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The surprisal of a word on a probabilistic grammar constitutes a promising
complexity metric for human sentence comprehension difficulty. Using two
different grammar types, surprisal is shown to have an effect on fixation durations
and regression probabilities in a sample of German readers’ eye movements, the
Potsdam Sentence Corpus. A linear mixed-effects model was used to quantify the
effect of surprisal while taking into account unigram frequency and bigram frequency
(transitional probability), word length, and empirically-derived word predictability;
the so-called “early” and “late” measures of processing difficulty both showed
an effect of surprisal. Surprisal is also shown to have a small but statistically
non-significant effect on empirically-derived predictability itself. This work thus
demonstrates the importance of including parsing costs as a predictor of compre-
hension difficulty in models of reading, and suggests that a simple identification
of syntactic parsing costs with early measures and late measures with durations of
post-syntactic events may be difficult to uphold.

Keywords: Reading, eye movements, probabilistic grammar, sentence com-
prehension, Potsdam Sentence Corpus.

Reading a sentence involves a succession of fixa-
tions and saccades, with information uptake occur-
ing mainly during fixations. The duration of a fixa-
tion at a word is known to be affected by a range of
word-level factors such as token frequency and em-
pirical predictability as measured in a Cloze task with
human subjects (Taylor, 1953; Ehrlich & Rayner, 1981;
Kliegl, Grabner, Rolfs, & Engbert, 2004).

When words appear in sentences — as opposed to
in isolation — their occurrence is evidently affected
by syntactic, semantic and other factors. Research
within psycholinguistics over the past half-century has
exposed the role of some of these sentence-level fac-
tors in accounting for eye movements. Clifton et al.
(2007) provides a review of this work, and calls for the
development of explicit theories that combine word-
level and sentence-level factors. Of course, such com-
bined models would be unnecessary if it turned out
that sentence-level factors actually have very little ef-
fect on eye movements. These sorts of factors do not
figure in current models of eye-movement control such
as E-Z Reader (Pollatsek, Reichle, & Rayner, 2006) and
SWIFT (Engbert, Nuthmann, Richter, & Kliegl, 2005),
whose difficulty predictions derive primarily from sta-

tistical properties of individual words and their imme-
diate neighbors.

In this paper, we cast doubt on this simpler view
by exhibiting a quantitative model that takes into ac-
count both word and sentence-level factors in explain-
ing eye fixation durations and regression probabili-
ties. We show that the surprise value of a word, on a
grammar-based parsing model, is an important predic-
tor of processing difficulty independent of factors such
as word length, frequency, and empirical predictabil-
ity. This result harmonizes with the rise of proba-
bilistic theories in psycholinguistics defined over gram-
matical representations such as constituents and de-
pendency relations (Jurafsky, 1996; Crocker & Brants,
2000; Keller, 2003). In addition to demonstrating the
effect of surprisal on eye-movement measures, we also
show that surprisal has a small but statistically non-
significant effect on empirical predictability.

The paper is organized into three sections. The first
section explains the concept of surprisal, summarizing
the Hale (2001) formulation. The second section mar-
shals several predictors — surprisal, word length, uni-
gram frequency, bigram frequency (transitional prob-
ability in the sense of McDonald & Shillcock, 2003)
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2 BOSTON, HALE, KLIEGL, PATIL AND VASISHTH

and empirical predictability values — in a quantita-
tive model of fixation durations and regression prob-
abilities. We fit this model to the measurements
recorded in the Potsdam Sentence Corpus (Kliegl,
Nuthmann, & Engbert, 2006), making it possible to
determine which predictors account for readers’ fix-
ation durations and regressive eye movements. The
last section discusses implications of this fitted model
for various linking hypotheses between eye move-
ment measures and parsing theories. This final sec-
tion also discusses the implications of the results for E-
Z Reader (Pollatsek et al., 2006) and SWIFT (Engbert et
al., 2005).

Surprisal

Surprisal is a human sentence processing complex-
ity metric; it offers a theoretical reason why a partic-
ular word should be easier or more difficult to com-
prehend at a given point in a sentence. Although var-
ious complexity metrics have been proposed over the
years (Miller & Chomsky, 1963; Kaplan, 1972; Gibson,
1991; Stabler, 1994; Morrill, 2000; Rohde, 2002; Hale,
2006), surprisal has lately come to prominence within
the field of human sentence processing (Park & Brew,
2006; Levy, in press; Demberg & Keller, 2008). This
renewal of interest coincides with a growing consen-
sus in that field that both absolute as well as graded
grammatical factors should figure in an adequate the-
ory. Surprisal combines both sorts of considerations.

This combination is made possible by the assump-
tion of a probabilistic grammar. Surprisal presupposes
that sentence-comprehenders know a grammar de-
scribing the structure of the word-sequences they hear.
This grammar not only says which words can combine
with which other words but also assigns a probability
to all well-formed combinations. Such a probabilistic
grammar assigns exactly one structure to unambigu-
ous sentences. But even before the final word, one can
use the grammar to answer the question: what struc-
tures are compatible with the words that have been
heard so far? This set of structures may contract more
or less radically as a comprehender makes their way
through a sentence.

The idea of surprisal is to model processing difficulty
as a logarithmic function of the probability mass elim-
inated by the most recently added word. This num-
ber is a measure of the information value of the word
just seen as rated by the grammar’s probability model;
it is nonnegative and unbounded. More formally, de-
fine the prefix probability of an initial substring to be the
total probability of all grammatical1 analyses that de-
rive w = w1 · · ·wn as a left-prefix (definition 1). Where
the grammar G and prefix string w (but not w’s length,
n) are understood, this quantity is abbreviated2 by the
forward probability symbol, αn.

prefix-probability(w,G) = ∑
d∈D(G,wv)

Prob(d) = αn(1)

Then the surprisal of the nth word is the log-ratio of the
prefix probability before seeing the word, compared to
the prefix probability after seeing it (definition 2).

surprisal(n) = log 2

(
αn−1

αn

)
(2)

As the logarithm of a probability, this quantity is mea-
sured in bits.

Consider some consequences of this definition. Us-
ing a law of logarithms, one could rewrite definition 2
as

log 2 (αn−1)− log 2 (αn)

But on a well-defined probabilistic grammar, the pre-
fix probabilities α are always less than one and strictly
nonincreasing from left to right. This implies that the
two logarithms are to be subtracted in the opposite or-
der. For instance, if a given word brings the pre-
fix probability down from 0.6 to 0.01, the surprise value
is 4.09 bits.

Intuitively, surprisal increases when a parser is re-
quired to build some low-probability structure. The
key insight is that the relevant structure’s size need not
be fixed in advance as with Markov models. Rather, ap-
propriate probabilistic grammars can provide a larger
domain of locality. This paper considers two proba-
bilistic grammars, one based on hierarchical phrase-
structure3 and another based on word-to-word depen-
dencies. These two grammar-types were chosen to il-

1 In this definition, G is a probabilistic grammar; the only
restriction on G is that it provide a set of derivations, D that
assign a probability to particular strings. When D(G,u) = /0

we say that G does not derive the string u. The expres-
sion D(G,wv) denotes the set of derivations on G that derive
w as the initial part of larger string, the rest of which is v. See
Jurafsky and Martin (2000), Manning and Schütze (2000) or
Charniak (1993) for more details on probabilistic grammars.

2 Computational linguists typically define a state-
dependent forward probability αn(q) that depends on the
particular destination state q at position n. These values are
indicated in red inside the circles in figure 3(a). It is natural
to extend this definition to state sets by summing the state-
dependent α values for all members. To define the surprisal
of a left-contextualized word on a grammar the summation
ranges over all grammatically-licensed parser states at that
word’s position. The notation αn (without any parenthesized
q argument) denotes this aggregate quantity.

3 The probabilistic context-free phrase-structure
grammars were unlexicalized. See Stolcke (1995)
for more information in the methods used in this
work. For this purpose, we adapted Levy’s im-
plementation of the Stolcke parser, available from
http://idiom.ucsd.edu/∼rlevy/prefixprobabilityparser.html.
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lustrate surprisal’s compatibility with different gram-
mar formalisms. Since the phrase-structure approach
has already been presented in Hale (2001), the next
two sub-sections elaborate the dependency grammar
approach.

Estimating the parser’s probability model
Consider the German sentence in example 3.

(3) Der
the

alte
old

Kapitaen
captain

goss
poured

stets
always

ein
a

wenig
little

Rum
rum

in
in

seinen
his

Tee
tea

“The old captain always poured a little rum in
his tea”

A probabilistic dependency parser can proceed
through this sentence from left to right, connect-
ing words that stand in probable head-dependent
relationships (Nivre, 2006). In this paper, parser-action
probabilities are estimated from the union of two
German newspaper corpora, NEGRA (Skut, Krenn,
Brants, & Uszkoreit, 1997) and TIGER (König & Lezius,
2003), as in Figure 1.

Figure 1. Estimating the parser’s probability model.

Figure 1 defines the method of estimating the parser
probabilities from the corpus data. A simulation of the
parser is run on the training data, yielding a series of
parser states and transitions for all sentences in the cor-
pora. This information informs several features (Hall,
2007), which are then used to condition the probabili-
ties of each transition. A Maximum Entropy training
model (Charniak & Johnson, 2005) was used to weight
each feature instance for better accuracy.

Estimating surprisal
The prefix probability (definition 1) may be approxi-

mated to any degree of accuracy k by summing up the
total probability of the top k most probable analyses
defined by the dependency parser. Then surprisals can
be computed by applying definition 2 following Boston
and Hale (2007). Figure 2 shows the surprisals associ-
ated with just two of the words in Example 3.

Figure 2 also depicts the dependency relations
for this sentence, as annotated in the Potsdam Sen-
tence corpus.4 Following Tesnière (1959) and Hayes

Figure 2. Surprisal is a word-by-word complexity metric.

(1964), the word at the arrow head is identified as the
‘dependent’, the other is the ‘head’ or ‘governor’. The
associated part-of-speech tag is written below each ac-
tual word; this figures into the surprisal calculation via
the parser’s probability model. The thermometers in-
dicate surprisal magnitudes; at alte, 0.74 bits amounts
to very little surprise. In TIGER and NEGRA newspa-
per text, it is quite typical to see an adjective (ADJA)
following an article (ART) unconnected by any depen-
dency relation. By contrast, the preposition in is most
unexpected. Its surprisal value is 23.83 bits.

The surprisal values are the result of a calculation
that makes crucial reference to instantaneous descrip-
tions of the incremental parser. Figure 3(a) schemati-
cally depicts this calculation. At the beginning of Ex-
ample 3, the parser has seen der but the prefix proba-
bility is still 1.0 reflecting the overwhelming likelihood
that a sentence begins with an article. Hearing the sec-
ond word alte, the top k = 3 destination states are, for
example, q8,q17 and q26 (the state labels are arbitrary).
Figure 3(b) reads off the grammatical significance of
these alternative destinations: either alte becomes a de-
pendent of der, or der becomes a dependent of alte or
no dependency predicated. Each transition from state
q1 to states q8,q17 and q26 has a corpus-estimated prob-
ability denoted by the values above the arc (e.g., the
transition probability to q8 = 0.3). Approximating defi-
nition 1, we find that the total probability of all state tra-
jectories5 arriving in one of those top 3 is 0.6, and thus
the surprisal at alte is 0.740 bits.

When the parser arrives at in, the prefix probabil-
ity for the word has made its way down to 6.9 ×
10−63. Such miniscule probabilities are not uncommon
in broad-coverage modeling. What matters for the sur-
prisal calculation is not the absolute value of the pre-
fix probability, but rather the ratio between the old
prefix-probability and the new prefix-probability. A
high αn−1/αn ratio means that structural alternatives
have been reduced in probability or even completely
ruled out since the last word.

For instance, the action that attaches the preposi-

4 The labels in the second line (e.g., VVFIN) symbolize the
grammatical category for each word as described in the Ne-
gra annotation manual (Skut et al., 1997). We are presuming a
tagger that accomplishes this task (see Chapter 10 of Manning
and Schütze (2000)).

5 This work takes the Nivre (2006) transition system to be
sound and complete with respect to a probabilistic depen-
dency grammar that could, in principle, be written down.
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(a) State-based surprisal calculation

(b) Dependency grammar claims in parser states q
Figure 3. Sketch of surprisal calculation.

tion in to its governing verb goss is assigned a prob-
ability of just over one-third. That action in this
left-context leads to the successor state q88 with the
highest forward probability (indicated inside the cir-
cles in red). Metaphorically, the preposition tempers
the parser’s belief that goss has only a single depen-
dent. Of course, k-best parsing considers other al-
ternatives, such as state q96 in which no attachment
is made, in anticipation that some future word will
attach in as a left-dependent. However these alter-
native actions are all dominated by the one that sets
up the correct gossyin dependency. This relationship
would be ignored in a 3-gram model because it spans
four words. By contrast, this attachment is available to
the Nivre (2006) transition system because of its stack-
structured memory. In fact, attachments to stets, ‘al-
ways’, ein, ‘a’, and wenig, ‘little’, are all excluded from
consideration because the parser is projective, i.e., does
not have crossing dependencies (Kahane, Nasr, & Ram-
bow, 1998; Buch-Kromann, 2007).

The essence of the explanation is that difficult

words force transitions through state-sets whose for-
ward probability is much smaller than at the last word.
This explanation is interpretable in light of the linguis-
tic claims made by the parser. However, the explana-
tion is also a numerical one that can be viewed as just
another kind of predictor. The next section applies this
perspective to modeling observed fixation durations
and regression frequencies.

Predicting eye movements:
The role of surprisal

Having sketched a particular formalization of
sentence-level syntactic factors in the previous section,
this section takes up several other factors (table 1) that
figure in models of eye-movement control. Two subsec-
tions report answers to two distinct but related ques-
tions. The first question is, can surprisal stand in, per-
haps only partly, for empirical predictability? If empir-
ical predictability could be approximated by surprisal,
this would save eye-movement researchers a great deal
of effort; there would no longer be a need to engage in
the time-consuming process of gathering predictabil-
ity scores. Unfortunately, the answer to this first ques-
tion is negative – including surprisal in a model that
already contains word-level factors such as length and
bigram frequency does not allow it to do significantly
better at predicting empirical predictability scores in
the Cloze-type data we considered.

The second question pertains to eye-movement data.
The second subsection proceeds by defining a variety
of dependent measures commonly used in eye move-
ment research. Then it takes up the question, does
adding surprisal as an explanatory factor result in a
better statistical model of eye-movement data? The an-
swer here is affirmative for a variety of fixation dura-
tion measures as well as regression likelihoods.

Does surprisal approximate empirical predictabil-
ity?

The Potsdam Sentence Corpus (PSC) consists of
144 German sentences overlayed with a variety of re-
lated information (Kliegl, Nuthmann, & Engbert, 2006).
One kind of information comes from a predictabil-
ity study in which native speakers were asked to guess
a word given its left-context in the PSC (Kliegl et al.,
2004). The probability of correctly guessing the word
was estimated from the responses of 272 participants.
This diverse pool included high school students, uni-
versity students, and adults as old as 80 years. As a
result of this study, every PSC word — except the first
word of each sentence, which has no left context —
has associated with it an empirical word-predictability
value that ranges from 0 to 1 with a mean (standard
deviation) of 0.20 (0.28). These predictability values
were submitted to a logit transformation in order to
correct for the dependency between mean probabilities
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and the associated standard deviations; see (Kliegl et
al., 2004) for details.

Table 1 enumerates a set of candidate factors hy-
pothesized to influence logit predictability as sampled
in the Kliegl et al. (2004) study. The candidate fac-
tors were taken into account simultaneously in a linear
mixed-effects model (Pinheiro & Bates, 2000; Bates &
Sarkar, 2007; Gelman & Hill, 2007) with sentences as
random factors.

The Deviance Information Criterion or DIC (Spiegel-
halter, Best, Carlin, & Linde, 2002; Spiegelhalter, 2006),
(Gelman & Hill, 2007, 524-527) was used to compare
the relative quality of fit between models. The DIC
depends on the summary measure of fit deviance d =
−2× log-likelihood. Adding a new predictor that rep-
resents noise is expected to reduce deviance by 1; more
generally, adding k noise predictors will reduce de-
viance by an amount corresponding to the χ2 distri-
bution with k degrees of freedom. DIC is the sum of
mean deviance and 2×the effective number of parameters;
mean deviance is the average of the deviance over all
simulated parameter vectors, and the effective number
of parameters depends on the amount of pooling in
the mixed-effects model. Thus, in mixed-effects models
DIC plays the role of the Akaike Information Criterion
(Akaike, 1973; Wagenmakers & Farrell, 2004), in which
the number of estimated parameters can be determined
exactly.

In the linear mixed-effects models, neither version
of surprisal showed a statistically significant effect.6
However, the sign of the coefficient was negative for
both variants of surprisal and DIC values were lower
when surprisal was added as a predictor. This is as ex-
pected: more surprising words are harder to predict.
The DIC was 2229 for the simpler model, versus 2220
for each of the two more complex models. Table 2 sum-
marizes the models including surprisal as a predictor.

In sum, the analyses show that surprisal scores ex-
hibit rather weak relations with empirical predictabil-
ity scores; indeed, they are much weaker than unigram
frequency and word length as well as corpus-based bi-
gram frequency. Given the reduction in DIC values,
however, including surprisal as part of an explanation
for empirical word predictability appears to be moti-
vated. This finding is consistent with the intuition that
predictability subsumes syntactic parsing cost, among
other factors, although clearly surprisal is not the dom-
inant predictor.

The relation between surprisal and empirical word
predictability, though weak, nevertheless raises the
possibility that surprisal scores may account for vari-
ance in fixation durations independent of the variance
accounted for by empirical predictability. We investi-
gate this question next using eye movement data from
the Potsdam Sentence Corpus.

Does surprisal predict eye movements?
Surprisal formalizes a notion of parsing cost that ap-

pears to be distinct from any similar cost that may be
subsumed in empirical predictability protocols. It may
thus provide a way to account for eye movement data
by bringing in a delimited class of linguistic factors that
are not captured by conscious reflection about upcom-
ing words.

To investigate this question empirically, we chose
several of the dependent eye movement measures
in common use (tables 3 and 4). A distinct class
of “first pass” measures reflects the first left-to-right
sweep of the eye over the sentence. A second distinc-
tion relates to “early” and “late” measures. A widely
accepted belief is that the former but not the latter re-
flect processes that begin when a word is accessed from
memory (Clifton et al., 2007, 349). Although these defi-
nitions are fairly standard in the literature, controversy
remains about the precise cognitive process responsible
for a particular dependent measure.

In general, human comprehenders tend to read more
slowly under conditions of cognitive duress. For in-
stance, readers make regressive eye movements more
often and go more slowly during the disambiguating
region of syntactically-ambiguous sentences (Frazier &
Rayner, 1982). They also slow down when a phrase
must be ‘integrated’ as the argument of a verb that does
not ordinarily take that kind of complement, e.g. “eat
justice” provokes a slowdown compared to “eat pizza.”

The surprisal complexity metric, if successful in ac-
counting for eye movement data, would fit into the
gap between these sorts of heuristic claims and measur-
able empirical data, alongside computational accounts
such as Green and Mitchell (2006), Vasishth and Lewis
(2006), Lewis et al. (2006) and Vasishth et al. (in press).

We used the dependent measures in tables 3 and 4 to
fit separate linear mixed-effects models that take into
account the candidate predictors introduced in the last
section: the n-gram factors, word length, empirical pre-
dictability. For the analysis of regression probabilities
(coded as a binary response for each word: 1 signi-
fied that a regression occurred at a word, and 0 that
it did not occur), we used a generalized linear mixed-
effects model with a binomial link function (Bates &
Sarkar, 2007), (Gelman & Hill, 2007). Sentences and
participants were treated as partially crossed random
factors; that is, we estimated the variances associated
with differences between participants and differences
between sentences, in addition to residual variance of
the dependent measures. Then we compared the De-
viance Information Criterion value of these simpler
models with those of more complex models that had
an additional predictor: either surprisal based on the

6 An absolute t-value of 2 or greater indicates statistical sig-
nificance at α = 0.05. The t-values in a mixed-effects models
are only approximations because determining the exact de-
grees of freedom is non-trivial (Gelman & Hill, 2007).
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Table 1
Candidate explanatory factors for empirical predictability.

Independent Variables
log freq logarithm of the token frequency (“unigram”) of a word in Das Digitale Wörterbuch

der deutschen Sprache des 20. Jahrhunderts (DWDS) (Geyken, 2007; Kliegl, Geyken,
Hanneforth, & Würzner, 2006)

log bigram logarithm of the conditional likelihood of a word given its left neighbor (“bigram”)
in DWDS

length number of characters in conventional spelling
s dg surprisal from dependency parser
s cfg surprisal from phrase-structure parser

Dependent Variable
lp logit-transformed empirical word predictability (Kliegl et al., 2004)

Table 2
The effect on logit predictability of log unigram and bigram frequencies, 1/word length, and surprisal computed using the
dependency grammar.

Dependency grammar based surprisal
Estimate Std. Error t-value

(Intercept) -1.4750 0.0312 -47.3
log freq 0.2853 0.0353 8.1

1/length 1.2866 0.4028 3.2
log bigram 0.0671 0.0114 5.9

s dg -0.0009 0.0147 -0.1
Phrase-structure grammar based surprisal

(Intercept) -1.4745 0.0312 -47.3
log freq 0.2942 0.0358 8.2

1/length 1.2304 0.4047 3.0
log bigram 0.0639 0.0116 5.5

s cfg -0.0208 0.0161 -1.3

Note. An absolute t-value of 2 or greater indicates statistical significance at α = 0.05.

Table 3
Commonly used first-pass dependent measures of eye movement and the stages in parsing processes they are assumed to
represent.

symbol measure definition hypothesized cognitive process

SFD single fixation duration fixation duration on a word dur-
ing first pass if it is fixated only
once

word identification (Clifton et
al., 2007, 348)

FFD first fixation duration time spent on a word, provided
that word is fixated during the
first pass

word identification

FPRT
first-pass
reading time or
gaze duration

the sum of all fixations in a re-
gion during first pass

text integration (Inhoff, 1984)
but cf. (Rayner & Pollatsek,
1987)

(none) regression probability likelihood of jumping back to a
previous word during the first
pass

resolution of temporary ambi-
guity (Frazier & Rayner, 1982;
Clifton et al., 2003)
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Table 4
Commonly used non-first-pass dependent measures of eye movement and the stages in parsing processes they are assumed to
represent.

symbol measure definition hypothesized cognitive process

RPD regression path
duration

the sum of all fixations from the
first fixation on the region of in-
terest up to, but excluding, the
first fixation downstream from
the region of interest

integration difficulty (Clifton et
al., 2007, 349)

RBRT right-bounded
reading time summed duration of all fixations

in a region of interest, beginning
with first pass, including revisits
after regressions, and ending be-
fore an exit to the right

integration difficulty (Vasishth,
Bruessow, Lewis, & Drenhaus,
in press)

RRT re-reading time sum of all fixations after
first pass

general comprehension diffi-
culty (Clifton et al., 2007, 363)

TRT total reading time sum of all fixations general comprehension diffi-
culty

Intercept

SFD FFD FPRT RPD RBRT RRT TRT

5.2

5.3

5.4

5.5

5.6

Log unigram frequency

SFD FFD FPRT RPD RBRT RRT TRT

−0.033

−0.018

−0.003

0.012

0.027

Log bigram frequency

SFD FFD FPRT RPD RBRT RRT TRT

−0.013

−0.008

−0.003

0.002

0.007

0.012

1/length

SFD FFD FPRT RPD RBRT RRT TRT

−0.65

−0.40

−0.15

0.10

0.35

0.60

Logit predictability

SFD FFD FPRT RPD RBRT RRT TRT

−0.046

−0.031

−0.016

−0.001

0.014

0.029

0.044

Surprisal (Dependency grammar)

SFD FFD FPRT RPD RBRT RRT TRT

−0.0094

−0.0069

−0.0044

−0.0019

0.0006

0.0031

0.0056

0.0081

Figure 4. Regression coefficients and 95% confidence intervals for the multiple regression using as predictors unigram and
bigram frequency, 1/length, logit predictability and dependency grammar based surprisal.
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Table 5
Deviance Information Criterion values for the simpler model, which includes only the word-based statistical measures, and
the more complex model, with surprisal added.

unigram+bigram +surprisal
+1/len+pred s.dg s.cfg

SFD 43605.9 43429.9 42966.6
FFD 19078.4 19037.5 18945.4

FPRT 114766.0 114600.5 114439.0
RPD 161068.6 160860.0 160781.5

RBRT 121072.0 120828.3 120657.3
RRT 21916.7 21901.6 21900.8
TRT 144511.1 144319.3 144106.8
Reg 87028.4 87001.7 87027.6

Table 6
Log unigram and bigram frequencies, 1/length, and the two surprisal variants as predictors of the so-called early fixation-
duration based dependent measures (single-fixation duration and first-fixation duration). All predictors were centered. An
absolute t-value of 2 or greater indicates statistical significance at α = 0.05.

Dependency grammar Phrase-structure grammar
Predictor Coef SE t-value Coef SE t-value

SFD (Intercept) 5.3061 0.0102 519.9 5.3099 0.0098 539.7
freq −0.0053 0.0012 −4.5 −0.0102 0.0012 −8.5
bigram −0.0122 0.0004 −29.5 −0.0106 0.0004 −25.4
1/length −0.1216 0.0137 −8.9 −0.0815 0.0138 −5.9
logitpred −0.0068 0.0011 −6.0 −0.0051 0.0011 −4.6
surprisal 0.0059 0.0005 12.8 0.0133 0.0005 25.1

FFD (Intercept) 5.2378 0.0137 383.1 5.2438 0.0123 427.3
freq −0.0141 0.0024 −6.0 −0.0165 0.0024 −7.0
bigram −0.0035 0.0009 −4.0 −0.0024 0.0009 −2.8
1/length −0.0315 0.0288 −1.1 −0.0219 0.0288 −0.8
logitpred 0.0037 0.0024 1.5 0.0043 0.0024 1.8
surprisal 0.0050 0.0009 5.4 0.0104 0.0009 11.0

dependency grammar, or surprisal based on phrase-
structure grammar.

The calculation of the dependent measures was car-
ried out using the em package developed by Logačev
and Vasishth (2006). Regarding first-fixation dura-
tions, only those values were analyzed that were non-
identical to single-fixation durations. In each reading-
time analysis reported below, reading times below
50 ms were removed and the dependent measures were
log transformed. All predictors were centered in order
to render the intercept of the statistical models easier to
interpret.

Results

The main results of this paper are summarized in ta-
bles 5, 6, 7, and 8. In the multiple regression tables 6-8,
a predictor is statistically significant if the absolute t-
value is greater than two (p-values are not shown for
the reading time dependent measures because in linear

mixed-effects models the degrees of freedom are diffi-
cult to estimate, Gelman & Hill, 2007).

In order to facilitate comprehension, the multiple re-
gression tables 6-8 are summarized in a more compact
form in figures 4 and 5. The graphical summary has
the advantage that it is possible, at a glance, to see the
consistency in the signs of the coefficients across differ-
ent measures; the tables will not yield this information
without a struggle. The figures are interpreted as fol-
lows. The error bars signify 95% confidence intervals
for the coefficient estimates; consequently, if an error
bar does not cross the zero line, it is statistically signifi-
cant. This visual test is identical to computing a t-value.

In general, both early and late fixation-duration-
based dependent measures exhibited clear effects of
unigram frequency, bigram frequency, and logit pre-
dictability after statistically controlling for the co-stock
of predictors (figures 4, 5). One exception was first-
fixation duration (which excludes durations that were
also single-fixation durations); here, the effect of pre-
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Table 7
Log unigram and bigram frequencies, 1/length, and the two surprisal variants as predictors of the so-called late measures.

Dependency grammar Phrase-structure grammar
Predictor Coef SE t-value Coef SE t-value

RPD (Intercept) 5.5998 0.0150 373.0 5.6268 0.0146 386.2
freq −0.0302 0.0015 −20.0 −0.0328 0.0015 −21.4
bigram −0.0061 0.0005 −11.2 −0.0051 0.0005 −9.4
1/length −0.5456 0.0177 −30.8 −0.5173 0.0178 −29.0
logitpred −0.0066 0.0015 −4.5 −0.0053 0.0015 −3.6
surprisal 0.0083 0.0006 14.0 0.0110 0.0007 16.6

RBRT (Intercept) 5.5330 0.0131 421.7 5.5549 0.0127 435.8
freq −0.0178 0.0013 −13.6 −0.0208 0.0013 −15.7
bigram −0.0111 0.0005 −23.8 −0.0100 0.0005 −21.2
1/length −0.6223 0.0153 −40.7 −0.5921 0.0154 −38.5
logitpred −0.0115 0.0013 −9.1 −0.0102 0.0013 −8.1
surprisal 0.0077 0.0005 15.2 0.0115 0.0006 20.1

RRT (Intercept) 5.4017 0.0253 213.8 5.4451 0.0222 245.3
freq −0.0205 0.0048 −4.3 −0.0163 0.0048 −3.4
bigram −0.0038 0.0019 −2.0 −0.0052 0.0019 −2.8
1/length −0.5137 0.0576 −8.9 −0.5280 0.0577 −9.2
logitpred −0.0353 0.0053 −6.7 −0.0354 0.0053 −6.7
surprisal 0.0040 0.0019 2.1 −0.0048 0.0021 −2.3

TRT (Intercept) 5.5705 0.0146 381.1 5.5877 0.0142 392.8
freq −0.0204 0.0014 −14.4 −0.0241 0.0014 −16.7
bigram −0.0113 0.0005 −22.3 −0.0101 0.0005 −19.6
1/length −0.5825 0.0167 −34.9 −0.5496 0.0168 −32.8
logitpred −0.0217 0.0014 −15.8 −0.0203 0.0014 −14.8
surprisal 0.0074 0.0006 13.4 0.0124 0.0006 19.8

Table 8
Log unigram and bigram frequencies, 1/length, and the two surprisal variants as predictors of regression probabilities.

Dependency grammar Phrase-structure grammar
Predictor Coef SE z-score p-value Coef SE z-score p-value
(Intercept) −2.4117 0.0801 −30.1 <0.01 −2.2530 0.0744 −30.3 <0.01
log freq −0.2133 0.0114 −18.7 <0.01 −0.2076 0.0116 −17.9 <0.01
bigram 0.0880 0.0042 21.2 <0.01 0.0859 0.0042 20.5 <0.01
len 0.2916 0.1317 2.2 0.03 0.3043 0.1320 2.3 0.02
logitpred 0.0422 0.0110 3.8 <0.01 0.0442 0.0110 4.0 <0.01
surprisal 0.0236 0.0045 5.2 <0.01 0.0045 0.0050 0.9 0.37

dictability and the reciprocal of length was not signifi-
cant.

These simpler models were augmented with one of
two surprisal factors, one based on dependency gram-
mar, the other based on phrase-structure grammar. As
summarized in the table 5, for virtually every depen-
dent measure the predictive error (DIC value) was
lower in the more complex model that included sur-
prisal. One exception was regression probability, in
which the phrase-structure based grammar predictions
did not reduce DIC.

For fixation durations (tables 6, 7 and figures 4, 5),
in general both versions of surprisal had a significant

effect in the predicted direction (that is, longer du-
rations for higher surprisal values). One exception
was the effect of phrase-structure based surprisal on
rereading time; here, reading time was longer for lower
surprisal values. However, since the rereading time
data is sparse (about 1/10th of the other measures; the
sparseness of the data is also reflected in the relatively
wide confidence intervals for the coefficient estimates
of rereading time), it may be difficult to interpret this
result, especially given the consistently positive coeffi-
cients for surprisal in all other dependent measures.

For regression probabilities (table 8), dependency-
grammar based surprisal had a significant effect over
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Intercept

SFD FFD FPRT RPD RBRT RRT TRT

5.2

5.3

5.4

5.5

5.6

5.7

Log unigram frequency

SFD FFD FPRT RPD RBRT RRT TRT

−0.036

−0.021

−0.006

0.009

0.024

Log bigram frequency

SFD FFD FPRT RPD RBRT RRT TRT

−0.011

−0.006

−0.001

0.004

0.009

1/length

SFD FFD FPRT RPD RBRT RRT TRT

−0.64

−0.39

−0.14

0.11

0.36

0.61

Logit predictability

SFD FFD FPRT RPD RBRT RRT TRT

−0.046

−0.031

−0.016

−0.001

0.014

0.029

0.044

Surprisal (Constituency grammar)

SFD FFD FPRT RPD RBRT RRT TRT

−0.014

−0.009

−0.004

0.001

0.006

0.011

0.016

Figure 5. Regression coefficients and 95% confidence intervals for the multiple regression, using as predictors unigram and
bigram frequency, 1/length, logit predictability and phrase-structure based surprisal.

and above the other predictors: an increase in surprisal
predicts a greater likelihood of a regression. Phrase-
structure based surprisal is not a significant predictor
of regression probability, but the sign of the coefficient
is also negative, as in the dependency-based model.

Discussion

The work presented in this paper showed that sur-
prisal values calculated with a dependency grammar
as well as with a phrase-structure grammar are signif-
icant predictors of reading times and regressions. The
role of these surprisals as predictors was still significant
even when empirical word predictability, n-gram fre-
quency and word length were also taken into account.
On the other hand, surprisal did not appear to have
a significant effect on empirical predictability as com-
puted in eye-movement research.

The high-level factor, surprisal, appears in both the
so-called early and late measures, with comparable
magnitudes of the coefficients for surprisal. This find-

ing is thus hard to reconcile with a simple identifica-
tion of early measures with syntactic parsing costs and
late measures with durations of post-syntactic events.
It may be that late measures include the time-costs of
syntactic processes initiated much earlier.

The early effects of parsing costs are of high rele-
vance for the further development of eye-movement
control models such as E-Z Reader (Pollatsek et al.,
2006) and SWIFT (Engbert et al., 2005). In these mod-
els, fixation durations at a word are a function of word-
identification difficulty, which in turn is assumed to be
dependent on word-level variables such as frequency,
length and predictability. Although these variables can
account for a large proportion of the variance in fix-
ation durations and other measures, we have shown
that surprisal plays an important role as well. Of these
three predictors, empirical predictability is an “expen-
sive” input variable because it needs to be determined
in an independent norming study and applies only to
the sentences used in this study. This fact greatly lim-
its the simulation of eye movements collected on new
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sentences. It had been our hope that surprisal measures
(which can also be computed from available treebanks)
could be used as a generally available substitute of em-
pirical predictability. Our results did not match these
expectations for the two types of surprisal scores ex-
amined here. Nevertheless, given the computational
availability of surprisal values, it is clearly a candi-
date for being included as a fourth input variable in
future versions of computational models. As Clifton
et al. (2007) note, no model of eye-movement control
currently takes factors such as syntactic parsing cost
and semantic processing difficulty into account. While
some of this variance is probably captured indirectly by
empirical predictability, the contribution of this paper
is to demonstrate how syntactic parsing costs can be
estimated using probabilistic knowledge of grammar.
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Kaplan, R. M. (1972). Augmented transition networks as psy-
chological models of sentence comprehension. Artificial
Intelligence, 3, 77–100.

Keller, F. (2003). A probabilistic parser as a model of global
processing difficulty. In R. Alterman & D. Kirsh (Eds.),
Proceedings of the 25th annual conference of the cognitive sci-
ence society (pp. 646–651). Boston, MA.

Kliegl, R., Geyken, A., Hanneforth, T., & Würzner, K. (2006).
Corpus matters: A comparison of German DWDS and CELEX
lexical and sublexical frequency norms for the prediction of read-
ing fixations. Unpublished manuscript.

Kliegl, R., Grabner, E., Rolfs, M., & Engbert, R. (2004).
Length, frequency, and predictability effects of words on
eye movements in reading. European Journal of Cognitive
Psychology, 16, 262–284.

Kliegl, R., Nuthmann, A., & Engbert, R. (2006). Tracking the
mind during reading: The influence of past, present, and
future words on fixation durations. Journal of Experimental
Psychology: General, 135, 12–35.

DOI 10.16910/jemr.2.1.1 ISSN 1995-8692This article is licensed under a
Creative Commons Attribution 4.0 International license.



12 BOSTON, HALE, KLIEGL, PATIL AND VASISHTH

König, E., & Lezius, W. (2003). The TIGER language - a de-
scription language for syntax graphs, Formal definition (Tech.
Rep.). Germany: IMS, Universität Stuttgart.

Levy, R. (in press). Expectation-based syntactic comprehen-
sion. Cognition.

Lewis, R. L., Vasishth, S., & Van Dyke, J. (2006, October).
Computational principles of working memory in sentence
comprehension. Trends in Cognitive Science, 10(10), 447–
454.
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