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Abstract:  33 

Background: Many countries have acquired antiviral stockpiles for pandemic influenza 34 

mitigation and a significant part of the stockpile may be focussed towards community-based 35 

treatment.  36 

Methods: We developed a spreadsheet-based, decision tree model to assess outcomes averted 37 

and cost-effectiveness of antiviral treatment for outpatient use from the perspective of the 38 

healthcare payer in the UK. We defined five pandemic scenarios– one based on the 2009 39 

A(H1N1) pandemic and four hypothetical scenarios varying in measures of transmissibility 40 

and severity.  41 

Results: Community-based antiviral treatment was estimated to avert 14% to 23% of 42 

hospitalizations in an overall population of 62.28 million. Higher proportions of averted 43 

outcomes were seen in patients with high-risk conditions, when compared to non-high-risk 44 

patients. We found that antiviral treatment was cost-saving across pandemic scenarios for 45 

high-risk population groups, and cost-saving for the overall population in higher severity 46 

influenza pandemics. Antiviral effectiveness had the greatest influence on both the number of 47 

hospitalizations averted and on cost-effectiveness.  48 

Conclusions: This analysis shows that across pandemic scenarios, antiviral treatment can be 49 

cost-saving for population groups at high risk of influenza-related complications.   50 



Introduction 51 

Influenza pandemics are rare, unpredictable events with potentially serious consequences. 52 

They are considered to be important public health emergencies by the World Health 53 

Organization, and a number of countries, with many having specific pandemic preparedness 54 

plans(1-3). Neuraminidase inhibitors (NAI) often feature prominently in pandemic influenza 55 

preparedness plans(2) and several high-income countries have acquired NAI stockpiles 56 

because pandemic specific vaccines may not be widely available for up to 6 months(4). 57 

Clinical trials show NAI effectiveness in modestly reducing duration of symptomatic illness 58 

in patients with uncomplicated seasonal influenza(5-14). However, these trials were under-59 

powered to assess NAI impact on secondary outcomes such as hospitalizations(15-17). Two 60 

meta-analyses of the extant clinical trial data, examining outcomes based on  the intention-to-61 

treat-influenza infected (ITTI) approach, found that early NAI treatment (≤48 hours of 62 

symptom onset) was associated with a risk reduction of 59%(18) and 63%(19) for hospital 63 

admission in otherwise healthy patients with influenza. Other meta-analyses of trial data that 64 

evaluated all outpatients with influenza-like-illness (ILI) using the intention-to-treat (ITT) 65 

approach did not find a reduction in hospitalizations in those treated with NAIs(20, 21).  66 

If a future pandemic is severe, hospital capacity may be exhausted and therefore reserved for 67 

the severely ill who are most likely to benefit(22). Countries may decide to focus a significant 68 

part of their pandemic response plan towards community treatment aimed at averting 69 

hospitalizations. Policy makers considering NAI stockpiling for a future pandemic of 70 

unknown severity will have to consider both number of hospitalizations averted and the cost-71 

effectiveness of such an intervention. NAI treatment for pandemic influenza has generally 72 

been estimated to be cost-effective for higher-income countries(23-25). However, a review 73 

identified that previous health economic evaluations often neglected pandemic uncertainty by 74 

only evaluating singular, fixed pandemic scenarios(26). Moreover, few models have 75 



incorporated the increased risks of adverse pandemic influenza-related outcomes for patients 76 

with at-risk conditions. We present a spreadsheet-based decision tree model that evaluates the 77 

impact of community-based NAI treatment in terms of the averted influenza-related 78 

hospitalizations and associated cost-effectiveness in a range of pandemic scenarios.  79 

Methods 80 

We built a decision tree model (Figure 1) to calculate the impact of community-based NAI 81 

treatment for five pandemic scenarios. The first scenario is based on the United Kingdom’s 82 

(UK) A(H1N1)pdm09 experience, with a clinical attack rate (CAR) of 7% and a case 83 

hospitalization risk (CHR) of 0.3% and 1.5% among non-high-risk and high-risk patients, 84 

respectively  (Table 1). The other four scenarios were based on hypothetical pandemics that 85 

varied the CAR (20% and 30%) and the CHR (1.05% to 4.0% for non-high-risk patients; 5% 86 

to 20% for high-risk patients) (Table 1).  The hypothetical scenarios are based on a risk 87 

assessment framework developed by the CDC(27, 28). A standardized risk space was defined 88 

based on previous influenza pandemics, and hypothetical pandemic scenarios were identified 89 

from this risk space to allow easy comparisons to future economic evaluations. The CHRs for 90 

the high-risk groups in these four hypothetical pandemics were assumed to be five times the 91 

CHR for the non-high-risk group of patients based on estimates from the 2009 A(H1N1) 92 

pandemic(29). We also assumed that the percentage of patients seeking 93 

outpatient/ambulatory care would increase with the CHR of the pandemic, ranging from 40% 94 

among non-high-risk patients in a 2009-type pandemic to approximately 81% among high-95 

risk patients when the CHR is 20% (Table 1). We estimated the number of deaths averted 96 

through averting hospitalizations by multiplying the number of hospitalizations averted with 97 

an in-hospital mortality risk that was constant across the scenarios.  98 



We did not differentiate between oseltamivir and zanamivir in the definition of NAIs in our 99 

model; however, we based our cost and treatment effectiveness estimates on data specific for 100 

oseltamivir. We focus on community-based treatment and do not consider NAI prophylaxis. 101 

We used NAI effectiveness estimates from an individual participant data (IPD) meta-analysis 102 

of clinical trials data on otherwise healthy patients with seasonal influenza(19) based on ITTI 103 

analysis (relative risk: 0.37, 95% confidence interval: 0.17 to 0.81) since NAIs are not active 104 

against non-influenza respiratory infections(30). To account for NAI prescriptions to patients 105 

with non-influenza ILI, we assumed a ‘wastage factor’ of 40%, i.e. patients with non-106 

influenza ILI would be prescribed 40% of the number of regimens that are prescribed to 107 

patients with influenza(31). We assumed that all patients would start NAI treatment ≤48 108 

hours of symptom onset in our main model and then performed a sensitivity analysis varying 109 

the promptness of care-seeking within 48 hours of symptom onset from 25% to 75% 110 

(percentage of all care-seeking patients who do so ≤48 hours of symptom onset). Based on 111 

estimates from 2009, we also assumed that 64% of patients would be compliant with the 112 

prescribed regimen(32). 113 

Unit cost data for our model were obtained from secondary sources including the British 114 

National Formulary and UK-based reports on the cost of health and social care (Table 1). 115 

Briefly, we used a weighted average cost of physician-based consultation of £24.20. This cost 116 

was calculated as a weighted average cost of either a conventional primary care consultation 117 

or a phone-based consultation with the 2009 National Pandemic Flu Service (NPFS)(33). The 118 

weighting of the costs was done using the proportion of assessments routed through each 119 

consultation service in 2009. We used a cost of £16 for an NAI prescription, which included 120 

the cost of delivery. Costs of hospitalizations ranged from £436 for non-high-risk patients to 121 

£1,727 for high-risk patients (Table 1). All costs were inflated to the 2017 British Pound 122 

Sterling (£) using the hospital & community health services (HCHS) index(34).  123 



The overall population of 62.28 million was based on the 2009 UK population(35). We 124 

performed the analyses from the perspective of the healthcare payer, the UK National Health 125 

Service (NHS). Given that we did not undertake a full cost-utility analysis, we chose to 126 

measure our outcomes in natural units (deaths and hospitalizations) rather than in 127 

standardized units (QALYs)(36). We considered a time horizon of less than one year (one 128 

pandemic event), therefore a discounting rate would not apply. 129 

In each pandemic scenario, we compared the number of outcomes averted (hospitalizations 130 

and deaths) and total costs associated with NAI treatment compared to no NAI treatment. We 131 

assessed cost-effectiveness of community-based NAI treatment by estimating the cost per 132 

averted hospitalization.  Our primary analysis was performed using the middle values of our 133 

input parameters using formulas provided in Appendix 1. To account for uncertainty in 134 

parameter estimates, we performed sensitivity analyses by probabilistically varying input 135 

parameters along pre-defined probability distributions (Table 1) and using Monte Carlo 136 

simulations (5,000 iterations using Latin hypercube sampling) to calculate mean output 137 

values and 95% confidence intervals for different combinations of input parameters. The 138 

sensitivity analyses were performed using the software @Risk version 7.3 (Palisade 139 

Corporation). Further, we also performed two-way sensitivity analysis to assess the impact of 140 

varying NAI effectiveness and patient compliance on the outcome (hospitalizations averted).  141 

Results 142 

In a 2009-like pandemic scenario, we estimated that in our base-case model (no NAI 143 

treatment) there would be 28,773 hospitalizations in the overall population. We estimated that 144 

1.9 million regimens of NAIs would be dispensed for outpatient treatment. NAI treatment 145 

would have averted 4,034 (14%) hospitalizations in a population of 62.28 million (65 146 

hospitalizations averted/million population) at a cost of £7,110 per hospitalization averted 147 



(Table 2). The cost to avert one hospitalization was £2,238 in high-risk populations and 148 

£20,473 in the non-high-risk population (Table 2). 149 

In the 20% CAR-Severity 1 scenario (CHR: non-high-risk=1.05%; high-risk=5.25%), we 150 

estimated that 287,734 hospitalizations would occur. 8.07 million regimens of NAIs would be 151 

dispensed, averting 57,281 (19.9%) hospitalizations at a cost per averted hospitalization of 152 

£1,008 in the overall population and £5,497 in the non-high-risk population. NAI treatment 153 

was seen to be cost-saving in the high-risk population. 154 

In the 20% CAR- Severity 2 scenario (CHR: non-high-risk=4%; high-risk=20%), we 155 

estimated that over 1.09 million hospitalizations would occur. 9.34 million NAI regimens 156 

would be dispensed, averting 250,478 (22.9%) hospitalizations in the total population at a 157 

cost per averted hospitalization of £1,079 in the non-high-risk population. NAI treatment was 158 

seen to be cost-saving in the overall population and in the high-risk population.  159 

In the 30% CAR- Severity 1 scenario, (CHR: non-high-risk=1.05%; high-risk=5.25%), we 160 

estimated that over 430,000 hospitalizations would occur. 12.1 million NAI regimens would 161 

be dispensed, averting 85,922 (19.9%) hospitalizations at a cost per averted hospitalization of 162 

£1,008 in the overall population and £5,497 in the non-high-risk population. NAI treatment 163 

was seen to be cost-saving in the high-risk population.  164 

In the fourth pandemic scenario, (CHR: non-high-risk=4%; high-risk=20%), we estimated 165 

that over 1.6 million hospitalizations would occur. 14.01 million NAI regimens would be 166 

dispensed, averting 375,717 (22.9%) hospitalizations in the overall population at a cost per 167 

averted hospitalization of £1,079 in the non-high-risk population. NAI treatment was seen to 168 

be cost-saving in the overall population and in the high-risk population.  169 

We found that varying the proportion of care-seeking patients who do so within 48 hours of 170 

symptom onset, while keeping all other variables constant, lowered the percentage of averted 171 



hospitalizations in the overall population from 14.0% (assuming 100%) to 3.5% (assuming 172 

25%)  in the 2009-like pandemic scenario (Table 2, Supplemental Table 1).  173 

Our sensitivity analyses revealed that using just the middle values of input parameters in a 174 

simple multiplicative model without probability distributions was likely to overestimate the 175 

number of hospitalizations averted and underestimate the cost per averted hospitalization. For 176 

the 2009-like pandemic scenario, multiplying the middle values of input parameters (Table 2) 177 

overestimated the overall number of averted hospitalizations by 28% and underestimated the 178 

overall cost per-averted hospitalization by 34% when compared to the mean estimated from 179 

the Monte Carlo simulation (Supplemental Table 2). Similar differences in estimates were 180 

observed in the other scenarios as well.  181 

The sensitivity analyses, based on a 2009-like pandemic scenario, indicated that NAI 182 

effectiveness had the greatest impact on both the total number of hospitalizations averted, as 183 

well as on the cost per hospitalization averted (see Figure 2 for 2009 scenario). When the 184 

NAI effectiveness was varied from 19% to 83%, the resulting overall proportion of averted 185 

hospitalizations ranged between 6% and 15%, at a cost per averted hospitalization of £6,936 186 

to £19,338. The percentage of care-seeking patients who were prescribed NAI, the proportion 187 

of NAI prescriptions to non-influenza patients, and NAI treatment compliance were in the top 188 

three influential parameters for one or both outcomes (Figure 2). In our two-way sensitivity 189 

analysis we varied the treatment compliance level along with NAI effectiveness beyond the 190 

95% confidence intervals of our input parameter (from 90% effectiveness to 10% 191 

effectiveness). Increased compliance levels were consistently associated with an increased 192 

number of averted hospitalizations across NAI effectiveness estimates (Figure 3). The impact 193 

of prescribing NAIs to non-influenza ILI patients had a considerable effect on the cost per 194 

averted hospitalization. For the 2009-like pandemic scenario, this ranged from £7,983 per 195 



averted hospitalization (wastage factor=30%) to £11,032 per averted hospitalization (wastage 196 

factor=70%).  197 

Discussion 198 

Main finding of this study 199 

We found that community-based NAI treatment would avert a significant proportion of 200 

hospitalizations and deaths, particularly in high-risk patients, across the pandemic scenarios 201 

we explored in this analysis. However, a substantial number of hospitalizations and deaths 202 

would continue to occur even with community-based NAI treatment. The proportion of 203 

hospitalizations averted by NAIs could be an important consideration while planning for 204 

conditions when hospital capacity could be exceeded. Community-based NAI treatment was 205 

seen to be cost-saving for the overall population in a pandemic with a high CAR and high 206 

severity, and cost-saving for patients at high risk of complications from influenza across all 207 

the pandemic influenza scenarios tested. The value of NAI treatment for population groups 208 

not at high risk and for milder pandemic scenarios will have to be determined by careful 209 

review under country-specific willingness-to-pay thresholds and the desire to reduce the 210 

number of hospitalizations and potential hospital capacity issues.  211 

What is already known on this topic 212 

NAI treatment for pandemic influenza has generally been shown to be cost-effective, when 213 

compared to no NAI treatment(23-25, 37). Previous studies have found that NAI 214 

effectiveness is, by far, the most influential factor affecting the numbers of outcomes averted 215 

and the associated cost-effectiveness(23, 31). Results from our sensitivity analysis support 216 

this finding. A study based in the United States that used a similar model(31) showed slightly 217 

lower proportions of hospitalizations averted due to NAI treatment when compared to ours, 218 

but the difference could be because of the lower level of treatment effectiveness assumed in 219 



the U.S. study. The U.S. study further found that while NAI treatment averted many 220 

hospitalizations, large numbers of hospitalizations would remain(31), which is similar to 221 

what we have found.  222 

What this study adds 223 

We found that variations in NAI prescription rate, treatment compliance and healthcare-224 

seeking behaviour (to include the choice to seek care and the promptness in care-seeking) 225 

impacted considerably on the outcomes, suggesting that even with a drug of fixed 226 

effectiveness, factors relating to healthcare-seeking and healthcare delivery could 227 

significantly influence the total number of hospitalizations and deaths averted. These data 228 

indicate that a successful pandemic stockpiling strategy must be linked to operational 229 

procedures which optimise timely access to antivirals, widespread treatment implementation, 230 

and high levels of compliance in targeted groups.  231 

One recognised limitation of some previous economic analyses of NAI treatment has been 232 

that entire populations have been modelled homogenously without accounting for the 233 

increase in the likelihood of influenza-related care-seeking and complications in patients with 234 

underlying at-risk conditions(23, 24). In our model, we vary the propensity to seek care and 235 

CHR by patients’ at-risk status. The significance of this is that countries with limited 236 

resources could consider obtaining smaller antiviral stockpiles to target at-risk population 237 

groups and avert a higher number of hospitalizations and deaths for each antiviral course 238 

dispensed than if they adopted a treat-all approach. 239 

The CAR was an important factor in determining the number of NAI regimens that would be 240 

needed for community-based treatment. Our model showed that a highly transmissible, but 241 

low severity pandemic would require a larger NAI stockpile than a pandemic with lower 242 

transmissibility and higher severity. However, across all pandemic scenarios, the number of 243 



NAI regimens dispensed for outpatient treatment was well below the UK’s published national 244 

NAI stockpile size of almost 40 million courses of the drug(38).   245 

We have adopted a simple and transparent approach to model building in which we account 246 

for important epidemiological factors, population healthcare-seeking behaviour and service 247 

utilization rates in a range of pandemic scenarios. Our analyses are UK-focussed, but the 248 

spreadsheet tool is easily adaptable to represent other healthcare systems. While the 249 

epidemiological parameters are unlikely to change drastically by country, input parameters 250 

relating to healthcare utilization and costs will need to be replaced with country-specific ones. 251 

We provide the simple version of the spreadsheet tool (without the sensitivity analysis) in 252 

Appendix 2. We used updated NAI effectiveness estimates from seasonal influenza data, 253 

although observational data from the 2009 A(H1N1) pandemic in a high-severity (high risk 254 

of hospitalization) population suggest similar estimates of NAI effectiveness (≤48 hours from 255 

symptom onset)(39). We assumed NAI effectiveness is the same in patients with and without 256 

at-risk conditions. While there is some evidence to suggest that the level of effectiveness 257 

against hospitalization is similar for both groups (39), there is also evidence that suggests a 258 

reduction in NAI effectiveness in patients with at-risk conditions(40).  259 

Limitations of this study 260 

This study is subject to limitations. We used a decision tree model (not a transmission 261 

dynamic model) and assumed no effect of NAI treatment on transmission. There is evidence 262 

to suggest that NAI treatment, at a population level, is likely to have minimal impact on 263 

influenza transmission(41). However, decision tree models are known to be limited, 264 

especially in their ability to describe the change in influenza attack rates in different risk 265 

groups over the course of a pandemic(37). A comparison of static and dynamic models of 266 

NAI treatment for pandemic influenza concluded NAI treatment was seen to be cost-effective 267 



with both modelling paradigms; although the associated cost-effectiveness ratios were seen to 268 

differ(37). Due to a lack of evidence specific to hospitalization, we did not consider benefits 269 

of NAI treatment >48 hours of symptom onset. NAI treatment has, however, been shown be 270 

beneficial even when started beyond 48 hours from symptom onset(12). The use of NAIs 271 

may be associated with additional costs to the healthcare system due to possible adverse 272 

effects of NAIs(21) but we have not considered these costs in our model since most side 273 

effects are known to be minor(19). Finally, we have assumed that the multiplier for high-risk 274 

patients remains constant between severity scenarios resulting in a CHR as high as 20%. 275 

CHRs of 20%, even for high-risk patients, may be unlikely. 276 

Conclusions 277 

Our analyses shows that NAI treatment in outpatients can be cost-saving, particularly for 278 

population groups at high risk of influenza-related complications. Model-based estimates like 279 

these of the potential hospitalizations, deaths and costs associated with different pandemic 280 

scenarios can help countries consider different treatment options and inform stockpiling 281 

decisions while developing pandemic preparedness plans. NAI stockpiling decisions are also 282 

influenced by other costs to the healthcare system related to storage and maintenance of the 283 

NAI stockpile. Currently, the shelf-life for the 75 mg hard capsules of oseltamivir phosphate 284 

that comprise most of the NAI stockpile is estimated to be 10 years if stored as per 285 

instructions(42). However, influenza pandemics cannot be predicted, and NAI stockpiles 286 

could remain unused at the end of their shelf-life, or they may be rendered ineffective or less 287 

relevant by the development of antiviral drug resistance or newer, more effective influenza 288 

antiviral therapies. Additionally, evidence suggests that in-hospital NAI treatment may also 289 

be associated with protective effects(43, 44) and NAI treatment has been shown to be cost-290 

effective if the benefits of NAI usage are confined only to those treated in hospital(45). If a 291 

pandemic treatment policy was pursued which combined community use of NAIs to prevent 292 



hospital admission and NAI treatment of hospitalised patients to reduce mortality, then cost-293 

effectiveness and stockpile strategies across both scenarios would need to be considered. 294 

Future research in optimizing NAI distribution to risk groups during a pandemic will further 295 

inform the cost-effectiveness of stockpiling.  296 
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Table 1: Input parameters used to estimate the number of outcomes averted by 447 

neuraminidase inhibitors (NAI) treatment and the cost per averted hospitalization 448 

 
Parameter 

Value Range 
(probability 
distribution) 

Source 

Total population 62280000 Fixed (35) 

Clinical attack rate (CAR) 
 

 
 

2009 pandemic 7% Fixed Box A1, page 31 of (46) 

Transmissibility scenario 1 20% Fixed (28) 

Transmissibility scenario 2 30% Fixed (28) 

% Seeking outpatient care (non-high-risk)*    

2009 pandemic 40% 32% to 43% 
(Uniform) 

(47) 

 Severity 1 60% Fixed (28) 

 Severity 2 70% Fixed (28) 

% Seeking outpatient care (high-risk)    

2009 pandemic 51.2% 43.2 to 54.2 
(Uniform) 

Assumed from (48) 

 Severity 1 71.2% Fixed  
 

Assumed in line with: 
(48) and (28) 

 Severity 2 81.2% Fixed 
 

Assumed in line with: 
(48) and (28) 

% of high-risk individuals 30% 27% to 33% 
(Uniform) 

(49) 

Case hospitalization risk (non-high-risk) 
 

 
 

2009 pandemic 0.30% 0.27% to 0.33% 
(Uniform) 

 

From Annex G, page 171 of 
(50) 
 

 Severity 1 1.05% Fixed (28) 

 Severity 2 4.00% Fixed (28) 

Case hospitalization risk  (high-risk) 
 

 
 

2009 pandemic 1.50% 1.35% to 1.65% 
(Uniform) 

 

Assumed from page 10 of 
(29) that at-risk groups 
would have an increased 
risk of hospital admission 
by five times 

 Severity 1 5.25% Fixed 
 

Assumed in line with:  
(28) and (29) 

 Severity 2 20.00% Fixed 
 

Assumed in line with:  
(28) and (29) 

% of care-seeking patients prescribed NAI  73% 60% to 85% 
(Triangular) 

(32) 

Prescription of NAIs for non-influenza ILI as 
a % of those receiving NAIs for influenza 

40% 30% to 50% 
(Uniform) 

Assumed from (31) 



 

NAI (any time) compliance (as a %) 64% 55% to 70% 
(Uniform) 

 

(32) 

Effectiveness of NAI treatment (<48 hours 
from symptom onset) on hospitalization 
(risk reduction) 
(Intention-to-treat-infected) 

63% 83% to 19% 
(Triangular) 

Assumed for pandemic 
influenza from (19) 

Mortality risk (in-hospital) 

2009 Pandemic 5.3% Fixed (51) 

Severity 1 5.3% Fixed Assumed to be fixed 
between scenarios 

Severity 2 5.3% Fixed Assumed to be fixed 
between scenarios 

Costs 
Before being input into the model, all costs listed below were inflated to the 2017 UK Pound Sterling (£) 

(The hospital & community health services (HCHS) index) 

Cost of GP consultation £ 37  (52) and (55) 

Cost of telephone consultation £ 22  (52) and (55) 

Average (weighted) outpatient consultation 
cost 

£24.2 £22 to £37 
(Truncated log 

normal) 

 

Cost of NAI (+delivery) £ 16 Fixed (53) 

High-risk patients: Cost of Hospitalization 
due to influenza (per patient) 

£1,727 £1,263 to 
£2,075 

(Truncated log 
normal) 

(54) and (55) 

Low-risk patients: Cost of Hospitalization 
due to influenza (per patient) 

£436 £307 to £504 
(Truncated log 

normal) 

(54) and (55) 

*This includes consultations made through the National Pandemic Flu Service (NPFS) telephone line 

  449 



Table 2: Outpatient NAI treatment for averting outcomes and the cost per averted hospitalization 

  

 NAI 
regimens 
dispensed 

to 
pandemic 
influenza 
patients  

 NAI 
regimens 

dispensed to 
non-

influenza ILI 
patients 

 Total NAI 
regimens 
dispensed  

Total 
Hospitali-

zations 
 NAI costs (£)   Total costs (£)  

Hospitali-
zations 

averted (%)  

 
Increment
al cost per 

averted 
hospitaliza

tion (£)  

 Deaths 
averted

, No.  

 2009 A(H1N1) pandemic  

 High-risk patients                    

 No NAI treatment   NA   NA   NA  19,618  NA  56,713,354  NA   NA   NA  

 NAI treatment 488,833 195,533 684,367 16,662 12,397,546 63,330,048 
 2,956 
(15.1)  

           
2,238  

157 

Non-high-risk patients                    

 No NAI treatment  NA   NA   NA  9,155  NA  37,976,039  NA   NA   NA  

 NAI treatment 891,102 356,441 1,247,543 8,077 22,599,693 60,043,645 
 1,078 
(11.8)  

         
20,473  

57 

 Total population                    

 No NAI treatment  NA   NA   NA  28,773  NA  94,689,393  NA   NA   NA  

 NAI treatment 1,379,935 551,974 1,931,910 24,739 34,997,239 123,373,693 
 4,034 
(14.0)  

           
7,110  

214 

 20% CAR- Severity 1 

 High-risk patients                    

 No NAI treatment  NA   NA   NA  196,182  NA  456,499,003  NA   NA   NA  

 NAI treatment 1,942,239 776,896 2,719,135 155,069 49,258,106 425,367,141 
 41,113 
(21.0)  

 CS  2,179 

 Non-high-risk patients                                 -      

 No NAI treatment  NA   NA   NA  91,552 NA 188,534,796  NA   NA   NA  

 NAI treatment 3,819,010 1,527,604 5,346,613 75,383 96,855,827 277,409,315 
 16,168 
(17.7)  

           
5,497  

857 



 Total population                                 -      

 No NAI treatment  NA   NA   NA  287,734  NA  645,033,798  NA   NA   NA  

 NAI treatment 5,761,249 2,304,500 8,065,748 230,452 146,113,933 702,776,456 
 57,281 
(19.9)  

           
1,008  

3,036 

 20% CAR- Severity 2 

 High-risk patients                    

 No NAI treatment  NA   NA   NA  747,360  NA  1,544,470,684  NA   NA   NA  

 NAI treatment 2,215,026 886,010 3,101,036 568,740 56,176,380 1,251,387,276 
 178,620 

(23.9)  
 CS  9,467 

 Non-high-risk patients                   

 No NAI treatment  NA   NA   NA  348,768 NA 339,398,172  NA    NA   NA  

 NAI treatment 4,455,511 1,782,204 6,237,716 276,910 112,998,465 416,924,159 
 71,858 
(20.6)  

1,079 3,808 

 Total population                   

 No NAI treatment  NA   NA   NA  1,096,128  NA  1,883,868,856  NA   NA   NA  

 NAI treatment 6,670,537 2,668,215 9,338,751 845,650 169,174,845 1,668,311,434 
 250,478 

(22.9)  
 CS  13,275 

 30% CAR- Severity 1 

 High-risk patients                   

 No NAI treatment  NA   NA   NA  294,273  NA  684,748,504  NA   NA   NA  

 NAI treatment 2,913,359 1,165,344 4,078,702 232,603 73,887,160 638,050,710 
 61,670 
(21.0) 

 CS  3,269 

 Non-high-risk patients                   

 No NAI treatment  NA   NA   NA  137,327 NA 282,802,193  NA   NA   NA  

 NAI treatment 5,728,514 2,291,406 8,019,920 113,075 145,283,741 416,113,973 
24,252 
(17.7) 

           

5,497  1,285 

 Total population                   

 No NAI treatment  NA   NA   NA  431,600  NA  967,550,697  NA   NA   NA  

 NAI treatment 8,641,873 3,456,749 12,098,622 345,678 219,170,901 1,054,164,684 
 85,922 
(19.9) 

1,008 4,554 

 30% CAR- Severity 2 

 High-risk patients                    



 No NAI treatment  NA   NA   NA  1,121,040  NA  2,316,706,026  NA   NA   NA  

 NAI treatment 3,322,538 1,329,015 4,651,554 853,111 84,264,570 1,877,080,913 
 267,929 

(23.9)  
 CS  14,200 

 Non-high-risk patients                   

 No NAI treatment  NA   NA   NA  523,152 NA 509,097,257  NA   NA   NA  

 NAI treatment 6,683,267 2,673,307 9,356,574 415,364 169,497,697 625,386,237 
 107,788 

(20.6)  
1,079 5,713 

 Total population                   

 No NAI treatment  NA   NA   NA  1,644,192  NA  2,825,803,283  NA   NA   NA  

 NAI treatment 10,005,805 4,002,322 14,008,127 1,268,475 253,762,267 2,502,467,151 
 375,717 

(22.9)  
 CS  19,913 

CAR: Clinical Attack Rate; CS: Cost Saving; NA: Not Applicable 
  



Fig. 1: Decision analytical model tree comparing outcomes in ‘NAI treatment’ and ‘no NAI treatment’ groups for patients with symptomatic 

pandemic influenza 

 

Fig. 2: Probabilistic sensitivity analysis. (A) shows the impact of various parameters on total hospitalizations averted, and (B) shows the 

impact of various parameters on cost-effectiveness (2009-like pandemic scenario). The width of the bars indicate the change in the output from 

several replications when each parameter is varied over its range. NAI: Neuraminidase inhibitors; ILI: Influenza-like illness 

 

Fig. 3: Impact of varying treatment compliance on hospitalizations averted at different NAI effectiveness estimates.  

This plot is based on a 2009-like influenza pandemic where the number of hospitalizations in the base-case scenario was estimated to be 24,739; 

NAI: Neuraminidase inhibitor 

 


