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ABSTRACT

The estimation of vascular topology in complex networks
is important in understanding vascular changes. Automatic
method of analysis of vascular networks would be of great
assistance to the ophthalmologist in terms of diagnosis and
treatment. In this paper, we propose a novel vessel topology
estimation method based on the concept of dominant sets
clustering. Dominant sets clustering is a graph-theoretic ap-
proach that has proven to work well in data clustering, and has
been successfully adapted to topology estimation in this work.
The experimental results show that it has addressed the bottle-
neck issue of vessel connection at crossovers, and yielded ac-
curacy of 0.915, 0.928, and 0.889 on the IOSTAR, INSPIRE,
and VICAVR databases, respectively. It is worth noting that
we have made manual annotations of vessel topologies from
these databases, and these annotations will be released soon.

Index Terms— Dominant sets, topology, retinal vessel,
graph.

1. INTRODUCTION

Automated analysis of retinal vascular structure is very im-
portant for many clinical applications to support examination,
diagnosis and treatment of eye disease. This has the potential
to perform automated screening for pathological conditions,
and to provide crucial hints on various diseases [1, 2, 3, 4, 5],
in particular diabetic retinopathy (DR), malaria retinopathy
(MR), glaucoma, and hypertensive retinopathy.

The above-mentioned diseases always cause vascular ab-
normalities. Amongst these are variations in vascular width
and changes in vascular tortuosity. It is often crucial to iden-
tify the structure of individual vessels from the entire retinal
blood vessel network. This calls for proper description of vas-
cular structure in terms of topological and geometrical proper-
ties from retinal images. Extensive work has been done on au-
tomatic vessel segmentation[1, 6, 7, 8, 9] and classification[4,
10, 11, 12, 13], but automated estimation of retinal vascular
topology has received relatively limited attention. To the best
of our knowledge, a small number of studies have addressed
this subject directly.

A semi-automatic method of measuring and quantifying
the topological properties of retinal vessels was proposed by
Martinez-Perez et al.[14], which we consider to be the first
work on retinal vascular topology estimation. Measurements
of length, area, angles and connectivity between branches
were taken to label the segmented vessel trees. Qureshi et
al.[15] used a Bayesian approach to addressing the configura-
tion of vascular junctions, and utilized a probabilistic model
and Maximum A Posterior (MAP) to construct the vascular
trees. Estrada et al.[16] regularized the topology estimation
problem with a generative, parametric tree-growth model. A
combination of greedy approximation and heuristic search al-
gorithm was proposed to explore the space of possible trees.
De et al.[3] proposed a graph-theoretical method to trace tree
structures in neuronal and retinal images. The authors refor-
mulated the topology estimation problem as label propagation
over directed graphs: in this way the graph is decomposed
into sub-graphs, and each vessel tree may be separated from
the vessel network. Another graph-based approach for retinal
vessel topology estimation was introduced by Dashtbozorg et
al.[11]. They classified the entire vessel networks depending
on the type of graph nodes and assigned one of two labels
to each vessel fragment. These earlier proposed methods of-
ten fail to describe the presence of crossover at vessel junc-
tions, as the measurements of caliber are unreliable at abrupt
changes from one vessel to another of different bore.

The main contributions of this paper are as follows. First,
we adapted the concept of dominant sets clustering [17, 18] to
the task of vessel topology estimation, as it offers an efficient
way of addressing problem of the tracing of crossovers. Sec-
ond, the proposed method has been validated quantitatively
using three publicly accessible datasets. Manual annotations
of vessel topologies from these datasets were established, and
these annotations will be released for public access.

2. METHOD

The proposed vessel topology estimation method relies on
a prior vessel segmentation procedure, which may be per-
formed manually or automatically. A skeletonlization method
is then used to generate the vessel centreline map, and the
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Fig. 1. Retinal vascular graph and topology construction. (a) Original color fundus image. (b) Segmentation result. (c) Skeleton
map. (d) Generated graph with significant nodes. Red dots indicate the terminal points, green squares the bifurcations, and blue
triangle the crossing and meeting points. (e) Our estimated vascular topology.

significant points, such as bifurcation, crossing, meeting and
connecting points can be identified. These points are then uti-
lized to create a graph. Finally, the dominant sets concept is
used to classify the significant nodes, in order to estimate the
vessel topology.

2.1. Vessel segmentation

In this work, our proposed topology estimation procedure is
applied either on manual annotations or automated segmen-
tation results. The method proposed by Zhao et al.[19] was
employed to segment the retinal vessel automatically. This
method uses an infinite perimeter active contour model for its
effectiveness in detecting vessels with irregular and oscilla-
tory boundaries, and it also considers hybrid region informa-
tion in order to achieve further improved performance. Fig. 1
(b), above, demonstrates the segmentation result of Fig. 1 (a).

2.2. Graph generation

An iterative morphology thinning operation [20] is performed
on the vessel segmentation results to obtain the single-pixel-
wide skeleton map. The generated skeleton map is shown
in Fig. 1 (c). The vascular bifurcation / crossover points,
and vessel ends (connecting points) can be extracted from the
skeleton map by locating intersection points (pixels with more
than two neighbors) and terminal points (pixels with just one
neighbor). All the intersection points and their neighbors may
then be removed from the skeleton map, in order to obtain an
image with clearly separated vessel segments. Finally, a ves-
sel graph can be generated by linking first and last nodes in
the same vessel segment, as shown as Fig. 1 (d).

2.3. Graph modification

However, the generated graph always includes misrespresen-
tations of the vessels, and so it is important to modify this
incorrect graph in order to avoid false classification of nodes.
As summarized in [11], typical errors are node splitting and
false link. The representation and modification of these two
errors are as follows.

(1) False link is demonstrated in Fig. 2 (a): an incorrect
link c between two nodes n1 and n2 is created. This happens
when two vessels are close to each other, but do not cross.
To resolve this case, the angles α and β between the edges
connected to each node are computed. If the angles satisfy
α1, α2 ∈ (180◦ ± 10◦) and β1, β2 ∈ (90◦ ± 10◦), then we
consider link c to be a false link, which should be removed.
Fig. 2 (c) demonstrates the corrected graph.

(2) Node splitting is illustrated in Fig. 2 (d): false nodes
n1 and n2 are created. This happens when two vessels are
close enough to cross each other. To address this problem, we
define two angles α and β as shown in Fig. 2 (e). If the mea-
sured angles satisfy α1, α2 < 60◦ and β1, β2 > 90◦, this sit-
uation can be considered as an instance of node splitting, and
edge c should be removed and the two neighborhood intersect
point n1 and n2 merged as one node n. Fig. 2 (f) reveals the
misrespresented graph is modified.

Fig. 2. The two types of graph modification. (a)(b) illustrate a
false link, corrected at (c) to show two separate vessels, while
(d)(e) illustrate node splitting, corrected at (f) to show a single
node at an intersection.

2.4. Node Analysis

Node analysis is broken down into four cases (node degrees 2-
5), based on four different types of nodes: connecting points
(2), bifurcation points (3, 4), crossing points (4, 5), and meet-



ing points (3, 4, 5). The number in the bracket indicates the
possible number of links connected to each node (node de-
gree). The method proposed by Dashtbozorg et al.[11] is used
to handle the cases of nodes of degree 2-3. For the more
complicated cases, nodes of degree 4 and 5, a classification
method based on dominant sets clustering is proposed. In this
work, for each centerline pixel, the intensities in R, G, B chan-
nels, orientations, curvatures, and diameters of vessel are used
as the input of the dominant sets clustering based classifier.

2.4.1. Dominant set clustering

The nodes to be classified are represented as an undirected
edge-weighted graph with G = (V,E, ω), where the node
set V = {1, · · · , n}, and usually n ≤ 5. The edge set
E ⊆ V × V indicates all the possible connections. ω : E →
R∗+ is the positive weight function. Nodes in G correspond
to vessel node ends: edges represent node relationships, and
edge weight reveals similarity between pairs of linked nodes.
The symmetric matrix A = (aij) is used to represent the
graph G with weighted adjacency matrix. This non-negative
adjacency matrix is defined as:

aij =

{
ω(i, j) if (i, j) ∈ E
0 otherwise. (1)

Note: all elements on the main diagonal of A are zero, since
G is self-loops free.

In general, the weights of edges within a vessel seg-
ment should be large, representing high internal homogene-
ity or similarity. By contrast, the weights of edges will
be small for two or more different vessel segments, those
on the edges connecting the vessel ends representing high
inhomogeneities[17].

The assignment of the edge-weights can be analyzed
based on the above perspectives. Let S ⊆ V be a nonempty
subset of nodes, i ∈ S, and j /∈ S. Intuitively, the similarity
between nodes j and i can be defined as:

φS(i, j) = aij −
1

|S|
∑
j∈S

aij (2)

This measure is with respect to the mean similarity between i
and its surroundings in S, and φS(i, j) can be either positive
or negative. 1

|S|
∑

j∈S aij is the average weighted degree of
i with regard to S. It can be observed that 1

|S|
∑

j∈S aij = 0

for any i ∈ V , and φ{i}(i, j) = aij . For each node i ∈ S, the
weight of i with regard to S is assigned as:

ω(i) =

{
1 if |S| = 1∑

j∈S\{i} φS\{i}(j, i)ωS\{i}(j) otherwise.
(3)

where S\{i} indicates the the nodes set S excluding the node
i, and ωS(i) demonstrates the overall similarity between node
i and the nodes of S \{i} with respect to the overall similarity
among the nodes in S \ {i}.

Finally, the total weight of S can be calculated by
summing ωS(i): W (S) =

∑
i∈S ωS(i). For example,

Fig. 3 demonstrates an edge-weighted graph, and we have:
ω1,2,3(1) = φ2,3(3, 1)ω2,3(2) + φ2,3(2, 1)ω2,3(3) = 12.
Similarly, ω1,2,3(2) = 0 and ω1,2,3(3) = 12 are obtained,
which yield W (1, 2, 3) = 12 + 0 + 12 = 24.

Fig. 3. Edge-weighted
graph.

We define set as a
dominant set if the set satisfies
the following two conditions:
1. ωS(i) > 0, for all i ∈ S; 2.
ωS∪{i}(i) < 0, for all i /∈ S.
It is evident from the above
properties that the first condi-
tion defining a dominant set is
internal homogeneity, whereas
the second concerns external
incoherence.

3. EXPERIMENTAL RESULTS

We evaluated the proposed topology estimation method
against three publicly available datasets: the Iowa Norma-
tive Set for Processing Images of the REtina (INSPIRE)[21],
IOSTAR[22], and VICAVR[23] datasets. The INSPIRE
dataset has 40 high resolution images, each of 2392 × 2048
pixels. IOSTAR contains 24 images taken with a scanning
laser camera (SLO) each of 1024×1024 pixels. The VICAVR
dataset includes 58 images with a resolution of 784 × 584
pixels each. All of these datasets have manual annotations
on artery /vein classification[10, 11, 13], and the IOSTAR
dataset also has annotations on vessel bifurcation/crossing.
However, none of these three datasets has annotations on ves-
sel topology. Therefore, we asked an expert to manually label
the topological information of the vascular structure on all
images from these datasets. Each single vessel tree is graded
as one color, as shown in middle column of Fig. 4.

The right-hand column of Fig. 4 illustrates the results
of our vascular topology estimation method on datasets IN-
SPIRE, IOSTAR, and VICAVR, respectively. Compared with
the manual annotations, it reveals that our method is able to
trace most vascular structures correctly: only a few crossing
points were incorrectly traced, as shown in the middle col-
umn of Fig. 4 - the pink squares indicate the significant points
which were traced incorrectly. To facilitate better observation
of the performance of the proposed method, the accuracy
results with regard to different significant points (connecting,
bifurcation, and crossing points) are presented individually
in Table 1. It may be observed that the method achieved
accuracy of 0.915, 0.928, and 0.889 in INSPIRE, IOSTAR,
and VICAVR, respectively. The accuracy scores in this table
indicate the percentage of the relevant significant points that
were correctly handled.

In addition, the results obtained by the proposed vascular
topology estimation method were compared with those ob-
tained by five state-of-the-art vascular topology estimation



Fig. 4. Examples of vascular topology estimation on retinal datasets INSPIRE, IOSTAR, and VICAVR. From left to right
column: original image, manual annotations, the automatic topology estimation results, and correct and incorrect connections
are highlighted by green disks and pink squares, respectively.

methods [3, 10, 11, 12, 24] on images from the INSPIRE
dataset: the results are shown in Table 2. The results show
that our method achieves the best performance, with an accu-
racy score of 0.883. For the purposes of a fair comparison,
the accuracy scores in Table 2. are the percentage of correctly
classified vessels’ centerline pixels[11].

4. CONCLUSIONS

In this work, we have proposed a novel framework to estimate
the topology of retinal vascular trees based on the concept of
dominant set clustering. The problem of estimating the topol-
ogy of vascular trees was formalized as a pairwise clustering
problem. It is demonstrated that our method achieves com-
petitive results when compared with existing state-of-the-art
methods. It is believed that the proposed method could be
a powerful tool for analyzing vasculature for better manage-
ment of a wide spectrum of vascular-related diseases.

In our future work, we will test our method on other
retinal datasets (e.g., RITE[25]) and neuronal datasets (e.g.,
DIADEM[26]), and the validations will be taken under both
connection points-wise and centreline pixel-wise. Further-
more, the estimated vascular topology will be used to support

Table 1. Performances of the proposed method on vessel trac-
ing at different significant points.

INSPIRE IOSTAR VICAVR
# connecting points 3,209 1,920 4,678
# correctly detected 3,125 1,874 4,500
accuracy 0.973 0.976 0.960
# bifurcation points 1,998 1,213 2,953
# correctly detected 1,776 1,109 2,501
accuracy 0.889 0.914 0.847
# crossing points 778 482 1210
# correctly detected 574 373 862
accuracy 0.738 0.774 0.712
overall accuracy 0.915 0.928 0.889

artery / vein discrimination and classification.

Table 2. Performance results on INSPIRE dataset.
[12] [11] [3] [10] [24] ours

accuracy 0.769 0.845 0.773 0.851 0.769 0.883
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