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Introduction 

Given our goal of a computational explanation of the 

relationship among visual attention, interpretation of 

visual stimuli and eye movements, it is natural to begin 

with a look at past efforts that may play the role of foun-

dations. However, the number of models of visual atten-

tion and of eye movement control is numbingly large. 

Even after conscientious reading of this literature, one is 

still left with the question "How are attention and eye 

movements related?" One summary account is due to 

Kowler (2011). Kowler asserts that attention is important 

for the control of saccades as well as for smooth pursuit. 

Further, a selective filter is required to choose among all 

the possible targets of eye movements, and on choosing 

a target, to attenuate the remaining signals. She points 

out that the role of perceptual salience is one of allowing 

potential targets to stand out but that the generation of 

saccades requires a higher-level process, one that makes 

a top-down decision and includes intention. As will be 

clear as our development unfolds, we agree with this 

perspective and the model we develop does indeed con-

tain such multiple levels of processing. Finally, Kowler 

also poses a nice set of goals for future research: What 

determines the decisions made about where to look?  

How are these decisions carried out?  How do we main-

tain the percept of a clear and stable world despite the 

occurrence of saccades? 

Kowler thus provides us with a springboard; howev-

er, these statements do not have the depth and detail 

needed for the development of a computational account 

whose performance can be examined and tested. Here, 

we will consider just one of Kowler's questions, 'what 

determines  the  decisions  made  about  where  to look?',  
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hoping to add the needed computational detail. And 
even for this, we will be able to address only part of it.  

Among the many previous conceptualizations of eye 
movement processing is one by Krauzlis (2005), and 
figures from that paper are adapted in our Figures 1 and 
2. In Figure 1 we show the set of neural pathways 
Krauzlis considers important for both saccadic and pur-
suit eye movements, drawing a connection between the-
se as did Kowler and emphasizing the large degree of 
overlap of implicated brain structures. This is a guide for 
our development; however, our model will not be suffi-
ciently detailed to address such a neural level of descrip-
tion. His rationale for proposing the conceptual model of 
Figure 2 was to move away from the more common and 
traditional view of eye movements: signals obtained 
from early visual processing connect directly to the mo-
tor outputs for pursuit and saccadic eye movements. For 
him, the control of voluntary eye movements involves a 
cascade of steps that permit flexibility in how the 
movements are guided, selected, and executed. Higher 
order processes such as attention, perception, memory, 
and rewards influence the evaluation of sensory inputs. 

Sensory evaluation provides input to two subsequent 
processes. One process selects the target and gates the 
motor response, likely involving the SC. The other pro-
cess provides the drive signals that determine the metrics 
of the movements and likely involves structures such as 
the cerebellum. In his model, the choice of whether to 
generate a pursuit movement or a saccade movement, or 
some combination of the two, is not solely determined 
by the signals of the traditional view but instead depends 
on a comparison between the descending signals and the 
current motor state.  

As our own model is presented, it will be clear that 
we agree at an abstract level. Krauzlis' cascade of steps 
provides not only flexibility but also economy of repre-
sentation. In general, it is likely that results of most 
computations can be used for more than one subsequent 
computation. An intermediate representation for its tem-
porary storage permits the result to be used by other pro-
cesses without the need to re-compute it, thus providing 
economy in terms of computation time as well as storage 
medium. 

It is our goal to provide several layers of depth and 
detail to the elements and structure of his diagram. Im-
portant components such as the basal ganglia, the cere-
bellum and the premotor nuclei will not be touched di-
rectly by our discussion. Specifically, our discussion will 
be at a functional level and focused on the visual infor-
mation that plays a role in selection. We will then pro-

Figure 1. Schematic of the descending neural pathways 
thought to play a role for pursuit and saccadic eye move-
ments (following Krauzlis 2005). Connections are not al-
ways direct anatomical connections. Abbreviations: CN = 
caudate nucleus (basal ganglia); FEF = frontal eye field; 
LIP = lateral intraparietal area; MT = middle temporal 
area; MST = medial superior temporal area; PMN = brain 
stem premotor nuclei (PPRF, riMLF, cMRF); PON = pre-
cerebellar pontine nuclei; SC = superior colliculus (inter-
mediate and deep layers); SEF = supplementary eye field; 
SNr = substantia nigra pars reticulate; Verm = oculomo-
tor vermis (cerebellum, lobules VI and VII); VN = vestibu-
lar nuclei; VPF = ventral paraflocculus (cerebellum). 

Figure 2. A hypothetical model of the functional organiza-
tion of voluntary eye movements adapted from Krauzlis 
(2005). 
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pose algorithms for how the various representations may 
be computed, will show a demonstration of this compu-
tation, and speculate on possible neural correlates for the 
functional elements involving a subset of the pathways 
presented by Krauzlis earlier. 

We begin by being explicit about what we mean by 
the term "eye movement" and the term "attention". There 
are several types of eye movements: 

Saccade: voluntary jump-like movements that move 
the retina from one point in the visual field to another; 

Microsaccades: small, jerk-like, eye movements, 
similar to miniature versions of voluntary saccades, with 
amplitudes from 2 to 120 arcminutes; 

Vestibular-Ocular Reflex: these stabilize the visual 
image on the retina by causing compensatory changes in 
eye position as the head moves;     

Optokinetic Nystagmus: this stabilizes gaze during 
sustained, low frequency image rotations at constant 
velocity;       

Smooth Pursuit: these are voluntary eye movements 
that track moving stimuli; 

Vergence:  these are coordinated movements of both 
eyes, converging for objects moving towards and diverg-
ing for objects moving away from the eyes; 

Torsion:  coordinated rotation of the eyes around the 
optical axis, dependent on head tilt and eye elevation.      

Modeling this full set is beyond the scope of this pa-
per, but it is included to show the breadth of coordina-
tion and control that the human eye movement system 
must possess. We will keep this list in mind and take no 
design decisions that might preclude these extensions. 
This integration is also suggested by Bodranghien et al. 
(2015), who assert that the purpose of eye movements is 
to optimize vision by promptly bringing images to the 
fovea, where visual acuity is best, using saccades and 
vergence, then stabilizing images on the retina/fovea 
even when the target or body are displaced, using fixa-
tion, smooth pursuit (SP) and the vestibulo-ocular reflex 
(VOR). Such an integrated view is how we consider eye 
movements as well. 

Our preferred view of attention, on the other hand, is 
that attention is a set of mechanisms that tune and con-
trol the search processes inherent in perception and cog-
nition. Tsotsos (2011) suggests that the major types of 
attentional mechanisms are suppression, restriction and 
selection. He points out that this definition covers the 

actions of a wide set of attentional mechanisms and ef-
fects (detailed in that volume). There are many other 
definitions of attention in the literature. They are either 
not amenable to a computational counterpart or, if they 
have a computational counterpart, are very narrow in 
scope. A broad spectrum of views can be seen in Itti, 
Rees & Tsotsos (2005) or Nobre & Kastner (2013). 

From our reading, there is no real agreement in the 
literature about how attention and eye movements are 
related. The opinions range from "attention is allocated 
before all eye movements" to "attention is simply the 
side effect of an eye movement". Posner (1980) suggest-
ed how overt and covert attentional fixations may be 
related by proposing that attention has three major func-
tions: (1) providing the ability to process high-priority 
signals or alerting; (2) permitting orienting and overt 
foveation of a stimulus; and (3) allowing search to detect 
targets in cluttered scenes. This is the Sequential Atten-
tion Model that proposes that eye movements are neces-
sarily preceded by covert attentional fixations. Klein put 
forth another hypothesis (Klein 1980), advocating the 
Oculomotor Readiness Hypothesis. For Klein, covert 
and overt attention are independent and co-occur be-
cause they are driven by the same visual input. The Pre-
motor Theory of Attention places attention in a fully 
slave position. Covert attention is the result of activity of 
the motor system that prepares eye saccades, and thus 
attention is a by-product of the motor system (Rizzolatti 
et al. 1987). However, as Klein more recently writes 
(Klein 2004), the evidence points to three conclusions: 
that overt orienting is preceded by covert orienting; that 
overt and covert orienting are exogenously (by external 
stimuli) activated by similar stimulus conditions; and 
that endogenous (due to internal activity) covert orient-
ing of attention is not mediated by endogenously gener-
ated saccadic programming.  

From the computational perspective, there are many 
algorithms for realizing the attention and eye movement 
link. The problem is that there are too many attention 
models with no agreed-upon methodology for evaluating 
or comparing models (for example, Bylinskii et al. 2015 
conclude this after examining 142 models). Typically, 
performance of algorithms is not compared side-by-side 
except for those whose foundation is the saliency map 
(Koch & Ullman 1985). Such algorithms are validated 
via fixation image datasets (eg., Borji & Itti 2013). 
However, images in these datasets seem “unnatural” for 
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this purpose. An eye movement in the natural world 
changes the visual field. As a result, context for local 
contrast computations may change and those changes 
affect global conspicuity ranking. Current data sets do 
not capture this nor do evaluation metrics. Saliency map 
models still have many other outstanding issues, includ-
ing how they deal with the scale of interest regions, bor-
der effects (the boundary problem mentioned later), spa-
tial (central) bias in datasets, influence of context or sce-
ne composition, and oculomotor constraints (Bruce et al. 
2015).  

Models of attention that go beyond saliency also 
abound (for review see Rothenstein & Tsotsos 2014). 
These include: Biased Competition (Desimone & Dun-
can 1995, Reynolds et al. 1999); Neurodynamical Model 
(Rolls & Deco 2002); Feature-Similarity Gain Model 
(Treue & Martinez-Trujillo 1999, Boynton 2005); Feed-
back Model of Visual Attention (Spratling & Johnson 
2004); Cortical Microcircuit for Attention (Buia & Tie-
singa 2008); the Reentry Hypothesis (Hamker 2005); 
Normalization Model of Attention (Reynolds & Heeger 
2009); Integrated Microcircuit Model (Ardid et al.  
2007); Normalization Model of Attentional Modulation 
(Lee & Maunsell 2009); Predictive Coding for Biased 
Competition (Spratling 2008); Selective Tuning  
(Tsotsos et al. 1995, Rothenstein & Tsotsos 2014); and 
Mechanistic Cortical Microcircuit for Attention (Beuth 
& Hamker 2015). All of these models propose explana-
tions for how single-cell neural signals change as a result 
of attentive influences. For example, the most popular 
model, Biased Competition, proposes that neurons repre-
senting different features compete and that attention bi-
ases this competition in favor of neurons that encode the 
attended stimulus. Attention is assumed to increase the 
strength of the signal coming from the inputs activated 
by the attended stimulus, implemented by increasing the 
associated synaptic weights. Many other models use 
Biased Competition as their foundation, as can be seen 
in the review cited above. The models are evaluated by 
examining their qualitative or quantitative ability to rep-
licate neural recordings. All of the models listed de-
monstrate interesting performance but few touch upon 
eye movements. 

If we consider models of fixation control we see a 
similarly dizzying variety and number. Among the many 
good sources for reviews are Hallett (1986), Carpenter 
(1991), Hayhoe & Ballard (2005), Tatler (2009), Kowler 

(2011) and Liversedge et al. (2011). Models include Pola 
& Wyatt (1991) who focused on smooth pursuit, Becker 
(1991) who was interested in goal-directed saccadic eye 
movements, Judge's model of vergence (1991), Miles' 
conceptualization of the VOR (1991), Fischer & Boch's 
(1991) description of the many interacting cortical loops 
for preparation, generation and control of eye move-
ments, Distler & Hoffmann (2011) who modeled the 
optokinetic reflex, Barnes  (2011) who focussed on pur-
suit eye movements, White & Munoz (2011) who exam-
ined the role of superior colliculus, Vokoun et al. (2011) 
who considered the role of basal ganglia, Tanaka & Ku-
nimatsu (2011) who studied the contribution of thala-
mus, and Crawford & Klier (2011) who modeled 3D 
gaze shifts. What is interesting about this set of models 
is their focus on a single component of eye movements 
rather than integration of different eye movement types 
and certainly little effort to explicitly include attentional 
mechanisms. Moreover, for the most part these are not 
computational models in the sense that they are not im-
plemented in such a way to permit their performance to 
be examined with realistic image stimuli. 

Even though we have cited a very large number of 
models, there are many more and a complete review is 
beyond our goals here. The remainder of the paper will 
proceeds as follows. We will begin with considering the 
purpose of an eye movement and some of the constraints 
that result. Secondly, a little-considered problem - the 
boundary problem - will be described, accompanied by a 
solution to it that has major impact on the representa-
tions that are needed for fixation selection. Thirdly, the 
role of saliency maps will be questioned. This will result 
in a new set of representations that build upon the con-
clusion of the boundary problem analysis and take the 
place of the classical saliency map. The fourth major 
section will propose a new schema that integrates these 
new elements. This will be followed by a first demon-
stration of the performance of this new system. 

A brief preview of the main points follows. The start-
ing point for this work is the Selective Tuning (ST) 
model of visual attention (Tsotsos et al. 1995; Tsotsos 
2011). Tsotsos & Kruijne (2014) give an overview of the 
how the Selective Tuning model may be extended to 
provide a basis for visual cognition. This extended sys-
tem is named The Selective Tuning Attentive Reference 
(STAR) model and includes elements such as visual 
working memory, attention executive, and task execu-
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tive. An additional component of the extension is the 
connection between attention and fixation control, the 
main topic of this paper. As mentioned, our goal is to 
develop a functional, computational model and only 
speculative connections to potential neural correlates 
will be mentioned. The main characteristics include: 

1. The purpose of saccades is to bring new information 
to the center of the fovea.  

2. Overt and covert attentional fixations are integrated 
into the fixation control system.  

3. A hybrid early-late selection strategy is proposed, 
combining peripheral feature-based attention with 
central object-based attention representations.  

4. Functionality is provided so that the right parts of a 
scene are presented to the fovea at the right time, 
accomplished through appropriate contributions of a 
unique set of modulating and driving representations.  

5. The model enables different eye movement types to 
be integrated into a single, unified, mechanism (spe-
cifically, saccades, attentional microsaccades, and 
pursuit).  

 

Fixation Change Targets the Fovea 
The purpose of all saccades is to bring new infor-

mation to the retina and because the center of the fovea 
has the highest density of receptors, it is the ideal target 
for new information. A closer look at the fovea is war-
ranted. 

Sources of information on photoreceptor distribution 
and other retinal characteristics in humans described 
here are Østerberg (1935), Curcio et al. (1990), and Cur-
cio & Allen (1990).  The fovea is a highly specialized 
region of the central retina that measures about 1.2 mil-
limeters in diameter, or subtends 2° of visual angle in the 
retinal image. At its center lies the foveola, 350 µm wide 
(0.5°) that is totally rod-free and capillary free, thus 
seeming the optimal target for new visual information. 
The parafovea is the region immediately outside the fo-
vea with a diameter of 2.5 mm (5°).  The normal retina 
represents a full visual field that subtends about 170° 
horizontally. 

The human retina contains on average 92 million 
rods (77.9 million to 107.3 million). Rod density is zero 
in the foveola and the highest rod densities are found in 
a broad, horizontally oriented elliptical ring at approxi-
mately the same eccentricity as the center of the optic 
disk (horizontally at 20° eccentricity). Rod density then 
slowly decays through the periphery to a value of about 
40,000/mm2. On the other hand, there are on average 4.6 
million cones (4.08 million to 5.29 million) in the retina. 
Peak foveal cone density averages 199,000 cones/mm2 

A B 

parafovea 

fovea 

foveola 

next target 

point of fixation 

Figure 3.  A: The physical layout of foveola (subtends 0.5° with a diameter of 0.35mm), fovea (subtends 2° with a diameter of 
1.2mm) and parafovea (subtends 5° with a diameter of 2.5mm). The point of current fixation is the center of the foveola and the 
next fixation target is shown as a red star. B: Red indicates the position of the retina after the new fixation point is centered on 
the foveola 
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and is highly variable between individuals (100,000 – 
324,000 cones/mm2). The point of highest density may 
be found in an area as large as 0.032 deg2. This high 
density is achieved by decreasing the diameter of the 
cone outer segments such that foveal cones resemble 
rods in their appearance. Cone density falls steeply with 
increasing eccentricity; within 1° visual arc of eccen-
tricity cone density falls to about 65,000 cones/mm2 and 
by 5° it has fallen to about 20,000 cones/mm2 decreasing 
until about 10° eccentricity where it plateaus at about 
3,000–5,000 cones/mm2. The isodensity contours of the 
distribution of human cones form rough concentric cir-
cles across the retina centered at the fovea. Visual in-
formation is carried to other parts of the visual pro-
cessing hierarchy by the optic nerve, which in humans 
contains between 770,000 and 1.7 million fibers, each an 
axon of a retinal ganglion cell (Jonas et al. 1992). There 
are at least two ganglion cells per cone in the central 
region up to about 3.5° eccentricity, and this decreases 
further out toward the periphery. Approximately half of 
the nerve fibers in the optic nerve carry information 
from the fovea, while the remaining half carry infor-
mation from the rest of the retina.  

The precipitous decline in cone density away from 
the fovea is naturally accompanied by a corresponding 
drop in acuity. Visual acuity is defined as the  reciprocal  
of  the  visual  angle,  in  minutes,  subtended  by  a  just  
resolvable  stimulus (Anstis 1974). It was shown by An-
stis that in order to maintain visual acuity an object (he 
measured height of a letter to attain a recognition thresh-
old) must increase linearly by 2.76 min in size for each 
degree of retinal eccentricity up to about 30°, and then 
somewhat more steeply up to 60°. In his experiment, a 
letter 0.2° high was just identifiable at 5° from the fovea 
and a letter 1° high was just identifiable at 25°. In other 
words, the acuity of a just identifiable object with height 
h min falls as h/(h+2.76d) for d degrees of its movement 
away from the center of the retina. It is important to note 
that overall light levels also play a role, with acuity and 
visibility shifting towards the rod system as illumination 
decreases (but this will not be considered further here). 

 Given these physical realities, it would thus make 
sense that any fixation control algorithm should wish to 
have as much visual information fall near the center of 
the foveola as possible. The next question then is how to 
accomplish this given the foveola's small spatial size? 
The foveola subtends 0.5° of arc, so at a distance of say 

one meter, the extent of an object that would fit entirely 
within it is less than one centimeter. Looking at 
someone's face one meter away would require a large 
number of fixations in order to examine all parts at the 
same level of high detail possible in the foveola.  

It seems unlikely that a fixation control method 
would use covert fixations1 only. This would make sense 
only for image regions or tasks where high acuity is not 
important. If an attended stimulus is centered on the fo-
veola, then any change in focus of attention without a 
corresponding physical eye movement would necessarily 
decrease acuity given the physical characteristics of the 
retina described above. The key here then would be to 
develop an algorithm that can place importance on im-
age regions; this has proven difficult because it is very 
task-dependent2. A fixation change with zero movement 
of the fovea would necessarily be sacrificing acuity 
along a quite steeply declining profile. The spatial pat-
tern of task-based conspicuity would play the major role 
in deciding whether a covert fixation is sufficient for a 
given target location A control algorithm would be re-
quired to constantly judge the trade-off between loss of 
acuity and economy of movement. Certainly the de-
crease in acuity with increasing eccentricity is so severe 
as to make covert fixations to the periphery quite inef-
fective except for some stimuli, such as abrupt or highly 
conspicuous image events (e.g., easy figure-ground seg-
regation), or some simple visual tasks (categorization of 
central stimuli, for example). 

Combining covert fixations with 'normal' saccades3 is 
another option, much more sensible than covert fixations 
alone, but there is still the issue of deciding when to use 
one or the other. Even when instructed to maintain fixa-

                                                
1 It is common, when requiring constant fixation during an 
experiment, to reject trials where subjects perform eye move-
ments greater than 2° (M. Fallah, personal communication).  
Thus, microsaccades are permitted and any inference regard-
ing attentional fixation is attributed (perhaps mistakenly) to 
'covert' attention. 
2 Modern saliency algorithms attempt to do this, and although 
their performance for free-viewing tasks can be quite good, the 
effective inclusion of task-related information is still beyond 
the state-of-the-art (Bruce et al. 2015). 
3 Tatler et al. (2006) examined the amplitude of 'normal' sac-
cades and found in a free view task 66% of saccades were to 
locations within 8° of the current centre of gaze (with a peak in 
the 2-4° range), and in their particular search task, 50% (with 
a peak in the 4-6° range).  
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tion, the eye is constantly executing adjustments to over-
come drift and other mechanical effects. Hafed et al. 
(2009) describe corrective microsaccades as important 
for maintaining fixation since the eyes necessarily drift, 
with these corrections occurring roughly every 250ms. 

A third option, and the one we will adopt, is to com-
bine covert fixations with normal saccades as described 
but to also ascribe attentional utility to the subset of mi-
crosaccades that are not playing a corrective role. The 
radius of the foveola is 0.25° or 15' of visual angle. A 
target at the edge of the foveola could be fixated using a 
microsaccade (see Martinez-Conde et al. 2004, Poletti et 
al. 2013, Rolfs 2009). Even a target at the edge of the 
fovea would require a saccade amplitude of only 1° (see 
Figure 3). Similar ideas were presented in Hafed & 
Clark (2002) where microsaccades were linked to covert 
fixation intent. Such eye movements are typically not 
considered in attentional experiments because subjects 
may be required to maintain fixation within a small win-
dow, perhaps 2-5° in size during a trial. In order for this 
strategy to work, we need to not only have task im-
portance as mentioned, but also sufficient spatial loca-
tion resolution to permit attentional microsaccades to be 
directed and thus have purpose. This further requires a 
smooth integration with the corrective microsaccade 
mechanism. This option seems in line with the old idea 
that the sensory gradient is the basic factor in eye 
movements and fixation (Weymouth et al. 1928) as well 
as with a more modern view (Ko et al. 2010), among 
others.  

Corrective saccades seem required not only for the 
reasons Hafed et al. (2009) described, but also to verify 
that the eye movement has indeed captured the intended 
target. An eye movement includes some level of me-
chanical noise or perhaps the target moves or the head 
moves and thus, an eye movement may not fall exactly 
where it was planned. For these reasons, it would be 
sensible that a monitoring process exists to ensure the 
intent of the observer is maintained, adding corrective 
actions as needed. Our model does not currently include 
such a monitoring process, but its inclusion would be 
straightforward.  

Overall, it seems that our modeling direction shares 
perspectives with Hafed et al. (2015) and Ko et al. 
(2010). We view microsaccades as small saccades that 
play several roles, and as such, have impact to the full 
enterprise of understanding visual attention. 

In summary, a novel view of the covert-overt fixation 
distinction is adopted. The goal of an attentional fixation 
is to access a needed piece of information from a visual 
scene. The need may be accompanied by a requirement 
for spatial precision and if it were, this would determine 
whether an eye movement is needed. An eye movement 
can have any amplitude. The following fixation changes 
are distinguished: 

a. fixation changes where there is zero eye movement 
- call these true covert fixations - driven by a change of 
attentional focus where spatial precision at the new fixa-
tion location on the retina is sufficient for the current 
task; 

b. fixation changes considered as microsaccades 
driven by a change in attentional focus and accompanied 
by an imperative for high spatial precision; 

c. fixation changes that are usually considered overt 
experimentally. Again, these are due to changes in atten-
tional focus with or without the need for spatial preci-
sion. 

d. eye movements that are not accompanied by a 
change in attentional focus but are due to a corrective 
mechanism of some kind (corrective microsaccades for 
drift or tremor, vestibular-ocular reflex, optokinetic nys-
tagmus, etc.). 

 

Figure 4. The basic reason for the boundary problem is 
illustrated. The lower rectangle depicts a retinotopic repre-
sentation that is the input to the upper one. The left cone, 
whose bottom (input) straddles the lower layer, represents a 
convolution with insufficient data support, and the right one 
is a normal one with full support. The black border in the 
upper layer is the region that is undefined as a result. The 
width of the affected region in the feedforward direction is 
dependent on the half-width of the convolution kernel. 
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The Boundary Problem 
The boundary problem is well known in computer 

vision and is an inherent issue with any hierarchical, 
layered representation. However, it seems to not have 
played any role in theoretical accounts of human vision. 
The basic idea is shown in Figure 4. Suppose we consid-
er a simple hierarchical, feedforward, layered representa-
tion where each layer represents the full visual field, i.e., 
the same number of locations. Let’s say that at each po-
sition of this uniform hierarchy a neuron exists selective 
for some feature; this hierarchy may represent some ab-
straction of features layer to layer. The process that 
transforms the lower layer (the input) to the upper layer 
is the convolution, the basic mathematical counterpart of 
the implementation of neural tuning across a receptive 
field that takes one function, the image, and another, the 
kernel that models the tuning properties of a neuron, to 
create the response of those tuning properties across the 
image. At each layer, a kernel half-width at the edge of 
the visual field is left unprocessed because the kernel 
does not have full data across its extent as shown in Fig-
ure 4. 

Common remedies, seen as tacit elements of many 
computer vision and neural network algorithms, are out-
lined in Van der Wal & Burt (1992): extension of the 
image using blank elements; extension of the image us-
ing repeated image elements; wrapped-around image 
elements; attempts to discover compensatory weighting 

functions; or, ensuring the hierarchy has few layers with 
little change in resolution between layers to reduce the 
size of boundary affected.  The reality is that none of 
these, except the possibility of a compensatory 
weighting mechanism, has any plausible biological 
counterpart; however, searches for such a weighting 
mechanism have not been successful. In any case, it is 
unlikely that the brain has developed such a weighting 
mechanism. If it had, the upper layers of the visual pro-
cessing hierarchy would represent the full visual field 
veridically, and as will be seen below, they do not. 

The boundary problem is compounded layer by layer 
because the half-widths are additive layer to layer. The 
result is that a sizeable border region at the top layer is 
left undefined, and thus the number of locations that 
represent true results of neural selectivity from the pre-
ceding layer is smaller. This resulting structure has simi-
lar qualitative properties to what is found in layers of the 
visual cortex. Gattass et al. (1988) looked at areas V3 
and V4 of macaque. Both V3 and V4 contain representa-
tions of the central portion of the visual field (up to 35° 
to 40° eccentricity), but V4 receptive fields are larger. 
Gross et al. (1981) were the first to detail properties of 
inferotemporal (IT) neurons in the macaque monkey and 
showed that the median receptive field size was about 
23° diameter and that the center of gaze or fovea fell 
within or on the border of the receptive field of each 
neuron they examined. Geometric centers of these recep-

Figure 5. The proposed solution to the boundary problem requires the integration of three representations: early visual con-
spicuity based on early visual representations, interpretation based on late visual representations, next fixation history (what 
have I seen?) and priority (what should I see?). Selection of the next target to fixate is made competitively from this combined 
representation. The dark rectangle of the Peripheral Attentional Map is the portion of the visual field not represented. The 
Central Attentional Map is smaller because it represents only the veridical components of late visual representations. It is 
important to note that this scheme differentiates between the computations that determine what to attend and where to foveate.  
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tive fields were within 12° of the center of gaze implying 
that the coverage of the visual field is about 24° at best 
from center of gaze. It seems that as the visual hierarchy 
is ascended, virtually all RFs include the fovea, almost 
all RF centers are foveal or parafoveal, and there is little 
or no representation outside 30-40° eccentricity, mean-
ing that the higher level representations primarily pro-
vide an interpretation of the central area of a visual scene 
(which is imaged by the retina to about 60° nasally and 
110° temporally). However, this raises a question: how 
can decisions about anything be made correctly outside 
the central area of visual field from responses of area TE 
neurons alone (or other high level area)? Where would a 
cue for a fixation change come from if the stimulus lies 
outside the central region? The answer is that early visu-
al representations must play that key role and this is ex-
actly the starting point of all saliency map algorithms.  

These early visual representations, however, are only 
sufficient to capture so-called feature-based attention. 
Object-based attention seems to need more as its source 
input, namely, a representation of objects. The trend, 
thus, has been to develop object saliency algorithms that 
combine conspicuity computed from early representa-
tions with sensitivity to objects (see Borji et al., 2012, 
for overview and benchmarks). These algorithms are 
based on stimulus properties more akin to perceptual 
organization rather than explicitly including methods for 
object categorization or interpretation. In the brain, the 
only representations that can provide input to object at-
tention algorithms are those from the highest levels of 
the visual cortex, which we have just demonstrated suf-
fer from the boundary problem and thus cover only the 
central portions of the visual field.  

The connection between the boundary problem and 
saccades was made in Tsotsos et al. (1995). There, it was 
proposed that if a representation of the periphery, com-
puted from early layer representations so as to not suffer 
from the boundary problem, were used together with the 
high level central representations, the problem may be 
ameliorated. Figure 5 shows a schematic of how such a 
solution might be structured. 

Object-based attention requires a base representation 
of conspicuity that involves objects, and accordingly the 
top layers of the visual hierarchy must be involved (the 
path from late visual representations to central attention-
al field to conspicuity map of Figure 5). The boundary 
problem requires a conspicuity representation that is not 

corrupted in its periphery, and thus, early representations 
need to be involved (the path from early visual represen-
tations to peripheral attentional map to conspicuity map 
of Figure 5). As a result, this is a source for feature-
based attention. The determination of next attentional 
focus becomes a competition among all the candidates 
from these two presentations, modulated by other con-
cerns related to task and fixation history. A subsequent 
section will provide more details and demonstrate how 
such a structure performs.  

Thus, the visual system can overcome the boundary 
problem by moving the eyes. With the appropriate repre-
sentations and computations to determine the transfor-
mations among them, the visual system can easily ensure 
a high-resolution view of scene elements of interest, 
however, with the expense of the time and effort re-
quired to foveate those elements. 

 

The Role of Saliency Maps 

Perhaps the one notion that dominates current think-
ing is that of the saliency map as the connection between 
attention and eye movements. The original Koch & 
Ullman (1985) proposal has endured: that the maximum 
in a retinotopic representation of visual field conspicuity 

Figure 6. The distribution of targets in the Potter 
dataset. This was computed by first overlaying the 
binary ground truth masks and fitting a 2D Gaussian 
distribution to them treating pixels as z values. Mean 
of the distribution lies approximately in the centre of 
the image. The area within 2.5 degrees of visual an-
gle from the centre of the image is calculated based 
on the following assumptions: the viewer is 57 cm 
away from the monitor, the monitor has 23" diagonal 
and resolution of 1920x1080.  



Journal of Eye Movement Research Tsotsos, J.K., Kotseruba, I. Wloka, C. (2016) 
9(5):2, 1-34   A Focus on Selection for Fixation 

10 

determines the spatial location that is then passed on to a 
subsequent recognition or interpretation process. It is 
important, however, to recall that eye movements were 
not part of that work in any way, partly because it was 
intended as a model of Feature Integration Theory 
(Treisman & Gelade 1980). Perhaps the earliest work to 
connect a saliency model to eye movements was that of 
Clark & Ferrier (1988) who used a saliency map to drive 
robotic camera fixations.  

Since then, research in both computational and bio-
logical vision has entrenched the original Koch & 

Ullman proposal in models4 of single image vision (i.e., 
without eye movements), including Ullman & Sha’ashua 
(1988), Olshausen et al. (1993), Itti et al. (1998), Wal-
ther et al. (2002), Z. Li  (2002, 2014), Deco & Rolls 
(2004), Itti (2005), Chikkerur et al. (2010), Zhang et al. 
(2011) and Buschman and Kastner (2015).  

These models all attempt to explain the impressive 
ability of the human visual system to very quickly cate-
gorize the contents of a scene. Fast categorization was 
quantified by Potter (1976), with results strengthened by 
Thorpe et al. (1996), Potter et al. (2014), and more. They 
showed that even with a very short exposure time (as 
short as 13ms) human vision can recognize visual stimu-
li within 150ms, or in other words, a single feedforward 
pass through the visual system. Thorpe et al. found hu-
man performance averaging 94% accuracy for 20ms 

                                                
4 It is important to note that the Koch & Ullman proposal does 
not mention feature or object attention and just focuses on 
spatial attention. Some models in this list include elements 
beyond spatial attention; our critique concerns only the spatial 
attention component. 

Figure 8. The bar plot shows average distance from 
the first fixation to the centre of the ground truth 
mask in degrees of visual angle for the algorithms 
we tested for the Potter stimuli. We first compute 
the maximum of the saliency mask, check whether 
its coordinates are within the ground truth mask 
and compute the Euclidean distance from the fixa-
tion point to the centre of the ground truth mask. 
Then we convert the distance in pixels to degrees of 
visual angle using the same assumptions as in Fig-
ures 6 and 7. 

Figure 7. The distribution of targets in the Thorpe 
dataset. This was computed by first overlaying the 
binary ground truth masks and fitting a 2D Gaussian 
distribution to them treating pixels as z values. Mean 
of the distribution lies approximately in the centre of 
the image. The area within 2.5 degrees of visual an-
gle from the centre of the image is calculated based 
on the following assumptions: the viewer is 57 cm 
away from the monitor, the monitor has 23" diagonal 
and resolution of 1920x1080. 
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exposure while Potter et al. found a performance range 
from 60% - 80% for exposures between 13ms - 80ms 
(note, these were not all directly comparable experi-
ments). The key point of relevance here is that to theore-
ticians and modelers, this meant that the amount of com-
putation that can be performed was constrained by the 
response time. The short exposure times mean there is 
little (or no) time for any lateral or inter-area computa-
tions and certainly not feedback.  If this is to be con-
sistent with the Koch & Ullman proposal, it places sali-
ency computation within the first feedforward pass of 
visual information through the processing hierarchy.  

We question this. If the computation of saliency oc-
curs early in the feedforward pass through visual areas, 
and determines a region (or point or object) of interest 
for further processing, then, in order for human subjects 
to exhibit the observed categorization performance the 
first region-of-interest determined by a saliency algo-
rithm must correspond to the target object. This must be 
the case since there is no time for a serial search through 
saliency derived target regions. Does it? This question 
has never been tested (but see Tsotsos & Kotseruba 
2015).  

We developed the following test. If the question were 
to be answered in the affirmative, then, if we ran the 
same images used by the Potter and Thorpe experiments 
(that motivated the feedforward component of so many 
current models) through a variety of saliency algorithms, 
those algorithms should yield a first region-of-interest 
coinciding with the correct targets. To execute our tests, 
we obtained the datasets used by Thorpe and by Potter. 
Images within these sets that contained targets were 
ground-truthed by hand; targets were carefully outlined 
to form a target mask. The Potter dataset had 1711 im-
ages in total, 366 with targets, while the Thorpe dataset 
has 2000 images, 994 with targets. The Potter images 
were 300x200 pixels in size while the Thorpe images 
were 512x768 pixels. In the Potter experiments, ques-
tions were posed to subjects about image contents either 
before the stimulus or after. In the Thorpe et al. experi-
ments, subjects were asked whether or not an image con-
tained an animal and knew this question in advance. 
Across the experiments, task influence was either not 
relevant to the result, or constant and abstract, and thus it 
was reasonable to test with saliency algorithms not de-
signed for task influence.  

We analyzed the position of all targets and found a 
very strong center bias, not surprising since the images 
were all commercial photographs. Any subject fixation 
point instructions for the image center then naturally 
provide a good view of the intended target. Of course, no 
eye movements are possible with the short stimulus du-
rations. The distributions of target extent for the two 
datasets are shown in Figures 6 and 7. Superimposed on 
each, shown as a red oval, is the 2.5° eccentricity mark 
(computed at a viewing distance of 57 cm, monitor pixel 
density of 95.78 PPI on a 23" diagonal with resolution 
set to 1920x1080) which demonstrate that subjects really 
did not need to move their eyes in order to have a good 
sample of the target fall within their parafovea when 
fixating on the image center. 

We examined the output of four algorithms on all 
images, both target and non-target. We chose three sali-
ency models: the most commonly used and cited model 
by Itti, Koch and Niebur (1998) - IKN; the AIM (Atten-
tion via Information Maximization) model (Bruce & 
Tsotsos 2009), a consistently high performing model in 
benchmark fixation tests; and the Goferman et al. (2010) 

Figure 9. The bar plot shows average distance from 
the first fixation to the centre of the ground truth 
mask in degrees of visual angle for the Thorpe stim-
uli. We first compute the maximum of the saliency 
mask, check whether its coordinates are within the 
ground truth mask and compute the Euclidean dis-
tance from the fixation point to the centre of the 
ground truth mask. Then we convert the distance in 
pixels to degrees of visual angle using the same as-
sumptions as in Figures 6 and 7. 
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model - CAS (Context Aware Saliency) - a high scoring 
model on object benchmarks as opposed to the other two 
that are evaluated primarily on fixation data. We also 
added the 'objectness' algorithm (OBJ) because the hu-
man experiments all involve categorization of objects 
(Alexe et al. 2010). All algorithms were used with de-
fault parameters and published implementations. We ran 
each image in both datasets through each algorithm. For 
each, we noted the location of the first fixation point and 
determined its spatial relationship to the ground-truthed 
target's mask. The plots, depicted in Figures 8 and 9, 
show the results for the positive target stimuli. They 
show two quantities for each dataset: the average dis-
tance in degrees of visual angle of an algorithm's first 
fixation from the center of the target bounding box for 
fixations inside and outside the target bounding box (at a 
viewing distance of 57 cm, monitor pixel density of 
95.78 PPI on a 23" diagonal with resolution set to 
1920x1080). The algorithms all would place the center 
of the selected region for analysis well into a reduced 
acuity region for the Potter stimuli and much further for 
the Thorpe stimuli. Recall the discussion on visual acui-
ty from a previous section, where it was shown that acui-
ty is quite reduced for each degree of retinal eccentricity. 
Since the misalignment of target with fixation center 
ranges from 1.16° to 6.44°, this implies a serious possi-
bility of impaired categorization performance for the 
saliency-driven strategy. For the Potter dataset the result 
is better than for the Thorpe set because the target distri-
butions differ (Figure 6 shows the Potter dataset is much 
better confined to the parafoveal region), and perhaps 
there is an image size effect as well. Table 1 shows a 
numerical comparison of fixation results; the algorithms 
yield 30% - 37% of first fixations outside the target re-
gion. This connects to the previous bar plots by showing 
the counts of fixations that went into the average values 
of distances shown there. 

The above only considers the positive target images - 
what about the negative target images? Thorpe et al. 

found that 150ms of processing is required regardless of 
whether the image contained a target. We ran the algo-
rithms in the same way for all of the non-target images 
as well and obtained first fixations. If the Koch & 
Ullman processing strategy were the one used in the 
human visual system, the point or region around that 
fixation point would be processed to determine if the 
target were present, and likely the answer would be neg-
ative. But that negative response would be indistinguish-
able from a false negative on a target image, in addition 
to having its own error rate. Considering that a signifi-
cant number of first fixations did not fall on targets for 
the true positive image, overall performance would be 
far from the human performance reported by Potter and 
by Thorpe. As a result, this strategy is not likely the one 
used in human vision. The early selection strategy is 
completely wrong for non-target stimuli because there 
can be no certainty that other locations do not contain a 
target. Finally, any concern regarding the appropriate-
ness of the overall comparison because of task instruc-
tions has no basis for the non-target case; an early selec-
tion method remains ineffective and a negative response 
remains indistinguishable from a false positive. 

Of course, there are the possibilities that we just did 
not test the proper saliency algorithm or that the devel-
opment of saliency still has a way to go before the re-
sults of our tests might be closer to human performance. 
However, no further development would impact the ear-
ly selection aspect of the Koch & Ullman strategy; it 
would remain inappropriate for the non-target stimuli.  

 

A New Cluster of Conspicuity 
Representations 

The previous section argued against the early selec-
tion mechanism rooted in saliency maps. Its rejection is 
not an easy decision to make given the wide variety of 
models that use saliency for this purpose. Clearly, a 

Table 1. Number of first fixations outside the ground truth mask for each algorithm tested. 
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stimulus-based method of attracting attention seems nec-
essary; what we propose, however, is that this is only 
one of several representations that combine in order to 
provide the decision for the right parts of a scene to pre-
sent to the fovea at the right time. In the same way that 
the Late Selection Theory (Deutsch & Deutsch, 1963) 
countered Broadbent's Early Selection Theory (1956) 
and was further refined by Attenuator Theory (Treisman 
1964), here too our proposal aims to keep the useful as-
pects of the saliency map idea and to supplement them in 
order to develop a hybrid that can take on different func-
tions as the situation requires. We propose three new 
representations of saliency plus one new representation 
of location. 

The first representation replicates the stimulus-driven 
conspicuity representation of the original saliency map 
but is re-named the Peripheral Attentional Map (see Fig-
ure 5). Like saliency maps, this encodes stimulus-driven 
local feature conspicuity - a stimulus-based attentional 
push - with the important difference that it is restricted to 
the visual periphery in order to participate in a solution 
to the boundary problem. Its role is to enable fixation 
changes for reasons of surprise, novelty and exploration. 
Our preferred algorithm for its computation is the AIM 
algorithm (Bruce & Tsotsos 2009, 2005) because its 
roots are in information theory and specifically targeted 
for surprisal.  

Object-centred conspicuity drives central visual field 
fixation changes that are intended to examine object 
components (or motions) for purposes such as descrip-
tion, comparison or discrimination, as well as pursuit. 
This corresponds to the box labeled Central Attentional 
Map in Figure 5. The central-peripheral distinction is 
imposed not only because of the retinal receptor anisot-
ropy, but also to solve the hierarchical boundary prob-
lem previously described.  In the section on the bounda-
ry problem, evidence was given for the highest levels of 
visual cortex faithfully representing only the central por-
tions of the visual field. As a result, this map covers only 
that central region. This central focus of attention 
(cFOA) is computed by the competitive selection mech-
anism within the Selective Tuning model (ST) that is 
based on a region winner-take-all algorithm (Rothenstein 
& Tsotsos 2014; Tsotsos 2011). 

Task-specific attentional pull represents the desire of 
the perceiver to attend a particular location, feature, mo-
tion or object related to the current task.  A high degree 

of urgency, or attentional pull, imposes a priority for the 
system to attend some location. This representation, (la-
beled "What have I seen? What should I see" in Figure 
5) can adjust (strengthen or weaken, narrow or expand) 
or override location-based inhibition-of-return (IOR) and 
its natural decay, or add new locations/features for prior-
ity. It involves at least two influences: a bias against 
what has been previously fixated and bias for what the 
current task needs fixated. The negative bias may be 
interpreted in the context of a task as "I have already 
looked at this location, so likely do not need to look 
again", while the positive bias could be thought of as "I 
still need to look at this location in order to complete my 
task" or "I know I have looked here before but I think 
there is more information relevant to my task to be ob-
tained by looking again". The method for computing this 
representation is a current topic of study; a good early 
effort for the task-based component can be seen in Na-
valpakkam & Itti (2005) while a more recent investiga-
tion in the relationship between task and attention can be 
seen in Haji-Abolhassani & Clark (2013). Clearly, a 
tight linkage between working memory and task execu-
tion control is required for such a representation and 
such an effort is part of the STAR framework.  

The Attentional Sample (AS) is a representation in-
troduced to answer the question "what is extracted from 
an attentional fixation?" This is very much like the out-
put of what Wolfe et al. (2000) call postattention - the 
process that creates the representation of an attended 
item that persists after attention is moved away from it. 
Part of this must include detailed location information. It 
is computed by the recurrent localization mechanism of 
Selective Tuning (Tsotsos 1993; 2011; Rothenstein & 
Tsotsos 2014). As a component of the fixation control 
strategy the important role of the attentional sample is to 
provide sufficiently precise location information so that 
an eye movement can be correctly executed, including 
microsaccades. The crux of the method is that the pro-
cess traces back the neural activations from the cFOA 
selected at the highest levels of vision to the earliest rep-
resentations that correspond to each pixel of the cFOA 
(examples are shown in Tsotsos 2011). That tracing back 
continues as long as there are recurrent connections, and 
this basically means all the way to the LGN. What is 
needed now is to ensure that there is enough spatial reso-
lution in LGN representations of the fovea to enable 
almost cone-level selection. Curcio & Allen (1990) re-
port that each cone in the fovea, up to about 1° eccen-
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tricity, contacts 3 ganglion cells and for several degrees 
more, contacts 2. Ganglion cells have a one-to-one rela-
tionship with optic nerve fibers and thus input to LGN. It 
is clear then, that within the fovea, location precision is 
available for our recurrent localization (see Rothenstein 
& Tsotsos 2014, Tsotsos 2011, Boehler et al. 2009 
Tsotsos 1993) at the level of the LGN. 

This recurrence and computation takes time. It is 
processed concurrently with the other components of the 
overall strategy. The key temporal constraint is that the 
recurrence must have completed and the location must 
be available at the same time that the global focus of 
attention (gFOA) is passed on to the eye movement con-
troller. If, for any reason, an eye movement is initiated 
before this temporal constraint is satisfied, that move-
ment is more likely to require correction during its tra-
jectory or after landing in order to conform to the spatial 
instruction contained in the attentional sample. 

We also need to propose a different overall pro-
cessing strategy to deal with the non-target scenario that 
led to our decision to abandon the Koch & Ullman algo-
rithm. For the Potter and Thorpe stimuli, the entire im-
age would fall within our object-centered conspicuity 
representation. This representation not only plays a role 
in determining the next eye movement, but also in any 
further scene interpretation or decision downstream in 
the system. In both cases, it would provide sufficient 
information to a global process to determine target pres-
ence or absence. Late selection is thus the better strategy 
for these stimuli because it permits a global, object-
based, determination for target absence. Several previous 
authors have emphasized the need for attention to oper-
ate in such a late selection manner (for example, Fuster 
1990). Of course, we cannot forget that the central repre-
sentations have limits too: a late selection strategy is 
only good for the central portion of the visual field as 
previously argued, further motivating the complementa-
rity present in our hybrid solution. This also highlights 
that an early selection strategy may be the only viable 
one when targets are found in the mid-to-far periphery. 

 Many authors have considered the issue of the neu-
ral correlate to representations of conspicuity or salien-
cy. Whether or not a single such representation exists in 
the brain remains an open question with evidence sup-
porting many potential loci: superior colliculus (Horwitz 
& Newsome, 1999; Kustov & Robinson, 1996; McPeek 
& Keller, 2002); LGN (Koch, 1984; Sherman & Koch, 
1986); V1 (Li, 2002); V1 and V2 (Lee et al. 1999); pul-
vinar (Petersen et al. 1987, Posner & Petersen, 1990; 
Robinson & Petersen, 1992); FEF (Thompson et al. 
1997); parietal areas (Gottlieb et al. 1998). In each of 
these, the connection to a saliency representation is 
made because maxima of response that are found within 
a neural population correspond with the attended loca-
tion. Each of the examined areas has such correlated 
maxima; could it be that they all do simultaneously? 
Perhaps this is why evidence has been found in so many 
areas for the neural correlate to the saliency map. Maybe 
saliency is a distributed computation, and, like attention 
itself, evidence reflecting these computations can be 
found in many, if not all, neural populations. Our cluster 
of representations is a potential way out of this debate. 

 

Combining the Elements: STAR's Fixation 
Control Strategy 

It is time to put all of the elements presented so far 
together into a unified picture, as mentioned earlier. In 
Tsotsos & Kruijne (2014) an overview of how the Selec-
tive Tuning model is extended was presented. This ex-
tended system is named STAR: The Selective Tuning 
Attentive Reference model. The fixation control strategy 
within STAR is shown in Figure 10. It is important to 
note that this is designed from a functional viewpoint, 
constrained by several characteristics of biological vi-
sion systems. The basic characteristics are: 

1. The purpose of all saccades is to bring new 
information to the retina and because the center of 
fovea has the highest density of receptors, it is the 
ideal target for new information.  
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2. Overt and covert attentional fixations are integrated 
into the fixation control system. Overt saccades 
cover the full range of amplitudes possible while a 
covert fixation would require a completely stationary 
retina. The choice between whether to execute an 
overt or a covert fixation depends largely on the 
purpose for the fixation, i.e., on the representation we 
term the task-specific attentional pull. Typical 
components of this pull that matter in this regard are 
whether or not the agent wishes or is allowed to 
make an overt fixation, and if the location of the 
target stimulus in the visual field with the current 
fixation permits spatial sampling of sufficient quality 
to satisfy the task requirements by covert (if yes) or 
overt (if no) fixation. 

 

3. A hybrid early-late selection strategy is proposed to 
solve the boundary problem by combining a 
peripheral feature-based attention representation with 
a central object-based attention representation. 

 

4. Functionality is provided so that the right parts of a 
scene are presented to the fovea at the right time. 
Those right parts are determined by a combination of 
the priority or urgency to attend to a particular 
location, feature or object related to the current task, 
surprise or novelty of a stimulus, the need to explore 
the visual world, and functional needs such as 
description, comparison or discrimination. The right 
time to present the right parts is determined by a 
modulation of the representation that drives 
selection. That modulation comes from 
representations that have broad functionality, 
including urgency as well as novelty and surprise. 

 

5. The model enables different eye movement types to 
be integrated into a single, unified, mechanism 
(specifically, saccades, attentional microsaccades, 
corrective microsaccades, and pursuit).  Other eye 
movement types, such as vergence, are within its 
future extensions (for a stereo vision version of ST 
see Bruce & Tsotsos 2005). 

Figure 10. The fixation control strategy of STAR. See text for explanations of the components 
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 The system architecture is presented as a sequence of 
transformations on representations (trapezoidal boxes in 
the figure), representations being connected by actions 
(arrows or rounded rectangles). Arrows that connect two 
representations represent non-linear weighted sum 
operations of the form typically seen in other neural 
models. Each representation is thus a function of two or 
more other representations. A rounded rectangle is a 
process that is executed on a representation and has an 
output that goes to another representation or process. 
The components of this diagram follow. 

a. Peripheral Attentional Map - It is derived from 
early visual representations (such as those found in visu-
al areas V1 or V2) in order to minimize the impact of the 
boundary problem on peripheral representations. In our 
realization, the AIM algorithm, as previously mentioned, 
covering only the periphery of the visual field, computes 
it. This does not mean that feature-based attention does 
not operate in the central visual field; of course it does, 
but from an eye movement point of view, any features 
that might attract attention within the central field are 
already being processed fully. Only features outside the 
central region need special consideration. A potential 
neural counterpart might be area V6Av (Pitzalis et al. 
2013; Galletti et al. 1999b). It is important to note that in 
the monkey, area V6A has been divided into two subre-
gions (see Luppino et al. 2005 and Gamberini et al. 
2011), namely, V6Ad and V6Av. Both contain visual 
cells, but V6Ad mainly represents the central 30° of the 
visual field, whereas V6Av mainly represents the pe-
ripheral part of the visual field (>30° eccentricity) 
(Gamberini et al 2011). In humans, Pitzalis et al. (2013) 
have found the homologue of monkey V6Av and they 
report that V6Av represents the far periphery (as in 
monkey) >30° of eccentricity. Further, it receives input 
from early visual areas. As a result, V6A, and particular-
ly V6Av, satisfies the requirements for our Peripheral 
Attentional Map representation. 

b. Central Attention Map - The central attention map 
receives input from the highest layers of the visual hier-
archy, both objects and motions. Object or motion con-
spicuity determines the relative strength of all stimuli 
across the central visual field. It is also the representa-
tion over which ST's selection method is computed 
which provides hypotheses for further decision-making 
regarding task completion (Tsotsos 2011). However, for 
the purpose of fixation control, it is the object/motion 

conspicuity that is used. A neural correlate might be area 
V6 (Pitzalis et al. 2006; Fattori et al. 2009; Galletti et al. 
1999a), or perhaps as noted in the previous paragraph, in 
conjunction with V6Ad. Area V6 clearly has its own 
representation of the fovea, distinct from the foveal rep-
resentation of the other dorsal visual areas. Braddick & 
Atkinson (2011) include area V6 in their schematic of 
brain areas involved in visuo-motor modules for the de-
velopment of visually controlled behaviour, specifically, 
saccades and reaching. Human V6 has a representation 
of the center of gaze separate from the foveal representa-
tions of V1/V2/V3, and importantly lacks a magnifica-
tion factor. For the purposes of this representation, mag-
nification factor is not needed, just a point-to-point rep-
resentation. It is interesting to note how there seems to 
be a correspondence between the extent of this central 
representation and the area of strong central representa-
tion in the upper layers of the visual processing hierar-
chy. Given the realities of the boundary problem, this 
may be more than coincidence.  

c. Task-specific Attentional Pull - These are influ-
ences from outside the fixation control system. Busch-
man & Miller (2007) claim that these influences arise in 
prefrontal cortex and flow downwards, specifically from 
the frontal eye fields (FEF) and lateral prefrontal cortex 
(LPFC). In our model, we intend these to be due to the 
world knowledge of the perceiver, the task instructions 
given to the perceiver or imposed by the perceiver, in-
terpretations of already seen scenes that impact the cur-
rent perception, and so on. These issues are for future 
work.  

d. The Attentional Sample (AS) - During ST's recur-
rent localization, competitive processes at each level of 
the hierarchy, in a top-down progression, select the rep-
resentational elements that correspond to the attended 
stimulus. The purpose is to extract the information that a 
task might require and this is not always the information 
at the highest level, say at the level of object categories. 
Some tasks will require more detail, such as locations, or 
feature characteristics. In general, the AS is formally a 
subset of the full visual hierarchy, where there is a path 
from the top of the hierarchy to the earliest level, and 
where at every level, a connected subset of neurons with 
spatially adjacent receptive fields comprises the selected 
stimulus at that level of representation. The full AS then 
contains all the neurons that correspond to the selected 
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stimulus, which then specifically represent its retinotopic 
location that can be used to guide an eye movement. 

e. Fixation History Map (FHM) - This is a represen-
tation of 2D visual space larger than the visual field that 
combines the sequence of recent fixations with task spe-
cific biases. Locations that have been previously fixated 
decay over time through a built-in inhibition-of-return 
process or can be reinforced via task biases. This means 
that there will be a tendency to not fixate previously 
fixated locations unless there is a task-specific reason to 
do so (see Klein 2000). Task influence, then, modulates 
the impact that fixation history has on the representation 
from which next the fixation target is selected. The FHM 
is centered at the current eye fixation and represents 2D 
space in a gaze-centered system. The FHM is updated on 
each fixation with an associated saccade history shift 
with direction and magnitude opposite to the trajectory 
of the eye movement so that correct relative positions of 
fixation points are maintained (Colby & Goldberg, 1999; 
Duhamel et al., 1992; see also Zaharescu et al., 2004, 
Wloka 2012). In essence, the FHM is a type of short-
term memory. A possible neural correlate may be the 
frontal eye fields (FEF). Tark and Curtis (2009) found 
evidence for FEF to be an important neural mechanism 
for visual working memory and represents both retinal 
and extra-retinal space, just as we need. 

Just to provide one example of task modulation, con-
sider an instruction to an experimental subject to main-
tain fixation to within a 2° window (corresponding to 
point b of the concluding paragraph on the section titled 
Fixation Change Targets the Fovea). This could be 
translated into a spatial preference for the image center 
in the representation of FHM, and thus modulate the 
priority map by suppressing its contents outside the ac-
ceptable fixation window. Thus, even if the central atten-
tional map gives strong response to a target, for exam-
ple, at 10° eccentricity, that will be suppressed in the 
priority map and not trigger an eye movement. The only 
eye movements that would be considered by the control-
ler are those within the acceptable window. But, as noted 
earlier, these are the ones typically ignored by the exper-
imenter (see footnote 1), and thus processing would be 
labeled as covert even though attentional microsaccades 
might be executed. 

f. RF Remapping - The representations of peripheral 
attention, central attention, conspicuity, priority, loca-
tion, and fixation history are all in a gaze-centered coor-

dinate system. When gaze changes, the coordinates must 
be remapped to reflect the change and to cause all points 
to be corresponded appropriately. The RF Remapping 
process accomplishes this, taking as input the current 
eye and head pose, the previous gaze and the new gaze 
in order to compute a change vector for each point in the 
visual field of the FHM. This change need not apply to 
the other maps because the new gaze will refresh them. 
The algorithm for performing this was abstractly de-
scribed in Colby & Goldberg (1999) and Duhamel et al. 
(1992), and detailed computationally in Zaharescu et al. 
(2004) and Wloka (2012). The FHM is updated on each 
fixation with an associated saccade history shift with 
direction and magnitude opposite to the trajectory of the 
eye movement so that correct relative positions of fixa-
tion points are maintained. 

g. Conspicuity Map - The conspicuity map here is the 
closest to the saliency map of Koch & Ullman. It is the 
combination of the peripheral and central attention maps. 
White & Munoz (2011) advocate that the superior col-
liculus (SC) represents two largely independent struc-
tures with functionally distinct roles. One is consistent 
with the role of a salience map, where salience is defined 
as the sensory qualities that make a stimulus distinctive 
from its surroundings. The other is consistent with the 
role of a priority map (Fecteau and Munoz, 2006), where 
priority is defined as the integration of visual salience 
and behavioural relevance, the relative importance of a 
stimulus for the goal of the observer. Our conspicuity 
map corresponds to the former and our priority map, 
described next, the latter. This is not without controver-
sy, however. Miller & Buschman (2013), for example, 
suggest that bottom-up attention, salience, originates in 
LIP. There are other views also as was discussed in an 
earlier section. 

h. Priority Map - The priority map combines input 
from the conspicuity map, the fixation history map (to 
modulate conspicuity reflecting inhibition of return and 
task influences) and an egomotion representation. There 
is some evidence to support an egomotion representation 
in area 7a, a late stage of the dorsal motion processing 
stream (Siegel & Read 1997) and we have modeled this 
previously (Tsotsos et al. 2005). The egomotion repre-
sentation is included here in order to assist with pursuit 
eye movements. If the eye is pursuing a visual target, 
then this is reflected in a representation of full field mo-
tion. There is no focus of expansion/contraction, but 
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rather there is full field translation. This translation, di-
rection and speed, can act as a predictor of where to fix-
ate next in order to maintain pursuit. This prediction can 
then modulate the priority representation. It acts only as 
a modulator rather than a driver because there are situa-
tions where there might in fact be a higher priority tar-
get, say due to a surprise element appearing in the pe-
ripheral attention map.  The main decision of global Fo-
cus of Attention (gFOA) is made using the priority map, 
combining all of these components. Its use here seems 
closely related to the Priority Map of Fecteau and 
Munoz (2006).    

i. Visual Hierarchy - This is the usual hierarchy of 
visual areas, dorsal and ventral, involved in visual inter-
pretation, surveyed in Kravitz et al. (2013). In the figure, 
it is caricatured as a single pyramid but the model per-
mits a complex lattice of pyramid representations (see 
Tsotsos 2011). The hierarchy is supplemented with the 

Selective Tuning attention model that implements task-
guided priming, recurrent localization and selection of 
the central attentional focus (cFOA). Realizations of 
shape, object and motion hierarchies that include the 
attentional process are overviewed in Tsotsos (2011). 
The central attentional focus may be an object, a moving 
object, a larger component of a scene, a full scene, or 
may even be multiple items.  

 

An Example 

      A first demonstration of this control strategy follows, 
presented in several parts. It is important to note at the 
outset that not all of the structure in Figure 10 has been 
implemented at this time; there is no implementation of 
task influences and thus we demonstrate free-viewing 
performance only, the attentional sample is not included 
nor is it needed for the example since we do not have a 
high resolution task, and the pursuit cues are also not 
included, and again, not needed since the image is static.  

Figure 11. The painting Unexpected Visitors, by Ilya Re-
pin, used by Yarbus in his classic work on eye movements 
(Yarbus 1967). For our experiments we used a full colour 
version of size 1024x980 pixels. 

Figure 12. Seven records of eye movements by the same 
subject. Each record lasted 3 minutes. 1. Free examination. 
2. Estimate the material circumstances of the family in the 
picture; 3. Give the ages of the people; 4. Surmise what the 
family had been doing before the arrival of the 'unexpected 
visitor; 5. Remember the clothes worn by the people; 6. 
Remember the position of the people and objects in the 
room; 7. Estimate how long the 'unexpected visitor' had 
been away from the family. (From Yarbus 1967) 
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In order to create the demonstration we considered 
the corpus of available eye movement datasets on which 
standard models are evaluated, but concluded that they 
are not applicable and the kinds of quantitative metrics 
used for comparative evaluation of existing models can-
not be used (from a ground truth perspective there is an 
issue with exposure duration, and from a quantitative 

Figure 14. Yarbus shows the eye fixation tracks for seven 
individual subjects, each viewing the scene for 3 minutes 
without any instruction. (From Yarbus 1967) 

Figure 15. The figure shows recordings of 3 minutes of eye 
movements under free-viewing conditions, divided into 25-
second segments. The order follows the numbering of pan-
els. (From Yarbus 1967) 

Figure 13. Seven recordings of eye movement, both 
eyes free-viewing, from a single subject, at 1 to 2 day 
intervals, in chronological order. (From Yarbus 1967) 
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metric comparison, most metrics are heat-map based and 
do not take into account temporal sequence). For this 
first demonstration we are resigned to qualitative exam-
ples only. A classic qualitative example of eye move-

ment patterns is due to Yarbus (1967)5 who recorded 
scanpaths of subjects viewing the painting by Ilya Repin 

                                                
5 The figures we reproduce here are from the Russian edition, 
found widely on the web, because they are of much higher 
quality. А. Л. Ярбус. Роль движений глаз в процессе 
зрения. Наука, 1965. 

Figure 16. 720 fixations on the Repin painting for the following test configurations.  
Top: The scanpath generated by STAR on the Repin painting. In a manner not too dissimilar from the human scan 
    paths of Figure 12 (panel 1), Figure 13 and Figure 14, it is easy to see 'interest' in certain structures of the image. 
Middle Left:  The scanpath generated by the CAS algorithm on the Repin painting.  
Middle Right: The scanpath generated by the revised CAS algorithm that includes the same decay of IOR as STAR. 
Bottom Left: The scanpath generated by the AIM algorithm on the Repin painting.  
Bottom Right: The scanpath generated by the revised AIM algorithm that includes the same decay of IOR as STAR. 
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Unexpected Visitors (Figure 11). He published an inter-
esting variety of scanpaths, the best known and repro-
duced example is that for a single individual who was 
asked a variety of questions about the painting, in addi-
tion to being allowed to view it freely. This result is re-
produced in our Figure 12. Yarbus ran his experiments 
for 3 minutes, so if we assume 3-4 fixations per second, 
this means that he recorded perhaps 600 or 700 fixations 
per trial. From this figure, we compare qualitatively to 
the free-viewing scanpath (top right). Yarbus also pub-

lished several other experiments. One of these is the 7 
different free-viewing scanpaths generated by a single 
subject viewing the painting 7 different times, repro-
duced in Figure 13. In our Figure 14, Yarbus shows the 
eye fixation tracks for seven individual subjects, each 
viewing the scene for 3 minutes without instruction. The 
final Yarbus example is shown in Figure 15. There, he 
shows 7 consecutive 25-second fragments from a single 
subject free-viewing the painting. Yarbus did not pro-

Figure 17. Sub-sequences of the full 720 fixations that STAR executes on the paint-
ing. 103 fixations each, the top left being the first, followed by the second and third 
on the left, and the 4th, 5th and 6th on the right, from top to bottom. 
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vide any data regarding covert fixations or microsac-
cades in his work.  

For our demonstration the following are the pertinent 
parameters and computations, beyond what has already 
been described: 

a. Size of the image of the painting  - 1024x980 pix-
els.  

b. The size of the visual field is set to the size of the 
full image (1024x980 pixels), which is assumed to map 
onto a visual field 160 degrees wide (so approximately 

Figure 18.  Comparison of saccade distribution amplitudes. Note that the axes vary for each plot. 
Top Left: The frequency of saccades vs amplitude generated by human subjects in the free-viewing condition. Adapted from  
          Tatler et al. (2006). 
Top Right: The frequency of saccades vs amplitude generated by STAR. 
Middle Left: The frequency of saccades vs amplitude generated by CAS without IOR decay. 
Middle Right: The frequency of saccades vs amplitude generated by CAS with the same IOR decay as STAR. 
Bottom Left: The frequency of saccades vs amplitude generated by AIM without IOR decay. 
Bottom Right: The frequency of saccades vs amplitude generated by AIM with the same IOR decay as STAR. 
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160x153 degrees). Each of the representations other than 
the FHM and the central map are of this size. With a 
viewer sitting 57cm from the painting, this assumes the 
painting has been blown up to be approximately 6.5m 
wide. (Note that Yarbus did not specify his subjects' 
viewing distances). 

c. The radius of the "hole" in the peripheral attention 
map is 162 pixels (corresponding to 25° eccentricity).  

d. Inhibition of return (IOR) is applied as a cone of 
inhibition, the peak being maximal suppression at the 
point of previous fixation, and then a linear decrease in 
suppression to 50% at the edge of the cone with a diame-
ter of 10 pixels (approximately 1.5 degrees). The decay 
rate of the inhibition of return in the FHM was set so that 
any fixation added to the FHM would decay linearly 
within 100 fixations6. 

e. The size of the FHM is double that of the field of 
view. 

f. Size of the central map - The central attention map 
comprises the central portion of the visual field up to 
25.5° eccentricity, thus including a small overlap region 
with the peripheral hole. Values inside the overlap re-
gion are the point-wise maximum between the two 
fields. (This is an artifact of the implementation and has 
no theoretical significance). 

g. The peripheral attentional map was computed us-
ing an implementation of AIM based on log-Gabor fil-
ters at 8 orientations of 2 spatial scales across three col-
our opponency channels (Wloka 2012; Bruce et al. 
2011) 

h. The central attentional map was computed using a 
template-based search for faces, defined using an auto-
correlation function using the actual faces of the paint-
ing. This computation is not representative of ST's visual 
hierarchy but was used because there is no implementa-
tion of a set of general object recognizers for the kinds 
of items in this painting. Standard face recognition 
methods were ineffective, as was training a classifier 
using image patches from a variety of paintings, and 
gave responses to a wide variety of locations. It is thus 
important to not overstate the results of the comparison. 

                                                
6 The decay rate was empirically determined to give good 
performance; however, an exhaustive search of this parameter 
space was not done. The choice of linear decay was made for 
simplicity; other functions can easily be used. 

i. Although the digital image of the painting is repre-
sented with uniform spatial sampling, this would not 
allow a test of the impact of a space-variant input repre-
sentation as described in an earlier section. We devel-
oped a novel transform for converting the input stimulus 
to one with similar spatial sampling distribution for both 
rods and cones as the retina. Thus, the input to our fixa-
tion system is an approximation of a retinal sampling for 
a specified fixation point. The Appendix provides addi-
tional detail on this transform. 

As an added point of comparison, we ran the AIM 
and CAS algorithms (used also in a previous section) on 
the full Repin painting image and recorded their scan-
paths. The observations from these tests follow. 

1. Figure 16, top panel, shows 720 fixations, before 
the algorithm was terminated in order to show a similar 
number of fixations as Yarbus recorded. In the same way 
that the human free-viewing scanpaths all seem to have 
favorite locations where subjects returned to, so does the 
scanpath of STAR. It is this repeated fixation pattern that 
allows one to imagine a purpose behind the observa-
tions. 

2. The middle left panel of Figure 16 shows the re-
sults for the CAS algorithm. It is difficult to see any sim-
ilarities or patterns between the CAS result and any of 
the single or group human scanpaths in the free-viewing 
condition. At an abstract level, the CAS fixations seem 
without purpose, while the human ones seem to exhibit 
some purpose even in free-viewing.  

3. The bottom left panel of Figure 16 shows the re-
sults for the AIM algorithm. As with CAS, it is difficult 
to see any similarities or patterns between the AIM re-
sult and any of the human scanpaths in the free-viewing 
condition. 

4. We wanted to check if the simple addition of IOR 
decay would make a significant difference to the scan-
paths of AIM and CAS. We added exactly the same de-
cay as STAR to both and the results are shown in the 
middle and bottom right panels of Figure 16. The pat-
terns do differ; however, it is still difficult to discern any 
purpose from those scanpaths. Both seem to be just 
much more of the same. Although not conclusive, it does 
appear if the simple addition of a decaying IOR cannot 
on its own explain the differences. 
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5. We can compare the STAR scanpath not only to 
the free-viewing condition, but also to the target condi-
tion for question 3: Give the ages of the people. On the 
assumption that an observer would focus on faces in 
order to judge age, it is clear that the STAR scanpath in 
Figure 16, by virtue of its method of computing the cen-
tral attentional map, could have been generated by a 
human observer. 

6. We examine sub-sequences of fixations, as did 
Yarbus. STAR's fixations are divided into segments of 
103 fixations (1/7th of the full 720 fixation sequence) in 
Figure 17. The sub-sequences of STAR appear rather 
similar to those of the human observer, so much so that 
if there were inter-changed it would be difficult to tell 
them apart. 

7. Finally, we were curious to see the ranges of sac-
cade amplitudes STAR produces. Tatler et al. (2006) 
present an experimental profile of saccade frequency vs 
amplitude. Part of their Figure 1 is adapted here as Fig-
ure 18 (top left panel). STAR's equivalent distribution, 
measured in degrees of visual angle as well, is in the top 
right panel. The similarity is remarkable and predicts 
that if Tatler et al. had plotted the higher amplitudes they 
may have found a sharply rising profile. By contrast, the 
same plots for the CAS and AIM algorithms, both with 
and without IOR decay, seem entirely unrelated to the 
experimental findings. 

It is important to be reminded that these are abstract 
and qualitative conclusions and that a more quantitative 
procedure is needed to determine how effective STAR 
might be. It is our immediate goal to develop such a pro-

Figure 19. A snapshot of the contents of the representations STAR uses for fixation control. The representations are placed in the 
same position as in Figure 10 to enable quick identification. This is the computation of the 284th fixation of the scanpath in Figure 
16 and in the accompanying video. The peripheral attention map shows the result of the AIM algorithm on the periphery of the visu-
al field. The central attention map shows the results of the template matching. The two are combined in the conspicuity map. The 
priority map has the interesting representation of the modulated conspicuity map, with the modulation coming from the fixation 
history map. The small red oval on the priority map denotes the selected global focus of attention (gFOA). The receptive field re-
mapping is shown in the top right corner representation, with the update vector that is applied to all positions of the fixation history 
map shown in red. Note that the computation of each representation includes a normalization component, and this explains why the 
ranges of gray scales across the representations vary. The accompanying video shows a sequence of several fixation computations 
(fixations 283 - 293) where the changes in each map from fixation to fixation can be observed. 
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cedure. In the meantime however, we are encouraged by 
the similarities with human observers and by the differ-
ences with well-known saliency methods.  There is one 
more dimension to this performance demonstration that 
has value but a different form. Figure 19 shows a snap-
shot of the contents of the relevant representations dur-
ing the processing of the scanpaths seen in the top panel 
of Figure 16, specifically the 284th fixation in the se-
quence of 720. An accompanying video shows fixations 
283 - 293 including this one.  It is important to note that 
although this demonstration depicts sequentially chang-
ing representations, the reality of the system is that rep-
resentations and changes to them have a continuous and 
dynamic nature. Our depiction is intended to make clear 
the temporal progression and is accordingly simplified. 

The peripheral attention map shows the result of the 
AIM algorithm on the periphery of the visual field (>25° 
eccentricity). The central attention map shows the results 
of the template matching within the central visual field. 
The two are combined in the conspicuity map. The prior-
ity map has the interesting representation of the modu-
lated conspicuity map, with the modulation coming from 
the fixation history map. Selection of the next fixation 
occurs using this map and in this example, is shown with 
a small red oval. The fixation history map shows the 
locations that have been previously fixated, and as seen 
in the video is updated to always be centered at the point 
of gaze. There are no task influences in this example, but 
it would be easy to imagine the effect of very simple 
ones, such as 'prefer stimuli in the top left of the image' 
(locations not in the top left quadrant would appear with 
reduced brightness). The resulting representation - a 
complex interplay of location preference, history of pre-
vious fixations with decaying IOR, and remapping of 
coordinate systems - could provide insight into how the-
se key aspects of eye movement behavior combine. The 
receptive field remapping shows the update vector (the 
red arrow) that is applied to all positions of the fixation 
history map. 

The model is not dependent on the use of our particu-
lar saliency model, AIM, or on the method for compu-
ting the central focus. Other saliency methods or other 
categorization systems can be inserted into the overall 
architecture and their results examined. In fact, it would 
be expected that improvements to its components would 
lead to better overall performance. 

Each of the depicted representations stands as a pre-
diction for the patterns of responses of some potential 
neural correlate. It may be that the particular suggestions 
we present above as correlates are not the correct ones, 
but from a functional point of view, these representa-
tions do seem to suffice for the task.  It is not common 
that realistic depictions of the contents of intermediate 
representations within a complex visual computation can 
be so inspected. But that is exactly the point here. Our 
explicit computational approach (as opposed to other 
approaches that may be less deterministic) permits us to 
observe how a representation evolves, how changes in 
input affect it, how each relates to the others, and how 
decisions are made based on them.  

 
Conclusions 

We have presented a novel view of the functional re-
lationship among visual attention, interpretation of visu-
al stimuli, and eye movements. The focus has been on 
one component, how selection is accomplished for the 
next fixation. We provided arguments that a cluster of 
conspicuity representations drives selection, modulated 
by task goals and history. The model embodies a hybrid 
of early and late attentional selection. In comparison to 
the algorithm embodied by the saliency map model 
(Koch & Ullman 1985; Itti & Koch 2001; Itti et al. 
1998), which has enjoyed tremendous utility in practice 
and popularity as an element of important models, might 
seem overly complex. In fact, their model is embedded 
within ours - STAR subsumes it. For visual stimuli 
where early selection might suffice7, where there is little 
competition among different kinds of stimuli, where 
fixation history can be safely ignored, and where physi-
cal constraints such as photoreceptor distributions and 
the boundary problem in a hierarchical representation 
can be ignored (possible if early selection suffices and 
all stimuli of relevance are presented foveally), STAR 
should behave much like a standard saliency map model. 
After all, it includes one of the standard benchmark 
models, AIM, as an integral component. The reality is 
                                                
7 Recall Marr's assumption on p. 97 of his classic volume, 
when describing grouping processes and the full primal sketch. 
He says, "our approach requires that the discrimination be 
made quickly - to be safe, in less than 160ms - and that a clear 
psychophysical boundary be present" (Marr 1982). This is the 
assumption that must be true in order to ensure that early se-
lection will suffice. The problem is that this represents only a 
small part of the normal everyday visual experience. 
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that the exceptions to these assumptions are many and 
represent most of normal everyday perception. Further, 
as was pointed out above, an early selection model alone 
may not suffice for all stimuli even if Marr's basic as-
sumption (Marr 1982) is true (such as the non-target 
stimuli of Thorpe). And for those, STAR proposes a 
solution where the saliency map model has none. 

Generally, our goals are quite similar to those of Tat-
ler et al. (2011), who also critique the single-image sali-
ency map view. They derive a new model based on re-
ward maximization and uncertainty reduction that can 
easily be considered a "sister view" to ours in that they 
begin with an analysis of the assumptions underlying the 
saliency map model. However, they consider different 
aspects to those we do, and put less emphasis on more 
basic components, like physical architecture. They intro-
duce learning and reward issues as solution, which are 
beyond the scope of our work and in fact, are higher-
level concepts that we do not need at this point in our 
development. These are, however, relevant for future 
work and it would be a productive exercise for the "sis-
ters" to meet and become better acquainted. On the other 
hand, it is important to point out that our perspective 
shows that we believe the problems with the saliency 
map view are of a more fundamental nature. 

The performance differences between STAR and sa-
liency map models can be attributed to a number of fac-
tors. A simple difference is the inclusion of IOR with 
decay in STAR. This can be easily added to other sali-
ence map models but does not suffice on its own to 
make the result competitive to STAR, as our test has 
shown. Likely the difference with greatest impact is the 
combination of early and late selection strategies and 
perhaps it is the inclusion of late selection that gives 
STAR an appearance of purpose, as can be observed in 
the human scanpaths. A third difference is that the mod-
ulation of the representation from which selection is 
made is from a source representation larger than the vis-
ual field, thus acting as a kind of short-term memory. 
This modulation further contributes to the appearance of 
purpose since generated fixations reflect the memory of 
sequences of previous fixations. Fourthly, we include a 
realistic representation of retinal input with a novel pho-
toreceptor distribution transform (described in the Ap-
pendix). This differs from other models that use the uni-
form distribution that accompanies digital images. At the 
very least, it is important to investigate the impact when 

comparing to human eye movement patterns. Finally, in 
STAR, each fixation brings a new conspicuity ranking 
within the visual field whereas in the standard saliency 
model, the ranking is unchanged by subsequent fixa-
tions. There, no new image elements appear as a result 
of fixation, something that does not correspond to real 
eye movements.  

We provide a unique solution to covert fixations. 
Covert fixations are typically considered as changes to 
attentional focus without eye movements, and as men-
tioned previously, are usually discerned by the inference 
that since an experimental subject is correctly perform-
ing a task that is not at the point of fixation they must be 
attending to that location. The only eye movements al-
lowed are typically those within one or two degrees of 
the fixation point. This long-held view poses problems 
when one moves to a finer level of descriptive abstrac-
tion: how is the drastic change in spatial acuity dealt 
with and do those allowed small eye movements have 
any meaning? In STAR, there are two forms of fixation 
change that fall within the classic view just described. A 
true covert fixation is one where the target is not near the 
fovea, where the task-specific need for spatial resolution 
is sufficiently low, and where the observer has the 
choice as to how to fixate that target. An attentional mi-
crosaccade is an eye movement that is small (up to 1-2° 
visual angle as normally defined), to a target where high 
spatial resolution is important to the task and the observ-
er has the choice as to how to fixate the target. These are 
in contrast to corrective microsaccades where the ob-
server has no choice and which occur automatically in 
order to maintain the center of the fovea where the atten-
tional system wants it to be (i.e., to correct for errors due 
to drift, noise or other misplacements). In all other cases, 
a normal saccade (an overt fixation change) is executed 
to achieve the attentional change. This view implies that 
past research on covert fixations may need to be re-
examined. 

Timing of computations and communications across 
this network of representations is important, and one 
temporal constraint has already been mentioned. As a 
general rule, when two representations are combined 
into a third, it is required that the computations that de-
termine them complete before the computation that de-
termines their combination begins. Looking at the visual 
hierarchy first, and following the ST process (Tsotsos 
2011), ST priming occurs in advance of a stimulus and 
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needs about 100ms to be put in place via a top-down 
pass of the hierarchy. ST selection of the cFOA occurs 
as soon as the first feedforward pass completes (about 
150ms after stimulus onset), and the ST Recurrent Lo-
calization process occurs after ST Selection and requires 
time equivalent to the time for a downward traversal 
through most of the hierarchy (about 100ms). Boehler et 
al. (2009) show convincing MEG evidence of this 
downward traversal. While all of this is occurring, the 
computation of the peripheral attention map can begin as 
early as when V1 representations appear on the first 
feedforward pass after stimulus presentation. The com-
putation of the conspicuity map can begin as soon as the 
cFOA is available, roughly just after the feedforward 
pass. Finally, the attentional sample, as mentioned earli-
er, should be available once the gFOA is computed and 
the decision to move the eye is made. Future work will 
test this timing pattern experimentally. 

One of Kowler's research questions remains intri-
guing, namely, how do we maintain the percept of a 
clear and stable world despite the occurrence of sac-
cades? On its own, STAR does not provide an answer, 
however, it may point in a promising direction. It is like-
ly true that in order to maintain the percept of a stable 
world, the processing of each scene snapshot created by 
each saccade must leave something behind. That is, each 
snapshot is not processed independently of the others 
and the percepts extracted are not discarded. They must 
contribute to an accumulation of percepts in some man-
ner so that the stable world we feel we see is continually 
constructed and updated. This implies some form of vis-
ual short-term memory. The specification of STAR in-
cludes elements of this kind (see Tsotsos & Kruijne 
2014), although they are in early stages of development 
and currently far from providing what Kowler seeks. In 
what has been presented here, the Fixation History Map 
and the Attentional Sample play roles to this end in that 
the former provides a memory of locations fixated over a 
visual region larger than the retina and the latter pro-
vides the visual details extracted for each of those fixa-
tions. These representations are integral components of 
the overall perceptual system in that their contents di-
rectly impact what is perceived next. The joint action of 
representing what has been seen and using that represen-
tation to affect what is seen next seems important for 
moment-to-moment stability of perception. There is still 
far to go but we suspect elements of these kinds will be 
important contributors to answering Kowler's question. 

A complete specification of STAR is far beyond the 
scope of this paper (but most elements can be found 
within Zaharescu et al. 2004; Bruce & Tsotsos 2009; 
Tsotsos 2011; Wloka 2012; Wloka & Tsotsos 2013; 
Rothenstein & Tsotsos 2014; and Tsotsos & Kruijne 
2014). Even so, some components remain work for the 
future (such as the box labeled 'controller' of Figure 10 
or the specific representations of the endogenous influ-
ences of that figure). In addition, this demonstration of 
STAR's performance is admittedly less than ideal. In a 
subjective way, one can easily see similarities between 
STAR and human fixation scanpaths. However, neither 
the similarities nor the differences are quantified and this 
will hopefully be remedied very soon. Nevertheless, the 
demonstration features not only its ultimate output, fixa-
tions, but perhaps more importantly, a magnifying glass 
into what exactly all of the representations that contrib-
ute to that output might look like, something not seen in 
other models. These stand as predictions for potential 
functionality in corresponding neural correlates. 

It is important to be appropriately careful about the 
various neural correlates of algorithmic representations 
described in this paper. Many brain areas have been 
found to have multiple functions (for example, area V6A 
to which we connect to our central attentional field - see 
Galletti et al. 2010). Attentional shifts of the form that 
would be evident in our central attentional field have 
been observed not only in monkey V6A but also in hu-
mans (Ciavarro et al. 2013). Although aspects of atten-
tional behavior were found, other dimensions of behav-
ior were also detected. In this particular case, one could 
imagine this area not only representing visual attentional 
influences but also integrating attentional influences 
from other sensory modalities into a coherent view, 
which then goes on to drive selection as we describe. 
Other brain areas we mention have also been found to 
contain representations for other functions. Our corre-
spondences are not meant to imply a single function to 
any particular area, but rather to suggest one function 
among others. 

STAR provides a substrate for a richer exploration of 
how attention and eye movements are related than possi-
ble with other models because it is explicitly designed to 
be an integrative framework. It delivers what we stated 
as a goal in the beginning: additional levels of detail to 
the conceptual springboard provided by Kowler and 
Krauzlis.  It is a fully computational framework that can 
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be tested with real images (and image sequences) with 
no hidden representations or statistically inscrutable el-
ements, generating fixations that can be fully analyzed 
and providing the full sequence of representations than 
can also be inspected, analyzed and used to drive exper-
imental testing. It is certainly the case that the specific 
representations presented will require many refinements; 
however, the framework offers the ability to understand 
why those refinements will be needed. 
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APPENDIX A - Retinal Filter 

 
      Commonly used algorithms for foveation first build 
a visual pyramid and then for each pixel sample the ap-
propriate level depending on the distance from the center 
of gaze. For example, this approach is used in (Brainard 
1997, Itti 2004, Geisler & Perry 1998). However, this 
algorithm models only cone vision. We propose to aug-
ment it with rod vision for a more biologically accurate 
result. For our implementation we use the model by 
Geisler and Perry (cones) and combine it with the rod 

distribution provided in Watson (2014). The rod distri-
bution cannot be directly used in our implementation 
since it uses different units - cell counts instead of the 
levels of visual pyramids. Therefore, we adjust the pa-
rameters of the rod distribution using data from Øster-
berg (1935) as a guide. The assumption here is that a 

Figure A.2.   Foveated image obtained using the algorithm 
in Geisler and Perry with modifications that make resolu-
tion fall-off more smoothly toward the periphery. 

Figure A1. Plot showing the levels of visual pyramid sam-
pled for each pixel depending on the distance from the center 
of the fovea and the type of distribution (rods or cones). 

Figure A.3. Foveated image obtained by augmenting result 
of Geisler and Perry algorithm with rod distribution. Since 
rods do not contribute to color vision, only the luminance 
channel has been affected (rods account for 30% and 
cones for 70% of spatial resolution). 
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larger density of receptors corresponds to higher spatial 
resolution and hence to a less blurry level of visual pyr-
amid.  
 
    The plot in Figure A.1 shows pyramid levels sampled 
depending on the distance from gaze point in degrees of 
visual angle. The plots for rods and cones approximate 
plots for density of receptors seen in Østerberg (1935). 
The visual pyramid is coarsely discretized (9 levels, 
where each is half the size of the previous one); addi-
tional modifications are made to the original distribu-
tions to compensate for it. The values of the cone distri-
butions are clamped to ensure the fovea size of 2.5 de-
grees of visual angle. Otherwise, the cones function has 
a sharp peak and due to interpolation between the pyra-
mid layers most of the pixels in the fovea are sampled 
from the middle of the pyramid, where resolution is low-
er. In addition, the cones distribution is raised to a power 
of 0.4 to make the resolution drop-off smoother. Since 
the maximum value of rods distribution is higher than 
that of cones, it is clamped accordingly. 
   For our implementation we make several assumptions: 
1) there is a linear dependency between the number of 
receptors and spatial resolution, 2) this dependency is 
the same for both type of receptors. In order to simplify 
the model we omit the blind spot and only use the rod 
distribution for the temporal periphery. Since rods do not 
contribute to color vision, we convert the image to the 
YCbCr colorspace. Foveation using cones function is 
performed on all three channels and rods function is only 
applied to the luminance channel. The luminance chan-
nel in the final image is a linear combination of fovea-
tion results using rods and cones functions contributing 
30% and 70% respectively. These weights are based on 
the assumption that indoor viewing conditions border 
between mesopic and photopic vision and that rods are 
not fully saturated (Stockman & Sharpe 2006). 
 
    Figure A.2 shows the foveated image using only the 
cone distribution and Figure A.3 demonstrates the effect 
of adding rods on spatial resolution in the image periph-
ery. This image covers a field of view of 160 degrees 
visual angle at a viewing distance of 0.57m. In order to 
use the image with original dimensions 1024 x 980 px, 
we increase the dotpitch (size of a pixel on the monitor) 
to 0.0063m. More examples can be seen in the accom-
panying video. 
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