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We analyze the feasibility of a cheap eye-tracker where the hardware consists
of a single webcam and a Raspberry Pi device. Our aim is to discover the limits
of such a system and to see whether it provides an acceptable performance. We
base our work on the open source Opengazer (Zielinski, 2013) and we propose
several improvements to create a robust, real-time system which can work on a
computer with 30Hz sampling rate. After assessing the accuracy of our eye-tracker
in elaborated experiments involving 12 subjects under 4 different system setups,
we install it on a Raspberry Pi to create a portable stand-alone eye-tracker which
achieves 1.42° horizontal accuracy with 3Hz refresh rate for a building cost of e70.
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Introduction

Recent advancements in eye-tracking hardware re-
search have resulted in an increased number of avail-
able models that have improved performance and that
provide easier setup procedures. However, the main
problem with these devices continues to be the scal-
ability since their price and the required expertise for
operation make them infeasible at the large scale.

These latest commercial models provide great accu-
racies (between 0.1 and 1°) at high frequencies (over
100Hz); however, in situations where such accuracies
are not necessary and such frequencies are irrelevant,
their high prices make them unsuitable. For exam-
ple, in the case of online advertisement, eye-tracking
is used to analyze which parts of webpages draw more
attention and how the page layout directs user gaze. In
such a use case, even 10Hz data with an accuracy be-
tween 1–2° would be enough to generate the expected
heatmap output.

In this work, we aim to build a cheap, open source
alternative that works on a hardware setup common
in consumer environments: a camera and an electronic
device display. We believe that a system that provides
comparable performance at an acceptable frequency
will enable many applications on devices ranging from
computers to tablets and smartphones.

This work was supported in part by the Spanish
Gov. grants MICINN TIN2009-10435 and Consolider 2010
MIPRCV, and the UAB grants.

Related Work

Appearance Based Methods

Eye-tracking methods which do not need IR equip-
ment make use of regular commercial cameras, or
sometimes even webcams. Common tasks in these
trackers are head and eye localization, calibration and
gaze estimation. Appearance based methods are one
sub-class of these methods and use the eye appearance
(i.e. pixel data or extracted features) to train a mapping
for gaze estimation. They differ from the model based
techniques that try to fit a 2D or 3D model to the sub-
ject’s face or eyes, in order to calculate the gaze point
geometrically (Hansen & Ji, 2010).

One popular mapping method used in appearance
based gaze estimation is Artificial Neural Networks
(ANN). Some early examples showed that this tech-
nique can yield good results (between 1.5° and 1.7°)
even with low resolution images (Xu, Machin, & Shep-
pard, 1998; Baluja & Pomerleau, 1993). A more recent
work provides an implementation on an iPad follow-
ing a similar approach (Holland & Komogortsev, 2012).
Lu, Sugano, Okabe, and Sato (2011) solve the same task
using adaptive linear regression (ALR), which requires
less training samples while still providing accurate es-
timations (between 0.6° and 1.0°). Hansen, Hansen,
Nielsen, Johansen, and Stegmann (2002) borrow ideas
from model based gaze estimation and use Active Ap-
pearance Model (AAM) technique to estimate the head
pose and facial cue positions. However, they go on
to calculate the gaze point using the Gaussian Pro-
cess (GP) interpolation. Sugano, Matsushita, and Sato
(2013) worked with GP interpolators and used saliency
maps to calibrate and estimate in a probabilistic fash-
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ion. The common problem of the above mentioned
methods is that the subject is not allowed to move their
head.

Several works targeted the problem of head move-
ments in appearance based gaze estimation methods.
Sugano, Matsushita, Sato, and Koike (2008) cluster the
training samples using the head pose and eye appear-
ance, and estimate the gaze point by calculating the
weighted average of gaze estimations from all clusters.
Valenti, Sebe, and Gevers (2012) use the head pose to
apply a geometrical transformation to the eye region in
the image, and correct the estimation, improving the
accuracy by 16% to 23%. Lu, Okabe, Sugano, and Sato
(2011) use two separate training phases for the estima-
tion and correction problems. The distortion of eye re-
gion images due to head rotation is learnt from short
clips and then used to correct the estimations, yielding
an average accuracy of 2.38°.

Commercial Devices and Open Source Projects

There exist several hardware and software solutions
that try to bring eye-tracking to the masses. Eye Tribe
(The Eye Tribe, 2014) is a $99 table mounted eye-tracker
device, with an accuracy of 0.5° and a sampling rate
between 30–60Hz. NUIA eyeCharm (NUIA eyeCharm,
2014) is a crowdfunded Kinect extension hardware
project, which adds gaze estimation functionality to a
Kinect device for an additional cost of $60. Neural Net-
work Eye Tracker (Komogortsev, 2014) is a software-
only option which runs on iPad devices. It has an av-
erage accuracy of 4.42° and a sampling rate of 0.70Hz.
ITU Gaze Tracker (ITU Gaze Tracker, 2014) is a free soft-
ware which can be used with custom hardware con-
sisting of infrared (IR) lights and camera. The hard-
ware can be built as head mounted (glasses) or table
mounted, which yield 500Hz and 170Hz refresh rates,
consecutively. The accuracy of this system is measured
between 0.3–0.7° of visual angle in the table mounted
setup. Opengazer (Zielinski, 2013) is another open
source project which turns any webcam into an eye-
tracker. We measured its refresh rate to be 30Hz (lim-
ited by the webcam frame rate) on a regular computer
and its accuracy as 2.20°.

Our Contributions

We build our eye-tracker on top of the open source
eye-tracker Opengazer, and our contributions are
aimed at making the system more robust, increasing its
performance and making it easier to use.

One of the differences of our work from the appear-
ance based methods mentioned above, is that it is a
fully automatic system. The auto facial point selection
mechanism initializes the system, and the rest of the
application does not require much user input. More-
over, the work on the point tracking and image nor-
malization handles the problems such as illumination

change. The training error correction improves the es-
timations especially for targets near the screen corners.
These contributions can be seen in Figure 1.

The Eye Tribe and NUIA eyeCharm devices provide
cheap alternatives, however they require extra hard-
ware and are not suitable for mobile environments.
One of our aims is to solve the eye-tracking prob-
lem with software only, or without resorting to special
hardware (i.e. software installed on a common device
connected to a camera). The Raspberry Pi tracker is a
prototype for this kind of eye-trackers. Lastly, the other
open source solutions are either infrared based or pro-
vide lower accuracies compared to our system.

Method
The components of the software can be seen in Fig-

ure 1. The original system requires at least 4 facial
feature points chosen manually on subject’s face and
it employs a combination of optical flow (OF) and 3D
head pose based estimation for tracking them. The im-
age region containing one of the eyes is extracted and
used in calibration and testing. In calibration, the sub-
ject is asked to look at several target locations on the
display while image samples are taken and for each
target, an average eye image is calculated to be used as
input to train a Gaussian process (GP) estimator. This
estimator component maps the input images to display
coordinates during testing.

Our first contribution is a programmatic point selec-
tion mechanism to automate this task. Then we pro-
pose several improvements in the tracking component,
and we implement image intensity normalization algo-
rithms during and after tracking. We finish the work
on the blink detector to use these detections in other
components. In calibration, we propose a procedure
to assess and eliminate the training error. For the gaze
estimation component, we try to employ a neural net-
work method (Holland & Komogortsev, 2012). In the
following subsections, we give the details of these con-
tributions and talk about their effects on system perfor-
mance in the discussion section.

Point Selection
Our contribution in the automation of the point se-

lection mechanism aims at removing the errors due to
operation mistakes. Moreover, it provides a standard-
ized technique which increases the system’s robust-
ness. It employs a combination of Haar cascade de-
tectors (Castrillón-Santana, 2013; Hameed, 2014), ge-
ometrical heuristics and a novel eye-corner detection
technique. First, a cascade is used to detect the region
containing both eyes and then the novel method de-
tects the outer eye-corner points (Figure 2(a)). Here, the
proposed method extracts all corner points inside the
ROI using Harris detector, and calculates the average
corner coordinates in the left and right half of the re-
gion. These two points are considered as approximate
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Figure 1. The pipeline of the eye-tracker and our contributions on top of the base code

eye centers and the outer corner points are chosen on
the line that passes through them. As we only search a
point around the eye corner that is stable enough, we
do not make more complex calculations and we simply
choose the eye corner points at a predefined distance
(1/3 of the distance between two centers) away from the
center point approximates.

After the eye corners are selected, we search the nose
in a square region below them. When the Haar cascade
returns a valid detection—as in the inner rectangle in
Figure 2(b)—, the two nasal points are selected at fixed
locations inside this area. The algorithm continues in a
similar way for the mouth and eyebrow feature points.

Point Tracking

The point tracking component of the original system
uses a combination of optical flow (OF) and 3D head

pose based estimation. Optical flow calculations are
done between the current camera image and the pre-
vious image. This methodology results in the accu-
mulation of small tracking errors and causes the fea-
ture points to deviate vastly from their original posi-
tions after blinking, for instance. In order to make our
eye-tracker more robust to these problems, we modi-
fied the tracking component so that OF is only calcu-
lated against the initial image saved while choosing the
feature points. Moreover, if we still lose track of any
point, we directly use the estimate calculated using the
3D head pose and correctly tracked points’ locations.

Image Normalization

During eye-tracker usage, the ambient light may
change depending on the sun or other external light
sources. Particularly, the computer display itself also

(a) Eye corners (b) Nose tips (c) Mouth corners (d) Eyebrow corners
Figure 2. Sequence of facial feature point selection
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acts as a source of frontal illumination, which con-
tributes to a modification of the shades and shadows
on the face as images of different intensities are shown
in the screen. As the gaze estimation component of our
eye-tracker uses intensity images for training and test-
ing, the change in the light level is reflected in the in-
creased error rates of the system.

Normalization Techniques. In order to tackle the vary-
ing lighting conditions, we incorporate two image nor-
malization techniques to standardize the intensities
over time (Gonzalez & Woods, 2008):

1. Standard pixel intensity mean and variance: In
this technique, we first calculate the mean (µorig) and
the standard deviation (σorig) of the original image
(Iorig) pixels. In the next step, the scale factor (S) is cal-
culated as:

S =
σnorm

σorig (1)

where σnorm is the desired standard deviation of inten-
sity for the normalized image (Inorm). Finally, the nor-
malized image pixels are calculated with the formula:

Inorm = S · (Iorig−µorig)+µnorm (2)

Here, the equation first scales the image pixels to have
the desired standard deviation, then shifts the mean in-
tensity to the desired value.

2. Standard minimum and maximum intensity:
The second method aims at normalizing the images so
that the minimum and maximum intensity values are
the same among all the images.
We start by calculating the minimum (min orig) and
maximum (max orig) pixel intensities in the original im-
age. Then, the scale factor is calculated as:

S =
max norm−min norm

max orig−min orig (3)

which is basically the ratio of pixel intensity interval
between the desired normalized image and original im-
age. Lastly, the normalized image pixels are calculated
as:

Inorm = S · (Iorig−min orig)+min norm (4)
where the image pixels are mapped from range
[min orig,max orig] to [min norm,max norm].

Variations in Usage. Having these two normalization
techniques at hand, we continue by incorporating them
in the eye-tracker. Normalization takes into account the
distribution of gray levels for a given region. In our
particular context, this can be applied in a pyramidal
approach to: 1) the region containing the eye, 2) the
region containing the face, or 3) the whole image. Since
the statistics of each region are different, normalization
is expected to provide different results depending on
the region of application. In addition, normalizing in
different regions has an impact in a number of system
modules as explained next:

• Eye-region normalization: Only the extracted eye
regions are used for the normalization. By applying
normalization to the eye-regions we guarantee that
the gaze estimation component always receives images
with similar intensity distributions.
• Face-region normalization: Normalization pa-

rameters are derived and applied to the face region.
We make use of the facial feature points’ positions for
a fast region segmentation. The bounding box coordi-
nates for these points are calculated and the box is ex-
panded by 80% horizontally and 100% vertically so that
the whole face is contained. By normalizing within the
face bounding box we aim at improving point tracking
by removing the effects of intensity variations.
• Whole-image normalization: By using the whole

image, we adapt the normalization to the average light
conditions. However, variations in the background can
affect the final result. Potentially, changes in the frontal
illumination provided by the display can affect stability
of the facial feature points detection.
• Combined normalization: Lastly, we apply the

eye-region normalization on top of the face-region
or whole-image normalizations. By combining both
methodologies, we expect to address both the tracking
problems and the problems caused by not normalized
eye-region images.

Blink Detection
The blink detector is an unfinished component of

Opengazer and we continue with analyzing it and
making the necessary modifications to get it running.
We believe that blinks have an effect on performance
and by skipping them during training, we can remove
the errors they introduce.

The blink detector is designed as a state machine
with initial, blinking and double blinking states. The
system switches between these, depending on the dif-
ferences in eye images that are extracted as described in
the previous section. These differences are calculated
as the L2 norm between the eye images in consecutive
frames. When the difference threshold for switching
states is exceeded during several frames, the state is
switched to the next state and a blink is detected.

We built on this structure and completed the rules
for the state switching mechanism. Moreover, we
added a state reset rule that resets the system to the
initial state whenever the threshold criteria is not met
at a certain frame.

Calibration
The original system uses all the images acquired

during the calibration step. We propose a modification
in the calibration part which uses our blink detector so
that the images acquired during blinks are no longer in-
cluded in the calibration procedure. This is crucial be-
cause these frames can alter the average eye images cal-
culated during calibration and therefore are reflected as
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noise in the calibration procedure. However; as these
frames are no longer available for calibration, we have
to increase the time each target point is displayed on
the screen in order to provide the system with enough
samples during calibration.

Another improvement that we propose is the correc-
tion of calibration errors as illustrated in Figure 3.

Figure 3. The drift correction moves the estimates (small
signs) towards the actual target (larger signs). The training
error direction (blue line) and testing error direction (red line)
show the correlation.

Here, red triangles on the left side correspond to
a target point displayed on the screen and the corre-
sponding gaze estimations of our system, one for each
camera frame. The larger symbol denotes the actual
target, whereas the smaller ones are the estimates. The
shorter line connects the average estimation and the
target location. Therefore, the length and direction of
this line gives us the magnitude and direction of aver-
age testing error. Apart from these symbols, the longer
line that starts from the target denotes the direction of
the calibration error. However, it should be noted that
in order to easily observe the direction, the magnitude
of the calibration error is increased by a factor of 5. In
this figure, we can see the correlation between the cal-
ibration error and average testing error, therefore we
propose a correction method. The final effect of this
technique can be seen on the right side, where the esti-
mates are moved closer to the actual target point.

To calculate the calibration errors, we store the
grayscale images which are used to calculate the aver-
age eye images during calibration. Therefore, we save
several images corresponding to different frames for
each target point. After calibration is finished, the gaze
estimations for these images are calculated to obtain
the average gaze estimation for each target. The dif-
ference between these and the actual target locations
gives the calibration error.

After the calibration errors are calculated, we con-
tinue with correcting these errors during testing. We
employ two multivariate interpolators (Wang, Moin, &
Iaccarino, 2010; MIR, 2014) which receive the average
gaze estimations for each target point as inputs and
are trained to output the actual target x and y coordi-
nates they belong to. The parameters that we chose for
the interpolators are: approximation space dimension
ndim = 2, Taylor order parameter N = 6, polynomial ex-
actness parameter P = 1 and safety factor sa f ety = 50.
After the interpolator is trained, we use it during test-
ing to remove the effects of calibration errors. We pass

the currently calculated gaze estimate to the trained in-
terpolators and use the x and y outputs as the corrected
gaze point estimation.

Gaze Estimation
Originally, gaze estimates are calculated using the

image of only one eye. We propose to use both of the
extracted eye images to calculate two estimates. Then,
we combine these estimations by averaging.

We also consider the case where the GP interpola-
tor is completely substituted in order to see if other
approaches can perform better in this particular setup.
Neural network (NN) methods constitute a popular al-
ternative for this purpose. There exist recent imple-
mentations of this technique (Holland & Komogort-
sev, 2012). In the aforementioned work, an eye-
tracker using NNs to map the eye image to gaze
point coordinates is implemented and is made avail-
able (Komogortsev, 2014).

We incorporated the NN method in our system
by making use of the Fast Artificial Neural Network
(FANN) library (Nissen, 2003) and created a similar
network structure, and a similar input-output system
as the original work. Our neural network had 2 levels
where the first level contained 128 nodes (1 for each
pixel of 16× 8 eye image) and the second level con-
tained 2 nodes (one each for x and y coordinates). We
scaled the pixel intensities to the interval [0, 1] because
of the chosen sigmoid activation function.

Experimental Setup
In this section, we give the details of the experimen-

tal setup we created to test the performance of our ap-
plication. Variations in the setup are introduced to cre-
ate separate experiments which allow us to see how
the system performs in different conditions. Figure 4
shows how the components of the experimental setup
are placed in the environment.

The stimuli display faces the subject and it is raised
by a support which enables the subject to face the cen-
ter of the display directly. The camera is placed at the
top of this display at the center (A), and it has an alter-
native location which is 19.5 cm towards the left from
the central location (B). An optional chinrest is placed
at the specific distance of 80 cm away from the display,
acting as a stabilizing factor for one of the experiments.

By introducing variations in this placement, we
achieve several setups for several experiments which
test different aspects of the system. These setups are:

Standard setup: Only the optional chinrest is removed
from the setup shown in Figure 4. Subject’s face
is 80 cm away from the display. The whole screen
is used to display the 15 target points one by one.

Extreme camera placement setup: This setup is simi-
lar to the previous one. The only difference is
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Figure 4. Placement of the components in the experimental
setup and the geometry involved in error calculation

(a) iPad setup (b) Other setups
Figure 5. Target positions on the display for different setups

that the camera is placed at its alternative loca-
tion which is 19.5 cm shifted towards the left. The
purpose of this setup is to test how the position of
the camera affects the results.

Chinrest setup: A setup similar to the first one. The
only difference is that the chinrest is employed.
This experiment is aimed at testing the effects of
head pose stability in the performance.

iPad setup: This setup is used to test the performance
of our system simulating the layout of an iPad on
the stimuli display. This background image con-
tains an iPad image where the iPad screen corre-
sponds to the active area in the experiment and is
shown in a different color (see Figure 5(a)). The
distance of the subject is decreased to 40 cm, in
order to simulate the use-case of an actual iPad.
The camera stays in the central position; and it is
tilted down as seen necessary in order to center
the subject’s face in the camera image.

We also analyze the effect of different camera resolu-
tions in these setups. This is done in an offline manner
by resizing the original 1280×720 image to 640×480.

The error in degrees is calculated with the formula:

Error = |arctan(DxC/DEC)− arctan(Dx′C/DEC)|

where, x is the target, x′ is the estimate, C is the display
center and E is the face center point. The variables DxC,

DEC and so on denote the distances between the speci-
fied points. They are converted from pixel values to cm
using the dimensions and resolution of the display.

For the evaluation of normalization techniques, the
videos recorded for the standard setup are processed
again with one of the normalization techniques incor-
porated into the eye-tracker at a time.

Results

In this section, we present the results which show
the effects of the proposed changes on the performance.
To achieve this, we reflect our changes on the original
Opengazer code one by one and compare the results for
all four experiments. We compare 6 different versions
of the system which denote its certain phases:

1. [ORIG] Original Opengazer application + auto-
matic point selection

2. [2-EYE] Previous case + average estimate of 2 eyes
3. [TRACK] Previous case + tracking changes
4. [BLINK] Previous case + excluding blinks during

calibration
5. [CORR] Previous case + training error correction
6. [NN] Previous case + neural network estimator
In all versions, the facial feature points are selected

automatically by the method described in previous sec-
tions and gaze is not estimated during blinks. For each
experiment, average horizontal and vertical errors for
all subjects and all frames are given in degrees and the
standard deviation is supplied in parentheses.

Table 1 shows the progressive results of our eye-
tracker’s performance for different versions of the sys-
tem. Each result column denotes the horizontal or ver-
tical errors for a different experimental setup. Mov-
ing from top to bottom in each column, the effects of
our changes can be seen for a single error measure of
an experimental setup. Along each row, the compari-
son of errors for different setups can be observed. Ta-
ble 2 shows the performance values of the system in
the standard setup with the lower resolution camera.
These results can be compared to the high resolution
camera’s results as seen in Table 1 to see how the cam-
era resolution affects the errors in the standard setup.
The original application’s results (ORIG) and our final
version’s results (CORR) are shown in boldface to en-
able fast comparison.

As for the normalization contributions, the results
are grouped in Figure 6. Figure 6(a) and 6(d) show
the results for the two techniques applied on the eye
images. The black baseline shows the best results of
the system without any normalization (1.37° horizon-
tal, 1.48° vertical errors). For the standard pixel in-
tensity mean and variance normalization (NORM 1),
the standard intensity mean parameter is fixed to 127
and several values are evaluated as the standard de-
viation parameter (main parameter). This choice was
made because when the standard deviation param-
eter is selected, the mean parameter does not affect
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Table 1
Errors in degrees with 1280×720 camera resolution for all setups

Standard Extreme Chinrest iPad
Version Hor. (σ) Ver. (σ) Hor. (σ) Ver. (σ) Hor. (σ) Ver. (σ) Hor. (σ) Ver. (σ)
ORIG 1.80 (0.75) 1.46 (0.53) 2.02 (1.11) 1.92 (0.57) 1.25 (0.55) 1.53 (0.49) 2.80 (1.17) 2.58 (0.80)
2-EYE 1.49 (0.62) 1.42 (0.54) 1.50 (0.60) 1.66 (0.40) 1.15 (0.95) 1.40 (0.39) 2.47 (1.07) 2.53 (0.95)
TRACK 1.59 (0.56) 1.41 (0.50) 1.71 (0.74) 1.77 (0.35) 1.18 (0.87) 1.40 (0.44) 2.02 (0.83) 2.03 (0.53)
BLINK 1.59 (0.52) 1.42 (0.52) 1.73 (0.74) 1.79 (0.37) 1.17 (0.90) 1.37 (0.41) 2.01 (0.84) 1.98 (0.52)
CORR 1.47 (0.54) 1.35 (0.50) 2.24 (2.07) 1.95 (0.99) 1.07 (0.85) 1.26 (0.39) 1.83 (0.83) 1.86 (0.59)
NN 4.90 (1.39) 1.97 (0.67) 4.86 (1.93) 2.17 (0.44) 4.18 (1.17) 2.01 (0.51) 5.97 (0.93) 3.83 (1.55)
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(c) Hor. error for combined norm.
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(d) Ver. error for eye-region norm.
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(e) Ver. error for large scale norm.
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(f) Ver. error for eye-region norm.
Figure 6. Errors in degrees for eye image normalization techniques. (a) and (d) show errors for eye-region normalization. In
(b) and (e), the errors for only face-region and whole-image normalization methods are shown. These methods apply the first
normalization technique in the corresponding image areas. Lastly, (c) and (f) show the results where the eye-region normal-
ization is applied on top of either the whole-image or the face-region normalization. The black straight lines show the baseline
accuracy for comparison. In (a), (b), (d) and (e), this corresponds to the error rate without any normalization. In (c) and (f), it
denotes the best results so far, which belong to the eye-region normalization using technique 1 (filled data points in (a) and (d)).

Table 2
Standard setup errors in degrees with 640×480 resolution

Standard
Version Hor. (σ) Ver. (σ)
ORIG 1.64 (0.66) 1.45 (0.63)
2-EYE 1.40 (0.65) 1.36 (0.65)
TRACK 1.54 (0.72) 1.48 (0.66)
BLINK 1.54 (0.68) 1.48 (0.66)
CORR 1.42 (0.72) 1.40 (0.65)
NN 4.71 (1.29) 2.20 (0.84)

the gaze estimations unless it results in the trimming
of pixel intensities (mapping to intensities outside the
range [0,255]). In the case of standard minimum
and maximum intensity normalization (NORM 2),
the minimum intensity parameter is considered the
main parameter and the maximum intensity is set to:
max norm = 255−min norm.

In Figure 6(b) and 6(e), the second set of normal-
ization results are shown. Here, the better performing
NORM 1 technique is applied to the whole camera im-
age (WHOLE) or the face-region (FACE) and the results
are given.
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Lastly, Figure 6(c) and 6(f) show the results when
the eye-region normalization is combined with whole-
image or face-region normalizations. As the eye-region
normalization is independent of the others, the param-
eters for this step are fixed to the best performing val-
ues (µnorm = 127, σnorm = 50) and the black baseline
shows the best results achieved with only eye normal-
ization (1.22° horizontal, 1.36° vertical errors).

Discussion

Considering the 1.47° horizontal and 1.35° vertical
errors of the final system in the standard experimental
setup, we conclude that we have improved the origi-
nal system by 18% horizontally and 8% vertically. As
seen in Table 2, the performance difference in the same
experiment done with VGA cameras (13% horizontally,
3% vertically) is comparably lower than the first case,
which shows us that our contributions in this work ex-
hibit more robust performance with the increased im-
age quality. From another aspect, it means that better
cameras will favor the methods we proposed in terms
of robustness.

One interesting aspect of these results is that with
the increased camera resolution, the original applica-
tion shows a worse performance. We believe this is
caused by the optical flow algorithm used in the track-
ing component. The increased detail in the images af-
fect the tracking and the position of the tracked point
may vary more compared to the lower resolution im-
age. This, combined with the accumulated tracking er-
ror of the original application, result in a higher error
rate. However, it is seen that the final version of our
eye-tracker (CORR) recovers most of this error.

From the extreme camera placement setup results
seen in Table 1, we see that shifting the camera from
the top center of the display decreased the performance
by 52% horizontally and 44% vertically. Here, the per-
formance loss is mainly caused by the point tracking
component. From such a camera angle, the farther eye
corner point may be positioned on the face boundary,
making it hard to detect and track. When we compare
the errors before and after the error correction is ap-
plied (BLINK and CORR), we see that this change in-
troduced a great amount of error for this case. We can
say that the unreliable tracking also hinders the error
correction component, because the correction relies on
the calibration being as good as possible. In order to
tackle these problems, a 3D model based face tracking
algorithm may be employed.

In the 3rd experimental setup, we show that the chin-
rest improves the performance by 27% horizontally
compared to the standard setup. This setup proves to
be more reliable for experimental purposes.

The results for the iPad setup may be deceiving, be-
cause here actually the errors in pixels are lower; how-
ever, as the distance of the subject is used in the calcula-
tion of errors in degrees, the angular errors are higher.

Each 1° error in other setups corresponds to around
twice as many pixels on the screen compared to a 1°
error in the iPad setup. Using this rule of thumb, we
can see that the iPad case results in lower error rate in
pixels compared to even the chinrest setup.

One of the major problems with the original system
lies in the tracking component. As tracking is handled
by means of optical flow (OF) calculations between
subsequent frames, the tracking errors are accumulated
and the facial feature points end up far away from their
original locations. To tackle this problem, we proposed
to change this calculation to compare the last camera
frame with the initial frame which was saved during
facial feature point selection. Comparing the 2-EYE
and TRACK results in Table 1, we see that the track-
ing changes increased the system’s accuracy in the iPad
setup. However, in the first two setups we have just the
opposite results. This is probably because when using
both of the eyes for gaze estimation, the tracking prob-
lems with the second eye have a larger effect on the
averaged gaze estimation.

We observe that excluding the blink frames from
the calibration process (application version labeled
BLINK) does not have a perceivable effect on the per-
formance. We argue that the averaging step in the cal-
ibration procedure already takes care of the outlier im-
ages. The neural network estimator does not provide
an improvement over the Gaussian process estimator
and performs similar to its reported accuracy (4.42°).
We believe this is due to eye images extracted by our
system. Currently the feature point selection and track-
ing mechanism allows small shifts in point locations
and therefore the extracted eye images vary among
samples. The GP estimator resolves this issue during
the image averaging step; however, the NN estimator
may have problems when the images vary a little in the
testing phase. In order to resolve this problem, a detec-
tion algorithm with a higher accuracy may be used to
better estimate the eye locations.

Analyzing the eye image normalization results as
seen in Figure 6(a) and 6(d), we see that both ap-
proaches improve the results. For the first normaliza-
tion technique, the parameter value giving the best re-
sults is σnorm = 50, which decreases the errors by 11%
horizontally and 8% vertically. We can say that the
eye image normalization does just what the Gaussian
process estimator needs and helps compare eye images
from different time periods in a more accurate way. The
results for the second normalization method lag behind
especially in the horizontal direction.

Figure 6(b) and 6(e) show the results for intensity
normalization in the large scale, either applied to the
whole camera image or around the face region. Here,
we see that large scale normalization applied on top of
eye image normalization does not improve the results
at all. Our expectations for the face normalization to
perform better than whole image normalization are not
verified, either. We observe that the face normalization
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performs especially worse in vertical direction.
As it can be seen in Figure 6(c) and 6(f), combining

the two normalization methodologies do not increase
the system’s accuracy, either. From these results, we
can conclude that face-region or whole-image normal-
ization cause the tracking component perform worse,
and thus decrease the performance.

Conclusion
Our contribution provides significant improvement

in a number of modules for the state of the art of low
cost eye-trackers using natural light. Our automatic
point selection technique enabled us create an easy to
use application, removing errors caused by wrong op-
eration. The experiments showed that the final sys-
tem is more reliable in a variety of scenarios. The
blink detection component is mostly aimed at prepar-
ing the eye-tracker to real world scenarios where the in-
correct estimations during blinks should be separated
from meaningful estimates. The proposed error correc-
tion algorithm helped the system better estimate gazes
around the borders of the monitor. Lastly, the eye
image normalization technique improved the perfor-
mance of the system and made the system more robust
to lighting conditions slightly changing in time. The
final code can be downloaded from the project page
(Ferhat & Vilariño, 2014a). Apart from these experi-
mental performance assessments, our work resulted in
additional valuable outputs:

A Portable Eye-Tracker: We installed our system on a
Raspberry Pi and achieved a cheap (e70) alter-
native to commercial eye-trackers. This system
can be used as a separate input device to calcu-
late and send the gaze point to the main com-
puter. For experimental purposes, the necessary
results analysis tools are also included in the de-
vice. The device has the same final error rates
as in the experimental results (1.42° horizontally
and 1.40° vertically for 640× 480 resolution) and
has a 3Hz update rate. By optimizing the code
and using a faster camera, we expect to increase
the refresh rate of the system. The SD card image
for the resulting system can be downloaded from
the project page (Ferhat & Vilariño, 2014a).

An Eye-Tracking Video Dataset: The videos recorded
during the experiments are gathered in a dataset
of 12 subjects and 4 different experiment cases
(Ferhat & Vilariño, 2014b).
The annotations for the videos denote on which
frame the training and testing phases start and
the ground truth gaze points at a given frame.
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