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Abstract. The classification of the retinal vascular tree into arteries
and veins is important in understanding the relation between vascular
changes and a wide spectrum of diseases. In this paper, we have proposed
a novel framework that is capable of making the artery/vein (A/V) dis-
tinction in retinal color fundus images. We have successfully adapted
the concept of dominant sets clustering and formalize the retinal ves-
sel topology estimation and the A/V classification problem as a pair-
wise clustering problem. Dominant sets clustering is a graph-theoretic
approach that has been proven to work well in data clustering. The pro-
posed approach has been applied to three public databases (INSPIRE,
DRIVE and VICAVR) and achieved high accuracies of 91.0%, 91.2%, and
91.0%, respectively. Furthermore, we have made manual annotations of
vessel topologies from these databases, and this annotation will be re-
leased for public access to facilitate other researchers in the community
to do research in the same and related topics.
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1 Introduction

Automated analysis of retinal vascular structure is very important to support ex-
amination, diagnosis and treatment of eye disease [1,2]. Vascular changes in the
eye fundus images, such as the arteriolar constriction or arteriovenous nicking,
are also associated with diabetes, cardiovascular diseases and hypertension [3].
Arteriolar-to-Venular Ratio (AVR) is considered to be an important character-
istic sign of a wide spectrum of diseases [4]. Low AVR, i.e., narrowing in arteries
and widening of veins, is a direct biomarker for diabetic retinopathy. By contrast,
a high AVR has been associated with higher cholesterol levels and inflammatory
markers [5]. However, manual annotation of the artery and vein vessels is time
consuming and prone to human errors. An automated method for classification
of vessels as arteries or veins is indispensable.



Fig. 1: Overview of the proposed method. (a) Original image. (b) Extracted ves-
sels. (c) Skeletonized vessels. (d) Graph generated with significant nodes overlaid.
(e) Estimated vascular network topology. (f) Classified arteries and veins, where
arteries are shown in red and veins in blue.

The task of separating vascular network into arteries and veins appear to
be understudied. Martinez-Perez et al. [6] proposed a semi-automatic retinal
vessel analysis method that is capable of measuring and quantifying the geomet-
rical and topological properties of retinal vessels. Vazquez et al. [3] combined
color-based clustering and vessel tracking to differentiate arteries and veins. A
tracking strategy based on the minimal path approach is employed to support
the resulting classification by voting. Dashtbozorg et al. [7] proposed a graph-
based method for A/V classification. Graph nodes and intensity feature analysis
were undertaken to establish the artery/vein distinction. Estrada et al. [5] uti-
lized a global likelihood model to capture the structural plausibility of each
vessel, and employed a graph-theoretic method of estimating the overall vessel
topology with domain-specific knowledge to accurately classify the A/V types.
Huang et al. [8] introduced four new features to avoid distortions resulted from
lightness inhomogeneity, and the accuracy of the A/V classification is improved
by using a linear discriminate analysis classifier.

Numerous factors can cause the aforementioned A/V classification methods
to return inaccurate results. Several methods [3,6,8,9] rely on precise segmenta-
tion results: any ambiguity in distinguishing between small and midsized vessels
makes the subsequent A/V classification a very difficult computational task. On
the other hand, pathological conditions and intensity inhomogenities also affect
the performance of A/V classification techniques [7, 8]. To address these prob-
lems, we propose a novel Dominant Sets-based A/V classification method (DoS)
based on vessel topological features. The underlying vessel topology reveals how
the different vessels are anatomically connected to each other, and is able to
identify and differentiate the structure of individual vessels from the entire ves-
sel network. The concept of dominant sets clustering [10, 11] was introduced to
tackle the problem of vessel topology estimation and A/V classification.

2 Method

Fig. 1 shows a graphical overview of the proposed method.

2.1 Graph Generation

Our proposed topology estimation approach can be applied either on manual an-
notations or automated segmentation results. The method proposed in [1] was



employed to automatically segment the retinal vessel. An iterative morphology
thinning operation [12] is performed on the extracted vessels to obtain a single-
pixel-wide skeleton map. The vascular bifurcations/crossovers, and vessel ends
(terminal points) can be extracted from the skeleton map by locating intersec-
tion points (pixels with more than two neighbors) and terminal points (pixels
with one neighbor). All the intersection points and their neighbors may then
be removed from the skeleton map, in order to obtain an image with clearly
separated vessel segments. A vessel graph can be generated by linking first and
last nodes in the same vessel segment. The generated graph usually includes
misrepresentations of the vessels: typical errors are node splitting, missing link
and false link. Correction of these errors can be achieved by using the strategy
proposed in [7]. Red dots in Fig. 1(d) indicate terminal points, green triangle
bifurcations, and blue squares intersection or crossover points.

2.2 Dominant Sets Clustering-based Topology Estimation

The topology reconstruction can be achieved by breaking down the graph nodes
into four categories (node degrees 2-5): connecting points (2), bifurcation points
(3, 4), and crossing/meeting points (3, 4, 5). The number in the bracket indicates
the possible number of links connected to each node (node degree). The method
proposed by Dashtbozorg et al. [7] is used to handle cases of nodes of degrees
2-3. For nodes of degrees 4 and 5, a classification method based on dominant
sets clustering is proposed. The nodes to be classified are represented as an
undirected edge-weighted graph with G = (V,E, ω).

Since we are only taking into account of the pixels around the connecting
point, we have |V | ≤ 5. The edge set E ⊆ V × V indicates all the possible
connections. ω : E → R∗+ is the positive weight function. The symmetric matrix
A = (aij) is used to represent the graph G with a weighted adjacency matrix.
This non-negative adjacency matrix is defined as:

aij =

{
ω(i, j) , if (i, j) ∈ E ∧ i 6= j
0 , otherwise.

(1)

The concept of dominant set is similar to that of maximum clique. In an
undirected edge-weighted graph, the weights of edges within a dominant set
should be large, representing high internal homogeneity or similarity, while the
weights of those linking to the dominant set from outside it will be small [13].
Let S ⊆ V be a nonempty subset of nodes, i ∈ S, and j /∈ S. Intuitively, the
similarity between nodes j and i can be defined as:

φS(i, j) = aij −
1

|S|
∑
k∈S

aik (2)

It is worth noticing that φS(i, j) can be either positive or negative. 1
|S|

∑
j∈S aij

is the average weighted degree of i with regard to S. It can be observed that
1
|S|

∑
j∈S aij = 0 for any S : |S| = 1 ∧ S ⊆ V , hence φ{i}(i, j) = aij . For each

node i ∈ S, the weight of i with regard to S is assigned as:

ωs(i) =

{
1 if |S| = 1∑

j∈S\{i} φS\{i}(j, i)ωS\{i}(j) otherwise.
(3)



where S \ {i} indicates the node set S excluding the node i. ωS(i) demonstrates
the overall similarity between node i and the nodes of S \ {i}.

A subset of nodes S, S ∈ V is called a dominant set if the set S satisfies
the following two conditions: a) ωS(i) > 0, for all i ∈ S; and b) ωS∪{i}(i) <
0, for all i /∈ S [11]. It is evident from the above properties that a) a dominant
set is defined by high internal homogeneity, whereas b) defines the degree of
external incoherence. One can find a dominant set by first localizing a solution
of the program:

maximize f(x) = x′Ax
subject to x ∈ ∆ (4)

where x′ denotes the transposition of x, ∆ ⊂ R|V |, and

∆ =
{ |V |∑

k=1

xk = 1, and xk ≥ 0 for all k = 1 · · · |V |
}

A strict local solution to the standard quadratic program x indicates a dominant
set S of G, where xk > 0 means that the according node ik ∈ S. As suggested
in [10,11], an effective optimization approach for solving Eqn. (4) is given by the
so-called replicator dynamics:

x
(t+1)
k = x

(t)
k

(Ax(t))i
x(t)′Ax(t)

, (5)

where k = 1, 2, · · · , |V |. It has been proven that for any initialization of x ∈ ∆, its
trajectory will remain in ∆ with the increase of iteration t. Since A is symmetric,
the objective function f(x) in Eqn. (4) is either strictly increasing, or constant.
In practice, the stop criteria of Eqn. (5) can be set either as a maximal number
of iteration tof iterations or a minimal increment of f(x) over two consecutive
iterations.

In the reconstruction of a vascular network topology, the dominant set is a
good method of identifying branches of the vascular tree with nodes whose de-
gree is above 3. In general, the weights of edges within a vessel segment should
be large, representing high internal homogeneity, or similarity. By contrast, the
weights of edges will be small for two or more different vessel segments, because
those on the edges connecting the vessel ends represent high inhomogeneities [10].
Intuitively, the identification of vessel branches is more likely to be carried out
by finding the most “dominant” vessel branch first and then finding the second
most “dominant” vessel branch (and so on). Therefore, dominant set clustering
is adopted in this step to determine the most “dominant” vessel branch pixels
around each connecting point and assign them to one vessel segment. The re-
maining pixels are then assigned to the other vessel segment. Practically, for each
vessel segment, a feature vector of 23 features is derived for each vessel segment
to generate the symmetric matrix A, and these features are listed in Table 1.

2.3 Artery/vein Classification

After estimating the vessel topology, the complete vessel network is separated
into several subgraphs with individual labels. The final goal is to assign these



Table 1: List of feature vectors for classification.

No. Features

1-6
Mean and stand deviation of the intensities within the segment in RGB
channels

7-8 Mean and stand deviation of the orientations of each centerline pixels

9-10 Mean and stand deviation of the curvatures of each centerline pixels

11-12 Mean and stand deviation of the vessel diameters of each vessel segment

13-18
Mean and stand deviation of the intensities of centerline pixel under a
Gaussian blurring (σ = 4) in RGB channels

19-23
Entropy of intensity in RGB channels, orientation and curvature of each
centerline pixels

labels to one of two classes: artery and vein. Again, the features listed in Table
1 and the DoS classifier are utilized to classify these individual labels into two
clusters, A andB. For each subgraph v, the probability of its being A is computed
by the number of vessel pixels classified by DoS as A: P v

A = nvA/(n
v
A+nvB), where

nvA is the number of pixels classified as A, and nvB is the number of pixels classified
as B. For each subgraph, the higher probability is used to define whether the
subgraph is assignable to category A or B. Cluster A and B are then assigned
as artery and vein, respectively, based on their average intensity in the green
channel: a higher average intensity is classified as artery and lower as vein.

3 Experimental Results

The proposed topology estimation and A/V classification method was evalu-
ated on three publicly available datasets: INSPIRE [14], AV-DRIVE [15], and
VICAVR [16]. All of these datasets have manual annotations on A/V classifica-
tion, but no manual annotations of vessel topology were made on these datasets.
Therefore, an expert was asked to manually label the topological information of
the vascular structure on all the images from these datasets. Each vessel tree is
marked with a distinct color, as shown in the second column of Fig. 2.

3.1 Topology Estimation

The two right-hand columns of Fig. 2 illustrate the results of our vascular topol-
ogy estimation method. Compared with the manual annotations shown in the
second column of Fig. 2, it is clear from visual inspection that our method is able
to trace most vascular structures correctly: only a few crossing points were in-
correctly traced, as shown in the last column of Fig. 2 - the pink squares indicate
the incorrectly traced significant points.

To facilitate better observation of the performance of the proposed method,
the percentage of the relevant significant points (connecting, bifurcation, and
crossing points) that were correctly identified (average accuracy): was calcu-
lated as 91.5%, 92.8%, and 88.9% in INSPIRE, AV-DRIVE, and VICAVR, re-
spectively.



Fig. 2: Examples of vascular topology estimation performances. From left to right
column: original image; manual annotations; results from the proposed topology
estimation, and the highlighted correct and incorrect connections.

Fig. 3: A/V classification results on three different datasets. From left to right
column: original image; vessel topology; A/V classification results of the pro-
posed method; and corresponding manual annotations.

3.2 A/V Classification

Fig. 3 shows the A/V classification performances of the DoS classifier on sample
images based on their topological information. Overall, our proposed method
correctly distinguished most of the A/V labels on all three datasets, when com-



Table 2: Performances of different A/V classification methods on three datasets.

INSPIRE DRIVE† VICAVR ‡

Se Sp Acc Se Sp Acc

Niemeijer et al. [4] 78.0% 78.0% 80.0% 80.0% -
Vazquez et al. [3] - - - - - 88.8%
Dashbozorg et al. [7] 91.0% 86.0% 84.9% 90.0% 84.0% 89.8%
Estrada et al. [5] 91.5% 90.2% 90.9% 91.7% 91.7% -
Huang et al. [8] - - 85.1% - - 90.6%
DoS 91.8% 90.2% 91.0% 91.9% 91.5% 91.0%
† The compared methods only reported their performances on Se and Sp on DRIVE.
‡ The compared methods only reported their performances on Acc on VICAVR.

Table 3: Classification results by different classifiers on INSPIRE dataset.

LDA QDA kNN SVM DoS

Se 89.6% 90.6% 87.3% 89.9% 91.8%
Sp 84.6% 88.4% 82.6% 88.2% 90.2%
Acc 85.1% 89.2% 83.5% 88.6% 91.0%

pared with the corresponding manual annotations. In order to better demon-
strate the superiority of the proposed method, Table 2 reports the comparison
of our method with the state-of-the-art methods over three datasets in terms of
pixel-wise sensitivity (Se), specificity (Sp), and accuracy (Acc). It is clear that
our method outperforms all the compared methods on all datasets, except that
the sp score on DRIVE dataset is 0.2% lower than [5].

To highlight the relative performance of our DoS classifier, we also em-
ployed commonly-used classifiers, namely linear discriminant analysis (LDA),
quadratic discriminant analysis (QDA), support vector machine (SVM) and k-
nearest neighbor (kNN) for A/V classification based on the topology-assigned
structures derived from images from the INSPIRE dataset, with the same fea-
ture vectors as listed in Table 1. It can be seen from Table 3 that our method
clearly outperforms the compared classification methods

4 Conclusions

Development of the proposed framework was motivated by medical demands
for a tool to measure vascular changes from the retinal vessel network. In this
paper, we have proposed a novel artery/vein classification method based on vas-
cular topological characteristics. We utilized the underlying vessel topology to
better distinguish arteries from veins. The concept of dominant set clustering
was adapted and formalized for topology estimation and A/V classification, as
a pairwise clustering problem. The proposed method accurately classified the
vessel types on three publicly accessible retinal datasets, outperforming several
existing methods. The significance of our method is that it is capable of classify-
ing the whole vascular network, and does not restrict itself to specific regions of



interest. Future work will focus on the AVR calculation based on the proposed
methodology.
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