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Abstract	
Well-documented	 demographic	 changes	 accompanied	 the	 onset	 of	 the	 Neolithic	 but	

subsequent	 population	 dynamics	 are	 less	 clear.	 Ancient	 DNA	 data	 from	 the	 Neolithic	

period	 of	 coastal	 regions	 of	 the	 Iberian	 Peninsula	 are	 relatively	 scarce.	 The	 aim	 of	 the	

present	 study	 was	 to	 sequence	 DNA	 from	 Neolithic	 Iberians	 from	 the	 Spanish	 Levant	

(Catalonia)	and	the	Portuguese	Estremadura,	Algarve	and	Alentejo	regions	in	an	attempt	

to	explore	the	population	dynamics	in	these	regions	following	the	adoption	of	agricultural	

practices.		

Samples	 were	 collected	 from	 the	 Late	 Neolithic	 site	 ‘La	 Sagrera’	 (N=13),	 situated	 in	

modern	day	Barcelona,	and	from	four	sites	 in	Portugal;	Castelo	Belinho	(Early	Neolithic,	

N=8),	Algar	do	Barrão	(Middle	Neolithic,	N=3),	and	Casais	da	Mureta	(N=3)	and	Anta	da	

Cabeceira	 (N=1),	 both	 Late	 Neolithic.	Mitochondrial	 DNA	was	 extracted,	 amplified	 and	

sequenced.	 Haplogroup	 assignments	 were	 made	 using	 diagnostic	 SNPs.	 Databases	 of	

ancient	 and	 modern	 mitochondrial	 DNA	 were	 searched	 for	 haplotypes,	 and	 likelihood	

ratios	were	calculated	to	investigate	kinship	between	individuals	with	shared	haplotypes.	

Obtained	 sequences	 were	 grouped	 with	 previously	 published	 data	 and	 haplogroup	

frequencies	were	compared	with	other	ancient	populations,	and	genetic	distances	were	

calculated	between	ancient	and	modern	Iberian	populations.	

Sequencing	was	largely	unsuccessful	for	the	Portuguese	sites	due	to	sub-optimal	sample	

preservation.	 Regionally,	 ancient	 DNA	 data	 is	 relatively	 scarce,	 suggesting	 local	 climate	

may	promote	DNA	degradation.	Haplotypes	were	obtained	 for	 10	of	 the	 13	 individuals	

from	 La	 Sagrera.	 Matrilineal	 kinship	 was	 established	 for	 two	 individuals	 sharing	 a	

haplotype.	However,	 it	was	not	possible	to	ascribe	a	kinship	based	burial	pattern	at	this	

site.	 FST	 analysis	 indicated	 a	 discontinuity	 between	pre-	 and	post-Neolithic	 populations,	

though	 haplogroup	 analysis	 indicated	 a	 Mesolithic	 ancestry	 throughout	 the	 Iberian	

Neolithic.	Middle	and	Late	Neolithic	populations	were	genetically	divergent	from	modern	

Iberian	 populations,	 indicating	 that	 processes	 subsequent	 to	 the	 Neolithic	 period	 may	

have	influenced	the	modern	mitochondrial	gene	pool	 in	the	region.	Haplogroup	analysis	

indicated	an	 increase	 in	haplogroup	diversity	coinciding	with	 the	onset	of	 the	Neolithic,	

and	a	subsequent	reduction	in	diversity	into	the	Middle	and	Late	Neolithic	periods.	
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1.1	 Ancient	DNA	

1.1.1	 History	of	ancient	DNA	

The	field	of	ancient	DNA	(aDNA)	began	with	the	successful	sequencing	of	the	extinct	

zebra-like	quagga	(Higuchi	et	al,	1984).	Early	studies	(e.g.	Higuchi	et	al,	1984;	Pääbo,	

1985)	found	that	endogenous	DNA	was	restricted	to	short,	highly	degraded	fragments	

primarily	of	multi-copy	loci	such	as	mitochondrial	DNA	(mtDNA),	and	samples	contained	

large	quantities	of	exogenous	fungal	or	bacterial	DNA.	The	invention	of	polymerase	chain	

reaction	(PCR)	(Mullis	et	al,	1986)	suddenly	made	it	possible	to	amplify	DNA	from	as	little	

as	a	single	surviving	copy.	This	led	to	a	number	of	publications	purporting	sequences	from	

millennia	old	specimens	(e.g.	Poinar,	Cano	and	Poinar	Jr,	1993;	Woodward,	Weyand	and	

Bunnell,	1994).	Many	of	these	studies	were	later	found	to	result	from	exogenous	

contamination	(e.g.	Hedges	and	Schweitzer,	1995)	or	were	simply	not	reproducible	(e.g.	

Austin	et	al,	1997).	Though	PCR	enabled	amplification	and	subsequent	study	of	minute	

quantities	of	surviving	endogenous	aDNA,	it	also	increased	the	sensitivity	of	such	studies	

to	contaminant	DNA,	which	was	particularly	problematic	for	human	aDNA	studies	

(Stoneking,	1995).	This	led	to	an	examination	of	ancient	DNA	protocols,	and	criteria	were	

laid	out	for	the	authentication	of	human	aDNA	samples	(Cooper	and	Poinar,	2000),	

enabling	application	of	aDNA	analyses	to	a	broad	range	of	questions	in	fields	including	

archaeology	and	anthropology.	

1.1.2	 Non-recombining	DNA	

Mitochondrial	DNA	(mtDNA)	and	the	non-recombining	portion	of	the	Y	chromosome,	

inherited	maternally	and	paternally	respectively,	can	be	referred	to	as	lineage	markers.	

They	undergo	uniparental	inheritance,	passing	unchanged	from	parent	to	offspring.	They	

are	haploid	in	nature	and	do	not	undergo	recombination,	so	their	diversity	results	from	

mutations	which	occur	during	DNA	replication.	Mutations	take	the	form	of	single	

nucleotide	polymorphism	(SNPs),	insertion/deletion	polymorphisms	(indels)	and	short	

tandem	repeats	(STRs).	This	makes	them	useful	for	tracing	historic	migrations	(e.g.	Haak	

et	al,	2015),	studying	phylogeography	(e.g.	Richards	et	al,	1998),	and	determining	kinship	

(e.g.	Haak	et	al,	2008).	They	are	also	used	to	investigate	genetic	continuity	between	
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putative	ancestral	and	descendent	populations	(e.g.	Fehren-Schmitz	et	al,	2010;	Fehren-

Schmitz	et	al,	2011).	

Mitochondrial	DNA	has	several	characteristics	that	make	it	useful	in	aDNA	studies.	It	is	

contained	within	the	mitochondria	of	eukaryotic	cells.	Each	cell	contains	many	thousands	

of	copies	of	mtDNA	(Robin	and	Wong,	1988).	Mitochondrial	DNA	is	a	circular	molecule	

consisting	of	typically	16569bp,	and	contains	37	genes	that	are	necessary	for	

mitochondrial	function.	The	genes	are	contained	within	the	coding	region	of	the	mtDNA	

molecule.	In	addition,	the	non-coding	region	of	the	mtDNA,	known	as	the	“control	

region”,	is	organised	in	three	hypervariable	regions;	hypervariable	region	I	(base	positions	

16024-16569),	hypervariable	region	II	(base	positions	1-340)	and	hypervariable	region	III	

(base	positions	438-574)	(HVRI,	HVRII	and	HVRIII	respectively).	Mitochondrial	DNA	has	a	

higher	mutation	rate	than	nuclear	DNA	(Pakendorf	and	Stoneking,	2005),	and	in	humans	

these	mutations	are	observed	more	frequently	at	these	hypervariable	regions	(Stoneking,	

2000)	(although	rates	are	quite	heterogeneous	even	within	the	hypervariable	regions:	

Heyer	et	al,	2001).		

Mutations	in	an	mtDNA	sequence	are	commonly	identified	by	comparison	with	the	

revised	Cambridge	Reference	Sequence	(rCRS)	(Anderson	et	al,	1981;	Andrews	et	al,	

1999).	The	rCRS	was	the	first	human	mitochondrial	genome	to	be	published	and	is	a	

member	of	European	haplogroup	H.	An	alternative	to	the	rCRS	is	the	Reconstructed	

Sapiens	Reference	Sequence	(RSRS)	(Behar	et	al,	2012),	though	use	of	this	has	yet	to	be	

widely	adopted.	The	mutations	constitute	a	haplotype,	which	can	be	grouped	into	

monophyletic	clusters	called	haplogroups.	Haplogroups	represent	the	evolution	of	

mtDNA	lineages	from	a	single	common	matrilineal	ancestor	(Behar	et	al,	2008).	Van	Oven	

and	Kayser	(2009)	constructed	a	comprehensive	phylogeny	of	the	available	mitochondrial	

genomes:	phylotree	(www.phylotree.org).	A	simplified	version	of	this	phylogenetic	tree	

can	be	seen	in	figure	1.	These	characteristics	–	the	high	mutation	rate,	non-recombining	

nature,	multicopy,	uniparental	inheritance	–	make	mtDNA	a	useful	target	in	aDNA	

studies.	
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Figure	1.	Simplified	version	of	the	human	mitochondrial	phylogenetic	tree	showing	major	haplogroup	lineages	(van	

Oven	and	Keyser,	2008)	

	

1.2.3	 Characteristics	of	ancient	DNA	

Many	ancient	specimens	contain	no	endogenous	DNA.	Those	that	do	characteristically	

have	low	numbers	of	highly	fragmented,	chemically	altered	endogenous	molecules	

(Pääbo,	1989).	Post-mortem,	the	protective	mechanisms	which	repair	molecular	damage	

in	life	cease,	leading	to	changes	in	the	strucure	and	integrity	of	the	DNA	molecule.	

Hydrolytic	damage	such	as	cytosine	deamination	(Figure	2)	(Hofreiter	et	al,	2001),	

depurination	and	depyrimidination	(Lindahl,	1993),	as	well	as	oxidative	damage	resulting	

from	ionizing	radiation	(Höss	et	al,	1996)	can	all	result	in	strand	fragmentation	and	

incorporation	of	miscoding	lesions	into	a	sequence	(Figure	3).	Other	types	of	damage	

such	as	cross-links	between	molecules	also	occur	(Allentoft	et	al,	2012).	Use	of	

overlapping	primer	pairs	to	target	short	fragment	lengths	(Rizzi	et	al,	2012)	improves	

amplification	of	degraded	DNA,	while	miscoding	lesions	can	be	identified	through	cloning	

(Lamers,	Hayter	and	Matheson,	2009).	

	

	

The	 image	 originally	 presented	 here	 cannot	 be	 made	 freely	

available	 via	 LJMU	 E-Theses	 Collection	 because	 of	 copyright	

regulations.	The	image	was	sourced	at	van	Oven,	M.	and	Kayser,	M.	

(2009),	Updated	comprehensive	phylogenetic	tree	of	global	human	

mitochondrial	 DNA	 variation.	 Hum.	 Mutat.,	 30:	 E386-E394.	

doi:10.1002/humu.20921	
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Figure	2.	Deamination	of	cytosine	to	uracil	(Brown	and	Brown,	2011)	

	

	

	

Figure	3.	Generation	of	C	to	T	sequence	error	during	PCR	resulting	from		cytosine	deamination	(Brown	and	Brown,	

2011)	

Theoretically,	a	relationship	between	sample	age	and	DNA	degradation	should	be	

observable.	Allentoft	et	al	(2012)	estimated	the	half-life	of	DNA	molecules	to	be	521	

years,	meaning	that	in	optimum	conditions,	DNA	up	to	1.5	million	years	old	could	be	

sequenced.	In	practice,	however,	this	is	often	not	the	case,	with	depositional	

environment	being	more	important	(Gamba	et	al,	2008).	Stable,	low	temperatures	are	

key	for	DNA	survival,	and	the	oldest	authenticated	DNA	sequences	tend	to	be	from	

The	 image	originally	presented	here	cannot	be	

made	 freely	 available	 via	 LJMU	 E-Theses	

Collection	because	of	copyright	regulations.	The	

image	was	 sourced	 at	 Brown,	 T.A.	 and	 Brown,	

K.,	 2011.	 Biomolecular	 archaeology:	 an	
introduction.	John	Wiley	&	Sons.	

	

	

The	 image	originally	presented	here	cannot	be	made	freely	

available	via	LJMU	E-Theses	Collection	because	of	copyright	

regulations.	 The	 image	 was	 sourced	 at	 Brown,	 T.A.	 and	

Brown,	K.,	2011.	Biomolecular	archaeology:	an	introduction.	
John	Wiley	&	Sons.	
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permafrost	environments	(e.g.	Orlando	et	al,	2013).	Rapid	post-mortem	desiccation	and	

high	salt	concentration	are	also	thought	to	play	a	role	(Willerslev	and	Cooper,	2005).	

Conversely,	high	or	fluctuating	temperatures	and	humidity	are	all	likely	to	inhibit	

preservation.		

Since	the	beginning	of	aDNA	studies,	exogenous	DNA	contamination	has	been	a	problem	

(see	above).	Not	only	is	modern	contaminant	DNA	likely	to	be	more	abundant	in	a	

sample,	but	it	will	be	amplified	preferentially	to	the	degraded	exogenous	target	if	present	

(Fulton,	2012).	Contamination	is	particularly	problematic	when	manipulating	human	

samples,	since	the	researchers	themselves	are	a	contamination	source.	To	overcome	

problems	arising	from	contamination,	many	criteria	for	authenticating	aDNA	results	have	

been	proposed,	including	physical	separation	of	aDNA	workspaces;	extraction	and	PCR	

controls;	independent	replication,	preferable	from	an	independent	sample	and	in	a	

separate	laboratory;	molecular	cloning;	and	ensuring	phylogenetic	sense	of	sequences	

(Cooper	and	Poinar,	2000;	Fulton,	2012).	

1.2	 The	Neolithic	

1.2.1	 Neolithic	Transition	in	Europe	

The	Neolithic	period	of	human	prehistory	is	characterised	by	the	shift	from	a	nomadic,	

hunter-gathering	lifestyle	common	during	the	Mesolithic,	to	a	reliance	on	agricultural	

subsistence.	Originating	in	the	Fertile	Crescent	around	10	000	BCE,	farming	technologies	

quickly	spread	westward	throughout	the	rest	of	Europe	(Price,	2000).		

Likely	arising	in	response	to	increasing	population	size	(Soares	et	al,	2010),	the	Neolithic	

brought	with	it	a	sharp	increase	in	the	scale	and	complexity	of	social	networks,	which	led	

to	changes	in	settlement	patterns,	population,	and	social	inequalities	(Aubán,	Lozano	and	

Pardo-Gordó,	2017).	The	Neolithic	transition	affected	economic,	social,	and	demographic	

change,	revolutionising	human	societies	across	Europe	(Aubán,	Martín	and	Barton,	2013).	

These	changes	were	reflected	in	increased	symbolism	in	cultural	practices	and	funerary	

rites.	

The	archaeological	record	suggests	the	advance	of	the	Neolithic	into	Europe	occurred	

predominantly	along	two	routes;	the	Impressa	culture	spread	along	the	Mediterranean	
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coastline	starting	around	5900	BCE	(before	current	era),	and	the	simultaneous	spread	of	

the	Linearbandkeramik	(LBK)	culture	into	Central	Europe	along	the	Danube	River	(Olalde	

et	al,	2015).	There	are	two	contrasting	models	for	how	the	Neolithic	spread	through	

Europe.	Ammerman	and	Cavalli-Sforza	(1984)	found	an	east-west	cline	in	the	distribution	

of	allele	frequencies	and	used	this	information	alongside	radiocarbon	dates	to	propose	a	

human	migration	from	the	Near	East	to	Europe.	According	to	the	demic	diffusion	model,	

migrant	farmers	spread	and	replaced	autochthonous	Mesolithic	communities.	A	complete	

demic	diffusion	should	be	characterised	by	a	discontinuity	in	the	genetic	structure	

between	Neolithic	and	pre-Neolithic	populations	(Ammerman	and	Cavalli-Sforza,	1984).	

Conversely,	the	cultural	diffusion	model	suggests	a	sharing	of	culture	and	trade	between	

neighbouring	hunter-gatherer	and	farming	communities,	allowing	the	spread	of	farming	

technologies	without	population	replacement	(e.g.	Dennell,	1983).	Cultural	diffusion,	

therefore,	would	result	in	a	genetic	continuity	from	the	Mesolithic	to	the	Neolithic	period.	

The	reality	is	likely	to	lie	somewhere	between	these	two	extremes,	with	varying	levels	of	

migration	and	cultural	diffusion	seen	in	different	areas.	It	is	also	unlikely	that	the	

Neolithisation	of	Europe	occurred	in	a	single	chronological	event.	Rather	multiple	

migratory	events,	spanning	thousands	of	years	are	thought	to	have	taken	place	out	of	the	

Fertile	Crescent	(Özdoğan,	2014),	with	various	levels	of	admixture	between	existing	

Mesolithic	communities	and	colonising	Neolithic	migrants.	We	can	begin	to	better	

understand	these	processes	by	uncovering	the	genetic	structure	of	prehistoric	European	

communities,	which	has	helped	to	identify	patterns	of	migration	and	colonisation	(Soares	

et	al,	2010).	

While	the	model	proposed	by	Ammerman	and	Cavalli-Sforza	(1984)	suggested	a	uniform	

‘wave	of	advance’	of	Neolithic	famers,	both	molecular	and	radiocarbon	dating	have	

indicated	a	series	of	shorter,	local	migrations	punctuated	by	long	pauses	as	a	likely	model	

(Rowley-Conwy,	2009).	This	model	allows	for	the	incorporation	of	Mesolithic	signatures	

into	farming	communities	before	further	‘leapfrog’	colonisation.	Pioneer	colonisation,	

involving	settlement	of	a	few	newcomers	and	a	greater	contribution	from	autochthonous	

populations	has	also	been	suggested	(Zvelebil,	1986).	
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1.2.2	 Neolithic	Iberia	

Within	the	European	landscape,	the	Iberian	Peninsula	presents	an	interesting	case	study	

for	the	Neolithic	Transition,	due	to	its	relatively	segregated	position	at	the	southwestern	

tip	of	Europe.	Much	archaeological	information	has	been	lost	due	to	inundation	of	

prehistoric	shore	lines	(Olalde	et	al,	2015),	making	the	arrival	and	spread	of	the	Neolithic	

in	this	region	more	difficult	to	understand.	Cardial	culture	–	a	later	incarnation	of	the	

Impressa	-	reached	the	Iberian	coast	around	5500BCE	(Olalde	et	al,	2015).	The	

subsequent	rapid	spread	of	the	Cardial	culture	along	the	Iberian	coastline	is	thought	to	be	

the	result	of	maritime	pioneer	colonisation	of	uninhabited	regions	(Zilhao,	2001;	Gamba	

et	al,	2012).	This	may	have	resulted	in	a	patchwork	of	communities.	Zilhao	(1998)	

suggests	a	coexistence	between	Mesolithic	and	Neolithic	populations	lasting	several	

millennia	along	the	Mediterranean	coast,	although	some	sites	in	Catalonia	show	an	

absence	of	Mesolithic	influence	(Ribe,	Cruells	and	Molist,	1997),	suggesting	that	co-

existence	between	farmers	and	autochthonous	populations	was	not	uniform.	Other	

archaeological	evidence	points	to	terrestrial	expansion	routes	along	rivers	or	across	the	

Pyrenees	(García-Martínez	de	Lagrán,	Fernández-Domínguez	and	Rojo-Guerra,	2017).		

1.3	 Archaeogenetics	

1.3.1	 Pre-Neolithic	Europe	

A	genetic	bottleneck	during	the	Last	Glacial	Maximum	(LGM)	in	Europe	reduced	

mitochondrial	diversity	(García-Martínez	de	Lagrán,	Fernández-Domínguez	and	Rojo-

Guerra,	2017),	including	the	loss	of	haplogroup	M	lineages	(Fu	et	al,	2016;	Posth	et	al,	

2016).	This	led	to	a	relatively	uniform	Mesolithic	population	characterised	by	haplogroups	

U,	U2,	U4,	U5,	and	U8	(Bramanti	et	al,	2009;	Gamba	et	al,	2014;	Lazaridis	et	al,	2014).	

Haplogroups	U5,	U8	are	thought	to	be	the	most	ancient	European	haplogroups,	and	are	

the	only	haplogroups	-	along	with	V	(Torroni	et	al,	2001;	Soares	et	al,	2010)	–	that	arose	in	

situ.	All	others	were	likely	to	have	been	imported	during	migration	events	(Richards	et	al,	

2000;	Achilli	et	al,	2004;	Malyarchuk	et	al,	2010).	Haplogroups	H	and	possibly	lineages	

belonging	to	K,	T,	W,	and	X	may	have	arrived	in	Europe	prior	to	the	LGM	and	suffered	

reduced	diversity	with	the	LGM,	before	re-expanding	post-LGM	(Richards	et	al,	2000;	

Achilli	et	al,	2004).		
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1.3.2	 Neolithic	Europe	

The	arrival	of	the	Neolithic	in	Central	Europe	approximately	5500	BCE	was	characterised	

by	the	presence	of	haplogroups	HV,	J,	K,	N1a,	T2,	V,	W	and	X	(Haak	et	al,	2010;	Brandt	et	

al,	2013).	This	distinct	group	of	haplogroups	appears	later	in	southern	Scandinavia	

(Brandt	et	al,	2013),	coinciding	with	the	arrival	of	the	Neolithic	in	the	region	(Haak	et	al,	

2015).	Haplogroups	H,	T1,	U2,	U3,	U4	and	U5a	have	also	been	identified	in	Central	

European	early	farmers	(Haak	et	al,	2005;	Bramanti	et	al,	2009;	Brandt	et	al,	2013;	

Szécsényi-Nagy	et	al,	2015).	Northern	and	Central	European	early	farmers	were	found	to	

be	genetically	distinct	from	the	region’s	hunter-gatherers	but	similar	to	each	other	and	to	

subsequent	Neolithic	populations	(Brandt	et	al,	2013;	Szécsényi-Nagy	et	al,	2015),	

whereas	a	greater	proportion	of	hunter-gatherer	lineages	persist	through	the	Neolithic	in	

Scandinavia	(Brandt	et	al,	2013).		

After	an	initial	decline,	Mesolithic	ancestry	increased	during	the	Middle	and	Late	Neolithic	

in	Central	and	Eastern	Europe	(Bollongino	et	al,	2013;	Haak	et	al,	2015),	and	there	is	

evidence	for	the	existence	of	distinct	hunter-gatherer	groups	in	Late	Neolithic	Central	

Europe	(Bollongino	et	al,	2013).	Discontinuity	has	been	found	between	Late	Neolithic	and	

modern	day	Central	Europeans	(Brandt	et	al,	2013),	and	there	is	evidence	for	further	

migrations	into	Europe	from	the	Caucasus	during	the	Late	Neolithic	and	Early	Bronze	Age	

(Allentoft	et	al,	2015;	Haak	et	al,	2015).	Allentoft	et	al	(2015)	found	that	the	modern	

European	genetic	landscape	most	closely	resembles	that	of	Bronze	Age	Europe.	

1.3.3	 Neolithic	Iberia	

Although	data	is	scarce,	Mesolithic	Iberian	populations	appear	to	have	been	characterized	

by	haplogroup	U	(Hervella	et	al,	2012;	Sánchez-Quinto	et	al,	2012).	Additionally,	a	high	

frequency	of	haplogroup	H	is	observed	in	Mesolithic	Iberia	(de-la-Rua	et	al,	2015),	

probably	resulting	from	post-LGM	expansion	from	Franco-Cantabrian/Iberian	Refugia	

(Achilli	et	al,	2004).	Although	haplogroup	H	was	also	present	in	pre-Neolithic	Iberia,	HVRI	

is	not	sufficiently	resolved	to	distinguish	between	lineages,	some	of	which	may	have	

arrived	with	the	Neolithic.		

Discontinuity	between	early	farmers	and	later	Neolithic	populations	has	been	observed	in	

the	Catalonia	and	Aragon	regions	of	the	Iberian	Peninsula	(Gamba	et	al,	2012).		
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Early	Neolithic	populations	in	northeastern	Iberia	contained	individuals	belonging	to	

haplogroups	H,	HV,	I,	J,	K,	N,	N*,	T2,	U,	U5,	X1	and	V	(Lacan	et	al,	2011;	Gamba	et	al,	

2012;	Hervella	et	al,	2012;	Haak	et	al,	2015;	Olalde	et	al,	2015),	while	haplogroups	H3	and	

H4,	and	H	and	K	have	been	found	at	Early	Neolithic	sites	in	southwestern	Iberia	and	

southeastern	Iberia,	respectively	(Olalde	et	al,	2015).	

Haplogroups	H,	I,	J1,	T2,	U,	U5	and	W	have	all	been	confirmed	in	northeast	Iberia	

(Sampietro	et	al,	2007;	Hervella	et	al,	2012),	and	haplogroups	H1,	J2,	K	and	U	in	central	

Iberia	(Haak	et	al,	2015)	during	the	Middle	Neolithic.	Late	Neolithic	central	Iberian	are	

characterized	by	H,	J,	K,	T2,	U,	V	and	X	lineages	(Gómez-Sánchez	et	al,	2014;	Günther	et	

al,	2015;	Mathieson	et	al,	2015;	Alt	et	al,	2016)	

The	transition	from	the	Early	to	the	Middle	Neolithic	saw	an	increase	in	hunter-gatherer	

ancestry	in	the	farming	communities	of	Iberia	(Alt	et	al,	2016;	Szécsényi-Nagy	et	al,	2017).	

The	presence	of	hunter-gatherer	linages	may	be	the	result	of	admixture	between	

contemporaneous	Neolithic	and	Mesolithic	groups	on	the	Iberian	Peninsula	(Lipson	et	al,	

2017)	or	it	may	be	that	Mesolithic	lineages	were	brought	into	the	region	by	migrating	

populations	(Martiniano	et	al,	2017).	By	the	end	of	the	Neolithic,	Szécsényi-Nagy	et	al	

(2017)	suggest	a	relatively	homogenous	genetic	landscape	throughout	the	Iberian	

Peninsula,	indicating	that	human	mobility	had	increased	and	genetic	mixing	was	common.	

1.4	 Aims	and	Objectives	

The	present	study	aims	to	sequence	mitochondrial	DNA	from	skeletons	excavated	from	

Neolithic	burial	sites	across	the	Iberian	Peninsula	in	order	to	add	to	the	genetic	data	

available	from	this	region	for	the	Middle	and	Late	Neolithic	periods.	The	data	obtained	

will	be	used	to:	

i) Investigate	maternal	kinship	within	the	burial	sites	studied,	and	subsequently	

make	inferences	about	the	social	complexities	underlying	them.	

ii) Investigate	the	population	dynamics	of	Neolithic	Iberians	by	exploring	the	

occurrence	and	frequency	of	the	mitochondrial	haplotypes	of	the	studied	

populations	in	earlier	and	later	populations.	
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iii) Explore	genetic	divergence	between	Mesolithic,	Early,	Middle	and	Late	

Neolithic	Iberian	populations.		

iv) Explore	genetic	divergence	between	Middle	and	Late	Neolithic,	and	extant	

Iberian	populations.	
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Chapter	Two:	Materials	and	Methods	
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2.1	 Study	Sites	

Skeletal	and	dental	samples	were	obtained	for	analysis	from	five	archaeological	sites	on	

the	Iberian	Peninsula	(Figure	4).	The	sites	ranged	from	the	Early	Neolithic	to	the	Late	

Neolithic	(Table	1).	

	

Figure	4.	Location	of	sites	from	which	studied	samples	were	excavated	

	

Table	1.	Location,	type,	and	calibrated	radiocarbon	dates	(cal	BCE)	of	the	archaeological	sites	studied.	

Site	 Region	 Type	 Date	(cal	BC)	 N	

analysis	La	Sagrera	 Barcelona,	Catalonia	 Hypogeum	 2403-2227	 13	

Castelo	Belinho	 Algarve,	Portugal	 Settlement	 4500-3900	 8	

Anta	da	Cabeceira	 Alentejo,	Portugal	 Dolmen	 3600	 1	

Algar	do	Barrão	 Estremadura,	Portugal	 Cave	 3700-3100	 3	

Casais	da	Mureta	 Estremadura,	Portugal	 Cave	 3320-2930	 3	

	

2.1.1	 La	Sagrera	

Construction	works	being	undertaken	at	the	metro	station	in	the	metropolitan	borough	of	

La	Sagrera	in	Barcelona	in	2010	uncovered	a	mass	grave	of	human	remains	(Figure	5).	
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Upon	excavation	between	2011	and	2012,	the	site	was	found	to	be	a	5.5m	x	3m	

hypogeum,	containing	the	skeletal	remains	of	207	individuals,	which	was	dated	to	the	

Late	Neolithic	(2403-2227cal	BCE)	(Balaguer	et	al,	2013).		

	

	

Figure	5.	Hypogeum	of	Late	Neolithic	human	remains	uncovered	in	2010	during	construction	works	at	La	Sagrera	metro	

station,	Barcelona.	Balaguer	et	al.	2013	

	

The	hypogeum	appears	to	have	three	discrete	burial	stages,	with	the	first	stage	being	

characterised	as	a	collective	burial,	and	the	third	stage	being	a	primary	deposition	of	a	

single	individual	(Balaguer,	2016).	The	samples	of	interest	in	the	present	study	are	from	

the	second	burial	stage,	which	was	characterised	by	a	large	number	of	inhumations	over	a	

relatively	short	period.	Despite	the	apparent	haste	with	which	these	depositions	were	

made,	the	burials	display	characteristic	funerary	rituals,	with	individuals	being	positioned	

in	a	specific	way,	either	prone	with	legs	bent	laterally	to	the	left,	or	in	right	lateral	

decubitus	with	legs	bent,	i.e.	in	the	foetal	position.	The	skeletons	were	also	arranged	into	

distinct	clusters	(Figure	6)	(Balaguer,	2016).	Thirteen	individuals	were	selected	for	analysis	

from	three	clusters	identified	as	have	been	almost	simultaneously	deposited	(Table	2).	

The	individuals	sampled	from	the	clusters	were	selected	based	on	macroscopic	

preservation,	and	thus	the	likelihood	of	successful	DNA	amplification.	
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Figure	 6.	 Burial	 clusters	 from	 the	 second	 depositional	 phase	 at	 the	 La	 Sagrera	 hypogeum,	 showing	 decubitus	 (e.g.	

individual	SA8	in	cluster	A)	and	prone	(e.g.	individual	SA18	in	cluster	B)	positioning	of	the	skeletons.	Cluster	A	contained	

individuals	SA2	(green)	(not	analysed),	SA4	(yellow),	and	SA8	(orange).	Cluster	B	contained	individuals	SA18	(blue),	SA56	

(pink),	 and	SA68	 (yellow).	Cluster	C	 contained	 individuals	 SA43	 (blue),	 SA44	 (green),	 SA46	 (pink),	 SA45	 (yellow)	SA53	

(orange),	and	SA25,	SA26,	and	SA39	(not	shown).	Pictures	from	Balaguer	(2016).	

	

Table	2.	Age,	sex	and	burial	cluster	of	the	skeletons	from	the	La	Sagrera	 	 	 	

hypogeum	that	were	subject	to	aDNA	analysis	(Balaguer,	2016)	

Cluster	 Individual	 Age	Category	 Age	 Sex	

A	

	

SA4	 Child	 8-10	 Indeterminate	

SA8	 Young	adult	 >25	 Female	

B	

	

SA18	 Mature	adult	 45	 Male	

SA56	 Adult		 ?	 Male	

SA68	 Young	adult	 18-23	 Female	

C	

	

SA25	 Child	I	 18	months	 Indeterminate	

SA26	 Child	II	 5-6	 Indeterminate	

SA39	 Child	II	 8	 Indeterminate	

SA43	 Juvenile	 17	 Female	

SA44	 Juvenile/Young	adult	 18-22	 Male	

SA45	 Juvenile/Young	adult	 18-24	 Male	

SA46	 Young	adult	 25-34	 Male	

SA53	 Adult		 ?	 Female	
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2.1.2	 Portugal	

The	four	Portuguese	sites	date	from	the	Early	to	the	Late	Neolithic	(Table	1).	

Castelo	Belinho	

Radiocarbon	dating	places	Castelo	Belinho	at	the	transition	period	from	the	Early	

Neolithic	to	the	Middle	Neolithic	(Table	1)	(for	syntheses	of	site,	see	Gomes,	2008;	

Gomes,	2012).	Situated	between	the	foothills	of	the	Monchique	Mountain	and	the	

estuary	of	the	Arade	River,	in	the	Algarve	region,	Castelo	Belinho	is	an	Early/Middle	

Neolithic	settlement	site	with	associated	funerary	pits.	This	is	unique	amongst	sites	

studied	here.	It	represents	the	later	practices	of	individual	burials	in	southwestern	Iberia	

before	the	emergence	of	collective	burials	typical	of	the	megalithic	culture.	A	rich	

material	culture	was	excavated	at	this	site,	including	potsherds,	tools,	jewellery,	and	

faunal	remains.	Archaeologists	definitively	identified	14	graves	at	the	site,	and	samples	

from	eight	individuals	excavated	from	these	were	provided	for	analysis	(Table	3).	Graves	

varied	in	size	from	small	dug	pits	or	natural	depressions,	to	larger	silo-shaped	pits.	Bodies	

were	arranged	either	in	the	foetal	position,	or	dorsally	with	legs	bent	backwards.	

Algar	do	Barrão	

Algar	do	Barrão	is	a	burial	cave	located	in	the	eastern	rim	of	the	Limestone	Massif	of	

Estremadura,	in	central-coastal	Portugal,	facing	the	Tagus	river	valley.	It	was	dated	to	the	

Middle	Neolithic	(3700-3100	cal	BCE)	(Carvalho	and	Petchey,	2013).	The	remains	of	at	

least	21	individuals	were	discovered	during	excavations,	along	with	a	small	selection	of	

artefacts,	including	shell	bracelets	and	pottery.	Males,	females,	adults	and	juveniles	were	

all	represented	within	the	remains.	Remains	were	highly	fragmented,	though	

anthropologists	found	no	sign	of	trauma.	It	was	suggested	that	the	remains	found	at	this	

site	are	the	result	of	secondary	depositions,	with	the	corpses	having	been	subject	to	a	

primary	deposition	in	order	to	remove	the	flesh	and	then	transferred	along	with	whitish	

sediments	(thus	contrasting	in	colour	with	the	reddish,	clayish	sediments	of	the	cave)	to	

their	current	location.	These	burial	practices	and	artefacts	observed	at	Algar	do	Barrão	

are	comparable	to	those	observed	at	other	Middle	Neolithic	and	younger	sites	(Carvalho,	

Antunes-Ferreira	and	Valente,	2003).	
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Casais	da	Mureta	

Casais	da	Mureta	is	a	very	narrow,	vertical	cave	located	around	2	km	away	from	Algar	do	

Barrão.	It	was	uncovered	after	building	works,	and	only	very	preliminary	salvage	works	

have	been	carried	out.	Thus,	it	remains	unpublished.	The	cave	floor	was	scattered	with	an	

abundant	faunal	assemblage	(Valente	et	al,	accepted	for	publication)	and	human	skeletal	

remains,	including	three	human	mandibles	containing	more	than	three	teeth,	which	

appeared	suitable	for	genetic	analysis	(Table	3).	This	site	is	estimated	to	date	from	the	

Late	Neolithic	(3320-3942	cal	BCE	–	Antonio	Carvalho:	personal	communication).	The	site	

provides	evidence	of	the	same	type	of	funerary	practices	as	those	observed	at	Algar	do	

Barrão,	but	the	particular	topography	of	the	cave	and	the	unexpected	number	of	animal	

remains	may	reveal	a	different	scenario	as	work	progresses.	

Anta	da	Cabeceira	

Anta	da	(or	Dolmen	of)	Cabeceira	is	a	granite-built	dolmen,	excavated	in	the	1930s	by	a	

former	director	of	the	National	Museum	of	Archaeology	(Lisbon),	M.	Heleno.	This	dolmen	

is	located	in	the	Mora	area	of	the	Alentejo	region,	where	an	impressive	number	of	

megalithic	monuments	have	been	found	since	the	beginning	of	the	20th	century.	Given	

the	acidity	of	the	granitic	and	conglomerate	geological	substrata,	bone	preservation	

conditions	are	seldom	found.	This	was	not	the	case	at	Cabeceira,	where	a	minimum	

number	of	three	individuals	were	found	and	recently	dated	to	3600	cal	BCE	(Carvalho	and	

Rocha,	2016):	one	of	the	earliest	dates	for	a	human	sample	from	a	megalithic	structure	in	

Portugal.	Given	the	poor	preservation	conditions	at	the	site,	only	one	individual	was	

sampled	in	the	first	instance	to	determine	whether	successful	DNA	retrieval	might	be	

possible.	Since	it	was	not	possible	to	obtain	a	reproducible	sequence	from	this	individual,	

the	decision	was	taken	not	to	analyse	any	further	samples	from	this	site.	

2.2	 Sample	Selection	

The	anthropologists	responsible	for	the	skeletons	selected	samples.	With	the	exception	of	

individuals	SA43,	CBL5,	and	CBL7,	two	samples	per	individual	were	provided	(Table	3),	

and	sent	to	Liverpool	John	Moores	University	(LJMU).	Ideally,	samples	were	required	to	

show	good	macroscopic	preservation,	with	few	visible	fissures	and	natural	colouration	
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(Figure	7).	Dental	samples	were	preferred,	so	teeth	were	provided	in	all	possible	cases.	

Exceptions	were	samples	1CBL3,	2CBL3,	2CBL6,	1CBL7	and	CAB3,	where	bone	fragments	

were	provided	due	to	lack	of	suitable	dental	samples	(Table	3).	In	order	to	rule	them	out	

as	a	possible	contamination	source,	the	anthropologists	responsible	for	sample	selection	

were	required	to	provide	a	DNA	sample	for	genotyping.	

	

	

Figure	 7.	 Examples	 of	 preferred	 characteristics	 of	 samples	 selected	 for	 ancient	 DNA	 analysis.	 Samples	 should	 be	 of	

natural	colouration,	and	should	have	good	macroscopic	level	of	preservation	with	no	obvious	fissures	or	damage.	The	

skull	 fragment	 (a),	 though	a	 fragment	 in	 itself,	has	damage	 to	 the	external	 surfaces.	The	 incisor	 (b)	 is	entire	with	no	

broken	roots	or	holes	in	the	crown	(Robinson,	2015)	

	

All	samples	were	documented	on	arrival;	sample	type	(i.e.	dental	sample	or	bone	type)	

was	confirmed,	preservation	condition	and	colour	noted,	and	photographs	taken	(Table	

3).	Sample	pictures	can	be	found	in	Appendix	1.	
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Table	3.	Samples	provided	for	ancient	DNA	analysis	

Site	 Individual	 Sample	 Sample	type	 Colour	 Preservation	
La	
Sagrera	

SA4	 1SA4	 Tooth	 Brown	 Roots	broken,	dirty	

2SA4	 Molar	 Brown	 Root	broken		

SA8	 1SA8	 Tooth	 Brown	 Surface	damaged	

2SA8	 Molar	 Pale	orange	 Dirty,	enamel	broken	

SA18	 1SA18	 Tooth	 Pale	brown	 Root	broken		

2SA18	 Molar	 Pale	orange	 Root	broken		

SA25	 1SA25	 Deciduous	molar	 Natural	 Roots	destroyed		

2SA25	 Deciduous	molar	 Natural	 Roots	destroyed		

SA26	 1SA26	 Tooth	 Pale	brown	 Root	broken		

2SA26	 Deciduous	molar	 Pale	brown	 Root	broken		

SA39	 1SA39	 Tooth	 Natural	 Roots	broken	and	dirty	

2SA39	 Molar	 Orange-brown	 Roots	broken	

SA43	 1SA43	 Molar	 Pale	brown	 Entire,	good	

SA44	 1SA44	 Tooth	 Natural	 Entire,	good	

2SA44	 Molar	 Pale	orange	 Entire,	good	

SA45	 1SA45	 Tooth	 Natural	 Entire,	good	

2SA45	 Molar	 Pale	brown	 Roots	broken	

SA46	 1SA46	 Tooth	 Natural	 Entire,	good	

2SA46	 Molar	 Orange-brown	 Root	broken		

SA53	 1SA53	 Tooth	 Natural	 Root	broken		

2SA53	 Molar	 Brown	 Entire,	root	fissure	

SA56	 1SA56	 Tooth	 Orange-brown	 Entire,	good	

2SA56	 Molar	 Orange-brown	 Cracked	

SA68	 1SA68	 Tooth	 Brown	 Entire,	root	fissure	

2SA68	 Molar	 Orange-brown	 Entire,	good	

Algar	do	
Barrão	

BAR3	 1BAR3	 Molar	 Orange-brown	 Entire,	weathered	

2BAR3	 Molar	 Pale	orange	 Entire,	weathered	

BAR4	 1BAR4	 Molar	 Brown	 Root	broken,	weathered	

2BAR4	 Molar	 Orange-brown	 Entire,	weathered	

BAR5	 1BAR5	 Molar	 Natural	 Root	broken,	dirty	

2BAR5	 Molar	 Brown	 Root	broken,	dirty	

Anta	da	
Cabeceira	

CAB3	 1CAB3	 Femur	section	 Brown	 Surface	weathered	

2CAB3	 Femur	section	 Orange-brown	 Surface	weathered	

Casais	da	
Mureta		

CMR1	 1CMR1	 Molar	 Natural	 Chipped	enamel	

2CMR1	 Molar	 Brown	 Broken	enamel	

CMR2	 1CMR2	 Canine	 Natural	 Broken	enamel		

2CMR2	 Premolar	 Brown	 Entire,	good	

CMR3	 1CMR3	 Molar	 Orange-brown	 Cracked	

2CMR3	 Premolar	 Orange-brown	 Entire,	good	

Castelo	
Belinho	

CBL1	 1CBL1	 Tooth	 Natural	 Entire,	good	

2CBL1	 Tooth	 Natural	 Entire,	good	

CBL2	 1CBL2	 Incisor	 Natural	 Cracked	

2CBL2	 Tooth	 Yellow	root	 Enamel	chipped	

CBL3	 1CBL3	 Bone	fragment	 Natural	 Dirty	

2CBL3	 Skull	fragment	 Natural	 Highly	degraded	

CBL4	 1CBL4	 Tooth	 Orange-brown	 Highly	degraded	

2CBL4	 Tooth	 Orange-brown	 Highly	degraded	

CBL5	 1CBL5	 Tooth	 Brown	 Highly	degraded	

CBL6	 1CBL6	 Canine	 Pale	brown	 Highly	degraded	

2CBL6	 Femur	fragment	 Natural	 Highly	degraded	

CBL7	 1CBL7	 Bone	fragment	 Pale	brown	 Degraded	

CBL8	 1CBL8	 Tooth	 Orange-brown	 Highly	degraded	

2CBL8	 Tooth	 Orange-brown	 Highly	degraded	
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2.3	 Genetic	analyses	

Detection	of	contaminant	DNA	is	an	essential	component	of	ancient	DNA	analyses.	This	is	

of	particular	importance	when	analysing	ancient	human	samples,	since	there	is	a	high	

likelihood	of	contamination	with	modern	human	DNA	at	all	stages	of	processing,	from	

excavation	to	PCR.	Due	to	its	similarity,	modern	contaminant	DNA	may	be	amplified	

alongside,	or	preferentially	to,	the	targeted	endogenous	DNA,	resulting	in	an	inauthentic	

sequence.	Thus,	ancient	DNA	analysis	is	subject	to	strict	protocols	and	should	be	

undertaken	in	isolated	facilities	(Cooper	and	Poinar,	2000).	Criteria	of	authenticity	must	

be	adhered	to	in	order	to	guarantee	only	genuine	endogenous	sequences	are	reported.	

Facilities	and	authenticity	criteria	can	vary	among	ancient	DNA	laboratories,	depending	

upon	available	resources	and	preferred	methodologies.		

2.3.1	 Facilities	and	Criteria	of	Authenticity	

A	purpose-designed	Low	Copy	Number	(LCN)	DNA	laboratory	was	set	up	at	Liverpool	John	

Moores	University	(LJMU)	prior	to	the	start	of	the	current	study.	Only	ancient	samples	

were	permitted	in	the	LCN	facilities.	A	restricted-access	policy	was	in	place,	and	

researchers	wishing	to	access	the	facilities	were	required	to	provide	a	DNA	sample	for	

genotyping	(Table	4).		

Table	4.	Mitochondrial	hypervariable	region	I	haplotypes	of	researchers	associated	with	samples	or	aDNA	facilities	at	

both	Liverpool	John	Moores	University	(LJMU)	and	Manchester	Institute	of	Biotechnology	(MIB).	

Staff		 Details	 Extraction	lab	 HVI	

L00	 User	LCN-LJMU	 Barcelona	 CRS	

L01	 User	LCN-LJMU	 LJMU	 16093C	16221T	

L02	 User	LCN-LJMU	 LJMU	 16263T	

L03	 User	LCN-LJMU	 LJMU	 16126C	16294T	16304C	

L06	 External		 LJMU	 16192T	16274A	16362C	

L07	 External		 Madrid	 16145A	16176G	16223T	16290A	

M01	 User	LCN-MIB	 Madrid	 16037G	16192T	16256T	16270T	16311C	16399G	

M02	 User	LCN-MIB	 MIB	 16069T	16126C	16519C	

M03	 User	LCN-MIB	 MIB	 16356C	16519C	

M06	 User	LCN-MIB	 MIB	 16093C	16224C	16311C	16362C	16400T	16519C	

M04	 User	LCN-MIB	 MIB	 CRS	

M05	 User	LCN-MIB	 MIB	 16093C	16223T	16291T	16295T	16337T	16362C	16519C	
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Figure	8.	Layout	of	LCN	facilites	at	Liverpool	John	Moores	University	

	

	

The	LCN	facilities,	located	in	the	Life	Science	Building	(LSB)	at	LJMU	were	separated	from	

the	main	molecular	biology	laboratories,	and	consisted	of	an	extraction	laboratory	and	a	

PCR	laboratory	with	a	connecting	lobby	area	(Figure	8).	A	unidirectional	workflow	was	

maintained	between	the	laboratories	meaning	that	in	a	single	working	day,	researchers	

could	only	move	from	the	extraction	room	to	the	PCR	room	and	from	there	to	the	post-

PCR	laboratory.	

Both	the	laboratories	were	fitted	with	254nm	ultra-violet	lamps,	which	were	switched	on	

overnight	prior	to	and	after	use	of	the	facilities.	All	laboratory	surfaces	and	equipment	

were	cleaned	with	70%	sodium	hypochlorite	bleach	before	and	after	use,	as	were	reagent	

bottles	and	other	lab	ware.	Most	reagents	and	all	lab	ware	and	consumables	were	also	

irradiated	in	ultraviolet	cross	linkers	for	between	15	minutes	and	3	hours	to	ensure	

surfaces	were	sterile	prior	to	use.	The	insides	of	sample	tubes	and	their	lids	were	also	UV	

irradiated	for	at	least	20	minutes	prior	to	use.	
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Figure	9.	Low	copy	number	facilities	situated	in	the	Life	Science	Building	at	LJMU:	entrance	lobby	(left)	and	

sample	preparation	and	DNA	extraction	room	(right)	(Pictures	taken	from	Robinson	et	al,	2016)	

	

Sample	preparation,	including	cutting,	cleaning,	and	grinding,	was	undertaken	in	an	

extraction	cabinet	in	the	extraction	laboratory	(Figure	9).	Reagent	preparation	and	

extractions	were	carried	out	in	the	same	room	inside	a	UV	HEPA	PCR	cabinet	(UPV-

Analytik	Jena)	in	the	same	laboratory.	PCR	reactions	were	prepared	in	a	UV	HEPA-filter	

cabinet	in	the	PCR	laboratory	and	then	taken	to	a	thermal	cycler	outside	of	the	LCN	for	

the	reaction	to	be	performed.	All	post-PCR	work	was	performed	in	the	general	

laboratories.		

Some	extractions	and	PCRs	were	done	at	the	Manchester	Institute	of	Biotechnology	

(MIB),	The	University	of	Manchester.	The	ancient	DNA	facilities	at	MIB	were	subject	to	

the	same	rigorous	criteria	as	those	at	LJMU.	In	this	case,	extraction,	PCR	and	post-PCR	

laboratories	were	in	separate	locations	throughout	the	building.	

When	working	in	the	laboratory,	researchers	were	required	to	wear	full	personal	

protective	equipment	in	order	to	prevent	DNA	contamination.	This	included	wearing	a	

hygiene	mask,	hairnet,	hooded	coveralls,	shoe	covers,	protective	goggles	and	two	pairs	of	

surgical	gloves.	Two	independent	extractions	per	individual	were	performed,	ideally	from	

two	separate	skeletal	elements.	When	possible	these	were	conducted	in	different	

laboratories	(LJMU	and	MIB).	
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2.3.2	 Modern	DNA	typing	

Genetic	profiles	were	obtained	from	all	researchers	involved	in	handling	or	selecting	

samples,	and	those	with	access	to	the	LCN	facilities.	When	researchers	had	not	already	

been	genotyped,	they	were	asked	to	provide	a	swab	of	cheek	cells	from	which	DNA	was	

extracted	in	the	molecular	biology	labs	at	LJMU.	Modern	DNA	samples	were	extracted	

using	Nucleospin	XS	Tissue	Kit	according	to	the	manufacturer’s	instructions,	and	PCR	

reactions	were	prepared	using	45µl	vWR	Taq	DNA	Polymerase	Master	Mix	1.1x,	1µl	each	

of	primers	forward	primer	16069aF	(5’-CTCCACCATTAGCACCCAAAGC-3’)	(Bramanti	et	al,	

2009)	and	reverse	primer	H16380	(table	6),	and	3µl	DNA	extract.	The	thermal	cycler	was	

programmed	to	run	for	2	minutes	at	95°C,	followed	by	34	cycles	of	30	seconds	at	95°C,	30	

seconds	at	60°C,	and	30	seconds	at	72°C,	and	a	final	extension	stage	of	1	minute	at	72°C.	

PCR	products	were	purified	using	NucleoSpin	Gel	and	PCR	Clean-up	Kit	following	the	

manufacturer’s	instructions.	PCR	products	were	sequenced	by	Macrogen	Europe.	To	

comply	with	the	Human	Tissue	Act	2004	samples	were	assigned	a	code,	and	personal	

details	were	separated	from	genetic	profiles.	It	was	a	requirement	that	individuals	freely	

consented	to	the	use	and	storage	of	their	genetic	material	within	the	scope	of	the	project	

as	set	out	in	the	participant	information	sheet	provided.	

2.3.3	 Sample	Preparation	

Liverpool	John	Moores	University	

Both	bone	and	dental	samples	were	processed	at	LJMU,	and	were	treated	in	the	same	

way.	Samples	were	cleaned	prior	to	powdering	to	remove	potential	external	contaminant	

DNA,	and	also	to	remove	external	dirt	which	may	contain	PCR	inhibitors.	Cleaning	and	

grinding	protocols	differed	between	labs.	At	LJMU,	surface	dirt	was	removed	by	blasting	

with	90µm	aluminium	oxide	particles	using	a	Base	3	pneumatic	sandblaster	for	

approximately	one	minute,	before	the	sample	was	transferred	to	the	UV	crosslinker	to	be	

irradiated	for	15	minutes	per	side	in	order	to	break	down	any	remaining	contaminant	

DNA.		

The	entire	sample	was	placed	inside	a	grinding	vial	comprising	a	polycarbonate	cylinder,	

stainless	steel	end	plugs,	and	a	stainless	steel	impactor	bar.	The	assembly	was	placed	in	a	

SPEX	6775	Freezer/Mill®	cryogenic	grinder	cooled	with	liquid	nitrogen.	The	sample	was	
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pulverised	by	magnetically	shaking	the	stainless	steel	impactor	bar	against	the	end	plugs	

for	30	seconds.	If	samples	were	not	completely	powdered,	they	were	pulverised	for	a	

further	30	seconds.	Powdered	sample	was	then	transferred	to	a	sterilised	50ml	Falcon	

Tube	in	the	UV	HEPA-filter	cabinet	and	stored	at	-20°C.	The	used	grinding	vials	were	then	

disassembled	and	cleaned	rigorously.	Polycarbonate	tubes	were	scrubbed	with	hot	water	

and	detergent,	rinsed	with	sterile	water	and	dried.	Stainless	steel	components	were	

scrubbed	with	hot	water	and	detergent,	rinsed	with	Milli-Q	water,	flooded	with	70%	

sodium	hypochlorite,	rinsed	again	with	Milli-Q	water,	rinsed	with	100%	ethanol	and	

finally	rinsed	with	sterile	water	and	dried	with	paper	towels.	All	components	were	then	

placed	inside	the	cross	linker	and	UV	irradiated	for	three	hours.		

During	the	grinding	process,	samples	1SA18	and	1SA46,	both	dental	samples,	became	

lodged	between	the	steel	impactor	bar	and	the	side	of	the	polycarbonate	tube.	The	entire	

assemblies	were	transferred	to	the	UV	HEPA-PCR	cabinet,	an	end	plug	removed	and	

sterilised	metal	forceps	used	to	manipulate	the	samples	free.	The	end	plugs	were	

replaced	and	grinding	recommenced.		

Prior	to	beginning	extraction,	the	required	amount	of	sample	(approximately	250mg	for	

Rohland	and	Hofreiter	protocol	(Rohland	and	Hofreiter,	2007;	Rohland,	Siedel	and	

Hofreiter,	2010),	and	approximately	50-100mg	for	Dabney	protocol	(Dabney	et	al,	2013)	

was	transferred	to	new	sterilised	Falcon	tubes	in	the	HEPA-filter	cabinet.	

Manchester	Institute	of	Biotechnology	

Only	dental	samples	were	processed	at	MIB.	Samples	were	cleaned	by	soaking	in	70%	

sodium	hypochlorite	bleach	for	five	minute,	rinsed	with	Milli-Q	water,	coated	in	37%	

phosphoric	acid	for	one	minute,	and	finally	rinsed	with	Milli-Q	water,	to	ensure	all	surface	

contamination	was	removed.	An	area	was	prepared	for	sample	powdering	by	lining	a	

corner	of	the	bench	and	wall	with	tinfoil.	A	tinfoil	tray	was	then	created	to	catch	tooth	

powder	for	extraction.	The	foil	tray	was	cleaned	with	DNA	Away	™	Surface	

Decontaminant	and	allowed	to	dry	completely	before	powdering	was	undertaken.	

Manual	endodontic	files	were	inserted	inside	the	tooth	via	the	root	canal	and	used	to	
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remove	approximately	50-100mg	of	powdered	dentine.	The	powder	was	transferred	to	a	

sterilised	1.5ml	Eppendorf	tube	and	stored	in	the	freezer	at	-20°C.

2.3.4	 DNA	extraction	

All	extractions	were	carried	out	in	HEPA	filtered	UV	cabinets	in	the	dedicated	extraction	

rooms	either	at	LJMU	or	MIB.	Two	different	extraction	protocols	were	used:	a	modified	

version	of	that	proposed	by	Rohland	and	Hofreiter	(2007)	(hereafter	referred	as	RH	

protocol),	and	a	modification	of	the	protocol	used	by	Dabney	et	al	(2013)	(hereafter	

referred	as	Dabney	protocol).	The	latter	was	optimised	for	the	retrieval	of	short	(<40bp)	

length	DNA	fragments,	and	was	designed	to	maximise	DNA	recovery	in	whole	genome	

studies.	Both	methods	are	silica-based,	in	which	the	DNA	is	bound	to	silica	in	the	

presence	of	a	chaotropic	salt.	Both	protocols	consist	of	an	initial	digestion	step	followed	

by	binding	of	the	DNA	to	the	silica,	washing	of	the	silica	to	remove	impurities,	and	elution	

of	the	DNA.	They	differ	in	the	reagents	used,	and	in	the	silica-binding	method	employed:	

RH	used	a	silica	suspension	while	Dabney	used	silica	columns.	

Extractions	were	carried	out	in	batches	of	seven	samples	plus	one	blank	in	order	to	

minimise	and	monitor	contamination	events.	Aliquots	of	reagents	were	prepared	prior	to	

beginning	extraction:	stock	reagents	were	filtered	using	0.22µm	Millex-GS	syringe	filter	

units	into	sterilised	50ml	Falcon	tubes	and,	with	the	exception	of	ethanol,	UV	irradiated	in	

the	cross	linker	for	30	minutes.	Plastic	ware	and	consumables	were	also	UV	irradiated	for	

at	least	30	minutes	before	use.	All	buffers	were	prepared	prior	to	beginning	extractions.	

Rohland	and	Hofreiter	protocol	

4.8g	of	silicon	dioxide	was	added	to	40ml	of	sterile	water	and	allowed	to	settle	for	one	

hour.	39ml	of	the	supernatant	was	transferred	to	a	clean	50ml	tube,	leaving	behind	the	

large	silicon	particles.	This	was	left	to	settle	for	a	further	four	hours	before	discarding	the	

top	35ml	of	the	supernatant	to	remove	the	smallest	particles.	Hydrochloric	acid	(48µl	of	

30%)	was	added	to	the	remaining	4ml	of	silica	suspension,	mixed	and	1ml	aliquots	made.	

Extraction	buffer,	containing	0.375ml	of	sterile	water,	4.5ml	of	0.5M	EDTA,	and	125µl	of	

10mg/ml	proteinase	K,	was	added	to	250mg	of	powdered	sample	in	15ml	tubes,	and	left	

to	digest	overnight	at	37°C	in	a	hybridizing	oven.		
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The	following	day,	samples	were	removed	from	the	hybridisation	oven	and	centrifuged	

for	2	minutes	at	5000	x	g	in	a	bench	top	centrifuge.	Supernatant	and	pellet	colour	were	

noted.	The	supernatant	was	transferred	to	a	new,	sterilised	tube.	2.5ml	of	binding	buffer,	

containing	2.08ml	of	6M	guanidinium	thiocyanate,	0.25ml	of	3M	sodium	acetate	(pH	5.2),	

and	0.17ml	of	sterile	water,	was	added	to	each	sample,	along	with	100µl	of	silica	

suspension.	Tubes	were	sealed	with	Parafilm	and	rotated	in	a	rotary	mixer	at	room	

temperature	in	darkness,	for	three	hours.	The	supernatant	was	transferred	to	a	new	tube	

and	stored	in	the	fridge.	A	further	1ml	of	binding	buffer	was	added	to	the	tube	and	the	

silica	pellet	re-suspended.	The	suspension	was	then	transferred	to	a	2ml	tube,	

centrifuged	for	15	seconds	at	16000	x	g	in	a	microcentrifuge,	and	the	supernatant	

discarded.	Two	washing	steps	were	performed	to	remove	impurities	and	compounds	

which	may	inhibit	the	PCR	by	adding	1ml	of	washing	buffer	containing	0.5ml	of	absolute	

ethanol,	25µl	of	5M	sodium	chloride,	6.65µl	of	1.5M	Tris,	2µl	of	0.5M	EDTA	and	466.35µl	

of	sterile	water.	The	sample	was	then	mixed	using	a	vortex,	centrifuged	for	15	seconds	at	

16000x	g	and	the	supernatant	discarded.	Following	this,	the	silica	was	left	to	dry	in	the	

PCR	cabinet	for	15	minutes	at	room	temperature.	

The	final	step	was	to	elute	the	DNA.	This	was	done	by	adding	50µl	of	TE	buffer,	containing	

5µl	of	100mM	Tris,	1µl	of	50mM	EDTA,	and	44µl	of	sterile	water,	to	the	silica,	mixing	and	

incubating	at	room	temperature	for	10	minutes.	The	suspension	was	then	centrifuged	for	

two	minutes	at	16000	x	g	and	the	DNA-containing	supernatant	transferred	to	a	1.5ml	

tube.	This	step	was	repeated	to	obtain	two	50µl	extracts,	labelled	as	“elution	1”	and	

“elution	2”.	

Dabney	protocol	

Only	50mg	of	sample	was	required	for	this	protocol.	Powder	was	weighed	into	2ml	tubes,	

and	1ml	of	extraction	buffer	containing	0.9ml	of	0.5M	EDTA,	25µl	of	10mg/ml	proteinase	

K	and	875µl	of	sterile	water	was	added	to	each	sample.	Tubes	were	then	left	overnight	in	

a	shaking	heat	block	at	700	RPM	and	37°C.	The	following	day,	tubes	were	placed	in	a	

microcentrifuge	and	spun	for	5	minutes	at	3000	x	g.	The	supernatant	was	transferred	to	a	

50ml	Falcon	tube	containing	10ml	of	Qiagen	PB	buffer.	
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An	assembly	of	Qiagen	MinElute	spin	column	attached	to	a	Cambridge	Bioscience	Zymo	

spin	column	extension	reservoir	(with	Zymo	spin	column	removed),	was	placed	into	a	new	

50ml	Falcon	tube,	and	the	supernatant-PB	buffer	mix	transferred	into	the	funnel.	The	spin	

column	apparatus	was	then	spun	at	1500	x	g	in	a	table	top	centrifuge	for	five	minutes	or	

more	until	the	liquid	had	completely	passed	through	the	column.	The	MinElute	column	

was	then	placed	in	a	clean	collection	tube	and	the	Zymo	extension	reservoir	removed.	

Columns	were	dry	spun	for	1	minute	at	maximum	speed	(16000	x	g).	Two	wash	steps	

were	performed	by	adding	750µl	of	Qiagen	PE	wash	buffer	to	the	MinElute	column	and	

centrifuging	for	30	seconds	at	3300	x	g,	discarding	the	flow-through	each	time.	The	

column	was	again	dry-spun	for	1	minute	at	maximum	speed	and	transferred	to	a	clean	

1.5ml	tube.	30µl	of	Qiagen	EB	elution	buffer	was	added	to	the	silica	membrane	and	

incubated	for	5	minutes.	The	eluted	DNA	was	collected	by	centrifuging	at	maximum	

speed	for	45	seconds.	This	step	was	repeated	so	a	total	of	60µl	of	DNA	extract	was	

collected	in	the	tube.	Extracts	were	stored	at	-20°C	until	required.	Bone	pellets	and	

binding	supernatant	were	also	kept	at	-20°C,	as	it	is	possible	for	further	extraction	or	

binding	steps	to	be	performed	if	required.	

2.4	 Amplification,	electrophoresis,	purification	and	sequencing	

PCRs	were	carried	out	in	a	dedicated	room;	the	room	was	UV	irradiated	for	at	least	two	

hours	prior	to	use,	and	all	work	surfaces	cleaned	with	70%	sodium	hypochlorite	bleach	

before	and	after	use.	All	plastics	were	UV	irradiated	for	at	least	2	hours	prior	to	use.	The	

outer	surfaces	of	sample	and	reagent	tubes	were	also	cleaned	with	bleach	prior	to	use.	All	

PCR	reactions	were	performed	using	a	commercially	available	Qiagen	Multiplex	PCR	Kit.		

Table	5.	Primer	pairs	used	to	amplify	mitochondrial	hypervariable	region	I	target	region	for	

haplotype	assignment.	Primers	taken	from	Fernandez	2005	

Primer	
Name	

Sequence	(5'-3')	 Start	
position	

End	
position	

Fragment	
amplified	

Annealing	
temp	(°C)	

L16125	 GCC	AGC	CAC	CAT	GAA	TAT	TG	 16106	 16125	 16095-16280	

	

55	

H16262	 TGG	TAT	CCT	AGT	GGG	TGA	G	 16280	 16262	

L16251	 CAC	ACA	TCA	ACT	GCA	ACT	CC	 16232	 16251	 16232-16399	 55	

H16380	 TCA	ACT	GCA	ACT	CCA	AAG	CC	 16399	 16380	
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Overlapping	primer	pairs	(Table	5)	were	used	to	target	a	294bp	(positions	16106-16399)	

region	of	the	mitochondrial	hypervariable	region	I	(Fernandez,	2005).	Aliquots	of	PCR	

reagents	were	prepared	to	reduce	and	monitor	contamination	of	reagents,	and	reactions	

were	set	up	in	rounds	of	seven	samples,	one	extraction	blank	plus	two	PCR	blanks	to	

detect	reagent	contamination	and	cross	contamination.	PCR	reactions	were	performed	by	

mixing	7µl	of	sterile	water,	12.5µl	of	Qiagen	Multiplex	PCR	Master	Mix,	and	0.25µl	of	both	

forward	and	reverse	primer	at	20µM	concentration	(final	concentration	0.2µl),	per	

sample.	A	master	solution	containing	all	reagents	was	mixed	and	20µl	was	transferred	to	

pre-sterilised	0.5ml	tubes.	5µl	of	DNA	extract	was	then	added	to	individual	tubes.	For	the	

PCR	blanks,	5µl	of	sterile	water	was	added	instead	of	DNA	extract.	Samples	were	then	

placed	in	a	Multigene	Mini	(Labnet)	thermal	cycler	for	the	reaction	to	run.	Cycling	

conditions	can	be	found	in	Table	6	and	annealing	temperatures	can	be	found	in	Tables	5	

and	7.	

	 Table	6.	PCR	cycle	conditions	for	mitochondrial	hypervariable	region	I	and	coding	region	SNP	amplification	

Number	of	cycles	 Step	 Temp	(°C)	 Time	

1	 Activation	 95	 15	minutes	

40	 Denaturation	 95	 30	seconds	

	 Annealing	 Dependent	on	primers	 90	seconds	

	 Extension	 72	 60	seconds	

1	 Final	extension	 72	 10	minute	

	

Amplification	results	were	visualised	using	gel	electrophoresis;	5µl	of	PCR	product,	along	

with	2µl	of	loading	dye,	was	loaded	into	wells	in	2%	agarose	gel	containing	GelRed	and	

100V	applied	for	40-60	minutes.	The	results	were	then	visualised	using	Bio-Rad	Image	

Lab™	software	by	placing	the	gel	under	a	Bio-Rad	Chemidoc	Imager.		

Samples	which	had	successfully	amplified	and	with	a	clean	set	of	blanks	were	then	

purified	using	Nucleospin®	Gel	and	PCR	Clean-up	Kit	following	the	manufacturer’s	

protocol	and	sent	for	sequencing	at	either	Macrogen	Europe	or	GATC	Biotech.	In	order	to	

maximise	the	final	concentration	of	DNA	in	the	sequencing	reactions,	samples	were	

prepared	using	9µl	of	DNA	extract	and	1µl	of	25µM	primer.	Samples	were	initially	
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sequenced	using	the	forward	primer	(Table	6),	however	if	sequencing	needed	repeating	

for	clarification,	the	reverse	primer	was	used.	

2.5	 Sequence	Analysis	

Sequences	were	read	by	aligning	them	to	the	revised	Cambridge	Reference	Sequence	

(rCRS)	(Anderson	et	al.,	1981;	Andrews	et	al.,	1999)	using	Mutation	Surveyor	software	

(Softgenetics,	LLC).	Mutations	from	the	rCRS	were	named	according	to	IUPAC	

nomenclature	rules	(Cornish-Bowden,	1985).	

2.6	 Bacterial	cloning	

Samples	that	produced	reproducible	sequences	from	two	independent	extractions	were	

then	cloned	in	order	to	determine	the	consensus	haplotype.	Since	only	a	single	DNA	

fragment	can	be	incorporated	into	a	vector,	cloning	enabled	separation	of	any	

contaminant	DNA	from	the	endogenous	sequence	and	allowed	identification	of	sequence	

errors	resulting	from	degradation	of	the	template	molecule.	This	work	was	done	in	the	

modern	DNA	laboratory	from	the	Archaeology	Department	at	Durham	University	and	in	

the	microbiology	laboratory	at	LJMU.	

Cloning	was	carried	out	using	a	commercially	available	TOPO-TA®	Cloning	Kit	with	

pCR™2.1	Vector	and	One	Shot®	TOP10	Chemically	Competent	E.coli,	following	the	

protocol	provided	by	the	manufacturer.	A	ligation	step	was	performed	by	mixing	4µl	of	

PCR	product,	1µl	of	salt	solution,	and	1µl	TOPO®	vector,	and	incubating	the	mixture	at	

room	temperature	for	30	minutes.	2µl	of	the	ligation	product	was	added	to	a	vial	of	One	

Shot
©
	TOP10	competent	cells	and	incubated	for	a	further	30	minutes.	The	cells	were	then	

heat	shocked	at	42°C	in	a	thermal	block	for	30	seconds	and	immediately	transferred	to	

ice.	250µl	of	room	temperature	SOC	medium	was	then	added	to	each	vial	and	placed	in	a	

shaking	incubator	at	37°C	for	one	hour.	50µl	of	each	transformation	was	then	spread	on	

pre-warmed	LB	agar	plates	containing	0.1mg/ml	of	carbenicillin.	Plates	were	then	

incubated	overnight	at	37°C.	

Up	to	10	colonies	from	each	plate	were	cultured	for	sequencing.	When	fewer	than	10	

colonies	were	available,	as	many	as	possible	were	selected.	The	colonies	were	picked	
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from	the	plate	using	a	sterile	automatic	pipette	tip	and	placed	in	small	plastic	tubes	

containing	2ml	in	liquid	Luria-Bertani	broth	with	0.1mg/ml	of	carbenicillin.	The	tubes	

were	then	placed	in	a	shaking	incubator	overnight	at	37°C.	Cells	were	harvested	by	

centrifuging	at	full	speed	in	a	microcentrifuge	(Eppendorf)	for	five	minutes	and	removing	

the	supernatant.	Plasmid	DNA	was	purified	using	either	a	Qiagen	Miniprep	Kit	or	a	

Nucleospin	Plasmid	Miniprep	Kit	following	manufacturer's	instructions.	Sequencing	

reactions	were	prepared	by	mixing	3µl	of	purified	plasmid,	2µl	of	sterile	water,	and	5µl	of	

5µM	primer,	and	sent	to	Macrogen	Europe	for	sequencing.	Cloned	DNA	was	sequenced	

with	universal	primer	SP6	or	T7.	Sequences	were	aligned	to	the	rCRS	and	read	using	

Mutation	Surveyor	software	(Softgenetics,	LLC)	as	described	above.	

2.7	 Consensus	HVRI	haplotypes	

Strict	criteria	were	followed	to	establish	consensus	haplotypes.	Haplotypes	matching	

those	of	genotyped	researchers	were	disregarded.	Only	haplotypes	that	could	be	

replicated	in	independent	extractions	and	amplifications,	ideally	from	separate	samples	

were	considered	authentic	endogenous	sequences.	The	complete	haplotype	should	make	

phylogenetic	sense.	Miscoding	lesions	identified	by	non-replication	in	the	cloned	

sequences	were	discounted.		

2.8	 Haplogroup	diagnostic	SNP	analysis	

After	confirmation	of	HVRI	haplotypes	through	cloning,	potential	mitochondrial	

haplogroups	were	determined	using	Haplogrep	(Kloss-Brandstätter	et	al,	2011).	

Haplogroup	confirmation	was	then	attempted	by	targeting	mitochondrial	coding	region	

single	nucleotide	polymorphism	(SNPs)	diagnostic	of	the	haplogroup	in	question.	

Diagnostic	SNPs	were	determined	using	Phylotree	Build	17	(van	Oven	and	Kayser,	2009),	a	

phylogenetic	tree	of	human	mitochondrial	DNA	haplogroups.	PCR	reactions	were	set	up	

following	the	same	procedure	used	for	the	HVRI	PCRs	(section	2.4)	but	using	primers	

targeting	the	specific	coding	region	SNP	(Table	7).	Data	was	then	added	to	the	HVRI	

haplotype	and	once	again	run	through	Haplogrep.
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Table	7.	PCR	Primers	used	for	diagnostic	coding	region	SNP	analysis.	SNPs	highlighted	in	bold	are	the	required	motifs	for	the	haplogroup	for	the	haplogroup	in	question	

Primer	
name	

Primer	sequence	 Start	 End	 Fragment	
length	

SNP	 Haplogroup	 Annealing	
Temp	°C	

Reference	

L6999	 CAAACTCATCACTAGACATCG	 6979	 6999	 108bp	 7028	T/C	 H	 55	 Fernández	et	al.	2014	

H7066	 GAATGAAGCCTCCTATGATGG	 7086	 7066	

L12227	 GAAAGCTCACAAGAACTGC	 12209	 12227	 152bp	 12308A/G	 U	 50	 Fernández	et	al.	2014	

H12341	 GGTTATAGTAGTGTGCATGG	 12360	 12341	

L14732		 AAAACCATCGTTGTATTTCAA	 14712	 14732	 99bp	 14766	C/T	 HV	 55	 Fernández	et	al.	2014	

H14792	 GGAGGTCGATGAATGAGTG	 14792	 14810	

L10844	 AATTTGAATCAACACAACCA	 10825	 10844	 96bp	 10873	T/C	 L3	 55	 Fernández	et	al.	2014	

H10901	 GGGGAACAGCTAAATAGGTT	 10901	 10920	

L10380	 AGTCTGGCCTATGAGTGACTAC	 10359	 10380	 86bp	 10398	A/G,	
10400	C/T	

M	 55	 Fernández	et	al.	2014	

H10423	 AATGAGTCGAAATCATTCGTTT	 10423	 10444	

L10550F	 GCATTTACCATCTCACTTCTAGG	 10500	 10522	 129bp	 10550	A/G	 K	 55	 Gamba	et	al.	2012	

H10550R	 GGAGTGGGTGTTGAGGGTTA	 10609	 10628	

3197F		 CCTCCCTGTACGAAAGGACA	 3116	 3135	 132bp	 3197	T/C	 U5	 55	 Gamba	et	al.	2012	

3197R	 GGGCTCTGCCATCTTAACAA	 3228	 3247	

10238F	 CCGCGTCCCTTTCTCCATAA	 10199	 10218	 99bp	 10238	T/C	 N1	 	54	 Fernández	2016	

10238R	 TGTAGGGCTCATGGTAGGGG	 10278	 10297	

L10014	 TTTTAGTATAAATAGTACCG	 9995	 10014	 112bp	 10034	T/C	 I	 	50	 Sampietro	et	al	2007	

H10088	 GTAGTAAGGCTAGGAGGGTG	 10088	 10107	

12705F	 ACTCAGACCCAAACATTAATCAGT	 12662	 12685	 112bp	 12705	C/T	 R	 	50	 Fernández	2016	

12705R	 CCCTCTCAGCCGATGAACAG	 12758	 12777	
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2.9	 Population	Analysis	

2.9.1	 Haplotype	search	

Complete	and	partial	HVRI	haplotypes	were	searched	for	in	the	mitochondrial	database	

EMPOP	(Parson	and	Dür,	2007).	EMPOP	is	an	accessible	forensic	database	containing	

34617	mtDNA	haplotypes	from	all	over	the	world.	The	sequences	stored	in	the	database	

conform	to	rCRS	nomenclature.	The	database	allows	the	specification	of	sequence	range,	

allowing	partial	haplotypes	to	be	analysed.	The	database	calculates	haplotype	frequency	

worldwide	and	by	metapopulation,	and	gives	a	breakdown	of	geographical	distribution	of	

haplotypes	within	the	modern	population.	

Complete	haplotypes	were	also	compared	with	those	in	a	database	of	846	published	

ancient	mitochondrial	DNA	sequences	(Reynolds,	Bertoncini	and	Fernandez-Dominguez,	

in	prep.)	to	determine	geographical	and	temporal	distribution	in	ancient	populations.	

2.9.2	 Genetic	distances	

In	addition	to	the	ancient	DNA	database,	Reynolds,	Bertoncini	and	Fernandez-Dominguez	

(in	prep.)	also	created	a	database	of	modern	mitochondrial	DNA,	comprising	21405	

sequences	from	139	Eurasian	and	African	populations.	Modern	populations	were	

constructed	around	geographical	location	and	ethnicity	(Table	9),	while	ancient	

sequences	were	grouped	into	populations	based	on	period	and	geographical	location	

(Table	8).	Consensus	haplotypes	from	La	Sagrera	and	Barrão	were	converted	to	Fasta	

sequence	files	using	HaploSearch	(Fregel	and	Delgado,	2011)	and	added	to	these	

databases	for	analysis.	Due	to	the	small	number	of	sequences	in	individual	ancient	

populations,	when	possible	they	were	further	grouped	into	metapopulations	for	the	

purposes	of	analysis	(Table	8).	

Owing	to	the	small	number	of	consensus	haplotypes	obtained	in	this	study,	it	was	

necessary	to	group	these	sequences	with	those	from	other	populations	with	similar	

geographical	and	chronological	origin	in	order	to	perform	population	genetics	analyses.	

Data	from	Algar	do	Barrão	were	grouped	with	data	from	Algar	do	Bom	Santo	(Carvalho	et	

al,	2016),	another	cave	site	in	the	Alenquer	region	of	Portugal	with	samples	also	dating	to	

the	Middle	Neolithic.	This	was	done	to	create	a	Middle	Neolithic	Portugal	population	
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group	(n=10).	Since	there	were	no	other	similar	populations	in	the	database,	these	

sequences	could	not	be	further	grouped	into	a	metapopulation.	Data	from	La	Sagrera	

were	grouped	with	sequences	from	Alto	de	Reinoso	megalithic	tomb	in	Burgos	(Alt	et	al,	

2016),	the	El	Mirador	Neolithic	cave	site	in	Burgos	(Gómez-Sánchez	et	al,	2014),	and	from	

El	Portalón	cave	in	Atapuerca	(Günther	et	al,	2015)	to	form	the	population	‘‘Late	Neolithic	

Spain’’	(n=49)	(Table	8)	.	

Pairwise	genetic	FST	values	were	calculated	using	Arlequin,	version	3.5	(Excoffier,	Laval	

and	Schneider,	2005),	using	1000	permutations.	This	was	done	for	the	current	study	

populations	against	other	ancient	populations	(Table	8)	and	against	modern	populations	

(Table	9).		

2.9.3	 Haplogroup	Frequencies	

The	ancient	database	of	Reynolds,	Bertocini	and	Fernandez-Dominguez	(in	prep.)	

provided	a	comparative	framework	in	which	the	haplogroup	composition	of	the	studied	

populations	could	be	put	into	archaeological	context.	Thus,	haplogroup	frequencies	were	

calculated	for	the	ancient	metapopulations	seen	in	table	8	in	order	to	compare	the	

current	study	populations	with	populations	in	the	region	at	different	archaeological	

periods.	

2.10	 Kinship	Analysis	

Likelihood	ratios	were	calculated	for	individuals	with	identical	mitochondrial	DNA	

haplotypes,	as	they	potentially	shared	a	matrilineal	relationship.	LR	(Butler,	2010)	is	a	

statistic	commonly	used	in	forensic	genetics	that	represents	the	quotient	of	the	

probabilities	of	an	event	occurring	under	two	different	hypotheses	(H0	and	H1).	In	this	

context,	LR	is	the	quotient	of	the	probabilities	that	the	occurrence	of	identical	

mitochondrial	haplotypes	in	two	individuals	results	from	a	matrilineal	relationship	

between	those	individuals	(H0),	and	from	random	chance	(H1).	Likelihood	ratio	is	

calculated	using	the	formula:	

!" = $0
$1	

where	H0	=	1,	and	H1	=	frequency	of	haplotype	in	the	population.			
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Since	the	available	data	for	ancient	populations	is	limited,	haplotype	frequency	was	

calculated	using	the	modern	EMPOP	database	as	a	proxy.	

		

LR	values	were	converted	to	probability	values	using	the	formula	X/(X+Y),	where	X	and	Y	

represent	the	probabilities	of	the	hypothesis	of	maternal	relationship	(H0)	and	no	

maternal	relationship	(H1),	respectively.	The	minimum	allele	frequency	rule	was	applied	

to	conservatively	estimate	the	frequency	of	rare	alleles.	For	haploid	markers,	the	

minimum	allele	frequency	is	calculated	as	5/N,	where	N	=	number	of	individuals	in	the	

population.	In	the	event	of	kinship	being	established,	it	is	not	possible	to	define	the	type	

of	relationship,	as	any	relationship	through	the	maternal	line,	such	as	siblingship	or	

grand-maternity,	may	apply.		
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Table	8.	Ancient	populations	in	the	database	prepared	by	Reynolds,	Bertocini	and	Fernandez-Dominguez	(in	prep.),	showing	metapopulation	groupings	used	for	statistical	
analysis	

Metapopulation		 Number		 Population	 Number	 Reference	

Middle	Neolithic	

Portugal	

10	 Middle	Neolithic	Portugal	 10	 Carvalho	et	al.	2016;	present	study	

	 	 	 	 	
Pre-Neolithic	Spain	

&	France	

13	 Palaeolithic	Spain	and	France	 10	 Hervella	et	al.	2012;	Fu	et	al.	2013;	Posth	et	al.	2016	

Mesolithic	Spain	 3	 Sanchez-Quinto	et	al.	2012	;Hervella	et	al.	2012	

	 	 	 	 	

Early	Neolithic	

Spain	

65	 Cardial-Epicardial	Catalonia	 21	 Gamba	et	al.	2012;	Lacan	et	al.	2011b;Olalde	et	al.	2015	

Cardial-Epicardial	Aragon	 8	 Gamba	et	al.	2012;	Haak	et	al.	2015	

Epicardial	Basque	Country	 36	 Hervella	et	al.	2012	

	 	 	 	 	
Middle	Neolithic	

Spain	

23	 Middle	Neolithic	Catalonia	 11	 Sampietro	et	al.	2007	

Middle	Neolithic	Basque	Country	 7	 Hervella	et	al.	2012	

Middle	Neolithic	Castile	and	León	 5	 Haak	et	al.	2015	

	 	 	 	 	
Late	Neolithic	Spain		 49	 Late	Neolithic	Spain	 49	 Alt	et	al.	2016;	Gomez	Sanchez	et	al.	2014;	Gunther	et	al.	2015,	

present	study	
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Table	9.	Modern	Iberian	populations	

Metapopulation	 Ethnic	group	 Location	 Number	 Reference	

North	Portugal	 Portuguese	 Braga	 186	 Pereira	et	al	2004		
Bragança	
Porto	
Viana	do	Castelo	
Vila	Real	

Central	Portugal	 Portuguese	 Aveiro	 236	 Pereira	et	al	2004	
Coimbra	
Castelo	Branco	
Guarda	
Leiria	
Lisboa	
Santarém	
Viseu	

Portugal	Unlocalised	 Portuguese	 Portugal	 54	 Corte-Real	et	al	1996		
South	Portugal	 Portuguese	 Beja	 123	 Pereira	et	al	2004	

Évora	
Faro	
Portalegre	
Setúbal	

Spain	Andalusia	 Spanish	 Andalusia	 108	 Casas	et	al	2006		
Spain	Asturias	 Spanish	 Asturias	 76	 Garcia	et	al	2011		
Spain	Balearic	 Spanish	 Majorca	 67	 Falchi	et	al	2006		
Spain	Basque	 Basques	 Basque	country	 312	 Bertranpetit	et	al	1995	;	

Corte-Real	et	al	1996;		
Garcia	et	al	2011	

		

Spain	Basque	
Navarre	

Basques		 Elizondo	 110	 Cardoso	et	al	2011		
Bera	
Lekaroz	
Leiza	

Spain	Cantabria	 Spanish	 Santander	(Cantabria)	 196	 Alvarez-Iglesias	et	al	2009	;	
Cardoso	et	al	2010	Valle	de	Pas	(Cantabria)	

Liébana	(Cantabria)	
Pasiegos	(Cantabria)	

Spain	Castilla	Leon	 Spanish	 Zamora	 214	 Alvarez	et	al	2010		
Spain	Catalonia	 Spanish	 Catalonia	 116	 Alvarez-Iglesias	et	al	2009;	

Corte-Real	et	al	1996	

Spain	Galicia	 Spanish	 Galicia	 374	 Alvarez-Iglesias	et	al	2009;	
Salas	et	al	1998		

Spain	Unlocalised	 Spanish	 Spain	 74	 Corte-Real	et	al	1996;		
Pinto	et	al	1996		
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Chapter	Three:	Results	
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3.1	 Extraction	and	amplification	

Thirteen	extraction	rounds	of	up	to	seven	samples	per	round	were	performed	on	53	

samples,	from	28	individuals	(Table	10).	At	least	one	PCR	for	each	fragment	was	

performed	per	extract.	When	amplification	failed	for	a	particular	extract,	PCR	was	

repeated	up	to	three	more	times	before	it	was	discarded.	Figure	10	shows	an	example	of	

an	agarose	gel	containing	positive	amplifications.	Results	were	disregarded	when	

amplification	of	the	negative	control	was	observed.	When	amplification	was	observed	

only	for	the	PCR	blanks,	the	same	DNA	extract	was	used	for	subsequent	amplifications.		

	

Figure	10.	Agarose	gel	electrophoresis	stained	with	GelRed	and	visualised	under	ultraviolet	light.	Wells	1-7	contain	PCR	
product,	well	9	contains	the	extraction	blank,	and	wells	10	and	11	contain	PCR	blanks.	Bands	in	row	A	indicated	a	

positive	amplification	result,	while	bands	in	row	B	probably	result	from	primer	dimers	(Robinson	2016)		

	

Only	one	of	the	13	extraction	rounds	performed	was	contaminated	at	the	extraction	

stage	(Table	10).	Figure	11	show	the	gel	electrophoresis	of	the	amplicons	from	the	

extraction	round	performed	on	18/11/14.	A	band	was	seen	in	lane	9,	which	corresponded	

to	the	extraction	blank.	This	indicated	that	a	contamination	might	have	occurred	during	

the	extraction	stage,	rendering	the	amplification	results	unreliable.	These	extracts	were	

discarded	and	an	alternative	extraction	was	performed	on	the	samples	affected.		
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Figure	11.	Agarose	gel	results	of	PCR	performed	using	primers	L16125	and	H16262	on	the	samples	extracted	on	
18/11/2014.	Note	the	presence	of	a	band	in	column	9	where	the	extraction	blank	was	loaded	(Robinson,	2016)	
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Table	10.	Number	of	successful	extractions	performed	per	sample,	total	number	of	PCRs	performed	per	primer	pair	
(L16125,	H16262	and	L16251,	H16380)	and	number	of	positive	results,	and	purificate	numbers	for	positive	PCRs.	

 L16125-H16262	 L16251-H16380		
Sample	 Extraction

s	
PCR
s	

Positive	
result	

Purificates	 PCR
s	

Positive	
result	

Purificates	 	
1SA4	 4	 5	 3	 L24,	L83,	L116	

L83	
5	 3	 L34,	L89,	L127	

2SA4	 1	 1	 1	 L63	 1	 0	 	
1SA8	 4	 8	 2	 L30,	L117	 8	 3	 L40.	L46,	L128	
2SA8	 1	 1	 1	 L64	 1	 1	 L73	
1SA18	 4	 5	 5	 L25,	L84,	L94		 5	 4	 L35.	L90,	L104	
2SA18	 1	 1	 1	 L65	 2	 0	 	
1SA25	 1	 1	 1	 L26	 2	 1	 L36	
2SA25	 1	 1	 1	 L66	 2	 0	 	
1SA26	 4	 6	 5	 L27,	L85,	L119	 5	 4	 L37,	L91,	L130	
2SA26	 1	 1	 1	 L67	 1	 1	 L74	
1SA39	 3	 8	 0	 	 4	 1	 L41	
2SA39	 1	 2	 0	 	 1	 1	 L75	
1SA43	 3	 3	 3	 L68,	L95,	L120	 3	 3	 L76,	L111,	L131	
1SA44	 4	 7	 2	 L31,	L121	 6	 2	 L42,	L132	
2SA44	 1	 1	 1	 L69	 1	 1	 L77	
1SA45	 4	 6	 5	 L28,	L86,	L122	 7	 3	 L38,	L48,	L133	
2SA45	 1	 1	 1	 L79	 1	 1	 L78	
1SA46	 4	 5	 5	 L29,	L87,	L100	 7	 5	 L39,	L92,	L105	
2SA46	 1	 1	 1	 L71	 1	 1	 L79	
1SA53	 4	 6	 4	 L32,	L88,	L101	 5	 3	 L96,	L106,	L135	
2SA53	 1	 1	 0	 	 1	 1	 L80	
1SA56	 4	 7	 3	 L88,	L102,	L125	 6	 2	 L107,	L136	
2SA56	 1	 1	 1	 L72	 1	 1	 L81	
1SA68	 4	 9	 2	 L103,	L126	 6	 4	 L43,	L108,	L137	
2SA68	 1	 2	 0	 	 1	 1	 L82	
1CBL1	 1	 2	 1	 L4	 2	 1	 L1	
2CBL1	 1	 2	 0	 	 2	 0	 	
1CBL2	 1	 2	 1	 L5	 4	 0	 	
2CBL2	 1	 3	 0	 	 1	 1	 L44	
1CBL3	 1	 2	 1	 L6	 2	 0	 	
2CBL3	 1	 2	 1	 L55	 2	 0	 	
1CBL4	 1	 2	 1	 L7	 4	 0	 	
2CBL4	 1	 2	 1	 L33	 1	 1	 L45	
1CBL5	 1	 1	 1	 L8	 1	 1	 L2	
1CBL6	 1	 1	 1	 L9	 1	 1	 L3	
2CBL6	 1	 2	 0	 	 2	 0	 	
1CBL7	 1	 2	 1	 L10	 3	 0	 	
1CBL8	 1	 1	 1	 L54	 1	 1	 L59	
2CBL8	 1	 1	 1	 L140	 1	 1	 L149	
1BAR3	 1	 1	 1	 L56	 1	 1	 L60	
2BAR3	 2	 3	 1	 L97,	L142	 2	 2	 L113	
1BAR4	 1	 1	 1	 L57	 1	 1	 L61	
2BAR4	 1	 1	 1	 L98	 1	 1	 L114	
1BAR5	 1	 1	 1	 L58	 1	 1	 L62	
2BAR5	 1	 1	 1	 L99	 1	 1	 L115	
1CMR1	 1	 2	 0	 	 1	 1	 L109	
2CMR1	 1	 1	 1	 L147	 1	 1	 L156	
1CMR2	 1	 2	 0	 	 1	 1	 L110	
2CMR2	 1	 1	 0	 	 1	 1	 L157	
1CMR3	 1	 1	 1	 L145	 1	 1	 L148	
2CMR3	 1	 1	 1	 L141	 1	 1	 L151	
1CAB3	 1	 1	 1	 L138	 1	 1	 L154	
2CAB3	 2	 2	 2	 L96	 2	 1	 L112	
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3.2	 HVRI	amplification	and	Sanger	sequencing	

Positive,	uncontaminated	amplification	results	were	achieved	for	43	samples	using	

primers	L16125-H16262,	and	for	43	samples	using	primers	L16251-H16380,	indicating	

successful	DNA	extraction	from	all	28	individuals	(Table	10).	

	

Figure	12.	Electropherograms	received	for	purified	PCR	products	sent	to	Macrogen	Europe	for	sequencing.	Purificate	
L61	from	sample	1BAR4	returned	a	good,	clean	sequence	(a),	while	purificate	L45	from	sample	2CBL4	returned	a	poor	

quality	sequence	(b),	which	could	not	be	aligned	to	the	rCRS	and	was	ultimately	unreadable.	

	

	All	samples	with	a	positive	amplification	result	were	purified	and	sent	for	sequencing	but	

it	was	not	possible	to	obtain	readable	sequences	for	all	purificates.	The	quality	of	the	

sequence	data	was	often	too	poor	to	align	accurately	with	the	rCRS,	and	in	some	cases,	

despite	successful	alignment,	the	sequences	contained	too	many	ambiguous	base	calls	

(Figure	12).	It	was	possible	to	obtain	complete	or	partial	sequences	for	47	samples,	

representing	all	28	individuals	(Table	11).	Most	of	the	sequences	obtained	from	Castelo	

Belinho	samples	showed	high	levels	of	noise	and	had	highly	saturated	regions	within	the	

sequence.	Often	in	these	samples,	multiple	peaks	were	observed	sequentially,	e.g.	in	

sample	1CBL3,	extracted	on	the	28/1/15,	multiple	peaks	at	base	positions	16213-16222	

were	seen,	and	similarly	in	samples	1CBL1,	1CBL4,	1CBL6	and	1CBL7.	These	types	of	
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mutations	were	generally	disregarded	as	artefacts	resulting	from	either	low	

concentration,	poor	quality	DNA,	or	a	problem	with	sequencing.	In	any	case,	they	were	

not	replicated	in	subsequent	extractions.	In	general,	samples	from	all	other	sites	yielded	

much	cleaner	sequences,	with	lower	levels	of	noise	and	saturation.	

Sequences	obtained	from	purificates	L7,	L9,	L28,	L29,	L44,	L53,	L73,	L76,	L81,	L103,	L123,	

L130,	L132,	and	L151	all	contained	one	or	more	mutations	which	were	in	common	with	

researcher	profiles	(Tables	4	and	11).	These	mutations	were	regarded	as	exogenous	

contamination	and	as	such	were	considered	not	to	be	a	true	endogenous	mutation.	

3.3	 Mitochondrial	HVRI	Haplotype	determination	

Although	sequences	were	obtained	from	all	28	individuals,	it	was	only	possible	to	

replicate	results	for	one	or	both	HVRI	fragments	for	13	of	them	(Table	11).	It	was	not	

possible	to	replicate	any	samples	from	Castelo	Belinho,	Anta	da	Cabeceira,	or	Casais	da	

Mureta.	From	Algar	do	Barrão,	a	complete	HVRI	sequence	was	reproduced	for	individual	

BAR4,	while	partial	sequences	were	reproduced	for	both	BAR3	and	BAR5	(Table	11).	From	

La	Sagrera,	full,	validated	sequences	were	obtained	for	individuals	SA4,	SA18,	SA25,	SA26	

and	SA53.	Partial	sequences	were	replicated	for	individuals	SA39,	SA43,	SA44	and	SA45.	

Initially,	it	appeared	that	a	partial	sequence	had	been	obtained	for	individual	SA46	but	

was	subsequently	disregarded	as	potential	exogenous	contamination	because	it	was	

found	to	match	a	researcher	profile	(Table	4).	However,	this	sample	has	since	been	re-

extracted	independently	at	Durham	University,	and	the	same	profiles	were	obtained	(Di	

Renno,	2016).	Given	that	the	identified	researcher	was	not	associated	with	this	

laboratory,	it	is	likely	that	the	sequence	represented	the	individual’s	endogenous	

haplotype.	For	this	reason,	this	sample	has	been	included	in	haplotype	analysis	despite	

not	being	subject	to	further	SNP	analysis.	
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Table	11.	Sequencing	results	of	samples	for	which	a	full	or	partial	consensus	haplotype	could	be	determined.	Actual	read	positions	and	
mutations	from	rCRS	shown.	Mutations	in	common	with	staff	profiles	are	listed	in	red,	as	potential	contamination.	Mutations	that	
could	be	repeated	between	different	extractions	of	the	same	individual	are	listed	in	green.	Mutations	in	black	could	not	be	repeated	
and	were	not	considered	part	of	the	true	endogenous	haplotype.	Purificates	highlighted	in	bold	were	selected	for	cloning.	Also	
included	are	details	of	sample	1SA25	which	was	not	replicated	but	was	cloned.	

   Primers	

Sample	 Purificate	 Read	positions	 L16125,	H16262	 L16251,	H16380	

1SA4	 L24	 16152-16281	 16223T	16261Y	 	

L83	 16151-16280	 16223T	16261T	 	

L34	 16285-16399	 	 16320T	16380S	

L127	 16280-16399	 	 16320T	

1SA18	 L94	 16165-16280	 16223Y	 	

L35	 16272-16399	 	 16311C	

L90	 16285-16399	 	 16311Y	16354Y	

L104	 16290-16399	 	 16311Y	16315K	16354Y	16362Y	

2SA18	 L65	 16125-16280	 16223T	16179Y	 	

1SA25	 L26	 16157-16281	 16223T	16261Y	 	

L36	 16278-16399	 	 16320T	

1SA26	 L85	 16159-16280	 CRS	 	

L91	 16294-16399	 	 16311Y	16355R	16362Y	

L130	 16231-16399	 	 16257M	16261Y	16294Y	16304Y	16311T	

2SA26	 L67	 16167-16280	 CRS	 	

L74	 16285-16399	 	 16311C	

1SA43	 L68	 16171-16280	 16279M	16223Y	 	

L95	 16195-16280	 16223T	16241R	
16246R	

	

L120	 16105-16280	 16223Y	 	

1SA45	 L53	 16167-16281	 16221T	16223Y	 	

L122	 16105-16280	 16158G	16223T	 	

1SA46	 L39	 16234-16399	 	 CRS	

L49	 16286-16399	 	 CRS	

L92	 16282-16399	 	 CRS	

1SA53	 L32	 16105-16281	 16163del	
16223T	

	

L124	 16105-16280	 16204Y	16223Y	 	

L106	 16303-16399	 	 16320Y	16325Y	16355Y	16362Y		

L135	 16231-16399	 	 16362C	
	

	

3.4	 Cloning	

Replicated	samples	were	cloned	to	authenticate	the	presence	of	endogenous	DNA.	

Individual	SA25	was	also	cloned,	despite	not	having	been	replicated.	There	was	
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insufficient	sample	to	perform	a	second	extraction	but	the	profile	was	determined	to	be	

rare	and	matched	that	of	another	individual	from	the	same	site.	It	was	assumed	authentic	

due	to	the	quality	of	the	initial	sequences	and	lack	of	any	match	to	researcher	profiles	or	

any	other	samples	in	the	same	extraction	round.	Though	this	was	not	standard	

procedure,	the	decision	was	taken	to	continue	the	analysis	of	this	sample.	

Cloning	was	undertaken	at	Durham	University	on	purificates	from	La	Sagrera.	Of	the	20	

samples	plated,	eight	of	the	plates	failed	to	grow	colonies,	suggesting	that	the	cloning	

process	had	been	inefficient.	Subsequent	cloning	was	performed	at	LJMU,	repeating	the	

failed	samples	in	addition	to	the	remaining	samples	from	La	Sagrera,	when	13	out	of	15	

samples	were	successfully	cloned.	A	final	round	of	cloning	was	performed	at	LJMU	on	

samples	from	Algar	do	Barrão	and	samples	which	had	so	far	failed	to	produce	an	

adequate	number	of	clones.	In	this	round,	all	22	samples	were	successfully	cloned.	

Altogether,	it	was	possible	to	obtain	at	least	four	clone	sequences	for	all	targeted	samples	

(Appendix	2	and	3).	

3.5	 Consensus	haplotype	determination	

After	cloning,	full	mitochondrial	HVRI	haplotypes	were	confirmed	for	four	individuals	

from	La	Sagrera	and	one	from	Barrão),	while	partial	haplotypes	were	assigned	to	a	further	

four	from	La	Sagrera	and	two	from	Barrão	(Table	12).		
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Table	12.	Mitochondrial	hypervariable	region	I	consensus	haplotypes	for	replicated	samples	as	determined	relative	to	
rCRS,	and	haplogroup	assignments	including	quality	score	made	using	Haplogrep.	*only	covers	positions	16095-16280,	
#only	covers	positions	16232-16369	

Individual	 Consensus	HVRI	haplotype	 Haplogroup	

assignment	

Haplogrep	quality	score	(%)	

SA4	 16129A	16223T	16261T	16320T	 L3e2	 81.3	

G1b	 75.5	

I	 75.5	

SA18	 16179T	16223T	16311C	 M40a	 81.29	

N5	 79.9	

16223T	16311C	 N5	 100	

16179T	16223T	16354T	 M73b	 74.58	

16223T	16354T	 M73b	 89.6	

SA25	 16129A	16223T	16261T	16320T	 L3e2	 81.3	

G1b	 75.5	

I	 75.5	

SA26	 16311C	 H		 100	

SA39	 16320T#	 H		 100	

L3		 100	

SA43	 16223T*	 N	 100	

I	 	

SA44	 CRS*	 	H,	HV	or	U	 	

SA45	 16223T*	 N	 100	

I	 	

SA46	 16221T	 H10e	 100	

SA53	 16223T	16362C	 L3d5	 100	

M3,	M9,	E,	G,	D…	 100	

BAR3	 16270T*	 H2	 50	

BAR4	 16129A	16224C	16311C		 K1a11	 100	

16129A	16224C	16311C	16379T	 K1a11	 100	

BAR5	 16270T	16311C#	 U5b1c	 100	

	

Individual	SA18	was	more	difficult	to	determine.	In	the	first	fragment,	mutation	16179T	

appeared	in	eight	out	of	nine	clone	sequences	for	purificate	L65;	however	this	mutation	

did	not	appear	in	any	of	the	10	clones	of	the	replicate	extraction,	purificate	L94.	Similarly,	

mutation	16223T	was	present	in	the	PCR	sequence	of	both	purificates	and	was	present	in	

all	nine	clones	for	purificate	L65	but	only	appeared	in	one	of	the	ten	L95	clones.	The	
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second	fragment	was	similarly	ambiguous.	Direct	sequencing	suggested	a	haplotype	of	

16311C	16354C	(Table	11)	but	cloning	revealed	that	these	mutations	belonged	to	

different	sequences.	This	suggests	that	this	sample	may	have	become	contaminated	with	

exogenous	DNA	at	some	point	prior	to	extraction.	The	mutations	did	not	coincide	with	

the	haplotypes	of	any	of	the	researchers	involved	in	processing	the	samples	(Table	4).	

Four	possible	HVRI	haplotypes	were	proposed	for	this	sample	(Table	12)	and	diagnostic	

SNPs	were	proposed	to	attempt	haplogroup	confirmation,	however	the	ambiguity	

surrounding	this	sample	precluded	its	use	in	population	genetic	analyses.	

Individuals	SA4	and	SA25	shared	a	HVRI	haplotype	for	the	whole	target	region,	whist	

individuals	SA43	and	SA45	appeared	to	share	a	haplotype	based	on	the	single	fragment	

that	was	successfully	recovered	for	them.	Individual	SA53	also	has	the	16223T	mutation	

in	common	with	SA43	and	SA45	for	the	first	HVRI	fragment,	though	the	second	fragment	

was	also	successfully	sequenced	in	this	case	(Table	12).		

BAR3	and	BAR5	share	a	mutation	in	the	overlapping	region	of	the	target	fragment,	

suggesting	that	they	may	share	a	haplotype	but	since	only	partial	sequences	were	

obtained	for	these	samples,	it	is	impossible	to	confirm	this.	

3.6	 Haplotype	search	

3.6.1	 Modern	Population	

Table	13	shows	the	frequency	of	obtained	haplotypes	within	the	EMPOP	mtDNA	database	

(Parson	and	Dür,	2007),	both	worldwide	and	within	the	West	Eurasian	metapopulation.	

When	more	than	1000	matches	were	returned,	geographical	distribution	was	not	listed.	

The	HVRI	haplotype	shared	by	individuals	SA4	and	SA25	and	three	of	the	proposed	

haplotypes	for	individual	SA18	(16179T	16223T	16311C,	16179T	16223T	16354T,	and	

16223T	16354T)	were	absent	from	the	modern	population	according	to	the	EMPOP	

database	(Table	13).	

The	fourth	proposed	haplotype	for	individual	SA18	(16223T	16311C)	was	poorly	

represented	in	the	modern	population,	with	a	worldwide	frequency	of	only	0.0072	and	
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being	most	widely	observed	in	the	South	Asian	population.	Its	current	distribution	

encompasses	Central	Asia,	East	Asia,	South	Asia,	South	East	Asia,	and	North	America.		

The	partial	haplotype	of	SA39	was	observed	at	a	frequency	of	0.00026	worldwide,	and	

0.0004	West	Eurasian	but	was	quite	widely	distributed,	being	found	in	Central	Asia,	

southwestern	Europe,	southeastern	Europe,	Central,	Southern,	and	Northern	Europe.	

Individual	SA46	has	a	worldwide	frequency	of	0.00173,	and	had	a	wide	global	distribution,	

encompassing	North	and	South	America,	Europe,	and	Asia.	

SA26	and	SA53	were	both	observed	moderately,	with	worldwide	frequencies	of	0.00886	

and	0.0067	respectively,	although	SA53	was	frequent	within	the	East	Asian	

metapopulation	than	any	other	(frequency	=	0.04656),	whereas	SA26	was	similarly	

represented	in	both	West	Eurasian	(frequency	=	0.01688)	and	South	Asian	(frequency	=	

0.01635)	metapopulations.	SA26	was	far	more	widely	distributed	than	SA53,	with	both	

appearing	in	North	America,	Central	Europe,	southeastern	Europe,	South	East	Asia,	

Central	Asia,	East	Asia,	North	Africa,	South	Asia,	Middle	East,	while	SA26	is	also	

represented	in	South	America,	Russian	Federation,	Northern	Europe	and	southwestern	

Europe.	

The	partial	haplotypes	of	SA43	and	SA45,	and	SA44	haplotypes	had	worldwide	

frequencies	of	0.07502	and	0.15279,	respectively.	Both	haplotypes	had	frequencies	>0.2	

in	the	West	Eurasian	metapopulation,	and	were	widely	geographically	distributed	over	all	

continents.	Interestingly,	these	were	the	only	haplotypes	from	this	study	that	are	present	

in	Western	Europe.	

Algar	do	Barrão	haplotypes	were	poorly	represented	within	the	modern	population	with	

worldwide	frequencies	<0.002.	The	one	complete	and	two	partial	haplotypes	had	the	

greatest	representation	within	the	modern	West	Eurasian	metapopulation	and	were	

distributed	in	Southern	Europe	and	southwestern	Europe	(BAR3),	Central	Europe	and	

southeastern	Europe	(BAR4	and	BAR5),	Central	Asia	(BAR3	and	BAR4),	and	Cyprus	(BAR4).	
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Table	13.	Frequency	and	geographical	distribution	of	La	Sagrera	and	Algar	do	Barrão	haplotypes	in	the	EMPOP	database	of	modern	populations	worldwide	and	in	the	West	
Eurasian	metapopulation.	

Individual	 HVRI	Haplotype	 Range	 Worldwide	 Worldwide	
Frequency	

Metapopulation	 Metapopulation	
Frequency	

SA4	 16129A	16223T	16261T	16320T	 16105-16399	 0/31810	 	   

SA18	 16179T	16223T	16311C	 16105-16399	 0/31810	 	   

16223T	16311C	 16105-16399	 22/30577	 0.00072	 West	Eurasian	 0.00036377	

16179T	16223T	16354T	 16105-16399	 0/31810	 	   

16223T	16354T	 16105-16399	 0/31810	 	   

SA25	 16129A	16223T	16261T	16320T	 16105-16399	 0/31810	 	   

SA26	 16311C	 16105-16399	 271/30577	 0.00886	 West	Eurasian	 0.01687900	

SA39	 16320T	 16105-16280	 8/30577	 0.00026	 West	Eurasian	 0.00043652	

SA43	 16223T	 16105-16280	 2597/34617	 0.07502	 West	Eurasian	 0.03278400	

	     West	Eurasian	Admixed	 0.02912600	

SA44	 CRS	 16105-16280	 5289/34617	 0.15279	 West	Eurasian	 0.26777000	

	     West	Eurasian	Admixed	 0.22330000	

SA45	 16223T	 16105-16280	 2597/34617	 0.07502	 West	Eurasian	 0.03278400	

	     West	Eurasian	Admixed	 0.02912600	

SA46	 16221T	 16105-16399	 53/30577	 0.00173	 West	Eurasian	 0.00276460	

SA53	 16223T	16362C	 16105-16399	 205/30577	 0.00670	 West	Eurasian	 0.00334670	

BAR3	 16270T	 16105-16280	 51/34617	 0.00147	 West	Eurasian	 0.00259310	

BAR4	 16129A	16224C	16311C		 16105-16399	 43/30577	 0.00141	 West	Eurasian	 0.00276460	

BAR5	 16270T	16311C	 16232-16399	 49/30577	 0.00160	 West	Eurasian	 0.00305570	
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3.6.1	 Ancient	populations	

Haplotypes	of	individuals	SA4	and	SA25,	SA18,	and	BAR4	were	absent	from	the	ancient	

database	suggesting	that	they	had	not	previously	been	recorded	in	ancient	populations.	

The	haplotype	from	individual	SA26	(16311C)	is	the	most	widely	represented	in	the	

ancient	database.	It	has	previously	been	reported	from	Central,	Northern,	southeastern,	

southwestern,	and	Southern	Europe,	and	the	Middle	East,	and	has	been	found	in	

populations	spanning	from	the	Early	Neolithic	to	the	Iron	Age.	Similarly,	the	haplotype	of	

SA53	was	previously	reported	in	Early	Neolithic	Barcelona	(Table	14).	Individual	SA46	

shares	a	haplotype	with	two	previously	reported	individuals:	one	in	Iron	Age	Denmark,	

and	another	from	the	Middle	Neolithic	cave	site	Bom	Santo	in	Portugal	(Table	14).
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Table	14.	Location,	period,	date,	haplogroup	and	reference	of	sequences	in	the	ancient	mtDNA	database	that	share	a	complete	HVRI	haplotype	with	individuals	from	La	Sagrera	and	Algar	
do	Barrão.	

Individual	 HVRI	
haplotype	

Location	 Period	 Dating		 Haplo-
group	

Reference	

SA26	 16311C	 Saxony-Anhalt	(Germany)	 Early	Neolithic	 Archaeological	context	 HV	 Brandt	et	al.	2013	
	 	 5078	-	4998	(1σ)	BCE	cal	 HV	 Haak	et	al.	2005,	Brandt	et	al.	2013	
	 	 5078	-	4998	(1σ)	BCE	cal	 HV	 Haak	et	al.	2005,	Brandt	et	al.	2013	
	 	 5247	±	45	BCE	cal	 HV	 Haak	et	al.	2010,	Brandt	et	al.	2013	
	 	 Middle	Neolithic		 4100-3950	BCE	cal	 HV	 Brandt	et	al.	2013	
	 	 		 Archaeological	context	 HV	 Brandt	et	al.	2013	
	 	 		 Archaeological	context	 HV	 Brandt	et	al.	2013	
	 	 		 Early	Bronze	Age	 Archaeological	context	 H	 Brandt	et	al.	2013	
	 	 		 		 Archaeological	context	 H	 Brandt	et	al.	2013	
	 	 Olbia-Tempio	(Sardinia)	 Late	Bronze	Age	 1200–1300	BCE	cal	 H	 Caramelli	et	al.	2007		
	 	 Aleph	(Syria)	 Early	Neolithic	 7500-7300	BCE	cal	 K	 Fernández	et	al.	2014	
	 	 7500-7300	BCE	cal	 K	 Fernández	et	al.	2014	
	 	 7500-7300	BCE	cal	 U*	 Fernández	et	al.	2014	
	 	 Navarre	(Spain)	 Final	Early	

Neolithic	
5207-4728	(2σ)	BCE	cal	 HV	 Hervella	et	al.	2012	

	 	 5310-4497	(2σ)	BCE	cal	 H	 Hervella	et	al.	2012	
	 	 5310-4497	(2σ)	BCE	cal	 H	 Hervella	et	al.	2012	
	 	 North-West	Romania	 Early	Neolithic	 6500-5500	BCE	cal	 HV	 Hervella	et	al.	2015	
	 	 Lassithi	plateau	of	east-central	

Crete	(Greece)	
Bronze	Age	 4900-3800	BP	 HV	 Hughey	et	al.	2013	

	 	 4900-3800	BP	 HV	 Hughey	et	al.	2013	
	 	 4900-3800	BP	 HV	 Hughey	et	al.	2013	
	 	 Gotland	(Sweden)	 Middle	Neolithic		 4800-4000	BP	 Others	 Malmström	et	al.	2009	
	 	 4800-4000	BP	 Others	 Malmström	et	al.	2009		
	 	 Southern	Zealand	(Denmark)	 Iron	Age	 200–400	AD	 H	 Melchior	et	al.	2010		
	 	 Hungary	 Middle	Neolithic		 Archaeological	context	 HV	 Szécsényi-Nagy	et	al.	2015	
SA46	 16221T	 Alenquer	(Portugal)	 Middle	Neolithic	 3800–3655	(95%	prob)	 		 Carvalho	et	al.	2016	
	 	 Roskilde	(Denmark)	 Iron	Age	 1000-1250	AD	 H	 Melchior	et	al.	2010	
SA53	 16223T	

16362C	
Kola	Peninsula	(Russia)	 Early	Metal	Age	 3500	BP	uncalibrated		 D*	 Der	Sarkissian	et	al.	2013		

	 	 3500	BP	uncalibrated		 D*	 Der	Sarkissian	et	al.	2013	
	 	 3500	BP	uncalibrated		 D*	 Der	Sarkissian	et	al.	2013	
	 	 Begues,	Catalonia	(Spain)	

	

Early	Neolithic	 5475–5305	BCE	cal	 N*	 Gamba	et	al.	2012	
	 	 5475–5305	BCE	cal	 N*	 Gamba	et	al.	2012	
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3.7	 Haplogroup	Analysis	

Initial	HVRI	haplogroup	assignments,	along	with	quality	scores	can	be	seen	in	Table	12.	

Based	on	these	preliminary	haplogroup	assignments,	coding	region	SNPs	were	tested	to	

provide	greater	resolution	to	the	haplogroup	assignments.	Diagnostic	SNP	results	and	

subsequent	haplogroup	assignments	can	be	seen	in	Table	15.	

3.7.1	 La	Sagrera	

Two	thirds	of	the	individuals	analysed	from	the	La	Sagrera	site	were	assigned	to	

mitochondrial	macrohaplogroup	N.	

Individuals	SA4	and	SA25	share	the	same	mitochondrial	haplotype.	They	were	initially	

considered	members	of	haplogroup	L3	based	on	the	HVRI	results,	with	a	quality	score	of	

81.3%	(Table	12).	However,	the	absence	of	the	10873C	motif	of	haplogroup	L3	(Table	15)	

ruled	out	this	possibility	for	both	samples.	Instead,	these	individuals	are	likely	to	belong	

to	haplogroup	N,	with	a	quality	score	of	around	68%.	Both	samples	possess	an	A	at	

position	10398,	excluding	assignment	to	haplogroup	N1a1	(including	I),	as	this	cluster	is	

characterised	by	a	G	in	this	position.	Further	SNP	typing	is	required	to	determine	the	

exact	haplogroup.	

All	potential	HVRI	haplotypes	for	SA18	were	initially	assigned	to	haplogroup	N	or	M	with	

quality	scores	of	75%	or	higher.	Testing	for	the	10873C	motif	of	L3/M	branch	rules	out	

haplogroup	M	by	its	absence.	Subsequent	testing	for	haplogroup	R	–	a	subclade	of	

haplogroup	N	–	using	base	position	12705	precluded	this	option.	Individual	SA18	was	

assigned	to	haplogroup	N.	

Although	individual	SA26	was	assigned	to	haplogroup	H	based	on	the	HVRI	haplotype,	it	

was	not	possible	to	confirm	this.	The	expected	marker	of	haplogroup	H	(7028C)	was	not	

present	for	this	individual.	Further	analysis	also	ruled	out	haplogroup	K	by	determining	

base	position	10550A.	It	was	concluded	that	this	individual	belonged	to	haplogroups	HV1	

or	R1	with	a	Haplogrep	score	of	100%.	

Individual	SA39	was	preliminarily	assigned	to	either	haplogroup	H	or	haplogroup	L3.	The	

absence	of	the	7028C	SNP	ruled	out	haplogroup	H.	Haplogroup	L3	marker	10873C	was	
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absent	in	one	PCR	but	sequencing	failed	in	the	subsequent	replication.	HV	marker	14766C	

was	observed	once	but	sequencing	failed	for	the	second	PCR.	Taking	into	account	the	SNP	

that	failed	to	replicate,	SA39	was	assigned	to	haplogroup	HV,	with	a	quality	score	of	84%.	

Based	on	the	HVRI	haplotype,	individual	SA43	was	assigned	to	haplogroup	N	with	a	

quality	score	of	100%	(Table	15).	Two	PCRs	performed	for	the	10873C	L3/M	SNP	

produced	different	results	and	PCRs	performed	for	the	10034C	SNP	of	haplogroup	I	failed	

to	sequence.	If	the	10873C	is	considered	accurate,	it	is	likely	that	this	individual	is	a	

member	of	haplogroup	L3.	Given	that	the	10873C	mutation	failed	to	appear	in	any	other	

samples,	it	is	unlikely	that	it	results	from	a	contamination	event.	Thus,	this	individual	may	

be	a	member	of	haplogroup	L3,	or	alternatively	may	belong	within	macrohaplogroup	N.		

Despite	only	confirming	a	partial	HVRI	haplotype	for	individual	SA44,	it	was	possible	to	

assign	this	individual	to	a	macro	haplogroup.	The	sequenced	fragment	matched	the	rCRS,	

which	belongs	to	haplogroup	H2a2a1,	so	it	was	possible	that	this	individual	was	also	a	

member	of	haplogroup	H.	Two	PCRs	from	separate	extracts	from	this	individual	were	

sequenced	and	found	to	contain	the	7028C,	a	marker	of	haplogroup	H.	Thus,	it	was	

possible	to	assign	individual	SA44	to	haplogroup	H.	

Individual	SA45	also	assigned	to	haplogroup	N	due	to	the	presence	of	the	10873T	

mutation,	while	the	16221T	mutation	of	the	HVRI	haplotype	of	individual	SA46	means	it	

can	be	assigned	to	haplogroup	H10.		

Individual	SA53	can	be	assigned	to	macrohaplogroup	N	due	to	the	presence	of	mutation	

10238T.	The	same	haplotype	was	observed	in	two	early	Neolithic	samples	from	the	

Barcelona	region	that	were	assigned	to	haplogroup	N*,	so	it	is	possible	that	SA53	is	also	a	

member.	

3.7.2	 Algar	do	Barrão	

Both	individuals	BAR3	and	BAR5	were	assigned	to	haplogroup	U5	–	determined	by	SNP	

3197C	–	while	individual	BAR4	was	assigned	to	haplogroup	K.	Haplogroup	assignments	for	

all	samples	from	Algar	do	Barrão	achieved	a	quality	score	of	at	least	88%.		
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Table	15.	Coding	region	SNP	results	and	haplogroup	assignment.	SNPs	highlighted	in	bold	failed	to	replicate	across	PCRs.	

Sample	 HVRI	haplotype	 7028C/T		 12308G/A		 10873T/C	 10398A/G	

10400C/T	

10550G/A	 14766C/T		 12705C/T		 3197C/T		 10034C/T		 10238T/C		 Haplogroup	

assignment	1SA4	 16129A	16223T	16261T	

	16320T	

	 	 10873T	 10398	

10400C	

	 	 	 	 No	result	 	 Within	N	

1SA18	 16179T	16223T	16311C	 	 	 10873T	 	 	 	 12705T	 	 	 	 N	

	 16223T	16311C	 	 	 	 	 	 	 	 	 	 	 	

	 16179T	16223T	16354T	 	 	 	 	 	 	 	 	 	 	 	

	 16223T	16354T	 	 	 	 	 	 	 	 	 	 	 	

1SA25	 16129A	16223T	16261T	

	16320T	

	 	 10873T	 10398A	

10400C	

	 	 	 	 No	result	 	 Within	N	

1SA26	 16311C	 7028T	 	 	 	 10550A	 	 	 	 	 	 HV1/	R1	

1SA39	 16320T	 7028T	 	 10873T	 	 	 14766C	 	 	 	 	 HV	

1SA43	 16223T	 	 	 10873C	

10873T	

	 	 	 	 	 No	result	

	

	 L3	

Within	N	1SA44	 CRS	 7028C	 No	results	 	 	 	 	 	 	 	 H	

1SA45	 16223T	 	 	 10873T	 	 	 	 	 	 No	result	 	 N	

1SA46	 16221T	 	 	 	 	 	 	 	 	 	 	 H	or	HV	

1SA53	 16223T	16362C	 	 	 10873T	 	 	 	 	 	 	 10238T	 N	

BAR3	 16270T	 7028T	 12308G	 10873T	 	 	 14766C	 12705C		 3197C		 	 	 U5	

BAR4	 16129A	16224C	16311C		 	 	 	 	 10550G	 	 	 	 	 	 K	

BAR5	 16270T	16311C	 	 	 	 	 10550A	 	 	 3197C		 	 	 U5	
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3.8	 Population	Analysis	

3.8.1	 Ancient	populations	

Within	the	grouped	metapopulations,	the	genetic	composition	of	the	‘Late	Neolithic	

Spain’	population	was	quite	similar	to	the	other	ancient	Iberian	populations,	with	FST	

values	<0.1	in	all	cases.	The	greatest,	significant,	pairwise	distance	was	from	‘pre-

Neolithic	Spain	and	France’,	which	contained	populations	‘	Palaeolithic	Spain	and	France’	

and	‘Mesolithic	Spain’,	(FST	=	0.09,	p<	0.005)	(Table	16).	‘Early	Neolithic	Spain’	and	‘Middle	

Neolithic	Spain’	were	found	to	be	genetically	similar	to	both	‘Middle	Neolithic	Portugal’	

and	‘Late	Neolithic	Spain’	(FST	=	0.03,	0,	0.02,	and	0.01,	respectively),	and	to	each	other	

(FST	=	0.02).	None	of	these	results	were	significant,	reiterating	that	these	populations	

were	genetically	similar.	The	metapopulation	‘Pre-Neolithic	Spain	and	France’	was	more	

distant	from	‘Early	Neolithic	Spain’,	‘Middle	Neolithic	Spain’	and	‘Late	Neolithic	Spain’	

Iberian	populations	(FST=	0.16,	p<0.001;	FST	=	0.04,	p>	0.05;	FST	=	0.08,	p<	0.001,	

respectively),	suggesting	a	shift	in	the	genetic	structure	from	pre-Neolithic	to	Neolithic	

populations	in	this	region.		

	

Table	16.	Pairwise	FST	distances	of	the	‘Late	Neolithic	Spain’	and	‘Middle	Neolithic	Portugal’	populations	against	other	

ancient	populations	from	Iberia	and	France	found	in	the	database	by	Reynolds,	Bertocini	and	Fernandez-Dominguez	(in	

prep.).	Populations	have	been	grouped	into	metapopulations,	which	can	be	seen	in	table	8.	Darker	colour	indicates	

greater	distance	between	populations.	Significant	results	are	indicated	by	red	text	

	

Middle	

Neolithic	

Portugal	

Pre-

Neolithic	

Spain	and	

France	

Early	

Neolithic	

Spain	

Middle	

Neolithic	

Spain	

Late	

Neolithic	

Spain	

Middle	Neolithic	Portugal	 0	

	 	 	 	
Pre-Neolithic	Spain	and	France		 0.04763	 0	

	 	 	
Early	Neolithic	Spain	 0.03023	 0.16308	 0	

	 	
Middle	Neolithic	Spain	 0	 0.04217	 0.01718	 0	

	
Late	Neolithic	Spain	 0.00257	 0.08959	 0.01555	 0.01053	 0	
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3.8.2	 Modern	populations	

The	‘Late	Neolithic	Spain’	population,	which	included	the	sequences	from	La	Sagrera,	was	

found	to	differ	significantly	from	all	modern	Iberian	populations,	with	the	smallest	

distance	being	with	Central	Portugal	(FST	=	0.0144,	p=0.006).	Both	‘Late	Neolithic	Spain’	

and	‘Middle	Neolithic	Portugal’	were	most	distant	from	Basques	(FST	=	0.07099,	p	<	0.001;	

FST	=	0.04609,	p	=	0.036	respectively),	although	both	Basque	populations	were	also	

significantly	distant	from	all	other	modern	Iberian	populations	(Table	17).	In	fact,	modern	

Spanish	populations	were	also	generally	significantly	distant	from	each	other.	Modern	

Portuguese	populations	seemed	to	be	more	genetically	similar	to	other	modern	Iberian	

populations.	The	Middle	Neolithic	Portugal	population	was	not	significantly	distant	from	

any	other	modern	Iberian	populations.
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Table	17.	Pairwise	FST	distances	of	the	ancient	populations	'Late	Neolithic	Spain'	and	'Middle	Neolithic	Portugal’	from	modern	Iberian	populations	found	in	the	Reynolds,	Bertocini	and	

Fernandez-Dominguez	database.	Darker	colour	indicates	greater	distance	between	populations.	Significant	results	are	indicated	by	red	text	
	

	

Late	

Neolithic	

Spain	

Middle	

Neolithic	

Portugal	

North	

Portugal	

Portugal	

Unlocalised	

South	

Portugal	

Spain	

Andalusia	

Spain	

Asturia	

Spain	

Balearic	

Spain	

Basques	

Spain	

Basques	

Navarre	

Spain	

Cantabria	

Spain	

Castilla	

Leon	

Spain	

Catalonia	

Spain	

Galicia	

Spain	

Unlocalised	

	
Late	Neolithic	Spain	 0	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
Middle	Neolithic	Portugal	 0.00290	 0	

	 	 	 	 	 	 	 	 	 	 	 	 	
North	Portugal	 0.02208	 0.00765	 0	

	 	 	 	 	 	 	 	 	 	 	 	
Portugal	Unlocalised	 0.02550	 0.02419	 0	 0	

	 	 	 	 	 	 	 	 	 	 	
South	Portugal	 0.02198	 0.01712	 0.00839	 0.01464	 0	

	 	 	 	 	 	 	 	 	 	
Spain	Andalusia	 0.02442	 0.01714	 0.00156	 0.00626	 0.01012	 0	

	 	 	 	 	 	 	 	 	
Spain	Asturia	 0.03128	 0.01192	 0.0018	 0.00145	 0.01762	 0.0099	 0	

	 	 	 	 	 	 	 	
Spain	Balearic	 0.01809	 0.00231	 0	 0	 0.01235	 0.00349	 0.0054	 0	

	 	 	 	 	 	 	
Spain	Basques	 0.07099	 0.04609	 0.02185	 0.03019	 0.04799	 0.0343	 0.00891	 0.03569	 0	

	 	 	 	 	 	
Spain	Basques	Navarre	 0.03471	 0.01225	 0.01911	 0.02014	 0.04083	 0.03411	 0.02033	 0.01609	 0.03298	 0	

	 	 	 	 	
Spain	Cantabria	 0.03121	 0.00678	 0.01132	 0.00728	 0.0316	 0.01928	 0.00686	 0.01356	 0.02279	 0.02624	 0	

	 	 	 	
Spain	Castilla	Leon	 0.02344	 0	 0.00422	 0.01127	 0.01104	 0.01085	 0.00159	 0.00996	 0.01741	 0.01873	 0.01365	 0	

	 	 	
Spain	Catalonia	 0.01994	 0.00927	 0.00044	 0.00434	 0.00316	 0	 0.00625	 0.00548	 0.0258	 0.02874	 0.01541	 0.00459	 0	

	 	
Spain	Galicia	 0.02314	 0.00625	 0.00252	 0.00149	 0.01707	 0.00845	 0	 0.00656	 0.01509	 0.0187	 0.00659	 0.0037	 0.00407	 0	

	
Spain	Unlocalised	 0.01804	 0.00152	 0.00331	 0.00692	 0.0054	 0.00296	 0.00817	 0.00393	 0.03206	 0.01949	 0.01933	 0.00262	 0	 0.00666	 0	

Central	Portugal	 0.01440	 0.0083	
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3.9	 Haplogroup	Frequencies	

Table	19	shows	the	macrohaplogroup	frequencies	for	the	ancient	metapopulation	groups	

used	for	analysis.	More	than	a	third	of	the	haplogroups	found	in	‘Middle	Neolithic	

Portugal’,	which	includes	the	samples	from	Algar	do	Barrão,	belonged	to	U	(Table	18),	

with	less	than	10%	of	the	population	belonging	to	haplogroups	H	or	HV	respectively,	

which	are	relatively	common	haplogroups	in	modern	day	Europe.	Similarly,	only	15%	of	

‘Late	Neolithic	Spain’	samples	containing	the	La	Sagrera	individuals	were	found	to	belong	

to	haplogroup	H,	with	none	being	assigned	to	haplogroup	HV.	As	expected,	pre-Neolithic	

Iberia	had	a	high	frequency	of	haplogroup	U	(62%).	

Haplogroups	J	and	K	are	present	in	all	Neolithic	populations	but	absent	in	pre-Neolithic	

Iberia	(Table	18).	All	groups	contained	haplogroups	U	and	H.	Cardial/	Epicardial	Spain	

appeared	to	have	the	greatest	haplogroup	diversity,	with	both	earlier	and	later	

populations	being	more	homogenous.	The	pre-Neolithic	population	displayed	the	least	

haplogroup	diversity.	

	

Table	18.	Haplogroup	frequencies	of	the	ancient	metapopulations	

Haplogroup	 Middle	
Neolithic	
Portugal	

Pre-Neolithic	
Spain	and	
France	

Early	
Neolithic	
Spain	

Middle	
Neolithic	
Spain	

Late	
Neolithic	
Spain	

H	 9%	 15%	 34%	 32%	 15%	
HV	 9%	 	 2%	 	 	

I	 	 	 2%	 4%	 	

J	 18%	 	 3%	 14%	 6%	

K	 18%	 	 20%	 9%	 22%	

M	 	 8%	 	 	 	

N	 	 	 8%	 	 12%	

T	 9%	 8%	 6%	 9%	 12%	

U	 36%	 69%	 17%	 32%	 18%	

V	 	 	 2%	 	 3%	

W	 	 	 3%	 	 	

X	 	 	 5%	 	 12%	
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3.10	 Kinship	Analysis	

3.10.1	 Algar	do	Barrão	

Only	one	of	the	three	skeletons	sampled	from	Algar	do	Barrão	yielded	a	complete	

haplotype.	BAR3	and	BAR4	yielded	partial	haplotypes	each	from	a	different	fragment.	

These	individuals	shared	a	mutation	in	the	overlapping	regions	of	the	two	fragments.	

However,	this	was	not	enough	information	with	which	to	calculate	likelihood	ratios.	Thus,	

it	was	not	possible	to	determine	kinship	for	the	individuals	at	Algar	do	Barrão.	

3.10.2	 La	Sagrera	

Of	the	six	individuals	with	complete	haplotypes,	individuals	SA4	and	SA25,	from	clusters	A	

and	C	respectively	(Figure	11),	shared	an	identical	haplotype	which	was	absent	from	all	of	

the	ancient	and	modern	databases	searched	suggesting	it	is	rare.	‘Minimum	allele	

frequency’	(5/N)	was	used	to	estimate	the	frequency	with	which	to	calculate	likelihood	

ratios.	Minimum	allele	frequency	=	1.44x10-4.	Using	the	global	population	in	the	modern	

EMPOP	database	(N	=	34617),	a	likelihood	ratio	of	6,925	was	calculated,	giving	the	

probability	of	matrilineal	relationship	between	these	two	individuals	of	99.98%.	When	

calculated	for	the	West	Eurasian	population	(N=16197),	likelihood	ratio	was	calculated	as	

3239,	giving	a	probability	of	99.96%.	Of	the	partial	haplotypes	generated,	individuals	SA43	

and	SA45,	both	from	cluster	C	(Figure	13),	shared	a	haplotype	for	fragment	16105-16280.	

This	haplotype	had	a	worldwide	frequency	of	0.07502	(Table	13),	and	a	West	Eurasian	

frequency	of	0.03278,	giving	likelihood	ratios	of	13.33	and	30.51,	with	probabilities	of	

93%	and	96.8%,	respectively.	No	other	individuals	at	La	Sagrera	shared	a	haplotype,	

indicating	a	lack	of	matrilineal	relationships	among	the	individuals	sampled.	
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SA25	(not	shown) 
16129A	16223T	
16261T	16320T 

SA4	 
16129A	16223T	
16261T	16320T 

SA45 
16223T 

SA43 
16223T 

Figure	13.	Positions	of	individuals	with	shared	haplotypes	at	La	Sagrera.	Text	box	colour	represents	
corresponding	skeleton	within	each	cluster.	Figure	modified	from	Balaguer,	2016.	
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Chapter	Four:	Discussion	
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4.1	 DNA	Preservation	

The	general	preservation	state	of	the	studied	samples	was	poor	and	as	a	result,	it	was	

only	possible	to	establish	full	or	partial	consensus	haplotypes	for	13	of	the	individuals	

sampled.	No	consensus	haplotypes	were	obtained	from	the	earliest	site	sampled	for	this	

study,	Castelo	Belinho.	Conversely,	La	Sagrera	was	the	most	recent	site	and	yielded	the	

greatest	number	of	sequences.	Even	under	ideal	conditions,	DNA	degrades	over	time,	

thus	it	could	be	expected	that	later	samples	would	be	better	preserved.	Damage	to	the	

DNA	molecule	begins	almost	immediately	post-mortem	as	DNA	repair	mechanisms	cease	

and	nucleases	begin	to	digest	DNA	molecules.	However,	in	ideal	conditions,	retrievable	

DNA	molecules	should	theoretically	persist	for	several	millions	of	years	(Allentoft	et	al,	

2012),	meaning	the	difference	in	time	since	deposition	between	these	sites	(<	2500	years)	

is	unlikely	to	have	been	the	main	cause	of	the	DNA	preservation	discrepancy	between	the	

two.	Furthermore,	aDNA	studies	in	general	display	sporadic	recovery	across	temporal	

scales,	indicating	that	the	relationship	between	sample	age	and	DNA	preservation	is	not	

easy	to	define.	

The	macroscopic	preservation	of	samples	from	Castelo	Belinho,	Casais	da	Mureta	and	

Anta	da	Cabeceira	was	generally	poor.	Obvious	damage	to	the	sample	is	likely	to	affect	

DNA	preservation,	since	this	could	breach	the	protective	quality	of	the	surface.	Fissures	

and	openings	in	the	bone	or	enamel	surface	will	expose	the	internal	DNA	to	

environmental	conditions	that	accelerate	and	encourage	DNA	degradation.	This	could	

expose	the	inner	surfaces	to	greater	microbial	activity,	which	can	degrade	DNA	(Leney,	

2006).	Additionally,	presence	of	large	quantities	of	non-target	DNA	(e.g.	bacterial/	fungal)	

can	inhibit	amplification	of	target	DNA.	Furthermore,	damage	to	the	external	surfaces	of	

the	samples	is	likely	to	have	exposed	the	DNA	to	the	surrounding	soil.	Presence	of	organic	

compounds	such	as	humic	acids	and	fulvic	acids	commonly	found	in	soil	and	sediments	

are	known	to	inhibit	PCR	reactions	(Sutlovic	et	al,	2008).		

The	genetic	data	from	Neolithic	Iberia	is	relatively	scarce,	and	this	is	likely	the	result	of	

the	regions	environmental	conditions.	High	temperatures	associated	with	the	Iberian	

climate	are	likely	to	be	sub-optimal	for	DNA	preservation	(García-Garcerà	et	al,	2011;	

Hofreiter	et	al,	2015).	Samples	from	Castelo	Belinho	and	Anta	da	Carbeceira	failed	to	yield	
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any	reproducable	sequences;	this	may	be	due	to	greater	temperature	fluctuations	at	

open	sites	compared	with	cave	sites	(Gamba	et	al,	2008;	Gómez-Sánchez	et	al,	2014).	

Szécsényi-Nagy	et	al	(2017)	observed	higher	amplification	success	rates	in	northern	and	

easten	Iberia	than	in	southern	and	western	regions	of	the	peninsula.	This	is	in	keeping	

with	the	pattern	seen	in	the	current	study.	

4.2	 Burial	patterns	and	kinship	in	Middle	and	Late	Neolithic	Iberia	

Most	of	the	individuals	at	La	Sagrera	lacked	matrilineal	relationships.	This	was	somewhat	

surprising	given	the	careful,	clustered	arrangement	of	the	individuals.	Such	clustered	

burial	practices	of	the	Neolithic	are	often	indicative	of	kinship-based	funerary	

arrangement	(e.g.	Haak	et	al,	2008;	Alt	et	al,	2016).	The	only	potential	relationship	

observed	on	the	maternal	line	was	between	two	juvenile	skeletons	buried	in	separate	

clusters	(clusters	A	and	C,	respectively).	It	is	likely	that	these	children	were	siblings	or	

cousins.	The	likelihood	of	kinship	between	these	two	individuals	is	further	evidenced	by	
87Sr/86Sr	ratios,	which	were	within	the	same	range	for	both	skeletons,	indicating	that	they	

originated	from	the	same	population	(Robinson	et	al,	2016).	

With	the	Neolithic,	communities	began	to	move	away	from	the	use	of	individual	graves	to	

a	practice	of	collective	burial	(e.g.	Lee	et	al,	2014;	Carvalho	et	al,	2016).	The	development	

of	permanent	settlements,	and	the	associated	increase	in	population	size,	resulted	in	

individual	interment	becoming	less	practical.	Thus,	communal	graves	may	have	been	

more	convenient	and	more	commonplace	(Sorensen,	2013).	These	collective	burials	may	

have	also	reflected	an	emerging	sense	of	community	or	collectiveness	felt	as	social	

complexities	increased.	Often	individuals	grouped	closely	together	or	placed	facing	each	

other	are	thought	to	represent	kinship	groups.	Previous	ancient	DNA	analysis	has	

revealed	familial	relationships	between	such	individuals	(e.g.	Haak	et	al,	2008;	Lee	et	al,	

2014).	It	should	be	noted,	however,	that	only	six	complete	mitochondrial	haplotypes	

were	retrieved	from	the	13	skeletons	sampled,	thus	the	opportunity	for	kinship	analysis	

was	somewhat	limited.	

There	were	also	several	males	present	in	the	clusters,	though	the	Y	chromosome	was	not	

analysed	here.	Patrilocal	societies	have	previously	been	suggested	for	Early	Neolithic	
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Europeans	(Lacan	et	al,	2011;	Bentley	et	al,	2012),	and	both	nuclear	families	and	

collective	burials	characterised	by	the	presence	of	a	paternal	lineage	have	been	observed	

in	several	Late	Neolithic	contexts	(Haak	et	al,	2005;	Lacan	et	al,	2011).	It	is	therefore	

possible	that	the	clusters	did	in	fact	represent	nuclear	families	but	that	the	preservation	

status	of	the	samples	along	with	the	single	lineage	marker	analysed	means	that	kinships	

were	not	detected.	Thus,	the	lack	of	Y	chromosome	data	presents	a	problem	in	

determining	the	kinship	of	the	individuals	at	La	Sagrera.	

The	simultaneous	nature	of	the	deposition	suggests	that	the	individuals	interred	at	La	

Sagrera	were	victims	of	some	kind	of	mass	fatality.	The	anthropological	analysis	showed	a	

lack	of	perimortem	trauma	associated	with	the	skeletons	(Balaguer,	2016)	which,	along	

with	the	presence	of	females	and	adolescents,	most	likely	precludes	the	mass	deposition	

at	La	Sagrera	resulting	from	battle	or	warfare.	Moreover,	stable	isotope	analysis	

conducted	on	the	same	skeletons	indicated	a	difference	in	diet	between	adults	and	

juveniles	(Fernandez-Dominguez	et	al,	2018).	This	could	indicate	an	agricultural	disaster	

that	may	have	resulted	in	a	famine	event.	Multiple	fatalities	over	a	short	time	frame	

would	require	mass	burials	to	occur	relatively	quickly,	hindering	the	application	of	usual	

rites	associated	with	burial,	which	may	support	the	apparent	lack	of	kinship	within	the	

clusters.	Thus,	it	is	likely	that	the	individuals	interred	at	La	Sagrera	do	not	represent	a	

single	population.	

4.3	 The	People	of	Neolithic	Iberia	

4.3.1	 Genetic	distance	

Genetic	distances	show	that	Neolithic	Iberian	populations	were	divergent	from	their	pre-

Neolithic	predecessors,	while	being	similar	to	one	another.	This	is	consistent	with	findings	

for	Central	Europeans	(Bramanti	et	al,	2009),	and	suggests	an	influx	of	migrants	to	the	

Iberian	Peninsula	during	the	Early	Neolithic	period	(Szécsényi-Nagy	et	al,	2017).	

Progressing	through	the	Neolithic,	and	in	concordance	with	the	findings	of	Szécsényi-

Nagy	et	al	(2017),	FST	values	indicate	genetic	continuity	from	the	Early	Neolithic	to	the	

Middle	and	Late	Neolithic.	This	is	in	contrast	to	several	regional	studies	(Gamba	et	al,	
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2012;	Gómez-Sánchez	et	al,	2014),	where	a	discontinuity	is	seen	between	Early	and	

Middle	Neolithic	populations.	

4.3.2	 Haplogroup	analysis	

An	increase	in	haplogroup	diversity	coinciding	with	the	start	of	the	Neolithic	was	found.	

Pre-Neolithic	populations	comprised	of	haplogroups	H,	M,	T	and	U,	while	haplogroups	

HV,	I,	J,	K,	N,	V,	W	and	X	all	appear	in	Early	Neolithic	populations.	The	appearance	of	new	

lineages	coinciding	with	the	Early	Neolithic	supports	a	human	migration	model.	Middle	

Neolithic	Iberians,	including	the	two	individuals	studied	here,	display	an	apparent	

reduction	in	haplogroup	diversity	compared	to	their	Early	Neolithic	predecessors,	possibly	

due	to	genetic	drift.	Haplogroups	I,	N,	V,	W	and	X	are	all	absent	in	Middle	Neolithic	

populations.	Similar	levels	of	haplogroup	diversity	is	seen	in	the	Late	Neolithic	population,	

although	haplogroups	N	and	X	are	both	present,	while	haplogroup	HV	is	absent.	This	

reduced	diversity	could	indicate	a	lack	of	subsequent	immigration	during	the	Middle	to	

Late	Neolithic	period.		

Interestingly,	Early,	Middle	and	Late	Neolithic	populations	all	retain	a	relatively	high	

frequency	of	Mesolithic	haplogroup	U.	Archaeological	and	aDNA	evidence	suggests	

coexistence	of	autochthonous	hunter-gatherer	groups	in	Iberia	and	Central	Europe	for	

several	millennia	after	the	arrival	of	the	first	Neolithic	settlers	(Bertranpetit	and	Cavalli-

Sforza,	1991;	Bollongino	et	al,	2013;	Szécsényi-Nagy	et	al,	2017).	While	a	resurgence	of	

Mesolithic	ancestry	is	seen	across	much	of	Europe	during	the	Middle	Neolithic	(Haak	et	al,	

2015),	the	presence	of	haplogroup	U	throughout	the	Neolithic	in	Iberia	suggests	

admixture	between	the	groups	from	the	outset	in	this	region	(Szécsényi-Nagy	et	al,	2017).	

The	relatively	high	frequency	of	haplogroup	H	in	Iberian	Neolithic	populations	compared	

to	those	of	Central	Europe	also	indicates	a	higher	level	of	Mesolithic	ancestry	(Lacan	et	al,	

2011;	Brotherton	et	al,	2013;	de-la-Rua	et	al,	2015).	Interestingly,	the	frequency	of	

haplogroup	U	increases	to	approximately	one	third	in	Middle	Neolithic	populations	

suggesting	increased	hunter-gatherer	ancestry	during	this	time.	While	it	is	possible	that	

this	Mesolithic	signature	was	incorporated	into	subsequent	Neolithic	migrants	prior	to	

their	arrival	in	Iberia	(García-Martínez	de	Lagrán,	Fernández-Domínguez	and	Rojo-Guerra,	
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2017),	Lipson	et	al	(2017)	suggest	that	admixture	between	local	hunter-gatherers	and	

farmers	is	likely	to	have	occurred.	

4.4	 Contribution	of	Neolithic	Iberian	populations	to	the	modern	gene	pool	

The	Middle	Neolithic	Portuguese	population	was	not	significantly	divergent	from	any	

extant	Iberian	population	except	the	Basques,	and	had	the	greatest	affinities	with	North	

and	Central	Portuguese	populations.	Gamba	et	al	(2012)	and	Sampietro	et	al	(2007)	found	

genetic	continuity	between	Neolithic	farmers	and	extant	populations	in	Aragon	and	

Catalonia.	Middle	and	Late	Neolithic	populations	have	been	found	to	have	a	stronger	

affinity	to	modern	populations	than	the	Early	Neolithic	(Gamba	et	al,	2012).	These	results	

may	suggest	that	the	demographic	changes	coinciding	with	the	onset	of	the	Neolithic	may	

not	have	influenced	the	modern	gene	pool	to	the	extent	of	subsequent	migrations.	

Genetic	signatures	consistent	with	both	earlier	(e.g.	Lacan	et	al,	2011)	and	later	(e.g.	

Adams	et	al,	2008;	Pardiñas	et	al,	2012)	population	movements	have	been	detected	in	

extant	populations.	Subsequent	migrations	during	the	Bronze	Age	are	likely	to	have	

reshaped	the	genetic	landscape	throughout	much	of	Europe	(Allentoft	et	al,	2015;	Haak	

et	al,	2015).	Additionally,	the	Mesolithic	contribution	may	have	been	underestimated	

(Lipson	et	al,	2017).	The	Iberian	Peninsula	was	subject	to	numerous	small	migration	

events	throughout	its	history	(Pardiñas	et	al,	2012),	thus	it	is	likely	that	the	genetic	

structure	of	modern	day	populations	will	contain	signatures	from	across	a	range	of	

events.	

Genetic	distances	indicate	that	the	Late	Neolithic	Spanish	population	was	divergent	from	

all	modern	Spanish	populations,	suggesting	that	demographic	changes	occurring	in	the	

post-Neolithic	period	had	a	role	in	shaping	the	modern	Iberian	mitochondrial	gene	pool.	

This	may	highlight	the	importance	of	geographical	scale	when	interpreting	such	data;	the	

Late	Neolithic	Spanish	population	here	incorporates	individuals	from	various	locations	

across	northern	Spain.	Extant	Iberian	populations	have	higher	genetic	diversity	when	

compared	to	the	rest	of	Europe	(Wang,	Zöllner	and	Rosenberg,	2012),	and	are	quite	

distinct	from	one	another.	This	may	preclude	the	determination	of	accurate	genetic	

affinities	with	a	mixed	group	such	as	the	Late	Neolithic	Spain	metapopulation.	
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4.5	 Conclusion	

Despite	multiple	attempts,	many	of	the	samples	initially	processed	–	particularly	those	

from	open-air	sites	in	Portugal	–	were	too	degraded	for	DNA	sequences	to	be	retrieved	

using	a	classical	PCR	approach.	Samples	from	the	La	Sagrera	site	in	Spain	proved	easier	to	

amplify.	The	hypogeum	at	La	Sagrera	did	not	appear	to	be	a	typical	burial	site	often	

associated	with	Late	Neolithic	populations.	In	fact,	it	is	unlikely	that	the	individuals	

interred	there	were	a	discrete	population.	A	more	likely	explanation	for	the	presence	of	

the	hypogeum	is	a	mass	fatality	due	to	famine	or	disease	epidemic.		

The	obtained	results	show	that	there	was	genetic	continuity	from	the	Early	Neolithic	

through	to	the	end	of	the	Late	Neolithic	in	Iberia,	and	although	an	apparent	discontinuity	

from	the	Mesolithic	to	the	Neolithic	was	observed,	Neolithic	Iberians	retained	a	higher	

level	of	Mesolithic	ancestry	than	their	Central	European	counterparts.	The	contribution	of	

Neolithic	Iberians	to	Modern	populations	was	unclear,	though	it	is	likely	that	subsequent	

migrations	in	the	Bronze	Age	will	have	shaped	the	modern	genetic	landscape	

considerably.	

4.6	 Future	Work	

The	poor	DNA	retrieval	rate	throughout	this	study	limited	the	subsequent	scope	for	

analyses	and	hypotheses	testing.	Pursuing	genomic	sequencing	using	next	generation	

high-throughput	sequencing	techniques	may	increase	success	rates.	Further	DNA	

extraction	attempts	might	also	benefit	from	better	sampling;	petrous	bone	(Gamba,	

2014)	and	tooth	cementum	(Adler	et	al,	2011)	have	been	demonstrated	to	result	in	

superior	DNA	preservation,	and	may	increase	the	amplification	success	rate.	Targeting	Y	

chromosome	and/or	autosomal	markers	may	reveal	further	insights	into	the	populations	

at	La	Sagrera	and	Barrão.	This	work	should	be	done	in	order	to	to	increase	the	genetic	

information	available	for	the	Iberian	Peninsula	to	further	the	understanding	of	the	

demographic	process	underpinning	the	populations	of	Neolithic	Iberia.	
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Appendix	1.	Samples	selected	for	ancient	DNA	analysis.	A)	La	Sagrera,	B)	Castelo	Belhino,	C)	Algar	do	Barrao,	D)	Anta	da	
Cabeceira,	E)	Casais	da	Mureta	
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Appendix	1.	Continued	
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Appendix	2.	Clone	alignments	for	mitochondrial	hypervariable	region	I	base	positions	16105-16280.	Grey	rows	
represent	direct	PCR	sequences	
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Appendix	2.	Continued	
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Appendix	2.	Continued	
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Appendix	2.	Continued	
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Appendix	3.	Clone	alignments	for	mitochondrial	hypervariable	region	I	base	positions	16232	–	16399.	Grey	rows	
represent	direct	PCR	sequences	
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Appendix	3.	Continued	
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Appendix	3.	Continued
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Appendix	3	Continued	

	


