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Abstract

The increased use of composite materials in modern aerospace and automotive structures, and

the broad range of launch vehicles’ operating temperature imply a great temperature range for

which the structures has to be frequently and thoroughly inspected. A Thermal Mechanical Anal-

ysis (TMA) is used to experimentally measure the temperature dependent mechanical properties

of a composite layered panel in the range of -100◦C to 150◦C. A hybrid wave finite element

(WFE)/finite element (FE) computational scheme is developed to calculate the temperature de-

pendent wave propagation and interaction properties of a system of two structural waveguides

connected through a coupling joint. Calculations are made using the measured thermomechanical

properties. Temperature dependent wave propagation constants of each structural waveguide are

obtained by the WFE approach and then coupled to the fully FE described coupling joint, on which

damage is modelled, in order to calculate the scattering magnitudes of the waves interaction with

damage across the coupling joint. The significance of the panel’s glass transition range on the

measured and calculated properties is emphasised. Numerical results are presented as illustration

of the work.
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1. Introduction

Composite structures are being increasingly used in many industrial fields, such as aerospace

and military, due to their versatile physical and mechanical properties. However, aerospace and

automotive structures operate within varying temperature range, which is typically from -100◦C

to +200◦C for launch vehicles and from -60◦C to +50◦C for aircraft and automobile structures.

Despite their versatility, composite structures may exhibit a great variety of structural failure

modes for which they must be thoroughly inspected in order to ensure continuous usage and struc-

tural integrity. These modes which include delamination, notch, fibre breakage, matrix crack and

debonding, occur mainly as a result of loads during service and inaccuracies during manufacturing.

Aeronautics industries spend approximately 27% of an average modern aircraft’s lifecycle cost on

offline inspection and repair of the structural failures [1]. Therefore, the non-destructive damage

detection and evaluation is of paramount importance for monitoring the condition and residual life

estimation of in-service aerospace structures. Of particular interest is thermal dependent damage

detection in composite layered structures.
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Thermomechanical behaviour of laminated structures have been conducted on various topics.

In [2], the elastodynamic response of a polymeric laminate subjected to a discrete range of tem-

peratures at a constant relative humidity is studied, with damping and dynamic longitudinal elastic

modulus presented as a function of temperature dependent. In [3, 4], the temperature dependent

elastic constant and dynamic shear properties of an epoxy resin and its carbon fibre-reinforced

composite are presented. More recently, the effect of high temperature on the thermomechanical

response of various composite structures, such as multi-layered plates and shells [5], glass epoxy

composites [6, 7] and carbon fibre epoxy composites [8], [9], has been extensively assessed. More-

over, temperature dependent wave based detection of structural damage has been an extensive field

of study over the recent years. In [10, 11] baseline subtraction approach is used to predict temper-

ature effect on guided wave signal and to optimally enhance the long term stability of the signal.

The approach is extended in [12, 13] to reduce the number of baseline measurements to be used.

Pitch-catch approach is used to numerically predict and experimentally measure the effect of low

[14] as well as moderately [15] and extremely [16] elevated temperature on the lamb wave re-

sponse in sandwich panels and aluminium plates respectively. This is extended in [17] to cover

a wider range of temperature in a large frequency range. Semi analytical finite element (SAFE)

model is developed in [18] to predict guided wave response under varying temperature in plate.

More recently co-integration technique is developed to control the effect of varying temperature

in damage detection of structure based on spectral lines analysis [19, 20], wavelet decomposition

[21] and direct Lamb wave responses [22]. To the best of the authors’ knowledge, FE based com-

putational scheme is quite limited in this field of research and the investigation of thermal effect

on wave interaction in complex and arbitrarily layered composite structures is almost in-existent

in the open literature.

Wave based damage detection methods are based on calculating the reflection and transmission

coefficients at the point of inhomogeneity or structural discontinuity. The inhomogeneity can be in

the form of joints such as point and finite joint [23], beam connection [24], plate and stiffened rib

connection [25], angled joint [26], curved junction [27], T-junction [28] and L-junction [29, 30],

or in form of defects, such as crack [31] and delamination [32] along the structure. It has been

shown that a fraction of an incident wave will be reflected due to an interaction with any of these
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forms of inhomogeneity. Calculations of the scattering coefficients and vibrational response have

been exhibited using various numerical methods, such as spectral element method [33], boundary

element method [34], finite element method [35], decomposition method [36] and probabilistic

optimisation [37]. Other methods include combined Wave and Finite Element (WFE) method

[30, 38], finite and spectral element method [39] and finite and strip element method [40]. Among

these numerical methods, the WFE method [30, 38, 41, 42] is one of the most efficient computa-

tional methods suitable for predicting the vibrational response and wave interaction with damage

in various types of structures. The method has recently found applications in predicting the vi-

broacoustic and dynamic performance of composite panels and shells [43–45], with pressurized

[46] and complex periodic structures [47–49] having been investigated. The variability of acoustic

transmission through layered structures [50], as well as wave steering effects in anisotropic com-

posites [51] have been modelled through the same methodology. Therefore, application of this

method to predict thermal effect on wave interaction in composite structure will be a significant

contribution to the field of non-destructive damage detection using wave based models.

The main novelty of this article is to exhibit the effect of temperature on the wave properties of

a composite layered panel and consider the interaction of the waves with damage as a function of

temperature. The temperature dependent mechanical properties of a carbon epoxy facesheet mate-

rial and a honeycomb core material, constituting the layered panel, are experimentally calculated

using a Thermal Mechanical Analysis. A structural system consisting of two healthy waveguides

connected by a coupling joint, on which damage is described, is considered. A wave finite element

approach is used to calculate the wave propagation constants of each waveguide. These are then

coupled to standard finite element model of the coupling joint, in order to calculate waves-damage

interaction scattering coefficients. All calculations are temperature dependent.

The paper is organised as follows. Section 2 presents the experimental measurement of the

temperature dependent mechanical properties of the facesheet and core materials. Section 3

presents the calculations of temperature dependent wave properties and dispersion characteris-

tics, as well as the computation of temperature dependent wave scattering properties. Numerical

results are presented in Section 4 together with a discussion of the findings. Finally, Section 5

presents concluding remarks of the work.
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2. Measurement of Temperature Dependent Mechanical characteristics

A Thermal Mechanical Analysis (TMA) device is used to measure the temperature dependent

sandwich panel comprising of a carbon epoxy facesheet and a quasi-isotropic honeycomb core,

which absorbs and adheres to the resin in which the facesheet is impregnated. In the polymerisa-

tion process, the resin serves as the facesheet matrix as well as the binding agent. The nominal

mechanical characteristics of the composite panel’s constituents at 20◦C are shown in Table 1.

[Table 1 about here.]

[Figure 1 about here.]

Measurements are made at a temperature range of -5◦C to 150◦C and then extrapolated for the

results of temperatures up to -100◦C by assuming smooth quadratic expansion of the curves. This

extrapolation is done to capture the lower limits of the operating temperature range of the com-

posite panel as an aerospace structure. Such extrapolation is generally acceptable for composite

materials having no significant transition (such as crystallisation) in their metallography structure

at low temperature range (such as those below -5◦C). Temperature dependent Young’s modulus of

the facesheet material is measured using the TMA device, as shown by configuration in Fig. 1, by

subjecting a segment of the facesheet to an initial longitudinal traction test before imposing a 1 Hz

excitation as displacement to the segment. The corresponding material loss factor is determined

as tanδ = E1/E2, where δ is the phase lag between the stress and strain, E1 the loss modulus and E2

the storage modulus of the material. A reduction ratio, R f , calculated as R f = Ea/En is determined

at each temperature of the measured Young’s modulus, with Ea the measured (actual) values at

respective temperature and En the nominal value as given in Table 1. This is used to calculate

the actual values of other mechanical characteristics of the material as Ea = R f × En at each cor-

responding temperature using the nominal value of each of the mechanical characteristics. The

results of the experimental measurements and the corresponding material loss factor are presented

in Fig. 2. Measured elastic modulus decreases while the corresponding material loss factor in-

creases slightly with temperature until 110◦C, where the glass transition of the resin occurs. There
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is a drastic increase of the loss factor to the peak level at this temperature range. Beyond this tem-

perature, the elastic modulus decreases rapidly with temperature while the loss factor decreases,

then start increasing again due to the high viscosity of the resin at this temperature.

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

On the other hand, temperature dependent shear modulus of the honeycomb core is measured

using the TMA machine by subjecting a segment of the core to shear deformation as shown in

the configuration in Fig. 3. In order to avoid any influence of the elasticity of the facesheet on

the shear deformation of the core’s segment, a steel sheet layer is attached on it to increase its

rigidity. Similar calculations, as described in the Young’s modulus measurement, are carried out

to determine the shear modulus and the corresponding dissipation ratios of the quasi-isotropic

honeycomb core. The results of the temperature dependent shear modulus measurements and

corresponding dissipation ratios are shown in Fig. 4. Results measured in this case show similar

trend as in the case of the facesheet material.

3. Calculation of Temperature Dependent Wave characteristics

3.1. Wave Propagation Modelling

One dimensional elastic wave propagation along x direction of an arbitrarily layered sandwich

panel is considered. A segment of the periodic waveguide is meshed using a single finite element

along the axis of wave propagation and an arbitrary number of elements in other directions Fig.

6. The left and right hand sides of the segment both have the same number of nodes and degrees

of freedom (DOFs) [52]. The problem can be condensed using the transfer matrix approach [53].

The temperature and frequency dependent dynamic stiffness matrix (DSM) is determined as

D(ω, T ) = K(T ) − ω2M(T ) + iωC(T ) (1)
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where K, M and C are the stiffness, mass and damping matrices of the FE model for each consid-

ered temperature T .

The dynamic equilibrium of the model is obtained by partitioning the DSM with respect to the

the left, right and internal DoFs of the segment as
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[Figure 5 about here.]

where q and F are the displacement and internal force vectors respectively. The internal force

vector responsible for transmitting the wave from one element to the other within the structure,

hence it is non-zero, even for a free wave motion where no external load is applied [52]. In the

case where no external forces are exerted on the internal nodes (FI = 0), classical condensation

techniques [54], such as the Guyan-type condensation, is applied to condense the internal DoFs

entries as given in Eq. (2). The finite element mesh of the section of the segment with the internal

nodes condensed is shown in Fig. 5.
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where the matrix D∗ is the reduced dynamic stiffness matrix. Therefore, the continuity condition

and equilibrium of forces equations at the interface of two consecutive periodic segments r and

r + 1 are given as

qR
(r) = qL

(r+1); FR
(r) = −FL

(r+1) (5)

Combining Eqs. 4 and 5, gives the relation of the displacement and force vectors of the left

hand side and the right hand side of the segment as
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where matrix T is the transfer matrix expressed as
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As the wave is propagating only in the x-direction, a constant of propagation, λ, relates the

left side’s displacement and internal force of the segment to that of the right side according to the

Bloch’s theorem [55] as

λqL
(r) = qR

(r);−λFL
(r) = FR

(r) (8)

Combining Eqs.6 and 8, the free wave propagation can be defined by the eigenvalue problem
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whose solution yields the temperature dependent constant of propagation, λ j and the wavenum-

bers, k j as

k j(ω, T ) = −
ln
(

λ j(ω, T )
)

iδx

, j = 1, 2, ...., 2n (10)

where subscript j corresponds to wave type j and n the number of DoFs one side of the segment

and δx the length of a periodic segment.

The wave modes obtained at each frequency and temperature is post processed and partitioned

as
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where inc and re f denote the positive and negative going waves respectively. Assuming modal

decomposition,
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where Q denotes the amplitudes of the wave modes. The physical domain, where the motion

is represented in terms of displacements and nodal forces, has been transformed into the wave

domain, where the motion is described in terms of the incident and reflected wave amplitudes.

3.2. Wave Dissipation Modelling

The governing displacement relation for time harmonic wave motion, according to Bloch’s

theorem [55] can be given as

w = Wei(ωt−kx) (13)

where w is the displacement of the wave motion, W the maximum amplitude, k the wavenumber,

x the axial distance travelled along the structure, t the time and ω the wave frequency.

The dissipation ratio of the wave after travelling over a certain length along the structure can

be determined as

dr = 10 log
A1

A0
(14)

dr is the dissipation loss of the travelling wave in decibel per unit length, A0 and A1 the amplitudes

at the reference points in consideration. The amplitudes of the wave, A0 and A1, at a reference

points x0 and x1, can be expressed as

A0 = Aei(ωt−kx0 ); A1 = Aei(ωt−kx1 ) (15)

where A is the maximum amplitude of the wave. Eq. (14) can be transformed into

dr = 10
ln A1

A0

ln 10
(16)

which can be combined with Eq. (15) and considering the that ω and t are constant at the two

reference points. Upon evaluating the expression obtained, the wave dissipation loss per unit
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length can then be given as

dr = 10
|kim|

ln 10
(17)

where |kim| is the absolute value of the imaginary part of the wavenumber.

3.3. Calculation of Wave Scattering Coefficients

The degree of wave scattering, due to wave interaction with damage along the system, is de-

termined using the modes properties of the waves that impinges on the damage. The reflection

coefficient is the fraction of the incident wave reflected while the transmission coefficient is the

fraction of the wave transmitted beyond the damage. As the wave propagation is unidirectional

and impinging at 90o, no refraction is expected.

[Figure 6 about here.]

The description of the system is based on the assembly of a number of identical waveguides

connected through a joint, referred to as the coupling element/joint. A system of two coplanar

waveguides connected through a coupling joint, as shown in Fig. 6, is considered. In this ap-

proach, the connecting surfaces of the waveguides with the coupling element must have the same

mesh. The method can be extended to n number of waveguides [56] and to waveguides connected

at angles [30]. Waves propagate from the two healthy waveguides through the joint on which

structural damage (notch or crack) is modelled. Wave interaction coefficients are calculated by

coupling the WFE calculated wave propagation constants of the waveguides to the standard FE

model of the joint.

The coupling joint is modelled in a similar manner as described in Section 3.1, but its segment

is fully meshed (using its whole length) along the axis of wave propagation rather than using a

single element as in the case of the WFE model. Its DSM are partitioned, into corresponding

components of interface and non-interface nodes in the waveguides-coupling joint assembly, as
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where subscript 1 corresponds to the DoFs of the interface nodes of the two waveguides with

the coupling joint, and subscript 2, the non-interface nodes. Eq. (18) can then be condensed to

determine the dynamic stiffness matrix, DC
∗, of the interface nodes’ DoFs in the assembly, as

given in Eq. (15).

D∗C = D11 − D12D−1
22 D21 (19)

With the assumption of a similar mesh at the connecting interface, then the nodal displacement

and internal force vectors can be given as
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where subscripts 1 and 2 denote the waveguides to the left and right sides of the coupling joint

respectively. The dynamic equilibrium equation of the assembly can then be given as
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Eq. (21) in wave domain is given as
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22 can be rearranged in terms of the amplitudes of reflected and incident waves, and simplified

as
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where
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4. Numerical Results

The application of the approach developed is applied to the layered panel for predicting its

temperature dependent wave propagation constants and wave interaction scattering coefficients

as presented in Section 3. Calculations are made over temperature range of -100◦C to 150◦C.

FE modelling is done in ANSYS 14.0. The layered panel is meshed using SOLID185 elements,

which comprises a 3D displacement fields and is defined by eight nodes having three degrees of

freedom at each node: translations in the nodal x, y, and z directions. It also possesses formulation

capability for simulating viscoelastic layered structures [57]. The temperature dependent mass and

stiffness matrices extracted from the FE solution of the modelling analysis in ANSYS are post-

processed in MATLAB to obtain the required wave properties of the model as discussed Section

3.

4.1. Temperature Dependent Wave Properties

The temperature dependent wave propagation constants of the viscoelastic layered panel is

sought as presented in Sections 3.1 and 3.2. The panel’s temperature dependent mechanical prop-

erties (elastic and shear moduli) and their respective material loss factor of the materials are pre-

sented in Figs. 2 and 4. The thickness of the core, hc, is 12.7 mm while that of the facesheet, hc, is

1.0 mm. The dimension of the panel is 1.0 mm × 1.0 mm. The finite element model of the panel

is made using eight elements to discretise each of the facesheets and five elements to discretise the

core, resulting in a total of twenty-one elements.

[Figure 7 about here.]

[Figure 8 about here.]

The wavenumber plots of the propagating waves along the panel are shown in Figs. 7 and 8.

Four propagating waves, in-plane and out-of-plane flexural waves as well as torsional and axial

waves, exist below the frequency of 10 kHz. The cut-on frequencies and number of waves within

the considered frequency range depend on temperature as shown in Fig. 7. While at 25◦C, there are

nine waves within the the frequency range with cut-ons occurring at about 10kHz, 18kHz, 25kHz,
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75kHz and 90kHz as shown in Fig. 7a, there are eleven waves at 150◦C, with cut-ons occurring

at about 10kHz, 12kHz, 22kHz, 68kHz, 78kHz, 102kHz and 109kHz as shown in Fig. 7b. Some

of the waves exhibit modeshape change. This is observed as the point of curvature along the lines

of the waves. Examples of such are the mode change of the flexural mode to axial at about 65kHz

and of the axial mode to flexural at about 18kHz as shown in Fig. 7. The effect of temperature

on the wavenumber magnitude can be analysed using the temperature dependent torsional wave

dispersion relation shown in Fig. 8. Little difference in wavenumber is observed between -100◦C

and 90◦C, whereas a significant difference of about 30% is observed between 90◦C and 110◦C, and

beyond 110◦C, the wavenumber increases at a steady rate. It is therefore evident that the panel’s

wavenumber will exhibit significant difference within and beyond the glass transition temperature

range (90◦C to 110◦C).

[Figure 9 about here.]

The temperature dependent wave transmission loss of the layered panel is calculated using

the approach presented in Section 3.2. The torsional wave transmission loss as a function of

temperature is presented in Fig. 9. In a similar trend to the wavenumber results, the difference in

the maximum dissipation ratio just before and after the glass transition range, is about 30% and

maximum loss ratio is obtained within the range.

4.2. Temperature Dependent Wave Scattering Coefficients

The temperature dependent waves scattering coefficients of the waves interaction with damage

along the layered panel is calculated as presented Section 3.3. Two forms of damage are studied,

notch and crack. Notch is modelled by deleting elements along the line of the damage, as shown

in Fig. 10. Crack is simply a notch of zero width. It is created by disconnecting the connecting

nodes along the line of the crack to indicate surface breaking due to the crack [58].

As earlier stated, a system of two waveguides connected through a coupling joint(on which the

damage is modelled) is considered. Each waveguide is a sandwich panel, comprising a honeycomb

foam core and the upper and lower carbon fibre facesheets. The thickness of the core, hc, is 10

mm while that of the lower facesheet, hc1, is 1.0 mm and the upper facesheet, hc2, is 2.0 mm. The
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dimension of the panel is 1.0 mm × 5.0 mm. The panel is meshed using 1 mm (in each direction)

elements. Hence, each waveguide has a total of 40 elements; 10 in the upper layer, 25 in the core

and 5 in the lower layer. The coupling joint is modelled in the same manner as three segments of

each waveguide in length, as shown in Fig. 6.

[Figure 10 about here.]

In the case of notch model, notch of 1 mm width and 2 mm depth is located at 1 mm from the

left edge of the coupling joint. Similarly, a crack of 2 mm depth is modelled in the same location.

In each case of the damage models, the WFE model of each waveguide is solved, then coupled

with the solution of the FE model of the coupling element as explained in Section 3.3.

[Figure 11 about here.]

[Figure 12 about here.]

[Figure 13 about here.]

[Figure 14 about here.]

[Figure 15 about here.]

[Figure 16 about here.]

In both the crack and notch models, four classical propagating waves, which are flexural (in-

plane and out-of-plane), torsional and axial waves, exist in the frequency range within 0.2kHz

and 120kHz. Results of the reflection coefficients magnitude of these waves for the crack model

are shown in Figs. 11, 12 and 13. Scattering coefficient trends of the axial and torsional waves

show more sensitivity to change in temperature at higher frequencies in the range above 60kHz,

while that of the flexural wave shows significant difference only in the range 25kHz to 85kHz but

insignificant to temperature change outside this frequency range. The effect of temperature on the

reflection coefficient below, within and after the glass transition temperature varies significantly.

Below the glass transition temperature, there exist slight increase in the reflection coefficients of all
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the wave types with a maximum difference of about 10% per 50◦C change in temperature. Above

the glass transition temperature, a considerable difference is observed with respect to temperature

change with an observed difference of about 28% per 50◦C change in temperature. Results for the

reflection coefficients magnitude as a function of temperature for the notch model are presented in

Figs. 14, 15 and 16. Compared to the notch model results, similar trend is observed in the crack

model for the wave interaction coefficients relationship with temperature change, especially with

regards to the glass transition range. Generally, the significance of the glass transition temperature

range on the scattering properties along the panel is quite similar to that obtained for the panel’s

thermomechanical characteristics and wave propagation constants

5. Concluding remarks

The temperature dependent mechanical characteristics of a quasi-isotropic sandwich panel are

presented in this article. The panel is made of two materials, carbon epoxy facesheet, impregnated

in the resin and draped over the mould, and a quasi-isotropic honeycomb core. The thermome-

chanical characteristics of each of these materials are separately measured experimentally and it

is observed that there is a large divergence of the material loss factor, elastic and shear moduli

especially within and above the glass transition temperature of the resin. The thermomechanical

characteristics are then used to determine the temperature dependent wave propagation proper-

ties of the panel using a wave finite element approach. An idealised system of two waveguides

connected through a coupling element is considered. Two forms of damage; crack and notch are

modelled along the coupling element. The wave finite element modelling of each waveguide seg-

ment is then coupled with the full finite element model of the coupling element (joint), on which

damage is modelled, in order to calculate the temperature dependent scattering coefficients of the

waves interaction with the damage. As in the case of the experimental results for the moduli and

the material loss factor, the numerically predicted wave propagation properties and the wave scat-

tering coefficients exhibit significant difference in their results before the glass transition tempera-

ture compared to that after the glass transition temperature. It can be concluded that temperature,

especially at glass transition range, is a significant factor that should be taken into consideration in

the design process of aerospace material in order to improve its wave response performance.
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Figure 1: Configuration of a segment of the facesheet traction test in the TMA device
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Figure 2: Experimentally measured temperature dependent elastic modulus (-) and material loss factor (· · · ) for the
facesheet material
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Figure 3: Configuration of a segment of the core shear deformation in the TMA device
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Figure 4: Experimentally measured temperature dependent shear modulus (-) and material loss factor (· · · ) for the
honeycomb core material
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Figure 5: Finite element mesh of the section of the waveguide’s segment
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FE model of the coupling element WFE model of each waveguide

Figure 6: Caption of a system of two coplanar waveguides connected through a coupling joint/element, the WFE
model of each waveguide and standard FE model of the joint
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(a) 25◦C
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Figure 7: Dispersion relations for waves in the composite panel at 25◦C and 150◦C
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Figure 8: Dispersion relations for torsional waves in the composite panel at -100◦C (o), 25◦C (+), 90◦C (*), 110◦C
(x) and 150◦C (· · · )
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Figure 9: Predicted temperature dependent dissipation ratio of the layered panel for flexural wave at -100◦C (o), 25◦C
(+), 90◦C (*), 110◦C (x) and 150◦C (· · · )
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Figure 10: FE mesh of the coupling element showing region of the notch
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Figure 11: The temperature dependent reflection coefficient magnitude of the flexural wave from cracked joint of the
panel at -100◦C (o), 25◦C (+), 90◦C (*), 110◦C (x) and 150◦C (· · · )
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Figure 12: The temperature dependent reflection coefficient magnitude of the torsional wave from cracked joint of the
panel at -100◦C (o), 25◦C (+), 90◦C (*), 110◦C (x) and 150◦C (· · · )
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Figure 13: The temperature dependent reflection coefficient magnitude of the axial wave from cracked joint of the
panel at -100◦C (o), 25◦C (+), 90◦C (*), 110◦C (x) and 150◦C (· · · )
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Figure 14: The temperature dependent reflection coefficient magnitude of the flexural wave from notched joint of the
panel at -100◦C (o), 25◦C (+), 90◦C (*), 110◦C (x) and 150◦C (· · · )
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Figure 15: The temperature dependent reflection coefficient magnitude of the torsional wave from notched joint of the
panel at -100◦C (o), 25◦C (+), 90◦C (*), 110◦C (x) and 150◦C (· · · )
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Figure 16: The temperature dependent reflection coefficient magnitude of the axial wave from notched joint of the
panel at -100◦C (o), 25◦C (+), 90◦C (*), 110◦C (x) and 150◦C (· · · )
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Table 1: Nominal mechanical properties of the composite panel’s constituents at 20◦C

Carbon Epoxy Honeycomb foam

E = 54 GPa Ex = 85 MPa
ρ = 1410 kg/m3 Ey = 85 MPa
ν = 0.09 ρ = 48 kg/m3

νxy = 0.23
Gyz = 44 MPa
Gxz = 44 MPa

38


