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Introduction 
The study of eye movement patterns is a powerful 

tool in vision research. It has provided invaluable insights 
in a variety of domains including, scene analysis (e.g. 
Rajashekar et al., 2007; Parkhurst & Niebur, 2003), read-
ing (see Raynor, 1998 for a comprehensive review), vis-
ual search and object localisation (e.g. Henderson, 1993). 
Eye trackers generate several sources of data that permit 
a variety of analyses of oculomotor responses such as 
saccades (i.e. rapid, high amplitude, gaze shifts), smooth 
pursuit (i.e. tracking a moving stimulus) and fixations 
(where foveal vision is stabilised over a stationary loca-
tion). Here we focus on the analysis of ocular fixation 
patterns arising from relatively high amplitude gaze 
shifts, and consider how quantitative methods may be 
used to contrast fixation data against both random distri-
butions, and specific model predictions. 

 

It has been estimated that 80% of visual scanning time 
is accounted for by fixations, (Duchowski, 2003; Manor 
& Gordon, 2003; van Diepen, De Graef & d’Ydewalle, 

1995). Typically, a fixation is defined during pre-
processing of gaze data according to specific temporal 
and spatial thresholds (e.g. Manor & Gordon, 2003). This 
is necessary because of the continuous micro-saccades, 
tremor and drift that are characteristic of ocular fixations. 
These thresholds will specify a minimum dwell time, 
typically between 100-300 ms, during which successive 
gaze samples must remain within the area of a predefined 
image region (e.g. a circle of 1 degree diameter). 

 

One theoretically interesting feature of fixational 
analyses is their potential to reveal, among other things, 
properties of psychologically relevant image content at 
specific display locations. For example, such methods 
have been widely used to examine eye movement pat-
terns during scene analyses in terms of the visual saliency 
of particular image locations (e.g. Foulsham & Under-
wood, 2008; Mannan, Ruddock & Wooding, 1997; Un-
derwood, Foulsham, van Loon, Humphreys & Bloyce, 
2006), and in the context of local shape information proc-
essing during two-dimensional pattern recognition (e.g. 
Renninger, Verghese & Coughlan, 2007). 
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One approach that may be taken is to analyse fixation 
data (e.g. frequency and duration) in terms of their distri-
butions across regions-of-interest (ROIs) that are defined 
a priori. A fundamental question arising from this ap-
proach is how appropriate ROIs are chosen. One simple 
method is to manually define ROIs based on some hy-
pothesis about theoretically relevant image locations (e.g. 
particular objects or image features in a scene) and to 
determine the number of fixations that occur within the 
defined ROIs. Here, the validity of the resulting predic-
tions is necessarily limited both in terms of the kinds of 
image features or locations that can be reliability identi-
fied by an experimenter, and by the difficulty of incorpo-
rating an estimate of subject variation and measurement 
noise in the ROIs that are defined. This, in turn weakens 
the reliability of any quantitative comparison between 
observed and predicted fixation patterns. Alternatively, 
ROIs may be defined algorithmically in relation to a spe-
cific theoretical hypothesis about image content at spe-
cific locations. For example, such ROIs could define re-
gions of high contrast, or visual saliency, based on the 
distributions of low-level image statistics in the displays 
such as visual saliency based on low-level image statis-
tics (Itti, Koch and Neibur, 1998; Itti & Koch, 2000; Wal-
ther & Koch, 2006). This approach has been taken in a 
variety of eye tracking studies, for example, of visual 
saliency effects during scene analysis (e.g. Foulsham & 
Underwood, 2008; Underwood et al, 2006). A further 
example is provided by a study conducted by Mannan 
and colleagues (Mannan et al., 1997) who recorded fixa-
tion patterns while observers examined scenes in either 
their original forms, or in low- or high-band pass filtered 
versions. The ROIs, generated for comparison with the 
recorded fixation patterns, were selected based on the 
results of analyses that calculated a variety of image pa-
rameters (e.g. luminance maxima and edge density) for 
the observed scenes. An important advantage of this ap-
proach is that it allows for the definition of predicted 
fixation ROIs based on complex, algorithmically speci-
fied, image properties thereby removing the problem of 
subjective decision making in ROI placement. However, 
one potential limitation is the requirement to specify a 
fixed geometry for the ROIs in order to allow for reliable 
inferential statistical contrasts between observed and pre-
dicted patterns. For example, ROIs must be kept to a 
fixed size so that the probability of a fixation falling 
within any one ROI is not biased to those with larger ar-
eas. Often this is accomplished via selecting a fixed re-

gion size about a peak value (e.g. Mannan et al., 1997). 
The issue with this approach is that the ROIs size and 
shape may not reflect the characteristics of the spatial 
distribution of the underlying image parameters, i.e. we 
cannot expect that all values of a parameter equidistant 
from the peak value are equal. To change ROI selection 
in such a way that inclusion of a point in the image was 
based on the attainment of a critical parameter value 
would result in unevenly shaped and sized regions that 
would render Gaussian based statistics invalid. 

 

Privitera and Stark (2000; see also Fujita, Privitera & 
Stark, 2007) approached the problem from a slightly dif-
ferent perspective. They compared human fixations with 
those obtained from a variety of image processing algo-
rithms (IPAs), but for both sets of observations, human 
and artificial, they merged the individual fixations and 
IPA peak values into clusters that served as regions of 
interest for the human (‘hROI’) and artificial (‘aROI’) 
data, respectively. The degree of similarity between the 
observed and algorithmically derived clusters was then 
determined and used as a dependent measure in further 
analyses. This similarity measure used a distance metric 
to determine whether a predicted, artificial, ROI was 
equivalent to a human, recorded, ROI, such that general-
ised regions where both human and artificial observer 
‘fixated’ emerged from the data. Of particular note, this 
similarity measure could not only take into account the 
spatial similarity of the ROIs, but also the temporal prop-
erties allowing a measure of both general similarity as 
well as sequential similarity. While this approach is ele-
gant in so much as not only spatial, but also temporal 
properties are examined, the more general method devel-
oped by Privitera and Stark for comparing modelled and 
human data, the ‘global similarity’ measure, potentially 
lacked discriminability. The global similarity measure, 
the measure that most closely resembles the approach 
used here, does not feature any mechanism to take into 
account the distribution of fixations around the locus of 
an ROI. During the calculation of the global similarity 
measure, all the individual fixation points in a cluster are 
used to determine the locus of the ROI but, once the locus 
is determined, all remaining fixations in the cluster are 
‘removed’. It is these loci, for recorded and model data, 
that are compared to obtain a value of global similarity. If 
two models share a similar pattern of predicted regions of 
interest, i.e. similar loci, but predict a different size of 
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ROI, this way of calculating similarity would potentially 
find no difference. That is to say, no explicit account was 
taken of the size of the ROIs in the statistical process. 
Therefore a potentially large aROI, obtained via thresh-
olding one IPA parameter map would gain no statistical 
advantage over a similarly placed, yet smaller aROI, from 
a different IPA parameter map, if both are assigned as 
being the ‘same’ hROI. 

 

A recent study by Foulsham and Underwood (2008) 
approached the statistical issues raised by ROI selection 
in a slightly different way by expanding the statistical 
models used beyond those offered by traditional Gaus-
sian-based approaches. Model derived ROIs, while still 
artificially created using a fixed radius circle around peak 
values, were compared against the empirically observed 
pattern of fixations; statistical validity was assessed by 
comparing the similarity of the human fixation data to 
both model predictions as well as to random fixation pat-
terns. Two random models were created. In the first ran-
dom model fixations could appear anywhere in the im-
age. In the second ‘biased’ random model the density of 
fixations from the experimental task was calculated over 
a 5x5 grid superimposed on the image. The random 
placement of each fixation was then biased to fall within 
each of the 25 boxes, with a probability equal to the ex-
perimental data although, within each box, the placement 
was random. This method introduces the use of model 
derived population distribution estimation, or Monte 
Carlo, methodology for the assessment of statistical va-
lidity, i.e. assessing the distribution of fixations that is 
expected from a random model to determine the likeli-
hood that the observed distribution occurred by chance. 
The benefit of this approach is that the generated random 
distribution can be significantly different from a Gaussian 
model yet, provided the model is suitably formulated, can 
be used to determine the statistical significance of the 
empirically observed fixation data. However, the full 
power of this approach has yet to be explored since the 
Foulsham and Underwood (2008) study still uses the se-
lection of fixed shaped ROIs for the models under test 
rather than allowing quantitative comparison to ROIs 
derived from empirical data sets with varying sizes and 
shapes. 

 

To summarise we suggest that the generation of valid 
a priori model-based predictions for the locations of fixa-
tion regions (e.g. ROIs) in eye tracking studies raises a 
number of important methodological issues which in-
clude: the method used to generate the predicted region 
locations (e.g. manually, algorithmically or empirically), 
and how noise (e.g. arising from between- and within-
subject variation as well as error in the precision of the 
eye movement measurement) is incorporated into those 
predictions. Whilst a priori methods can be used to con-
trol for the chance likelihood of a fixation falling in one 
area vs. another by arbitrarily creating ROIs of a given 
size, they may fail to accurately resemble the model data 
in shape and extent, therefore limiting validity. The ap-
proach of Foulsham and Underwood (2008), while dem-
onstrating several advantages over other methods, still 
necessitates the construction of artificially shaped regions 
to enable statistical comparisons between modeled and 
empirical fixation patterns to be made. 

 

Here we outline a new method for the analyses of 
fixation data that addresses the issue of restrictive a pri-
ori ROI selection, along with the associated problems of 
ROI definition, and provides a quantitative and statisti-
cally valid means of comparing observed fixation pat-
terns to those predicted by different theoretical hypothe-
ses as well as by random distributions. We first describe 
the general rationale of the methodology which we refer 
to as Fixation Region Overlap Analysis (FROA). We 
then illustrate in detail the use of the FROA technique in 
a study of fixational eye movements during three-
dimensional object recognition (Johnston & Leek, 2008; 
Leek & Johnston, 2008). 

 

An Overview of the FROA Methodology 
Rather than attempting to prescribe ROIs a priori, 

FROA contrasts ROIs generated algorithmically from any 
number of model-based theoretical predictions (aROIs) to 
empirically defined ROIs from human data (hROIs). The 
derivation of hROIs is achieved by applying a 2-D Gaus-
sian smoothing function to the filtered collapsed gaze 
data (e.g. fixation frequency or fixation duration). The 
smoothing function produces a distribution of fixation 
frequency or duration data of a specified pixel width 
(sigma). This smoothed distribution has the advantage of 
summarising the individual fixations to a sub-sampled 
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representation where generalised regions become evident 
and, in which the width of the smoothing function is used 
to incorporate a noise estimate stemming from within- 
and between-subject variation (e.g., from saccadic drift) 
as well as eye tracker resolution. hROIs are obtained by 
appropriately thresholding the smoothed data such that, 
for example, the most frequently fixated regions are iden-
tified. These hROIs are uniquely suitable for quantitative 
analyses since their size and shape is directly determined 
by the fixation data from which they are drawn. Just as 
with the hROIs, the aROIs can be generated by appropri-
ately thresholding maps of model parameter estimates to 
create regions of interest. Models of eye movements can 
then be tested by assessing the degree of spatial overlap 
between the hROIs, derived from the observed fixation 
data, and those predicted by aROIs. In FROA, the statis-
tical significance of this overlap is determined by the 
generation of a constrained ‘random’ distribution of 
‘fixation’ hROIs with the aROIs to assess the likelihood 
of the overlap between model data and observed data 
occurring by chance. The model that describes the ran-
dom distribution can be constrained to reflect both stimu-
lus-driven and natural biases in scanning such as centre-
of-gravity effects or COG (e.g. He & Kowler, 1989), 
where such biases influence which image regions are 
more likely to be sampled (see below). The significance 
of the overlap for any actual fixation region is determined 
with reference to the 95% confidence interval (C.I.) of 
the random distribution for that stimulus. 

FROA – Implementation 
In this section we describe the FROA method in more 

detail. To do so, we use, for illustrative purposes, an arti-
ficial data set before showing an analysis that was per-
formed using FROA methodology on a ‘real’ data set in 
the final section. 

 

Data Analysis 
The FROA method involves several stages as follows: 

 
1. Pre-processing of raw gaze data using a spatial 

and temporal filter to define ocular fixations. 
 

Raw data are filtered to extract ocular fixations. We 
have defined fixations using both spatial and temporal 
thresholds (Manor & Gordon, 2003) according to which 
eye movements occurring within an area specified by an 
ellipse with a diameter of 60 pixels for at least 100 ms 
were treated as the same fixation. Although we have used 
distance and latency between recorded eye movements to 
identify discrete fixation event, alternative methods are 
available, such as the discontinuous saccadic movement 
between fixations (Privitera & Stark, 2000). In either 
case, the application of the analysis method is unaffected 
beyond the requirement to justify suitable parameters as 
physiologically appropriate.  

 

2. The generation of global fixation region maps for 
each stimulus. This involves collapsing the 
filtered gaze data across observers by applying a 
2-D Gaussian smoothing function. 

 

The fixation patterns from the behavioural task are 
used to generate fixation ‘region-maps’. The region-maps 
are a graphical representation of the frequency distribu-
tion of fixation data across the stimulus image.  Region-
maps are created for each stimulus by collapsing the fil-
tered fixation data (from the previous step) across partici-
pants and applying a 2-D Gaussian smoothing function of 
a specified kernel size and width (sigma). Here we used a 
sigma of 2.5cm (radius), a value that corresponds to the 
approximate area of focus for the human fovea at a dis-
tance of 60cm. As with all smoothing operations, the aim 
is to improve signal to noise for the analysis; altering the 
sigma will have implications for the resultant maps, al-
though the location of the central peak of the ROI should 
remain consistent there will be changes to the extent of 
the ROI created. As for the previous steps where values 
are selected based on assumptions of physical and dy-
namic characteristics, beyond the need to justify such 
parameters, one of the strengths of the statistical ap-
proach used here is its robustness to changes in param-
eterisation that alter the characteristics of the ROI. Appli-
cation of the filter yields a ‘global fixation’ map showing 
the distribution of fixations across the image. The first 
300ms of eye movements post stimulus onset were re-
moved to eliminate early object localisation fixations 
associated with COG effects (e.g. Denisova, Singh & 
Kowler, 2006; He & Kowler, 1989; Whitaker, McGraw, 
Pacey & Barret, 1996). These effects manifest as a con-
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sistent early fixation to the centre of each stimulus. It 
should be noted that since the data during this stage is 
collapsed across observers, individual variation in the 
data is lost and therefore the regions of interest show the 
most frequently fixated points in the image, but these 
points are not necessarily fixated by all observers. 

 

3. Thresholding the region maps to produce a binary 
image encoding the maxima of fixation frequency 
or fixation duration for each stimulus. 

 
From the global fixation map, a binary thresholded 

region map is obtained for each stimulus. This procedure 
has been implemented here using a script written in 
Matlab (Mathworks inc.) using the image processing 
toolbox. These binary threshold maps are created by 
thresholding the global fixation map to define those 
regions showing the highest fixation frequencies. For 
consistency across stimuli the threshold is set here at T = 
N/2, where N is the total number of participants. Thus, 
for example, in the later exemplar study of object 
recognition, a region must receive a minimum of 12 
fixations (given 24 participants) to be classified as a 
frequently fixated region (see Figure 5). This value is 
essentially an arbitrary figure that can be altered, but 
must obviously remain consistent within a single 
experiment. The value of N/2 has been used since, 
anecdotally, it show good levels of intra-stimulus 
correlation of fixation patterns yet discernable levels of 
inter-stimulus variation. Again, as with the definition of 
fixations, the statistical approach is robust to changes in 
the thresholding parameter – lower thresholds that lead to 
more regions surviving fixation will require higher levels 
of fixation overlap in order to achieve significance so the 
choice of thresholding is free within the bounds of 
feasibility. An image is then created where all the pixels 
that exceed the thresholding level are assigned a 
greyscale value of 255 (white), while all other pixels are 
assigned the value 0 (black). Once thresholded, the maps 
are binarised such that the ‘most frequently fixated 
regions’ are shown in white while the remainder of the 
image is black, i.e. binary maps. 

 

 

 

 

 

Figure 1 – Exemplar data for two models, ‘Red’ and ‘Blue’, 
showing predicted areas where the models expect the most 
frequently fixated regions to occur. Top panel shows both 
models together, middle panel shows the models 
separately, and the lower panel shows the binarised map 
that is used as the models input to FROA. 

 

4. The determination of pixel overlap between 
observed thresholded fixation region maps and 
the model under test. 

 
The next step is to determine which of the model 

patterns best accounts for the pattern of fixation regions 
found in the recognition memory task. This is achieved 
by converting all of the thresholded region-maps for the 
model data from each data set into binary (black and 
white) maps similarly to the participants gaze fixation 
data. Figure 1 shows a hypothetical example of two 
models, a ‘Blue’ and a ‘Red’ model. Each model predicts 
a region of the display where the most eye fixations are 
expected to occur. These models are thresholded and, as 
with the gaze fixation data, formed into binary maps. 
These binary maps, along with the binary maps from the 
gaze fixation data are used in the calculation of pixel 
overlap. The number of shared (i.e. overlapping) pixels 
between the binary maps of the model and recorded data 
sets is then computed. Region pixel overlap is the 
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principal measure used in FROA to assess the degree to 
which the models can explain the pattern of fixational eye 
movements in the original task data. Again, we have 
implemented this routine in a Matlab script that computes 
the total number of shared pixels in the thresholded 
images. This process is shown diagrammatically in 
Figure 2. 

 

 

Figure 2 – Figure depicting the ‘overlap’, the dependent 
variable used in the analysis. Shaded areas show those 
regions where there is overlap; the number of pixels in the 
shaded region is the measure of similarity between model, 
aROIs, and participant, hROIs. 

 
5. Calculation of statistical significance of observed 

region overlap relative to the confidence intervals 
of the distribution of ‘random’ region overlap 
with the model. 

 
The validity of any contrast depends upon taking into 

account variation in thresholded fixation region location, 
size, shape and orientation for each stimulus between the 
observed data and modeled data sets. If this were not 
done a major consequence would be the biasing of the 
overlap measure towards region maps containing a 
greater number of pixels. In an extreme case, an image in 
which the region maps contained 100% of pixels in the 
stimulus image would always account for 100% of 
overlap for smaller fixation regions in any contrast data 
set for the same item. We have already described how, in 
previous steps, there is a degree of latitude in selecting 
appropriate parameters because of the way FROA 
calculates the statistical significance of the overlap. To 
address this FROA estimates the distribution of overlap 
expected had the placement of hROIs, obtained from the 

eye movement recordings been a random process. This 
procedure utilises the hROIs obtained for each stimulus 
from the recorded data thereby controlling for region 
size, shape and orientation. This is done by initially 
deconstructing the thresholded maps into bounded 
fixation regions, i.e. separating each discrete cluster of 
activation and saving it as a single unit. This is again 
implemented in Matlab; each ROI is extracted on the 
basis of being a ‘closed’ bounded region. The centroid of 
each region is then determined and the ROI saved by 
calculating the distance of each pixel in the ROI relative 
to the ROI’s centroid. In this way we save the ROIs in a 
manner that makes it simple to re-insert back in a random 
location. To replace the ROI, a co-ordinate is randomly 
generated and the ROI is reconstructed in its new position 
by placing the centroid at the random position. The 
random placement of fixation regions is further 
constrained such that the centroid of each region must fall 
with the bounding contour of the ‘feasible’ image 
regions. The ‘feasible’ regions include all the points in 
the image where a fixation may be expected to occur. The 
determination of the ‘constrained’ region from the total 
stimulus display can be obtained in the same way as the 
ROIs are extracted. Any region that is considered feasible 
can be added into a mask such that the valid regions for 
ROI replacement onto the stimulus display are black 
while invalid regions are white. The pixel locations of the 
black regions can then be obtained and the placement of 
the hROIs back onto the image would be restricted to 
those regions that are within the confines of the masked 
region of the stimulus display. 

 
A Monte Carlo procedure (Mooney, 1997) is used to 

generate the distribution of random overlap by taking 
each hROI and relocating it within the masked regions of 
the original stimulus, as described above. After each 
iteration the number of overlapping pixels between the 
hROIs in the random locations and the model data, the 
aROIs, is calculated, using the same Matlab procedure 
that calculates the overlap of the real data, hROIs, with 
the model data; the random replacement procedure is 
repeated 1000 times. This generates a constrained 
distribution of random fixation region overlap for any 
given data set and stimulus. Figure 3 shows three 
iterations of the Monte Carlo procedure for example gaze 
fixation data with the ‘Blue’ model from Figure 1. In this 
example we see the four hROIs that survived the 
thresholding process being shifted about the image and at 
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each step the overlap with the model data is calculated. 
The statistical significance of a particular contrast is then 
determined by comparing the actual pixel overlap in the 
contrast of interest (e.g. between a given stimulus in the 
recognition task and the visual saliency map for the same 
image) and comparing this to the 95% confidence interval 
of the overlap of the random distribution with the same 
contrast of interest (e.g. with the visual saliency map). 
 

 

Figure 3 – A diagrammatic example of the calculation of 
the critical value of overlap, the 95-percentile point of the 
distribution of overlap values for aROIs with randomly 
replaced hROIs. Here three iterations of the minimum 1000 
iterations are shown. The blue circles correspond to the 
areas that are predicted to be most fixated by the ‘blue 
model’, while the green circles represent the hROIs   

FROA – An illustrative example: Analysing 
fixation patterns during object recognition 
Here we illustrate FROA methodology to analyse 

fixation data collected from a study of object recognition 
(Leek & Johnston, 2008).  We employed two different 
methods to generate predicted fixation patterns for two 
potential models of local shape feature analyses during 
three-dimensional (3-D) object recognition. The first 
model tested the visual saliency hypothesis (Itti, Koch & 
Neibur, 1998) using the Saliency Toolbox implementa-
tion in Matlab (Walther & Koch, 2006). This essentially 
produces a weighted contrast map based on low-level 
image statistics for intensity, colour and orientation. The 

algorithm was used to generate a saliency map for each 
stimulus (see below). The saliency maps were thresh-
olded in the same way as the original fixation data from 
the recognition task. This model represents the fixation 
patterns we would expect if fixations were the result of 
eye movements to the most visually salient image regions 
(see Figure 4 ‘Model 1’). The second model generated 
predicted fixation regions based on the locations of 3-D 
segmentation points at surface intersections producing 
negative minima of curvature (e.g. Cohen & Singh, 2007; 
Hoffman & Richards, 1984). For simplicity we refer to 
this at the ‘3-D segmentation model’. One way of gener-
ating the predicted fixation region locations for this 
model, as in the case of the visual saliency hypothesis, 
would be to use a computational implementation that 
detects negative curvature minima from a 2-D or 3-D 
model of the stimulus (e.g. Sukumar, Page, Gribok, Ko-
schan & Abidi, 2006). Instead, we generated predicted 
fixation patterns for the 3-D segmentation model using a 
trained observer technique in which observers were in-
structed (after training) to fixate only image regions con-
taining an intersection between two surfaces that form 
negative minima of curvature (see Figure 4 ‘Model 2’). 
This ‘trained observer’ technique provides a method of 
generating predicted fixation patterns that necessarily 
incorporate subject variation and measurement noise that 
are more comparable to those naturally present in data 
collected from another experimental task. A limitation is 
that the technique can only be used to generate predicted 
patterns for types of image features (e.g., corners, edges, 
surface intersections, coloured regions) that can be relia-
bly detected by observers. Fixation region maps for both 
models were generated according to FROA using the 
same filtering, Gaussian smoothing and thresholding as 
used for the original fixation data from the recognition 
task. The Monte Carlo simulation was constrained such 
that viable regions of the image for random replacement 
of hROIs were within the bounds of the object undergo-
ing recognition. 
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Figure 4 – An example stimulus along with the thresholded-recorded data (‘Gaze Data’ - middle) and the predicted 
fixation patterns from the saliency model (‘Model 1’ - top) and the 3-D intersection model (‘Model 2’ - bottom). Also 
shown are the binarised and extracted ROIs along with the overlap of each model’s ROIs with the recorded data ROIs 

 

Data Acquisition 
Eye movements were recorded on a Tobii ET-17 bin-

ocular eye tracker. Data were acquired at a sampling rate 
of 50Hz with a spatial resolution of 0.5 degrees. Eye po-
sition was calculated as the average of the left and right 
eye positions. Head movement and viewing distance (60 
cm) were controlled using a chin rest. Stimuli consisted 
of 60 (10 objects x 6 viewpoints) surface rendered novel 
greyscale objects (see Figure 5), illuminated from a sin-
gle light source in the upper left-hand quadrant, and 
scaled to fit within a frame of 800 x 800 pixel dimensions 
equating to 15 degrees of visual angle horizontally. This 
scale was chosen to induce saccadic exploration around 
the stimuli. The eye-tracker calibration procedure was as 
follows. There were 24 participants (Mean age 22.67 
years, 22 right handed, 17 female).  Participants viewed a 
static blue dot that appeared, randomly, in each of 16 
possible screen locations. From the recorded eye position 
and known screen position, a transformation matrix was 
constructed, via a linear interpolation method, which was 
used to determine gaze position from eye position. The 
calibration results were visually inspected to ensure a 
sufficiently good calibration was performed prior to con-
tinuing beyond the calibration stage. 

 

Eye movements were recorded while participants 
memorised (Learning Phase) and then recognized (Test 
Phase) sets of computer generated 3-D novel objects (see 
Figure 5). In the learning phase participants viewed five 
(target) objects each from three different viewpoints (0, 
120 and 240 degrees about the image plane). Stimuli 
were presented at the centre of the monitor sequentially 
for 10 seconds each following a three second fixation at a 
peripheral location randomly selected in any of the four 
corners of the screen. In the test phase, targets and an 
additional set of five visually similar distracters were 
presented in a recognition memory task at previously 
seen (0, 120 and 240 degrees) and novel (60, 180 and 300 
degrees) viewpoints. Stimuli were presented centrally 
following fixation at the corner location. Stimuli were 
displayed until response.  The participants were asked to 
determine and respond via key-press (k – ‘yes’/ d – ‘no’) 
whether the presented 3-D object was one of the objects 
seen in the learning phase of the experiment. 
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Figure 5 – The ten grey-scale 3-D rendered stimuli that 
were used in the experiment. For each stimulus shown an 
additional 5 were created by obtaining images of the same 
object rotated 60, 120, 180, 240 and 300 degrees about the 
image plane. 

 

Here we present the results for one of the target stim-
uli, shown in Figure 4. The overlap for the visual saliency 
model (total pixels = 23786) with the recognition task 

data (total pixels = 121086) is 561 pixels (3.7%), while 
the overlap of the recognition memory task data with the 
3-D segmentation model (total pixels = 22057) is 7180 
pixels (47.7%). Figure 6 shows the results of the Monte 
Carlo simulation that we used to assess the significance 
of the reported overlap. The mean overlap for the ‘ran-
dom’ distribution with the visual saliency model was 
2456 pixels, against a 95% C.I. value of 7313 pixels. In 
contrast, the Monte Carlo simulation using the 3-D seg-
mentation model produced a mean overlap of 1853 pixels 
and 95% C.I. cut-off of 6554 pixels. Given our values for 
the degree of overlap of the recognition memory task data 
with each of the models we can conclude that the 3-D 
segmentation model accounts for a significant amount of 
fixation region overlap while the visual saliency model 
does not.

 

Figure 6 – An example of two of the one thousand iterations performed to build up the distribution of the overlap expected 
had ROI placement in the recorded data been a random process. The right hand side histograms show the results of the 
Monte Carlo procedure for the saliency data (top) and the 3-D Segmentation model data (bottom). 
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In order to determine the statistical significance across 
stimuli FROA calculates the frequency distribution of 
significant contrasts relative to the random distribution 
that would be expected by chance given the number of 
contrasts performed corrected for multiple comparisons. 
For example, where there are 60 contrasts (i.e. separate 
overlap comparisons on 60 stimulus displays) one would 
expect 3/60 contrasts on a null hypothesis to exceed an 
alpha level of .05 (that is, N contrasts x α [60 x .05 = 3]). 
The observed number of significant contrasts can there-
fore be compared using a χ2 distribution against the dis-
tribution predicted under the null hypothesis given the 
number of contrasts performed. 

 

For the illustrative data sets, comparisons of fixation 
frequency region maps showed that 3/60 (10 objects x 6 
viewpoints) stimulus contrasts for the recognition task 
(test phase) versus the visual saliency model exceeded the 
95% C.I. of the random distribution, χ2 (d.f. = 1) = 0.18, p 
= .67. In contrast, 29/60 stimuli in the recognition task 
versus 3-D Segmentation model contrast were significant, 
χ2 (d.f. = 1) = 28.81, p < .0001. A similar pattern was 
found for mean fixation duration. Here only 2/60 con-
trasts in the recognition task versus visual saliency model 
contrast, χ2 (d.f. = 1) = 0.00, p = 1.0 and 35/60 in the rec-
ognition task versus 3D Segmentation model contrast, χ2 

(d.f. = 1) = 37.01, p < .0001, showed significant overlap 
relative to the random distribution. 

DISCUSSION 
In this article we have outlined a new method for the 

quantitative analysis of the spatial distribution of fixa-
tional eye movements. The FROA approach provides a 
statistically rigorous method for the comparison of em-
pirically generated fixation data with fixation region pat-
terns predicted by different theoretical models. As we 
have illustrated, the approach can be applied to contrasts 
between empirically-derived fixation data and theoretical 
predictions from models using manually defined ROIs, 
those based on computational simulations of hypotheses 
or trained observer techniques that incorporate estimates 
of noise from subject variability and measurement error.  

 

A related approach has recently been described by 
Foulsham and Underwood (2008). They contrasted pre-

dicted fixation locations for visual saliency with observed 
eye movement patterns for scenes using a recognition 
memory task involving stimulus encoding (learning) and 
recognition (test) phases. Fixation patterns obtained dur-
ing the two experimental phases were statistically com-
pared to generated random models. Two different random 
models were created to test the significance of the co-
occurrence of real and saliency predicted fixations, a 
‘simple’ random model and a biased random model. 
Foulsham and Underwood’s method, although sharing 
the same underlying principle of testing a predicted dis-
tribution with that obtained from a random one, does 
have one notable difference, the selection of ROIs. In 
Foulsham and Underwood (2008) the ROIs are created 
using a fixed radius circle surrounding peak model values 
whereas we allow our ROIs to be arbitrary in shape and 
size. Whilst this is appropriate in their case, due to the 
statistical analysis that was used, it does constrain the 
models in so far as their ROIs must be equivalent in 
terms of size at each theoretically interesting point, which 
may not be the case. 

 

A similar limitation occurs in the approach of Privit-
era & Stark (2000) & Fujita, Privitera & Stark (2007) 
who create their model based ROIs such that they be-
come a point in the image space where, in the following 
similarity measure, they are assigned as equivalent to a 
defined human ROI, or not. In their global similarity 
measure, the amount of aROIs accounted for as being 
equivalent to human, pROIs, are then determined for each 
algorithmic model and contrasted. While this method is 
strengthened by not requiring the use of a strict distance 
measure to define a given human ROI as being equivalent 
to an algorithmically modeled one, since the clustering 
method used does not require the use of a fixed boundary, 
it does suffer from not allowing the creation of ROIs to 
have any size or shape. The method illustrated here can 
potentially determine different levels of contribution for 
two different models aROIs, even if they are coincident 
since the size and shape of the aROI will potentially alter 
the level of overlap, the primary dependent variable used 
in our approach. The strength of the model presented here 
is that where models account for ‘more’ of an images 
visual area we can include that in the modeling process 
without violating statistical rules. 

 

DOI 10.16910/jemr.1.3.5 ISSN 1995-8692This article is licensed under a
Creative Commons Attribution 4.0 International license.



Journal of Eye Movement Research Groner, R., Raess, S. & Reber, T. (2008) 
1,(1):1, 1-2 How to Prepare your Manuscript for the Journal of Eye Movement Research 

11 

The approach here advances previous techniques in 
several ways. First, it allows the use of arbitrarily sized 
and shaped ROIs since FROA makes no assumptions 
about the Gaussian distribution of region overlap. Sec-
ond, the FROA approach does not enforce a size and 
shape constraint on the ROIs. This permits the use of 
trained observer methods for the derivation of predicted 
fixation regions that incorporate noise characteristics, and 
which are particularly appropriate where computational 
implementations for the model under examination are not 
available. It is also worthy of note that both the FROA 
approach described here, and the methodology described 
by Foulsham and Underwood (2008), use a constrained 
random model in order to assess the significance of the 
observed fixation pattern. Failure to do so will result in a 
biased estimate of the amount of overlap that would be 
expected by chance and render the inferences less valid. 

 

One aspect of the approach used within FROA to 
generate random distributions of fixation regions is that 
the distributions are highly skewed and non-Gaussian. 
This provides further support for the use of the Monte 
Carlo procedure, and assessing statistical significance 
relative to the 95% C.I, rather than using parametric in-
ferential statistical measures which assume a normal dis-
tribution. In addition, as we might intuitively expect, as 
the number of pixels in the model increases so does the 
threshold for the 95% C.I: for the visual saliency model, 
with 23786 pixels the 95% C.I. is 7313, while for the 3-D 
segmentation model with 22057 pixels, the 95% C.I. is 
6554. This illustrates how the FROA approach provides a 
valid basis for quantitative contrasts between fixation 
region data sets that vary in region size.  The analysis 
also shows how this method can successfully detect dif-
ferences between the amount of gaze data that different 
models can explain beyond simple differences in the 
number of pixels in the model data. For example, despite 
the small difference (1729 pixels) between the number of 
pixels, and therefore the area, of the two hypothetical 
models used here, the difference in the amount of gaze 
data that they account for is very large, 561 pixels for the 
saliency model versus 7180 pixels for the 3-D segmenta-
tion model. 

 

We now aim to extend this method in to not only take 
into account the spatial distribution of fixation data, but 

also the temporal sequence of those fixations. Fixation 
sequence information has been investigated previously 
(Foulsham & Underwood, 2008; Fujita, Privitera & Stark, 
2007; Privitera & Stark, 2000; Mannan, Ruddock & 
Wooding, 1997; Mannan, Ruddock & Wooding, 1995), 
extending this work to account for arbitrary shaped and 
sized ROIs would provide a similar level of freedom in 
selection of the ROIs than is allowed for with current 
approaches. A second future direction will involve incor-
porating the pixel-by-pixel viewing frequency data into 
the model. In its current form, the analysis treats all areas 
within the regions of interest as being equally weighted in 
terms of their significance; i.e. the thresholding process 
removes information regarding which areas of the ROI 
were fixated more often than others. We aim to extend 
the method to incorporate measures of the 3-D spatial 
distributions of fixations across image space. This will 
provide a means of contrasting hROIs and aROIs at a 
finer spatial scale taking into account local maxima and 
minima in the fixation distributions within ROIs. 

Additional Information 
Example Matlab routines for performing FROA, 

along with an example data set are available from the 
author’s website http://www.bangor.ac.uk/~pssc04. 
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