
Hickey et al.

SOFTWARE

joineRML: A joint model and software package for
time-to-event and multivariate longitudinal
outcomes
Graeme L Hickey1, Pete Philipson2, Andrea Jorgensen1 and Ruwanthi Kolamunnage-Dona1*

*Correspondence:
ruwanthi.kolamunnage-
dona@liverpool.ac.uk
1Department of Biostatistics,
Institute of Translational
Medicine, University of Liverpool,
Waterhouse Building, 1-5
Brownlow Street, L69 3GL
Liverpool, UK
Full list of author information is
available at the end of the article

Abstract

Background: Joint modelling of longitudinal and time-to-event outcomes has
received considerable attention over recent years. Commensurate with this has
been a rise in statistical software options for fitting these models. However, these
tools have generally been limited to a single longitudinal outcome. Here, we
describe the classical joint model to the case of multiple longitudinal outcomes,
propose a practical algorithm for fitting the models, and demonstrate how to fit
the models using a new package for the statistical software platform R,
joineRML.

Results: A multivariate linear mixed sub-model is specified for the longitudinal
outcomes, and a Cox proportional hazards regression model with time-varying
covariates is specified for the event time sub-model. The association between
models is captured through a zero-mean multivariate latent Gaussian process.
The models are fitted using a Monte Carlo Expectation-Maximisation algorithm,
and inferences are based on approximate standard errors from the empirical profile
information matrix, which are contrasted to an alternative bootstrap estimation
approach. We illustrate the model and software on a real data example for
patients with primary biliary cirrhosis with three repeatedly measured biomarkers.

Conclusions: An open-source software package capable of fitting multivariate
joint models is available. The underlying algorithm and source code makes use of
several methods to increase computational speed.

Keywords: Joint modelling; Longitudinal data; Multivariate data; Time-to-event
data; Software1

2

Background3

In many clinical studies, subjects are followed-up repeatedly and response data col-4

lected. For example, routine blood tests might be performed at each follow-up clinic5

appointment for patients enrolled in a randomized drug trial, and biomarker mea-6
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surements recorded. An event time is also usually of interest, for example time of7

death or study drop-out. It has been repeatedly shown elsewhere that if the longi-8

tudinal and event-time outcomes are correlated, then modelling the two outcome9

processes separately, for example using linear mixed models and Cox regression10

models, can lead to biased effect size estimates [1]. The same criticism has also11

been levelled at the application of so-called two-stage models [2]. The motivation12

for using joint models can be broadly separated into interest in drawing inference13

about (1) the time-to-event process whilst adjusting for the intermittently measured14

(and potentially error-prone) longitudinal outcomes, and (2) the longitudinal data15

process whilst adjusting for a potentially informative drop-out mechanism [3]. The16

literature on joint modelling is extensive, with excellent reviews given by Tsiatis17

and Davidian [4], Gould et al. [5], and the monologue by Rizopoulos [6].18

Joint modelling has until recently been predominated by modelling a single lon-19

gitudinal outcome together with a solitary event time outcome; herein referred to20

as univariate joint modelling. Commensurate with this methodological research has21

been an increase in wide-ranging clinical applications (e.g. [7]). Recent innovations in22

the field of joint models have included the incorporation of multivariate longitudinal23

data [8], competing risks data [9, 10], recurrent events data [11], multivariate time-24

to-event data [12, 13], non-continuous repeated measurements (e.g. count, binary,25

ordinal, and censored data) [14], non-normally and non-parametrically distributed26

random effects [15], alternative estimation methodologies (e.g. Bayesian fitting and27

conditional estimating equations) [16, 17], and different association structures [18].28

In this article, we specifically focus on the first innovation: multivariate longitudinal29

data. In this situation, we assume that multiple longitudinal outcomes are measured30

on each subject, which can be unbalanced and measured at different times for each31

subject.32

Despite the inherently obvious benefits of harnessing all data in a single model33

or the published research on the topic of joint models for multivariate longitudinal34

data, a recent literature review by Hickey et al. [19] identified that publicly avail-35

able software for fitting such models was lacking, which has translated into limited36

uptake by biomedical researchers. In this article we present the classical joint model37

described by Henderson et al. [3] extended to the case of multiple longitudinal out-38

comes. An algorithm proposed by Lin et al. [20] is used to fit the model, augmented39

by techniques to reduce the computational fitting time, including a quasi-Newton40

update approach, variance reduction method, and dynamic Monte Carlo updates.41

This algorithm is encoded into a R sofware package–joineRML. A simulation anal-42
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ysis and real-world data example are used to demonstrate the accuracy of the algo-43

rithm and the software, respectively.44

Implementation45

As a prelude to the introduction and demonstration of the newly introduced software46

package, in the following section we describe the underlying model formulation and47

model fitting methodology.48

Model49

For each subject i = 1, . . . , n, yi = (y>i1, . . . ,y>iK) is the K-variate continuous out-50

come vector, where each yik denotes an (nik × 1)-vector of observed longitudinal51

measurements for the k-th outcome type: yik = (yi1k, . . . , yinikk)>. Each outcome is52

measured at observed (possibly pre-specified) times tijk for j = 1, . . . , nik, which can53

differ between subjects and outcomes. Additionally, for each subject there is an event54

time T ∗i , which is subject to right censoring. Therefore, we observe Ti = min(T ∗i , Ci),55

where Ci corresponds to a potential censoring time, and the failure indicator δi,56

which is equal to 1 if the failure is observed (T ∗i ≤ Ci) and 0 otherwise. We assume57

that both censoring and measurement times are non-informative.58

The model we describe is the natural extension of the model proposed by Hen-59

derson et al. [3] to the case of multivariate longitudinal data. The model posits an60

unobserved or latent zero-mean (K+1)-variate Gaussian process that is realised in-61

dependently for each subject, Wi(t) =
{
W

(1)
1i (t), . . . ,W (K)

1i (t),W2i(t)
}

. This latent62

process subsequently links the separate sub-models via association parameters.63

The k-th longitudinal data sub-model is given by

yik(t) = µik(t) +W
(k)
1i (t) + εik(t), (1)

where µik(t) is the mean response, and εik(t) is the model error term, which we

assume to be independent and identically distributed normal with mean 0 and

variance σ2
k. The mean response is specified as a linear model

µik(t) = x>ik(t)βk, (2)

where xik(t) is a pk-vector of (possibly) time-varying covariates with corresponding

fixed effect terms βk. W (k)
1i (t) is specified as

W
(k)
1i (t) = z>ik(t)bik, (3)
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where zik(t) is an rk-vector of (possibly) time-varying covariates with correspond-64

ing subject-and-outcome random effect terms bik, which follow a zero-mean mul-65

tivariate normal distribution with (rk × rk)-variance-covariance matrix Dkk. To66

account for dependence between the different longitudinal outcome outcomes, we67

let cov(bik, bil) = Dkl for k 6= l. Furthermore, we assume εik(t) and bik are uncor-68

related, and that the censoring times are independent of the random effects. These69

distributional assumptions together with the model given by (1)–(3) are equivalent70

to the multivariate extension of the Laird and Ware [21] linear mixed effects model.71

More flexible specifications of W (k)
1i (t) can be used [3], including for example, sta-72

tionary Gaussian processes. However, we do not consider these cases here owing to73

the increased computational burden it carries, even for the univariate case.74

The sub-model for the time-to-event outcome is given by the hazard model

λi(t) = λ0(t) exp
{
v>i (t)γv +W2i(t)

}
,

where λ0(·) is an unspecified baseline hazard, and vi(t) is a q-vector of (possibly)

time-varying covariates with corresponding fixed effect terms γv. Conditional on

Wi(t) and the observed covariate data, the longitudinal and time-to-event data gen-

erating processes are conditionally independent. To establish a latent association,

we specify W2i(t) as a linear combination of
{
W

(1)
1i (t), . . . ,W (K)

1i (t)
}

:

W2i(t) =
K∑
k=1

γykW
(k)
1i (t),

where γy = (γy1, . . . , γyK) are the corresponding association parameters. To em-75

phasise the dependence of W2i(t) on the random effects, we explicitly write it as76

W2i(t, bi) from here onwards. As per W (k)
1i (t), W2i(t, bi) can also be flexibly ex-77

tended, for example to include subject-specific frailty effects [3].78

Estimation79

Likelihood80

For each subject i, let Xi =
⊕K

k=1Xik and Zi =
⊕K

k=1Zik be block-diagonal

matrices, where Xik =
(
x>i1k, . . . ,x

>
inikk

)
is an (nik × pk)-design matrix, with the

j-th row corresponding to the pk-vector of covariates measured at time tijk, and⊕
denotes the direct matrix sum. The notation similarly follows for the random

effects design matrices, Zik. We denote the error terms by a diagonal matrix Σi =⊕K
k=1 σ

2
kInik

and write the overall variance-covariance matrix for the random effects



Hickey et al. Page 5 of 24

as

D =


D11 · · · D1K

...
. . .

...

D>1K · · · DKK

 ,

where In denotes an n × n identity matrix. We further define β = (β>1 , . . . ,β>K)>81

and bi = (b>i1, . . . , b>iK)>. Hence, we can then rewrite the longitudinal outcome82

sub-model as83

yi | bi,β,Σi ∼ N(Xiβ +Zibi,Σi),

with bi |D ∼ N(0,D).

For the estimation, we will assume that the covariates in the time-to-event sub-

model are time-independent and known at baseline, i.e. vi ≡ vi(0). Extensions

of the estimation procedure for time-varying covariates are outlined elsewhere [6,

p. 115]. The observed data likelihood for the joint outcome is given by

n∏
i=1

(∫ ∞
−∞

f(yi | bi,θ)f(Ti, δi | bi,θ)f(bi |θ)dbi
)
, (4)

where θ = (β>, vech(D), σ2
1 , . . . , σ

2
K , λ0(t),γ>v ,γ>y ) is the collection of unknown84

parameters that we want to estimate, with vech(D) denoting the half-vectorisation85

operator that returns the vector of lower-triangular elements of matrix D.86

As noted by Henderson et al. [3], the observed data likelihood can be calculated

by rewriting it as

n∏
i=1

f(yi |θ)
(∫ ∞
−∞

f(Ti, δi | bi,θ)f(bi |yi,θ)dbi
)
,

where the marginal distribution f(yi |θ) is a multivariate normal density with mean87

Xiβ and variance-covariance matrix Σi +ZiDZ>i , and f(bi |yi,θ) is given by (6).88

MCEM algorithm89

We determine maximum likelihood estimates of the parameters θ using the Monte90

Carlo Expectation Maximisation (MCEM) algorithm [22], by treating the ran-91

dom effects bi as missing data. This is effectively the same as the conventional92

Expectation-Maximisation (EM) algorithm, as used by Wulfsohn and Tsiatis [23]93

and Ratcliffe et al. [24] in the context of fitting univariate data joint models, except94
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the E-step exploits a Monte Carlo (MC) integration routine as opposed to Gaus-95

sian quadrature methods, which we expect to be beneficial when the dimension of96

random effects becomes large.97

Starting from an initial estimate of the parameters, θ̂(0), the procedure involves98

iterating between the following two steps until convergence is achieved.99

1 E-step. At the (m+1)-th iteration, we compute the expected log-likelihood of100

the complete data conditional on the observed data and the current estimate101

of the parameters,102

Q(θ | θ̂(m)) =
n∑
i=1

E
{

log f(yi, Ti, δi, bi |θ)
}

=
n∑
i=1

∫ ∞
−∞

{
log f(yi, Ti, δi, bi |θ)

}
f(bi |Ti, δi,yi; θ̂(m))dbi.

Here, the complete-data likelihood contribution for subject i is given by the103

integrand of (4).104

2 M-step. We maximise Q(θ | θ̂(m)) with respect to θ. Namely, we set

θ̂(m+1) = argmax
θ

Q(θ | θ̂(m)).

The M-step estimators naturally follow from Wulfsohn and Tsiatis [23] and Lin et

al. [20]. Maximizers for all parameters except γv and γy are available in closed-form;

algebraic details are presented in Additional file 1. The parameters γ = (γ>v ,γ>y )>

are jointly updated using a one-step Newton-Raphson algorithm as

γ̂(m+1) = γ̂(m) + I
(
γ̂(m)

)−1
S
(
γ̂(m)

)
,

where γ̂(m) denotes the value of γ at the current iteration, S
(
γ̂(m)) is the corre-105

sponding score, and I
(
γ̂(m)) is the observed information matrix, which is equal to106

the derivative of the negative score. Further details of this update are given in Addi-107

tional file 1. The M-step for γ is computationally expensive to evaluate. Therefore,108

we also propose a quasi-Newton one-step update by approximating I
(
γ̂(m)) by an109

empirical information matrix for γ, which can be considered an analogue of the110

Gauss-Newton method [25, p. 8]. To further compensate for this approximation,111

we also use a nominal step-size of 0.5 rather than 1, which is used when exactly112

calculating I(γ).113

The M-step involves terms of the form E
[
h(bi) |Ti, δi,yi; θ̂

]
, for known functions

h(·). The conditional expectation of a function of the random effects can be written
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as

E
[
h(bi) |Ti, δi,yi; θ̂

]
=
∫∞
−∞ h(bi)f(bi |yi; θ̂)f(Ti, δi | bi; θ̂)dbi∫∞
−∞ f(bi |yi; θ̂)f(Ti, δi | bi; θ̂)dbi

, (5)

where f(Ti, δi | bi; θ̂) is given by

f(Ti, δi | bi;θ) =
[
λ0(Ti) exp

{
v>i γv +W2i(Ti, bi)

}]δi

× exp
{
−
∫ Ti

0
λ0(u) exp

{
v>i γv +W2i(u, bi)

}
du

}

and f(bi |yi; θ̂) is calculated from multivariate normal distribution theory as

bi |yi,θ ∼ N
(
Ai

{
Z>i Σ−1

i (yi −Xiβ)
}
,Ai

)
, (6)

withAi =
(
Z>i Σ−1

i Zi +D−1)−1. As this becomes computationally expensive using

Gaussian quadrature commensurate with increasing dimension of bi, we estimate

the integrals by MC sampling such that the expectation is approximated by the

ratio of the sample means for h(bi)f(Ti, δi | bi; θ̂) and f(Ti, δi | bi; θ̂) evaluated at

each MC draw. Furthermore, we use antithetic simulation for variance reduction in

the MC integration. Instead of directly sampling from (6), we sample Ω ∼ N(0, Ir)

and obtain the pairs

Ai

{
Z>i Σ−1

i (yi −Xiβ)
}
±CiΩ,

where Ci is the Cholesky decomposition of Ai such that CiC>i = Ai. Therefore114

we only need to draw N/2 samples using this approach, and by virtue of the neg-115

ative correlation between the pairs, it leads to a smaller variance in the sample116

means taken in the approximation than would be obtained from N independent117

simulations. The choice of N is described below.118

Initial values119

The EM algorithm requires that initial parameters are specified, namely θ̂(0). By120

choosing values close to the maximizer, the number of iterations required to reach121

convergence should be reduced.122

For the time-to-event sub-model, a quasi-two-stage model is fitted when the mea-123

surement times are balanced, i.e. when tijk = tij ∀k. That is, we fit separate LMMs124

for each longitudinal outcome as per (1), ignoring the correlation between different125

outcomes. This is straightforward to implement using standard software, in partic-126

ular using lme() and coxph() from the R packages nlme [26] and survival [27],127



Hickey et al. Page 8 of 24

respectively. From the fitted models, the best linear unbiased predictions (BLUPs)128

of the separate model random effects are used to estimate each W
(k)
1i (t) function.129

These estimates are then included as time-varying covariates in a Cox regression130

model, alongside any other fixed effect covariates, which can be straightforwardly131

fitted using standard software. In the situation that the data are not balanced, i.e.132

when tijk 6= tij ∀k, then we fit a standard Cox proportional hazards regression133

model to estimate γv and set γyk = 0 ∀k.134

For the longitudinal data sub-model, when K > 1 we first find the maximum like-135

lihood estimate of {β, vech(D), σ2
1 , . . . , σ

2
K} by running a separate EM algorithm for136

the multivariate linear mixed model. Both the E- and M-step updates are available137

in closed form, and the initial parameters for this EM algorithm are available from138

the separate LMM fits, with D initialized as block-diagonal. As these are estimated139

using an EM rather than MCEM algorithm, we can specify a stricter convergence140

criterion on the estimates.141

Convergence and stopping rules142

Two standard stopping rules for the deterministic EM algorithm used to declare143

convergence are the relative and absolute differences, defined as144

∆(m+1)
rel = max

{
|θ̂(m+1) − θ̂(m)|
|θ̂(m)|+ ε1

}
< ε0, and (7)

∆(m+1)
abs = max

{
|θ̂(m+1) − θ̂(m)|

}
< ε2 (8)

respectively, for some appropriate choice of ε0, ε1, and ε2, where the maximum is145

taken over the components of θ. For reference, the R package JM [28] implements146

(7) (in combination with another rule based on relative change in the likelihood),147

whereas the R package joineR [29] implements (8). The relative difference might148

be unstable about parameters near zero that are subject to MC error. Therefore,149

the convergence criterion for each parameter might be chosen separately at each150

EM iteration based on whether the absolute magnitude is below or above some151

threshold. A similar approach is adopted in the EM algorithms employed by the152

software package SAS [30, p. 330].153

The choice of N and the monitoring of convergence are conflated when applying

a MCEM algorithm, and a dynamic approach is required. As noted by [22], it is

computationally inefficient to use a large N in the early phase of the algorithm when

the parameter estimates are likely to be far from the maximizer. On the flip side, as

the parameter estimates approach the maximizer, the stopping rules will fail as the

changes in parameter estimates will be swamped by MC error. Therefore, it has been
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recommended that one increase N as the estimate moves towards the maximizer.

Although this might be done subjectively [31] or by pre-specified rules [32], an

automated approach is preferable and necessary for a software implementation.

Booth and Hobert [33] proposed an update rule based on a confidence ellipsoid

for the maximizer at the (m + 1)-th iteration, calculated using an approximate

sandwich estimator for the maximizer, which accounts for the MC error at each

iteration. This approach requires additional variance estimation at each iteration,

therefore we opt for a simpler approach described by Ripatti et al. [34]. Namely, we

calculate a coefficient of variation at the (m+ 1)-th iteration as

cv(∆(m+1)
rel ) = sd(∆(m−1)

rel ,∆(m)
rel ,∆

(m+1)
rel )

mean(∆(m−1)
rel ,∆(m)

rel ,∆
(m+1)
rel )

,

where ∆(m+1)
rel is given by (7), and sd(·) and mean(·) are the sample standard de-154

viation and mean functions, respectively. If cv(∆(m+1)
rel ) > cv(∆(m)

rel ), then N :=155

N + bN/δc, for some small positive integer δ. Typically, we run the MCEM algo-156

rithm with a small N (for a fixed number of iterations—a burn-in) before imple-157

menting this update rule in order to get into the approximately correct parameter158

region. Appropriate values for other parameters will be application specific, however159

we have found δ = 3, N = 100K (for 100K burn-in iterations), ε1 = 0.001, and160

ε0 = ε2 = 0.005 delivers reasonably accurate estimates in many cases, where K was161

earlier defined as the number of longitudinal outcomes.162

As the EM monotonicity property is lost due to the MC integrations in the MCEM163

algorithm, convergence might be prematurely declared due to stochasticity if the164

ε-values are too large. To reduce the chance of this occurring, we require that the165

stopping rule is satisfied for 3 consecutive iterations [33, 34]. However, in any case,166

trace plots should be inspected to confirm convergence is appropriate.167

Standard error estimation168

Standard error (SE) estimation is usually based on inverting the observed infor-169

mation matrix. When the baseline hazard is unspecified, as is the case here, this170

presents several challenges. First, λ̂0(t) will generally be a high-dimensional vector,171

which might lead to numerical difficulties in the inversion of the observed informa-172

tion matrix [6]. Second, the profile likelihood estimates based on the usual observed173

information matrix approach are known to be underestimated [35]. The reason for174

this is that the profile estimates are implicit, since the posterior expectations, given175

by (5), depend on the parameters being estimated, including λ0(t) [6, p. 67].176
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To overcome these challenges, Hsieh et al. [35] recommended to use bootstrap177

methods to calculate the SEs. However, this approach is computationally expensive.178

Moreover, despite the purported theoretical advantages, we also note that recently it179

has been suggested that bootstrap estimators might actually overestimate the SEs;180

e.g. [36, p. 740] and [35, p. 1041]. At the model development stage, it is often of181

interest to gauge the strength of association of model covariates, which is not feasible182

with repeated bootstrap implementations. Hence, an approximate SE estimator is183

desirable. In either case, the theoretical properties will be contaminated by the184

addition of MC error from the MCEM algorithm, and it is not yet fully understood185

what the ramifications of this are. Hence, any standard errors must be interpreted186

with a degree of caution. We consider two estimators below.187

1. Bootstrap method. These are estimated by sampling n subjects with re-188

placement and re-labelling the subjects with indices i′ = 1, . . . , n. We then re-fit the189

model to the bootstrap-sampled dataset. It is important to note that we re-sample190

subjects, not individual data points. This is repeated B-times, for a sufficiently191

large integer B. Since we already have the MLEs from the fitted model, we can use192

these as initial values for each bootstrap model fit, thus reducing initial computa-193

tional overheads in calculating approximate initial parameters. For each iteration,194

we extract the model parameter estimates for (β>, vech(D), σ2
1 , . . . , σ

2
K ,γ

>
v ,γ

>
y ).195

Note that we do not estimate SEs for λ0(t) using this approach. However, they are196

generally not of inferential interest. When B is sufficiently large, the SEs can be197

estimated from the estimated coefficients of the bootstrap samples. Alternatively,198

100(1 − α)%-confidence intervals can be estimated from the the 100α/2-th and199

100(1− α/2)-th percentiles.200

2. Empirical information matrix method. Using the Breslow estimator for∫ t
0 λ0(u)du, the profile score vector for θ−λ = (β>, vech(D), σ2

1 , . . . , σ
2
K ,γ

>) is cal-

culated (see Additional file 1). We approximate the profile information for θ−λ
by I−1/2

e (θ̂−λ0), where Ie(θ−λ0) is the observed empirical information [25] given by

Ie(θ−λ) =
n∑
i=1

si(θ−λ)⊗2 − 1
n
S(θ−λ)⊗2, (9)

si(θ−λ) is the conditional expectation of the complete-data profile score for subject201

i, S(θ−λ) is the score defined by S(θ−λ) =
∑n
i=1 si(θ−λ), and a⊗2 = aa> is outer202

product for a vector a. At the maximizer, S(θ̂) = 0, meaning that the right hand-203

side of (9) is zero. Due to the MC error in the MCEM algorithm, this will not be204

exactly zero, and therefore we include it in the calculations. As per the bootstrap205
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approach, SEs for the baseline hazard are again not calculated. We note that this SE206

estimator will be subject to the exact same theoretical limitation of underestimation207

described by Hsieh et al. [35], since the profiling was implicit; that is, because the208

posterior expectations involve the parameters θ.209

Software210

The model described here is implemented in the R package joineRML, which211

is available on the The Comprehensive R Archive Network (CRAN) (https:212

//CRAN.R-project.org/package=joineRML). The principal function in joineRML213

is mjoint(). The primary arguments for implementing mjoint() are summarised214

in Table 1. To achieve computationally efficiency parts of the MCEM algorithm in215

joineRML are coded in C++ using the Armadillo linear algebra library and inte-216

grated using the R package RcppArmadillo [37].217

A model fitted using the mjoint() function returns an object of class mjoint. By218

default, approximate SE estimates are calculated. If one wishes to use bootstrap219

standard error estimates, then the user can pass the model object to the bootSE()220

function. Several generic functions (or rather, S3 methods) can also be applied to221

mjoint objects, as described in Table 2. These generic functions include common222

methods, for example coef(), which extracts the model coefficients; ranef(), which223

extracts the BLUPs (and optional standard errors); and resid(), which extracts224

the residuals from the linear mixed sub-model. The intention of these functions is to225

have a common syntax with standard R packages for linear mixed models [26] and226

survival analysis [27]. Additionally, plotting capabilities are included in joineRML.227

These include trace plots for assessment of convergence of the MCEM algorithm,228

and caterpillar plots for subject-specific random effects (Table 2).229

The package also provides several datasets, and a function simData() that al-230

lows for simulation of data from joint models with multiple longitudinal outcomes.231

joineRML can also fit univariate joint models, however in this case we would cur-232

rently recommend that the R packages joineR [29], JM [28], or frailtypack [38]233

are used, which are optimized for the univariate case and exploits Gaussian quadra-234

ture. In addition, these packages allow for extensions to more complex cases; for235

example, competing risks [29, 28] and recurrent events [38].236

Results237

Simulation analysis238

A simulation study was conducted assuming two longitudinal outcomes and n = 200239

subjects. Longitudinal data were simulated according to a follow-up schedule of 6240

https://CRAN.R-project.org/package=joineRML
https://CRAN.R-project.org/package=joineRML
https://CRAN.R-project.org/package=joineRML
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time points (at times 0, 1, . . . , 5), with each model including subject-and-outcome-241

specific random-intercepts and random-slopes: bi = (b0i1, b1i1, b0i2, b1i2)>, Correla-242

tion was induced between the 2 outcomes by assuming correlation of −0.5 between243

the random intercepts for each outcome. Event times were simulated from a Gom-244

pertz distribution with shape θ1 = −3.5 and scale exp(θ0) = exp(0.25) ≈ 1.28,245

following the methodology described by Austin [39]. Independent censoring times246

were drawn from an exponential distribution with rate 0.05. Any subject where the247

event and censoring time exceeded 5 was censored at the truncation time C = 5.1.248

For all sub-models, we included a pair of covariates Xi = (xi1, xi2)>, where xi1 is a249

continuous covariate independently drawn from N(0, 1) and xi2 is a binary covariate250

independently drawn from Bin(1, 0.5). The sub-models are given as251

yijk = (β0,k + bi0k) + (β1,k + bi1k)tj + β2,kxi1 + β3,kxi2 + εijk, for k = 1, 2;

λi(t) = exp {(θ0 + θ1t) + γv1xi1 + γv2xi2 + γy1(bi01 + bi11t) + γy2(bi02 + bi12t)} ;

bi ∼ N4(0, D);

εijk ∼ N(0, σ2
k),

where D is specified unstructured (4× 4)-covariance matrix with 10 unique param-252

eters. Simulating datasets is straightforward using the joineRML package by means253

of the simData() function. The true parameter values and results from 500 simu-254

lations are shown in Table 3. In particular, we display the mean estimate, the bias,255

the empirical SE (= the standard deviation of the the parameter estimates); the256

mean SE (= the mean SE of each parameter calculated for each fitted model); the257

mean square error (MSE), and the coverage. The results confirm that the model258

fitting algorithm generally performs well.259

A second simulation analysis was conducted using the parameters above (with260

n = 100 subjects per dataset). However, in this case we used a heavier-tailed distri-261

bution for the random effects: a multivariate t5 distribution [40]. The bias for the262

fixed effect coefficients was comparable to the multivariate normal random effects263

simulation study (above). The empirical standard error was consistently smaller264

than the mean standard error, resulting in coverage between 95% and 99% for the265

coefficient parameters. Rizopoulos et al. [41] noted that the misspecification of the266

random effects distributions was minimised as the number of longitudinal measure-267

ments per subject increased, but that the standard errors are generally affected.268

These findings are broadly in agreement with the simulation study conducted here,269
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and other studies [42, 43]. Choi et al. [44] provide a review of existing research on270

the misspecification of random effects in joint modelling.271

Example272

We consider the primary biliary cirrhosis (PBC) data collected at the Mayo Clinic273

between 1974 to 1984 [45]. This dataset has been widely analyzed using joint mod-274

elling methods [46, 47, 18]. PBC is a long-term liver disease in which the bile ducts275

in the liver become damaged. Progressively, this leads to a build-up of bile in the276

liver, which can damage it and eventually lead to cirrhosis. If PBC is not treated277

or reaches an advanced stage, it can lead to several major complications, including278

mortality. In this study, 312 patients were randomised to receive D-penicillamine279

(n = 158) or placebo (n = 154). In this example we analyse the subset of patients280

randomized to placebo.281

Patients with PBC typically have abnormalities in several blood tests; hence,282

during follow-up several biomarkers associated with liver function were serially283

recorded for these patients. We consider three biomarkers: serum bilirunbin (de-284

noted serBilir in the model and data; measured in units of mg/dl), serum albumin285

(albumin; mg/dl), and prothrombin time (prothrombin; seconds). Patients had a286

mean 6.3 (SD = 3.7) visits (including baseline). The data can be accessed from the287

joineRML package via the command data(pbc2). Profile plots for each biomarker288

are shown in Figure 1, indicating distinct differences in trajectories between the289

those who died during follow-up and those who did not (right-censored cases). A290

Kaplan-Meier curve for overall survival is shown in Figure 2. There were a total of291

69 (44.8%) deaths during follow-up in the placebo subset.292

We fit a relatively simple joint model for the purposes of demonstration, which293

encompasses the following trivariate longitudinal data sub-model:294

log(serBilir) = (β0,1 + b0i,1) + (β1,1 + b1i,1)year + εij1,

albumin = (β0,2 + b0i,2) + (β1,2 + b1i,2)year + εij2,

(0.1× prothrombin)−4 = (β0,3 + b0i,3) + (β1,3 + b1i,3)year + εij3,

bi ∼ N6(0,D), and εijk ∼ N(0, σ2
k) for k = 1, 2, 3;

and a time-to-event sub-model for the study endpoint of death:295

λi(t) = λ0(t) exp {γvage +W2i(t)} ,

W2i(t) = γbil(b0i,1 + b1i,1t) + γalb(b0i,2 + b1i,2t) + γpro(b0i,3 + b1i,3t).
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The log transformation of bilirubin is standard, and confirmed reasonable based296

on inspection of Q-Q plots for residuals from a separate fitted linear mixed model297

fitted using the lme() function from the R package nlme. Albumin did not require298

transformation. Residuals were grossly non-normal for prothrombin time using both299

untransformed and log-transformed outcomes. Therefore, a Box-Cox transformation300

was applied, which suggested an inverse-quartic transform might be suitable, which301

was confirmed by inspection of a Q-Q plot. The pairwise correlations for baseline302

measurements between the three transformed markers were 0.19 (prothrombin time303

vs. albumin), −0.30 (bilirubin vs. prothrombin time and albumin) The model is fit304

using the joineRML R package (version 0.2.0) using the following code.305

306

307

# Get data308

data(pbc2)309

placebo <- subset(pbc2, drug == "placebo")310

311

# Fit model312

fit.pbc <- mjoint(313

formLongFixed = list(314

"bil" = log(serBilir) ˜ year,315

"alb" = albumin ˜ year,316

"pro" = (0.1 * prothrombin)ˆ-4 ˜ year),317

formLongRandom = list(318

"bil" = ˜ year | id,319

"alb" = ˜ year | id,320

"pro" = ˜ year | id),321

formSurv = Surv(years, status2) ˜ age,322

data = placebo,323

timeVar = "year",324

control = list(tol0 = 0.001, burnin = 400)325

)326
327

Here, we have specified a more stringent tolerance value for ε0 than the default328

setting in mjoint(). Additionally, the burn-in phase was increased to 400 iterations329

after inspection of convergence trace plots. The model fits in 3.1 minutes on a330

MacBook Air 1.6GHz Intel Core i5 with 8GB or RAM running R version 3.3.0,331

having completed 423 MCEM iterations (not including the EM algorithm iterations332
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performed for determining the initial values of the separate multivariate linear mixed333

sub-model) with a final MC size of M = 3528. The fitted model results are shown334

in Table 4.335

The fitted model indicated that an increase in the subject-specific random de-336

viation from the population trajectory of serum bilirubin was significantly associ-337

ated with increased hazard of death. A significant association was also detected for338

subject-specific decreases in albumin from the population mean trajectory. However,339

prothrombin time was not significantly associated with hazard of death, although340

its direction is clinically consistent with PBC disease. Albert and Shih [46] anal-341

ysed the first 4-years follow-up from this dataset with the same 3 biomarkers and a342

discrete event time distribution using a regression calibration model. Their results343

were broadly consistent, although the effect of prothrombin time on the event time344

sub-model was strongly significant.345

We also fitted 3 univariate joint models to each of the biomarkers and the event346

time sub-model using the R package joineR (version 1.2.0) owing to its optimization347

for such models. The LMM parameter estimates were similar, although the absolute348

magnitude of the slopes was smaller for the separate univariate models. Since 3349

separate models were fitted, 3 estimates of γv were estimated, with the average350

comparable to the multivariate model estimate. The multivariate model estimates351

of γy = (γbil, γalb, γpro)> were substantially attenuated relative to the separate352

model estimates, although the directions remained consistent. It is also interesting353

to note that γpro was statistically significant in the univariate model. However, the354

univariate models are not accounting for the correlation between different outcomes,355

whereas the multivariate joint model does.356

The model was refitted with the one-step Newton-Raphson update for γ replaced357

by a Gauss-Newton-like update in a time of 2.2 minutes for 419 MCEM iterations358

with a final MC size of M = 6272. This is easily achieved by running the following359

code.360

361

362

fit.pbc.gn <- update(fit.pbc, gammaOpt = "GN")363
364

In addition, we bootstrapped this model with B = 100 samples to estimate SEs365

and contrast them with the approximate estimates based on the inverse empirical366

profile information matrix. In practice, one should choose B > 100, particularly if367

using bootstrap percentile confidence intervals; however, we used a small value to368

reduce the computational burden on this process. In a similar spirit, we relaxed the369
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convergence criteria and lowered reduced the number of burn-in iterations. This is370

easily implemented by running the following code, taking 1.8 hours to fit.371

372

373

fit.pbc.gn.boot <- bootSE(fit.pbc.gn, nboot = 100, control = list(374

tol0 = 0.005, tol2 = 0.01, convCrit = "sas",375

burnin = 300, mcmaxIter = 350))376
377

It was observed that the choice of gradient matrix in the γ-update led to virtually378

indistinguishable parameter estimates, although we note the same random seed was379

used in both cases. The bootstrap estimated SEs were broadly consistent with the380

approximate SEs, with no consistent pattern in underestimation observed.381

Discussion382

Multivariate joint models introduce three types of correlations: (1) within-subject383

serial correlation for repeated measures; (2) between longitudinal outcomes corre-384

lation; and (3) correlation between the multivariate LMM and time-to-event sub-385

models. It is important to account for all of these types of correlations; however,386

some authors have reported collapsing their multivariate data to permit univariate387

joint models to be fitted. For example, Battes et al. [7] used an ad hoc approach388

of either summing or multiplying the three repeated continuous measures (stan-389

dardized according to clinical upper reference limits of the biomarker assays), and390

then applying standard univariate joint models. Wang et al. [48] fitted separate uni-391

variate joint models to each longitudinal outcome in turn. Neither approach takes392

complete advantage of the correlation between the multiple longitudinal measures393

and the time-to-event outcome.394

Here, we described a new R package joineRML that can fit the models described395

in this paper. This was demonstrated on a real-world dataset. Although in the fitted396

model we assumed linear trajectories for the biomarkers, splines could be straight-397

forwardly employed, as have been used in other multivariate joint model applications398

[15], albeit at the cost of additional computational time. Despite a growing availabil-399

ity of software for univariate joint models, Hickey et al. [19] noted that there were400

very few options for fitting joint models involving multivariate longitudinal data.401

To the best of our knowledge, options are limited to the R packages JMbayes [49],402

rstanarm [50], and the Stata package stjm [47]. Whilst all of these packages are403

available, the extension to multivariate data remain features in the developmental404

versions only. Moreover, none of these incorporates an unspecified baseline hazard.405
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The first two packages use Markov chain Monte Carlo (MCMC) methods to fit the406

joint models. Bayesian models are potentially very useful for fitting joint models,407

and in particular for dynamic prediction; however, MCMC is also computationally408

demanding, especially in the case of multivariate models. Several other publications409

have made BUGS code available for use with WinBUGS and OpenBUGS (e.g. [51]),410

but these are not easily modifiable and post-fit computations are cumbersome.411

joineRML is a new software package developed to fill a void in the joint modelling412

field, but is still in its infancy relative to highly developed univariate joint model413

packages such as the R package JM [28] and Stata package stjm [47]. Future devel-414

opments of joineRML intend to cover several deficiencies. First, joineRML currently415

only permits an association structure of the form W2i(t) =
∑K
k=1 γykW

(k)
1i (t). As has416

been demonstrated by others, the association might take different forms, including417

random-slopes and cumulative effects or some combination of multiple structures,418

and these may also be different for separate longitudinal outcomes [18]. Moreover,419

it is conceivable that separate longitudinal outcomes may interact in the hazard420

sub-model. Second, the use of MC integration provides a scalable solution to the421

issue of increasing dimensionality in the random effects. However, for simpler cases,422

e.g. bivariate models with random-intercepts and random-slopes (total of 4 random423

effects), Gaussian quadrature might be computationally superior; this trade-off re-424

quires further investigation. Third, joineRML can currently only model a single425

event time. However, there is a growing interest in competing risks [9] and recur-426

rent events data [11], which if incorporated into joineRML, would provide a flexible427

all-round multivariate joint modelling platform. Competing risks [29, 28] and re-428

current events [38] have been incorporated into R packages already, but are limited429

to the case of a solitary longitudinal outcome. Of note, the PBC trial dataset anal-430

ysed in this study includes times to the competing risk of kidney transplantation.431

Fourth, with ever-increasing volumes of data collected during routine clinical vis-432

its, the need for software to fit joint models with very many longitudinal outcomes433

is foreseeable [52]. This would likely require the use of approximate methods for434

the numerical integration or data reduction methods. Fifth, additional residual di-435

agnostics are necessary for assessing possible violations of model assumptions. The436

joineRML package has a resid() function for extracting the longitudinal sub-model437

residuals; however, these are complex for diagnostic purposes due to the informative438

dropout, hence the development of multiple-imputation based residuals [53].439
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Conclusions440

In this paper we have presented an extension of the classical joint model proposed441

by Henderson et al. [3] and an estimation procedure for fitting the models that442

builds on the foundations laid by Lin et al. [20]. In addition, we described a new R443

package joineRML that can fit the models described in this paper, which leverages444

the MCEM algorithm which should scale well for increasing number of longitudinal445

outcomes. This software is timely, as it has previously been highlighted that there446

is a paucity of software available to fit such models [19]. The software is being447

regularly updated and improved.448
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Figures610

Figure 1 Longitudinal trajectory plots. The black lines show individual subject trajectories, and
the coloured lines show smoothed (LOESS) curves stratified by whether the patient experienced
the endpoint (blue) or not (red).

Figure 2 Kaplan-Meier curve for overall survival. A pointwise 95% band is shown (dashed lines).
In total, 69 patients (of 154) died during follow-up.

Tables611
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Table 1 The primary arguments† with descriptions for the mjoint() function in the R package
joineRML.

Argument Description

formLongFixed a list of formulae for the fixed effects component of each longitudinal
outcome. The left hand-hand side defines the response, and the right-
hand side specifies the fixed effect terms.

formLongRandom a list of one-sided formulae specifying the model for the random ef-
fects effects of each longitudinal outcome.

formSurv a formula specifying the proportional hazards regression model (not
including the latent association structure).

data a list of data.frame objects for each longitudinal outcome in which to in-
terpret the variables named in the formLongFixed and formLongRandom.
The list structure enables one to include multiple longitudinal outcomes
with different measurement protocols. If the multiple longitudinal out-
comes are measured at the same time points for each patient (i.e.
tijk = tij ∀k), then a single data.frame object can be given instead of
a list. It is assumed that each data frame is in long format.

survData (optional) a data.frame in which to interpret the variables named in
the formSurv. If survData is not given, then mjoint() looks for the
time-to-event data in data.

timeVar a character string indicating the time variable in the linear mixed effects
model.

inits (optional) a list of initial values for some or all of the parameters
estimated in the model.

control (optional) a list of control parameters. These allow for the control of
ε0, ε1, and ε2 in (7) and (8); the choice of N , δ, and convergence criteria;
the maximum number of MCEM iterations, and the minimum number
of MCEM iterations during burn-in. Additionally, the control argument
gammaOpt can be used to specify whether a one-step Newton-Raphson
(="NR") or Gauss-Newton-like (="GN") update should be used for the
M-step update of γ.

†mjoint() also takes the optional additional arguments verbose, which if TRUE allows for monitoring
updates at each MCEM algorithm iteration, and pfs, which if FALSE can force the function not to
calculate post-fit statistics such as the BLUPs and associated standard errors of the random effects and
approximate standard errors of the model parameters. In general, these arguments are not required.
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Table 2 Additional functions with descriptions that can be applied to objects of class mjoint†.

Function(s) Returns

logLik, AIC, BIC the log-likelihood, Akaike information criterion and Bayesian information
criterion statistics, respectively.

coef, fixef the fixed effects parameter estimates.
ranef the BLUPs (and optional standard errors).
print†, summary∗ short and long model summary outputs, respectively.
fitted, resid the fitted and raw residuals from the multivariate LMM sub-model, re-

spectively.
plot‡ the MCEM algorithm convergence trace plots.
sigma the residual standard errors from the LMM sub-model.
vcov the variance-covariance matrix of the main parameters of the fitted

model (except the baseline hazard).
getVarCov the random effects variance-covariance matrix.
confint the confidence intervals based on asymptotic normality.
update specific parts of a fitted model can be updated, e.g. by adding or re-

moving terms from a sub-model, and then re-fitted.
sampleData sample data (with or without replacement) from a joint model.

†print() also applies to objects of class summary.mjoint and bootSE inheriting from the summary()
and bootSE() functions, respectively. ‡plot() also accepts objects of class ranef.mjoint inheriting
from the ranef() function, which displays a caterpillar plot (with 95% prediction intervals) for each
random effect. ∗summary() can also take the optional argument of an object of class bootSE inheriting
from the function bootSE(), which overrides the approximate SEs and CIs with those from a bootstrap
estimation routine.

Table 3 Results of simulation study.

Parameter True value Mean estimated value Empirical SE Mean SE Bias MSE Coverage

D11 0.2500 0.2411 0.0435 — -0.0089 0.0020 —
D21 0.0000 0.0010 0.0136 — 0.0010 0.0002 —
D31 -0.1250 -0.1212 0.0295 — 0.0038 0.0009 —
D41 0.0000 -0.0006 0.0127 — -0.0006 0.0002 —
D22 0.0400 0.0396 0.0072 — -0.0004 0.0001 —
D32 0.0000 -0.0002 0.0138 — -0.0002 0.0002 —
D42 0.0000 -0.0001 0.0055 — -0.0001 0.0000 —
D33 0.2500 0.2420 0.0400 — -0.0080 0.0017 —
D43 0.0000 0.0007 0.0134 — 0.0007 0.0002 —
D44 0.0400 0.0399 0.0075 — -0.0001 0.0001 —
β0,1 0.0000 0.0028 0.0612 0.0660 0.0028 0.0038 0.9660
β1,1 1.0000 1.0012 0.0218 0.0229 0.0012 0.0005 0.9500
β2,1 1.0000 1.0010 0.0449 0.0470 0.0010 0.0020 0.9540
β3,1 1.0000 0.9932 0.0897 0.0925 -0.0068 0.0081 0.9440
σ2

1 0.2500 0.2506 0.0165 0.0171 0.0006 0.0003 0.9560
β0,2 0.0000 -0.0026 0.0637 0.0655 -0.0026 0.0041 0.9660
β1,2 -1.0000 -1.0011 0.0229 0.0223 -0.0011 0.0005 0.9480
β2,2 0.0000 0.0008 0.0399 0.0472 0.0008 0.0016 0.9700
β3,2 0.5000 0.5061 0.0894 0.0923 0.0061 0.0080 0.9540
σ2

2 0.2500 0.2501 0.0162 0.0171 0.0001 0.0003 0.9540
γv1 0.0000 0.0011 0.1243 0.1392 0.0011 0.0155 0.9720
γv2 1.0000 1.0487 0.2837 0.2750 0.0487 0.0829 0.9340
γy1 -0.5000 -0.5121 0.1936 0.2084 -0.0121 0.0376 0.9560
γy2 1.0000 1.0311 0.2220 0.2145 0.0311 0.0502 0.9400
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