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Abstract

The importance of numerical methods in science and engineering[1] was long recog-
nised and considered a fundamental factor in improving productivity and reducing
production costs. The ability to model flexible systems and describe their trajecto-
ries [5] involves usually the study of nonlinear coupled partial differential equations.
Since their exact solutions are not normally feasible in practice, computational
methods [8] can be considered.
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The development of such computationally efficient numerical algorithms
and methods for solving PDE and handling of complicated geometries [13]
require the use of implicit (trajectory and forces computed along the motion)
and explicit (trajectory computed before execution) motion planning methods
[14]. Tmplicit approaches based on potential field methods consider a potential
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function in the C-space to asymptotically generate an attractive goal config-
uration. The potential function can be defined [8] by

1
(1) U(q) = §CHq_QGOCLlH

where ( is a scale factor. Explicit methods [8] can be separate in continuous
methods namely kinematic or dynamic motion planning [16] or discrete meth-
ods. The kinematic approach often referred as geometry of motion is essential
the initial step in the computation of the forces related to the dynamical model
(dynamical equations of the system) and their effect on the motion. Kinematic
motion planning [8] formulated as a variational approach consist in generating
a smooth trajectory § : [0,1] — R by minimizing a functional

1
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where t is the integration time, < -,- > is the Riemannian metric and L
the initial conditions [8]. Dynamic motion planning [8] can be defined as a
mathematical minimization of a cost function [16] by

ty

(3) min (J.) where J. =@ ((y|(ty)) —I—/L(y,u)dt
to

subject to initial conditions y(ty) = xo and y = f(y,u). Parameterizations
of joint trajectories transform the dynamic motion planning problem into a
parameter optimization [8] problem of a family of smooth curves generated
by parametric and/or geometric continuous splines, uniform cubic B spline
with parametric and geometric continuity, or by piecewise interpolating curves
[4,6,7,9].

Since the motion along a set of control point can be eventually expressed
as a combination of rotations about a fixed point, that is, rotations about
Oz, Oy and Oz axes that passes through the origin, the use of polar and/or
Cartesian piecewise interpolating curves [2,11] can be then related with the
robot dynamics [2,10,12] through its geometry [2]. The set of the considered
rotations can be represented as a 3D manifold, that is, the real projective
3-space denoted by RP3. Depending on the geometry of a robotic manip-
ulator arm, the fixed point representing the center of rotation, e.g., base of
the manipulator, can be related to either polar zenithal gnomic, polar zenithal
stereographic or polar zenithal orthographic projections, by the use of the time
dependent generalized coordinates expressed as spherical or cylindrical coordi-
nates. To interpolate between some a priori defined control points, a piecewise



polar interpolant that approximate the polar trajectory can be expressed as a
Hermite-type function [2,7] defined by

q

(4) (@)= ¢ (0—6)"
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where ¢ = 3 (cubic approximation) is the order of the polynomial, ¢ = r;,
¢ =7y, & = 3o (27 A+ i) +3Ar, & = 5 [+ 7 — 287, 7= 1 (6),

Tiy1 = 7 (0iy1), hi = 01 — 0;; Ar; = 5= and the derivatives at the
endpoints are calculated using 7 (6;) = drégi) =7 and 7 (0;11) = % = T4
respectively.

Considering the case of polar zenithal orthographic projection and related
cylindrical coordinates (Fig. 1.c), trajectories representing the system dy-
namics can be generated using a combination of polar piecewise interpolants
that approximate the polar trajectory, and Cartesian piecewise interpolants
to approximate the trajectory height. Trajectory height is computed in the
projective plane obtained by unfolding the cylinder with generators passing
through the polar trajectory of the motion.

Considering the case of polar gnomic or stereographic projection and re-
lated spherical coordinates (Fig. 1.a and Fig. 1.b), trajectories representing
the system dynamics can be generated by a combination of polar piecewise
interpolants over a “spherical” domain relatively similar with [6] by

() R(A, ¢) = So() + S1()x + S2(¥)x* + Ss(¥)x°

where \ and ¢ represents the generalised coordinates related to the system
model, S(¢) = coo + 100 + c200* + 3013, and and ¢ and y are defined as
in [6].

Therefore, adequate geometric considerations - such as manipulators ge-
ometry and related coordinate systems - used in the motion planning studies
backed up by polar piecewise cubic interpolants allows easy calculation of
kinematics variable and handling of the dynamical equations of motion [12]
through the use of Lagrange’s equations defined by

d (0T or
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The kinetic energy T" = and the acting contact and body forces ); can be
expressed as in [12] by
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and
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where v is the velocity, w is the angular velocity, T is the applied torque, and
R is the applied force.

A z,

L

~_P
/ link3
7 ' ~

End Effector

(b)

Figure 1



References

[1] Chapra, S.C., and R.P. Canale, “Numerical Methods for Engineers,” McGraw-
Hill, 6th Ed., 2010.

[2] Dupac M., Smooth trajectory genmeration for rotating extensible manipulators,
Mathematical Methods in Applied Sciences, 2016.

[3] Martinez Garcia, E.A., “Numerical modeling in Robotics,” Omnia Science,
2015.

[4] Goodman, T.N.T., and S.L. Lee , B-splines on the Circle and Trigonometric B-
splines, Approximation Theory and Spline Functions 136 (1984), pp. 297-325.

[5] Gasparetto A, Boscariol P, Lanzutti A, Vidoni R., Trajectory planning in
Robotics, Mathematics in Computer Science 6 (2012), pp. 269-279.

[6] M. Gross, A. Staniforth, Cubic-spline interpolation on a non-uniform latitude-
longitude grid: achieving cross- and circum-polar continuity, Atmos. Sci. Let.
11 (2010), pp. 229-23.

[7] Iwashita Y. Piecewise Polynomial interpolation. OpenGamma Quantitative
Research 15 (2014), pp. 1-22.

[8] V. Kumar, M. Zefran, J.P. Ostrowski, Motion Planning and Control of Robots,
Handbook of Industrial Robotics, 2nd Edition, J. Wiley and Sons (2007), pp.
295-315.

[9] Kang IG, Park FC. Cubic Spline Algorithms for Orientation Interpolation,
International Journal for Numerical Methods in Engineering, 46 (1999) pp.
45-64.

[10] Kalyoncu M. Mathematical modelling and dynamic response of a multistraight-
line path tracing flexible robot manipulator with rotating-prismatic joint,
Applied Mathematical Modelling 32 (2008), pp. 1087-1098.

[11] J.E. Lavery, Shape-preserving, multiscale interpolation by univariate curvature-
based cubic L1 splines in Cartesian and polar coordinates, Computer Aided
Geometric Design 19 (2002) pp. 257-273.

[12] Marghitu DB, Dupac M. “Advanced Dynamics: Analytical and Numerical
Calculations with Matlab,” Springer: New York, 2012.

[13] R.M. Murray, Z. Li, S.S. Sastry, “A Mathematical Introduction to Robotic
Manipulation,” CRC Press, 1994.



[14] LJ du Plessis, Snyman JA., Trajectory-planning through interpolation by
overlapping cubic arcs and cubic splines, International Journal for Numerical

Methods in Engineering 57 (2003), pp. 1615-1641.

[15] S. K. Dwivedy, P. Eberhard, Dynamic analysis of flexible manipulators, a
literature review, Mechanism and Machine Theory. 41 (2006), pp. 749-777.

[16] C.-W.E. Wang, “Dynamic Motion Planning For Robot Manipulators Using B-
Splines,” PhD Dissertation, University of California, Irvine, (2001), pp. 1-155.



	References

