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Abstract—Novel designs for the gain elements in electron 

multiplying (EM) CCDs have been implemented in a device 

manufactured in a low voltage CMOS process. Derived with help 

from TCAD simulations, the designs employ modified gate 

geometries in order to significantly increase the EM gain over 

traditional structures. Two new EM elements have been 

demonstrated with an order of magnitude higher gain than the 

typical rectangular gate designs, achieved over 100 amplifying 

stages and without an increase in the electric field. The principles 

presented in this work can be used in CMOS and CCD imagers 

employing electron multiplication in order to boost the gain and 

reduce undesirable effects such as clock-induced charge 

generation and gain ageing.   

 
Index Terms—Electron multiplying charge coupled devices 

(EMCCDs), impact ionization.  

I. INTRODUCTION 

LECTRON Multiplying Charge Coupled Devices (EM 

CCDs) are widely used in photon-starved applications due 

to their ability to achieve deep sub-electron readout noise 

(<0.2 e- RMS), allowing single photon detection at video 

frame rates [1]. In EMCCDs the photogenerated charge is 

amplified by impact ionization (II) as it passes through a 

modified serial readout register, with the gain being typically 

about 1% per EM stage. After hundreds of stages the signal 

can be amplified by a factor as large as several thousand, and 

this gain effectively reduces the readout noise of the output 

amplifier.  

EMCCDs have been available commercially for nearly two 

decades and are staple in numerous applications requiring low 

light level imaging. Recently, devices with similar 

functionality have been implemented in CMOS technology, 

taking advantage of the smaller feature sizes of the 

manufacturing processes and introducing new ideas such as 

reciprocating charge transfer and EM within a pinned 

photodiode [2][3].  

Fig. 1 shows the operating principles and the typical 

structure of the gain element in EMCCDs, built as a 4-phase 

device. Electrons stored under P1 are transferred through a 

region with high electric field developed between P2DC and 

P2HV, causing II in the process. Typically only a small 

 
Manuscript received February 20, 2018.  
Konstantin D. Stefanov, Alice Dunford and Andrew D. Holland are with 

the Centre for Electronic Imaging (CEI), The Open University, Walton Hall, 

Milton Keynes, MK7 6AA, UK (e-mail: Konstantin.Stefanov@open.ac.uk). 
   

fraction of the transferred electrons, of the order of one 

percent on average, undergoes II. The gate P2DC is held 

static, while P2HV is clocked with voltages which could 

exceed 40 V in some EMCCDs. The gates P1 and P3 are 

operated with normal clock amplitudes. This clocking scheme 

is necessary because the region of high electric field has to be 

established before the charge passes through it. It takes only a 

few nanoseconds for the majority of the electrons to transfer 

from one gate to the next, and this is usually much shorter than 

the rise time of the gate voltages. If one gate in a CCD is 

simply driven to a high voltage without maintaining a 

potential barrier in front of it as shown in Fig. 1, most of the 

electrons will be transferred before the field becomes high 

enough, resulting in little or no EM gain.  

The P2HV voltage is selected in order to achieve the 

desired EM gain, typically in the 100 to 1000 range, using 

several hundred amplifying stages. Commercial devices are 

routinely operated at pixel rates reaching 30 Mpix/s using 

suitable high voltage drivers, while keeping the power 

dissipation acceptable. Many practical aspects of EMCCD 

operation and their supporting circuits are given in [4]. The 

gain is controlled by the electrical field developed between 

P2DC and P2HV, and can be increased by higher potential 

difference or by reducing the inter-gate gap. However, 

maximizing the electric field is not the best route to higher 

gain because several undesirable effects begin to appear, as 

described below. Achieving a balance between the target EM 

gain while keeping the secondary effects in check is very 

important for good device performance.  

Despite the recent advances in CMOS image sensors with 

ultrahigh conversion gain and sub-electron readout noise 

[5][6], EMCCDs are superior in many photon-counting 

applications, such as single cell or molecule imaging [7]. They 

are also considered for the WFIRST space telescope aiming to 

directly detect exoplanets [8]. The challenges in such 

demanding applications are to minimize the effects from two 

of the main shortcomings of EMCCDs – generation of 

spurious clock-induced charge (CIC) [8] and gain ageing [9].  

CIC occurs due to parasitic II in the multiplication register, 

as well as in the image area where no high voltages are used. 

The source of CIC are holes which can be accelerated by high 

electric fields on their return from interface traps to the 

channel stops and undergo II, with the electrons collected as 

parasitic charge. The standard practice to prevent this in the 

multiplication register is by enclosing the HV gate completely 

within the CCD buried channel [10], as shown in Fig. 1(c). 
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This is crucial for reducing the average CIC below 10-2 e-

/pixel, suitable for a practical device, but the parasitic signal 

can still be detrimental in single photon imaging using high 

EM gains.  

Ageing is an undesirable decrease of EM gain over time, 

attributed to injection of hot carriers into the gate dielectric 

and creation of defects at the Si-SiO2 interface by them. 

Trapped holes under P2DC or trapped electrons under P2HV 

decrease the effective potential difference [11], leading to 

lower EM gain. 

Both CIC and ageing are exacerbated at high EM gains 

because the impact ionization rate increases exponentially 

with the electric field [12]. Naturally, the voltage applied at 

the HV gate should be kept as low as possible to reduce any 

detrimental effects, however this reduces the EM gain as well. 

Instead, it could be possible to employ techniques aimed at 

increasing the EM gain while keeping the same high voltage, 

or conversely, to reduce the voltage at the same gain. This is 

expected to lead to reduced CIC, gain ageing and power 

dissipation, and is the subject of this paper.  

II. DESIGN CONSIDERATIONS 

A. Simulations of Charge Transport in EMCCDs 

Simulations with TCAD tools can reveal a great deal of 

information about the EM process, showing the path electrons 

take through the structure, the electrostatic potential, and 

where EM occurs [11]. Further detail can be obtained from 

simulations in 3D and this is essential for the visualization of 

the electron path.  

Figure 2 shows a simulation of an EMCCD gain element 

midway through the transfer process as the charge moves from 

P1 to P2HV. The simulation was performed using tools from 

[13] for a model representative for the device described in 

Section III. Figure 2(a) shows an iso-surface of the electron 

concentration at 1012 cm-3, where it can be seen that the path 

taken by the electrons is nearly as wide as the leading edge of 

P2HV. Figure 2(b) shows an iso-surface of the impact 

ionization rate at the same time, where it is apparent that most 

of the EM occurs at the leading edge of P2HV near the center 

of the gate.  

Fig. 3 displays the electric field and the electron 

concentration in a cross section though the middle of the 

buried channel for the model in Fig. 2 at the same point in 

time. Significant EM only occurs at depths up to 0.4 µm 

below the Si-SiO2 interface, as further down the electric field 

drops below 105 V/cm. The electric field responsible for EM is 

almost entirely determined by the size of the inter-electrode 

gap and the voltages applied to the gates. 

We can see that most of the signal electrons skim past the 

region with the highest electric field developed near the inter-

gate gap, and undergo II at fields much lower than the 

maximum available in the device. In the presented simulation 

the charge is completely transferred from P1 to P2HV in 2 ns, 

and spends even shorter time in the high field region. The path 

 
Fig. 1. Cross section and a potential diagram of an EMCCD gain element 

before (a) and during charge transfer (b), when II occurs. Top view of the 

gain element (c).  

 
 

Fig. 2.  TCAD simulation of an EM gain element using the design in Fig. 1(c) 

showing iso-surfaces of the electron concentration at 1012 cm-3 (a) and the 
impact ionization rate at 1021 cm-3s-1 (b) at a moment in time when 50% of the 

charge has been transferred from P1 to P2HV. The signal charge is 900 e-.  

 

 
Fig. 3. Electric field and electron concentration (in cm-3, presented as black 

contour lines) corresponding to Fig. 2, with P2HV = 15 V and P2DC = 2 V. 
The field developed in the gap between P2HV and P3 on the right (not fully 

shown) is similar to the field between P2HV and P2DC, but does not take 

part in the EM process. 



of the electrons is inevitably towards P2HV where the 

potential is the highest, and where they get stored around the 

center of the gate. This trajectory does not fully overlap the 

region with the highest electric field, and is not optimal for 

achieving the highest EM gain.  

The observations in Fig. 2 and Fig. 3 present at least two 

possible avenues to address the desired increase of EM gain. 

One possibility follows from considering the expression (1) 

[12] for the electron-hole generation rate 𝐺 from impact 

ionization, showing that it is proportional to the electron 

current density 𝐽𝑛. In (1) 𝛼𝑛 is the ionization rate for electrons 

and 𝑞 is the elementary charge. Impact ionization by holes is 

ignored because it is at least an order of magnitude lower than 

that of electrons at low electric fields [14][15].  

𝐺 = 𝛼𝑛𝐽𝑛 𝑞⁄           (1) 

In principle, if 𝐽𝑛 could be increased while keeping 

everything else the same, 𝐺 should increase too. This can be 

achieved by changing the shape of the P2DC and P2HV 

electrodes so that the signal electrons are coerced to travel in a 

narrower path when crossing under the P2DC-P2HV gap. An 

example of such design is shown in Fig. 4(a), and the 

corresponding simulation result is in Fig. 5(a) and Fig. 5(b). 

The “spike” protrusions from P1 and P2HV towards P2DC 

change the potential distribution so that small signal packets 

are transported in a narrow path around the center of the 

buried channel. This is effective in increasing the current 

density, and we can see in Fig. 5(b) that the region with the 

highest impact ionization rate largely coincides with the 

electron path. This is the desired distribution as it increases the 

probability that an electron can cause impact ionization.  

 The second possibility is to try to increase the chance of 

EM by increasing the effective length of the high field region 

L in Fig. 1(a), but without changing the magnitude of the field 

itself. As shown in [16] from basic considerations, the EM 

gain is exponentially dependent on L, therefore even a modest 

increase could substantially boost the gain.    

In Fig. 2(a) we can see that the charge flow crosses 

perpendicularly to the inter-gate gap, spending minimum time 

under it. However, if the leading edge of P2HV is not straight, 

so that in certain parts the electrons could travel at a smaller 

angle to the gap or even parallel to it, the time spent in or near 

a high-field region could increase, thus increasing the effective 

length L. The design in Fig. 4(b) achieves that by breaking the 

leading edge of P2HV into 9 segments, 4 of which are parallel 

to the electron path. Fig. 5(c) and Fig. 5(d) show how the 

electron path and the ionization rate have been affected by this 

gate shape. In addition, the width of the electron flow is now 

wider compared to the simulation in Fig. 2(a) due to the 

increased gate area in the two leading corners, which changes 

the potential distribution. In Fig. 5(d) we can see that 

significant II occurs in both corners of the P2HV gate, in 

contrast with the rectangular design in Fig. 2(b). This change 

in the spatial distribution of the ionization rate is achieved 

without increasing the magnitude of the electric field, which is 

determined almost entirely by the potential applied across the 

fixed inter-gate gap.  

It should be noted that both designs in Fig. 4 have identical 

number of segments in the leading edge of P2HV, four of 

which are parallel to the electron flow.  Although the leading 

edge of P2HV in Fig. 4(a) is segmented too, the simulation in 

Fig. 5(a) indicates that only two of the four parallel edges 

could take any part in the EM process, while all four parallel 

edges are active in the design in Fig. 4(b). The markedly 

different electron flows suggests that any differences in EM 

gain are unlikely to be due only to the number of parallel 

edges used. Simulations indicate that the charge transfer times 

in the modified EM elements in Fig. 5 are nearly identical to 

the design in Fig. 2, given the same operating voltages.    

By calculating the difference in the size of the signal packet 

after a transfer, with and without an impact ionization model 

turned on, the simulations presented in Fig. 5 indicate that the 

gain of the two new proposed EM elements is higher than in 

the traditional design in Fig. 2. However, quantifying the 

magnitude of the gain improvement was found to be unreliable 

due to the challenges in simulating II in sub-micrometer 

devices [17], further exacerbated by the conditions in 

EMCCDs, where the charge spends very short time in 

 
Fig. 4. Proposed gate geometries for increased EM gain: “spike” (a) and 

“staircase” (b). The inter-gate gap is drawn as a thick black line, and the 

buried channel is indicated by the grey shaded area.  

 
 
Fig. 5. Simulation results for the designs in Fig. 4: iso-surfaces of the 

electron concentration at 1012 cm-3 (a)(c); and impact ionization rate at 1021 

cm-3s-1 (b)(d) at a moment in time when 50% of the charge has been 

transferred from P1 to P2HV. The signal charge is 900 e-.  



relatively low electric fields.  

Based on previous experience with commercial EMCCDs, 

achieving quantitative agreement between EM gains derived 

from simulations and data is very difficult. For these reasons, 

experimental verification of the described concepts was 

preferred. 

B. Test Device 

A chip containing column-parallel EMCCD on 10 µm pitch 

was designed by us and manufactured by ESPROS Photonics 

Corporation (EPC) [18], using 150 nm image sensor CMOS 

process. This technology features n-type buried channel CCDs 

in p-type high resistivity substrate with single level polysilicon 

CCD gates and 90 nm inter-electrode gaps. The CCD channel 

potential is only around 1.5 V, and this allows low voltage 

operation with gate clock amplitudes in the range between 2 V 

to 5 V. The choice of technology was driven by the small 

inter-gate gaps, allowing large electric fields to be obtained at 

low operating voltages.  

The chip architecture, shown in Fig. 6, has been designed to 

provide a direct comparison between different EM elements 

operated simultaneously, and also includes reference elements 

without EM gain. The image area and pixel variants 1 and 2 

are designed as a normal 4-phase CCD without EM elements, 

using gates on 2.5 µm pitch. Pixel variants 3 to 6 implement 

rectangular EM elements as in Fig. 1(c) with different P2HV 

sizes. Table I lists the dimensions of the P2HV gate for all the 

designs present on the chip. The width of the P2HV gate in 

designs 5 to 8 is the same, allowing close comparison.   

 
TABLE I 

DIMENSIONS OF THE STUDIED EM ELEMENTS. DESIGNS 1 AND 2 ARE NORMAL 

4-PHASE CCD ELEMENTS WITHOUT EM GAIN 

 

Design P2HV 

Length (µm) 

P2HV  

Width (µm) 

Drawing 

1 and 2 - - No EM 

3 3 6 Fig. 1(c) 

4 2.5 6 Fig. 1(c) 

5 3 5 Fig. 1(c) 

6 2.5 5 Fig. 1(c) 

7 “Staircase” 5 Fig. 4(b) 

8 “Spike” 5 Fig. 4(a) 

 

The chip is backside illuminated, with the bottom 100 rows 

placed in a p-well providing shielding from direct charge 

collection. In this way charge can enter the EM structures only 

from the image area above. Each column has its own sample 

and hold circuit to store the reset and the signal levels for off-

chip correlated double sampling, as shown in Fig. 7. The 

stored signals from each block of 32 columns are multiplexed 

into a differential output for external digitization, using a 16-

bit ADC operating at 500 kSa/s.   

III. EXPERIMENTAL RESULTS AND DISCUSSION 

The devices were found to function according to 

expectations and were characterized in the temperature range 

between -30 C and +20 C. The EM gain was measured by 

using light-generated signal of approximately 900 electrons. 

After the charge had been collected in the image area, the 

device was read out at 10 kHz line rate. The gain was 

calculated from the difference between the output signals at 

the target P2HV amplitude and a much lower amplitude where 

EM does not occur, such as 4 V. The output signal is limited 

by the full well capacity of the device to approximately 90 ke-, 

and this constrains the achievable EM gain at a given input 

signal, and therefore also the amplitude of P2HV. No 

breakdowns were observed in any of the EM gate elements up 

to the maximum applied P2HV voltage of 15 V.  

 

 
 

Fig. 6. Photomicrograph of the test chip bump-bonded to a carrier (a); 

simplified block diagram (b); cross section along the direction of transfer (c). 
Each EM element variant is indicated with its number and occupies a block 

of 32 columns. The size of the chip is 3.7 mm square.  

 

 
 

Fig. 7. Simplified readout circuitry of the test chip, showing the gate 

connections to the non-EM and EM columns. Correlated double sampling is 
performed by the differential ADC which subtracts the reset sample from the 

signal sample.  

 
 



Fig. 8 shows the measured total gain after 100 stages for  

element types 3, 5, 7 and 8 (described in Table I) and the 

reference type 1, which does not have EM gain. Elements 3 to 

6 have very similar performance and element 5 is used as the 

main EM benchmark because it has the same width and the 

most closely matching length to the two new elements 7 and 8.  

The gain per stage 𝑔, plotted in Fig. 9, is the usual figure of 

merit as it provides data about the properties of the EM 

elements independently from the number of amplifying stages. 

The gain per stage is calculated from (2), where 𝑀 is the total 

gain after 𝑛 stages.  

𝑀 = (1 + 𝑔)𝑛         (2) 

The data show that the new EM elements 7 and 8 exhibit 

substantially increased gain compared to the two rectangular 

gate variants 3 and 5 under identical conditions. After 100 

stages the total gain of EM element 7 is 10.7 times higher than 

that of EM element 5 at P2HV - P2DC = 11.6 V. This is a very 

significant difference given the small number of transfers. 

Furthermore, the gain advantage would theoretically grow to 

be several orders of magnitude higher after larger number of 

transfers (typically >500) used in commercial EMCCDs.  

EM element 7 “staircase” outperforms element 8 “spike”, 

which could not be resolved with confidence in the TCAD 

simulations due to difficulties with quantitative predictions, as 

mentioned in Section II.A. The experimental results suggest 

that increasing the effective length of the high field region, as 

implemented in the 4 edges in the “staircase” design, is more 

effective in increasing the EM gain than the combination of 

higher electron density with 2 parallel edges, as in the “spike” 

design. Figures 5(b) and 5(d) offer qualitative support for this 

conclusion.    

We can also see that design 5 exhibits higher gain than 

design 3, with the only difference between them being the 

width of the P2HV gate. The narrower gate in design 5 forces 

the electron path into a smaller volume similarly to the “spike” 

design in Fig. 5(a) but not to the same extent, and this 

provides a reasonable explanation for the increased gain.  

Figure 10 compares the relative performance of the 

different EM gain elements by plotting the gain ratios per 

stage as a function of the potential difference between P2HV 

and P2DC. The gain per stage can be written as (3) from (2), 

taking into account that 𝑔 ≪ 1, and is a convenient 

performance metric due to its proportionality to the logarithm 

of the total gain.    
ln(𝑀)

𝑛
= ln(1 + 𝑔) ≈ 𝑔       (3) 

 
Fig. 8. EM gains measured with 900 e- input signal at 0 C as a function of 

the potential difference between P2HV and P2DC. The gain of each variant 

is averaged over 30 columns around the center of a block, and the error bars 
indicate the gain spread across the columns. All gates except P2HV were 

driven between 0.0 V and 4.0 V, and P2DC was fixed at 2.0 V.   

 
 

 
Fig. 9. EM gains per stage for the data in Fig. 8.   

 
 

 

 
Fig. 10. EM gain ratio per stage for variants 7 and 8 relative to variant 5, and 

the ratio between variants 7 and 8 for the data in Fig. 8.   
 

 

 

 
Fig. 11. EM gain ratio per stage for variants 7 and 8 relative to variant 5, and 

the ratio between variants 7 and 8 over the temperature range of the tests. 

The data were taken at P2HV - P2DC = 11 V and P2DC = 2 V.  
 

 

 



The gain ratios shown in Fig. 10 remain almost constant 

over the voltage range where the EM gain is significant, as 

expected. Additional measurements of the gain ratios over the 

whole of the accessible temperature range, shown in Fig, 11, 

and with input signals up to 5 ke- did not reveal any 

anomalous behavior in any of the EM elements. The presented 

results are consistent over more than 10 chips tested in the 

course of the characterization. The spread of EM gain per 

stage over the tested devices was about 10%.  

The gate shapes shown in Fig. 4 are presented in this paper 

due to the experimental verification of their performance, but 

are by no means the only possible designs. Other gate shapes 

can be considered, provided that they implement at least one 

of the underlying principles – constraining the electron flow to 

a smaller volume or increasing the effective length of the high 

field region.  

It is important to note that the new designs achieve higher 

EM gain without increasing the magnitude of the electric field. 

The only changes involve the shapes of the P1 (for design 8), 

P2HV and P2DC gates over the buried channel, which does 

not alter the inter-gate gaps or the doping profiles in the 

device. The electric fields outside the buried channel should 

also remain the same, therefore we do not expect any 

inadvertent adverse effects. The CIC should be reduced 

correspondingly when lower P2HV amplitude is used to 

achieve the same EM gain, although this is hard to verify in 

our devices due to background from dark current even at the 

lowest achieved temperature.  

TCAD simulations indicate that similar increase in gain 

from the two new EM elements is expected when applied to a 

typical EMCCD, which has much larger channel potential 

(usually >10 V) and operates with correspondingly higher 

voltages at the P2HV gate.  

IV. CONCLUSION 

New means of achieving higher EM gain in EMCCDs 

without increasing the magnitude of the electric field are 

studied by simulation and prototyped in a device built in a low 

voltage CMOS process. The increase in EM gain is caused by 

the developed novel gate shapes, which help increase the 

electron current density during transfer or the effective length 

of the high field region. Two new EM elements employing 

modified gate geometries have demonstrated significantly 

higher EM gains than the traditional rectangular gate EM 

elements under the same conditions. The presented designs 

and their derivatives can be used in both EMCCDs and CMOS 

image sensors using EM to help increase the gain, reduce the 

operating voltage, or both. This in turn is expected to lead to 

further performance improvements such as lower CIC, gain 

ageing and power dissipation.   
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