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During visual fixation on a target, humans perform miniature (or fixational) eye
movements consisting of three components, i.e., tremor, drift, and microsaccades.
Microsaccades are high velocity components with small amplitudes within fixa-
tional eye movements. However, microsaccade shapes and statistical properties
vary between individual observers. Here we show that microsaccades can be
formally represented with two significant shapes which we identfied using the
mathematical definition of singularities for the detection of the former in real
data with the continuous wavelet transform. For characterization and model
selection, we carried out a principal component analysis, which identified a step
shape with an overshoot as first and a bump which regulates the overshoot as
second component. We conclude that microsaccades are singular events with an
overshoot component which can be detected by the continuous wavelet transform.

Keywords: Fixational eye movement, Microsaccade characterization, Microsaccade
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Introduction

The act of visual fixation is the basis for perception
of a stationary target objects. In the beginning eye-
movement research, miniature eye movements have
been discovered during fixation of the eyes. Further-
more, under suppressed eye movements, perception is
disturbed. In the 1950s it was demonstrated in a labo-
ratory experiment that stationary objects rapidly fade
from perception when our eyes are artificially stabi-
lized Ditchburn and Ginsborg (1952); Pritchard (1961);
Riggs, Ratliff, Cornsweet, and Cornsweet (1953)). This
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perceptual fading is caused by the adaptation of reti-
nal receptor systems to constant input and can occur
rapidly (Coppola & Purves, 1996). Thus, while our eyes
fixate a stimulus for the visual analysis of fine details,
ironically, miniature eye movements must be produced
to counteract perceptual fading. Consequently, the
term fixational eye movements (FEM) was introduced to
capture this seemingly paradoxical behavior. Percep-
tual performance as a function of self-generated noise
is an unimodal function which lends support to un-
derlying nonlinear mechanisms (Starzynski & Engbert,
2009).

Fixational eye movement is classified as tremor, drift
and microsaccades (e.g., Ciuffreda & Tannen, 1995).
The largest component of fixational eye movements
is produced by microsaccades which are high-velocity
movements with small amplitudes. Recent find-
ings demonstrated various neural, perceptual and be-
havioral functions of microsaccades (Martinez-Conde,
Macknik, & Hubel, 2004; Martinez-Conde, Macknik,
Troncoso, & Hubel, 2009; Rolfs, 2009). The relevance
of microsaccades to diverse neural and cognitive sys-
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tems offers a possible explanation for the difficulties
in identifying a specific function for microsaccades
(for recent overviews see Martinez-Conde et al., 2004).
Here, the following section gives a very simple and
brief overview of recent findings about functions of mi-
crosaccades:

Neural activity. Microsaccades are correlated with
bursts of spikes across the visual pathway (Martinez-
Conde, Macknik, & Hubel, 2000; Martinez-Conde et al.,
2004; Martinez-Conde et al., 2009). Theoretical analyses
suggest that they help to decorrelate neural responses
in natural viewing (Rucci & Casile, 2004).

Oculomotor control of fixation. Microsaccades enhance
retinal image slip (to counteract retinal fatigue) on a
short time scale and control fixational errors on a long
time scale (Engbert & Kliegl, 2004). Moreover, recent
evidence suggests that microsaccades are triggered on
perceptual demand based on estimation of retinal im-
age slip (Engbert & Mergenthaler, 2006).

Perception. Microsaccades are important for periph-
eral and parafoveal vision. During the perception
of bistable visual scenes, microsaccades induce tran-
sitions to visibility and counteract transitions to per-
ceptual fading (Engbert, 2006; Martinez-Conde, Mack-
nik, Troncoso, & Dyar, 2006; Rucci, Iovin, Poletti, &
Santini, 2007). Moreover, fixational eye movements
and microsaccades represent noise sources that en-
hance perception (Starzynski & Engbert, 2009). Fur-
thermore during fixation, microsaccades play a part in
supporting second-order visibility (Troncoso, Macknik,
& Martinez-Conde, 2008).

Attention. Microsaccades can be suppressed volun-
tarily with focused attention (Bridgeman & Palca, 1980;
Gowen, Abadi, & Poliakoff, 2005). They are also mod-
ulated by crossmodal attention with a pronounced sig-
nature in both rate and orientation (e.g., Engbert &
Kliegl, 2003; Galfano, Betta, & Turatto, 2004; Hafed
& Clark, 2002; R. Laubrock, Engbert, & Kliegl, 2005;
Rolfs, Engbert, & Kliegl, 2005). The hypothesis that mi-
crosaccades represent an index of covert attention has
been criticized by Horowitz, Fine, Fencsik, Yurgenson,
and Wolfe (2007) (but see Horowitz, Fencsik, Fine, Yur-
genson, & Wolfe, 2007; J. Laubrock, Engbert, Rolfs, &
Kliegl, 2007), however new work by J. Laubrock, Kliegl,
Rolfs, and Engbert (2010) lends support to the coupling
between attention and microsaccades.

Saccadic latency. Microsaccades interact with upcom-
ing saccadic responses which can result in prolonged as
well as shortened latencies for saccadic reactions (Rolfs,
Laubrock, & Kliegl, 2006). Recently, Sinn and Engbert
(2009) demonstrated that this effect contributes to the
saccadic facilitation effect in nature background.

Individual differences. The pattern of successive mi-
crosaccades (called saccadic intrusion in this study) has
been proposed as a stable characteristic between per-
sons (Abadi & Gowen, 2004). In general, there is much
overlap but also a few differences tied to the distinc-
tion between microsaccades and saccadic intrusions

(Gowen, Abadi, Poliakoff, Hansen, & Miall, 2007).
The list of results demonstrates that microsaccades

are associated with a wide range of research areas in
behavior, cognition and neural functioning. For the
detection of microsaccades in trajectories of fixational
eye movements, methods were developed by Boyce
(1967), Martinez-Conde et al. (2000) and Engbert and
Kliegl (2004) that used the microsaccade property of
their high velocity, i.e. they used their amplitude. The
idea underlying their methods is to describe microsac-
cades as high velocity events of certain length. It was
Mergenthaler and Engbert (2007) who reported that fix-
ational eye movements can be modelled as fractional
Brownian motion with persistent and anti-persistant
behavior on a short and long time scale, respectively.
They also investigated the influence of microsaccades
on the scaling exponent which determines the charac-
teristics of the underlying structure. Our working hy-
pothesis is the definition of microsaccades as events
that compared to the general structure in fixational eye
movement trajectories have low regularities. We pro-
pose a scale-free detection method for microsaccades
using the continuous wavelet transform (Holschneider,
1995; Mallat, 1998). It uses structural properties of the
trajectory and the unlikeliness of microsaccadic events
in the underlying drift movements, to detect microsac-
cades.

Using the results obtained by a detection method
that uses structure properties of fixational eye move-
ments, we continue with an analysis of the shapes ob-
tained. We show, how to arrive at a data-driven mi-
crosaccade shape characterization by the use of prin-
cipal component analysis (Jolliffe, 2002). We will see
that already two components are enough to describe
the microsaccade shape within an appropriate range.

Methods
Microsaccades are rapid small-amplitude events

with typical durations between 6 to 30 ms and ampli-
tudes below 1◦ (for an overview see (Engbert, 2006)). In
this paper however we propose to not use their higher
velocity as in (Engbert & Kliegl, 2003) or (Engbert &
Mergenthaler, 2006), but rather use their local singu-
larity structure. Wavelet analysis is a well suited toll
to detect and characterize singularities within a more
regular background.

Singularities and local regularity
One first might ask how the mathematically mo-

tivated term singularity applies to the description of
a microsaccade. Following Zuber, Stark, and Cook
(1965), we sketch a prototypical microsaccade shape in
Figure 1. The y-axis is the horizontal eye movement
plotted over time (x-axis). Thus, in this example, after
an initial period of rest, the eye moves quickly towards
the right and returns partially towards the left before
arriving at the new horizontal position. The illustration
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depicts three important characteristics of microsaccade
topology: amplitude, displacement, and overshoot. We
refer to the maximum excursion as the amplitude and
amplitude minus overshoot as the effective displace-
ment (see Figure 1a). Thus, the distinction between
amplitude and displacement is due to variations in the
overshoot component and is relevant to kinematic as
well as functional aspects of microsaccades.
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Figure 1. Microsaccades can mathematically be defined as
superposition of two functions with singular points. (a) We
have labeled several attributes which allow a further descrip-
tion of the eye’s displacement. The eye’s trajectory is drawn
on the Y-axis against time on the X-axis. Smoothing the (a)
Heavyside and (b) Dirac delta function and superpose them,
will return a microsaccade shape.

This schematic representation of a microsaccade
shape can mathematically be described by a superposi-
tion of smoothed versions of the singularities depict in
Figure 1b and 1c. These two schematically show shapes
of functions that have scale invariant singularities: the
Heavyside and Dirac delta function. Both functions are
singular at zero. In fixational eye movement trajecto-
ries, the drift and tremor movement describe the base-
line of position-time displacements. Microsaccades do
not share the same property of self-similarity at this
baseline (compare Mergenthaler & Engbert, 2007), in-
fluence the latter and appear as singular events in the
more regular drift movement.

The continuous wavelet transform

A powerful tool to analyze local regularity and
to detect local singularites is the continuous wavelet
transform (Arneodo, Grasseau, & Holschneider, 1988;
Holschneider & Tchamitchian, 1991; Mallat & Hwang,
1992). This time-frequency analysis tool has been ap-
plied for various reasons in signal processing and in
general data analysis (see e.g., Daubechies I., 1992;
Daubechies & Teschke, 2005; Diallo, Holschneider,
Kulesh, Scherbaum, & Adler, 2006; Holschneider, 1995;
Quiroga, Nadasdy, & Ben-Shaul, 2004). Therefore, we
will apply the wavelet method for the detection of sin-
gularities in fixational eye movement data.

The continuous wavelet transform of a real-valued

signal s(t) with respect to a wavelet Ψ is given by

W s(a,b) =
1
a

∞Z
−∞

s(t)Ψ
(

t−b
a

)
dt , (1)

which is a function of two parameters a and b. Here,
the bar denotes the complex conjugate of Ψ. The pa-
rameter b is a translation parameter (i.e., a variation
of b moves the wavelet along the time axis) whereas
a > 0 is the scale parameter. The inverse scale 1/a plays
the role of a frequency. (dilation). In wavelet analysis,
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Figure 2. The Morlet wavelet at its smallest internal fre-
quency ω0 = 5.336. The oscillations o the real R (t) and imag-
inary part I (t) of the complex-valued wavelet are enclosed in
the positive and negative modulus of Ψ(t).

the one-dimensional signal is transformed into the two-
dimensional time-frequency plane that tells us when
(parameter b) which frequency (parameter 1/a) occurs.
Other time-frequency transformations exist as for in-
stance the windowd Fourier transform or the Gabor
transform (Feichtinger & Strohmer, 1998). However
only wavelet analysis is capable of characterizing local
singularity because it has no a priori limit to its time-
resolution.

For our analysis, we used the progressive Morlet
wavelet, defined by

Ψ(t) = eiω0te−t2/2 (2)

with a = ω0
ω

and ω0 as internal frequency. It is an
oscillating wavelet, i.e., the parameter a changes the
average frequency of the scaled wavelet. We see the
Gaussian envelope given by e−t2/2 illustrated in Fig-
ure 2 with the oscillating part of the wavelet. We
checked that our findings do not depend on this partic-
ular choice of wavelet by using the Cauchy wavelet in
comparison. The results are not sensitive to the choice
of wavelet as long as they respect generic properties
such as localization in time and frequency.
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Singularity detection
For the analysis of microsaccades, we exploit the

idea that microsaccades are more irregular than some
background movement. In real data however perfect
singularities cannot be observed. Perfect singularities
are physiologically impossible because they would re-
quire infinite accelerations. We rather expect to have
smoothed singularity. This is a shape which at large
scale looks singular, whereas at small scale the physi-
ologal limitations enforce a more regular behavior.

A pure singularity will give rise to a conelike struc-
ture of strong wavelet coefficients with the top at the
time-point, where the singularity occures. A smoothed
singularity will behave the same at all scales, which are
large compared to the smoothing scale. In Figure 3,
such small cones that cross the whole frequency range
can be identified by eye.

Numerically singularity detection with wavelets is
usually done using the so called method of maximum
modulus lines (see Marr & Hildreth, 1980; Witkin, 1983).
A maximum modulus line is a line in the time-scale
plane on which the modulus of the wavelet transform
has a local maximum with respect to small variation in
b0 such that

|W s(a,b0)|> |W s(a,b0± ε)| (3)

Connecting such points will give the maximum modu-
lus lines. It can be shown that if a signal has a singu-
larity at point then there is a maximum modulus line
which at small scale converges towards the location
of the singularity (e.g., (Mallat & Hwang, 1992)). In
smoothed singularities the maximumum modulus line
may end at a scale which is about the smoothing scale
of the singularity. For this reason we consider those
maximum modulus lines, which go from a fixed high-
est frequency / smallest scale to a smallest frequency
/ largest scale. The estimated position of the singular-
ity is simply the small-scale end of the corresponding
maximum modulus line.

Figure 3b shows a typical example of a wavelet
transform for the horizontal component of fixational
eye movements. The maximum modulus in the (a,b)-
plane, here highlighted in red.

Taking previous works into consideration (Ditch-
burn & Ginsborg, 1952; Krauskopf, Cornsweet, &
Riggs, 1960), microsaccades are generally binocular,
conjugated eye movements and we consider only
binocular singularities. This means, positions of a sin-
gularity in one eye are not allowed to differ more than
τ from the positions of a singularity in the other eye,
i.e., microsaccades in one eye have their simultaneous
appearing microsaccades in the other eye in a time win-
dow (t0−τ, t0 +τ). We will refer to this criterion as binoc-
ularity criterion.

In this study, we restrict the analysis to the horizon-
tal component of fixational eye movements. Previous
work suggested that microsaccades show a preference

for horizontal orientation (Engbert & Kliegl, 2003; Eng-
bert & Kliegl, 2003).

Microsaccade characterization
In the previous section we have shown how the anal-

ysis of the continuous wavelet transform helps us to
detect singularities in fixational eye movement trajecto-
ries. We use this information to extract an area around
these singularities to investigate the characteristics of
the eye’s position as e.g., the shape of a microsaccade.
For each of the binocular singularities detected with
the method described in the previous section, we ex-
tract K data samples corresponding to an epoch of the
time series around the location of a singularity. We call
this segment a signal snippet. To investigate if typical
shapes for microsaccades exist in fixational eye move-
ment data, we made use of the principal component anal-
ysis (PCA, see Jolliffe, 2002; Smith, 2002, for a short
tutorial) to systematically describe the large variabil-
ity of all possible microsaccadic shapes. The principal
component analysis is a way to represent a given data
set in a reference frame whose dimensions, the princi-
pal components, are such that: the first accounts for as
much of the variance in the data as possible, the second
for as much as possible of the remaining variance and
so on. All pci together represent an empirical orthonor-
mal system. In addition to the principal components
pci, we obtain a measure of the importance of each di-
mension in relation to the others, given by the singular
values s. Now, one rewrites the shape of a microsac-
cade (ms) with a linear combination of these principal
shapes:

ms = c0 pc0 + c1 pc1 + c2 pc2 + . . .+ cK−1 pcK−1 (4)

where pci is the ith principal component, ci is the coef-
ficient that explains the contribution of this ith shape,
and K is the length of a signal snippet. Due to the in-
terpretation of the obtained principal components for
fixational eye movements, we will use principal shapes
and principal components as synonyms.

Before the analysis of our data for their pci, we need
to preprocess the input data. First, we remove the con-
stant signal offset by subtracting the mean value from
each signal snippet, i.e.

ms(l) = ms(l)− 1
K

K−1

∑
i=0

ms(l)
i (5)

with l indicating one individual signal snippet. Then
we compose a matrix M of dimension NxK with N
given by the total number of detected singularities and
K the length of each snippet. We subtract the ensemble
mean from M, i.e.,

M̃ = M− 1
K ·N

K−1

∑
i=0

N−1

∑
j=0

mi j (6)
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Figure 3. One horizontal fixational eye movement trajectory in position-time and time-frequency representation. The marker
indicate the positions of singularities (red dots and arrows) and binocular (green dots and arrows) singularities. The modulus
of the wavelet transform allows the identification of maximum modulus lines. The time point at which a singularity occurs
is taken at the highest frequency. The positions of maximum modulus lines match candidates in the time-position trajectory
which e.g., by visual inspection would be identified as microsaccades.

with mi j being the elements of the matrix M. Using sin-
gular value decomposition (SVD, see Venegas, 2001) we
write M̃ as a product of three matrices

M̃ = USV T (7)

where U is an orthogonal KxK matrix which contains
as columns the orthonormal vectors that represent the
orthonormal system for all row vectors of M̃. The ma-
trix V is an orthonormal NxN matrix whose columns
represent the orthonormal system for all column vec-
tors of M̃ and S is a rectangular, diagonal KxN matrix
containing the K singular values in its diagonal. After
SVD, the columns of U contain the principal compo-
nents pci, i = 0, . . . ,K−1 which best describe the collec-
tion of the singularities along the K dimensions. The
diagonal entries of S, namely s0,0, . . . ,sk−1,k−1 give us a
measurement for the importance of each pci. Therefore
we evaluate

s̃2
hh = s2

hh ·

(
K−1

∑
l=0

s2
ll

)−1

(8)

with hh = (0,0), . . . ,(k− 1,k− 1). Having this measure
we are able to reduce the dimensions of the obtained
orthonormal system to a lower complexity but still con-
taining sufficient information to describe the variability
of inlying functions to a high level.

In the process of this work we reconstruct the shape
of binocular singularities with the principal compo-

nents. We will see how these representations vary be-
tween subjects.

In summary, we identify binocular singularities that
give us candidates for binocular microsaccades in our
fixational eye movemement study. The representation
of a signal snippet with principal components gives
possibilities for further discussion about the impor-
tance of each component contributing to the variability
of microsaccadic eye movement. This will be discussed
in the result section below.

Experiment

Experimental data presented here was published in
earlier work (Mergenthaler & Engbert, 2007; Engbert &
Mergenthaler, 2006).

Participants

Twenty-four participants with an average age of 22
(range: 19 to 51 years) participated in the experiment.
All participants had normal or corrected to normal vi-
sion. The experiment was performed in accordance
with the declaration of Helsinki.

Task

Participants had to fixate a black square on a white
background (3-by-3 pixels on a computer display
(Iiyama, Vision Master Pro 514, 40 by 30 cm, 100Hz,
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1024 by 768 pixels) which corresponds to a spatial ex-
tent of 7.2 arc min). They were required to perform 30
trials of 20 s each. To reduce loss of data, the partici-
pants were asked to avoid blinking during each trial.
In addition, we remonitored for eye blinks and trials
with occuring blinks were repeated. Every fixation trial
is followed by a presentation of a photograph for 10 s,
allowing participants to relax and perform inspection
saccades or blinks. A typical trajectory from a trial is
shown in Figure 4.

-0.6 -0.2 0.2 0.6
Horizontal position [

�
]

-0.6

-0.2

0.2

0.6

V
e
rt

ic
a
l 
p
o
si

ti
o
n
 [

�](a)

-0.6 -0.2 0.2 0.6
Horizontal position [

�
]

(b)

Figure 4. Representation of the trajectories in a fixational eye
movement trial for both eyes. Recorded with EyeLink II sys-
tem we obtained the horizontal (x-axis) and vertical (y-axis)
position of (a) left and (b) right eye. The trajectories are cor-
rected to center.

Eye movement recording
Eye movements of our participants were tracked

with a head mounted eye tracker (EyeLink II, SR
Research, Osgoode, Ontario, Canada). They were
recorded binocularly with a sampling rate of 500 Hz
and a spatial resolution for a dark pupil in root mean
square of higher than 0.01◦ visual angle. Participants
were seated on a chair with their head placed on a chin
rest. The viewing distance to the computer screen was
50 cm.

Results
The method of singularity detection identified seg-

ments of fixational eye movements that represent can-
didates for microsaccades. Figure 3 displays the
wavelet transform of a time series of one single trial
of fixational eye movement. All local maximum mod-
ulus lines which passed without interruption between
20 Hz to 50 Hz and met the condition in Equation (3)
with at maximum ε = 5 ms at 20 Hz are included in the
analyses. We have chosen this frequency range because
the left and right eye are well correlated over this range.
Additionally we want to work above a threshold of 20
Hz as the wavelet transform maximum modulus lines
will get influenced by modulus maxima of the other
structures present in our data at lower frequency. A
binocular singularity is defined by the time point a sin-
gularity is detected in left and right eye. The time point

is allowed to differ of most by 30 ms. In Figure 3a we
have marked the positions of singularities detected in
the wavelet plane. In Table 1 we summarize the num-
ber of detected monocular singularities as well as the
binocular singularities per participant in left and right
eye, respectively.

In the total number of 682 trials, we detected 35531
and 35066 singularities in left and right eyes, respec-
tively. The difference in the number of detections be-
tween eyes is lower than 1.3%, yielding good agree-
ment for the microsaccadic processes in both eyes. Af-
ter application of the binocularity criterion as described
in section , we retain a total number of 16947 binocu-
lar singularities. The mean rate of binocular singulari-
ties is 1.2 per second with a standard deviation of 0.5.
In this study, seven participants contributed less than
one binocular singularity per second in their fixational
eye movement. As the number of detected singulari-
ties in their eye movement trials is in agreement with
those of other participants, their results are suggestive
of monocular events.

=  c0 · +  c1 · +  c2 · +  c3 · +...

Figure 5. Representation of a time series snippet around
the location of a singularity with its principal shapes pro-
cessed by the principal component analysis. The left side of
this equationlike representation is the horizontal position in
a 60 ms time window around an identified singularity. Here,
it is defined by the linear combination of principal shapes.
We identified that already two shapes are sufficient to repre-
sent roughly 95% of the variances contained in each individ-
ual shape. The coefficients c0,c1, . . . are individual for each
binocular singularity and explain the contribution of the cor-
responding shape to the individual shape.

Next, we investigate the signal snippets around the
detected binocular singularities for common features.
Equation (4) enables us to rewrite each shape as a lin-
ear combination of reliably measured basic shapes. The
variance contribution of each is measured in the indi-
vidual coefficients for the shape. We have taken snip-
pets of the fixational eye movement trajectory with the
length K = 31 around a binocular singularity position.
We are interested in the 30 ms before and after the time
point we detected. We preprocess the data as described
in section Microsaccade characterization and obtain a rep-
resentation as shown in Figure 5 which is a visual rep-
resentation of the components in Equation (4).

The PCA of the detected snippets reveals that the
first two principal components pc0 and pc1 account for
roughly 95% of the variability of microsaccadic shapes
(compare Equation (8) which measures the importance
of each single pci or combination of the same). At
this, each component separately accounts (in average
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Detected Binocular
Participant Number singularities singularities

of trials rate of [ 1
s ] rate of [ 1

s ]
left right

1 30 2.6 2.7 1.5
2 29 3.3 3.3 2.4
3 30 2.7 2.8 1.4
4 30 2.2 2.1 0.3
5 22 2.3 2.3 0.6
6 30 2.8 2.9 1.8
7 30 2.8 2.8 1.7
8 30 2.9 2.8 1.7
9 30 2.1 2.0 0.5

10 17 2.6 2.5 1.0
11 28 2.5 2.4 1.0
12 30 2.4 2.4 0.8
13 29 2.3 2.3 0.6
14 30 2.6 2.5 1.2
15 29 3.1 2.9 1.8
16 30 2.7 2.5 1.2
17 29 2.4 2.4 0.8
18 23 2.6 2.5 1.4
20 29 2.8 2.7 1.7
21 29 2.9 2.9 1.9
22 30 2.1 2.1 0.3
23 29 2.6 2.5 1.2
24 30 2.8 2.7 1.7
25 29 2.5 2.5 1.2

Total 682 2.6±0.3 2.6±0.3 1.2±0.5

Table 1
Rates of detected singularities in the horizonal eye movement in our fixation task experiment. The number of binocular
singularities is a subset of all detected. The total rates are given as mean ± standard deviation.

of both eyes) for 82.7 and 81.2% as well as 12.2 and
13.4% for pc0 and pc1 in left and right eye, respectively.
We restrict therefore our analysis to these first two prin-
cipal shapes. We decompose each single microsaccade
ms(l) into the following five terms:
• a linear combination of pc0 and pc1
• a vector ρ, representing the mean of the whole en-

semble for each eye (see Equation (6))
• a scalar κ(l), representing the mean of each snippet

(see Equation (5))
• a small residual vector r capturing numerical er-

rors
Except for the residual vector, all these components are
directly computed from the data. Now, we write our
model for a typical microsaccade by the linear combi-
nation

ms(l) = c(l)
0 pc0 + c(l)

1 pc1 +κ
(l) +ρeye + r (9)

while l denotes the index of each individual microsac-
cade. The shapes of pc0 and pc1 are shown in Figure 6a
and 6b, respectively.

The first principal shape pc0 represents a movement
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P
o
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n
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Figure 6. Graph of the shapes of the first two principal com-
ponents which go into our model for a microsaccade. (a) We
have for pc0 a steplike shape which has the tendency to re-
turn after it reached the maximum amplitude. This over-
shoot, typical for microsaccades, dominates together with the
almost linear increasing shoot part this shape. (b) The shape
of the second component pc1 is bumplike. It identifies how
much overshoot each microsaccade has. The left (blue solid
line) and right (red dashed line) eye agree in the shape of the
first two principal components.
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of the eye with a short linearly increasing part and
more importantly, it exhibits an overshoot. This returns
the significance of this shape property and creates a
prominent marker for microsaccadic movements. The
second component pc1 is a bump whose contribution
to the microsaccade shape seems to regulate the height
of the overshoot.

For an investigation of individual microsaccade
shapes, we need to measure how much each principal
component contributes to the individual microsaccade
shape. We quantify this by computing the projection of
each microsaccade ms(l) on pc0 and pc1 as follows

c(l)
i = 〈ms(l), pci〉 for all i = 0,1 (10)

with |ms(l)|= 1 and 〈a,b〉= aT b denoting a column vec-
tor scalar product. Next, we represent the coefficient
pairs (c0,c1) in a coordinate system. The axes are given
by the first and second principal shape which means
that each microsaccade shape is plotted according to its
reconstruction by the principal shapes. One represen-
tation is shown in Figure 7.

pc0

pc1
(c0 ,c1 )

c 2
0 +c 2

1 =0.8

c 2
0 +c 2

1 =1

Figure 7. Representation of each microsaccade candidate in
the pc0-pc1-coordinate system. Each dot is given by (c0,c1).
The contribution of both of our model components is ex-
plained in this coordinate system. We take binocular singu-
larities as binocular microsaccades whose variability is de-
scribed to more or equal than 80% by our model (red dots
between inner blue dashed and outer green solid circle).

With respect to these coefficient pairs we define mi-
crosaccades as those binocular shapes whose variabil-
ity is described by more than 80% of the first two prin-
cipal components. Expressed in an equation we write

(c(l)
0 )2 +(c(l)

1 )2 ≥ 0.8
30

∑
j=0
〈ms(l), pc j〉2 (11)

A geometrical interpretation of this condition is
shown in Figure 7. Every point - marking one sin-
gle binocular shape - between inner and outer ring is
modeled as binocular microsaccade. To investigate the
probabilities for a certain shape to occur in our trials,
we sample the two-dimensional coefficient distribution
to an one-dimensional distribution by taking the angle
between the c0-axis and the vector which points to our
(c0,c1) pairs, and obtain α(l) by

α
(l) =


arccos

(
c(l)

0√
c(l)

0 c(l)
1

)
if c(l)

1 ≥ 0

2π− arccos

(
c(l)

0√
c(l)

0 c(l)
1

)
if c(l)

1 < 0

(12)

With the Gaussian kernel density estimation as
shown in Figure 8, we discover that the dominating
shape of a microsaccade is given by pc0, a steplike
shape including an overshoot. This result is true for
all participants. The different widths of the peaks de-
fine how much the second component pc1 varies the
overshoot height between participants.

In the bottom of Figure 8 we have selected the most
probable shapes for each participant in the one and the
contraverse direction. The individual contribution of
pc0 and pc1 to these shapes is marked with a marker
for each participant. Apparently, interindividual dif-
ferences between humans are not based on the shapes
of microsaccades but on their variation in overshoots
and therefore, in the precision of the microsaccadic eye
movement.

To sum up the results, we see that given all binoc-
ular singularities, two principal components explain
the variance of roughly 95% of the microsaccade shape
and define our microsaccade model with these two
shapes. The steplike shape with an overshoot repre-
sents the dominant shape of microsaccadic eye move-
ment. Additionally, we see that the second compo-
nent is a measure parameter for the overshoot and fur-
thermore a criterion which admits a comparison of mi-
crosaccades between different participants. The second
component does not yield an absolute measurement of
the microsaccade and overshoot length but is a relative
parameter between microsaccade amplitude and over-
shoot. Our model is capable of describing microsac-
cadic eye movements and lets us quantify characteristic
statistics between individual participants.

Singularity detection and
characterization in

amplitude-adjusted surrogate
data

In this section, we validate the applicability of our
detection and characterization methods. First, we
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Figure 8. (Upper graph) Gaussian kernel density estimation for binocular microsaccades which fit to our model and (lower graph)
representation of the most probable shape combination of pc0 and pc1 for each individual participant. Each microsaccade coef-
ficient pair (c0,c1) is transformed to the one dimensional α(l) with l being the index of a microsaccade. The density estimation
reveals the dominance of the first principal shape pc0 (localization around 0 and π) above pc1. The lower graph shows the
distribution of the most probable shapes in left and right direction and supports the former statement. This result holds for all
participants. The contribution of the second component pc1 to the microsaccade shape differs between them which we see in
the different widths of the peaks.

check the reliability of singularities detected with the
continuous wavelet transform by comparison of orig-
inal data and time series which mimic properties of
the original fixational eye movement data. Second we
want to support that the identified shapes of the first
principal components are typical for microsaccadic eye
movements.

We generate a time series which mimic properties of
fixational eye movements while destroying microsac-
cades, by applying an appropriate surrogate data gen-
eration method. In fixational eye movements studies
we observe a persistent behavior on a short time scale
(Engbert & Kliegl, 2004; Engbert & Mergenthaler, 2006)
which is reflected in a positive autocorrelation func-
tion of the velocities for small lags. We need to reject
the null hypothesis that positively autocorrelated sam-
ples in the drift are the reason for the observation of
high-velocity epochs in fixational eye movements de-
tected as singularities. A surrogate data type allow-
ing to test the null hypothesis is amplitude-adjusted
phase-randomized surrogate data (Theiler, Galdrikian,
Longtin, Eubank, & Farmer, 1992) which maintains
the velocity distribution and approximate the auto-
correlation function. The velocity of our fixational eye
movements is obtained as in Engbert and Kliegl (2003)

via

v(t) =
s(t +2∆t)+ s(t +∆t)− (s(t−∆t)+ s(t−2∆t))

6∆t
(13)

where s(t) is the signal at position t and ∆t = 0.002s. The
generation of amplitude-adjusted surrogates is split
into the following steps:

1. Sort v and obtain a rank series r of v

2. Generate a series g of Gaussian distributed
random numbers with the same length as v, sort it
and rearrange it according to the rank series r. In this
way, we generate a time series h that is a rescaled time
series of v with the property that the amplitudes of the
samples belong to a normal distribution

3. Transform h to the Fourier space and obtain h̃

4. Randomize the phase: ˆ̃h = h̃eiϕ. ϕ is a series
containing equally distributed random numbers
between −π and π with identical values for positive
and negative frequency

5. Calculate the inverse of the Fourier transform:
(F−1 ˆ̃h)(ω) = h̃(t)

6. Obtain a rank series of ˜̂h and rearrange v in
accordance with the new rank series
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To return to a position-time series one sums the ve-
locities divided by the sampling frequency cumula-
tively. In the following we refer to the latter as the sur-
rogates or surrogate data of fixational eye movement
time series. We take all 682 trials of surrogates and
perform the same analysis as performed for the orig-
inal data. The results for the detected singularities are
shown in Table 2.

We explain the higher number of singularities de-
tected in the surrogate data by the conservation of each
original velocity sample during surrogate data gener-
ation. Nevertheless, epochs of high velocities in fixa-
tional eye movement data, corresponding to microsac-
cades, can be split into two or more singularities in
the surrogates. But this is only true for monocular
singularities. However, we also observe a high num-
ber of binocular singularities, on average 10 per trial.
The high number of binocular events results from the
probability of randomly co-occuring extended events
of length 2τ. Co-occuring means: A singularity in one
eye happens within the window of τ milliseconds be-
fore or after a singularity in the other eye. Estimating
the probability of this co-occurrence, we take a monoc-
ular time series of length T and a number of monocular
singularities N.
As each singularity is in the center of a 2τ window and
at least on sample ∆t apart, a significant number of data
samples belong to those which are possible candidates
for a co-occurrence. Thus, the probability to observe a
binocular event E by chance is given by

p(E) =
(2τ+∆t) ·N

T
(14)

which is the ratio of time, belonging to points of possi-
ble co-occurrence candidates in the full trajectory. For
the presented data the values are: τ = 30 ms, ∆t = 2 ms,
T = 20000 ms, and N = 57, which is the average num-
ber of detected monocular singularities in our surro-
gate data. Inserting these values one gets p(E) ·N ≈ 10
binocular events simply by chance in our surrogate
data. This result is in very good agreement with the
numbers of observed binocular events in the surrogate
data: On average 10 binocular events. Now, we argue
that the obtained number of binocular events in surro-
gates mainly depends on the probabilitiy p(E) of ran-
dom co-occurence, which is set by our time frame to
define an event as binocular.

These randomly occurring binocular singularities,
which also can happen in the original data, cannot be
explained by the first principal components pc0 and pc1
by more than 80%. Thus, applying Equation (11) one
filters out random binocular singularities in the anal-
ysis of original data. Further processing of the binoc-
ular singularities with the principal component analy-
sis (see section Microsaccade characterization) results in
the principal components shown in Figure 9. In this
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Figure 9. Representation of the first principal components’
shapes for the original data and surrogate data. Compare (a)
pc0 and pc0s, the typical overshoot behavior in the smooth
step is not present. Left (blue solid line) and right (red dashed
line) eye again show approximately the same principal com-
ponent in original as well as in surrogate data (green dotted
and magenta dash-dotted line). (b) The second component
for the original pc1 is a bump whether pc1s is a smooth peak
shape.

case, the first two components explain even more than
95% of the variance in our data and we choose pc0s
and pc1s to reduce our 31 dimensional system of shapes
to this two dimensions. Both components look simi-
lar but differ strongly in their shapes, compared to the
principal components obtained for the original data.
This becomes obvious by consideration of combina-
tions of the two components. For surrogates the prin-
cipal component pc0s is a smoothed step and does not
show any overshoot. The second component pc1s is a
very smooth peak-like bump. Both pc0s and pc1s are
smoothed version of singularities, i.e. a step and a sin-
gle peak as illustrated in Figure 1.

Importantly, the pc0 and pc1 of the original data
show a directionality in time: They cannot be reversed.
The principal components pc0s and pc1s for the surro-
gate data can be reversed. Both fulfill the condition of
symmetry, i.e. f (−t) = − f (t) and do not show any di-
rectionality. On the basis of the described differences
in pc0 and pc1, we reject the described null hypoth-
esis and conclude that the observed binocular singu-
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Detected Binocular
Participant Number singularities singularities

of trials rate of [ 1
s ] rate of [ 1

s ]
L R

1 30 2.5 2.6 0.4
2 29 3.1 3.1 0.6
3 30 2.8 2.7 0.4
4 30 2.4 2.2 0.4
5 22 2.7 2.5 0.5
6 30 2.9 2.9 0.5
7 30 3.1 3.0 0.6
8 30 3.2 3.2 0.7
9 30 2.5 2.5 0.4

10 17 2.7 2.6 0.4
11 28 3.1 3.0 0.6
12 30 3.0 3.2 0.6
13 29 2.3 2.3 0.3
14 30 2.8 2.4 0.5
15 29 3.1 3.0 0.6
16 30 2.7 2.5 0.4
17 29 2.4 2.3 0.4
18 23 3.3 3.3 0.7
20 29 3.2 3.2 0.7
21 29 3.4 3.3 0.7
22 30 2.5 2.4 0.4
23 29 3.3 3.3 0.7
24 30 2.8 2.7 0.4
25 29 3.4 3.3 0.7

Total 682 2.9±0.3 2.8±0.4 0.5±0.1

Table 2
Rates for the detected monocular and binocular singularities in the surrogates of horizontal fixational eye movement data sets.
The total rates are given as mean ± standard deviation.

larities in fixational eye movement time series result
from high-velocity epochs in fixations with a distinct
shape given by a linear combination as explained in
our model equation (9) with the components pc0 and
pc1 of the original data, shown in Figure 6.

Discussion

We investigated the hypothesis that microsaccades
can be modelled as events of lower regularity and see
that the continuous wavelet transform successfully dis-
tinguishes microsaccades of fixational eye movement
from background activity (i.e., drift). Our methods
are based on a pre-defined minimal set of parame-
ters (related to maximum modulus lines, binocular-
ity, and the fit to the model). A validation that uses
amplitude-adjusted surrogate data verifies that almost
simultaneously appearing structures of low regularity
in fixational eye-movement trajectories cannot be ex-
plained by randomly co-occuring autocorrelated sam-
ples in both eyes’ drift movements.

In comparison to current methods which use ampli-
tudes (or its derivatives) for the detection of microsac-

cades, our alternative approach can identify large scale
saccades and microsaccades within one detection pro-
cedure, e.g., in eye movements recorded during scene
viewing or reading. Methods that use velocities require
predefined thresholds such that an analysis either uses
two detection runs to first separate saccades and then
microsaccades (i.e., one uses a threshold related to the
variance in the trajectory for saccade detection and sub-
sequently another threshold related to the remaining
variance), or instead uses a threshold defined by the
variance obtained in co-recorded fixation-task experi-
ments. Using the shared property of lower regularity
(between microsaccades and saccades) allows the iden-
tification of both within the same detection process.

A very brief analysis between performances of the
velocity threshold and continuous wavelet transform
method on eye movement trajectories in a fixation task
can be found in the Appendix. Seemingly, the de-
tected microsaccade positions in fixational eye move-
ments look quite similar.

We continued our analysis with a comparison of
detected microsaccades between participants and per-
formed a principal components analysis, yielding two
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main components whose linear combination describes
the shapes of microsaccades. These two shapes cover
over 94% of the present variance in the shapes of
binocular microsaccades. The established simple lin-
ear model for a typical microsaccade shape convinc-
ingly agrees with the microsaccadic shape reported in
studies of Zuber et al. (1965) which likewise reported
an overshoot as typical property of a microsaccade (for
more recent results that show microsaccades with over-
shoot in eye position traces recorded with electromag-
netic induction technique, see Hafed, Goffart, & Krau-
zlis, 2009). The first principal component is a step-
like shape with an overshoot and the second principal
component characterizes the overshoot height. Com-
bining both, we can represent microsaccades with all
possible overshoot heights. This also includes rare mi-
crosaccades which do not share the overshoot shape.
A two-dimensional coefficient pair and a measure for
the amplitude returns the most simple property set for
microsaccades.

In Abadi and Gowen (2004), four types of saccadic
intrusions were reported for studies about characteris-
tics of saccadic intrusions. Two microsaccadic shapes
with a Single Saccadic Pulse (SSP), and Double Saccadic
Pulse (DSP) were introduced by the authors. Addi-
tionally, two sequences of microsaccades were investi-
gated which took two and three subsequent microsac-
cadic movements into account, the Monophasic Square
Wave Intrusion (MSWI) and Biphasic Square Wave Intru-
sion (BSWI). Our microsaccade model is able to sepa-
rate SSP and DSP simply by investigation of the more
dominant principal shape, i.e., if the first prinicipal
shape pc0 is dominant, we count a SSP whereas if the
second principal shape pc1 is leading, we see a DSP.

In perspective, an analysis of sequences of microsac-
cadic shapes allows studies on short- and long-term de-
pendencies as well as investigations with co-registered
EEG data which profits from a better understanding
of microsaccades and the induced potentials (Dimigen,
Sommer, Hohlfeld, Jacobs, & Kliegl, under revision).

Future work will consider a stronger comparison
of the two methods and the possibility to extend the
detection method to horizontal and vertical (2D) eye
movements and analyze their interplay in the context
of microsaccadic movements. A subsequent classifica-
tion of microsaccade shapes seems promising to inves-
tigate the spatiotemporal dynamics of microsaccades
and may lead to a new model for the dynamics of fixa-
tional eye movements. An understanding of the latter
under the well-defined conditions in fixation-task ex-
periments allows the modeling of eye movements at its
baseline. Establishing a model at this point will pro-
vide a foundation to study trajectories and reactions to
attractions of the eye in more complex experimental se-
tups.

Appendix
Comparison between

microsaccade detection
algorithms

In our study we introduced a new method to de-
tect microsaccades in records of fixational eye move-
ments. We demonstrated the usability of this method
with amplitude-adjusted surrogate data. Previous al-
gorithms for the detection of microsaccades were based
on velocities of the eye position signal (Engbert &
Kliegl, 2003; Engbert & Mergenthaler, 2006; Martinez-
Conde et al., 2000). These methods used the property
of microsaccades as high velocity component in fixa-
tional eye movements. In Table A1 we see the binocular
events detected with the velocity threshold algorithm
introduced by Engbert and Kliegl (2003) and our con-
tinuous wavelet transform method for the same data
set.
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Figure A1. Detections of microsaccades in an example hor-
izontal fixational eye-movement trajectory. The two meth-
ods perform quite similar. The wavelet detection method also
identifies small scale events, compare e.g., at around 1.3s.

The detected rates for binocular events with the con-
tinuous wavelet transform and the velocity threshold
algorithm are significantly correlated (r = 0.96; P <
0.0001). A comparison of the detected time points for
binocular events shows an overlap of 74% (number of
binocular microsaccades detected with both methods
divided with the number of detections by the contin-
uous wavelet transform method). We called an event
occuring at the same time point in both methods if it
did not differ more than τ = 16 ms.

In Figure A1 we show five seconds of one fixational
eye movement trial with marked time points which
were detected either by the continuous wavelet trans-
form or velocity threshold method. We see that the de-
tected time points are in nice agreement.
A detailed investigation of distinct properties describ-
ing microsaccades detected in one but not the other
method is in preparation.
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Participant Number Binocular events
of trials rate of [ 1

s ]
wavelet velocity both methods

1 30 1.5 1.1 0.9
2 29 2.4 2.4 2.0
3 30 1.4 1.4 1.1
4 30 0.3 0.1 0.1
5 22 0.6 0.5 0.3
6 30 1.8 1.9 1.5
7 30 1.7 2.0 1.4
8 30 1.7 2.0 1.4
9 30 0.5 0.2 0.2
10 17 1.0 0.7 0.4
11 28 1.0 0.9 0.8
12 30 0.8 0.9 0.5
13 29 0.6 0.2 0.1
14 30 1.2 0.8 0.6
15 29 1.8 1.9 1.4
16 30 1.2 1.4 0.9
17 29 0.8 0.3 0.2
18 23 1.4 1.5 1.1
20 29 1.7 1.9 1.5
21 29 1.9 1.9 1.7
22 30 0.3 0.2 0.2
23 29 1.2 1.2 0.9
24 30 1.7 1.7 1.4
25 29 1.2 1.1 0.9

Total 682 1.2±0.5 1.2±0.7 0.9±0.6

Table A1
Detection of microsaccadic events in a fixational eye movement experiment with the continuous wavelet transform (WT) and
velocity threshold (VT) method. Results are compared after application of the individual settings for each method. The VT
algorithm detects just 5% less binocular events. The total rates are given as mean ± standard deviation.
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