

Article

Effects of a prophylactic knee bracing on patellofemoral loading during cycling

Sinclair, Jonathan Kenneth, Butters, Bobbie, Brooks, Darrell and Stainton, Philip

Available at http://clok.uclan.ac.uk/23271/

Sinclair, Jonathan Kenneth ORCID: 0000-0002-2231-3732, Butters, Bobbie, Brooks, Darrell ORCID: 0000-0002-4094-5266 and Stainton, Philip (2018) Effects of a prophylactic knee bracing on patellofemoral loading during cycling. Sport Sciences for Health . ISSN 1824-7490

It is advisable to refer to the publisher's version if you intend to cite from the work. $\label{eq:http://dx.doi.org/10.1007/s11332-018-0482-x}$

For more information about UCLan's research in this area go to http://www.uclan.ac.uk/researchgroups/ and search for <name of research Group>.

For information about Research generally at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the <u>http://clok.uclan.ac.uk/policies/</u>

1	Effects of a prophylactic knee bracing on patellofemoral loading during cycling.
2	Jonathan Sinclair ¹ , Bobbie Butters ¹ , Darrell Brooks ² & Philip Stainton ¹
3	1. Centre for Applied Sport and Exercise Sciences, Faculty of Health and Wellbeing,
4	University of Central Lancashire, Lancashire, UK.
5	2. School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical
6	Sciences, University of Central Lancashire, Lancashire, UK.
7	Correspondence Address:
8	Dr. Jonathan Sinclair
9	Centre for Applied Sport Exercise and Nutritional Sciences
10	School of Sport and Wellbeing
11	Faculty of Health and Wellbeing
12	University of Central Lancashire
13	Preston
14	Lancashire
15	PR1 2HE.
16	e-mail: jksinclair@uclan.ac.uk
17	
18	Keywords: Cycling; patellofemoral pain; knee brace; biomechanics; musculoskeletal
19	modeling.
20	

21 Abstract

PURPOSE: The aim of the current investigation was to utilize a musculoskeletal simulation
approach to examine the effects of prophylactic knee bracing on patellofemoral joint loading
during the pedal cycle.

METHODS: Twenty-four (12 male and 12 female) healthy recreational cyclists rode a stationary cycle ergometer at fixed cadences of 70, 80 and 90 RPM in two different conditions (brace and no-brace). Patellofemoral loading was explored using a musculoskeletal simulation approach and participants were also asked to subjectively rate their perceived stability and comfort whilst wearing the brace.

RESULTS: The results showed that the integral of the patellofemoral joint stress was significantly lower in the brace condition (male: 70RPM=8.89, 80RPM=9.76, & 90RPM=12.30 KPa/kg·s and female: 70RPM=11.59, 80RPM=13.07 & 90RPM=14.14 KPa/kg·s) compared to no-brace (male: 70RPM=10.23, 80RPM=10.96 & 90RPM=13.20 and female: 70RPM=12.43, 80RPM=14.04 & 90RPM=15.45 KPa/kg·s). In addition, it was also revealed that participants rated that the knee brace significantly improved perceived knee joint stability.

37 CONCLUSIONS: The findings from the current investigation therefore indicate that 38 prophylactic knee bracing may have the potential to attenuate the risk from the biomechanical 39 parameters linked to the aetiology of patellofemoral pain in cyclists. Future, longitudinal 40 analyses are required to confirm the efficacy of prophylactic knee braces for the attenuation of 41 patellofemoral pain symptoms in cyclists.

42

43 Introduction

Road cycling has been an Olympic discipline for over 100 years and is regarded as one of the world's most popular sporting events (1). Cycling is associated with a plethora of physiological and psychological benefits and is practiced at both competitive and recreational levels by millions of participants worldwide (2). However, despite being considered a non-weight bearing activity (3), cycling is associated with a high rate of injuries (4).

49

50	Patellofemoral pain is the most frequently experienced musculoskeletal condition, affecting
51	36% of all cyclists and accounting for more than 57 % of all time-loss pathologies (4, 5).
52	Patellofemoral pain is so prevalent in cycling that it has been termed 'cyclist's knee' (6) and
53	the long term forecast for patients is poor, as many later present with radiographic
54	patellofemoral joint osteoarthritis (7). Elevated patellofemoral joint stress is the biomechanical
55	mechanism linked most strongly to the aetiological of patellofemoral pain (8), and although,
56	musculoskeletal modeling approaches exist to estimate patellofemoral joint loading (9, 10),
57	they require inverse dynamics as input parameters into the musculoskeletal algorithm. Joint
58	torques are not representative of localized joint loading, as Herzog et al., (11) showed that
59	muscles are the primary contributors to lower extremity joint kinetics. Recent advances in
60	musculoskeletal simulation software and associated models including the patellofemoral joint
61	(12) have been developed, which allow skeletal muscle force distributions to be simulated
62	during movement and utilized as input parameters for the quantification of lower extremity
63	joint loading. To date, there has been only limited utilization of musculoskeletal simulation for
64	cycling specific analyses.

65

66	Given the high incidence	of patellofemoral	pain in athletic and	l active populations,	a range of
----	--------------------------	-------------------	----------------------	-----------------------	------------

67 conservative prophylactic and treatment modalities have been explored in biomechanical and

68	clinical literature. Prophylactic braces are designed to prevent knee pathologies by reducing
69	the magnitude of the biomechanical mechanisms linked to the aetiology of injury and by
70	enhancing joint proprioception (13). Prophylactic knee braces represent an inexpensive
71	conservative modality, designed to be minimally restrictive during sports tasks (14, 15).
72	Prophylactic knee braces are utilized extensively; yet only one study currently exists exploring
73	the biomechanical effects of knee bracing during cycling. Theobald et al., (16) explored the
74	effects of knee bracing and patella taping on three-dimensional knee joint kinematics during
75	stationary cycling at different workloads. Their findings showed that the brace significantly
76	reduced the coronal plane knee range of motion and also the peak transverse plane angle
77	compared to taping, although their participants revealed that the brace was too uncomfortable
78	to be clinically viable. However, to date, there has yet to be any investigation, which has
79	examined the effects of prophylactic knee bracing on patellofemoral joint loading linked to the
80	aetiology of patellofemoral pain during cycling.

81

Therefore, the aim of the current investigation was to utilize a musculoskeletal simulation approach to examine the effects of prophylactic knee bracing on patellofemoral joint loading during the pedal cycle. A study of this nature may provide important clinical information regarding the efficacy of knee bracing for the prevention of patellofemoral pain in cyclists. The current investigation tests the hypothesis that prophylactic knee bracing will serve to reduce patellofemoral stress linked to the aetiology of injury.

- 89 Methods
- 90 *Participants*

Twenty-four recreational cyclists (12 male and 12 female), volunteered to take part in this 91 study. All had at least 2 years of road cycling experience and were from lower extremity 92 musculoskeletal pathology at the time of data collection. The mean characteristics of the 93 participants were; (males) age 28.14 ± 6.31 years, height 1.77 ± 0.07 m and body mass 79.04 94 \pm 9.25 kg and (females) age 26.71 \pm 5.65 years, height 1.64 \pm 0.06 m and body mass 62.56 \pm 95 7.33 kg. To be eligible for participation, cyclists were required to have at least 2 years of road 96 cycling experience. In addition, they were required to be free from musculoskeletal pathology 97 at the time of data collection, with no previous knee joint surgical intervention. The procedure 98 99 utilized for this investigation was approved by the University of Central Lancashire, Science, Technology, Engineering and Mathematics, ethical committee (Ref: 644) and all participants 100 provided written informed consent 101

102

103 Knee brace

104 A single nylon/silicone knee brace was utilized in this investigation, (Kuangmi 1 PC 105 compression knee sleeve), which was worn on the dominant (right) limb in all participants. The 106 brace examined, as part of this study is lightweight knee joint compression sleeve designed to 107 provide support and enhance joint proprioception.

108

109 Procedure

Participants rode a stationary ergometer SRM 'Indoor Trainer' (SRM, Schoberer, Germany) for 6 minutes at fixed cadences of 70, 80 and 90 RPM in both brace and no-brace conditions. The experimental conditions were completed in a counterbalanced order and a standardized rest period of 5 minutes was allowed between trials. The bicycle set-up was conducted in accordance with previous recommendations (17), and maintained between each condition. The
cycling shoes (Northwave Sonic 2 Plus Road), pedals (Look Keo Classic 2, Look, Cedex,
France), cleats (Look Keo Grip, 4.5° float, Look, Cedex, France), chain ring (SRM power,
SRM, Schoberer, Germany) and crank (SRM power, SRM, Schoberer, Germany) were also
maintained across all trials, and positioned in accordance with previous recommendations (18).
Participants were given continuous visual feedback of their cadence, which was visible via the
SRM head unit (Powercontrol V, SRM, Schoberer, Germany).

121

122 Kinematic information from the lower extremity joints was obtained using an eight camera motion capture system (Qualisys Medical AB, Goteburg, Sweden) using a capture frequency 123 of 250 Hz. To define the anatomical frames of the thorax, pelvis, thighs, shanks and feet 124 retroreflective markers were placed at the C7, T12 and xiphoid process landmarks and also 125 positioned bilaterally onto the acromion process, iliac crest, anterior superior iliac spine 126 (ASIS), posterior super iliac spine (PSIS), medial and lateral malleoli, medial and lateral 127 femoral epicondyles, greater trochanter, calcaneus, first metatarsal and fifth metatarsal. 128 Carbon-fibre tracking clusters comprising of four non-linear retroreflective markers were 129 positioned onto the thigh and shank segments. In addition to these the foot segments were 130 tracked via the calcaneus, first metatarsal and fifth metatarsal, the pelvic segment was tracked 131 using the PSIS and ASIS markers and the thorax segment was tracked using the T12, C7 and 132 xiphoid markers. Static calibration trials were obtained with the participant in the anatomical 133 position in order for the positions of the anatomical markers to be referenced in relation to the 134 tracking clusters/markers. A static trial was conducted with the participant in the anatomical 135 position in order for the anatomical positions to be referenced in relation to the tracking 136 markers, following which those not required for dynamic data were removed. 137

In addition to the biomechanical movement information, the effects of the experimental brace 139 on knee joint proprioception were also examined using a cycling specific joint position sense 140 141 test. This was conducted, in accordance with the procedure of Drouin et al., (29), whereby participants were assessed on their ability to reproduce a target knee flexion angle whilst sat 142 on the cycle ergometer. To accomplish this, participants were asked to slowly turn the pedal to 143 90° from the point of top dead centre, which was verified using a handheld goniometer by the 144 145 same researcher throughout data collection. Participants then held this position for 15 seconds during which time the 'criterion' knee flexion position was captured using the motion analysis 146 147 system. Following this, participants were asked to pedal at a fixed cadence of 60 RPM for 60 seconds, after which they reproduced the target position as accurately as possible but without 148 guidance via the goniometer. Again, this position was held for a period of 15 seconds and the 149 knee flexion angle during the 'replication' trial was also collected using the motion analysis 150 151 system. This above process was conducted on three occasions in both the brace and no-brace conditions in a counterbalanced order. The absolute difference in degrees calculated between 152 the criterion and replication trials was averaged over the three trials to provide angular error 153 values in both brace and no-brace conditions, which were extracted for statistical analysis. 154

155

Following completion of the biomechanical data collection, in accordance with Sinclair et al., (20), participants were asked to subjectively rate the knee brace in relation to performing the cycling movements without the brace in terms of stability and comfort. This was accomplished using 3 point scales that ranged from 1 = more comfortable, 2 = no-change and 3 = less comfortable and 1 = more stable, 2 = no-change and 3 = less stable.

161

162 Processing

Marker trajectories were identified using Qualisys Track Manager, then exported as C3D files to Visual 3D (C-Motion, Germantown, MD, USA). Marker data were smoothed using a cutoff frequency 12 Hz using a low-pass Butterworth 4th order zero-lag filter (20).

166

All biomechanical data were normalized to 100% of the pedal cycle, which was delineated 167 using concurrent instances in which the right pedal was positioned at top dead centre, in 168 accordance with Sinclair et al., (21). Within Visual 3D, five pedal cycles were obtained during 169 170 minutes 2-3 of the experimental protocol. Three-dimensional kinematics of the knee were calculated using an XYZ cardan sequence of rotations (where X = sagittal plane; Y = coronal 171 plane and Z = transverse plane). The maximum knee range of motion (representative of the 172 angular difference between maximum and minimum angles during the pedal cycle) in each 173 plane of rotation was extracted for statistical analysis. 174

175

Data from the five pedal cycles in each condition were then exported from Visual 3D into 176 OpenSim 3.3 software (Simtk.org). A validated musculoskeletal model with 12 segments, 19 177 degrees of freedom and 92 musculotendon actuators (12) was used to quantify patellofemoral 178 joint forces. The model was firstly scaled for each participant to account for the 179 anthropometrics of each rider. We firstly performed a residual reduction algorithm (RRA) 180 within OpenSim; in order to reduce the residual forces and moments (22). As muscle forces 181 are the main determinant of joint compressive forces (11), muscle kinetics were quantified 182 183 using a static optimization process in accordance with Steele et al., (23). Following this patellofemoral, joint forces were calculated using the joint reaction analyses function using the 184 muscle forces generated from the static optimization process as inputs. Finally, patellofemoral 185 joint stress was quantified by dividing the patellofemoral force by the patellofemoral contact 186

area. Patellofemoral contact area were obtained by fitting a 2nd order polynomial curve to the
sex specific data of Besier et al., (24), who estimated patellofemoral contact areas as a function
of the knee flexion angle using MRI.

190

All patellofemoral and muscle forces were normalized by dividing the net values by body mass 191 (N/kg). From the above processing, peak patellofemoral force, and peak patellofemoral stress 192 (KPa/kg) were extracted for statistical analysis. Furthermore, the peak forces during the pedal 193 cycle of the muscles crossing the knee joint (rectus femoris, vastus lateralis, vastus medialis, 194 vastus intermedius, biceps femoris long head, biceps femoris short head, semitendinosus, 195 semimembranosus, medial gastrocnemius, lateral gastrocnemius, sartorius and gracilis) were 196 also extracted. In addition, the integral of the patellofemoral joint force (N/kg·s), patellofemoral 197 joint stress (KPa/kg·s) and muscles forces (N/kg·s) were calculated during the pedal cycle using 198 a trapezoidal function. The patellofemoral force instantaneous load rate (N/kg/s) was also 199 200 extracted by obtaining the peak increase in force between adjacent data points. Finally, the patellofemoral contact area at the instance of peak patellofemoral joint stress and mean contact 201 area during the pedal cycle were also obtained for statistical analysis. 202

203

204 *Statistical analyses*

Descriptive statistics of means and standard deviations were obtained for each outcome measure. Shapiro-Wilk tests were used to screen the data for normality. Differences in knee proprioception with and without the presence of the brace were examined using a 2 (BRACE) x 2 (GENDER) mixed ANOVA. Differences in biomechanical parameters were examined using 2 (BRACE) x 3 (WORKLOAD) x 2 (GENDER) mixed ANOVA's. In the event of a significant main effect, pairwise comparisons were performed and any significant interactions were explored using simple main effects. In addition, the subjective ratings in relation to the stability and comfort of the knee sleeve were examined using Chi-Squared (X^2) tests. Statistical significance was accepted at the P≤0.05 level. Effect sizes for all significant findings were calculated using partial Eta² (pq²). All statistical actions were conducted using SPSS v24.0 (SPSS Inc, Chicago, USA).

216

217 **Results**

Tables 1-6 present the mean ± SD kinetics and kinematics as a function of different brace
workload conditions.

220

221 Patellofemoral joint kinetics and contact area

For peak patellofemoral force, a significant main effect of WORKLOAD was observed (P<0.05, $p\eta^2 = 0.18$). Post-hoc pairwise comparisons showed that peak force was statistically larger in the 90 RPM condition compared to 70 RPM (P=0.02) (*Table 1 & 2*). In addition, for peak patellofemoral stress, a significant main effect of WORKLOAD was shown (P<0.05, $p\eta^2$ = 0.17). Post-hoc pairwise comparisons showed that peak force was statistically larger in the 90 RPM condition compared to 70 RPM (P=0.03) (*Table 1 & 2*).

228

For the integral of the patellofemoral joint force, significant main effects of both WORKLOAD (P<0.05, $p\eta^2 = 0.14$) and BRACE (P<0.05, $p\eta^2 = 0.28$) were noted. Post-hoc pairwise comparisons for WORKLOAD showed that the patellofemoral force integral was statistically

232	larger in the 90 (P=0.04) and 80 RPM (P=0.03) conditions compared to 70 RPM. For BRACE
233	it was shown that the integral of the patellofemoral joint force was statistically larger in the no-
234	brace condition (P=0.008) (Table 1 & 2). In addition, for the integral of the patellofemoral joint
235	stress, a significant main effect of for BRACE (P<0.05, $p\eta^2 = 0.27$) was noted, with the
236	patellofemoral integral stress being statistically larger in the no-brace condition (P=0.009)
237	(Table 1 & 2).
238	
239	No further statistical differences were observed (Table 1 & 2).
240	
241	@@@TABLE 1 NEAR HERE@@@
242	@@@TABLE 2 NEAR HERE@@@
243	
244	Muscle kinetics
245	For the peak rectus femoris force a significant main effect of WORKLOAD (P<0.05, $p\eta^2 =$
246	0.31) was found. Post-hoc pairwise comparisons showed that peak force was statistically larger
247	in the 90 RPM compared to the 70 (P=0.002) and 80 RPM (P=0.03) conditions and that 80
248	RPM was larger than 70 RPM (P=0.0004) (Table 3 & 4). For the integral of the rectus femoris
249	force a significant BRACE main effect was found (P<0.05, $p\eta^2 = 0.23$), with the integral force
250	being statistically larger in the no-brace condition (P=0.02) (Table 3 & 4).
251	
252	For the peak vastus lateralis force, significant main effects of WORKLOAD (P<0.05, $p\eta^2 =$

253 0.18) and BRACE (P<0.05, $p\eta^2 = 0.21$) were found. Post-hoc pairwise comparisons for

WORKLOAD showed that peak force was statistically larger in the 80 (P=0.04) and 90 RPM (P=0.02) conditions than 70 RPM. For BRACE the peak force was statistically larger in the no-brace condition (P=0.02) (*Table 3 & 4*).

257

For the peak vastus medialis force, significant main effects of WORKLOAD (P<0.05, $p\eta^2 =$ 0.17) and BRACE (P<0.05, $p\eta^2 = 0.24$) were found. Post-hoc pairwise comparisons for WORKLOAD showed that peak force was statistically larger in the 90 RPM (P=0.03) condition than 70 RPM. For BRACE the peak force was statistically larger in the no-brace condition (P=0.02) (*Table 3 & 4*). For the integral of the vastus medialis force a significant BRACE main effect was found (P<0.05, $p\eta^2 = 0.17$), with the integral force being statistically larger in the no-brace condition (P=0.04) (*Table 3 & 4*).

265

For the peak vastus intermedius force, significant main effects of WORKLOAD (P<0.05, $p\eta^2$ = 0.17) and BRACE (P<0.05, $p\eta^2$ = 0.27) were found. Post-hoc pairwise comparisons for WORKLOAD showed that peak force was statistically larger in the 90 RPM (P=0.03) condition than 70 RPM. For BRACE the peak force was statistically larger in the no-brace condition (P=0.009) (*Table 3 & 4*). For the integral of the vastus intermedius force a significant BRACE main effect was found (P<0.05, $p\eta^2$ = 0.17), with the integral force being statistically larger in the no-brace condition (P=0.04) (*Table 3 & 4*).

273

For the peak biceps femoris long head force, significant main effects of WORKLOAD (P<0.05, $p\eta^2 = 0.29$) and BRACE (P<0.05, $p\eta^2 = 0.34$) were found. Post-hoc pairwise comparisons for WORKLOAD showed that peak force was statistically larger in the 80 (P=0.001) and 90 RPM 277 (P=0.004) conditions than 70 RPM (P=0.03). For BRACE the peak force was statistically larger 278 in the no-brace condition (P=0.003) (*Table 3 & 4*). For the integral of the biceps femoris long 279 head force a significant BRACE main effect was found (P<0.05, $p\eta^2 = 0.32$), with the integral 280 force being statistically larger in the no-brace condition (P=0.004) (*Table 3 & 4*).

281

For the peak biceps femoris short head force, a significant main effect of WORKLOAD (P<0.05, $p\eta^2 = 0.43$) was found. Post-hoc pairwise comparisons showed that peak force was statistically larger in the 90 RPM compared to the 70 (P=0.00009) and 80 RPM (P=0.003) conditions and that 80 RPM was larger than 70 RPM (P=0.0005) (*Table 3 & 4*).

286

For the peak semimembranosus force, a significant main effect of WORKLOAD (P<0.05, $p\eta^2$ = 0.18) was found. Post-hoc pairwise comparisons showed that peak force was statistically larger in the 90 (P=0.03) and 80 RPM (P=0.02) conditions compared to 70 RPM (*Table 3 &* 290 4).

291

For the peak sartorius force, a significant main effect of WORKLOAD (P<0.05, $p\eta^2 = 0.23$) was found. Post-hoc pairwise comparisons showed that peak force was statistically larger in the 90 (P=0.002) and 80 RPM (P=0.008) conditions compared to 70 RPM (*Table 3 & 4*).

295

296 No further statistical differences were observed (*Table 3 & 4*).

297

298

@@@TABLE 3 NEAR HERE@@@

@@@TABLE 4 NEAR HERE@@@

300

299

301 *Three-dimensional kinematics*

In the sagittal plane, a significant main effect of WORKLOAD (P<0.05, $p\eta^2 = 0.20$) was found. Post-hoc pairwise comparisons showed that the sagittal plane maximum knee range of motion (ROM) was statistically larger in the 90 RPM compared to the 70 (P=0.02) and 80 RPM (P=0.006) conditions (*Table 5 & 6*).

307	In the coronal plane, significant main effects of WORKLOAD (P<0.05, $p\eta^2 = 0.22$) and
308	BRACE (P<0.05, $p\eta^2 = 0.24$) were found. Post-hoc pairwise comparisons showed that the
309	coronal plane maximum knee ROM was statistically larger in the 90 RPM compared to the 70
310	(P=0.02) and 80 RPM (P=0.02) conditions (Table 5 & 6). For BRACE maximum coronal knee
311	ROM was statistically larger in the no-brace condition (P=0.02) (Table 5 & 6).
312	
313	No further statistical differences were observed (Table 5 & 6).
314	
315	@@@TABLE 5 NEAR HERE@@@
316	@@@TABLE 6 NEAR HERE@@@
317	
318	Knee proprioception

No significant differences (P>0.05) in knee proprioception were shown. In the no-brace condition, a mean error of $4.70 \pm 2.59^{\circ}$ was found for males and $6.90 \pm 4.05^{\circ}$ shown for females. In the brace condition, a mean error of $3.74 \pm 2.58^{\circ}$ was found for males had and $6.34^{\circ} \pm 3.60^{\circ}$ shown for females.

323

324 Subjective preferences

For comfort the Chi-Squared test was not significant ($X^2 = 1.25$, P=0.27), with 9 participants rating the brace as more comfortable, 11 as no-change and 4 as less comfortable. For stability however the Chi-Squared test was significant ($X^2 = 5.00$, P=0.03), with 14 participants rating the brace as more stable, 10 as no-change and 0 as less stable.

329

330 Discussion

331	Patellofemoral pain the most frequent musculoskeletal condition in cyclists (1, 5), with a poor
332	long-term prognosis (7). In support of the hypothesis, the current investigation importantly
333	revealed that in both males and females, the integral of the patellofemoral contact stress was
334	significantly reduced when wearing the brace. This finding may be important regarding the
335	initiation and progression of patellofemoral pain in cyclists, as patellofemoral pain symptoms
336	are mediated through excessive patellofemoral joint stress (8). Therefore, the current
337	investigation indicates that prophylactic knee bracing may have the potential to attenuate the
338	biomechanical parameters linked to the aetiology of patellofemoral pain in cyclists.
339	Nonetheless, it is important to acknowledge that this represents an acute intervention only and
340	longitudinal analyses are required before the above notion can be substantiated.

342	This investigation also showed that there were no statistical differences in patellofemoral
343	contact area. As stress is a reflection of the joint reaction force divided by the contact area, the
344	reductions in patellofemoral stress were mediated by the corresponding decrease in the integral
345	of the patellofemoral joint reaction force. As the quadriceps is the only muscle to cross the
346	patellofemoral joint, forces produced by this muscle group play a significant role in the
347	generation of compressive reaction forces at this joint (9). Therefore, it is proposed that the
348	attenuation of the patellofemoral joint reaction force in the brace condition was observed
349	primarily due to the significant reductions in the integral of each of the four-quadriceps muscle
350	forces during the pedal cycle. Indeed this notion is supported by those of Besier et al., (25)
351	indicating that patients with patellofemoral pain exhibit increased quadriceps muscle forces in
352	relation to pain free controls.

354	The significant reduction in peak biceps femoris long head force in the brace condition is an
355	interesting observation. This finding agrees with the assertions of Elias et al., (26), indicating
356	that the hamstring muscle group contributes to patellofemoral joint loading. Such increases in
357	hamstring force production may mediate posterior translation of the tibia (27). This serves to
358	attenuate the effective moment arm of the quadriceps (28), resulting in a compensatory increase
359	in quadriceps force. Enhanced hamstring muscle forces may also provide resistance to knee
360	extension given the high levels of knee flexion typically associated with cycling (27). The
361	hamstring group and biceps femoris muscle in particular, has a larger mechanical advantage
362	than the quadriceps during periods of enhanced knee flexion (29), forcing the quadriceps to
363	generate more compensatory force.

365	It has been proposed that prophylactic knee bracing facilitates safer movement mechanics by
366	promoting an enhanced perception of joint stability (30). The subjective ratings support this
367	notion, as participants perceived that the knee brace significantly improved knee joint stability.
368	This investigation is the first to calculate lower extremity muscle kinetics whilst using
369	prophylactic knee bracing during cycling. Active muscle stiffness promotes overall knee joint
370	stability, and is proportionate to the extent of muscular activation and force production (31).
371	Williams et al., (32) propose that joint mechanoreceptors contribute to joint stability by
372	continually modulating muscle stiffness. As knee bracing enhanced subjective joint stability,
373	we propose that joint mechanoreceptors detected this perceived change, allowing muscle forces
374	to be proportionally reduced in the quadriceps and biceps femoris muscles in response to the
375	presence of the brace.

376

Knee bracing also statistically reduced coronal plane maximum knee ROM. This concurs with 377 those of Theobald et al., (16), who revealed that prophylactic bracing attenuated coronal plane 378 379 ROM during cycling. This may be important, as retrospective analyses (33-35) have shown coronal plane knee kinematics to be enhanced in cyclists with patellofemoral pain. Therefore, 380 this observation may provide further evidence to support the potential for prophylactic knee 381 bracing to attenuate the risk from the biomechanical parameters linked to the aetiology of 382 patellofemoral pain in cyclists. Theobald et al., (16) found that the brace examined in their 383 study was too uncomfortable to be practically viable for adoption into practice. This 384 observation does not agree with the subjective ratings provided during the current investigation, 385 as although the Chi-Squared test was insignificant, 20 of the 24 participants rated the brace as 386 either more comfortable or no-change. This indicates that discomfort may not be a significant 387 barrier to the knee brace examined the current investigation being adopted clinically. The lack 388 389 of alignment between studies is likely due to the differences in mechanical characteristics

- between the two experimental braces, as Theobald et al., (16) investigated a more structureddevice than that examined in the current study.
- 392

393	In conclusion, the current investigation adds to the current literature by providing a
394	comparative examination of the effects of prophylactic knee bracing on cycling biomechanics
395	during the pedal cycle using a musculoskeletal simulation approach. Importantly, the integral
396	of patellofemoral stress during the pedal cycle and the maximum coronal plane knee ROM
397	were significantly reduced in the brace condition. Furthermore, it was also revealed that that
398	knee bracing significantly enhanced perceived knee joint stability compared to the no-brace
399	condition. The findings from the current investigation therefore indicate that prophylactic knee
400	bracing may have the potential to attenuate the biomechanical parameters linked to the
401	aetiology of patellofemoral pain in cyclists. Future, longitudinal analyses are required to
402	confirm the efficacy of prophylactic knee braces for the attenuation of patellofemoral pain
403	symptoms in cyclists.
404	
405	References
406	1. Clarsen B, Krosshaug T, Bahr R (2010). Overuse injuries in professional road cyclists.
407	Am J Sports Med 38: 2494–2501. doi:10.1177/0363546510376816
408	2. Hollingworth MA, Harper AJ, Hamer M. (2015). Risk factors for cycling accident
409	related injury: the UK Cycling for Health Survey. J Transp Health 2: 189-194.
410	doi:10.1016/j.jth.2015.01.001

411	3. Rissel C, Passmore E, Mason C, Merom D. (2013). Two pilot studies of the effect of
412	bicycling on balance and leg strength among older adults. J Environ Public Health 6:
413	24-30. doi:10.1155/2013/686412
414	4. Wanich T, Hodgkins C, Columbier JA, Muraski E, Kennedy JG. (2007). Cycling
415	injuries of the lower extremity. J Am Acad Orthop Surg 15: 748-756. doi:
416	10.5435/00124635-200712000-00008
417	5. Dieter BP, McGowan CP, Stoll SK, Vella CA (2014). Muscle activation patterns and
418	patellofemoral pain in cyclists. Med Sci Sports Exerc 46: 753-761. doi:
419	10.1249/MSS.00000000000153
420	6. Callaghan, M.J. (2005). Lower body problems and injury in cycling. J Bodyw Mov
421	Ther 9: 226-236. doi:10.1016/j.jbmt.2005.01.007
422	7. Thomas MJ, Wood L, Selfe J, Peat G. (2010). Anterior knee pain in younger adults as
423	a precursor to subsequent patellofemoral osteoarthritis: a systematic review. BMC
424	Musc Dis 11: 201-205. doi: 10.1186/1471-2474-11-201
425	8. Farrokhi S, Keyak JH, Powers CM. (2011). Individuals with patellofemoral pain exhibit
426	greater patellofemoral joint stress: a finite element analysis study. Osteoarthr Cartil 19:
427	287-294. doi: 10.1016/j.joca.2010.12.001
428	9. van Eijden TM, Kouwenhoven E, Verburg J, Weijs WA (1986). A mathematical model
429	of the patellofemoral joint. J Biomech 19: 219–229. doi: 10.1016/0021-9290(86)90154-
430	5
431	10. Elias JJ, Wilson DR, Adamson R, Cosgarea AJ (2004). Evaluation of a computational
432	model used to predict the patellofemoral contact pressure distribution. J Biomech 37:
433	295-302. doi:10.1016/S0021-9290(03)00306-3
434	11. Herzog W, Longino D, Clark A (2003). The role of muscles in joint adaptation and
435	degeneration. Langenbecks Arch Surg 388: 305-315. doi:10.1007/s00423-003-0402-6

436	12. Lerner ZF, DeMers MS, Delp SL, Browning RC. (2015). How tibiofemoral alignment
437	and contact locations affect predictions of medial and lateral tibiofemoral contact
438	forces. J Biomech 48: 644-650. doi: 10.1016/j.jbiomech.2014.12.049
439	13. Martin TJ. (2001). Technical report: knee brace use in the young athlete. Pediatrics 108:
440	503-507.
441	14. Warden SJ, Hinman RS, Watson MA, Avin KG, Bialocerkowski AE, Crossley KM.
442	(2008). Patellar taping and bracing for the treatment of chronic knee pain: A systematic
443	review and meta-analysis. Arthritis Care Res 59: 73-83. doi: 10.1002/art.23242.
444	15. Paluska SA, McKeag DB. (2000). Knee braces: current evidence and clinical
445	recommendations for their use. American Family Physician 61: 411-418. doi:
446	10.1097/PHM.0b013e318114e416
447	16. Theobald G, Parry S, Richards J, Thewlis D, Tootill I, Selfe J. (2012). Biomechanical
448	effects of different treatment modalities used in knee pain during cycling.
449	Physiotherapy Practice and Research 33: 16-21.
450	17. Sinclair J, Stainton P, Sant B. (2018). The effects of conventional and oval chainrings
451	on patellofemoral loading during road cycling: an exploration using musculoskeletal
452	simulation. Sport Sci Health 14: 61-70. doi: 10.1007/s1133
453	18. Menard, M., Domalain, M., Decatoire, A., Lacouture, P. (2016). Influence of saddle
454	setback on pedalling technique effectiveness in cycling. Sport Biomech 15: 462-472.
455	doi: 10.1080/14763141.2016.1176244
456	19. Drouin JM, Houglum PA, Perrin DH, Gansneder BM. (2003). Weight bearing and non-
457	weight-bearing knee joint reposition sense are not related to functional performance. J
458	Sport Rehab 12: 54-66. doi: 10.1123/jsr.12.1.54

459	20. Sinclair J, Vincent H, Richards D. (2017). Effects of prophylactic knee bracing on knee
460	joint kinetics and kinematics during netball specific movements. Phys Ther Sport 23:
461	93-98. doi: 10.1016/j.ptsp.2016.08.005
462	21. Sinclair J, Hebron J, Atkins S, Hurst H, Taylor PJ. (2014). The influence of 3D
463	kinematic and electromyographical parameters on cycling economy. Acta Bioeng
464	Biomech 16: 91-97. doi: 10.5277/ABB-00049-2014-02
465	22. Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Thelen DG (2007).
466	OpenSim: open-source software to create and analyze dynamic simulations of
467	movement. IEEE Trans Biomed Eng 54: 1940-1950. <u>doi: 10.1109/TBME.2007.901024</u>
468	23. Steele KM. DeMers MS, Schwartz MH, Delp SL. (2012). Compressive tibiofemoral
469	force during crouch gait. Gait Posture, 35: 556-560. <u>doi:</u>
470	10.1016/j.gaitpost.2011.11.023.
471	24. Besier TF, Draper CE, Gold GE, Beaupre GS, Delp SL. Patellofemoral joint contact
472	area increases with knee flexion and weight-bearing. J Orthop Res 2005: 23: 345–350.
473	doi: 10.1016/j.orthres.2004.08.003
474	25. Besier TF, Fredericson M, Gold GE, Beaupré GS, Delp SL. (2009). Knee muscle forces
475	during walking and running in patellofemoral pain patients and pain-free controls. J
476	Biomech 42: 898-905. doi: 10.1016/j.jbiomech.2009.01.032
477	26. Elias JJ, Kirkpatrick MS, Saranathan A, Mani S, Smith LG, Tanaka MJ. (2011).
478	Hamstrings loading contributes to lateral patellofemoral malalignment and elevated
479	cartilage pressures: an in vitro study. Clini Biomech 26: 841-846. <u>doi:</u>
480	10.1016/j.clinbiomech.2011.03.016
481	27. Whyte EF, Moran, K, Shortt, CP, Marshall B. (2010). The influence of reduced
482	hamstring length on patellofemoral joint stress during squatting in healthy male adults.
483	Gait Posture 31: 47-51. doi: 10.1016/j.gaitpost.2009.08.243

484	28. Li G, DeFrate LE, Zayontz S, Park SE, Gill T J. (2004). The effect of tibiofemoral joint
485	kinematics on patellofemoral contact pressures under simulated muscle loads. Journal
486	Orthopaedic Res 22: 801-806. doi:10.1016/j.orthres.2003.11.011
487	29. Wretenberg P, Németh G, Lamontagne M, Lundin B. (1996). Passive knee muscle
488	moment arms measured in vivo with MRI. Clin Biomech11: 439-446. doi:
489	<u>10.1016/S0268-0033(96)00030-7</u>
490	30. Herrington L, Simmonds C, Hatcher J. (2005). The effect of a neoprene sleeve on knee
491	joint position sense. Res Sport Med 13: 37-46. doi: 10.1080/15438620590922077
492	31. Julian FJ, Morgan DL. (1981). Variation of muscle stiffness with tension during tension
493	transients and constant velocity shortening in the frog. J. Physiol 319: 193–203. doi:
494	10.1113/jphysiol.1981.sp013901
495	32. Williams GN, Chmielewski T, Rudolph KS, Buchanan TS, Snyder-Mackler L. (2001).
496	Dynamic knee stability: current theory and implications for clinicians and scientists. J
497	Orthop Sports Phys Ther 31: 546-566. doi: 10.2519/jospt.2001.31.10.546
498	33. Hannaford DR, Moran GT, Hlavac HF. (1986). Video analysis and treatment of overuse
499	knee injury in cycling: a limited clinical study. Clin Podiatr Med Surg 3: 671–678.
500	34. Bailey M, Messenger N. (1995). Coronal plane kinematics of cycling and their
501	relationship to injury. J Sport Sci 14: 3–4.
502	35. Bailey M, Maillardet F, Messenger N. (2003). Kinematics of cycling in relation to
503	anterior knee pain and patellar tendinitis. J Sport Sci 21: 649-657. <u>doi:</u>

504 <u>10.1080/0264041031000102015</u>