.7 0.02007 1 0.02523 

ZDHHC19 3 131540 Zinc finger, DHHC-type containing 19 –2.6 0.01204 8 0.04905 

ZNF274 19 10782 Zinc finger protein 274 –3.1 0.00116 7 0.04410 

ZRANB2 1 9406 Zinc finger, RAN-binding domain containing 2 –2.3 0.00502 4 0.00498 

*Fold change indicates difference between tumor tissue and non-affected adjacent tissue. P-values are from paired t-tests. 
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Table 3. Network evaluations 
 

Network 1 Network 2 Network 3 Network 4 

Total genes 215 198 217 191 

Genomic list GWAS GWAS-AC GWAS GWAS 

Transcriptomic list FFPE FFPE GSE10072 Common of FFPE & 

GSE10072 

Core list 37 33 29 - 

Largest network 
    

Genes 46 43 46 40 

Connections 70 62 69 58 

Complexity 1.556 1.476 1.533 1.487 

Gene ratio 0.214 0.217 0.212 0.209 

Hub gene of largest network 
   

ARNT +  - +  - 

BCL6  - +  -  - 

CDH5  -  - +  - 

EDN1 + +  - + 

EGFR + +  -  - 

ENO1  -  - +  - 

EPAS1 + + +  - 

ERG  -  - +  - 

FOS +  - + + 

HDAC4 + + + + 

HIF1A + + + + 

MMP12  -  -  - + 

PARP1 + +  -  - 

TERT + +  -  - 
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Panel 

Research in context 

Evidence before this study 

As a major participant of Transdisciplinary Research in Cancer of the Lung-International Lung 

Cancer Consortium (TRICL-ILCCO), we continued monitoring the progress of genomic and 

other omics studies of lung cancer through regular communications within the consortium and 

literature search using the PubMed database. The TRICL-ILCCO is one of the largest 

international consortium of lung cancer which includes many major ongoing lung cancer case-

control and cohort studies with the aim of sharing comparable data. Although GWAS 

successfully defined many lung cancer-associated genomic loci, the integrative studies of multi-

dimensional high throughput “-omics” measurements from tumor tissues and corresponding 

blood specimens are limited.  

Added value of this study 

We identified a HIFs-EGFR-HDAC4-TERT network associated with lung adenocarcinoma, and 

subsequent sequencing of network hub genes identified a new locus within EPAS1 that is 

associated with lung cancer risk. This locus is in hub gene EPAS1, which is a key member of 

the HIF family involved in every aspect of cancer development and progression. 

Implications of all the available evidence 

We developed a network building approach for the integrative analysis of multi-omic datasets. 

The integration of multi-dimensional high throughput “-omics” measurements from tumor tissues 

and corresponding blood specimens, together with new systems strategies for diagnostics, 

enables the identification of cancer biomarkers that will facilitate pre-symptomatic diagnosis, 

stratification of disease, assessment of disease progression, evaluation of patient response to 

therapy, and identification of recurrences. 


