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Abstract

We present a new analytical tool for educing the frequency-dependent complex

shear modulus of materials from computer-aided numerical simulations of their time-

dependent shear relaxation modulus; without the need of preconceived models. The rhe-

ological tool is presented in the form of an open access executable named ‘i-Rheo GT ’,

enabling its use to a broad scientific community. Its effectiveness is corroborated by

analysing the dynamics of ideal single mode Maxwell fluids, and by means of a direct
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comparison with both bulk-rheology measurements and coarse-grained molecular dy-

namics simulations data transformed via a generalised Maxwell model. When adopted

to transform atomistic molecular dynamics simulations data, the unbiased nature of the

tool reveals new insights into the materials’ linear viscoelastic properties, especially at

high frequencies, where conventional tools struggle to interpret the data and molecular

dynamics simulations actually provide their most statistically accurate predictions. The

wideband nature of i-Rheo GT offers the opportunity to better elucidate the link be-

tween materials’ topologies and their linear viscoelastic properties; from atomic length

scales at frequencies of the order of THz, up to mesoscopic length scales of molecular

diffusion phenomena occurring over time scales of hours.

1 Introduction

“The nature of matter is to be found in the structure and motion of its constituent building

blocks, and the dynamics is contained in the solution to the N-body problem. Given that

the classical N-body problem lacks a general analytical solution, the only path open is the

numerical one”.1

In the field of rheology, it has been shown2–4 that the mechanical properties of (complex)

materials are governed by the ensemble of inter- and intra-molecular interactions occurring

at different time- and length-scales (such as the entanglements between polymer chains or

their diffusion). This indeed is a classical N-body problem, for which a full analytical solution

is still yearned. However, despite the multitude and the complexity of molecular interactions,

rheologists have successfully drawn ‘simplistic’ (i.e., coarse-grained (CG)5) representations

of materials’ topology (e.g., the tube model3) that have substantially reduced the number

of variables required to educe the materials’ viscoelastic properties by means of computer-

aided numerical simulations. Nevertheless, despite their effectiveness in interpreting many

experimental results,6 CG models lack of microscopic interpretations of molecular dynamics

because of their inherent discrete nature.7 For this reason and concurrently with the contin-
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uous development of powerful central processing units (CPUs) and graphics processing units

(GPUs), rheologists have been encouraged to embark on molecular dynamics (MD) simula-

tions based on atomistic models. These indeed are potentially able to predict the materials’

dynamics over much wider time and length scales; i.e., from atomic bond fluctuations, oc-

curring at picoseconds time scales, to molecular diffusion in glassy materials, a process that

may take several months before a distance of the order of the molecule dimension is achieved.

In linear rheology, a common aim of MD simulation studies is the evaluation of the time-

dependent material’s shear relaxation modulus G(t) for a discrete number of timestamps,

within a finite observation time window. This because G(t) embodies, without disclosing at

once, the material’s linear viscoelastic (LVE) properties that are instead fully revealed by

the frequency-dependent material’s complex shear modulus G∗(ω). The latter is a complex

number whose real and imaginary parts provide quantitative information on the elastic and

viscous nature of the material, respectively. Notably, these two moduli are in principle

simply related to each other by means of the Fourier transform of the time derivative of

G(t) (i.e., Eq. 3), whose computation given a discrete set of data is at the heart of this

article. In this regard, it has been shown8 that the evaluation of the Fourier transform of

a sampled function, given only a finite set of data points over a finite time domain, is non-

trivial9–14 since interpolation and extrapolation from those data can yield artefacts that lie

within the bandwidth of interest. In order to overcome such an issue, it has become almost

a standard procedure to convert the outcomes of MD simulation (i.e., G(t)) by means of a

Generalised Maxwell model (i.e., a finite sum of weighted single exponentials, each identifying

a characteristic relaxation time of the system), which has a straightforward Fourier transform.

However, this analytical procedure presents some drawbacks: (i) it leaves some uncertainties

related to the accuracy and non-uniqueness of the fitting procedure; (ii) it is affected by the

operator’s choice of the number of Maxwell modes; (iii) at long times it is based on “The

strong assumption...that after the last exponent the relaxation is exponential”1; (iv) because of
1Alexei Likhtman, private communication.
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points (i) & (ii), it commonly leads to ignore interesting information hidden in the short-time

behaviour of G(t), where fast modes take control of the material’s dynamics.7,15 Notably, all

the above issues are discarded by the analytical tool introduced in this work.

We present a new rheological ‘tool ’ to evaluate the materials’ LVE properties over the

widest range of experimentally accessible frequencies from (atomistic and coarse-grained)

molecular dynamics simulations, without the need of preconceived models. This is achieved

by evaluating the Fourier transforms of raw simulation data describing the temporal be-

haviour of G(t) by means of the analytical method introduced by Tassieri et al.8 The latter

has been implemented into a new open access executable named ‘i-Rheo GT ’ and its effec-

tiveness has been corroborated both by analysing the dynamic response of model systems

(i.e., single mode Maxwell fluids) and by direct comparison with both bulk-rheology ex-

perimental data and coarse-grained molecular dynamics simulations data transformed via

a generalised Maxwell model, as described in sections 3.1 and 3.2, respectively. Moreover,

in section 3.3, we fully exploit the results of previous rheological studies,7 where (i) in-

formative MD simulations of G(t) were misinterpreted and (ii) the related materials’ high

frequency response partially discarded because of the absence of an effective tool for data

analysis, as the one presented in this work. Finally, we demonstrate that, when i-Rheo GT

is adopted to analyse the results obtained from atomistic molecular dynamics simulations,

it offers the opportunity to gain new insights into the materials’ LVE properties, especially

at high-frequencies (i.e., in the glassy region and above), where conventional tools (e.g., Iris2

or Reptate3) struggle to interpret the data and MD simulations actually provide their most

statistically accurate predictions of G(t); as described in section 3.4.
2Winter, H. H. , and M. Mours, IRIS Developments, http://rheology.tripod.com/ (2003).
3Likhtman, A.E. and J. Ramirez, http://reptate.com (2009)
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2 Theoretical background

2.1 Linear rheology

In the time-domain, the LVE properties of a material are potentially fully embedded into

its shear relaxation modulus, which is a function defined only for positive times (i.e., ∀t ∈

[0,+∞[) because of causality. This is elucidated by means of the following constitutive

equation of linear viscoelasticity in simple shear:2

σ(t) =

∫ t

−∞
G(t− t′)γ̇(t′)dt′ (1)

where σ(t) is the shear stress, γ̇(t) is the shear rate (i.e., the time derivative of the shear strain

γ̇(t) = dγ(t)/dt) and the integration is carried out over all past times t′ up to the current

time t. From Equation 1 it follows that, for a material at thermodynamic equilibrium, if t0

is the time at which a generic strain function is applied, then both sides of Equation 1 are

different from zero only for t′ > t0. In this case, (i) for a purely elastic solid, Equation 1

becomes σ(t) = Gγ(t), with a time-indepented elastic shear modulus G equal to a third

of the Young’s modulus of the material; whereas, (ii) for viscoelastic materials, their LVE

properties are in theory fully embedded into the temporal behaviour of G(t) ∀t > 0 (i.e.,

for all t′ > t0 = 0), if and only if the strain assumes the ideal form of either a unit impulse

(δ(t)) or a unit step (u(t)) function at time t0.2,16

Nevertheless, even in the above mentioned two ideal cases, G(t) is not able to reveal

at once any viscoelastic parameter, unless a predetermined model is adopted a priori. By

contrast, these properties are fully uncovered by the material’s complex shear modulus:

G∗(ω) = G′(ω) + iG′′(ω) (2)

where ω is the angular frequency, i is the imaginary unit (i.e., i2 = −1), G′(ω) and G′′(ω) are

the material storage (elastic) and loss (viscous) moduli, respectively. Moreover, the complex
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modulus is simply related to the shear relaxation modulus by means of the following Fourier

transform:

G∗(ω) =

∫ +∞

−∞
Ġ(t)e−iωtdt = iωĜ(ω) (3)

where Ġ(t) and Ĝ(ω) are the time derivative and the Fourier transform of G(t), respec-

tively. Notice that, G∗(ω) is time-invariant and Equation 3 is valid whatever is the nature

of the material under investigation.2

Despite the elementary appearance of Equation 3, its evaluation has revealed to be not

a straightforward process.9–13 This has driven rheologists to overcome such an issue by per-

forming a best fit of G(t) with a known function having a well defined Fourier transform,

such as a generalised Maxwell model:

G(t) =
N∑
i=1

Gie
−t/τi , with τi =

ηi
Gi

(4)

where Gi and ηi are respectively the elastic and the viscous contribution of the ith mode that

identifies a characteristic relaxation time τi of the material. This is a very common analytical

procedure that, despite its effectiveness, presents some downsides due to its tendency at

influencing the outcomes; as already mentioned in the introduction and further discussed

later in the paper.

At this point it is important to highlight that the above LVE framework (i.e., Equations 1

to 4) is a valid assumption as long as the system is at thermodynamic equilibrium (i.e.,

isothermal) for all the explored times. In real systems, this assumption may not be valid

or at least not for all the explored frequencies. This is indeed a dilemma that is still a

subject of studies in the field of polymer physics, where a method for identifying a frequency-

crossover between the materials’ isothermal dynamics at low frequencies and those adiabatic

at high frequencies is yet unknown. However, it is expected that such (smooth) transition

would occur at frequencies of the order of the fluctuations of the local structural units

(bonds, angles and torsions); i.e., several decades away from the novel polymeric features
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that we reveal in this work on the basis of a isothermal assumption; hence, the potential

veracity of our findings. Nonetheless, it is germane to note that any comparison between

the isothermal moduli obtained from MD simulations (e.g., either via i-Rheo GT or for that

matter, any other analytical procedure) and the high-frequency experimental data must be

performed with care, as the experiments are believed to probe the system under adiabatic

conditions.17,18

2.2 Evaluating the Fourier transform of raw data

An analytical procedure for the evaluation of the Fourier transform of any generic func-

tion sampled over a finite time window was proposed by Evans et al.,12,13 to convert creep

compliance J(t) (i.e., a step-stress measurement) into G∗(ω) directly, without the use of

Laplace transforms or fitting functions. This method is based on the interpolation of the

finite data set by means of a piecewise-linear function. In particular, the general validity

of the proposed procedure makes it equally applicable to find the Fourier transform ĝ(ω) of

any time-dependent function g(t) that vanishes for negative t, sampled at a finite set of data

points (tk, gk), where k = 1 . . . N , which extend over a finite range, and need not be equally

spaced:12

−ω2ĝ (ω) = iωg(0) +
(
1− e−iωt1

) (g1 − g(0))

t1
+

+ġ∞e
−iωtN +

N∑
k=2

(
gk − gk−1
tk − tk−1

)(
e−iωtk−1 − e−iωtk

)
(5)

where ġ∞ is the gradient of g(t) extrapolated to infinite time and g(0) is the value of g(t)

extrapolated to t = 0 from above.

This method was improved by Tassieri et al.8 while analysing microrheology measure-

ments performed with optical tweezers.14 The authors found that a substantial reduction in

the size of the high-frequency artefacts, from which some high-frequency noise tends to spill

over into the top of the experimental frequency range, can be achieved by an over-sampling
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technique. The technique involves first numerically interpolating between data points using

a standard non-overshooting cubic spline, and then generating a new, over-sampled data

set, by sampling the interpolating function not only at the exact data points but also at a

number of (equally-spaced) points in between. We remind that, over-sampling is a common

procedure in signal processing and it consists of sampling a signal with a sampling frequency

fs much higher than the Nyquist rate 2B, where B is the highest frequency contained in the

original signal. A signal is said to be oversampled by a factor of β ≡ fs/(2B).19

2.3 Calculation of G(t) from simulations

In equilibrium simulations, the shear relaxation modulus can be calculated by means of the

linear-response theory expression:

G(t) =
V

kBT
〈σxy(t)σxy(0)〉 (6)

where V is the system volume, kB is Boltzmann’s constant, T is the absolute temperature

and σxy is the shear component of the stress tensor. In Eq. 6, it is assumed that the average

value of the shear stress at equilibrium is zero. Every time step, the stress tensor can be

obtained from the classical virial definition:

σαβ =
1

V

(
−
∑
i

miviαviβ +
1

2

∑
i,j 6=i

rijαfijβ

)
(7)

where mi and vi are the mass and velocity of particle i, respectively, rij is the distance

between particles i and j, fij is the force on particle i due to particle j and α, β = x, y, z. At

equilibrium, if the system is isotropic, the accuracy of Eq. 6 can be improved considerably
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by averaging over all possible orientations of the reference system of coordinates:

G(t) =
V

5kBT
[〈σxy(t)σxy(0)〉+ 〈σyz(t)σyz(0)〉

+〈σzx(t)σzx(0)〉] +
V

30kBT
[〈Nxy(t)Nxy(0)〉

+〈Nyz(t)Nyz(0)〉+ 〈Nzx(t)Nzx(0)〉] (8)

where Nαβ = (σαα − σββ) is the corresponding normal stress difference.

Equation 8 can be evaluated by post-processing the simulated trajectories. As discussed

below, in entangled polymers the value of the relaxation modulus at the plateau and ter-

minal regions is typically orders of magnitude lower than its value at time t = 0. It is

therefore important to accumulate enough data to grant good statistics that would allow to

resolve those small values accurately. Ideally, one could store the stress tensor at each time

step during the simulation, but that would lead to huge trajectory files and extremely slow

post-processing operations. An alternative approach is to use a multiple-tau correlator,20

that allows an efficient and fast evaluation of time correlation functions on the fly during

simulations. This method has a very small impact on the efficiency of the simulation (less

than 1%) and can be tuned to a desired level of accuracy.

3 Results and Discussions

Figure 1 shows the front panel of the executable i-Rheo GT , which allows the evaluation of

the material’s complex shear modulus via Equation 3 by performing the Fourier transform of

the shear relaxation modulus obtained from MD simulations. In particular, i-Rheo GT reads

the raw data (i.e., [tk, Gk]) in the form of a regular tab-separated text file (.txt) and generates

a new oversampled set of data (with a sufficiently high value of β ≡ fs/(2AR) � ω/AR,

usually fs ∼= 10 MHz); then, it applies Equation 5 to this new data set and returns the

viscoelastic moduli of the system under investigation.
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Figure 1: Front panel of the LabVIEW (National Instruments) executable ‘i-Rheo GT ’,
which implements the analytical method introduced by Tassieri et al.8 to evaluate the Fourier
transform of the shear relaxation modulus G(t) in Equation 3. The executable is free to
download (together with the instructions) from the following link: https://sites.google.
com/site/manliotassieri/labview-codes.

As mentioned before, Equation 5 requires two external inputs (i.e., g(0) and ġ∞) that in

this case are given by the values of G(t) at time t = 0 (G(0)) and of its gradient at time

plus infinite (Ġ∞), respectively. Interestingly, while the first parameter is usually the most

statistically accurate expected value obtained from MD simulations and it is governed by the

thermodynamic conditions at equilibrium, the second often represents a chimera, especially

in the case of systems characterised by very slow relaxation processes (e.g., macromolecules

diffusion in highly concentrated solutions, such as actin filament networks21–24). This is

because of the lengthy simulation process required to achieve statistically valid results that

would better represent such slow dynamics, but also because of the costs of random-access

memory (RAM) and CPUs necessary to accomplish them. Nevertheless, for the great ma-

jority of viscoelastic materials, Ġ∞ is expected to be equal to zero, which represents a key

feature for the analytical approach adopted in this work. In particular, for viscoelastic fluids

whose linear response is characterised by the existence of the terminal region at low frequen-

cies (where G′(ω) ∝ ω2 and G′′(ω) ∝ ω for ω → 0), the long-time behaviour of the shear

relaxation modulus is expected to be: G(t) ∝ exp(−t/τ) for t→∞ and therefore ‖Ġ∞‖ → 0
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for t→∞. The same conclusion is achieved in the case of viscoelastic solids (e.g., gels and

rubbers), for which G(t) tends to the equilibrium shear modulus G0 at long times.

The effectiveness of i-Rheo GT is hereby initially corroborated by analysing the dynamic

response of ideal systems represented by single mode Maxwell fluids (section 3.1). Then, it

is further validated by means of a direct comparison with conventional bulk-rheology mea-

surements and MD simulations of coarse-grained models transformed by means of Reptate

(section 3.2). Finally, the advantages of using i-Rheo GT are highlighted in section 3.3,

where its contribution to the field of polymer physics is presented in the form of a better

understanding of the materials’ LVE properties, especially at high-frequencies, in the glassy

region and beyond, where current methods strive to convert the data.

3.1 Single mode Maxwell fluids

Given the discrete nature of the molecular dynamic simulations’ outcomes, with particular

attention to those obtained from coarse-grained models (for which the very short-time be-

haviour of G(t) is not accounted), we wish to introduce a new dimensionless parameter (Ta)

to assess the efficacy of i-Rheo GT as a function of the relative position of the material’s

characteristic relaxation time τ to that of the experimental time window [t1, tN ]:

Ta =
Log(τ/t1)

Log(tN/t1)
(9)

where, in the case of computer-aided simulations, t1 and tN are set by the ‘unit-time step’

and the ‘duration’ of the simulation, respectively. Whereas, in the case of mechanical mea-

surements, these extremes are dictated by the acquisition rate (AR) of the instrument (i.e.,

t1 = 1/AR) and the duration of the test, which is often identified by the time at which the

measured signal hits the sensitivity of the instrument. The meaning of Ta is very similar in

spirit to that of the Deborah number25 (defined as the ration between the material’s char-

acteristic time of relaxation and the time of observation), but it takes into account also the
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existence of a ‘finite’ acquisition rate (i.e., of t1) and therefore it can also assume negative

values ∀τ < t1.

In order to better appreciate the implications of the parameters β, Ta and G(0) on the

outcomes of the analytical method implemented in i-Rheo GT , we have evaluated the Mean-

Relative-Absolute-Error (MRAE) of both the real and imaginary parts of the calculated

complex modulus (i.e., G′iR(ω) and G′′iR(ω)) with respect to their expected values in the case

of a single mode Maxwell fluid (i.e., G′M(ω) and G′′M(ω), whose well-known expressions are

recalled in Eq. 11):

MRAE(β, Ta, G(0)) =
1

N

N∑
n=1

|G′iR(ωn)−G′M(ωn)|
G′M(ωn)

(10)

where n = 1...N is the number of frequencies at which Eq. 10 is evaluated (hereN = 400, with

ωn equally spaced on a logarithmic scale ranging from 1/tN to 1/t1). A similar expression

can be written for the viscous modulus with G′iR(ωn) and G′M(ωn) replaced by G′′iR(ωn) and

G′′M(ωn), respectively. The complex modulus of a single mode Maxwell fluid is:

G∗M(ω) =
(ωnτ)2

1 + (ωnτ)2
+ i

ωnτ

1 + (ωnτ)2
(11)

from which the expressions of the moduli can be inferred.

β functionality of the error. As already discussed by Tassieri et al.,8 the oversampling

factor β plays a crucial role up to a value of β ≈ 103, above which no significant improvements

of the outcomes are observed, while the computational performance of the personal computer

starts to be affected. In what follows, a value of β ' 103 has been used for all the data

analysis, unless specified otherwise within the text.

Ta functionality of the error. In Figure 2 we report the MRAE of the viscoelastic moduli

evaluated by means of i-Rheo GT in the case of a simple Maxwell fluid with a characteristic

relaxation time τ varying from 10−5 sec to 105 sec across an observation time window of

[0.01, 100]; which implies Ta ∈ [−0.75, 1.75]. From Figure 2, it is possible to identify three
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Figure 2: The Mean-Relative-Absolute-Error (MRAE) vs. Ta of the viscoelastic moduli eval-
uated by means of i-Rheo GT in the case of a simple Maxwell fluid. The fluid’s characteristic
relaxation time τ (top axis) is varying across the observation time window [0.01, 100], which
is outlined by the dot lines. The dash line is a guide for the eye to MRAE = 1%. The inset
highlights the minima in the MRAE of both the moduli.

characteristic regions: (i) for Ta < 0 the fluid relaxes faster than the shortest observation

time (i.e., τ < t1; a circumstance that is not always predictable) and no useful information

can be gained from the measurement. In this region, both the MRAEs rapidly decreases as

Ta approaches the zero value from the left; with a yet unclear non-monotnic behaviour in

the case of the elastic modulus. (ii) For 0 < Ta < 1 the fluid’s characteristic relaxation time

falls within the observation time window and the viscoelastic properties can be retrieved to

a ‘certain’ accuracy depending on Ta. In particular, it is possible to determine the fluid’s

viscoelastic properties to a relatively high precision (i.e., MRAE < 1%) for Ta ∈ [0.42, 0.82];

where the viscous and the elastic moduli show the existence of minimum MRAE values at

Ta ∼= 0.66 and Ta ∼= 0.70, respectively (see inset of Figure 2). (iii) For Ta > 1 the fluid

relaxes slower than the upper limit of the experimental time window (i.e., τ > tN) and its

dynamics asymptotically resemble those of a purely elastic solid as τ tends to +∞. In this

case, the MRAE of the viscous modulus tends to a constant value of ∼= 60%; whereas, the

MRAE of the elastic modulus keeps decreasing (almost exponentially MRAE ∝ e−Ta) from

a starting value of ∼= 3% at Ta = 1.
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Figure 3: (A) The viscoelastic moduli derived by means of i-Rheo GT for three values
of G(0): 0.9, 1, 1.1, respectively, of a single mode Maxwell fluid with τ = 5.25 sec that
corresponds to Ta = 0.68 for an observation time window of [0.01, 100]. (B) Mean-Relative-
Absolute-Error (MRAE) of both the moduli as function of G(0) ∈ [0.9, 1.1] for the same
Maxwell fluid mentioned in (a). (C) The MRAE shown in (b) as function of (G(0) − 1).
The lines are the best linear fits of the same data as in (b), but only for G(0) > 1 (given the
symmetry of the data).

G(0) functionality of the error. In Figure 3 we report the behaviour of the MRAE of both

the moduli as function of G(0) for the case of a single mode Maxwell fluid with τ = 5.25 sec,

which corresponds to Ta = 0.68 for an observation time window of [0.01, 100]. The value of

G(0) is varied by ±10% around its ideal value of 1. From Figure 3a it is clear that G′′(ω)

is more sensitive than G′(ω), especially at high frequencies. In particular, from Figure 3b it

can be seen that the MRAE of G′′(ω) goes above 1% with just a ±0.1% variation of G(0);

whereas, the MRAE of G′(ω) remains below 0.1% over the explored range of G(0). Notably,

these results can be proven valid analytically by taking into account the first two terms on

the right side of Equation 5, where G(0) provides its contribution to the Fourier transform

in Equation 3. Indeed, by considering Equations 3 and 5 evaluated at ω = 1/t1 one could

write:

G∗(1/t1) ∼= G(0)− i
(
1− e−i

)
(G1 −G(0)) (12)

where we remind that [t0 = 0, G(0)] and [t1, G1] are the first two points of the discrete data
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set describing G(t). From Equations 10, 11 and 12, for t1 << τ it follows that:

RAE(G′(1/t1)) ∝ |(G(0)− 1)| (13)

and

RAE(G′′(1/t1)) ∝ |(G(0)− 1)

(
tN
t1

)Ta
| (14)

where RAE(· · · ) indicates the Relative-Absolute-Error and it has been assumed that (i)

(1− G1)/t1 ∼= 1/τ for a Maxwell fluid and in Equation 14 that (ii) (τ/t1) = (tN/t1)
Ta from

Equation 9. Equations 13 and 14 validate the numerical results reported in Figure 3 (and we

anticipate in Figure 4, too), as the MRAE of both the moduli grow linearly with |(G(0)−1)|,

as highlighted in Figure 3c.

Let us now investigate the frequency-dependence of the RAE of the moduli for a set of

single mode Maxwell fluids (τi), all evaluated by means of i-Rheo GT with an erroneous

value of G(0) = 1.1 and over different observation time windows [t1, tN ], for which tN is

kept constant at 100 sec and t1 is varied as reported in the legends of Figure 4. From

this, it possible to confirm that the elastic modulus is better estimated than the viscous

modulus over the entire range of explored frequencies. In particular, the RAE(G′(ω)) has a

parabolic shape centred around ωτ ' 1. It starts with relatively low values at the extremes

of the frequency window (in agreement with Equation 13 at high frequencies) and rapidly

vanishes down to the machine’s numerical resolution as ωτ approaches the unit value. On the

other hand, RAE(G′′(ω)) starts with relatively high values at high frequencies in agreement

with Equation 14 and decreases quadratically until ωτ = 1, after which it remains constant

at values that are inversely proportional to (tN/t1)
Ta for ωτ < 1, as highlighted by the

master curve drawn in Figure 4(d). At this point it is interesting to highlight that, while

RAE(G′′(ω)) seems to follow specific scaling laws, RAE(G′(ω)) shows a complex and yet

undefined dependency on the systems’ characteristic time scales (i.e., [t1, tN , τ ]), as shown
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Figure 4: (a, b) The Relative-Absolute-Error (RAE) of the moduli vs. frequency of a set
of single mode Maxwell fluids for different values of Ta, which is varied by changing either
τ [sec] or the observation time windows [t1, tN ]; i.e., t1 [sec] is varied as reported in the
legends, whereas tN is kept constant at 100 sec. All the RAE curves have been evaluated by
means of i-Rheo GT with a value of G(0) = 1.1. The solid lines are guides for the power
law RAE ∝ (ωτ)2. (c, d) Master curves of the RAE of the moduli derived from the same
data shown in (a, b). The inset in (c) shows the two adjustable parameters (m,s) as function
of Ta, they have been used to draw the master curve in (c). Notice that, data in figures (a),
(b) and (d) share the same legends.

in Figure 4(c) and by the inset therein, where the parameters (m,s) used for building the

master curve drawn in the main graph have been plotted against Ta.

Confident of the effectiveness of i-Rheo GT in educing the frequency-dependent mate-

rial’s linear viscoelastic properties from the analysis of the time-dependent G(t), we have

adopted it to analyse the dynamics of polymeric systems by means of molecular dynamics

simulations based on both coarse-grained and atomistic models; as described in the following

two sections, respectively.
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3.2 Coarse-grained approaches

To overcome computational difficulties due to the long time nature of relaxation behaviors

of polymeric systems, many theoretical attempts have been made to develop coarse-grained

models, such those described in Ref.26,27 A common feature of these approaches is that the

polymer chain is replaced by a simplified molecular model made of freely jointed springs,

and the chemistry details of molecules are embedded into a few model parameters. This

simplification is based on the experimental evidences of the universality of the statistics and

dynamics of polymeric systems.2 Nevertheless, owing to the great reduction of the systems’

degrees of freedom due to the coarse-graining process, analytical expressions for their rheo-

logical characterisation can be derived in the case of ‘simple’ systems. This is indeed the case

for the pioneering molecular models proposed by Rouse,28 Zimm,29 and Doi-Edwards,30 for

which G(t) is formulated as the sum of weighted exponential decay functions, and for which

the analytical expressions of G′(ω) and G′′(ω) are obtained straightforwardly. However, in

general, simple models do not correlate always well with experimental data, especially at

short time scales. In particular, for entangled polymers a few important relaxation mecha-

nisms, namely ‘contour length fluctuation’31 and ‘constraint release’,32 are usually required

to be considered in addition to the underlying “reptation” dynamics conceived in the orig-

inal Doi-Edwards model.33 Therefore, the continuous increase of the number of additional

molecular mechanisms, aimed at better describing the polymer systems dynamics, has made

almost prohibitive the attainment of simple analytical expressions of G(t); hence, the de-

velopment of stochastic simulations to provide a numerical solution to the problems that

otherwise would remain undetermined. In stochastic simulations G(t) is obtained from the

auto-correlation function of stress, as for the molecular dynamics simulations explained in

the previous section; then a numerical conversion of G(t) to G′(ω) and G′′(ω) is necessary

to compare the simulation results with the experiments. At this point it is important to

remind that, due to the coarse-grained nature of the adopted models, the short-time (i.e.,

high-frequency) behaviour of G(t) is smeared out, and therefore the simulation data in this
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regime must be discarded.

In the following subsections two different stochastic simulation methods34,35 are intro-

duced and their effectiveness is corroborated by means of a direct comparison between ex-

perimental bulk rheology data and those obtained from the transformation of G(t) by means

of both Reptate and i-Rheo GT .

3.2.1 Methods

The first simulation method we wish to introduce is the so-called ‘primitive chain network ’

(PCN),34 in which an entangled polymeric liquid is replaced by a network consisting of nodes,

strands and dangling ends. In particular, one polymer chain corresponds to a path connecting

a pair of dangling ends through the network nodes in between. At each network node, there

exists a slip-link that allows the polymer chains connected at the node to slide along their

contour. The sliding motion of the chain and the motional constraint induced by the slip-links

along the chain are aimed at reproducing the reptation dynamics. In this model, the contour

length fluctuations are also considered, and the slip-links (and the corresponding network

nodes) are removed when one of the involved polymer chains slides off. On the contrary, a

new slip-link is created on a dangling segment to connect it to another surrounding segment

when the dangling segment becomes sufficiently large as a result of the chain sliding. The

state variables of the system are the position {R}, the number {Z} of slip-links (network

nodes) on each chain, the number of Kuhn segments on each network strand and the number

of dangling segment {n}. The time dependence of {R} and {n} obey to Langevin-type

equations, in which different force components such as the drag force, the local tension on

each segment, the osmotic force suppressing density fluctuation and the random force due

to thermal agitation are considered. The time-dependent fluctuation of {Z} is induced by

the creation/destruction of slip-links at the chain ends as mentioned above. Actually, for

the removal and creation of slip-link at the chain end, the number of Kuhn segments on the

outmost entanglement segment is observed.34,36 For a deeper understanding of the principles
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underpinning this simulation scheme, we refer the reader to Ref.26,34 and those therein.

The second simulation method is the ‘multi-chain slip-spring ’ (MCSS).35,37–40 In this

case, a number of Rouse chains connected by the virtual springs are dispersed in a simula-

tion box. These springs mimic the entanglements between chains by restricting the chain

dynamics. Namely, the virtual springs are allowed to slide along the chain contour and to

be created/destructed at the chain ends. Owing to the tracing for the Rouse beads between

entanglements, MCSS simulations can reproduce the chain dynamics in the frequency do-

main that is in between those explored by microscopic simulations and those investigated by

PCN simulations.

3.2.2 Results

In this section, we compare bulk-rheology measurements with the results obtained from i-

Rheo GT and Reptate on the numerical conversion of G(t) to G∗(ω) for both the cases

of PCN and MCSS simulations. Reptate is a software that achieves the conversion under

the assumption that G(t) can be represented by a linear combination of single exponential

decay functions. Due to the ill-posed nature of the fitting for such functions, the conversion

result from Reptate depends on the initial guess of the fitting parameters, i.e. the relaxation

intensity and the relaxation time of each mode. In particular, the fitting procedure at short-

time scales of G(t) is not straightforward and a criterion or guide is necessary. In the results

shown in this section, the parameters choice in Reptate was made to recover the numerical

conversion by the method proposed by Schwarzl.41

Let us start by corroborating the concepts introduced in Section 3.1 for the ideal cases

of single mode Maxwell fluids when these are applied to real polymeric systems. In partic-

ular, in Figure 5 are drawn together the linear bulk-rheology measurements of three highly

monodisperse polyisoprene melts and their respective relaxation moduli, G(t), obtained by

means of PCN simulations43 (Figure 5(a)) and Fourier transformed either via Reptate or i-

Rheo GT . Notably, thanks to their high monodispersity, it is actually possible to define a Ta
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Figure 5: Comparison between the linear bulk-rheology measurements of highly monodis-
perse polyisoprene melts (b) Mw = 43k, (c) Mw = 99k, (d) Mw = 179k and their vis-
coelastic properties educed from PCN simulations of G(t) (a) converted by means of both
Reptate (with fourteen modes) and i-Rheo GT . The bulk-rheology data have been taken
from Ref.42,43

value for each system reported in Figure 5. This is achieved by means of their bulk-rheology

measurements, i.e. by using the abscissa of the moduli’s low-frequency crossover as a mea-

sure of the material’s characteristic time. Therefore, one could calculate: (b) Ta ∼= 0.65, (c)

Ta ∼= 0.79 and (d) Ta ∼= 0.83, all very close to the optimum values of Ta ∼= 0.66 and Ta ∼= 0.70

reported in Figure 2; preluding good outcomes from the transformation of MD simulations.

From Figure 5 it is clear that both the analytical tools perform equally well, showing good

agreement with experimental data almost over the entire range of frequencies. However, it

is important to highlight that at very high frequencies, they both seem to provide slightly

diverging values of the moduli. In particular, while G′(ω) shows good adherence to the

frequency-behaviour of the bulk data, with very subtle differences between the methods;
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G′′(ω) shunts significantly from the expected values, for all three systems. This is mainly

due to the (erroneous) value of G(0) assumed during the transformation process of G(t)

performed by the two analytical tools; here returning similar results to those shown in

Figure 3a. In the case of Reptate, the fitting procedure works on the logarithm values of

both G(t) and t, therefore discarding the original value of G(0) at time t = 0 (for obvious

reasons) and replacing it with a lower one obtained from the fastest Maxwell mode (G1) of

Equation 4. This leads to lower values of G′′(ω) at high frequencies, as for the case of the

single mode Maxwell fluid reported in Figure 3a with G(0) = 0.9. In the case of i-Rheo GT ,

the up-turn of G′′(ω) is mainly due to the lack of information on the temporal behaviour of

G(t) within the time window ]0, t1[, in which the analytical tool interpret the missing data

by means of a numerical interpolation between those two points. This is very similar to the

case of the single mode Maxwell fluid shown in Figure 3a with G(0) = 1.1. Nevertheless,

when needed like in this case, i-Rheo GT offers the opportunity of a better interpretation

of the experimental data by tuning the initial parameter G(0). Indeed, it can be seen that

by changing the original value of G(0) = 0.9 MPa to G(0) = 0.55 MPa, a better agreement

is achieved between the bulk-rheology data and those obtained from MD simulations, for

all three systems. Interestingly, this value is very close to the unit modulus G0 = 0.6 MPa

reported by Masubuchi et al.43

Figure 6 shows a comparison between the bulk-rheology measurements of a polystyrene

melt (Mw = 96.4k, taken from Ref.40) and those educed from MCSS simulations of G(t) (see

inset) transformed by means of both Reptate and i-Rheo GT . Also in this case, it can be

seen that, at low frequencies both the analytical tools show a good agreement with the exper-

imental data; whereas, at high frequencies, it seems that Reptate provides a closer agreement

than i-Rheo GT . However, it is important to highlight that, despite such discrepancy, the

frequency behaviour of the moduli evaluated by means of i-Rheo GT better resemble those

of bulk-rheology measurements, especially in the case of G′′(ω). Interestingly, this feature

will be addressed and fully elucidated in the following section; but we anticipate that (as

21



-2 -1 0 1 2 3

4

5

6

7

i-Rheo GT:
 G'( )
 G''( )

Reptate:
 G'( )
 G''( )

Lo
g(

G
''(

))

Log( R)

2

3

4

5

6

7
Bulk Rheology:

 G'( )
 G''( )

Lo
g(

G
'(

))

10-3 10-2 10-1 100 101

103

104

105

106

G
(t)

 [P
a]

Time [s]

Figure 6: Comparison between the linear bulk viscoelastic properties of a polystyrene melt
(Mw = 96.4k) and those educed from a MCSS simulation of G(t) (see inset) transformed
by means of both Reptate (with six modes) and i-Rheo GT . The bulk-rheology data have
been taken from Ref.40

for the systems shown in Figure 5) it is directly related to both the finite range of explored

dynamics (owing to the inherent limited time window explored by coarse-grained simulation

methods) and to the use of a generalised Maxwell model to perform the Fourier transform

of G(t) in the case of Reptate. We recon that such a critical investigation is necessary for

further understanding and improvements of theoretical models.
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A molecular approach

In the following sections, two case studies that use i-Rheo GT to analyse the results of

molecular dynamics simulations are presented. In both cases, the relaxation modulus was

calculated on the fly during the simulations. The calculated relaxation modulus was then

transformed into the complex modulus. The accuracy of the obtained viscoelastic moduli

and the advantages of using i-Rheo GT for the conversion are discussed.

3.3 Coarse-grained Langevin simulations of entangled polymers

3.3.1 Methods

In this section, we focus on dense polymer liquids by modelling the polymers as bead-spring

chains with no intrinsic stiffness.44 In this model, the chain monomeric units are represented

as spheres of diameter σ and mass m. All monomeric units interact via a purely repulsive

Lennard-Jones (LJ) potential (excluded volume interaction),

ULJ(r) =

 4ε
[(

σ
r

)12 − (σ
r

)6
+ 1

4

]
for r < rc

0 for r ≥ rc

(15)

where ε is the energy scale of the potential, r is the distance between two interacting

monomers and rc = 21/6σ is the cutoff distance for the potential. The polymers are formed

by connecting the monomers with an additional finitely extensible nonlinear elastic (FENE)

spring potential defined as

UFENE = −(kR2
0/2) log(1− r2/R2

0), (16)

where k is the spring constant of the bond and R0 is the maximum allowed extension of the

finitely extensible bond between two beads. The equations of motion are integrated using

the Verlet algorithm, in which all monomers are weakly coupled to a Langevin heat bath

with coupling of Γ = 0.5/τLJ at a temperature of T = ε/kB;44 where τLJ = σ(m/ε)1/2.
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The time step for the integration is ∆t = 0.012τLJ . For the spring potential, we have

used k = 30ε/σ2 and R0 = 1.5σ.45 The parameter choice yields an average bond length

b ≈ 0.97σ and guarantees sufficiently close contact between connected monomers to prevent

chain crossings.

Using the model described above, monodisperse polymer melts of 50−100 chains of length

40 ≤ N ≤ 350 at a bead density of ρ = 0.85σ−3 were simulated.7,46 Even in the absence of

any intrinsic stiffness, these polymer chains are non-Gaussian at short length scales and the

mean square internal distances are proportional to (N−1) only for N & 100. For such chain

lengths, the c∞b2 ≡ 〈R2〉/(N − 1) = 1.75σ2.45 Here, c∞ is the Flory characteristic ratio, b

is the average bond length, 〈R2〉 is the mean-square end-to-end distance of the chain and N

is the number of monomers in the chain. As described in more detail in Ref.,7,46 the time-

dependent shear relaxation modulus for all the systems mentioned above were calculated

and have been here reanalysed as discussed below.

3.3.2 Results

Likhtman et al 7 converted the G(t) calculated using MD simulations by means of a gener-

alised Maxwell model. The resulting frequency-dependent viscoelastic moduli led them to

opine that the Kremer-Grest model for entangled polymer liquids was undermined by the

following issue:

“The only qualitative disagreement is that the G′(ω) and G′′(ω) obtained from MD do

not cross around τe, but are approximately parallel to each other for ω > 1/τe. In contrast

to that, the experimental melt data always have G′′(ω) > G′(ω) at high frequency....where

G′′(ω) always crosses G′(ω) and exceeds it by a factor of 2 or so at higher frequency” (see

Figure 4 in Likhtman et al.7).

We can now assert that the finding that led to the above opinion was misleading and arose

because of the preconceptions inherent in the analytical method adopted by Likhtman et al.7

to transform the G(t) to G∗(ω); i.e., a generalised Maxwell model (see Equation 4). Now
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Figure 7: Stress relaxation for the standard Kremer and Grest44 polymer model with molec-
ular weights of N = 40, 50, 100, 200 and 350. The inset highlights the short time oscillating
behaviour of G(t) for N=40. Data taken from Likhtman et al.7

that we have the ‘right tool ’ to convert G(t) to G′(ω) and G′′(ω), the qualitative discrepancy

with experimental data accentuated by Likhtman et al.7 disappears.

In Figure 7 we revisit a selection of stress relaxation curves originally presented by Likht-

man et al.7,46 The inset highlights the short-time oscillations of G(t), which are due to the

underdamped vibrations of the bonds connecting the beads in the adopted model. These fluc-

tuations are typically discarded, partly due to the absence of an effective analytical method

for data analysis such as the one introduced here.

In Figure 8 we report the viscoelastic moduli of two monodisperse polymer melts with

N = 40 (unentangled) and N = 350 (entangled) obtained by converting the G(t) shown

in Figure 7 using i-Rheo GT with a value of G(0) = 66.1 ε/σ3 for both the systems. The

results clearly show the existence of a high frequency crossover in the moduli at ωcross ∼=

1.49 × 10−3τ−1LJ for N = 350. This establishes that the high frequency discrepancy between

the Kremer-Grest model and the experimental data highlighted by Likhtman et al.7 can be

ascribed to an artefact of their procedure to convert G(t) into G′(ω) and G′′(ω). This will be

discussed further in the next section. Moreover, the inset of Figure 8 confirms the theoretical

expectation of tan(δ(ω)) ' 2 for ωτe > 10; here, with a maximum value of tan(δ(ω)) ∼= 3
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Figure 8: The viscoelastic moduli of two monodisperse linear polymers with N = 40 and
N = 350 evaluated by feeding the respective raw data of G(t) shown in Figure 7 into i-
Rheo GT , and both transformed by using a G(0) value of 66.1 ε/σ3. The inset shows the
frequency behaviour of tan(δ) for all the systems reported in Figure 7.

at ωτe ' 103, assuming τe ' 1/ωcross ' 671. Interestingly, this value is smaller than those

reported in literature of τe ≈ 5800 by Likhtman et al.7 (which was obtained by fitting the

relaxation modulus with a single-chain slip-spring model) and of τe ≈ 2950 by Wang et al.47

(which was obtained from the mean-square displacement of the middle monomer); these

values were both estimated from simulations based on the same flexible KG polymer model.

Notice that, as elucidated in Section 3.1, in this case a ±10% variation of G(0) would only

affect the evaluation of ωcross by less than ±2%, with corresponding values of τe ∈ [662, 685].

The results reported in Figure 8 prove that i-Rheo GT is a valuable new rheological

tool capable of extending the analysis of rheological data all the way up to the materials’

glassy modes and even beyond. At the short time scales, MD simulations are likely to

provide the most statistically accurate values of G(t). However, existing algorithms struggle

to accurately convert these data into the frequency domain and therefore do not assist in

their interpretation. This is further explored and confirmed in the following section.

The above analysis also allows us to affirm that the viscoelastic moduli calculated using

the Kremer-Grest model are indeed qualitatively consistent with experimental data even at

high frequencies. In addition, for the accurate calculation of the stress relaxation (and the
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mean-square displacements), at negligible additional computational cost, during simulations

of the Kremer-Grest model over a wide range of chain lengths, densities, temperatures, and

chain stiffnesses, we can endorse both the theoretical method and the software correlator

based approach introduced by Likhtman et al.7

3.4 Atomistic MD simulations of polyethylene

3.4.1 Methods

A series of MD simulations of linear monodisperse polyethylene chains of different molecular

weights, ranging from 0.34 to 14 kDa (roughly 0.5 to 18 entanglements), have been run. A

united-atom approach has been adopted, in which carbon atoms and their bonded hydrogens

are merged into single, spherical interaction sites. Distinction is made between methylene

(CH2) and methyl (CH3) units with respect to non-bonded interactions, but not for the

bonded ones. Bond lengths and angles are subject to harmonic potentials given by:48

Ubond = kBkl(l − l0)2/2 (17)

Ubending = kBkθ(θ − θ0)2/2 (18)

where kl = 96500 K · Å−2 and kθ = 62500 K · rad−2. The equilibrium bond length and

bending angles are l0 = 1.54 Å and θ0 = 114◦, respectively. Rotations around bonds are

governed by the 9-term Toxvaerd torsional potential.49 Interactions between pairs of sites

that belong to different molecules and pairs on the same molecule that are separated by at

least 4 bonds are described by a standard 12− 6 Lennard-Jones potential:

ULJ = 4εij

((
σij
rij

)12

−
(
σij
rij

)6
)

(19)

where the values of the interaction parameters, σCH3 = 3.91 Å, σCH2 = 3.95 Å, εCH3/kB =

104 K and εCH2/kB = 46 K, have been taken from the TraPPE potential.50 The standard
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Lorentz-Berthelot mixing rules have been used for the interaction parameters between CH3

and CH2 units. A cut-off of 9 Å has been used for the calculation of non-bonded interactions

and a long-range tail correction for the energy and pressure has been used.

All simulations have been conducted under periodic boundary conditions in all dimen-

sions. All systems have been previously equilibrated through extensive Monte Carlo (MC)

simulations based on the double bridging (DB) and intramolecular double rebridging algo-

rithms.51,52 MC simulations have been executed in the NPT ensemble, at 1 atm and 450 K

producing thousands of uncorrelated and equilibrated system configurations. After the equili-

bration step, computer-generated polymer configurations, representative of system’s average

chain size and density have been selected for long MD simulations in the NVT ensemble,

at 450 K and at the constant volume as obtained in the MC simulations. Temperature has

been kept constant by means of a Nose-Hoover53,54 thermostat, with a damping parameter

Tdamp = 100 fs. The rRESPA multiple time step algorithm55 has been used for the integra-

tion of the equations of motion, with 1 fs and 5 fs as short and long time steps, respectively.

All MD simulations have been run using a modified version of the LAMMPS software56 in

parallel executions, using from 16 up to 128 CPUs. Atomic velocities and coordinates along

with thermodynamic information have been recorded every 5 ps for all systems except for

the C500 and the C1000 ones; for which frames have been stored every 10 ps for a total MD

simulation time exceeding 15 µs.

3.4.2 Results

Figure 9 shows the relaxation modulus of the samples ranging from 0.34 to 14 kg/mol. At

early times, G(t) shows large oscillations due to bonded interactions. These oscillations are

independent by the molecular weight, last up to 10−3 ns and cause the modulus to become

negative before decaying to zero. After they die out, a combination of Rouse relaxation (with

G(t) ∝ t−0.5) and glassy modes can be observed. Then, the modulus of unentangled samples

(with Mw . 1 kg/mol) decays exponentially, whereas entangled samples show the existence
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Figure 9: Relaxation modulus of atomistic simulations of monodisperse linear polyethylene
with molecular weights (left to right) N = 24, 48, 78, 142, 400 and 1000 carbon atoms (corre-
sponding to 0.34, 0.67, 1.09, 1.99, 5.6 and 14 kg/mol, respectively). The inset shows the short
time oscillating behaviour of G(t).

of a rubbery plateau that also decays exponentially, but at longer times. The time step is of

the order of 1 fs, which is 5− 6 decades smaller than the time at which entanglement effects

are initially felt by the linear polymers. This limits the range of time over which we can

investigate entanglement dynamics, because the practical limit of realistic MD simulations

is of the order of 108 − 109 time steps. In addition, the value of the plateau modulus is

3 − 4 decades lower than the amplitude of the relaxation modulus due to intramolecular

stress oscillations. In order to obtain an accurate value of the plateau modulus and the

stress relaxation in the terminal region, a very high signal to noise ratio is needed, which

requires to calculate the stress autocorrelation function as frequently as possible. This is

possible with the help of the correlator algorithm20 described in Section 2.3, which has been

implemented as a fix (named ave/correlate/long) in the LAMMPS software.

We now wish to demonstrate the advantages gained by using i-Rheo GT for the conver-

sion of G(t) into G∗(ω). In order to do this, we focus the attention on one of the entangled

samples shown in Figure 9; i.e., the polymer chain with Mw = 5.6 kg/mol. In Figure 10

are compared the viscoelastic moduli of this sample obtained by transforming its G(t) both

via Reptate (using a series of 20 Maxwell modes equally distant in logarithmic scale) and
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Figure 10: Complex modulus from Molecular Dynamics simulations of a monodisperse linear
polyethylene sample ofMw = 5.6 kg/mol, as obtained by fitting a series of 20 Maxwell modes
to G(t) in Reptate (filled symbles) and using i-Rheo GT (open symbols), with G(0) =
12.9 GPa. The continuous lines represent the viscoelastic moduli obtained by transforming
the absolute value of G(t) with i-Rheo GT . The dashed and dot lines are guides for the
power laws.

i-Rheo GT (open symbols). Overall, the agreement is excellent between the two methods in

the range of frequencies from 10−3 to 1 rad/ns. It should be noted that the apparent smooth-

ness of the Reptate fitting is somehow artificial and results from the smooth character of the

Maxwell fitting functions.

At higher frequencies (ω & 1 rad/ns), there is a clear discrepancy between the outcomes

of the two analytical tools, which is highlighted by the higher power law of G′′(ω) at fre-

quencies higher than τ−1e obtained from Reptate. We must remind that, in this region (i.e.,

the so-called rubber-to-glass-transition zone), the material dynamics are governed by the

coexistence of Rouse modes and the tail of glassy relaxation modes.17,18 Therefore a more

accurate Fourier transform of the data could potentially help to discern the relative weight

of the different contributions. Moreover, it is worth to highlight that, such disparity between

the outcomes starts at frequencies of the order of 1/τe; this being an important rheologi-

cal parameter whose evaluation is therefore affected by the choice of the analytical method

adopted to transform G(t), as further discussed later on. In addition, at very high frequen-
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cies (ω ≈ 104 rad/ns), the viscoelastic moduli from Reptate show a Maxwell-like behaviour,

which is much simpler than the actual relaxation process shown by G(t) at early times.

In order to understand the dissimilarities between the results reported in Figure 10, it

should be reminded that, due to the wideness of the time window explored by atomistic

MD simulations (i.e., up to 9 decades, see Figure 9), the Maxwell mode fitting procedure

performed in Reptate uses the logarithm of G(t), effectively discarding the negative values

of the relaxation modulus observed at early time (see inset of Figure 9). We should stress

that these high frequency oscillations are not artifacts of simulations. They are due to

the damped vibrations of the bonded interactions in the atomistic force field and the inertia

term present in the atomistic model; therefore they should not be mistreated. Notably, when

the absolute value of G(t) is fed to i-Rheo GT a much better agreement is obtained over

the entire frequency spectrum (see Figure 10). Nevertheless, in order to obtain veracious

viscoelastic moduli, we believe that atomistic MD simulation data at early times should

not be discarded nor misused, as they carry the most statistically valid predictions of G(t).

However, due to the inherent difficulty of fitting a small number of Maxwell modes to the

highly oscillating shape of the relaxation modulus, we strongly support the use of an accurate

Fourier transform method like the one implemented in i-Rheo GT .

The advantages of using i-Rheo GT become apparent when the systems’ characteristic re-

laxation times are extracted from atomistic MD simulation data, as reported in Figure 11(a).

In particular, according to the tube theory3 linear chains should show three clear relaxation

regimes bounded by the following characteristic times: τe (the Rouse time of one entangle-

ment, obtained from the high frequency crossover of G′(ω) and G′′(ω)), τR (the Rouse time

of the chain, obtained from the minimum of tan(δ)) and τd (the disengagement or reptation

time, obtained from the low frequency crossover of the moduli). In the case of well entangled

polymer systems, the value of τd can be determined accurately only at a very high com-

putational cost, because simulations need to be run for times much longer than τd. From

Figure 11(a), it can be seen that: τd ∝M3.16
w , which is in very good agreement with the tube
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Figure 11: (a) The characteristic times τe, τR and τd vs. molecular weight of monodisperse
linear polyethylene melts. The characteristic times have been determined by means of the
polymers’ viscoelastic moduli obtained via i-Rheo GT as explained in the text. (b) The
molecular weight dependence of τe evaluated either from the high frequency crossover of the
moduli (left axis) or via the middle monomer mean-square-displacement (right axis). (c)
An example of the middle monomer mean-square-displacement g1(t) of a linear polyethylene
chain havingMw = 14 kg/mol (left axis). The same data are also shown scaled by t3/8 (right
axis). The dotted line indicates the position of a local maximum of the function g1(t)/t3/8,
whose abscissa provides a reading of τe (reported in (b), right axis) as elucidated in the body
of the manuscript.

theory predictions of τd ∝ M3
w in pure reptation or τd ∝ M3.4

w if contour length fluctuations

are taken into account; τR ∝M1.97
w , which is very close to the expected scaling for the Rouse

time of τR ∝ M2
w. With regards to τe (see Figure 11(b)), it is interesting to highlight that,

(except for a single value) data show for the first time in literature a good adherence to a

stretched exponential decay function (i.e., Eq. 20), which was impossible to capture before by

means of other analytical tools (including Reptate). This is because the relative position of

1/τe results to be strongly affected by the accuracy of the fitting procedure at early times, the

number of Maxwell modes and by the size of the time window in which the fitting procedure

is computed. To corroborate our observation, we have also estimated the value of τe from

the mean-square-displacement of the middle monomers of the chain, g1(t) (see Fig. 11(c));

which, in compliance to the tube theory, is expected to show the following scaling laws:

g1(t ≤ τe) ∝ t0.5 (Rouse scaling) and g1(τe ≤ t ≤ τR) ∝ t0.25 (Rouse scaling along a random

walk). Therefore, τe can be estimated as the crossover time between the two regimes.7,47

However, the transition from one dynamic scaling regime to the other is not easily identifi-

able as reported in Ref.57 Nevertheless, we have estimated τe from the abscissa of the local
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maximum of g1(t)/t3/8; where t3/8 is a rationally chosen intermediate power law between t0.25

and t0.5 for identifying the transition between those two regimes. For chains shorter than

4.48 kg/mol, the plots of g1(t)/t3/8 did not show a local maximum and no values of τe were

estimated. Whereas, for Mw ≥ 4.48 kg/mol, the τe values obtained from the mean-square-

displacement of the middle monomers show a similar behaviour to those obtained from the

high frequency cross-over of G∗(ω) when drawn againsMw (see Figure 11(b)). (We anticipate

that, a more detailed analysis of the viscoelastic and diffusion properties of the atomistic

simulations reported in this section will be discussed in a forthcoming paper.) It is worth

noting that, despite the τe values obtained from g1(t) are circa an order of magnitude higher

than those evaluated from the high-frequency crossover of the moduli, such disparity (due to

the adoption of different observables) is consistent with the results reported in Section 3.3.2

for the Kremer-Grest model systems (i.e., τe ' 671 τLJ), when these are compared with

the τe values obtained from either fitting a single-chain slip-spring model to the relaxation

modulus (τe ≈ 5800 τLJ)7 or via the analysis of g1(t) (τe ≈ 2950 τLJ).47

For highly entangled polymer systems (i.e., Z � 1), τe is expected to be independent

by the polymers’ molecular weight and equal to N2
e ζb

2/3π2kBT ; where Ne is the number of

monomers per entanglement, ζ is the monomeric friction factor and b is the Kuhn length.58

Nevertheless, we now wish to speculate on the possible veraciousness of the newly discovered

functionality of τe, as Mw approaches (from the right) the system’s entanglement molecular

weight value (Me). Indeed, it is reasonable to argue that, lower molecular weights should

have a higher free volume, due to the higher fraction of chain ends, and therefore a lower

friction factor, but also a slightly higher Ne. Therefore, it is possible to hypothesise that the

combination of all these factors may lead to a nontrivial functionality of τe with respect to

Mw, like the following function used to fit the data shown in Figure 11(b):

τe = B
{

1 + exp[−(Mw/A− 2)C ]
}
, (20)
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where,


A = 0.99043± 9× 10−5 [kg/mol]

B = 0.317± 0.002 [ns]

C = 0.48± 0.03

Interestingly, A is almost equal to the entanglement molecular weight of polyethylene Me ≈

1 kg/mol59 and in the limit of Mw → ∞, τe tends to an asymptotic constant value of circa

0.32 ns (in agreement with the current theoretical framework). Equation 20 shows that the

molecular weight Mw must be larger than 2Me before τe can be determined precisely and

entanglement effects can be revealed; in agreement with the results shown in Figure 11.

4 Conclusions

In this article we present and validate a new open access executable named ‘i-Rheo GT ’,

which allows the evaluation of the materials’ linear viscoelastic properties from their time-

dependent shear relaxation modulus over the widest range of accessible frequencies, without

the need of preconceived models. Its unbiased nature has allowed us to gain new insights

into the materials’ high-frequency dynamics, where glassy modes and atomic interactions rule

their rheological behaviour. Notably, these dynamic regimes (often discarded in literature)

are where atomistic molecular dynamics simulations actually provide their most statisti-

cally valid prediction of the shear relaxation modulus and where existing codes struggle to

interprete the data.

i-Rheo GT offers the opportunity to revise the outcomes of previous rheological stud-

ies where original measurements were either explained by means of theoretical models or

partially discarded because of the absence of an effective tool for data analysis, as the one

presented in this work. Indeed, thanks to i-Rheo GT we have corroborated the efficacy of

the pioneering method introduced by Likhtman et al.7 for calculating the stress relaxation
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during simulations (without significant additional central processing unit cost) of a simple

bead-spring model of polymer melt, which was originally thought to be unable to provide

qualitative predictions of the viscoelastic moduli at relatively high-frequencies. This was a

misleading outcome ascribable to the preconceived nature of the generalised Maxwell model

adopted to interpret the data in the original work.

Finally, by analysing the results obtained from atomistic molecular dynamic simulations

of entangled monodisperse linear polyethylene melts, i-Rheo GT allows us to identify for

the first time in literature a stretched exponential functionality of the entanglement time

with respect to the polymer molecular weight. Inferring that a constant value of the en-

tanglement time should be expected only for highly entangled systems; i.e., for a number of

entanglements exceeding a value of twenty, circa.

To conclude, i-Rheo GT represents a valuable new tool for all those theoretical and

simulation studies aimed at developing/solving comprehensive models potentially able to

predict the materials’ linear viscoelastic properties over the widest range of experimentally

accessible frequencies.
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