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Introduction 

ELAN annotation software 

The annotation program ELAN1 is an open-source 
and free multimodal annotation program developed by 
the Max Planck Institute for Psycholinguistics in 
Nijmegen (http://tla.mpi.nl/tools/tla-tools/elan/; 
Brugman, 2004; Wittenburg, 2006). It has become the de 
facto standard for linguists coding their language 
material, but is also used by researchers in ethology 
(Madsen & Persson, 2012), gesture research (Lausberg, 
& Sloetjes, 2009), human–robot interaction (Lohse, 
2010), sign language (Crasborn, Sloetjes, Auer & 
Wittenburg, 2006), surgery training (Bouarfa, Jonker & 
Dankelman, 2011) and others who need to make 
systematic annotations and subjective ratings over time 
and on an arbitrary number of analysis dimensions. It has 
also been used to code gaze behavior in the absence of 

eye-tracking, but also to store and complement the eye-
tracking data when the tracking loss is high and needs 
manual inspection (as we have done in Sandgren, 
Andersson, van de Weijer, Hansson & Sahlén, 2014). 

Most importantly, however, is that this software is 
agnostic to what data it handles, and allows the user to 
store, synchronize, and play back multiple sources of 
data. This allows a facilitated co-analysis of eye-tracking 
data together with video-based behavior annotation, 
auditory speech analysis, or additional biometric source 
data. Following that, the annotator then creates different 
annotation tiers that represent layers that store the 
annotations pertaining to the different dimensions of 
interest, e.g., “gaze target”, “estimated function of gaze”, 
“gesture type”, et c. After the user has completed the 
annotations, ELAN support various operations such as 
exporting all the aligned data, calculating interrater 
reliabilities, or calculating simple measures such as the 
number of occurrences of different annotations. Figure 1 
shows the user interface of ELAN. 

Although the software is accessible to the non-technical 
user, and very adept at aligning multiple data sources, the 
analysis capabilities are somewhat limited. For example, 
arranging data in an event-related time-series format, 
which allows for statistically powerful analyses common 
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in eye-tracking research, is not supported. Adding support 
for arranging, visualizing, and exporting data in such a 
manner would allow for better analyses for the 
researchers that don't have the skills or resources to 
programmatically extract and align their multimodal data. 

 

 

This paper presents a stand-alone software tool for 
expanding the capabilities of ELAN, already with some 
success (Sandgren, et al., 2014). Two features are 
implemented: one major one and one minor one. The 
major feature is the use of time-course analysis in favor 
of simpler frequency measures. The minor feature is an 
important correction to ELAN's interrater reliability 
calculation. 

Time-course analysis 

Many behavioral studies analyze their results in the 
form of count data, e.g., how many times a particularly 
behavior occurred given a particular time span or given 
the number of opportunities. Such frequency statistics are 
also supported by ELAN. However, such observations are 
often aggregated over time to some mean frequency and 
as such do not attend to the unfolding of the event over 
time, hence losing much interesting information. For 

example, a simple count measure indicates that a 
particular behavior has taken place, but it is oblivious to 
whether this behavior happened early or late in the 
temporal analysis window, or whether it is driven by one 
large response or several smaller responses. Aggregating 
across trials, but not over time, allows us to form an 
average response curve of otherwise binary reponses (e.g. 
in eye-tracking: whether the participant looked at an 

object or not). This curve may show a distinct peak at the 
onset, e.g., occurring at around t+1200 milliseconds in 
the temporal analysis window which may be, say, 10,000 
milliseconds. The rise towards this peak may happen 
through a slow or a fast growth, and the decline from the 
peak may also be slow or fast.  Data may also be 
unimodal, bimodal or multimodal. This temporal 
information may provide insights into how synchronized 
a particular behavior is, across situations, stimuli items 
and participants, or reveal whether similar or different 
mechanisms control the behavior. See Figure 2 for an 
illustration of how clearly different signals appear similar 
when ignoring the temporal information. 

Such event-related time-series analyses are today 
widely used in eye-tracking (Allopenna et al, 1998; 
Holmqvist, et al, 2011) and in electro-encephalography 
(Luck, 2005; Simola, Holmqvist & Lindgren, 2009). 
Currently, direct support for plotting and exporting data 
preserving the temporal unfolding is not supported by 

Figure 1: the user interface of ELAN. The software supports multiple synchronized media sources and an arbitrary number of 
annotation tiers. Videos are blurred to protect participants. 
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ELAN. A researcher wanting to take advantage of this 
information would have to write a custom analysis script 
for extracting and aligning this information from the 
ELAN's XML files, manually computing it, or visually 
inferring regularities of the events in the data stream. 

Reliability calculation using ELAN 

A person's annotations are always verified against one 
or several other annotators, to restrict the possibility that 
the main annotator operates on a set of particularly 
idiosyncratic criteria. This multiple annotation is done for 
either all of the data, or just a subset of the data. If the 
annotators are in agreement in their annotations, i.e., they 
label the same events with the same event code, then the 
annotations are said to be homogeneous and reliable. This 
homogeneity is quantified using Cohen's Kappa (Cohen, 
1960), overlap percentages, or some other measure of 
inter-rater or reliability. ELAN's (in version 4.5.1, which 
prompted our work) built-in functionality of Compare 
annotators uses a simple, but also very understandable, 
reliability measure. It focuses on the proportion of 
overlap of two annotations, i.e., the degree to which two 
events are independently rated to occur during the same 
interval. If annotator a decides that the event ε occurs 

between time points t400 and t600, and annotator b decides 

that this event occurs between time points t500 and t700, 
then the proportion of overlap is given by the overlap 

(t500 – t600 = 100) divided by the maximum temporal 

extent (according to the two raters) of the event (t400 – 

t700 = 300). The final overlap proportion statistic for this 
single event, as provided by ELAN, is 100/300 = 0.33. 
This overlap statistic is intuitive, as a value of 1 means 
that both annotators have rated the same types of events 
to occur at exactly the same intervals. A value of 0 means 
that either the annotators have completely disagreed on 
the time intervals of the events, or they have disagreed on 
the type of event that occurs. 

The problem with the current implementation in 
ELAN is that when a single reliability statistic is 
computed for all rated events, ELAN simply takes the 
average overlap proportion across all events equally. This 
has the effect that no distinction is made between short 
events (e.g., 10 milliseconds) and long events (e.g., 10 
minutes).  

To illustrate this problem, consider the following 
minimal example with just n=2 events, indexed by i: 

 

(1) 

 

 
where E is a set of two events, each coded by two 
different raters, T a set of maximum durations for the 
events in E, and O a set of overlap proportions for the 
events in E. The overlap ratio for the current ELAN 
calculation is: 

(2) 

 

 

Whereas a temporally weighted overlap ratio would 
produce a reliability rating as follows: 

(3) 

 

  

 

 
As can be seen from the above example, not taking the 
duration of events into account may produce very 
unintuitive (we would even argue false) reliability scores, 

Figure 2: data viewed as a signal over time and as an 
aggregated signal. The top and middle panels shows two 
distinctly different signals, unfolding differently over time. 
However, as bar graphs illustrating the aggregated means of 
the signals, they are identical. 

{ }
{ }
{ }0.9,

10100,

21

21

21,

=o=o=O

=t=t=T

εε=E

∑
i

n

O
i
T
i

∑
i

n

T
i

=
.9∗100+0∗10

100+10
=
90

110
=. 82

.45
2

00.91 =
+

=On
n

i
i∑

−



Journal of Eye Movement Research       Andersson, R. & Sandgren, O. (2016) 
9(3):1, 1-8     ELAN Analysis Companion (EAC): A Software Tool for Time-course Analysis of ELAN-annotated Data 

4 

although this example is extreme to illustrate the point. 
Even if the two raters agree about 90 time units out of the 
110 time units they rate, they still only get a reliability of 
45 % using ELAN's native method. The underestimation 
is large if the proportion of non-agreed (i.e., non-
overlapping) events are many (compared to agreed 
events) in number but short (again: compared to the 
agreed events) in durations. Applying this correction will 
then improve the reliability score. However, it is also 
possible to overestimate the reliability score. This occurs 
when the number of non-agreed events is relatively low, 
but on average longer than the mean duration for the 
agreed events. If an overlap measure is used to estimate 
the inter-rater reliability, we argue that a temporal 
weighting should also be performed. 

It should be noted that this reliability metric is not the 
only metric used in research, and perhaps not even the 
most common. The most common would likely be 
Cohen’s Kappa, which provides a reliability metric based 
on two coders using two different responses (e.g., “yes” 
or “no”). One benefit with Cohen’s Kappa is that it takes 
into account the chance agreement of events occurring. If 
two coders would simply say “yes” or “That is a 
fixation!” to almost anything, then they would have a 
high agreement, regardless of the underlying data. 
Cohen’s Kappa addresses this by calculating a simple 
expected average response or base rate from each coder, 
which the agreement has to surpass. The drawback with 
this feature of Cohen’s Kappa, however, is that if it is 
easy to get a high chance agreement, then the estimated 
agreement can actually be low, unless the raters are 
clearly better than the chance agreement. We believe this 
can appear very unintuitive to a reader who is not very 
familiar to Cohen’s Kappa.  

ELAN analysis companion (EAC) 

The goal of our Python program is to add to ELAN's 
functionality by providing solutions for the two 
limitations of ELAN that have been presented, and 
present it in a GUI to make it easy for everybody to use. 
Ideally, had we known Java, this could have been 
implemented directly into ELAN. The two solutions of 
the program are presented in their own tabs in the GUI. 

 

Time-course analysis 

The time-course analysis tab allows the researcher to 
load a number of ELAN XML files (.eaf files) and 
calculate proportions of looks over time on the data. This 
view is shown in Figure 3. This requires the selection of a 
predictive tier, which is the ELAN tier that holds the 
event we wish to designate as predictive. Next, we select 
a predictive event from the list of events in the selected 
predictive tier. Finally we select whether the onset or the 
offset should be the trigger point of the temporal analysis 
window. As a concrete example, if we are interested in 
where a participant looks when another person speaks a 
particular utterance, then the onset of that utterance is the 
predictive trigger point. We are not interested in what 
happens at the time of some other event, but only what 
happens around this particular type of utterance. 

When this predictor point is triggered, we want to 
capture the data around this point in an analysis window.  
In our case, we are interested in the gaze data (in ELAN 
in nominal form, e.g., name of AOI looked at). The 
analysis window is centered on the predictive trigger 
point and the size of the window is given by the window 
size setting. So, a 3000 ms window size means that the 
analysis window will extend 1500 ms from either side of 
the trigger point. Now, we need to select a dependent 
variable, which is the behavior we are interested in 
observing over time (here: the gaze). First, we start by 
selecting the ELAN tier that holds the relevant event, and 
then the event itself. If we are interested in contrasting the 
unfolding of the dependent variable over time with the 
unfolding of the same event in another predictive 
window, we can select a second predictor to be plotted at 
the same time.  

When all required events and parameters are set, we 
can then press the “Analyze!” button to extract all the 
data and then plot it in the graph panel. The created graph 
is then an average curve for all the captured analysis 
windows. After having extracted the data, we can press 
the “Save results” button to export the data underlying the 
average curve we have just plotted. The output format is a 
UTF-8 text file with tab-separated values in a “long” file 
format, i.e., each time point is represented on a separate 
line for each participant (c.f. “a person-period data set”, 
Singer & Willett, 2003). 
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The algorithm behind the calculation of these results 
can be described by the following high-level pseudo-
code: 

Pseudocode 

• For each predictive event: 

◦ Create a temporal analysis window of 
specified size, filled with null 
values and centered on the specified 
point of the predictive event-
detection 

◦ Mark all occurrences of the dependent 
event for each time point using the 
specified resolution and store the 
analysis window. Occurrences are 
marked as 1 and non-occurrences are 
marked as 0. 

◦ Handle potential overlap between 
analysis windows based on specified 
overlap handling strategy, i.e. 
allowing re-use of values or blocking 
re-use. 

• Create a mean analysis window from all 
analysis windows and plot it. 

 

The particular key parameters that are used in the 
calculation are not only using the menus described up 
until here, but additional parameters are accessed by 
clicking the “Settings” button to open the settings dialog. 

The parameters that can be set here are defined as 
follows. Resolution is the minimal temporal resolution of 
the data, and data of higher temporal resolution will be 
downsampled to this resolution level. A resolution of r 
milliseconds for data sampled every n millisecond means 
that every (r/n):th sample will be used and the rest will be 
ignored, saving the computer memory for other samples. 
The overlap handling function specifies how the 
algorithm should behave if an analysis window expands 
across a region that has already been used in a previous 
analysis window. The alternatives are either to allow 
“double-dipping”, with the statistical complexity it 
brings, or to prevent time points to be used more than 
once by adhering to a "first come—first served" strategy. 
Bin size is simply to what degree the final results should 
be aggregated and pooled in bins. Data is always saved in 
bins (so to say), but these bins can be as small as the 
temporal resolution. This does not affect the plotting, 
which is always done at the level of the specified 
temporal resolution to produce smooth curves. Finally, 
the binning function is how the data should be pooled 
into the bins. The choices are either to take the mean, 
which is the average over the binary data in the analysis 
window, or to have the bins ceil the data to 1 if it is > 0. 
This latter alternative is good if the later statistical 
analysis requires binary (0,1) data. 

 

Inter-rater reliability 

The input for the inter-rater reliability correction is are 
text files of annotator overlap exported by ELAN. These 
are simply placed in a folder and this software tool is 
directed to that folder. The tool reads each file and in turn 
applies the temporal weighting previously mentioned. In 
the end of each text file it appends a line describing the 
temporally weighted overlap ratio. Finally, the GUI 
reports back the new average reliability ratio. See 
Figure 4 for an illustration. 

 

Figure 3: user interface of the EAC time-course analysis tab. 
Predictors are selected to the left and the dependent variable to 
the right. The resulting time-course curves are presented in the 
top window. 

Figure 4: a cropped view of the EAC tab for correcting inter-
rater reliabilities. 
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The user is then free to save the results as corrected 
text files with “_corrected” appended to the file name. 

Real research example 

In the following example, we will go through a part of 
an actual experiment that used ELAN to synchronize 
different data sources and ultimately used the tool 
presented in this article to extract time-course curves that 
were later analyzed statistically.  

Background 

The experiment reported in Sandgren et al (2014) was a 
communication task where either hearing-impaired or 
normal-hearing adolescents communicated with a 
normal-hearing peer while playing a game in front of 
them. Thus, each session would produce two (one for 
each person) streams of gaze coordinates and one 
combined stream of audio data. The data was recorded 
using wearable eye-trackers: the HED-4 from 
SensoMotoric Instruments GmbH (Teltow, Germany). 
Because the participants were able to move freely while 
sitting in front of each other, there was no fixed 
coordinate system where one particular gaze vector 
always corresponded to gaze at the same object. 
Therefore, the primary desired output from the eye-
trackers were a scene video of the field of view of each 
participant, with a gaze cursor indicating where the 
participant directed his or her gaze. Already there, it was 
clear that the data needed to be manually extracted or 
coded in some way. 

Alignment 

The material contained three video streams: two head-
mounted scene cameras from the respective participants, 
and a fixed video camera overlooking the two 
participants. The fixed camera also captured the 
combined audio stream of the two participants. It would 
have been possible to use all three videos simultaneously 
in ELAN, but the two scene videos were enough for our 
purpose. The two videos and the audio stream had to be 
synchronized, and this was done from within ELAN by 
choosing one data stream as a reference stream, and then 
adding offsets to the other streams until they align. One 
crucial part of this is that all streams should contain some 
known reference point to align against. In our case, this 
was achieved by having both participants look at the 

experiment leader as he clapped his hands once. This 
event was thus captured on both the scene videos as well 
as the audio track. 

Coding scheme 

For our purposes, we were interested in knowing how a 
hearing-impaired participant in the experiment direct his 
or her gaze at the timing of asking for additional 
information. So we needed to code at least the 
communicative function of the utterance of each 
participant, and also the gaze of each participant. The 
granularity requirements of the gaze coding were not very 
high, and a simple three-level coding scheme was used: 
“face” (for the face of the other participant), “task” (for 
the game pieces in front of them), and “off” for anything 
else. Each gaze target was given a tier in ELAN, which is 
equivalent to a dimension of analysis. If we had done this 
all over again, we would have collected all gaze (for each 
participant) in a single tier, and let the different gaze 
targets occur as events within this tier. The talking events 
of the participants were coded in tier “*HIX” and “*HIP” 
for the hearing-impaired and the normal-hearing 
participant, respectively, as simple audio-to-text 
transcriptions. The communicative functions of the 
utterances from the hearing-impaired participant were 
coded in tier “%spa@HIX” using a number of more 
specific events, such as “$SPEC:CONFNEW” for 
requests for confirmation of new information, and 
“$NONREQ” for non-requests. 

Data extraction with EAC 

We then used EAC to create curves of event-related gaze 
hits over time. These average curves were made up of 
several one-dimensional logical arrays, indicating, for 
every point in time in the analysis window, whether the 
participant gazed at the relevant target or not. Taking the 
average of these logical arrays produces a smoother curve 
indicating the proportion of looks to the target, given the 
particular point in time to the onset of the triggering event 
(the utterance). In the Sandgren, et al (2014) paper, the 
communicative function of “requests” were of interest. 
These were made up of three different types of requests 
for information, coded separately. So for this paper, the 
request data were extracted using the EAC software, once 
for each type, and then merged and plotted in a 
spreadsheet software. However, if only one type of event 
were of interest, the plot from EAC could have been used 
straight-away. It should be noted that the primary benefit 
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of EAC is not the plotting, but the extraction of the event-
related data. 

For the sake of simplicity of this paper, we will 
replicate a subset of the analysis using the ELAN 
annotation file distributed with this software (HI3-
HIP3strukt2.eaf), containing real data from this 
experiment. We want to contrast utterances from the 
hearing-impaired participant signaling requests for 
confirmation of new information with non-requests, and 
see how these correlate with the gaze from the hearing-
impaired speaker to the other participant's face. To do 
this, we select two predicts, both from the “%spa@HIX” 
tier. The event for predictor 1 is  “$SPEC:CONFNEW” 
for the request, and the event for predictor 2 is 
“$NONREQ” for non-requests. The trigger point of both 
events is the onset of the event. Now, we select the 
dependent variable, which is in the tier “HI Face”, and 
the only event inside which is “Face”. Finally, we set the 
other settings. We use a 3000 ms window size, as it is a 
fairly slowly unfolding event we are expecting here. We 
go inside the Settings dialog and select 10 ms resolution, 
which is enough for this purpose, we use a “first come 
first serve” overlap handling, bin the data in 50 ms bins, 
and round up any fractions to 1. We press Analyze and 
get the time-course curve which can be seen in Figure 5. 
This figure partially corresponds (as one of the three 
request types) to the lower panel of Figure 2 in Sandgren 
et al (2014). 

 

Software package and dependencies 

Currently, to use this software tool the user must have 
three software packages installed: Python 2.7, Matplotlib 
1.4.3 and NumPy 1.9.2, although other versions may 
work. Certain Python meta-packages, e.g., Python-xy, 
include all of these dependencies in a single installation. 
The software is tested against ELAN Annotation Format 
2.6 and 2.7, and ELAN 4.5.1 for Windows. 

The software tool can be found, preferably, at GitHub: 
 https://github.com/richardandersson/EAC 
or alternatively: 
http://wiki.humlab.lu.se/dokuwiki/doku.php?id=people:ri
chard-andersson:main 

The software package includes four minimal data sets. 
The first set validates the handling of overlapping 
analysis windows, the second validates the bin handling, 
the third illustrates a time-course analysis, and the fourth 
the calculation of inter-rater reliability scores. More 
information on how to work through these examples is 
found in the software manual bundled with the package 
file. 
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