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Introduction 
Teleoperation is a kind of system which controls 

agents, e.g. robotic vehicles, Drones, etc, from a remote 
location through wireless signals such as Wi-Fi, GPS, 
cellular phone signals, etc (Fong & Thorpe, 2001). The 
system has advantages of being able to replace humans 
working in dangerous and unreachable environments to 
reduce mission failure and avoid casualties. In order for 
agents to perform well, human-robot interactions (HRIs) 
need to be designed and provided for users as convenient 
and efficient as possible. Most HRIs for teleoperation are 
in the form of traditional systems based on hand-
controllers, e.g. joystick, keyboard, mouse, touchpad, etc. 

In the process of teleoperation, generally, the users are 
required to sit in front of a computer and view real-time 
images displayed on the computer screen. The image is a 
live video stream from remote cameras mounted on the 
agent or a fixed position on the ground. Then, the user 
sends control commands manually, e.g. by pressing keys, 
touching the screen, or clicking the mouse, to the agent 
towards completion of specific tasks. Manual operation is 
completed by traditional interaction devices, i.e. hand-
controllers. 

However, there are two problems in traditional HRIs 
for agent teleoperation. On one hand, some handicapped 
users, especially those with disable upper limbs, would 
not be able to control agents using traditional interaction 
devices. On the other hand, users often control agents 
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using more than two types of HRI input devices simulta-
neously for task completion, e.g. controlling agent 
movement by keyboard, adjusting camera viewing direc-
tions by joystick, etc. In this case, users are required to 
switch hands and attention between interaction devices 
and interfaces resulted in reduced task efficiency, increas-
ing mental workload and even physical fatigue (Zhu, 
Gedeon & Thorpe, 2011). For those reasons researchers 
considered a novel HRI based on eye gaze with an eye 
tracker as an additional input modality for users. The 
gaze-based HRI has two features used in agent teleopera-
tion. First, during the process of teleoperation, eye gaze 
moves toward targets and areas of interest on real-time 
images displayed on screen, providing valuable informa-
tion about user intent, which is an "attentive input" (Zhai, 
2003). Second, gaze speed is much faster than hand speed 
with traditional interaction devices when the users look at 
objects on the screen. Hence, agent teleoperation per-
formance can benefit a lot from the valuable and fast in-
formation provided by gaze. In this paper, we use the 
gaze-based HRI as an input modality to teleoperate a 
drone, a so called unmanned aerial vehicle (UAV), as an 
example of agent teleoperation. 

The rest of this paper is organized as follows. Some 
related works about agent teleoperation based on gaze are 
given in the Related Works section. The Motivation sec-
tion gives the motivation of our research. The gaze ges-
tures theory is detailed in the Gaze Gestures section. The 
experimental setup is given in Experimental Setup section. 
The command design of the drone controls based on gaze 
gestures are detailed in Commands Design for the Drone 
Controls section. The Experiment and Experimental Re-
sults sections present the experiment and evaluation re-
sults, respectively. The Discussion section gives the ben-
efits and limitations of gaze gestures. The conclusion is 
summarized in the Conclusion section. 

Related Works 
In general, the teleoperation process of users can be 

divided into two classes: navigation tasks and object se-
lection tasks, i.e. command selection tasks. Navigation 
tasks are the eyes moving to see objects on the screen, e.g. 
cursor movements. The object selection tasks are to trig-
ger actions to perform, e.g. clicking the mouse. 

Although eye movements can indicate intent to inter-
act with an object, the eyes lack an activation mechanism. 

In other words, a user can look at an object on the screen, 
but it is not clear to the interaction system whether it 
should issue a control command or not, i.e. explicit con-
trol intent is not inherent from gaze information. In our 
research, the gaze as sole input needs to be able to handle 
both navigation and object selection tasks. There are 
many object selection strategies for gaze-based human-
computer interactions. Huckauf and Urbina presented a 
good summary and generalization (Huckauf & Urbina, 
2008). However, our attention focuses on human-robot 
interaction based on gaze input modality for agent teleop-
eration. Hence, through the selection of previous works, 
current object selection strategies for gaze input mainly 
include dwell times activation, combined with other HRIs 
based on manual modalities (keyboards, joystick, etc), 
and smooth pursuit in the HRI field. Especially, the 
smooth pursuit selection strategy principle is similar to 
dwell times. The following works are thought to be more 
related to our work. 

A robotic arm was controlled using an eye gaze track-
ing system for handicapped users (Yoo et al., 2002). The 
operational interface on the screen was divided into a 
feedback region displaying real-time images from a cam-
era mounted at a fixed location and a commanding region 
with a number of command buttons. The users observed 
feedback images and gazed towards the buttons, each 
corresponding to a robot joint which he/she decides to 
control. Although the paper did not give the object selec-
tion strategy clearly, in general, the on-screen buttons are 
often activated with dwell times selection strategy.  

An eye gaze tracker was developed for gaze-based in-
teraction modality used in mobile robot control (Yu et al., 
2014). The interface on the screen was divided into a lot 
of grid in the horizontal and vertical directions. The feed-
back image from a camera fixed at a location in the 
movement field of robot was shown on the whole screen. 
The users were required to focus their gaze at one of 
many grid sections for a duration to activate the robotic 
vehicle actions, e.g. forward, backward, etc. This method 
has more real states on the screen than the method in 
(Yoo et al., 2002), but more grid sections make effects 
screen viewing when users operate the mobile robot. 
However, the two systems mainly focus on the design 
work for eye trackers, and do not give a detailed analysis 
of results on object selection strategies. 

TeleGaze system used an eye gaze tracker to teleop-
erate a mobile robot (Latif, Sherkat & Lotfi, 2008). A 
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pan/tilt camera mounted on the mobile robot provided 
real-time images as feedback displayed on the screen. 
The transparent graphic regions named as "active zones" 
were overlaid on the feedback image enabling users to 
issue control commands as long as users fixated on active 
zones. Control of the robot consisted of two parts: robot 
movement and pan/tilt camera controls. The object selec-
tion strategy was attributed to dwell times activation. 
Because of the inherent disadvantage of dwell times se-
lection strategy, Midas touch, a multimodal approach, 
was further researched and presented for teleoperation of 
mobile robots (Latif, Sherkat & Lotfi, 2009). This ap-
proach also uses "active zones" on the screen, but the 
activated tasks were completed through an extra pedal 
instead of gaze fixations with dwell times. The results 
showed, compared to on-screen dwell times activation, 
subjects slightly preferred the combination of gaze and 
pedal.  

In (Tall et al., 2009), smooth pursuit was used to 
guide a robotic vehicle. The direction was determined by 
looking where the users would like to drive. The interface 
provided a direct feedback loop with no visible graphic 
regions delegated for movement commands, e.g. forward, 
backward, etc. The direction and speed are controlled 
linearly by the distance between gaze points and center 
point of the monitor. The system also adopted dwell 
times selection strategy when turning and stopping the 
robot. Those designed on-screen buttons were put on the 
edge of the interface.  

Controlling Drone by gaze-based HRI was proposed 
in (Alapetite, Hansen & Mackenzie, 2012). Like the de-
sign in (Tall et al., 2009), the interface provided no visi-
ble graphic regions as on-screen buttons for control 
commands but relies on feedback loops. The object selec-
tion strategy was attributed to the smooth pursuit method. 
However, Drone control requires four degrees of freedom, 
i.e. speed, rotation, translation, altitude (Detailed in 
Commands Design for the Drone Controls section). The 
gaze tracker provided an input in two dimensions, i.e. x 
and y directions. The control strategy is required design 
mapping from 2D to 3D-world of the Drone. In other 
words, the object selection strategy can cover two de-
grees of freedom corresponding to control commands. An 
additional study was given in (Hansen et al., 2014), 
where the keyboard worked as an additional HRI input 
device to compensate for the uncovered degrees of free-
dom corresponding to control commands. The experi-

ment aims to find out how to pair gaze movements with 
drone motions to make interaction reliable using eye 
tracker and keyboard interfaces. 

Motivation 
As for agent teleoperation, the correctness and timeli-

ness of control commands are very important during op-
eration, since wrong commands and command delay can 
cause crashes and even lose agents, which are dangerous 
and costly. However, dwell times and smooth pursuit 
selection strategies bear a considerable amount of disad-
vantages that might result in those cases. The main prob-
lem is the Midas touch problem (Jakob, 1991), resem-
bling King Midas, who turned everything to gold by 
touch, in dwell times and smooth pursuit selection strate-
gies. Especially with the smooth pursuit selection, some 
subjects reflected everything you looked at would get 
activated (Hansen et al., 2014). In this case, the agent 
would be sent the wrong commands, something novices 
may not be able to recognize and correct. Although the 
dwell times selection strategy can solve this problem 
through setting an appropriate duration time, it is crucial 
to achieve optimal performance. Too short dwell times 
will increase the amount of unintended selections, 
whereas too long dwell times will make increase com-
mand delays to agents. 

The visible graphic regions are usually drawn on the 
screen as "active zones" for producing agent control 
commands in dwell times selection strategy. In general, 
agent teleoperation needs a lot of control commands, e.g. 
camera and robot-self controls. However, more control 
commands will increase amount of graphic regions that 
take up screen space. At the same time, briefs are often 
written on the regions to indicate to the users what the 
graphic regions delegate (Latif et al, 2008, 2009). In this 
case, the operational interface would affect the users' 
field of the vision and even cause confusion. Contrarily, 
there are fewer visible graphic regions provided in the 
smooth pursuit selection strategy, which uses the gaze 
points to directly control. The strategy gives better view-
ing space, but at the cost of control command variety 
(Alapetite et al., 2012). The solution is to combine other 
additional HRI input devices into one system, e.g. eye 
tracker with keyboard (Hansen et al., 2014).   

During agent teleoperation, the command transmis-
sions need to be kept continuous. In the dwell times se-
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lection strategy, users looked at active zones for a dwell 
time, and a command was continuously activated until 
the gaze moved to another region (Yu et al., 2014; Latif 
et al., 2008). In the smooth pursuit selection strategy, 
users keep their gaze towards the direction they would 
like to drive (Tall et al., 2009; Alapetite et al., 2012; Han-
sen et al., 2014). However, in the two cases, increased of 
operational time enhances mental workload. Although 
combining gaze control with manual controllers can pro-
vide the possibility of fast and efficient controls, we ac-
cept a fact that this case reduces some of the advantages 
of gaze control, e.g. having the hands free, due to afford-
ing an additional input device (Latif et al., 2009; Hansen 
et al., 2014). 

To sum up, there are several of disadvantages of se-
lection strategies from dwell times and smooth pursuit in 
gaze-based HRI field. Consequently, this paper tries to 
introduce gaze gestures as an object selection strategy to 
improve those problems.  

Gaze Gestures 
The concept of gaze gestures has been recently pro-

posed in the gaze research field (Drewes et al., 2007). 
Gaze gestures are based on saccadic movements and de-
fined as sequences of strokes, which are the foundation of 
gaze gestures. A stroke is defined as the motion between 
two intended fixations. It is different from eye saccades, 
which can be defined as the eye movement between gaze 
fixation points.  

There are several types of gaze gestures based on dif-
ferent principles to complete object selection. Urbina and 
Huckauf proposed a gaze gesture based on boundary 
crossing called "EyePie writing" (Urbina & Huckauf, 
2007). Istance et al. developed a moded approach, which 
is so-called "Snap Clutch", to solve the Midas touch 
problem. They recognized gaze gestures are based on 
gaze strokes crossing the side of the monitor for changing 
modes of the gaze input (Istance et al., 2008). The gaze 
gestures based on changes in saccade direction were pre-
sented by (Drewes et al., 2007). A gesture was defined 
based on the order and relative direction of saccades. 
Heikkilä and Räihä proposed gaze gestures based on 
shape tracking and presented different types of gestures 
for eye-drawing (Heikkilä & Räihä, 2009). In our paper, 
we used gaze gestures based on active zones, also so 
called fix-points.    

Gaze gestures based on active zones consist of single 
stroke gaze gestures (SSGG) and complex gaze gestures 
(Mollenbach, 2010). A single stroke gaze gesture is de-
fined as the motion between two intended fixation points. 
The complex gaze gestures are the movement between 
more than two intended fixation points. Figure 1 shows 
the examples of a SSGG and complex gaze gestures, re-
spectively. 

 

Figure 1: A single stroke gaze gesture and complex gaze 
gestures. 

Intuitively, a SSGG is easier and consumes little time 
to complete selection, but a potential problem may hap-
pened that overlaps between natural inspection patterns 
and intended eye movement patterns, known as acciden-
tal gesture completion. Complex gaze gestures have an 
advantage of increasing the interaction 'vocabulary', but 
this brings some difficulties on cognitive and physiologi-
cal load for users, since numerous gaze gestures need to 
be remembered and more than single gaze stroke is 
needed to complete selection. 

In addition, some factors, such as the number of 
strokes, layout of active zones, and length between active 
zones, have an effect on the completion of gaze gestures 
selection. In (Istance et al., 2010), researchers used 2 and 
3 strokes as gaze gestures and a line path between active 
zones to control the player's avatar in the game World of 
Warcraft. The average stroke completion times were re-
ported as 494ms for 2 strokes and 879ms for 3 strokes. 
Although the 3 stroke time is longer than average 490ms 
dwell times (Mollenbach, 2010), this case can more ef-
fectively avoid the Midas touch problem. Mollenbach 
proposed two design criterions regarding the layout of 
active zones on the screen interface. On one hand, the 
center of the screen should be unaffected by eye gaze. On 
the other hand, the initial point of the gaze itself should 
have no effect on the system. Hence, the active zones are 
on the periphery of the screen, since fixations rarely oc-
cur there and the risk of accidental gesture completion is 
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largely decreased. Based on this active zone layout on the 
interface, long and short SSGGs were examined and 
compared to dwell selection with five increments of fixa-
tion duration time. The long and short SSGGs were re-
lated to stroke length to complete selection. The results 
show no significant difference regarding the SSGG and 
dwell times for solving similar tasks, but did show some 
differences between short and long SSGG. Consequently, 
according to different tasks, the researchers need to de-
sign the number of strokes, layout of active zones and 
distance between active zones on the interface in terms of 
effective strategies for solving selection tasks (Mollen-
bach et al., 2013). 

Compared to dwell times and smooth pursuit object 
selection tasks, there are some advantages to the gaze 
gestures selection strategy. First, the Midas touch prob-
lem can be solved by gaze gestures because it can distin-
guish between natural navigational eye movements and 
selections. Second, gaze gestures do not require much 
screen space, because the active zones can be drawn with 
semi-transparent, opaque or hollow circles. At the same 
time, complex gaze gestures require less active zones to 
constitute a lot of object selections, compared to dwell 
time selection, which requires more active zones. Third, 
gaze gestures can complete object selection quickly, since 
the elapsed time to cover a 1° to 40° visual angles is 30-
120ms (Duchowski, 2007). Finally, gaze gestures can 
decrease mental workload compared with smooth pursuit 
object selection tasks, because the method does not re-
quire users to keep their gaze within active zones for 
command continuity but to complete one time for each 
selection task. 

This paper introduces gaze gestures as an object se-
lection strategy for human-robot interaction. Through 
observation of the literature, gaze gestures as the control 
object selection method are seldom researched in the 
agent teleoperation field. We found one paper (Mollen-
bach, Hansen, Liholm & Gale, 2009) that used single 
stroke gaze gesture to control wheelchair movement in a 
real world environment. In our research, we give an ex-
ample of agent teleoperation based on gaze gestures for 
drone control. In the following sections, we detail the 
design of gaze gestures as control commands for drone 
control.  

Experimental Setup 
The system consists of a remote and teleoperation sta-

tion, as seen in Figure 2.  

The remote station is an off-the-shelf A. R. Parrot 
drone 2.0. This model has four in-runner motors and, 
with the indoor hull, weighs 420g. The drone is a low 
cost UAV at less than $400. A HD camera with resolu-
tion of 1024×720 pixels at 30fps is mounted on the nose 
of drone in order to provide live video to a laptop for 
teleoperation via Wi-Fi. 

 

Figure 2: Experimental Setup. 

The teleoperation station includes an eye tracker, a 
laptop, and a joystick. The eye tracker is a low cost gaze 
tracking system ($99) from The Eye Tribe company. It 
has two infrared lights and a camera, sampling at 30Hz or 
60Hz, and an average accuracy of 0.5 degrees. The size 
W/H/D of the eye tracker is 20×1.9×1.9 cm. It is small 
enough to be placed behind the keyboard and below the 
screen of a laptop (2.4GHz i7-4700MQ CPU and 8G 
DDR3) and connected via USB 3.0 . The videos are dis-
played on a 15.6-in LED backlit anti-glare laptop monitor 
controlled by a graphics workstation (Quadro K2100, 
NVIDA corp.). The spatial resolution of the screen dis-
play used in our research is 2048×1152 pixels. The eye 
tracker allows a small range of head movement after cali-
bration. The operational distance between subjects and 
computer screen is about 60cm. The joystick is used as an 
additional HRI input device provided for comparison 
with the eye tracker. 
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Gaze data is calculated and captured using an open 
source SDK provided by The Eye Tribe. The laptop is 
used as the interface where interaction takes place be-
tween user and drone. 

Commands Design for the Drone Controls 
In this section, we design a set of commands based on 

gaze gestures for drone controls.  

In Figure 3, the drone controls cover four degrees of 
freedom (Hansen et al., 2014): 

Speed: Longitudinal motion (forward/backward trans-
lation in the horizontal plane) is controlled by variation in 
pitch. 

Rotation: Turing about the vertical axis, i.e. turning 
left/right on itself, is controlled by variation of yaw. 

Translation: Lateral displacement (left/right transla-
tion in the horizontal plane) is controlled by variation of 
roll. 

Altitude control: Vertical translation. 

 

Figure 3: The three control axes: pitch, roll and yaw of the A. R. 
Parrot 2.0. 

In our research, gaze gestures are based on active 
zones, which include single stroke gaze gestures and 
complex gaze gestures. The problem is which of the 
above degrees of freedom should be appropriately as-
signed to corresponding to gaze gestures. According to 
the description in the Gaze Gestures section, the number, 
size and position of active zones on the screen interface 
are required for consideration when designing a set of 
commands for drone control. 

During the process of drone control, we observed that 
users have a bias tendency to fixate towards the center 
region of the screen, similar to how drivers are required 
to keep gaze forward when driving. As for the periphery 
of the screen, fixations rarely occur there, only when 
turning the drone (left/right) and changing drone altitude 
(up/down) would users gaze at the periphery. Here, we 
divided the drone control degrees of freedom into two 
groups to design control commands. One contains longi-
tudinal motion and lateral movement, While the other 
includes rotation and altitude control. 

According to the above analysis, we draw eight active 
zones on the screen interface. The distribution of active 
zones is such that the four for the first group are located 
at each corner of the interface, and the four for the second 
group are put on the neighboring regions corresponding 
to the four corners. In the following, we give a detailed 
design of drone control commands. 

First group: The variation in pitch controls forward 
and backward translation of the drone. Because user fixa-
tions often fall into the center region of the screen, com-
plex gaze gestures are adopted for control command se-
lection in order to avoid accidental gaze completion. 

One complex gaze gesture, including two strokes 
across three active zones, is completed through hitting 
each active zone sequentially along the gaze gesture path. 
The first active zone is called an initiation field, and the 
last zone a completion field. The whole process is done 
within 1500ms. The timer event has three steps. First, the 
event is fired when the boundary of the initial field is 
crossed. Then the gaze enters the middle active zone on 
the path. Finally, it ends when gaze moves across the the 
completion field boundary. 

There are three possible reasons cancel the event. 
First of all, if the gaze gesture is not completed within 
1500ms, the event will be reset. Second, if a complex 
gaze gesture is initiated but the gaze enters one active 
zone other than one on the path, the object selection task 
will be cancelled. Lastly, if a complex gaze gesture is 
initiated and completed, but the middle zone is not hit, 
the system will be reset. Figure 4 (a, b) shows the two 
complex gaze gestures for longitudinal motion: forward 
and backward. 

Next, we design the drone lateral movement com-
mands. According to observations from the process of 
drones controlled by users, the unintentional gaze path 
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rarely occurs between two diagonal regions on the screen. 
Hence, the SSGG is applied to design the lateral move-
ment commands. At the same time, in order to avoid po-
tential overlap with longitudinal motion commands, the 
middle active zones on the pitch variation control path 
are selected as the initial gaze gesture fields for lateral 
movement commands, as shown in Figure 5 (a, b). The 
duration is set to 1000ms. The timer event is fired when 
an initiation field boundary is crossed and ends when 
gaze moves across a completion field boundary of the 
diagonally opposite region. Each gaze gesture has to be 
completed within 1000ms or the event will be reset. At 
the same time, if an SSGG is initiated but the gaze enters 
an active zone not on the path, the command selection 
task will be cancelled. 

 
Figure 4: Complex gaze gestures represented the longitudinal 
motion of the drone: (a) Forward and (b) Backward. 

 

Figure 5: SSGGs represented the lateral movement of the 
drone: (a) Left Lateral and (b) Right Lateral. 

Second group: In general, users move their gaze from 
the center region to the screen periphery when turning 
left/right and translating up/down. At the same time, fixa-
tions rarely occur on the screen periphery. Hence, we 
choose SSGGs as the object selection method for rotation 
and altitude controls. 

For drone rotation, the initial fields are the active 
zones in two upper corners of the screen, and completion 
fields are the two lower corners of the screen. Each 
SSGG rotation command is completed within 1000ms. 

The SSGGs are shown in Figure 6 (a, b). The timer event 
is similar to that of lateral movement commands in the 
first group. 

 

Figure 6: SSGGs represented the rotation motion of the drone: 
(a) Leftward and (b) Rightward.  

Gaze gestures for drone altitude control are designed 
at the upper and lower regions of the screen. For upward 
translation, the initial filed is in the upper left corner of 
the screen and completion field is on the upper right cor-
ner of the screen. For downward translation, the initial 
and completion fields are located at the two lower corners 
of the screen. These processes have to be completed with-
in 1000ms. Figure 7 (a, b) shows the gaze gestures for 
altitude control. The timer event is similar to lateral 
movement commands in first group. 

 

Figure 7: SSGGs represented the altitude translation of the 
drone: (a) Upward and (b) Downward. 

We have designed control commands based on gaze 
gestures corresponding to the four degrees of freedom. 
However, we did not provide a stop command (Hover) 
for drone control. Stopping in drone control represents 
stable flying at certain distance from the ground. In order 
to provide an easy to remember stop command, any 
command in reverse order is designed to be a stop com-
mand. 

According to the above designed gaze gestures for 
drone control, we provide a design for a screen interface 
between human and drone, shown in Figure 8. The white 
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rectangle regions are defined as active zones with trans-
parent regions. The transparency of the active zones helps 
prevent obstruction images on the screen. 

 

Figure 8: The designed interface between the human and drone. 

Experiment 

In this section, we design and execute an experiment 
utilizing gaze gestures object selection strategy for drone 
teleoperation. In order to evaluate experimental results, 
we also adopt other selection strategies, i.e. keyboard, 
joystick and dwell times, as a comparison. 

Dwell Times 
We adopted the similar graphic region (active zones) 

interface design used in (Latif, et al, 2008), as shown in 
Figure 9. Active zones size is the same as the ones in 
Figure 8. In order to better understand the meaning of 
active zones, labels are displayed on each active zone. 
The center active zone is divided into two regions, left for 
forward control, and right for backward control. Dwell 
time durations are set 300ms, 400ms, 420ms, 440ms, and 
500ms. Throughout the experiment, we selected 420ms 
as the optimal duration time (See Discussion section). A 
control command is activated when gaze at an active 
zone is fixated for 420ms. If the fixation moves away 
from the active zone, the drone will stop (hover). 

Participants 
Eight subjects from different countries, three female 

and five male, ages 23-30 years (mean 26.3 years, SD 
2.3), took part in the experiment. Some participants have 
vision problems; three wear glasses, the rest do not need 
glasses. Five participants have eye tracker experience and 
four had tried flying a drone controlled via smart phone. 

None have experience controlling a drone with an eye 
gaze tracker. 

 

Figure 9: The designed interface for dwell times object 
selection strategy. 

 

Figure 10: The pre-defined route of the drone flying. 

Task  
To evaluate system performance, we designed a sim-

ple task for users to perform within our laboratory. The 
layout in the experimental environment and pre-defined 
navigational route are shown in Figure 10. The start and 
end positions are used as landing platforms for the drone. 
The challenge tasked users to navigate the drone along a 
narrow aisle, as can be seen in Figure 10. Two tripods 
were placed 150cm apart and their height was set at 
150cm. The drone needed to gain altitude to pass these 
obstacles. Participants needed to navigate the drone to 
pass between the tripods, and then land at the end posi-
tion. The actions in designed task require use of all four 
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degrees of freedom, i.e. speed, rotation, translation and 
altitude control. 

Study of Commands  
In order to better control the drone during the experi-

ment, we first allowed users to practice the drone loco-
motion commands corresponding to the four selection 
strategies, i.e. keyboard, joystick, dwell times, and gaze 
gestures. With other words, we allowed subjects practice 
time with the interface to learn the command gestures. 

 
Figure 11: The distribution of learning curves for gaze gestures. 

Each participant is required to consecutively complete 
8 locomotion commands corresponding to longitudinal 
motion, lateral movement, rotation and altitude control. 
The process is called one seesion. The next three sessions 
are conducted as training sessions, where the participants 
are briefed about drone control commands with four se-
lection strategies and what they to do. After the three 
practicing sessions, 30 minutes are given to each partici-
pant for learning commands and testing. Sessions 4 to 17 
are regular testing sessions. Each session is a total of 8 
commands × 8 participants = 64 commands. The correct 
rate is defined as the number of correct commands di-
vided by total commands (64). The learning curve distri-
bution for four selection strategies is shown in Figure 11. 
As for gaze gestures selection mode, correct rates start 
lower than average, and then go up to 100% after the 16th 
session. This indicates improvement in performance of 
operation over sessions. Through subjective responses 
regarding low correct rates, participants most commonly 
forgot the correct gaze gesture control commands. 

Procedure 
After studying and practicing the drone locomotion 

commands, the gaze gesture selection strategy evaluation 
experiment is executed.  

We first provide a general explanation of the task to 
all participants. The HRI input devices used in the ex-
periment include keyboard, joystick, and eye tracker. The 
former two devices are used for comparison with the eye 
tracker. Then, the user sits in front of the laptop. They are 
given a detailed explanation about the control strategies. 
Each participant needs to complete a session (Different 
with a session in Study of Commands subsection) which 
has four independent experiments for the four object se-
lection strategies. 

Two participants ran the full experiment a day, for 
four days. Each participate was given 40 minutes to prac-
tice the session before starting the test. For each test ses-
sion, the drone took off automatically and elevated to 
about 50cm. The participant was then given full control 
of steering. Once the drone flew to the end position, the 
subject pressed a button for auto-controlled landing. 
Some screenshots of the drone are shown in Figure 12. 

 

Figure 12: The screenshots of the drone flying. 

Results 

Objective and subjective measurements were col-
lected for evaluation of each object selection strategy. 
The objective measurement is the analysis of the drone 
control task, which includes mean task completion time 
and mean error rate. The subjective measurement is the 
analysis of participant perception. Three one-way re-
peated measures ANOVAs are used as the test the hy-
pothesis of significant effect on the four object selection 
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strategies as the independent variable with the mean task 
completion time, mean error rate and perception as the 
dependent variables. 

Mean Task Completion Time 

The mean task completion time is the mean elapsed 
time from drone take-off from the start position to land-
ing at the end position along the pre-defined route for 
each subject. The recorded mean task completion time for 
the four object strategies are shown in Figure 13. 

 

Figure 13: Mean task completion time. 

A one-way within subjects repeated measures 
ANOVA was conducted to compare the effect of object 
selection strategy on the mean task completion time for 
keyboard, joystick, dwell time, and gaze gesture condi-
tions. There was a significant effect of object selection 
strategies, . Joystick object 

selection provided the fastest mean task completion time 
 and the gaze gestures ob-

tained slowest mean task completion time 
. Four paired sample Bon-

ferroni-tests were used to make post-hoc comparisons 
between conditions. The first and second paired sample 
Bonferroni-tests indicated that there were significant dif-
ferences for dwell times and gaze gestures compared to 
keyboard and joystick. The third and fourth paired sam-
ple Bonferroni-tests indicated there also was a significant 
difference between dwell times and gaze gestures. The 
reason for the significant difference between the gaze 
gestures object selection strategy and other object selec-
tion strategies is that the proposed object selection strat-

egy needs more time to complete each command corre-
sponding to each gaze gesture. 

Mean Error Rate 
The mean error rate is the number of errors for each 

object selection strategy that occurred in the whole task, 
as can be seen in Figure 14. The errors include obstacle 
collisions and wrong commands. 

 

Figure 14: Mean error rate of the task. 

In Figure 14, two object selection strategies with low-
er error rates were the keyboard and joystick. A one-way 
within subjects repeated measures ANOVA was 
conducted to compare the effect of object selection strat-
egy on mean error rate in keyboard, joystick, dwell times, 
and gaze gestures conditions. There was a significant 
effect on object selection strategy, 

. Four paired sample Bonfer-

roni-tests were used to make post-hoc comparisons be-
tween conditions. The first paired sample Bonferroni-test 
indicated that there was no significant difference in the 
score for gaze gestures, , com-
pared to the keyboard. The second paired sample Bonfer-
roni-test indicated that there was also no significant dif-
ference in the score for gaze gestures, 

, compared to the joystick. 
The third paired sample Bonferroni-tests indicated there 
was a significant difference for dwell times between the 
keyboard and joystick selection strategies. The fourth 
paired sample Bonferroni-tests indicated there was no 
significant difference for gaze gestures between the other 
three object selection strategies. As for dwell times, the 
users became the victim of the "Midas Touch" problem. 
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Perception 
Perception evaluation is a subjective metric. In our re-

search, we adopted the NASA Task Load Index (NASA-
TLX), which is a subjective mental workload assessment 
tool for users working with human-machine systems, as a 
tool for perception evaluation of the four object selection 
strategies. The results are shown in Figure 15. 

 

Figure 15: Mean NASA-TLX Values of the task. 

A one-way within subjects repeated measures 
ANOVA was conducted to compare the effect of object 
selection strategy on mean of weighted ratings of NASA-
TLX for keyboard, joystick, dwell times, and gaze ges-
tures conditions. There was a significant effect of object 
selection strategy, . Four 

paired sample Bonferroni-tests were used to make post-
hoc comparisons between conditions. The first paired 
sample Bonferroni-test indicated that there was no sig-
nificant difference in scores for gaze gestures, 

, compared to the keyboard. 
The second paired sample Bonferroni-test indicated that 
there was a significant difference in score for gaze ges-
tures, , compared to the joy-
stick. The third paired sample Bonferroni-tests indicated 
there was a significant difference for dwell times between 
the three object selection strategies. According to feed-
back from users, the reasons for that are mainly attributed 
to the "Midas Touch" problem. The fourth paired sample 
Bonferroni-tests indicated there was a significant differ-
ence for gaze gestures between the joystick and dwell 
times.  

Discussion 
From the work proposed in this paper, it can be con-

cluded that gaze gestures selection strategy is likely to 
play a significant role in Human-Robot Interaction appli-
cations. Although the result of mean task completion time 
for gaze gestures did not achieve the same level of con-
ventional selection strategy efficiency, i.e. joystick and 
keyboard, from the results presented, gaze gestures 
showed great potential. The subjective metric showed 
that the gaze gestures selection strategy had less subjec-
tive mental workload for the task of teleoperating a 
drone, and could carry the advantage of releasing the 
users' hands.  

 In addition, we compared the results of our proposed 
method with the dwell times selection strategy. We had 
two reasons for this comparison with the dwell times 
condition in HRI. One is that the dwell times selection 
strategy has been widely used in many HRI applications 
(See Related Works section). Another is to determine 
what dwell durations the proposed gaze gestures selection 
strategy could be compared to. As for the second reason, 
we further explored the dwell durations and showed the 
compared results with the proposed gaze gestures selec-
tion strategy for our proposed task (See Dwell Times sub-
section).  

In Table 1, we gave five mean task completion times 
with different dwell durations, ranging from 300ms to 
500ms. The fastest completion time for the dwell times 
selection strategy is 86.13ms, with standard deviation of 
8.95ms. Hence, the 420ms duration is used as the optimal 
time for the experiment (see Dwell Times subsection). As 
for the gaze gestures selection strategy, the mean task 
completion time is longer than any dwell duration. The 
reason is that there is always a fixation that starts the 
stroke, so actual selection time is longer. However, the 
shortest dwell duration of 300ms achieves a longer mean 
task completion time than other dwell durations. The Mi-
das touch problem can be used as an explanation for that.  

In Table 2, the gaze gestures selection strategy 
achieves lower error rate than dwell times. On one hand, 
active zones are put on the four corners of the screen, 
resulting in less accidental gesture completions. On the 
other hand, the gaze gestures selection strategy requires 
just a gaze gesture to complete a corresponding control 
command. However, for the dwell times selection strat-
egy, the Midas touch problem could produce more opera-
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tional errors according to drone control observations. In 
addition, shorter dwell durations had higher error num-
bers than the longer durations in Table 2. 

Table 3 shows the performance of the gaze gestures 
selection strategy is much better than the dwell times 
selection strategy for perceptions evaluation, i.e. less 
metal workload, since the users need not to fixate their 
gaze on active zones. In addition, the gaze gestures selec-
tion strategy provides on-screen active zones and requires 
users to remember gaze gestures corresponding to differ-
ent control commands. However, the dwell times selec-
tion strategy requires labels on the active zones for indi-
cating what the graphic regions delegate. In this case, 
more active zones on the screen provide a worse effect of 
view for users.  

To sum up, we think that the gaze gestures selection 
strategy has a greater potential than the dwell times selec-
tion strategy as a HRI for agents teleoperation. 

 

Table 1 

Descriptive statistics for Mean Task Completion Time of 
Gaze Gestures and Dwell Times. 

Dependent Vari-
able 

Independent 
Variable 

Mean Std. De-
viation 

Gaze Gestures 103.30 5.95 

Dwell Times 
300ms 

91.23 12.50 

400ms 87.60 10.42 

420ms 86.13 8.95 

440ms 86.80 10.10 

Mean Task Com-
pletion Time 

500ms 87.13 11.20 

 

 

 

 

 

 

Table 2 

Descriptive statistics for Mean Error Rate of Gaze Ges-
tures and Dwell Times. 

Dependent 
Variable 

Independent 
Variable 

Mean Std. De-
viation 

Gaze Gestures 2.50 0.89 

Dwell Times 
300ms 

4.50 1.01 

400ms 3.92 0.82 

420ms 3.75 0.76 

440ms 3.70 0.86 

Mean Error 
Rate 

500ms 3.81 0.95 

 

Table 3 

Descriptive statistics for Perception of Gaze Gestures 
and Dwell Times. 

Dependent 
Variable 

Independent 
Variable 

Mean Std. De-
viation 

Gaze Gestures 41.50 4.31 

Dwell Times 
300ms 

49.80 5.10 

400ms 48.90 4.20 

420ms 48.00 4.41 

440ms 49.10 4.60 

Perception 

500ms 48.96 6.01 

Conclusion 

Teleoperated agents have been widely used to com-
plete tasks in dangerous and unreachable environments 
instead of humans. The means of teleoperation are usu-
ally completed with conventional HRI input devices, e.g. 
keyboard, mouse and joystick, etc., for agent control. 
However, conventional HRI input devices are not suitable 
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for handicapped users. At the same time, users often con-
trol agents using more than two types of HRI input de-
vices simultaneously for task completion. In this case, 
users are required to switch hands and attention between 
those interaction devices and interfaces, resulting in re-
duced task efficiency, increased mental workload, and 
even physical fatigue. Consequently, researchers have 
considered a novel HRI based on eye gaze with an eye 
tracker as an additional user input modality.  

In HRI control, object selection strategy is the most 
frequent and important action. In our research, we intro-
duce gaze gestures as object selection strategy for agent 
teleoperation. A drone is used as an example of agent 
teleoperation for our research. We give detailed control 
commands designed around gaze gestures. In order to test 
and validate performance of the gaze gestures selection 
strategy, evaluations of objective and subjective meas-
urements are given. The objective measurement is the 
analysis of drone control performance, including mean 
task completion time and mean error rate. The subjective 
measurement is the analysis of participant perception. 
Three one-way repeated measures ANOVAs are used as 
the test the hypothesis of significance effect on the four 
object selection strategies. The results show that the gaze 
gestures object selection strategy has a great potential as 
an additional HRI used in agent teleoperation.  

However, we also need to solve a problem that there 
can be an overlap between natural inspection patterns and 
intended eye movement patterns, resulting in accidental 
gesture completion. For gaze interaction purposes, it is 
desirable to minimize unintended gaze recognition (Mol-
lenbach, 2010). Complex gaze gestures have the advan-
tage of increasing the gaze interaction 'vocabulary', but 
this introduces cognitive and physiological difficulties for 
users, since more gaze gestures need to be remembered. 
Consequently, in the future, we will introduce machine 
learning algorithms to enhance the ability of discriminat-
ing intentional gaze gestures from otherwise normal gaze 
activity in agent teleoperation, e.g. gaze gestures identifi-
cation based on Hierarchical Temporal Memory (HTM) 
algorithm (Rozado et al., 2014). 
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