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Agro-meteorological Risks to Maize Production in

Tanzania: sensitivity of an adapted water requirements

satisfaction index (WRSI) model to rainfall

Abstract

The water requirements satisfaction index (WRSI) – a simplified crop water

stress model – is widely used in drought and famine early warning systems, as

well as in agro-meteorological risk management instruments such as crop in-

surance. We developed an adapted WRSI model, as introduced here, to char-

acterise the impact of using different rainfall input datasets, ARC2, CHIRPS,

and TAMSAT, on key WRSI model parameters and outputs. Results from

our analyses indicate that CHIRPS best captures seasonal rainfall charac-

teristics such as season onset and duration, which are critical for the WRSI

model. Additionally, we consider planting scenarios for short-, medium-, and

long-growing cycle maize and compare simulated WRSI and model outputs

against reported yield at the national level for maize-growing areas in Tan-

zania. We find that over half of the variability in yield is explained by water

stress when the CHIRPS dataset is used in the WRSI model (R2 = 0.52-

0.61 for maize varieties of 120-160 days growing length). Overall, CHIRPS

and TAMSAT show highest skill (R2 = 0.46-0.55 and 0.44-0.58, respectively)

in capturing country-level crop yield losses related to seasonal soil moisture
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deficit, which is critical for drought early warning and agro-meteorological

risk applications.

Keywords: WRSI, Rainfall, Remote sensing, Tanzania, Maize

1. Introduction1

Inter-annual and seasonal rainfall and temperature variability affects crop-2

land and pasture productivity, particularly in regions of rainfed agriculture.3

Understanding the impacts of agro-meteorological risks such as drought on4

crop production requires detailed evaluation of the sensitivity of yield indi-5

cators and crop models to different datasets providing model inputs. For6

example, a rainfall dataset that erroneously detects a delayed season on-7

set would reduce the length of the growing season, subsequently leading to8

simulations of yield reduction or failure in years of ’normal’ rainfall.9

The WRSI Model. The Water Requirements Satisfaction Index (WRSI) is10

perhaps the most widely used crop water balance technique in operational11

drought monitoring, in which rainfall variability is the main driver of changes12

in yield. WRSI was developed by the United Nations (UN) Food and Agri-13

cultural Organization (FAO) for use with synoptic station data to monitor14

rainfed croplands throughout the growing season (Doorenbos and Kassam15

1979 in Senay 2008; Frere and Popov 1979). Calibrated for a range of crops,16

WRSI, a.k.a. crop specific drought index (CSDI) (Melesse et al., 2007), pro-17

vides an indication of crop performance on the basis of water availability18

during the growing season (Frere and Popov 1986 in McNally et al. 2015).19
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Through the relative relationship between water demand and supply, WRSI20

indicates the extent to which crop water requirements are met during the21

growing season (Patel et al., 2011).22

WRSI Applications. WRSI forms the basis of the FAO AgroMet Shell tool23

(Patel et al., 2011) and the FAOINDEX software (Gommes 1993 in Rojas24

et al. 2005); a variation of WRSI is incorporated in the AquaCrop model25

(Steduto et al., 2012) and the European Commission’s Joint Research Cen-26

tre use WRSI for Africa and globally for in-house analyses. As part of an UN27

World Food Programme effort to set up in-country food security monitoring28

and early warning systems, WRSI is used in the Ethiopian Livelihood Early29

Assessment and Protection (LEAP) system - a platform for early warning30

owned by the Disaster Risk Management and Food Security Sector of the31

Ministry of Agriculture in Ethiopia. Since the 2000s, WRSI has supported32

the parametric agricultural insurance analysis of the Africa Risk Capacity,33

a Specialised Agency of the African Union supporting weather risk man-34

agement (Bryla and Syroka, 2007; Bastagli and Harman, 2015). WRSI has35

been used perhaps most extensively by the growing international user com-36

munity of the US Agency for International Development (USAID) Famine37

Early Warning System NETwork (FEWS NET), launched as FEWS in 198538

for five countries in the Sahel and Sudan (Verdin and Klaver, 2002) and39

renamed to FEWS NET in 2000. The FEWS NET community employs a40

’convergence of evidence’ approach where WRSI, alongside independent in-41

formation from satellite-based records on rainfall and vegetation, provides42
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information on agro-meteorological impacts on crop production (Verdin and43

Klaver, 2002).44

GeoWRSI. Agencies concerned with drought monitoring and famine early45

warning, including FEWS NET, have increasingly moved toward grid-based46

use of WRSI, largely facilitated by the greater availability of gridded input47

data on rainfall and reference, or potential, evapotranspiration (PET) (Senay48

and Verdin, 2002, 2003; Verdin and Klaver, 2002). In 2002/03, FEWS NET49

set up the geospatial (gridded) version of WRSI, GeoWRSI (Magadzire 200950

in Jayanthi et al. 2014), for operational crop monitoring and yield esti-51

mation in 20 African countries, as well as in Central America, the Caribbean52

(Haiti), Central Asia, and the Middle East (Afgahnistan) with daily and53

dekadal outputs posted online at http://earlywarning.usgs.gov/adds (Verdin54

and Klaver, 2002; Melesse et al., 2007; Shukla et al., 2014). Unlike the WRSI55

in FAO’s AgroMetshell software, GeoWRSI calculates water balance compo-56

nents on a grid-cell basis (Jayanthi et al., 2014). GeoWRSI uses satellite-57

based rainfall estimates, a potential evapotranspiration (PET) climatology58

derived using the Penman-Monteith equation, soil water holding capacity59

from digital soil databases, and published crop coefficient values (Kc) (Jayan-60

thi and Husak, 2013).61

Drought-related crop yield losses in response to water stress (rainfall62

and/or soil moisture deficit) were successfully assessed for maize in Kenya,63

Malawi, and Mozambique, and for millet in Niger through end-of-season64

WRSI, the ratio of seasonal crop actual evapotranspiration (AET) to sea-65
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sonal crop water requirements, as an agricultural hazard index (Jayanthi66

et al., 2014). With the increasing availability of 30+ years satellite-based rain-67

fall datasets, GeoWRSI has been used to produce probabilistic estimates of68

rainfall-driven yield variations. For example, a novel probablistic drought69

risk management approach, considering the hazard, exposure, vulnerabil-70

ity, and risk components of agricultural drought risk profiling has helped to71

improve the statistical representation of hazards and risk exposures (Jayanthi72

et al., 2014). Alongside hydrologic and water balance models Noah and VIC,73

and other land surface models, WRSI is used in a multi-model framework74

for seasonal agricultural drought forecasting within the NASA FEWS75

NET Land Data Assimilation System (Shukla et al., 2014).76

Previous Evaluations and Sensitivity Analysis. Although WRSI is widely77

used for operational crop performance monitoring, probabilistic drought risk78

management, and multi-model seasonal drought forecasting, a comprehensive79

absolute evaluation of WRSI relative to reported yield has not been carried80

out in many African countries, likely due to scarcity, or lack of, reliable81

agricultural statistics on crop yield, planted area, and seasonal production82

(Senay and Verdin, 2002, 2003). An overview of previous evaluations is given83

in Table 1. Regression correlations of WRSI with reported yields in the order84

of 0.75 are commonly reported (see references in Verdin and Klaver 2002), al-85

though these are usually for sub-national level and cover a time span between86

a single growing season and up to 10 years in one study.87

Sensitivity of WRSI to inputs has been evaluated with the FAOINDEX88
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Table 1: Evaluations of WRSI against reported yield

Country (Crop) Findings (References)
Ethiopia
(sorghum)

Evaluated WRSI vs reported yield; district groups; 4
years (1996-1999); R2=0.77 for years with WRSI below
98% (Senay and Verdin, 2002)

Ethiopia (maize) Evaluated WRSI vs reported yield; 175 districts; 4
years (1996-1999); R2=0.92 (Senay and Verdin, 2003)

Southern Africa
(maize)

Higher correlation when yield reduction function con-
siders long-term local average yield; 206 points;
R2=0.86 (Mattei and Sakamoto 1993 in Verdin and
Klaver 2002)

Zimbabwe (maize) Evaluated WRSI vs reported yield; 14 communal
lands; 1996/97 season; R2=0.8 (Verdin and Klaver,
2002)

India (maize,
sorghum, pearl
millet)

Evaluated WRSI vs reported yield; 7 years (1998-
2004); mean significant R2=0.52 (N=43); works well
in drought-prone regions; higher R2 for regions where
proportion of area covered by each crop was higher;
showed that drought stress can reduce season length
by up to 20-30 days; observed declining trend in mean
season length (Patel et al., 2011)

Kenya, Malawi,
Mozambique
(maize); Niger
(millet)

WRSI used to develop crop yield loss functions (Jayan-
thi and Husak, 2013; Jayanthi et al., 2014); 10 years
(2001-2010); R2=0.52, 0.72, and 0.62 for Kenya,
Malawi, and Mozambique, resp., and 0.64 for Niger

software (Gommes 1993 in Verdin and Klaver 2002) through simulations with89

varying planting dekad or start of season (SOS), soil water holding capacity90

(WHC), rainfall input, and PET. Results showed that ±10% change in rain-91

fall or PET led to ±5% change in WRSI; similar sensitivity to shifting SOS92

was observed, and WRSI varied substantially in response to WHC changes93
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with 25 mm and 50 mm increases leading to 10% and 16% increase of WRSI,94

respectively (Verdin and Klaver, 2002).95

Motivation and Objectives. Inherently, models such as WRSI depend to a96

high degree on the quality of rainfall and reference evapotranspiration input97

data. Rainfall validations and inter-comparisons focus on assessing the per-98

formance of gridded rainfall data relative to point-based gauge observations99

of rainfall. However, what matters most for crop water stress modelling and100

weather index-based insurance products is the skill of rainfall datasets in cap-101

turing agricultural drought parameters such as season onset, duration, and102

cessation and the correlations between indicators such as WRSI with yield.103

For example, in a West Africa study of rainfed cereal crops, Ramarohetra104

et al. (2013) showed that the choice of rainfall product – mainly via the prod-105

uct’s skill in capturing seasonal rainfall total and distribution of wet days –106

can introduce large biases in crop yield simulations with the mechanistic crop107

growth models SARRA-H and EPIC. To our knowledge, a similarly compre-108

hensive analysis of WRSI’s sensitivity to rainfall inputs from different sources109

has not been carried out. Thus, the objective here is to evaluate the sensitiv-110

ity of WRSI to different rainfall datasets and crop variety parameterisations,111

demonstrating the adapted WRSI developed here for a case study focused on112

maize production in Tanzania. With this study we also extend to Tanzania113

the evaluation of the WRSI method for assessing agro-meteorological risk on114

maize production, and characterise the spatial and temporal variation in the115

timing of the onset of rains and growing season duration defined using differ-116
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ent methods (Senay and Verdin, 2003). The outcomes of this will help inform117

weather index-based insurance design on the variability in the correlation of118

WRSI and reported yield for different rainfall inputs.119

2. Study Region120

The United Republic of Tanzania (hereafter Tanzania) (total area: ap-121

prox. 947,300 m2; population: approx. 52 million) is situated on the eastern122

coast of Africa between 29-41°E and 1-12°S and has a diverse terrain with123

Africa’s highest and lowest points, Mount Kilimanjaro (5,895 mASL) and124

the floor of Lake Tanganyika (352 mBSL), respectively.125

Tanzania is dominated by tropical savanna, and warm semi-arid and arid126

climate zones. The eastern coastal region is hot and humid, while the high127

mountainous regions are cool. Mean annual temperatures in the highlands128

are between 10-20°C in the cold (May-August) and hot (November-February)129

seasons, respectively, and rarely fall below 20°C in the rest of the country.130

Tanzania is characterised by two rainfall regimes. The unimodal zone131

in the central, southern, and western parts of the country has one main132

wet season ’Musumi’ (October/November-April/May) prone to dry spells in133

February-April. The bimodal zone in the northeast mountainous region from134

Lake Victoria to the coast is defined by the seasonal north-south migration135

of the Inter-Tropical Convergence Zone (ITCZ) (Zorita and Tilya, 2002) with136

short ’Vuli’ rains (October-November) and long ’Masika’ rains (March-May).137

Tanzania has diverse soils that are generally suitable for agricultural pro-138

8



duction. However, physical soil loss through erosion and decline in soil fer-139

tility due to continuous cropping practices without replenishment of soil nu-140

trients and minerals present major challenges for increasing crop yield.141

Apart from large zones under wildlife and biodiversity protection, agri-142

culture contributes to about a quarter of the gross domestic product, provid-143

ing 85% of exports and employing over half of the workforce. Agricultural144

production is mainly rainfed with only 1% of agricultural land currently un-145

der irrigated farming. The largest food crop is maize with 1.5 Mha under146

maize production and 5.17 Mt production in 2013. Longer maize varieties are147

grown in the unimodal rainfall zone, while double harvest of shorter varieties148

is common in the bimodal rainfall zone.149

3. Data and Modelling Approach150

The WRSI/GeoWRSI model is described in Senay and Verdin (2003)151

among others and summarised in Appendix A along with its key advantages152

and disadvantages. In order to address some of the model’s disadvantages153

and to enable testing of its sensitivity to rainfall inputs from different sources154

and different crop growing cycle parameterisations, we developed an adapted155

WRSI model described here.156

3.1. The Adapted WRSI model157

The adapted version of WRSI developed here allows for sensitivity analy-158

sis to rainfall with phenology-relevant metrics such as start of season (SOS),159
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length of the growing period (LGP), and end of season (EOS) through new160

capabilities to:161

• drive the model with different rainfall input datasets,162

• use a new, temporally-varying reference evapotranspiration input data,163

as opposed to climatological averages,164

• use spatially-varying water holding capacity from a gridded soil database,165

• apply different methods to define SOS and LGP, and166

• calculate and output intra-seasonal variables such as cumulative rainfall167

at each crop development stage and seasonally, as well as water balance168

components such as soil moisture beyond the growing season.169

3.1.1. Weather Data Inputs170

Table 2 summarises the input reference evapotranspiration and rainfall171

data for the adapted WRSI model. Since the stochastic nature of climatic172

parameters plays a key role in the calculation of PET and AET, and sub-173

sequently WRSI and drought-related yield losses, using climatological PET174

values in WRSI may not be ideal (Kaboosi and Kaveh, 2010). Thus, we use a175

newly available, time-varying PET input dataset with each of three different176

rainfall data products (Table 2).177

PET. Potential (reference) evapotranspiration (PET) data with the Penmann-178

Monteith equation (hereafter PET-PM) (Sperna Weiland et al., 2015) is avail-179

able from the eartH2Observe tier-1 forcing dataset at 0.5° resolution globally180
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Table 2: Model input data (PET-PM = Potential (reference) EvapoTranspiraton with
Penman-Monteith equation; ARC2 = African Rainfall Climatology v2; CHIRPS = Cli-
mate Hazards group InfraRed Precipitation with Station data; TAMSAT = Tropical Ap-
plications of Meteorology using SATellite data and ground-based observations)

Dataset Spatial Resolution Time Step Time Period
Evapotranspiration
PET-PM 0.083°(≈ 8km) daily 1979 - 2014
Rainfall
ARC2 0.10°(≈ 10km) daily 1983 - present
CHIRPS 0.05°(≈ 5km) pentad, dekadal, daily 1981 - present
TAMSAT 0.0375°(≈ 4km) dekadal, daily 1983 - present

(Schellekens et al., 2016). Here, we use a downscaled PET-PM dataset at181

0.083° resolution from the same source (PML, 2017), providing daily refer-182

ence evaporation values in kg m-2 from 1979 to 2014 inclusive. The daily183

data were aggregated to dekadal time to drive WRSI calculations.184

ARC2. The NOAA African Rainfall Climatology (ARC) Version 2 dataset185

(hereafter ARC2) (Novella and Thiaw, 2013) merges global precipitation186

index (GPI) information (3-hourly infrared data) with quality-controlled187

Global Telecommunication Systems (GTS) gauge observations of daily rain-188

fall to provide daily rainfall estimates over Africa from 1983 to present. ARC2189

is found to be consistent with two other satellite-based rainfall products,190

GPCP v2.2 and CMAP, with correlations of 0.86 over a 27-year overlap time191

period (Novella and Thiaw, 2013; Manzanas et al., 2014) and performed well192

for estimation of seasonal rainfall totals (Diem et al., 2014). ARC2 is also193

11



used for the R4 index based insurance in Ethiopia (Sharoff et al., 2015) and194

in Africa Risk Capacity’s ARV software (ARC, 2017). The daily ARC2 data195

(NOAA-CPC, 2017) were aggregated to dekadal time step.196

CHIRPS. CHIRPS (Climate Hazards Group InfraRed Precipitation with197

Station data) is an operational 35+ years quasi-global rainfall dataset devel-198

oped by the University of California, Santa Barbara (Funk et al., 2015). The199

data covers areas globally between 50°S-50°N from 1981 to the near-present,200

and incorporates 0.05° satellite imagery with in situ station data to create201

gridded rainfall time series for trend analysis and seasonal drought monitor-202

ing. The CHIRPS version 2.0 final product provides information on daily and203

pentad (5-daily) rainfall. In addition to gauge data from GTS, CHIRPS-final204

uses all available sources of ground observations (such as GHCN, SASSCAL,205

SWALIM, etc.) at both the pentad and monthly time step with pentads206

re-scaled to match the monthly total. CHIRPS-final is generated once per207

month (in the third week of the month for the preceding month) as some208

station data are only available at the monthly time step. Daily CHIRPS209

data (UCSB-CHG, 2017) were aggregated to dekadal time step.210

TAMSAT. The TAMSAT (Tropical Applications of Meteorology using SATel-211

lite and other data) research group at the University of Reading provides212

satellite-based rainfall estimates for the African continent and Madagascar in213

delayed near-real time. The TAMSAT rainfall estimation algorithm uses 15-214

min (30-min prior to June 2006) infrared imagery from the Meteosat geosta-215
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tionary satellites and a climatology-based calibration relationships (varying216

regionally and monthly) derived from a proprietary gauge dataset and his-217

torical gauge-satellite data (Maidment et al., 2014; Tarnavsky et al., 2014).218

The TAMSAT v3 daily rainfall estimates (TAMSAT, 2017), disaggregated219

from the pentad time step using cold cloud duration information (Maidment220

et al., 2017), were aggregated to dekadal time step for the analysis here.221

3.1.2. Soil and Crop Parameters222

Soil Data. The Harmonized World Soil Database (HWSD) combines infor-223

mation from existing regional and national updates of soil information world-224

wide with the 1:5,000,000 scale FAO-UNESCO Soil Map of the World (FAO,225

1971-1981) and contains over 15,000 different soil mapping units at 30 arc-226

second spatial resolution (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009a). Avail-227

able water storage capacity ranging between 0-150 mm m-1 (estimated ac-228

cording to FAO procedures accounting for topsoil textural class and depth/volume229

limiting soil phases) from the HWSD v1.2 dataset (FAO/IIASA/ISRIC/ISS-230

CAS/JRC, 2009b) is used to define spatially-varying water holding capacity231

(WHC) in the adapted WRSI model.232

Crop Coefficients (Kc). Kc values provided by FAO are generally based on233

four crop growth stages: early (initial), vegetative (crop development), matu-234

rity (mid-season), and senescence (late season) where the early and mature235

stages are constant functions of time, and the vegetative and senescence236

stages are linear functions of time (Senay, 2008). Here, we use four-stage237
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Kc values for maize (Zea mays L.) (Steduto et al., 2012; Senay and Verdin,238

2003) defined by 0.3, 1.2, and 0.35 at the early to vegetative, maturity to239

senescence, and harvest stages respectively (Allen et al., 1998).240

Seasonal Parameters. The adapted WRSI model allows for definition of the241

start of season (SOS) from an external source or from rainfall input data using242

the AGHRYMET threshold approach of a given dekad with 25 mm rainfall243

followed by two dekads with 20 mm total rainfall as in the standard WRSI244

(see Appendix A). Although the AGHRYMET approach for SOS definition245

was developed for West Africa, Verdin and Klaver (2002) compared SOS246

detected by WRSI with field reports for the 1996/97 and 1997/98 growing247

seasons and showed that it is applicable for countries in southern Africa.248

The length of the growing period (LGP) in the adapted WRSI can ei-249

ther be set as a constant, typically 80-180 days (e.g. 90 days for short-cycle250

maize, 160-days for long-cycle maize) or LGP can be defined from the per-251

sistence of rainfall over reference evapotranspiration, i.e. the length of time252

precipitation exceeds half of reference evapotranspiration as in the standard253

WRSI/GeoWRSI (see Appendix A). Since the adapted WRSI uses time-254

varying PET instead of climatology, LGP defined on the basis of rainfall255

persistence over PET varies from year to year. Specifically, LGP for each256

year is calculated from the SOS dekad while mean dekadal rainfall exceeds257

half of mean dekadal PET within the current LGP, or until there are six con-258

secutive dekads without rainfall, indicating end of season. Using the average259

dekadal rainfall and PET within the current LGP allows for short dry spells260
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to occur.261

With either method for SOS and LGP definition, the end of season (EOS)262

is calculated as the sum of SOS and LGP in terms of dekad of the year (where263

1-10 January is dekad 1 and 21-31 December is dekad 36).264

Seasonal parameters are important, because crop variety and growing265

cycle length impact on the attainable yield with short-cycle crops sensitive266

to dry periods and long-cycle crops – to early EOS (Ramarohetra et al.,267

2013). Thus, with the adapted WRSI model we characterise and quantify268

the impact of seasonal parameters on WRSI as an indicator of crop yield.269

3.2. Evaluation Data270

For evaluation of WRSI simulations, we obtained yield data from the271

Statistics Unit of the Tanzanian Ministry of Agriculture Livestock and Fish-272

eries (MALF) (http://www.kilimo.go.tz/). The data covers the time period273

between 1996 and 2009; however, from 2002 onwards, figures are reported for274

several new districts and contain estimates from national agricultural census275

for some years. Thus, only yield over the 1996-2002 time period is considered276

in the evaluation.277

3.3. Model simulations and evaluation of sensitivity to rainfall278

Here we describe the WRSI simulation scenarios and present the approach279

for evaluation of the model simulations.280
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3.3.1. Simulations281

The adapted WRSI model, implemented in a spatially distributed mode,282

was applied for a total of 15 simulations, 5 model runs with each of the three283

rainfall data inputs and SOS identified using the WRSI threshold method.284

For model runs with each rainfall input dataset, simulations 1-4 use a con-285

stant LGP every season of 90, 120, 140, and 160 days, respectively, and286

simulation 5 uses LGP, which varies from year to year as it is defined using287

the WRSI approach based on rainfall persistence over time-varying PET.288

The WRSI simulations cover the overlap time period between the rainfall289

and evapotranspiration input datasets, i.e. 1983-2014 for WRSI simulations290

with ARC2 and TAMSAT and 1981-2014 for those with CHIRPS rainfall291

input dataset. For all WRSI simulations, soil moisture was initialised as half292

of WHC after preliminary tests with values from dry soil to water at WHC293

showed little effect on the results. WRSI simulations were applied only to294

maize growing areas as of 2000 (You and Wood, 2006) and the evaluation295

against reported yield was carried out only for these areas at country level.296

3.3.2. Evaluation297

The evaluation of the impact of different rainfall input datasets on WRSI298

model simulations is carried out in three distinct parts.299

The first part of the evaluation is focused on seasonal rainfall characteris-300

tics to support the identification of areas that are likely to experience similar301

agro-meteorological risk. Specifically, we evaluate the spatial patterns and302
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temporal trends of SOS, LGP, and EOS across model simulations and relative303

to reported information on these.304

In the second part, we examine the impact of different rainfall input305

datasets on the detection of WRSI below 80% spatially and over time (in-306

terpreted as below average crop production conditions). This is evaluated307

relatively among the three rainfall input datasets, as well as in relation to308

the five LGP scenarios (i.e. simulations 1-4 with 90, 120, 140, and 160 days309

fixed LGP and simulation 5 with variable LGP using the WRSI method).310

Last, we assess the relationship of simulated seasonal WRSI and histor-311

ically reported maize yield at the country level. As in previously reported312

comparisons (Table 1), seasonal WRSI values, as well as seasonal rainfall313

and median soil moisture for dekads in the season, over pixels in the maize314

growing areas (You and Wood, 2006) are averaged and compared through315

linear regression to reported national yield figures.316

4. Results and Discussion317

Here we present the results from the evaluation of rainfall seasonality,318

sensitivity of WRSI to rainfall input data, and correlations of WRSI, seasonal319

rainfall, and median soil moisture with reported yield for maize in Tanzania.320

4.1. Evaluation of rainfall seasonality321

Using the adapted WRSI model, we applied the standard rainfall thresh-322

old approach for SOS detection and the persistence of rainfall over evapo-323

transpiration method for LGP determination to examine the spatial patterns324
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and trends in the timing of SOS, the duration of LGP, and subsequently, the325

pattern and timing of EOS. It is worth noting that the focus is here on the326

main rainy season in the unimodal zone as capturing the two shorter rainfall327

seasons requires the use of two consecutive, and likely different, thresholds328

for SOS detection within the same agronomic year.329

Figure 1 illustrates the differences in the spatial pattern of SOS, LGP,330

and EOS averaged over the time period covered by each rainfall product.331

In the unimodal rainfall zone of Tanzania, the spatial patterns of SOS332

in ARC2, CHIRPS, and TAMSAT are similar, albeit with an earlier season333

onset in the ARC2 product on average across the country (dekad 28 corre-334

sponding to the first dekad of October, SD = 10.2) than in CHIRPS and335

TAMSAT (dekad 30 corresponding to dekad 3 of October with SD = 7.6 and336

7.2, respectively).337

With respect to LGP, the ARC2 product shows some artefacts likely338

due to the near-real time gauge-merging routine employed by the rainfall339

estimation algorithm (Novella and Thiaw, 2013) and results in an average340

LGP across the country of 14 dekads (SD = 3.1). CHIRPS reasonably well341

captures on average across the country a growing season of 15 dekads (SD =342

2.6), which corresponds to the typical season length from October/November343

to April/May, and average LGP calculated from the TAMSAT product is 14.5344

dekads (SD = 2.8).345

As EOS is calculated by adding LGP to SOS, the spatial pattern of EOS346

reflects the above discussion with simulations using CHIRPS as input rain-347
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Figure 1: Average start of season (SOS) dekad determined using the WRSI rainfall thresh-
old method (top), average length of growing period (LGP) defined using the WRSI method
of rainfall ≥ 0.5 PET (middle), and average end of season (EOS) dekad (bottom) de-
termined from the ARC2 (1983-2014), CHIRPS (1981-2014), and TAMSAT (1983-2014)
rainfall products. Note: Inland water areas (Victoria, Tanganyika, and Nyasa lakes) are
masked out.

fall data enabling to estimate the EOS reasonably well, i.e. on average in348

April/May. The spatial pattern of EOS also reflects the impact of artefacts349
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in the ARC2 product discussed above, as well as the slightly earlier SOS and350

shorter LGP estimated by the ARC2 and TAMSAT products, as compared351

to the SOS and LGP estimated with the CHIRPS product.352

Figure 2 illustrates the averaged across the country SOS, LGP, and EOS353

values over time as determined from the ARC2, CHIRPS, and TAMSAT354

rainfall products. Overall, ARC2 shows the lowest mean SOS dekad (dekad355

28-29 corresponding to dekads 1-2 of October) and highest variability over356

time (SD = 3.6). For CHIRPS and TAMSAT these are dekad 30 (correspond-357

ing to dekad 3 of October) with SD of 2.8 and 2.7 respectively. With regard358

to LGP, CHIRPS shows the longest LGP of 15 dekads and the lowest SD of359

0.6. For TAMSAT and ARC2 these are respectively LGP of 13.9 and 14.5360

dekads with SD of 0.8 and 1.0. In terms of EOS, the variability is much less361

substantial with all rainfall input datasets producing average EOS around362

dekad 11 (corresponding to dekad 2 in April) and SD of 0.8, 0.9, and 1.0 for363

ARC2, CHIRPS, and TAMSAT, respectively.364

The above analysis shows the relative differences between the skill of365

the three rainfall products in capturing the onset of rains, estimating the366

length and subsequently, the end of the growing season. The variability of367

SOS, LGP, and EOS detection has important implications for estimation of368

seasonal WRSI and subsequently, for crop yield monitoring and forecasting369

and agro-meteorological risk analysis on the basis of the WRSI model.370
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Figure 2: Regionally averaged start of season (SOS) determined using the WRSI rainfall
threshold method, length of growing period (LGP) defined using the WRSI method of
rainfall ≥ 0.5 PET, and end of season (EOS) determined from the ARC2, CHIRPS, and
TAMSAT rainfall products.
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4.2. Evaluation of WRSI sensitivity to rainfall inputs371

Figure 3 shows the spatial pattern of average seasonal WRSI calculated372

with the standard WRSI approach for start of season based on rainfall thresh-373

old and the length of the growing period (LGP) defined on the basis of the374

persistence of rainfall over evapotranspiration. Across maize growing areas375

(You and Wood, 2006), for the unimodal zone similar average WRSI was376

calculated from simulations with ARC2 (1983-2014), CHIRPS (1981-2014),377

and TAMSAT (1983-2014). Average WRSI values over time from the simu-378

lations with all three rainfall data inputs are above 80%, indicating that on379

average the moisture requirements of maize are sufficiently met by available380

water. WRSI values fall below 80% for parts of the bimodal rainfall zone;381

however, this is not discussed as the adapted model cannot in its present382

form represent two short rainfall seasons within the same agronomic year.383

Figure 3: Average seasonal Water Requirements Satisfaction Index (WRSI) with the WRSI
method for start of season (SOS) detection based on a rainfall threshold and length of
growing period (LGP) defined as the length of time that rainfall≥ 0.5 PET from the ARC2,
CHIRPS, and TAMSAT rainfall products. Note: Areas not under maize production as of
2000 (You and Wood, 2006) are masked out.
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Figure 4 illustrates the impact of rainfall input data on seasonal WRSI384

under the four scenarios of fixed length of the growing period (i.e. 90, 120,385

140, and 160 days) and the scenario, under which LGP varies as a function386

of the persistence of rainfall over evapotranspiration. This results in lower387

variability over time of WRSI simulations with CHIRPS rainfall input and no388

years detected of regionally-averaged WRSI below 80% when CHIRPS and389

TAMSAT are used as rainfall input to WRSI simulations, while for ARC2390

WRSI is below 80% for 160 days LGP in 1998 and 1999, and for 120, 140,391

and 160 days LGP in 1998, due to the earlier SOS and shorter LGP detected392

by ARC2. Overall, WRSI estimates based on CHIRPS and TAMSAT rainfall393

input data are higher than those with the ARC2 product. ARC2 based WRSI394

simulations also show the widest variation in standard deviation (SD) and CV395

respectively between 2.9 and 3% for the 90-days growing length simulation396

and 5.4 and 6% for the 160-days growing length simulation. CHIRPS based397

WRSI simulations result in the lowest SD and CV of 3.0 and 3% for the398

90-days and WRSI method growing length scenarios and 4.0 and 4% for399

the 120-160 days growing length scenarios. WRSI results with TAMSAT as400

the rainfall input dataset are similar to those with CHIRPS, although less401

variable with SD and CV of 3.4 and 4% for the 90-days and WRSI method402

growing length scenarios and 4.8 and 5% for the 120-160 days growing length403

scenarios.404

Table 3 shows the average total seasonal rainfall and WRSI using the405

ARC2, CHIRPS, and TAMSAT rainfall input datasets as an indication of406
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Figure 4: Regionally averaged WRSI defined with fixed length of the growing period
(LGP) and using the WRSI method of rainfall ≥ 0.5 PET from the ARC2, CHIRPS, and
TAMSAT rainfall products. Note: Inland water areas (Victoria, Tanganyika, and Nyasa
lakes) are masked out, as well as areas not under maize production as of 2000 (You and
Wood, 2006).

their skill in detecting the two years with lowest yield, i.e. 1996 and 1998407

with 1.07 and 1.06 t ha-1, respectively. Using either indicator, only CHIRPS408

detects both 1996 and 1999 as low-yield years, although due to spatial and409
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temporal averaging all WRSI values are above 80%, indicating ’normal’ (av-410

erage) season conditions. It is worth nothing that while both total seasonal411

rainfall and WRSI are lowest for ARC2 and TAMSAT, and WRSI is lowest412

for CHIRPS in 1998, it was a relatively high-yielding year. This suggest413

the inadequacy of basing agricultural drought insurance on rainfall indices414

alone and the need to analyse additional information from a crop water stress415

model such as WRSI. Moreover, the correlation between low-yield years and416

low rainfall in particular, but also low WRSI, can break down due to factors417

not related to rainfall and/or not represented in the WRSI model such as418

changes in nutrient input or acreage planted with maize from year to year.419

Table 3: Skill of detection of low-yield years in the 1996-2002 time period assessed using
total seasonal rainfall from the ARC2, CHIRPS, and TAMSAT rainfall products and using
these as input, the simulated WRSI with varying length of the growing period (LGP). Note:
Two lowest values in bold font

Yield Rainfall [mm] WRSI [%]
Year [t ha-1] ARC2 CHIRPS TAMSAT ARC2 CHIRPS TAMSAT
1996 1.07 493 459 495 90 89 90
1997 1.19 597 869 753 99 99 99
1998 1.33 377 530 473 87 89 89
1999 1.06 388 490 506 89 89 91
2000 1.71 575 647 658 96 98 98
2001 1.46 536 632 625 93 94 94
2002 1.15 491 544 520 91 90 92
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4.3. Evaluation of WRSI against yield at country level420

Correlations from the regression analysis of WRSI, total seasonal rainfall,421

and median soil moisture (Median SMs) and reported yield figures for 1996-422

2002 are summarised in Table 4, although none had a significant p-value.423

Table 4: Correlations between Water Requirements Satisfaction Index (WRSI), total sea-
sonal rainfall, and median soil moisture (Median SMs) and yield data (1996-2002) from the
Tanzanian Ministry of Agriculture, Livestock and Fisheries (MALF) across maize growing
areas. WRSI simulations 1-4 use fixed length of the growing period (LGP) of 90, 120, 140,
and 160 days, and simulation 5 uses variable LGP defined from the persistence of rainfall
over evapotranspiration. Bold figures indicate highest correlation for each LGP scenario;
underlined figures indicate highest correlation for each input rainfall dataset; no values
are significant at p ≤ 0.05

SIM1 SIM2 SIM3 SIM4 SIM5
Product LGP-90 LGP-120 LGP-140 LGP-160 WRSI
WRSI vs Yield [t/ha]
ARC2 0.42 0.40 0.41 0.45 0.40
CHIRPS 0.47 0.52 0.57 0.61 0.56
TAMSAT 0.52 0.51 0.52 0.52 0.53
Rainfall vs Yield [t/ha]
ARC2 0.47 0.42 0.39 0.38 0.37
CHIRPS 0.31 0.30 0.33 0.31 0.34
TAMSAT 0.49 0.42 0.43 0.38 0.41
Median SMs vs Yield [t/ha]
ARC2 0.26 0.30 0.33 0.36 0.38
CHIRPS 0.38 0.46 0.52 0.53 0.55
TAMSAT 0.44 0.46 0.48 0.48 0.58

For WRSI simulations using the ARC2 rainfall input dataset, correla-424

tions between WRSI and yield were lowest (R2 <0.5) likely due to the earlier425

SOS and shorter LGP detected with the use of ARC2. This suggests that if426

ARC2 rainfall represents more realistically the spatial and temporal patterns427
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of rainfall, its performance in WRSI can be improved to reflect more closely428

reported yield even when results are averaged across a country such as Tan-429

zania with two distinct rainfall zones. The CHIRPS rainfall input dataset430

produced WRSI estimates that most closely correlate with yield figures for all431

LGP scenarios except the 90-days simulation. Correlations between WRSI432

simulations with TAMSAT and yield were highest for the variable LGP and433

90-days LGP scenarios.434

The evaluation of seasonal total rainfall and median soil moisture (Median435

SMs) relative to historical yield figures shows overall lower correlations with436

rainfall explaining less than half of the yield variance in all simulations (Table437

4). Median soil moisture explains only 26-38% of yield variance with the438

ARC2 rainfall data input, while 46-53% of yield variance is explained by439

rainfall when CHIRPS is used as input for all fixed LGPs except the 90-day440

scenario and 55% for the time-varying LGP scenario. Using TAMSAT as441

rainfall input data 58% of yield variance is explained only for the simulation442

with time-varying LGP. This suggests that CHIRPS is well suited for use443

in the WRSI model, likely due to the realistic representation of seasonally-444

varying phenology-relevant parameters such as SOS, LGP, and EOS.445

The results from a 7-year evaluation of WRSI and reported yield over Tan-446

zania presented here are consistent with previous evaluations that covered447

7 years in India (Patel et al., 2011) and 10 years in Southern and Western448

African countries (Jayanthi and Husak, 2013; Jayanthi et al., 2014), espe-449

cially for areas where rainfall is the main limiting factor. Even though the450
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area considered in the regression analysis includes parts of the bimodal zone451

with two rainfall seasons in the northeast part of Tanzania, the correlations452

achieved were similar to those reported in previous studies (see Table 1).453

Discrepancies between simulated WRSI and other drought indicators and454

yield are to be expected due to the high uncertainty of areas under maize455

production in any given year historically, possibly a less stable acreage under456

maize production over the years considered here, and/or the limited 7-year457

historical production figures with sufficient reliability for analysis. It is worth458

noting that the aim of the evaluation of WRSI against yield is not to repro-459

duce accurately historical yields at country level, but to characterise the460

impact of different rainfall datasets used as input to the WRSI model on461

WRSI outcomes through the evaluation of key dynamic modelling parame-462

ters such as season onset, cessation, and length of the growing period. This463

is important particularly where the ARC2, CHIRPS or TAMSAT rainfall464

datasets and WRSI are used as agro-meteorological risk and/or hazard indi-465

cators such as in weather index-based insurance and risk profiling frameworks466

based on statistical analysis of hazard, exposure, vulnerability, and risk.467

Consistent with previous studies, some of the general challenges for histor-468

ical validation of WRSI against reported yield include (i) staggered planting469

which is difficult to reproduce historically, i.e. farmers plant maize and if it470

fails, they plant sorghum, and if that fails, they may then re-plant with teff471

(Senay and Verdin, 2003), (ii) low production in normal rainfall conditions472

due to other factors such as floods, locust outbreaks, and nutrient inputs473
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that are not represented in WRSI (McNally et al., 2015), (iii) different vari-474

eties grown in different agro-ecological zones, while national average data and475

simulations across the country with a single LGP are not expected to repre-476

sent accurately the production/yield of mixed varieties, (iv) changes in crop477

management induced by government programmes (e.g. subsidised fertiliser),478

and (v) limited number of years with useable data after quality screening to479

detect outliers, and/or errors in historically reported figures of production-480

area-yield. The main challenge, however, is the uncertainty of reported area481

under maize production and changes in areas under maize production over482

time. Even though datasets on maize growing areas exist (You and Wood,483

2006), they provide a snapshot in time as an estimate and not actual, field-484

based information over time that can be used for an absolute validation.485

Specific to the evaluation of WRSI for Tanzania is the challenge of rainfall486

variability in the unimodal and bimodal zones, as well as the limited avail-487

ability of reliable long-term data on production-area-yield at sub-national488

level to distinguish between zones of unimodal and bimodal rainfall regimes.489

5. Conclusions490

We extended the evaluation of the WRSI method for assessing agro-491

meteorological risk such as drought on maize production through an adapted492

gridded version of the model and sensitivity analysis to rainfall inputs from493

three different sources, i.e. the ARC2, CHIRPS, and TAMSAT products.494

We characterised the spatial variation in the timing of the onset of rains and495
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analysed the impact of using different rainfall input datasets, as well as the496

methods for definition of the start-of-season (SOS) and length of the growing497

period (LGP) on WRSI outputs.498

The analysis showed that the CHIRPS and TAMSAT rainfall input datasets499

realistically represent season onset patterns, but CHIRPS performs best in500

detecting SOS patterns and assessing the LGP, resulting in highest correla-501

tions with WRSI. Understanding the impact of using different rainfall input502

datasets in WRSI helps to identify regions that are likely to experience sim-503

ilar agro-meteorological risks as relevant for the design and structure of risk504

management instruments such as weather index-based insurance. As a mini-505

mum, our results indicate that separate weather index-based insurance might506

be appropriate for the unimodal and bimodal zones in Tanzania.507

Through WRSI simulations, we explored water-stressed regions in the508

maize growing area of Tanzania with other factors assumed constant (vari-509

ety, fertiliser use, pests, diseases, etc.) and established the correlations be-510

tween WRSI, seasonal rainfall, and median soil moisture and reported maize511

yield at the national level. CHIRPS-based WRSI and median soil moisture512

showed highest correlations with yield for the majority of simulations. This513

is despite the limitation of our study in that the country-level analyses of514

seasonality and WRSI response to different rainfall input datasets includes515

areas in the bimodal zone of the country in the northeast along the bor-516

der with Kenya, while in its present form the adapted WRSI model is not517

set up to accommodate two short-duration rainfall seasons within the same518
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agronomic year.519

The results of this work suggest that CHIRPS is better suited for ap-520

plications in weather index-based insurance and early warning monitoring521

with the WRSI model, while with ARC2 and TAMSAT the variability of the522

correlations between rainfall and WRSI model outputs and reported yield523

is greater and provides a less clear indication of their utility in structur-524

ing weather indices. Further work is required to build in capability in the525

WRSI model for representation of bimodal rainfall information so that the526

adapted WRSI model can be used to identify regions of similar rainfall season527

progression and climatology, and to account for the role of temperature in528

defining the growing season. Sub-national validation is desirable, provided529

the patterns of rainfall require higher spatial detail and reliable yield data are530

available, preferably over a longer period. Investigations in this area can be531

supported by analysis of the change of maize growing area over time. Overall,532

this can support the defining of risk areas and applying of risk management533

instruments accordingly.534
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Appendix A.664

The Water Requirements Satisfaction Index (WRSI) Model665

WRSI requires as inputs information on rainfall and potential evapotranspi-666

ration, as well as soil water holding capacity and crop coefficients to calculate667

actual evapotranspiration, soil moisture, and WRSI during the crop growing668

season. Calculations are carried out on dekadal time step as defined by the669

World Meteorological Organisation (WMO), i.e. by dividing each month in670

three dekads with dekad 1 from 1st to the 10th inclusive, dekad 2 from the671

11th to the 20th inclusive, and dekad 3 for the remaining 8-11 days depending672

on the month (WMO 1992 in Verdin and Klaver 2002). Since a daily time673

step makes modelling data-intensive without a proportional gain in informa-674

tion and a monthly time step fails to capture important vegetation growth675

stages, the dekadal time step has proved useful for agro-meteorological mon-676

itoring (Verdin and Klaver, 2002). Reference (potential) evapotranspiration,677

hereafter referred to as PET, represents the water demand for crop growth.678

Actual evapotranspiration (AET) is the actual soil water extracted used by679

the crop from its root zone (Jayanthi and Husak, 2013).680

The USGS GeoWRSI in FEWS NET uses the following input datasets:681

• Dekadal satellite-based rainfall estimates from the NOAA CPC RFE2.0682

dataset at 0.1◦ (∼10 km) resolution (Verdin and Klaver, 2002).683

• Dekadal PET at 1.0◦ (∼100 km) calculated with the Penman-Monteith684

equation (Shuttleworth 1992 in Senay and Verdin 2002, 2003; Verdin685
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and Klaver 2002) from 6-hourly numerical meteorological model output686

(Senay et al 2007b in Melesse et al. 2007, Verdin and Klaver 2002).687

• Spatially varying soil information from FAO’s digital database and to-688

pographical parameters from HYDRO-1K data based on Digital Ele-689

vation Model (DEM) (FAO 1988 and Gesch et al 1999 in Senay and690

Verdin 2002) or from the GTOPO30 DEM (Senay and Verdin, 2003).691

• Crop coefficient values, varying throughout the growing season ob-692

tained from the FAO online database at http://www.fao.org/nr/water/693

cropinfo maize.html (Jayanthi et al., 2014). For maize, Kc values are694

given as 0.30, 0.30, 1.20, 1.20, and 0.35 for the times corresponding to695

0, 16, 44, 76, and 100% of LGP, respectively (Senay and Verdin, 2003).696

Start of season (SOS). In WRSI, SOS for each pixel is defined, starting sev-697

eral dekads before the typical SOS, by identifying a dekad with at least 25 mm698

rainfall, followed by at least 20 mm rainfall total in the next two consecutive699

dekads (Senay and Verdin, 2002; Verdin and Klaver, 2002) according to the700

method defined by the Agriculture-Hydrology-Meteorology (AGHRYMET)701

Regional Center in Niger (AGHRYMET 1996 in Verdin and Klaver 2002).702

This method is used for monitoring with time-varying rainfall, although it703

can be too strict for semi-arid areas (Senay 2004 available at http://iridl.704

ldeo.columbia.edu/documentation/usgs/adds/wrsi/WRSI readme.pdf). An705

alternative SOS detection method in WRSI is when the ratio between av-706

erage rainfall and PET is grater than 0.5 (McNally et al. 2015; Hare and707
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Oglallo 1993 and Mersha 2001 in Senay 2004), although justification for se-708

lecting this threshold is not presented. This method is used with the cli-709

matological CHARM-WRSI dataset (Funk et al 2003 in Senay 2004). In710

WRSI, SOS indicates planting dates and triggers seasonal water balance cal-711

culations. Since irregularities in SOS have substantial impacts on early crop712

development (e.g. dry and hot conditions shorten the grain filling stage and713

decrease expected yields), realistic and skilful SOS detection is critical for714

successful crop performance monitoring.715

Length of growing period (LGP). In WRSI, similarly to one of the methods716

for SOS detection, LGP is determined by the persistence, on average, above717

a threshold value of a climatological ratio between rainfall and PET (Senay718

and Verdin, 2002), i.e. crop growing period continues while average rainfall719

exceeds half of average PET (McNally et al., 2015). Thus, LGP does not720

vary year-to-year. Since WRSI values depend on the crop’s LGP, the ratio721

of WRSI for current season over mean WRSI over the long-term is used as722

an indicator of drought-related yield loss.723

End of season (EOS). EOS in WRSI is derived by adding LGP to SOS.724

Hence, EOS varies as a function of SOS and over time for every location, e.g.725

9 dekads in arid and semi-arid regions to 18 dekads in wetter and mountainous726

regions (Melesse et al., 2007).727

WRSI. End-of-season WRSI is computed as the ratio of supply, or demand

met (i.e. total crop water requirement satisfied by rainfall and available
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moisture) and demand (i.e. seasonal crop water requirement) (Verdin and

Klaver, 2002) with crop potential evapotranspiration (PETc) and seasonal

crop actual evapotranspiration (AETc) expressed as percentage (Eq A.1).

WRSI of 95-100% indicates no water deficit (i.e. adequate rainfall and mois-

ture availability, or absence of yield reduction due to water deficit), values

between 95% and 50% indicate varying degree of water stress and yield re-

duction due to inadequate water supply, and values below 50% indicate crop

failure (Smith 1992 in Senay and Verdin 2002, 2003).

WRSI =

∑
AETc∑
PETc

× 100 (A.1)

Where the crop water requirement PETc in [mm] is calculated at the

dekadal time step during the growing season as follows:

PETc = Kc× PET (A.2)

PAW. In order to determine AETc, the actual amount of water withdrawn

from the soil profile, dekadal precipitation (PPT) is added to soil water (SW)

to calculate plant-available water (PAW) (see Eq A.3) and this is compared

to the value of critical soil water (SWC) (see Eq A.4).

PAW d = SW d-1 + PPT d (A.3)
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Soil Water Critical (SWC). Typically, for WHC somewhat arbitrary values

such as 50 or 100 mm are used, esp. where reliable field data and digital soil

maps are lacking (Verdin and Klaver, 2002). The operational FEWS NET

WRSI version uses WHC for the top 100 cm from FAO digital soil map of the

world (FAO 1994 in Verdin and Klaver 2002) to calculate SWC as follows:

SWC = WHC × SW f ×RDf (A.4)

Where WHC is water holding capacity of the soil, SWf (0.45 for maize) is728

the fraction of WHC that defines the available soil water level, below which729

AETc becomes less than PETc, and RDf is is the root depth fraction, which730

ranges between 0 and 1, and equals 1 when the crop is mature.731

AETc. AETc is determined according to Eq A.5 on the basis of the relation-

ship between PAW and SWC.

AETc =


PETc, PAW ≥ SWC

PAW
SWC

× PETc, PAW < SWC

PAW, AETc > PAW

(A.5)
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Soil Water (SW). The final soil water content at the end of simulation period

(SWd), is calculated as follows:

SW d =


WHC, SW d > WHC

0, SW d < 0.0

SW d = SW d-1 + PPT d − AETc, otherwise

(A.6)

Yield Reduction Response (Ky). Similarly to Kc, Ky is crop- and location-732

dependent (Reynolds 1998 in Senay and Verdin 2002) with published values733

(FAO1996); for example, Ky of 0.9 for sorghum means that a 10% reduction734

of WRSI from the optimal 100 is related to a 9% reduction of sorghum yield.735

It is also worth noting that Ky values were established using high-yielding736

varieties and field experiments and further explanation of Ky, as well as737

references to published values, are available elsewhere (Jayanthi and Husak,738

2013). Kaboosi and Kaveh (2010) examined the sensitivity of the crop water739

production function to Ky, as well as PET and AET, and highlighted the740

importance of accurately defining crop growth stages (the length of which can741

be substantially different than those given by FAO 56 due to the diversity742

of crop varieties) and that high-yield varieties were more sensitive to water743

stress than low-yielding varieties.744

WRSI Advantages745

• Requires minimal data to initiate water budget processes and provides746

spatially continuous, near real-time info (Verdin and Klaver, 2002)747
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• Can help identify crop production decline/failure well before agricul-748

tural reports and statistics become available, i.e. several months after749

harvest (Verdin and Klaver, 2002); Effectively estimates yield reduction750

in dry years for drought-prone areas (Senay and Verdin, 2002)751

• Can serve as a proxy of crop yield, i.e. can be related to crop production752

using a crop-specific linear yield reduction function (Doorenbos and753

Pruitt 1977 in Senay and Verdin 2002; Jayanthi and Husak 2013)754

• Captures well inter-annual and spatial variability of water availability755

for crop production; good correlation with reported district-level yields,756

esp. for drought-prone rainfed agricultural areas (Patel et al., 2011)757

• Captures impact of the timing of rainfall season, total seasonal rain-758

fall, and seasonal rainfall distribution on crop yields (Syroka 2006 in759

Crowther 2007) with the causal link between weather and crop yield760

shortfall/loss being crucial for the success of index insurance schemes761

• Tracks WRSI throughout the growing season, i.e. different role of rain-762

fall deficit at the start of the season, and moisture deficits most critical763

at the flowering and crop development stages, i.e. stunted crop growth,764

reduced crop yield (Jayanthi and Husak, 2013)765

• As WRSI considers yield variability relative to water availability, where766

WRSI is optimal, year-to-year variations can be attributed to other fac-767

tors (heat stress, management practices, etc.), i.e. crop-specific effects768

45



of non-water drivers of yield variability (Senay and Verdin, 2002)769

• Helps identify water-limited and water-unlimited areas for planning770

crops to be planted, e.g. high water requirements of maize, drought re-771

sistant sorghum, and flexible teff in Ethiopia (Senay and Verdin, 2003)772

• Produces intermediate products that are useful in early warning and773

humanitarian aid planning/response, e.g. SOS map, soil water index774

(SWI) as a function/percentage of water holding capacity (WHC), spa-775

tial distribution of WRSI dekadal values, and dekadal anomalies in776

the form of observed (monitoring) and extended (forecasting) products777

(Melesse et al., 2007)778

WRSI Disadvantages779

• Spatial resolution of 10-km limited by inputs means that the model780

encompasses pixels containing different agro-ecological zones and more781

than one crop by several thousand smallholder farmers (Verdin and782

Klaver, 2002)783

• Model performance varies spatially, i.e. model not equally reliable784

across large regions and continents785

• High year-to-year variability of yield when WRSI is optimal (≈100%)786

is attributable to other, non-rainfall drivers (Senay and Verdin, 2002)787

• SOS defined from rainfall is limited by the skill of satellite rainfall788

datasets, and thus by sparse rain gauge networks (Patel et al., 2011)789
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• No indication of soil moisture outside growing season (Senay, 2008)790

• Use of Kc poses limitations: 1) Kc values are crop-specific, i.e. re-791

quire prior knowledge of crop planted in the region; 2) Kc values are792

region-specific, as crop growth is influenced by local climate, soils, etc;793

3) requires knowledge of Kc values (or assumption of these) across the794

crop calendar at each crop development stage: initial, vegetative, ma-795

ture, senescence (Senay, 2008); 4) LGP with Kc (spatial) adjustment796

does not work well for long growth cycle crops (e.g. sorghum); and 5)797

Kc breaks down for sparse crops, i.e. under non-standard conditions798

(Senay 2008; Fig 2, p 32 in Steduto et al. 2012)799

• Calculations require WHC information as an arbitrary value (50-100800

mm) or spatially-varying WHC from digital soil databases (Verdin and801

Klaver, 2002); In the latter, the accuracy of water budget calculations802

relies on WHC reflecting realistically field conditions803

• Focused on water stress effects on crop production, while it would ben-804

efit from information on heat stress, e.g. growing degree days (GDD)805

concept used in WOFOST and other models806

• Validation data is poor: 1) flux tower data (latent heat flux and point-807

based rainfall, for conversion of latent heat flux to daily AET, see p. 54808

in Senay 2008), 2) EO data for validation have not been fully exploited,809

and 3) reported production-area-yield data are not available historically810

with consistent coverage and quality811

47


	Introduction
	Study Region
	Data and Modelling Approach
	The Adapted WRSI model
	Weather Data Inputs
	Soil and Crop Parameters

	Evaluation Data
	Model simulations and evaluation of sensitivity to rainfall
	Simulations
	Evaluation


	Results and Discussion
	Evaluation of rainfall seasonality
	Evaluation of WRSI sensitivity to rainfall inputs
	Evaluation of WRSI against yield at country level

	Conclusions
	

