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 Introduction 

Eye movements have been successfully employed to 

uncover cognitive processes that subserve naturalistic 

reading. Researchers who have been studying eye move-

ments have been able to give us very precise models of 

eye movements along with establishing the link between 

eye movements and the underlying cognitive processes 

(see e.g. Rayner, 1978, 1998; also see, Clifton, Staub, & 

Rayner, 2007; Vasishth, von der Malsburg, & Engel-

mann, 2012). 

An eye-tracking corpus typically comprises of natu-

ralistic text with eye movement information of all the 

words that make up the text. Eye-tracking corpora have 

been used extensively in the area of reading research to 

model eye movement control in English and German 

(Reichle, Rayner, & Pollatsek, 2004; Engbert, Nuthmann, 

Richter, & Kliegl, 2005; Kliegl, Nuthmann, & Engbert, 

2006; Kennedy, 2003; Schilling, Rayner, & Chumbley, 

1998). For example, using the Potsdam Sentence Corpus, 

Kliegl et al. (2006) showed a significant effect of word 

frequency, word predictability and word length on fixa-

tion durations in German. Their work also argued for a 

distributed nature of word processing (cf. Reichle et al., 
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2004). The Potsdam Sentence Corpus consists of 144 

German sentences with fixation duration data from 222 

readers. The Dundee eye-tracking corpus (Kennedy, 

2003) is another popular eye-tracking corpus for English. 

It contains eye-tracking data for 10 participants on 51,000 

words of newspaper text in English. 

While these corpora have played an important role in 

the reading research, they have also been used to investi-

gate processing theories using naturalistic text in psycho-

linguistics (e.g. Fossum & Levy, 2012; Frank & Bod, 

2011; Mitchell, Lapata, Demberg, & Keller, 2010). In 

particular they have been used to test both expectation-

based (Hale, 2001; R. Levy, 2008) and working memory 

based theories (Gibson, 2000; Lewis & Vasishth, 2005) 

of sentence processing. For example, Demberg and Kel-

ler (2008), while investigating the Dundee eye-tracking 

corpus found that dependency locality theory (DLT) 

(Gibson, 1998) successfully predicts reading times for 

nouns. They also found that an unlexicalized formulation 

of the surprisal metric (Hale, 2001) predicts reading times 

of arbitrary words in the corpus. Similarly, M. Boston, 

Hale, Kliegl, Patil, and Vasishth (2008) used the Potsdam 

Sentence Corpus and found that surprisal models all 

fixation measures as well as regression probability in 

their data. Further, M. F. Boston, Hale, Vasishth, and 

Kliegl (2011) used the same Potsdam Sentence Corpus to 

show that retrieval cost (Lewis & Vasishth, 2005) is 

effective in modelling reading times only at a higher 

degree of parser parallelism. More recently, Frank, 

Monsalve, and Vigliocco (2013) have constructed an eye-

tracking corpora that is intended to serve as the gold 

standard for testing psycholinguistic theories for English. 

The data comprises of 361 independently interpretable 

sentences from a variety of genres; these sentences have 

different syntactic constructions and therefore the text is 

meant to be representative of English syntax. 

While the relevance of eye movement has been 

known in the psychology and psycholinguistics literature 

for some time, it is only recently that eye movement data 

are being used in various natural language processing 

applications. For example, Barrett and Søgaard (2015a) 

used fixation patterns and fixation durations to automati-

cally predict part-of-speech categories of words in a sen-

tence. The key insight for this work is that reading re-

search has demonstrated that fixation duration can corre-

late with word properties such as its category, e.g. func-

tion words are generally skipped while reading. Similar 

insights were used by them to also predict grammatical 

functions during parsing (Barrett & Søgaard, 2015b). 

While the use of fixation duration for predicting part-of-

speech tags and grammatical functions is quite intuitive, 

some researchers have been able to exploit eye-tracking-

based features for as varied a task such as modelling 

translation difficulty (Mishra, Bhattacharyya, & Carl, 

2013), sentiment annotation complexity (Joshi, Mishra, 

Senthamilselvan, & Bhattacharyya, 2014), sarcasm detec-

tion (Mishra, Kanojia, & Bhattacharyya, 2016), and sen-

tence complexity (Singh, Mehta, Husain, & RajaKrish-

nan, 2016). These works show that reading data is quite 

rich and has subtle eye movement patterns can be very 

useful in various applications. 

Similar to the work on English and German (M. Bos-

ton et al., 2008; Demberg & Keller, 2008), in a recent 

work, Husain, Vasishth, and Srinivasan (2015) used an 

eye-tracking corpus to investigate sentence processing in 

Hindi. They created the Potsdam-Allahabad Hindi Eye-

tracking Corpus which contains eye movement data from 

30 participants on 153 Hindi sentences. They used this 

corpus to show that during Hindi comprehension word-

level predictors (syllable length, unigram and bigram 

frequency) affect first-pass reading times, regression path 

duration, total reading time, and outgoing saccade length. 

Longer words were associated with longer fixations and 

more frequent words with shorter fixations. They also 

used two high-level predictors of sentence comprehen-

sion difficulty, integration and storage cost (Gibson, 

1998, 2000), and found a statistically significant effect on 

the ‘late’ eye-tracking measures. 

The significant effect of storage cost in Husain et al. 

(2015) is interesting because it is the first evidence in 

favor of this metric in a naturalistic text using the eye-

tracking paradigm. Storage cost characterizes the effort 

required to maintain predictions of upcoming heads in a 

sentence. On the other hand, current evidence for predic-

tive processing in head-final languages such as Japanese, 

German and Hindi support the predictions of the surprisal 

metric (Hale, 2001). The surprisal metric is quite distinct 

from the storage cost. Surprisal is defined as the negative 

log probability of encountering a word given previous 

sentential context. In this study we investigate the contri-

bution of these two expectation-based metrics, namely 

storage cost and surprisal, using the Hindi eye-tracking 

corpus. While Husain et al. (2015) investigated the effect 

of integration cost in their study to capture working 
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memory constraints during sentence comprehension, we 

also explore the effectiveness of an alternative working-

memory cost – the cue-based retrieval cost (Lewis & 

Vasishth, 2005). 

Finally, we discuss the role of parser model assump-

tions, i.e. the parsing algorithm, feature set etc. on the 

model predictions. In order to do this we use the comput-

ed surprisal to model reading times of a self-paced read-

ing experiment (Husain, Vasishth, & Srinivasan, 2014). 

The reading time data in this SPR experiment is support-

ed by predictions made by the surprisal metric. We there-

fore wanted to test if the experimental data can also be 

explained by the automatically computed surprisal val-

ues. 

Predictive processes in language 

comprehension 

It has long been argued that human sentence pro-

cessing is predictive in nature (W. Marslen-Wilson, 1973; 

W. D. Marslen-Wilson & Welsh, 1978; Kutas & Hillyard, 

1984). Recent work in sentence processing has conclu-

sively established that prediction plays a critical role 

during sentence comprehension (Konieczny, 2000; Hale, 

2001; Kamide, Scheepers, & Altmann, 2003; R. Levy, 

2008), but see Huettig and Mani (2016). While the pre-

dictive nature of the processing system has been estab-

lished, the exact nature of this system is still unclear 

(1) Subject Relative: 

The reporter who sent the photographer to the ed-

itor hoped for a good 

(2) Object Relative: 

The reporter who the photographer sent to the ed-

itor hoped for a good story 

It has been proposed that a comprehensive theory 

should not only appeal to predictive processing but also 

be able to simultaneously account for working memory 

constraints. For example, in his eye-tracking study inves-

tigating processing difference in English object vs subject 

relative clauses such as (2) and (1), Staub (2010) finds 

evidence for both expectation-based processing and local-

ity constraints. But these opposing effects are seen at 

different regions in object relatives. While evidence for 

surprisal theory is seen at the first noun after the relative 

pronoun, locality-based effect (which have been argued 

to reflect working memory constraints) is seen as pro-

cessing slowdown at the relative clause verb. This sug-

gests that both types of processing accounts are needed in 

order to capture the experimental data. This idea has been 

further corroborated by many studies (e.g. R. P. Levy & 

Keller, 2013; Vasishth & Drenhaus, 2011; Husain et al., 

2014). Husain et al. (2015) also found the effect of work-

ing memory constraints (in terms of integration cost) as 

well as prediction (in terms of storage cost) in a Hindi 

eye-tracking corpus. However they did not test for sur-

prisal which is an important metric that captures predict-

ability. Given that both storage cost and surprisal quanti-

fy the predictive processes during comprehension and 

considering the fact that surprisal has considerable sup-

port from experimental work in various languages (in-

cluding Hindi), we wanted to explore the relative contri-

bution of these metrics in the Hindi eye movement data. 

Surprisal 

Surprisal assumes that sentence processing is accom-

plished by using a probabilistic grammar. Using such a 

grammar the comprehender can expect certain structures 

based on the words that have been processed thus far. 

The number of such probable structures becomes less as 

more words are processed. Intuitively, surprisal increases 

when a parser is required to build some low probability 

structure. Following M. Boston et al. (2008), we compute 

surprisal using prefix probabilities. For a given probabil-

istic grammar G, we define prefix probability at the ith 

word (αi) as the sum of probabilities of all partial parses 

(d) until the ith words. Surprisal at the ith word then is the 

logarithm of the ratio of prefix probability before and 

after seeing the word. Surprisal is always positive and in 

general, unbounded. In our computation, we only take the 

top k parses based on their likelihoods at each word to 

compute αi. 

𝛼𝑖 =  ∑ 𝑃𝑟𝑜𝑏(𝑑)
𝑎𝑙𝑙 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑑 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑 𝑏𝑦 𝐺

𝑙𝑒𝑎𝑑𝑖𝑛𝑔 𝑡𝑜 𝑖 

 

𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙(𝑖) = log(
𝛼𝑖−1

𝛼𝑖

) 

(3) dilli   meediaa kaa   makkaa-madinaa hai 

Delhi media    GEN Mecca-Medina     is 

‘Delhi is the epicenter of the media (in India).’ 
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Table 1 

Surprisal (k = 3) at different words for the sentence dilli meedi-

aa kaa makkaa-madinaa hai – ‘Delhi is the epicenter of the 

media (in India).’ 

Word Gloss αi Surprisal 

dilli Delhi 1 0.00000 

meediaa Media 0.99997 0.00003 

kaa GEN 0.9985 0.00148 

makkaa- Mecca- 0.3134 1.15865 

madinaa Medina   

hai Is 0.2713 0.14419 

 

In sentence (3), the α (which is defined as the sum of 

probabilities of the top k parses) decreases as the sentence 

progresses, while the negative logarithm of the probabil-

ity increases monotonically. Surprisal, thus is the differ-

ence of this increasing series. As mentioned previously, 

there is considerable cross-linguistic support for surprisal, 

both from eye-tracking data (Demberg & Keller, 2008; 

M. Boston et al., 2008; M. F. Boston et al., 2011) as well 

as from experimental work in (among others) English 

(e.g. Staub, 2010), German (e.g. Vasishth & Drenhaus, 

2011; R. P. Levy & Keller, 2013) and Hindi (e.g. Husain 

et al., 2014). 

Storage Costs 

Storage cost (along with integration cost) is a metric 

proposed by Gibson (2000) as part of Dependency Local-

ity Theory (DLT). Storage Cost characterizes the pro-

cessing load incurred as a result of maintaining predic-

tions of upcoming heads in a sentence. To illustrate the 

diverging predictions of surprisal and storage cost, con-

sider the following example: 

(4) deepika     ko   shaam     se      abhay  ne  

Deepika ACC evening INST Abhay  ERG 

fona   nahi  kiyaa hai 

phone not   did     PRES 

‘Abhay hasn’t called Deepika since evening’ 

The storage cost at deepika ko is 1 as a verb is pre-

dicted at this point in order for this sentence to end 

grammatically, this storage cost remains constant as new 

arguments are encountered before the verb. When the 

verb (fona kiyaa hai) is encountered the storage cost 

become 0. Surprisal will predict a processing cost at 

encountering abhay ne because encountering a noun 

phrase with an Ergative case at this position is rare (6% 

of the 175 Ergative-Accusative word order instances in 

the treebank had non-canonical word-order). 

There is some evidence for storage cost from experi-

mental data in English (Gibson, 1998; Chen, Gibson, & 

Wolf, 2005) and from the eye-tracking data in Hindi 

(Husain et al., 2015). 

Methodology 

Following, Husain et al. (2015) we analyze the effect 

of certain word-level and sentence-level predictors on the 

eye-tracking measures. Below we list these dependent 

and independent variables. Finally, we discuss the parser 

details used to compute the surprisal values. 

Variables 

Independent Variables/Predictors. All the predictor 

used in the Husain et al. (2015) study are used in this 

study as well. Syllable length, word complexity, unigram 

and bigram frequencies are used as word-level predictors. 

Integration cost and storage cost were the sentence-level 

predictors. The details of the computation of these predic-

tors can be seen in Husain et al. (2015). In addition we 

also use lexical surprisal for each word as a sentence-

level predictor. 

All predictors were scaled; each predictor vector (cen-

tered around its mean) was divided by its standard devia-

tion. 

Dependent Variables (Eye-tracking Measures). 

Again, following Husain et al. (2015), we present anal-

yses for one representative first-pass measure – first-pass 

reading time, and two representative measures that often 

show the effects of sentence comprehension difficulty – 

regression-path duration and total reading time (Clifton et 

al., 2007; Vasishth et al., 2012). First Pass Reading 

Time/Gaze Duration on a word refers to the sum of the 

fixation durations on the word after it has been fixated 

after an incoming saccade from the left, until the word on 

the right is seen. Regression Path Duration/Go-Past 

Duration is the sum of all first-pass fixation durations on 

the word and all preceding words in the time period be-

tween the first fixation on the word and the first fixation 

on any word right of this word. Total Fixation Time is the 

sum of all fixations on a word. 
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In our study, storage cost was computed manually.1 

To estimate surprisal, we used an incremental transition-

based parser. We implemented our own probabilistic 

incremental dependency parser in Python. The code for 

the parser is freely available online: 

https://github.com/samarhusain/IncrementalParser. 

Parsing Algorithm and Implementation Details 

We use the incremental transition-based parsing algo-

rithm (Arc-Eager) (Nivre, 2008) to parse sentences in 

order to compute surprisal values for each word in a sen-

tence. This is similar to the approach of M. F. Boston et 

al. (2011). However, unlike them we compute lexicalized 

surprisal. This is because an unlexicalized dependency 

parser for Hindi has very poor accuracy. We used the 

sentences in the Hindi-Urdu treebank (HUTB) (Bhatt et 

al., 2009) to train our parser. See Appendix for more 

details on the training data and parser accuracy. 

A state in a transition-based parser comprises of (a) a 

stack, (b) a buffer, (c) a word position index, and (d) the 

partial parse tree. Arc-Eager is a transition-based parsing 

algorithm that allows four transitions to go from one state 

to the other. These states are LEFTARC, RIGHT-ARC, 

REDUCE and SHIFT. A transition may modify the stack, 

and/or the parse tree and/or may increment the index by 

at most one count. Not all transitions are allowed on all 

states. Before the parsing begins, the starting state con-

sists of an empty stack, the buffer contains all the words 

of the sentence to be parsed, index is initialised to zero 

and since no structure has been formed yet, we have an 

empty parse tree. As part of the parsing process, transi-

tions are applied incrementally till we reach a state where 

the parse tree is complete, or no transition is allowed on 

the state. 

Our parser starts with the starting state mentioned 

above. In the first step, it creates a set of states that can be 

achieved by applying only one transition to the starting 

state. For example, we can use SHIFT to transfer the first 

word from the buffer on to the stack. In the second step, 

we create a set of states that can be achieved by applying 

only one transition to those states in the previous set, 

where the index is still 1. For example, given the first 

word on the stack, we can either apply LEFT-ARC, 

RIGHT-ARC or SHIFT. REDUCE is prohibited because 

                                                 
1 This information is part of the Husain et al. (2015) da-

taset. 

the first word has not been assigned a head yet. We keep 

applying all possible transitions to each state, until all 

states have index 1. This is the set associated with index 

1. 

We now use this set and repeat the above procedure 

till we get a set that only has states with index 2. While 

applying these transitions, we might end up with some 

states on which no transitions are legal. We simply drop 

such states. Thus we keep creating these sets for each 

value of index starting from one. 

As one would guess, the number of elements in the set 

increases exponentially with the index. Therefore to keep 

our algorithm tractable, we limit the size of the set of 

states corresponding to each index to utmost k most prob-

able elements. We use a MaxEnt model to output proba-

bilities of each transition we apply. The probability of a 

state is simply the product of the probabilities of all the 

transitions made to achieve that state. 

The prefix probability corresponding to index i is the 

sum of probabilities of states corresponding to the index 

i. Surprisal at index i is computed as the log-ratio of pre-

fix probability at index (i-1) and prefix probability at 

index i. 

Here we briefly discuss the surprisal computations for 

each word in example (3). The surprisal values are shown 

in Table 1 while maintaining k=3. When we see the first 

word dilli, there are four possible transitions according to 

the Arc-Eager algorithm. A REDUCE or LEFT-ARC 

operation is not possible at the first word hence we are 

left with only two possible partial parses. The maximum 

number of parses we can maintain is greater than that 

(since k=3), thus we do not discard any of the potential 

partial parses. As a result the probability at the first word 

is 1, and the surprisal is 0. As we move further in the 

sentence, we see the word meediaa. At this stage, each of 

the two partial parses from the previous word can give 

rise to multiple partial parses, the total number being six. 

Here the sum of the probabilities of all the six partial 

parses would be 1, but we only take the three most prob-

able ones, the sum of whose probabilities is 0:99997, 

giving rise to a surprisal of 0.00003. Note that the sur-

prisal value will be low when the probability of remain-

ing k parses is higher. This happens when the probability 

mass is distributed less uniformly with some parses being 

much more probable than the others. In other words, 

surprisal is lower when the parser can figure out with a 
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greater degree of certainty, which partial parse is the 

correct one. Note how in Table 1 the post-position kaa 

has very little surprisal since post-positions routinely 

follow nouns. However, a proper noun such as makkaa-

madinaa is not expected here (due to low frequency); this 

leads to a higher surprisal value. 

Analysis and Results 

Linear mixed models were used for all statistical 

analyses. We use the R package2 lme4 (Bates, Mächler, 

Bolker, & Walker, 2015) for fitting linear mixed models.3 

In the lme4 models, cross varying intercepts and varying 

slopes for subjects and items was included. No intercept-

slope correlations were estimated, as data of this size is 

usually insufficient to estimate these parameters with any 

accuracy. 

Each word served as a region of interest. All data 

points recorded with 0 ms for these fixation measure 

(about 25% of the data) were removed, and the data anal-

ysis was done on log-transformed reading times to 

achieve approximate normality of residuals. 

Table 2 

Results of linear mixed-effects model on log first pass reading 

time. 

 Estimate 

(b) 

Std. Error t value 

Intercept 5.502 0.023 237.74 

Word complexity 0.003 0.003 0.87 

Word frequency -0.0003 0.006 -0.04 

Word bigram 

frequency 

-0.014 0.003 -4.00 

Syllable length 0.112 0.011 9.95 

Integration cost 0.004 0.004 1.00 

Storage cost 0.003 0.006 0.50 

Surprisal 0.013 0.004 2.88 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

                                                 
2 version 3.1.2 
3 version 1.17 

Results of linear mixed-effects model on log regression path 

duration. 

 Estimate 

(b) 

Std. Error t value 

Intercept 5.655 0.031 181.45 

Word complexity 0.003 0.004 0.77 

Word frequency -0.005 0.007 -0.75 

Word bigram 

frequency 

-0.023 0.003 -6.53 

Syllable length 0.116 0.011 10.44 

Integration cost 0.012 0.005 2.26 

Storage cost -0.011 0.007 -1.57 

Surprisal 0.002 0.005 0.52 

 
Table 4 

Results of linear mixed-effects model on log regression path 

duration. 

 Estimate 

(b) 

Std. Error t value 

Intercept 5.619 0.030 181.32 

Word complexity 0.005 0.002 1.97 

Word frequency -0.016 0.007 -2.24 

Word bigram 

frequency 

-0.018 0.004 -4.41 

Syllable length 0.131 0.010 12.06 

Integration cost 0.001 0.004 0.39 

Storage cost 0.019 0.006 2.80 

Surprisal 0.005 0.004 1.14 

Results 

Tables 2, 3, 4 show the results for the three dependent 

measures. The result for first-pass reading time (Table 2) 

showed a significant effect of both word bigram frequen-

cy and syllable length; increase in syllable length leads to 

longer reading time, and increase in bigram frequency 

leads to faster reading time. In addition, we found a sig-

nificant effect of surprisal;4 increase in surprisal value 

leads to increase in the reading time. A significant effect 

of bigram, word length and integration cost was found for 

log regression path duration (Table 3). Increase in inte-

gration cost leads to increase in reading time; the signifi-

cant effect of bigram frequency and word length are in 

the expected direction. Finally, barring surprisal, integra-

tion cost and word complexity, all other predictors are 

significant for log total fixation time (Table 4); these 

                                                 
4 Surprisal values are computed with a parser maintaining 

k=10 parallel parses. This k value was chosen as the sig-

nificant effect of surprisal for first pass reading time was 

the highest (t=2.88) at this value (see Appendix for more 

details). For more details on parser parallelism and sur-

prisal computation see, M. F. Boston et al. (2011). 
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effects are in the expected directions. In particular, in-

crease in storage cost leads to increase in reading time. 

Discussion 

The results shown in tables 2, 3, 4 are consistent with 

those reported in Husain et al. (2015). Like the previous 

study we find robust effect of word-level predictors, such 

as word frequency, bigram frequency, and word length. 

We also find a significant effect of sentence-level pro-

cessing predictors, storage cost and integration cost in 

total fixation time and regression path duration respec-

tively. 

In this study we introduced a new sentence processing 

measure, surprisal, as a predictor to investigate different 

eye-tracking measures. The role of surprisal had not been 

explored by Husain et al. (2015). Our results show a 

significant effect of surprisal on log first pass reading 

time. Research on eye-tracking data in other languages 

such as English (Demberg & Keller, 2008) and German 

(M. Boston et al., 2008) have also found significant effect 

of surprisal. Our work supports this line of research. 

Interestingly, surprisal is a significant predictor in addi-

tion to bigram frequency. Since bigrams are known to 

capture local word predictability due to high collocation 

frequency, it can be argued that surprisal values in this 

study account for non-local syntactic predictability. Ex-

perimental studies on sentence processing in Hindi (e.g., 

Vasishth & Lewis, 2006; Kothari, 2010; Husain et al., 

2014) have found evidence for predictive processing that 

can be explained through surprisal. 

Further, our results also support previous research 

both using eye-tracking data (Demberg & Keller, 2008; 

M. F. Boston et al., 2011) as well as experimental data 

(e.g. Staub, 2010; Vasishth & Drenhaus, 2011; R. Levy, 

2008; Husain et al., 2014) that have shown that both 

expectation-based metric as well as memory-constraint 

metric are required to explain processing in various lan-

guages such as English, German and Hindi. The results in 

this study show that surprisal (which captures expecta-

tion) as well as integration cost (which captures working-

memory constraints) are independent predictors of read-

ing time during naturalistic reading in Hindi. The signifi-

cant effect of integration cost in our study goes contrary 

to certain proposals that have argued that head-

directionality in a language determines locality vs anti-

locality effects (R. P. Levy & Keller, 2013). Interestingly, 

while surprisal shows a significant effect in first pass 

reading time, integration cost is significant only in re-

gression path duration. This might point to a temporal 

disjunction with regard to working memory and predic-

tion effects, however more work needs to be done in 

order to back this claim. 

Recall that both surprisal and storage cost are moti-

vated by predictive processing concerns. While surprisal 

captures the probability of a word given previous context, 

storage cost models the processing difficulty due to head 

prediction maintenance. Our results show that these two 

metrics might be capturing independent aspects of predic-

tive processing. The correlation between storage cost and 

surprisal is marginal (r=-0.15). It is important to point out 

that so far there is no experimental support for storage 

cost in Hindi while there is support for surprisal. The 

reason for high storage cost in the Hindi eye-tracking 

data is varied, but it mostly happens in constructions with 

embedded structures. These embeddings include both 

verbal embeddings as well as complex noun phrases. 

There are some proposals that have argued for processing 

difficulty in English center-embeddings due to prediction 

maintenance (Gibson & Thomas, 1999) (also see, Va-

sishth, Suckow, Lewis, & Kern, 2010). Interestingly, 

surprisal shows up significant only in first pass reading 

time, while the storage cost seems to be a late emerging 

effect. The exact role of storage cost in Hindi sentence 

processing and its relation with surprisal will need further 

investigation. 

General Discussion 

Our results are consistent with previous work on natu-

ralistic reading in Hindi (Husain et al., 2015). Results 

show the role of word-level predictors such as word fre-

quency, word bigram frequency, word length, as well as 

sentence-level predictors such as storage cost, integration 

cost and surprisal. Building on previous work we demon-

strated that both storage cost as well as surprisal are sig-

nificant predictors of reading time. While surprisal shows 

up in an early measure, storage cost appears in a late 

measure. This could point to reflecting distinct predictive 

processes. 

While the surprisal metric as computed by the transi-

tion-based parser was found to be a significant predictor 

of first pass reading time, we wanted to see if it could 

also account for some of the experimental data in Hindi. 
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If some experimental data cannot be accounted by our 

automatically computed metric but can be theoretically 

explained by surprisal, then this will highlight the limita-

tions of the parsing model that we employ. We discuss 

this next. 

Role of parsing model 

Self-paced reading experiment data from Husain et al. 

(2014) was used in order to test the prediction of the 

computed surprisal on the experimental data. In particular 

we use the Experiment 1 reading time data from their 

study. The experiment had a 2×2 design crossing relative 

clause type and verb distance from the relative pronoun. 

Examples 5 shows all the four conditions. The key ma-

nipulation was that the relative clause verb paD-

hii/paDhaa thii ‘read’ was either ‘near’ or ‘distant’ from 

the relative pronoun jisne/jisko. In particular, the near 

condition although bringing the verb closer to the relative 

pronoun disrupted the default SOV word order in Hindi. 

For example, the object kitaab ‘book’ in Subject relative, 

Near (Non-canonical order) condition appears after the 

RC verb. 

(5) a. Subject relative, Distant (Canonical order) 

vah laRkaa, / jisne /       kitaab / 

that boy        who ERG  book 

bahut dilchaspii se / paDhii thii, / 

with much interest    read had 

meraa dost / hai 

my friend     is 

‘That boy, who read the book with great interest, 

is my friend.’ 

b. Subject relative, Near (Non-canonical order) 

vah laRkaa, / jisne         /    bahut dilchaspii se / 

that boy        who ERG       with much interest  

paDhii thii, / kitaab  

read had      book 

meraa dost / hai 

my friend     is 

‘That boy, who read the book with great interest, 

is my friend.’ 

c. Object relative, Distant (Canonical order) 

vaha kitaab, / jisko            /  us laRke ne / 

that book      which ACC     that boy 

bahut dilchaspii se  / paDhaa thaa / 

with much interest     read had 

bahut moTii  / hai 

very thick        is 

‘That book, which that boy read with great inter-

est, is very thick’ 

d. Object relative, Near (Non-canonical order) 

vaha kitaab, / jisko            /  bahut dilchaspii se  / 

that book      which ACC     with much interest    

paDhaa thaa / us laRke ne / 

read had           that boy  

bahut moTii  / hai 

very thick        is 

‘That book, which that boy read with great inter-

est, is very thick’ 

 

Figure 1. Husain et al. (2014) Experiment 1: Reading times in 

log ms at the critical region (relative clause verb) for the four 

conditions. 

 

One of the key results was that Hindi native speakers 

took longer to read the critical relative clause verb in the 

short condition. This can be seen in figure 1. Surprisal 

can easily explain this pattern – in the subject relative 

clause the presence of Ergative case-marker on the rela-

tive pronoun predicts a transitive verb. Since the default 

word order in Hindi is SOV, an object is also expected to 

appear before the verb. In the ‘near’ condition the verb 

appears before the object thus negating this expectation. 
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The Hindi native speaker is therefore surprised to see the 

RC verb in this position leading to a higher reading time.5 

As stated earlier, the ‘near’ conditions is expected to 

see a higher surprisal at the relative clause verb. It is 

therefore expected that the surprisal values computed by 

the parser should be higher in the near condition com-

pared to distant condition. Surprisingly, we got the exact 

opposite results (t(23) = 4.6, p-value = 0.0001; mean of 

differences 0.14, 95% CI 0.08, 0.21). The t-test implied 

that surprisal, as calculated by us, does not account for 

the theoretical prediction of the surprisal metric in the 

case of these sentences. At the same time, the surprisal 

values computed by the parser have a significant effect 

on First-Pass Reading Time during naturalistic reading of 

the data discussed earlier. This shows that certain lexi-

cal/syntactic processes are being captured by the comput-

ed metric. One possible reason for this anomaly could be 

the nature of the parsing model that we use. 

Two aspects of the parser model is worth highlighting 

here. First, transition-based models such as the one used 

in this study are known to take very local decision while 

ignoring the global sentential configuration (Zhang & 

Nivre, 2011). This has been shown to adversely affect its 

performance in case of word order variability (Gulordava 

& Merlo, 2016). Previous work on modelling experi-

mental data using surprisal have mainly used phrase 

structure parsers (Hale, 2001; R. Levy, 2008). These 

parsers assume a probabilistic phrase structure grammar 

(PCFG) that is induced from a treebank. The grammar 

rules in PCFG are directly associated with probabilities 

that are used to compute prefix probabilities. These prefix 

probabilities are then used to compute surprisal. These 

phrase structure rules (and therefore the associated pars-

ing) can potentially capture the argument structure varia-

bility better compared to the dependency parsing using a 

transition-based system. Such an approach requires the 

availability of a phrase-structure treebank which is cur-

rently not available for Hindi. 

The second aspect of the parser model relates to the 

feature set and labeled parsing. Our original feature set 

did not have the transitivity information of the verb. We 

tried adding transitivity information and more global 

features like the information about its first and second 

                                                 
5 Husain et al. (2014) also found a significant interaction 

effect, but this is not critical for the discussion here. Sur-

prisal can also explain the interaction effect. 

left-dependents but that led to reduction in parser accura-

cy. Further we could not add information about the de-

pendency relation of the verb with its left-dependents 

since we were doing an unlabeled parsing. Perhaps a 

labeled parser might be able to capture this notion of 

surprisal. We intend to investigate this in future work. 

So, while the automatically computed surprisal values 

do account for some variance in the eye movement data 

from naturalistic reading in Hindi, it is unable to correctly 

predict the experimental data discussed above. This 

shows that properties such as parser algorithm, feature 

set, grammar assumptions, etc. are critical for the predic-

tive power of a parsing model. Investigating such proper-

ties will be critical in order to account for experimental 

data such as Kamide et al. (2003); R. P. Levy and Keller 

(2013), etc. For example, Kamide et al. (2003) argued 

that German native speakers are able to use the case-

marking of the subject along with the selectional-

restriction of the verb to predict the most appropriate 

object before its auditory onset. Similarly, R. P. Levy and 

Keller (2013) have argued that introducing a dative case-

marked noun phrase leads to facilitation at the verb in 

German. This is presumably because the dative case-

marked noun phrase makes the prediction of the upcom-

ing verb more precise. 

Similar to our results Demberg and Keller (2008) did 

not find an effect of integration cost in first pass reading 

time.6 M. F. Boston et al. (2011), on the other hand used 

an alternative metric to integration cost – retrieval cost, 

and found it to be significant for all measures for higher 

values of parser parallelism. One reason for the differing 

results in these studies could be that retrieval cost cap-

tures working memory constraints over and above what 

integration cost captures. We discuss this issue next. 

Retrieval cost: An alternative to integration cost 

Similar to the study by M. F. Boston et al. (2011), we 

calculate retrieval based on the cue-based activation 

model (Lewis & Vasishth, 2005). The time taken to re-

trieve a chunk from the memory depends on its activation 

cost which is given as: 

𝑇𝑖 = 𝐹𝑒𝐴𝑖  

                                                 
6 Actually, they found an effect but with a negative coef-

ficient which is inconsistent with the claims of the de-

pendency locality theory. 
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The activation of a memory chunk depends on two 

factors: decay and interference. This is shown in the fol-

lowing equation: 

𝐴𝑖 =  𝐵𝑖 +  ∑ 𝑊𝑖

𝑗

𝑆𝑗𝑖 

Here Bi is the decay term which ensures higher re-

trieval time if the word was last retrieved from the 

memory in the distant past. If  𝑡𝑗𝑗=1
𝑛  denote the set of 

times when the ith word was retrieved, Bi is given by: 

𝐵𝑖 = ln(∑ 𝑡𝑗
−0.5

𝑛

𝑗=1

) 

The interference term ensures that higher interference 

in retrieval (i.e. memory chunks with overlapping fea-

tures) implies higher retrieval cost. It is computed as a 

weighted sum of Sjis which represent the strength of asso-

ciation. 

𝑊𝑗 = 𝐺
𝑗⁄  𝑤𝑖𝑡ℎ 𝐺 = 1 

𝑆𝑗𝑖 =  𝑆𝑚𝑎𝑥 −  ln (𝑓𝑎𝑛𝑗) 

where fanj is the number of chunks that have the same 

feature as the jth retrieval cue. In our model, similar to M. 

F. Boston et al. (2011), the part-of-speech category acts 

as a feature/cue and Smax is set to 1.5. Finally, productions 

in ACT-R are assumed to accrue a fixed cost of 50 ms 

and reading a cost of 1 ms to execute. Formation of a 

dependency arc accrues the cost of a retrieval along with 

two productions and a SHIFT operation accrues only one 

production cost. 

While testing for the effect of retrieval, we leave out 

integration cost (IC) from the set of predictors since IC 

and retrieval are highly correlated (r=0.53). This is not 

surprising as both these measures formalize retrieval cost 

at the integration site. Also, like M. F. Boston et al. 

(2011), we only consider points where the retrieval cost is 

non-zero and thus an effect of retrieval cost is expected. 

The overall results are quite similar to those obtained 

earlier.7 Interestingly, while retrieval cost is not signifi-

cant for any of the three dependent measures for k=10; 

when the value of k is increased to 25, retrieval cost be-

                                                 
7 The significant effect of storage cost in Table 6 is in-

consistent with the results discussed previously. We have 

no explanation for this effect. 

comes marginally significant in the case of RPD (table 8). 

This seems to validate the results of M. F. Boston et al. 

(2011) who also found significant effects of retrieval cost 

for higher parser parallelism. However, unlike them we 

did not find a significant effect of retrieval cost for all 

measures. The results without excluding points with zero 

retrieval cost are also very similar to the ones mentioned 

below, hence we skip them for brevity. 

Table 5 

Results of linear mixed-effects model on log first pass reading 

time. 

 Estimate 

(b) 

Std. Error t value 

Intercept 5.501 0.023 237.72 

Word complexity 0.002 0.003 0.67 

Word frequency 6.750e-04 0.005 0.12 

Word bigram 

frequency 

-0.013 0.003 -4.03 

Syllable length 0.110 0.011 9.90 

Storage cost -9.006e-05 0.006 -0.01 

Surprisal 0.016 0.004 3.75 

Retrieval cost -0.004 0.003 -1.14 

Table 6 

Results of linear mixed-effects model on log regression path 

duration. 

 Estimate 

(b) 

Std. Error t value 

Intercept 5.654 0.031 181.98 

Word complexity 0.002 0.004 0.55 

Word frequency -0.004 0.007 -0.64 

Word bigram 

frequency 

-0.023 0.003 -6.58 

Syllable length 0.113 0.011 10.11 

Storage cost -0.015 0.007 -2.17 

Surprisal 0.004 0.005 0.75 

Retrieval cost 0.007 0.005 1.42 

Table 7 

Results of linear mixed-effects model on log total fixation time. 

 Estimate 

(b) 

Std. Error t value 

Intercept 5.618 0.030 182.30 

Word complexity 0.004 0.002 1.68 

Word frequency -0.014 0.006 -2.09 

Word bigram 

frequency 

-0.017 0.004 -4.26 

Syllable length 0.129 0.010 11.85 

Storage cost 0.016 0.006 2.46 

Surprisal 0.011 0.004 2.33 

Retrieval cost -0.006 0.004 -1.52 

 

 

 

Table 8 

Results of linear mixed-effects model on log regression path 

duration (k=25). 
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 Estimate 

(b) 

Std. Error t value 

Intercept 5.656 0.031 180.98 

Word complexity 0.002 0.003 0.61 

Word frequency -0.006 0.007 -0.81 

Word bigram 

Frequency 

-0.024 0.003 -6.79 

Syllable length 0.115 0.011 10.27 

Storage cost -0.014 0.007 -1.89 

Surprisal 0.0001 0.005 0.03 

Retrieval cost 0.009 0.004 1.91 

How much (cross-linguistic) generalization can be 

drawn from our work and the eye-tracking corpus-based 

investigation in English and German? All these studies 

have found the effect of surprisal as well as memory costs 

on various eye movement measures. However, the exact 

measures for which these metrics are significant differ. 

For example, in this study we find the effect of surprisal 

only in first pass reading time, while M. F. Boston et al. 

(2011) found the effect of (unlexicalized) surprisal for 

both early and late measures. In Demberg and Keller’s 

(2008) study, the lexicalized surprisal does not show up 

in the results for first pass reading time. So, while there 

are some broad agreement between these results, because 

the modeling assumptions with respect to treebank anno-

tations, parsing algorithm, nature of the predictors, pars-

ing feature set, etc. are so varied, it is difficult to make 

any specific claims about cross-linguistics generaliza-

tions. A much more controlled modeling setup is needed 

in order to make any reasonable claim. 

Conclusion 

In this work we used the Potsdam-Allahabad Hindi 

eye-tracking corpus to investigate the role of word-level 

and sentence-level factors during sentence comprehen-

sion in Hindi. We find that in addition to word-level 

predictors such as syllable length and uni- and bi-gram 

frequency, sentence level predictors such as storage cost, 

integration cost and surprisal significantly predict eye-

tracking measures. Effect of retrieval cost (another work-

ing-memory measure) was only found for higher degrees 

of parser parallelism. Our work points to the possibility 

that surprisal and storage cost might be capturing differ-

ent aspects of predictive processing. This needs to be 

investigated further through controlled experiments. Our 

study replicates previous findings that both prediction-

based and memory-based metrics are required to account 

for processing patterns during sentence comprehension. 

The results also show that model assumptions are critical 

in order to draw generalizations about the utility of a 

metric (e.g. surprisal) across various phenomena in a 

language. 
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APPENDIX 

In this section we discuss the technical details of the 

transition-based parser along with the data used in the 

study. We first discuss the data. Following this we list the 

feature specification file of the transition-based parser. 

Finally, we discuss the parser accuracy. The parser code 

and the eye-tracking data can be downloaded from: 

https://github.com/samarhusain/IncrementalParser 

Data 

Dependency treebank. We used the sentences in the 

Hindi-Urdu treebank (HUTB) (Bhatt et al., 2009) to train 

our parser. The HUTB contains the dependency parse for 

around 12000 sentences along with morphological infor-

mation (part-of-speech tag, category, lemma, case mark-

er, chunk information, tense-aspect-modality and type of 

sentence) about each word in the treebank. 

Eye-tracking corpus. We use eye-tracking data from 

the Potsdam-Allahabad Hindi Eye-tracking Corpus which 

contains different eye-tracking measures for 153 Hindi 

sentences. These sentences were selected from the HUTB 

treebank. The sentences were read by thirty graduate and 

undergraduate students of the University of Allahabad in 

the Devanagari script (Husain et al., 2015). 

Feature Set MERGE( InputColumn (POSTAG, Input [ 0 ] ) , 

                InputColumn (POSTAG, Stack [ 0 ] ) , 

                InputColumn (POSTAG, Stack [ 1 ] ) , 

                InputColumn (POSTAG, Stack [ 2 ] ) ) 

MERGE( InputColumn (POSTAG, Input [ 0 ] ) , 

                InputColumn (POSTAG, Stack [ 0 ] ) , 

                InputColumn (POSTAG, Stack [ 1 ] ) ) 

MERGE( InputColumn (POSTAG, Input [ 0 ] ) , 

InputColumn (POSTAG, Stack [ 0 ] ) ) 
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We have used a morphologically rich incremental fea-

ture set that includes the form, lemma, part-of-speech tag, 

category, tense-aspect-modality and case markers along 

with the chunking information of the top two elements of 

the stack and the top element of the buffer. We have not 

used the transitivity information of verbs and the gender, 

number and person of the words because they reduced the 

accuracy of the parser. The exact feature set used for the 

parser in the MaltParser format is given below: 

We also tried our study with a simpler feature set 

which was used by Nivre (2008); M. Boston et al. (2008). 

The unlabeled accuracy for Hindi we obtained using this 

feature set was very low compared to what we get using 

the morphologically rich feature set. Also, the surprisal 

values we got using this feature set did not achieve a 

significant coefficient in any of the regression analyses. 

The details of this simplified feature set are given below: 

Parser Accuracy 

Parser accuracy becomes critical in order to compute 

reliable surprisal values. The Unlabeled Attachment 

Score  

(UAS) for our parser is close to 88%. UAS is the propor-

tion of words that are correctly attached to their parent. 

Using a simpler feature set (M. Boston et al., 2008) lead 

to lower accuracy (68%). UAS varies slightly with the 

value of k (which is the number of partial parses main-

tained in parallel), there is no clear increase in the accu-

racy as k increases. Surprisal values are computed using k 

= 10. This is done because the mean estimate of surprisal 

in the model (for FPRT) reaches maximum at k = 10. 

Table 9 

Coefficient of surprisal for log first pass reading time for differ-

ent values of k. 

k Estimate 

(b) 

Std. Error t value 

1 0.006 0.003 1.75 

2 0.009 0.003 2.62 

3 0.010 0.004 2.55 

4 0.010 0.004 2.5 

5 0.011 0.004 2.8 

10 0.012 0.004 2.88 

15 0.011 0.004 2.65 

20 0.010 0.004 2.38 

25 0.009 0.004 2.2 

Table 8 

Coefficient of retrieval cost for log regression path duration for 

different values of k. 

k Estimate 

(b) 

Std. Error t value 

2 0.010 0.006 1.75 

3 0.010 0.005 1.79 

4 0.008 0.005 1.50 

5 0.007 0.005 1.41 

10 0.007 0.005 1.42 

15 0.007 0.005 1.40 

20 0.007 0.004 1.59 

25 0.009 0.004 1.91 

 

The mean estimates and the standard deviations of the 

coefficient of surprisal in the linear mixed-effects regres-

sion for log(FPRT) for different values of k are given in 

the Table 9. As can be seen surprisal is significant for 

almost all values of k. Among the coefficients of surprisal 

in the case of First Pass Reading Time, we note that while 

the standard deviation of the estimate is nearly constant, 

the mean estimate first increases with k, reaches a maxi-

mum at k=10 and then starts decreasing again. Surprisal 

was not a significant predictor for both log(RPD) and 

log(TFT) for any value of k. We therefore do not show 

those figures here. For comparison we also show the 

retrieval cost figures (table 10) at different values of k for 

regression path duration. We see here that retrieval cost 

Split ( InputColumn (FEATS_WITHOUT_GNP, 

           Stack [ 0 ] ) , ‘|’ ) , 

Split ( InputColumn (FEATS_WITHOUT_GNP, 

           Input [ 0 ] ) , ‘|’ ) , 

InputColumn (FORM, Stack [ 0 ] ) , 

InputColumn (FORM, Input [ 0 ] ) , 

InputColumn (POSTAG, Stack [ 0 ] ) , 

InputColumn (POSTAG, Input [ 0 ] ) , 

InputColumn (CHUNK ID, Stack [ 0 ] ) , 

InputColumn (CHUNK ID, Input [ 0 ] ) , 

InputColumn (POSTAG, Stack [ 1 ] ) , 

InputColumn (POSTAG, pred ( Stack [ 0 ] ) ) , 

InputColumn (POSTAG, head ( Stack [ 0 ] ) ) , 

InputColumn (POSTAG, ldep ( Input [ 0 ] ) ) , 

InputColumn (CPOSTAG, Stack [ 0 ] ) , 

InputColumn (CPOSTAG, Input [ 0 ] ) , 

InputColumn (CPOSTAG, ldep ( Input [ 0 ] ) ) , 

InputColumn (FORM, ldep ( Input [ 0 ] ) ) , 

InputColumn (LEMMA, Stack [ 0 ] ) , 

InputColumn (LEMMA, Input [ 0 ] ) , 

Merge ( InputColumn (CHUNK ID, Stack [ 0 ] ) , 

              InputColumn (CHUNK ID, Input [ 0 ] ) ) , 

Merge ( InputColumn (CPOSTAG, Stack [ 0 ] ) , 

              InputColumn (CPOSTAG, Input [ 0 ] ) ) , 

Merge ( InputColumn (POSTAG, Stack [ 0 ] ) , 

              InputColumn (POSTAG, Input [ 0 ] ) ) 
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reaches marginal significant for k=25, while it remains 

insignificant for lower k. For all other measures retrieval 

cost remains insignificant. 
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