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Abstract

Chemical cues are arguably the most fundamental means of animal communication and

play an important role in mate choice and kin recognition. Consequently, there is growing

interest in the use of gas chromatography (GC) to investigate the chemical basis of eco-evo-

lutionary interactions. Both GC-MS (mass spectrometry) and FID (flame ionization detec-

tion) are commonly used to characterise the chemical composition of biological samples

such as skin swabs. The resulting chromatograms comprise peaks that are separated

according to their retention times and which represent different substances. Across chro-

matograms of different samples, homologous substances are expected to elute at similar

retention times. However, random and often unavoidable experimental variation introduces

noise, making the alignment of homologous peaks challenging, particularly with GC-FID

data where mass spectral data are lacking. Here we present GCalignR, a user-friendly R

package for aligning GC-FID data based on retention times. The package was developed

specifically for ecological and evolutionary studies that seek to investigate similarity patterns

across multiple and often highly variable biological samples, for example representing differ-

ent sexes, age classes or reproductive stages. The package also implements dynamic visu-

alisations to facilitate inspection and fine-tuning of the resulting alignments and can be

integrated within a broader workflow in R to facilitate downstream multivariate analyses. We

demonstrate an example workflow using empirical data from Antarctic fur seals and explore

the impact of user-defined parameter values by calculating alignment error rates for multiple

datasets. The resulting alignments had low error rates for most of the explored parameter

space and we could also show that GCalignR performed equally well or better than other

available software. We hope that GCalignRwill help to simplify the processing of chemical

datasets and improve the standardization and reproducibility of chemical analyses in studies

of animal chemical communication and related fields.
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Introduction

Chemical cues are arguably the most common mode of communication among animals [1]. In

the fields of animal ecology and evolution, increasing numbers of studies have therefore been

using approaches like gas chromatography (GC) to characterise the chemical composition of

body odours and scent marks. These studies have shown that a variety of cues are chemically

encoded, including phylogenetic relatedness [2], breeding status [3], kinship [4–6] and genetic

quality [6–8].

GC vaporises a chemical sample and retards its components differentially based on their

chemical properties while passing a gas through a column. The chemical composition of the

sample can then be resolved using a number of approaches such as GC coupled to a flame ioni-

zation detector (GC-FID) or GC coupled to a mass spectrometer (GC-MS). GC-FID produces

a chromatogram in which each substance is represented by a peak, the area of which is propor-

tional to the concentration of that substance in the sample [9]. Although GC-FID is a relatively

inexpensive and high-throughput approach, the substances themselves can only be character-

ised according to their retention times, so their chemical composition remains effectively

unknown. GC-MS similarly generates a chromatogram, but additionally provides spectral pro-

files corresponding to each peak, thereby allowing putative identification by comparison to

databases of known substances. Both approaches have distinct advantages and disadvantages,

but the low cost of GC-FID, coupled with the fact that most chemicals in non-model organ-

isms do not reveal matches to databases containing known chemicals, has led to an increasing

uptake of GC-FID in studies of wild populations [10–13]. GC-FID is particularly appropriate

for studies seeking to characterise broad patterns of chemical similarity without reference to

the exact nature of the chemicals involved.

As a prerequisite for any downstream analysis, homologous substances across samples need

to be matched. Therefore, an important step in the processing of the chemical data is to con-

struct a so called peak list, a matrix containing the relative abundances of each homologous

substance across all of the samples. With GC-MS, homologous substances can be identified on

the basis of both their retention times and the accompanying spectral information. However,

with GC-FID, homologous substances can only be identified based on their retention times.

This can be challenging because these retention times are often perturbed by subtle, random

and often unavoidable experimental variation including changes in ambient temperature, flow

rate of the carrier gas and column ageing [14, 15].

Numerous algorithms have been developed for aligning MS data (reviewed by [16] and

[17]). To provide an overview of breadth of currently available software that provide imple-

mentations of these algorithms for users, we conducted a literature search. First, we screened

the review papers described above and selected all peer-reviewed manuscripts reporting pro-

grams that are publicly available. We excluded publications reporting algorithms that are not

implemented in software, that are described as ‘available on request’ from the authors, or

which could only be accessed via expired web links. Furthermore, we conducted Web of Sci-

ence searches in October 2017 using the search terms ‘retention time align�’, ‘peak align�’ and

‘peak match�’ and used the same search terms to interrogate the list of packages deposited on

CRAN and Bioconductor. We recovered a total of 25 programs, which we characterised

according to a number of relevant criteria, ranging from the type of data for which they were

designed through the programming environment to the dimensions that are used for aligning

peaks (S1 File). We found that the majority (92%) of these programs were developed specifi-

cally for aligning MS data. Among these, a large proportion (87%) make use of spectral infor-

mation either by binning the data according to mass-over-charge values or by directly taking

mass information into consideration for the alignment method. Consequently, these programs
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will not support GC-FID data due to the lack of spectral information, which is a required part

of the input.

Only three of the programs described in S1 File claim to support a peak list format lacking

MS data, thereby making them potentially suitable for aligning GC-FID data. However, two of

these programs (amsrpm [18] and ptw [19]) may not be well suited to GC-FID data for two

main reasons. First, they conduct alignments strictly pairwise with respect to a pre-defined ref-

erence sample, because in general the focus is on a relatively small pool of substances that are

expected to be present in most if not all samples [20]. However, applied to wild animal popula-

tions, GC-FID often yields high diversity datasets in which only a small subset of chemicals

may be common to all individuals [6, 21]. Second, these algorithms are known to be sensitive

to variation in peak intensity, which is expected in GC-FID datasets and may contain impor-

tant biological information [6, 21–23].

To tackle the above issues, a third program called GCALIGNERwas recently written in

Java for aligning GC-FID data [24]. This program appears to perform well based on three test

datasets, each corresponding to a different bumblebee species (Bombus spp.). However, the

underlying algorithm compares each peak with the following peak in the same sample and

therefore cannot align the last peak [24]. Moreover, with the increasing popularity of open

source environments such as R, there is a growing need for software that can be easily inte-

grated into broader workflows, where the source code can be modified and potentially fur-

ther extended by the user, and where related tools like rmarkdown [25] can be applied to

maximise transparency and reproducibility [26]. Furthermore, especially for GC-FID data

where spectral data are not available, a useful addition would be to integrate dynamic visuali-

sation tools into software to facilitate the evaluation and subsequent fine-tuning of alignment

parameters. However, the vast majority of currently available software (80%) lack such tools

(S1 File).

In order to determine which alignment tools are commonly used in the fields of ecology

and evolution, we conducted a bibliographic survey, focusing on the journals ‘Animal

Behaviour’ and ‘Proceedings of the Royal Society B’, which recovered a total of 38 studies

using GC-FID or GC-MS to investigate scent profiles (see S2 File for details). None of these

studies used any form of alignment tool but rather aligned and called the peaks manually

(e.g. [27]), a time-consuming process that can be prone to bias [28] and detrimental to

reproducibility.

To address the above issues, we developed GCalignR, an R package for aligning GC-FID

data, but which can also align data generated using other detectors that allow to characterise

peaks by retention times. The package implements a fast and objective method to cluster puta-

tively homologous substances prior to multivariate statistical analyses. Using sophisticated

visualisations, the resulting alignments can then be fine tuned. Finally, the package provides a

seamless transition from the processing of the peak data through to downstream analysis

within other widely used R packages for multivariate analysis, such as vegan [29].

In this paper, we present GCalignR and describe the underlying algorithms and their

implementation within a suite of R functions. We provide an example workflow using a previ-

ously published chemical dataset of Antarctic fur seals (Arctocephalus gazella) that shows a

clear distinction between animals from two separate breeding colonies [6]. We then compare

the performance of GCalignRwith GCALIGNER based on the same three bumblebee data-

sets given in [24] and explore the sensitivity of GCalignR to user-defined alignment parame-

ter values. Finally, we compared our alignment procedure with a very different approach –

parametric time warping– which is commonly used in the fields of proteomics and metabolo-

mics [19, 30].

GCalignR aligning GC data
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Material and methods

Overview of the package

Fig 1 shows an overview of GCalignR in the context of a workflow for analysing GC-FID

data within R. A number of steps are successively implemented, from checking the raw data

through aligning peak lists and inspecting the resulting alignments to normalising the peak

intensity measures prior to export into vegan [29]. In brief, the alignment procedure is imple-

mented in three consecutive steps that start by accounting for systematic shifts in retention

times among samples and subsequently align individual peaks based on variation in retention

times across the whole dataset. For simplicity, this procedure is embedded within a single func-

tion align_chromatograms that allows the customisation of peak alignments by adjust-

ing a combination of three parameters. The package vignettes provide a detailed description

of all of the functions and their arguments and can be accessed via browseVignettes
(‘GCalignR’) after the package has been installed.

Raw data format and conversion to working format

GC-FID produces raw data in the form of individual chromatograms that show the measured

electric current over the time course of a separation run. Proprietary software provided by the

Fig 1. Overview of the GCalignRworkflow. The steps listed in the main text are numbered from one to five and the filled boxes represent functions of the package

(see main text for details).

https://doi.org/10.1371/journal.pone.0198311.g001
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manufacturers of GC-FID machines (e.g. ‘LabSolutions’, Shimadzu; ‘Xcalibur’, Thermo Fisher

and ‘ChemStation’, Agilent Technologies) are then used to integrate and export peaks in the

format of a table containing retention times and intensity values (e.g. peak area and height).

Fig 2A shows chromatograms of three hypothetical samples where peaks have been integrated

and annotated with retention times and peak heights. The corresponding input format com-

prising a table of retention times and peak heights is also shown. The working format of

GCalignR is a retention time matrix in which each sample corresponds to a column and

each peak corresponds to a row (see Fig 2B).

Fig 2. GC-FID data formats. A. Three hypothetical chromatograms are shown corresponding to samples A, B and C. Integrated peaks (filled areas) are annotated

with retention times and peak heights. B. Using proprietary software (see main text), retention times and quantification measures like the peak height can be extracted

and written to a peak list that contains sample identifiers (’Sample_A’, ‘Sample_B’ and ‘Sample_C’), variable names (’retention_time’ and ‘peak_height’) and respective

values. Computations described in this manuscript use a retention matrix as the working format.

https://doi.org/10.1371/journal.pone.0198311.g002
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Overview of the alignment algorithm

We developed an alignment procedure based on dynamic programming [31] that involves

three sequential steps to align and finally match peaks belonging to putatively homologous

substances across samples (see Fig 3 for a flowchart and Fig 4 for a more detailed schematic

representation). All of the raw code for implementing these steps is available via GitHub and

CRAN and each step is described in detail below. The first step is to align each sample to a ref-

erence sample while maximising overall similarity through linear shifts of retention times.

This procedure is often described in the literature as ‘full alignment’ [19]. In the second step,

individual peaks are sorted into rows based on close similarity of their retention times, a proce-

dure that is often referred to as ‘partial alignment’ [19]. Finally, there is still a chance that

homologous peaks can be sorted into different, but adjacent, rows in different samples,

depending on the variability of their retention times (for empirical examples, see S3 File). Con-

sequently, a third step merges rows representing putatively homologous substances.

Full alignment of peaks lists. The first step in the alignment procedure consists of an

algorithm that corrects systematic linear shifts between peaks of a query sample and a fixed ref-

erence to account for systematic shifts in retention times among samples (Fig 4A). Following

the approach of Daszykowski et al. [32], the sample that is most similar on average to the

other samples can be automatically selected as a reference by choosing the sample with the

lowest median deviation score weighted by the number of peaks to avoid a bias towards sam-

ples with few peaks:

1

n

Xn

i¼1

½min ðRefi � Query� ð1Þ

where n is the number of retention times in the reference sample. Alternatively, the reference

can be specified by the user. Using a simple warping method [33], the complete peak list of the

query is then linearly shifted within an user-defined retention time window with an interval of

0.01 minutes. For all of the shifts, the summed deviation in retention times between each refer-

ence peak and the nearest peak in the query is used to approximate similarity as follows:

Xn

i¼1

½min ðRefi � Query� ð2Þ

where n is the number of retention times in the reference sample. With increasing similarity,

this score will converge towards zero the more homologous peaks are aligned, whereas peaks

that are unique to either the query or the reference are expected to behave independently and

will therefore have little effect on the overall score. The shift yielding to the smallest score is

selected to transform retention times for the subsequent steps in the alignment (Fig 4B and

4C). As the effectiveness of this approach relies on a sufficient number of homologous peaks

that can be used to detect linear drift, the performance of the algorithm may vary between

datasets.

Partial alignment of peaks. The second step in the alignment procedure aligns individual

peaks across samples by comparing the peak retention times of each sample consecutively with

the mean of all previous samples (Fig 4B) within the same row. If the focal cell within the

matrix contains a retention time that is larger than the mean retention time of all previous

cells within the same row plus a user-defined threshold (Eq (3)), that cell is moved to the next

row.

rtm >

Pm� 1

i¼1
rti

m � 1

� �

þ a ð3Þ
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Fig 3. A flow chart showing the three sequential steps of the alignment algorithm of the peak alignment method.

https://doi.org/10.1371/journal.pone.0198311.g003
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where rt is the retention time; m is the focal cell and a is the user-defined threshold deviation

from the mean retention time. If the focal cell contains a retention time that is smaller than the

mean retention time of all previous cells within the same row minus a user-defined threshold

(Eq (4)), all previous retention times are then moved to the next row.

rtm <

Pm� 1

i¼1
rti

m � 1

� �

� a ð4Þ

After the last retention time of a row has been evaluated, this procedure is repeated for the

next row until the end of the retention time matrix is reached (Fig 4B).

Merging rows. The third step in the alignment procedure accounts for the fact that a

number of homologous peaks will be sorted into multiple rows that can be subsequently

merged (Fig 4C). However, this results in a clear pattern whereby some of the samples will

Fig 4. Overview of the three-step alignment algorithm implemented in GCalignRusing a hypothetical dataset. A. Linear shifts are implemented to account for

systematic drifts in retention times between each sample and the reference (Sample_A). In this hypothetical example, all of the peaks within Sample_B are shifted

towards smaller retention times, while the peaks within Sample_C are shifted towards larger retention times. B and C work on retention time matrices, in which rows

correspond to putative substances and columns correspond to samples. For illustrative purposes, each cell is colour coded to refer to the putative identity of each

substance in the final alignment. B. Consecutive manipulations of the matrices are shown in clockwise order. Here, black rectangles indicate conflicts that are solved by

manipulations of the matrices. Zeros indicate absence of peaks and are therefore not considered in computations. Peaks are aligned row by row according to a user-

defined criterion, a (see main text for details). C. Rows of similar mean retention time are subsequently merged according to the user-defined criterion, b (see main

text for details).

https://doi.org/10.1371/journal.pone.0198311.g004
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have a retention time in one of the rows while the other samples will have a retention time in

an adjacent row (see S3 File). Consequently, pairs of rows can be merged when this does not

cause any loss of information, an assumption that is true as long as no sample exists that con-

tains peaks in both rows, (Fig 4C). The user can define a threshold value in minutes (i.e.

parameter b in Fig 4C) that determines whether or not two such adjacent rows are merged.

While the described pattern is unlikely to occur in large datasets purely by chance for non-

homologous peaks, small datasets may require more strict threshold values to be selected.

Implementation of the alignment method

The alignment algorithms that are described above are all executed by the core function

align_chromatogramsbased on the user-defined parameters shown in Table 1. Of these,

parameters (max_linear_shift, max_diff_peak2meanand min_diff_peak2-
peak) can be adjusted by the user to fine-tune the alignment procedure. There a several addi-

tional parameters that allow for optional processing and filtering of the data independently of

the alignment procedure. For further details, the reader is referred to the accompanying

vignettes (see S4 and S5 Files) and helpfiles of the R package.

Demonstration of the workflow

Here, we demonstrate a typical workflow in GCalignR using chemical data from skin swabs

of 41 Antarctic fur seal (Arctocephalus gazella) mother-pup offspring pairs from two neigh-

bouring breeding colonies at South Georgia in the South Atlantic. Sample collection and pro-

cessing are described in detail in Stoffel et al. [6]. In brief, chemical samples were obtained

by rubbing the cheek, underneath the eye, and behind the snout with a sterile cotton wool

swab and preserved in ethanol stored prior to analysis. In order to account for possible con-

tamination, two blank samples (cotton wool with ethanol) were processed and analysed using

the same methodology. Peaks were integrated using ‘Xcalibur’ (Thermo Scientific). The chem-

ical data associated with these samples are provided in the file peak_data.txt, which is

distributed together with GCalignR. Additional data on colony membership and age-class

are provided in the data frame peak_factors.RData.

Table 1. Mandatory arguments of the function align_chromatograms.

Parameter Description

data Path to a tab-delimited text file containing the chemical data. See the vignettes for examples

including alternative input formats

max_diff_peak2mean Numeric value defining the allowed deviation of the retention time of a focal peak from the

mean of the corresponding row during partial peak alignment (see Eqs 3 and 4).

max_linear_shift Numeric value defining the range that is considered for the adjustment of linear shifts in

peak retention times across samples

min_diff_peak2peak Numeric value defining the expected minimum difference in retention times across

substances. Rows that are more similar than the threshold value will be merged as long as no

conflict emerges due to the presence of peaks in more than one row within a single sample.

rt_col_name Name of the variable containing peak retention times. The name needs to correspond to a

variable included in the input file

reference Name of the sample that will be used as reference to adjust linear shifts in peak retention

times across samples. By default, a reference is automatically selected (see Material and

methods).

sep Field separator character. By default, a tab-delimited text file is expected. Within R, type ?
read.table for a list of supported separators

https://doi.org/10.1371/journal.pone.0198311.t001
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Prior to peak alignment, the check_input function interrogates the input file for typical

formatting errors and missing data. We encourage the use of unique names for samples con-

sisting only of letters, numbers and underscores. If the data fail to pass this quality test, indica-

tive warnings will be returned to assist the user in error correction. As this function is

executed internally prior to alignment, the data need to pass this check before the alignment

can begin.
# load GCalignR
library (GCalignR)
# set the path to the input data
fpath <- system.file(dir = “extdata”,

file = “peak_data.txt”,
package = “GCalignR”)

# check for formatting problems
check_input(fpath)

In order to begin the alignment procedure, the following code needs to be executed:
aligned_peak_data <- align_chromatograms(data = peak_data,

rt_col_name = “time”,
max_diff_peak2mean = 0.02,
min_diff_peak2peak = 0.08,
max_linear_shift = 0.05,
delete_single_peak = TRUE,
blanks = c(“C2”, “C3”))

Here, we set max_linear_shift to 0.05, max_diff_peak2mean to 0.02 and

min_diff_peak2peak to 0.08. By defining the argument blanks, we implemented the

removal of all substances that are shared with the negative control samples from the aligned

dataset. Furthermore, substances that are only present in a single sample were deleted from the

dataset using the argument delete_single_peak = TRUE as these are not informative

in analysing similarity pattern [34]. Afterwards, a summary of the alignment process can be

retrieved using the printing method, which summarises the function call including defaults

that were not altered by the user. This provides all of the relevant information to retrace every

step of the alignment procedure.
# verbal summary of the alignment
print(aligned_peak_data)

As alignment quality may vary with the parameter values selected by the user, the plot func-

tion can be used to output four diagnostic plots. These allow the user to explore how the

parameter values affect the resulting alignment and can help to flag issues with the raw data.
# produces Fig 5
plot (aligned_peak_data)

The resulting output for the Antarctic fur seal chemical dataset, shown in Fig 5, reveals a

number of pertinent patterns. Notably, the removal of substances shared with the negative

controls or present in only one sample resulted in a substantial reduction in the total number

of peaks present in each sample (Fig 5A). Furthermore, for the majority of the samples, either

no linear shifts were required, or the implemented transformations were very small compared

to the allowable range (Fig 5B). Additionally, the retention times of putatively homologous

peaks in the aligned dataset were left-skewed, indicating that the majority of substances vary

by less than 0.05 minutes (Fig 5C) but there was appreciable variation in the number of indi-

viduals in which a given substance was found (Fig 5D).

Additionally, the aligned data can be visualised using a heat map with the function

gc_heatmap. Heat maps allow the user to inspect the distribution of aligned substances

across samples and assist in fine-tuning of alignment parameters as described within the

vignettes (see S4 and S5 Files).
gc_heatmap(aligned_peak_data)
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Peak normalisation and downstream analyses

In order to account for differences in sample concentration, peak normalisation is commonly

implemented as a pre-processing step in the analysis of olfactory profiles [35–37]. The

GCalignR function normalise_peaks can therefore be used to normalise peak abun-

dances by calculating the relative concentration of each substance in a sample. The abundance

measure (e.g. peak area) needs to be specified as conc_col_name in the function call. By

default, the output is returned in the format of a data frame that is ready to be used in down-

stream analyses.
# extract normalised peak area values
scent <- norm_peaks (data = aligned_peak_data,

rt_col_name = “time”,
conc_col_name = “area”,
out = “data.frame”)

The output of GCalignR is compatible with other functionalities in R, thereby providing a

seamless transition between packages. For example, downstream multivariate analyses can be

conducted within the package vegan [29]. To visualise patterns of chemical similarity within

the Antarctic fur seal dataset in relation to breeding colony membership, we used non-metric

multidimensional scaling (NMDS) based on a Bray-Curtis dissimilarity matrix in vegan after

normalisation and log-transformation of the chemical data.

Fig 5. Diagnostic plots summarising the alignment of the Antarctic fur seal chemical dataset. A shows the number of peaks both prior to and after alignment; B

shows a histogram of linear shifts across all samples; C shows the variation across samples in peak retention times; and D shows a frequency distribution of substances

shared across samples.

https://doi.org/10.1371/journal.pone.0198311.g005
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# log + 1 transformation
scent <- log (scent + 1)
# sorting by row names
scent <- scent[match(row.names(peak_factors),

row.names(scent)),]
# Non-metric multidimensional scaling
scent_nmds <- vegan::metaMDS(comm = scent, distance = “bray”)
scent_nmds <- as.data.frame(scent_nmds[[“points”]])
scent_nmds <- cbind(scent_nmds,

colony = peak factors[[“colony”]])

The results results of the NMDS analysis are outputted to the data frame scent_nmds
and can be visualised using the package ggplot2 [38].
# load ggplot2
library(ggplot2)
# create the plot (see Fig 6)
ggplot(data = scent_nmds, aes(MDS1,MDS2, color = colony)) +

geom_point () +
theme void () +
scale_color_manual(values = c(“blue”, “red”)) +
theme(panel.background = element_rect(colour = “black”,
size = 1.25, fill = NA),
aspect.ratio = 1,
legend.position = “none”)

The resulting NMDS plot shown in Fig 6 reveals a clear pattern in which seals from the two

colonies cluster apart based on their chemical profiles, as shown also by Stoffel et al. [6].

Although a sufficient number of standards were lacking in this example dataset to calculate the

internal error rate (as shown below for the three bumblebee datasets), the strength of the over-

all pattern suggests that the alignment implemented by GCalignR is of high quality.

Evaluation of the performance of GCalignR
We evaluated the performance of GCalignR in comparison to GCALIGNER [24]. For this

analysis, we focused on three previously published bumblebee datasets that were published

together with the GCALIGNER software [24]. These data are well suited to the evaluation of

alignment error rates because subsets of chemicals within each dataset have already been iden-

tified using GC-MS [24]. Hence, by focusing on these known substances, we can test how the

two alignment programs perform. Furthermore, these datasets allow us to further investigate

the performance of GCalignR by evaluating how the resulting alignments are influenced by

parameter settings.

Comparison with GCALIGNER
To facilitate comparison of the two programs, we downloaded raw data on cephalic labial

gland secretions from three bumblebee species [24] from http://onlinelibrary.wiley.com/wol1/

doi/10.1002/jssc.201300388/suppinfo. Each of these datasets included data on both known and

unknown substances, the former being defined as those substances that were identified with

respect to the NIST database [39]. The three datasets are described in detail by [24]. Briefly, the

first dataset comprises 24 Bombus bimaculatus individuals characterised for a total of 41 sub-

stances, of which 32 are known. The second dataset comprises 20 B. ephippiatus individuals

characterised for 64 substances, of which 42 are known, and the third dataset comprises 11 B.
flavifrons individuals characterised for 58 substances, of which 44 are known.

To evaluate the performance of GCALIGNER, we used an existing alignment provided by

[24]. For comparison, we then separately aligned each of the full datasets within GCalignR as
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described in detail in S3 File. We then evaluated each of the resulting alignments by calculating

the error rate, based only on known substances, as the ratio of the number of incorrectly

assigned retention times to the total number of retention times (Eq (5)).

Error ¼
Number of misaligned retention times

Total number of retention times

� �

ð5Þ

where retention times that were not assigned to the row that defines the mode of a given sub-

stance were defined as being misaligned. Fig 7 shows that both programs have low alignment

error rates (i.e. below 5%) for all three datasets. The programs performed equally well for one

of the species (B. flavifrons), but overall GCalignR tended to perform slightly better, with

lower alignment error rates being obtained for B. bimaculatus and B. ephippiatus.

Effects of parameter values on alignment results

The first step in the alignment procedure accounts for systematic linear shifts in retention

times. As most datasets will require relatively modest linear transformations (illustrated by the

Fig 6. Two-dimensional nonmetric multidimensional scaling plot of chemical data from 41 Antarctic fur seal

mother–offspring pairs. Bray–Curtis dissimilarity values were calculated from standardized and log(x+1)

transformed abundance data (see main text for details). Individuals from the two different breeding colonies described

in Stoffel et al. [6] are shown in blue and red respectively.

https://doi.org/10.1371/journal.pone.0198311.g006
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Antarctic fur seal dataset in Fig 5), the parameter max_linear_shift (Table 1), which

defines the range that is considered for applying linear shifts (i.e. window size), is unlikely to

appreciably affect the alignment results. By contrast, two user-defined parameters need to be

chosen with care. Specifically, the parameter max_diff_peak2meandetermines the varia-

tion in retention times that is allowed for sorting peaks into the same row, whereas the param-

eter min_diff_peak2peak enables rows containing homologous peaks that show larger

variation in retention times to be merged (see Material and methods for details and Table 1 for

definitions). To investigate the effects of different combinations of these two parameters on

alignment error rates, we again used the three bumblebee datasets, calculating the error rate

as described above for each conducted alignment. Fig 8 shows that for all three datasets, rela-

tively low alignment error rates were obtained when max_diff_peak2meanwas low

(i.e. around 0.01 to 0.02 minutes). Error rates gradually increased with larger values of

Fig 7. Alignment error rates for three bumblebee datasets using GCalignR and GCALIGNER. Error rates were calculated

based only on known substances as described in the main text.

https://doi.org/10.1371/journal.pone.0198311.g007
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max_diff_peak2mean, reflecting the incorrect alignment of non-homologous substances

that are relatively similar in their retention times. In general, alignment error rates were rela-

tively insensitive to parameter values of min_diff_peak2peak (see Fig 8). Higher error

rates were only obtained when max_diff_peak2meanwas larger than or the same as

min_diff_peak2peak, in which case merging of homologous rows is not possible.

Comparison with parametric time warping

In the fields of proteomics and metabolomics, several methods (usually referred to as ‘time

warping’ [19]) for aligning peaks have been developed that aim to transform retention times in

such a way that the overlap with the reference sample is maximised [30]. The R package ptw
[19] implements parametric warping and supports a peak list containing retention times and

intensity values for each peak of a sample, making it in principle suitable for aligning GC-FID

data. However, parametric time warping of a peak list within ptw is based on strictly pairwise

comparisons of each sample to a reference [30]. Therefore, the sample and reference should

ideally resemble one another and share all peaks [20, 33]. By comparison, GCalignR only

requires a reference for the first step of the alignment procedure and should therefore be better

able to cope with among-individual variability. Additionally, although ptw transforms indi-

vidual peak lists relative to the reference, it does not provide a function to match homologous

substances across samples.

In order to evaluate how these differences affect alignment performance, we analysed

GC-MS data on cuticular hydrocarbon compounds of 330 European earwigs (Forficula auricu-
laria) [40] using both GCalignR and ptw. This dataset was chosen for two main reasons.

First, alignment success can be quantified based on twenty substances of known identity. Sec-

ond, all of the substances are present in every individual, the only differences being their inten-

sities. Hence, among-individual variability is negligible, which should minimise issues that

may arise from samples differing from the reference. As a proxy for alignment success, we

compared average deviations in the retention times of homologous peaks in the raw and

aligned datasets, with the expectation that effective alignment should reduce retention time

deviation.

Fig 8. Effects of different parameter combinations on alignment error rates for three bumblebee datasets (see main text for details). Each point shows the

alignment error rate for a given combination of max_diff_peak2mean and min_diff_peak2peak.

https://doi.org/10.1371/journal.pone.0198311.g008
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For this analysis, we downloaded the earwig dataset from https://datadryad.org/resource/

doi:10.5061/dryad.73180 [23] and constructed input files for both GCalignR and ptw. We

then aligned this dataset using both packages as detailed in supporting information S3 File.

Following fine-tuning of alignment parameters within GCalignR, we obtained twenty sub-

stances in the aligned dataset and all of the homologous peaks were matched correctly (i.e.

every substance had a retention time deviation of zero). Consequently, GCalignR consis-

tently reduced retention time deviation across all substances relative to the raw data (Fig 9). By

comparison, parametric time warping resulted in higher deviation in retention times for all

but two of the substances (Fig 9). These differences in the performance of the two programs

probably reflect differential sensitivity to variation in peak intensities.

Fig 9. Boxplot showing changes in retention time deviation of twenty homologous substances relative to the raw data after

having aligned a dataset of 330 European earwigs within GCalignR and ptw respectively (see main text for details).

https://doi.org/10.1371/journal.pone.0198311.g009
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Conclusions

GCalignR is primarily intended as a pre-processing tool in the analysis of complex chemical

signatures of organisms where overall patterns of chemical similarity are of interest as opposed

to specific (i.e. known) chemicals. We have therefore prioritised an objective and fast align-

ment procedure that is not claimed to be free of error. Nevertheless, our alignment error

rate calculations suggest that GCalignR performs well with a variety of example datasets.

GCalignR also implements a suite of diagnostic plots that allow the user to visualise the influ-

ence of parameter settings on the resulting alignments, allowing fine-tuning of both the pre-

processing and alignment steps (Fig 1). For tutorials and worked examples illustrating the

functionalities of GCalignR, we refer to the vignettes that are distributed with the package

and are available as supporting information S4 and S5 Files.

Supporting information

S1 File. Summary of published algorithms implemented in publicly available software.

(DOCX)

S2 File. Details on the bibliographic survey.

(DOCX)

S3 File. R code and accompanying documentation for all analyses presented in this manu-

script. All analysis steps are provided in an Rmarkdown document file.

(PDF)

S4 File. The vignette ‘GCalignR: Step by Step’ gives an more detailed introduction into

the usage of the package functionalities to tune parameters for aligning peak data.

(HTML)

S5 File. The vignette ‘GCalignR: How does the Algorithms work?’ gives an introduction

into the concepts of the algorithm and illustrates how each step of the alignment proce-

dure alters the outcome based on simple datasets consisting of simulated chromatograms.

(HTML)

S1 Dataset. Datasets used to generate the results presented in this manuscript. This is a

compressed zip archive that includes all the raw data that were used to produce the results

shown in the manuscript and in S3 File.

(ZIP)
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16. Lange E, Tautenhahn R, Neumann S, Gröpl C. Critical assessment of alignment procedures for LC-MS

proteomics and metabolomics measurements. BMC Bioinformatics. 2008; 9(1):375. https://doi.org/10.

1186/1471-2105-9-375 PMID: 18793413

17. Smith R, Ventura D, Prince JT. LC-MS alignment in theory and practice: a comprehensive algorithmic

review. Briefings in bioinformatics. 2013; 16(1):104–117. https://doi.org/10.1093/bib/bbt080 PMID:

24273217

18. Kirchner M, Saussen B, Steen H, Steen JA, Hamprecht FA. amsrpm: robust point matching for retention

time alignment of LC/MS data with R. Journal of Statistical Software. 2007; 18(4):12. https://doi.org/10.

18637/jss.v018.i04

19. Bloemberg TG, Gerretzen J, Wouters HJP, Gloerich J, van Dael M, Wessels HJ, et al. Improved

parametric time warping for proteomics. Chemometrics and Intelligent Laboratory Systems. 2010; 104

(1):65–74. https://doi.org/10.1016/j.chemolab.2010.04.008

20. Johnson KJ, Wright BW, Jarman KH, Synovec RE. High-speed peak matching algorithm for retention

time alignment of gas chromatographic data for chemometric analysis. Journal of Chromatography A.

2003; 996(1):141–155. https://doi.org/10.1016/S0021-9673(03)00616-2 PMID: 12830915

21. Jordan NR, Manser MB, Mwanguhya F, Kyabulima S, Rüedi P, Cant MA. Scent marking in wild banded
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