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TAJIMA’S D AND SITE-SPECIFIC NUCLEOTIDE FREQUENCY IN
A POPULATION DURING AN INFECTIOUS DISEASE OUTBREAK∗

RYOSUKE OMORI† AND JIANHONG WU‡

Abstract. Tajima’s D measures the difference between two estimates of genetic diversity in
a given set of nucleic acid sequences. Here we show how Tajima’s D can be calculated/estimated
by developing an inductive algorithm for calculating the site-specific nucleotide frequencies from a
standard multistrain susceptible-infective-removed (SIR) model (both deterministic and stochastic).
We show that these frequencies are fully determined by the mutation rate and the initial condition
of the frequencies. We prove that the sign of Tajima’s D is independent of the disease population
dynamics and that the negative sign does not imply an expansion of the infected population in the
deterministic model. Using individual-based simulations, we also show that dependence of Tajima’s D
on the disease transmission and evolution dynamics is a result of the stochasticity of those dynamics.
The same is true for the dependence related to genetic diversity of a pathogen.
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1. Introduction. The rapid development of nucleic acid sequencing methodolo-
gies and technologies has contributed to the accumulation of enormous amounts of
sequence data. This large quantity of data makes it easier to predict the impact of
each mutation on the fitness of a pathogen via estimation of the selection pressure on
the mutation [14]. For infectious disease epidemiology, the estimation of a mutation
contributing to the fitness of a pathogen can be used to provide insight into mutations,
e.g., discovering mutations determining pathogenicity, virulence, and host specificity.
Rapid sequencing technologies can also capture detailed information about the time
evolution of pathogen sequences. Such time series data are useful not only for the
detection of pathogen evolution but also for capturing the pathogen population dy-
namics. Coalescent theory in neutral evolution, i.e., no natural selection and constant
population size, can be used to estimate population size from the genetic diversity of
sampled sequences [13]. The extension of basic coalescent theory to discrete changes
in population over time allows us to estimate the time series of such changes [16, 17],
which can then be applied to estimate the reproduction number of a pathogen [19].

Several methods have been proposed to measure the natural selection of a mu-
tation at a specific site. Tajima’s test is one of the most popular statistical tests
of evolution neutrality at the sequence level. Tajima’s D measures the difference
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TAJIMA’S D DURING INFECTIOUS DISEASE OUTBREAK 2157

between two estimates of genetic diversity [21]. These estimates are equal when evo-
lution is neutral (i.e., there is no natural selection and a constant population). When
this happens, Tajima’s D = 0. Therefore, a nonzero Tajima’s D implies that at least
one condition for neutral evolution is violated. It is known that when Tajima’s D
is nonzero, the sign of Tajima’s D gives us the interpretation of natural selection:
balancing selection can result in positive Tajima’s D, and positive selection can result
in negative Tajima’s D [1]. Not only natural selection but also population dynam-
ics determines the sign of Tajima’s D, and it is believed that negative Tajima’s D
results from an increase in population size and positive Tajima’s D results from a
decrease in population size [8, 18, 20, 11]. When it comes to the nonendemic situ-
ation of infectious disease transmission, if we assume that the number of pathogens
is proportional to the number of infected hosts, i.e., the population dynamics of the
pathogen is proportional to the disease dynamics, the population of the pathogen is
always changing during an outbreak. Therefore, Tajima’s D can change over time.
To detect the natural selection of an infectious disease in a nonendemic situation, we
need to understand the impact of disease dynamics on Tajima’s D. This is the main
objective of our study.

To focus on the effect of population dynamics alone, we assume that no mutation
contributes to a change in the pathogen phenotypes. In section 2.1, we will introduce
the concept of Tajima’s D and discuss key components (strain-specific nucleotide
frequencies) of Tajima’s D. Then in section 2.2, we link these to the population infec-
tion dynamics of a pathogen through a simple multistrain SIR (susceptible-infected-
removed) model to describe the population dynamics of the pathogen. We show in
section 3.1 how Tajima’s D can be calculated by developing an inductive algorithm
for calculating the site-specific nucleotide frequencies from the multistrain SIR model.
Then in section 3.2, we formulate the stochastic analogue of the multistrain SIR model
and perform Monte Carlo simulations to compare the effects of disease dynamics de-
scribed by both deterministic and stochastic SIR models on Tajima’s D values. We
observed the dependence of Tajima’s D on the stochasticity of transmission dynamics
during an outbreak. In the final section, we discuss the implication and the application
of our results in evolutionary and epidemiological analyses.

2. Site-specific frequency of nucleotide and models.

2.1. Tajima’s D. A nucleic acid sequence is a sequence of nucleotides consisting
of four values. The nucleotides are A, T, G, or C for DNA sequences, and A, U, G,
or C for RNA sequences. For the sake of simplicity, we refer to A, T (U), G, and C
as 1, 2, 3, and 4. Here, we consider a set of sampled sequences with length L. The
possible number of sequences is 4L. We denote by x a sequence of nucleotides, with
xl representing the nucleotide at the lth site, that is,

x = {x1, x2, . . . , xL}, xl ∈ {1, 2, 3, 4}.

Figure 1 gives the sequence data of 3 sequences of length 6. To define Tajima’s D,
we define πi,j in a pair of sequences (ith sequence and jth sequence) as the number
of unmatched sites. We call a site a segregating site when there are at least two
different nucleotides among the sampled sequences. In Figure 1(a), we see π1,2 = 2
and π2,3 = 0, whereas in Figure 1(b), there are two segregating sites. For a given
n sampled sequences, Tajima’s D describes the variation in sequences among these
samples. This is a function of the mean pairwise distance π and the number of
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2158 RYOSUKE OMORI AND JIANHONG WU

1  2  3  2  4  2
Site 1 Site 2 Site 3 Site 4 Site 5 Site 6

1  2  3  3  4  2

4  2  3  3  4  2

Sequence 1

Sequence 2

Sequence 3

(a) An example of pairwise disrance π
i,j

1  2  3  2  4  2

4  2  3  3  4  2

4  2  3  3  4  2

Sequence 1

Sequence 2

Sequence 3

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6

pairwise distance between sequence 1&2 π
1,2

=2

pairwise distance between sequence 2&3 π
2,3

=0

(b) An example of segregating site

Fig. 1. A given set of three sampled sequences. (a) Pairwise distance. The pairwise distance is
defined as the number of unmatched sites. (b) Segregating sites. A segregating site is a site where
there is at least two different nucleotides among the sequence dataset.

segregating sites σ. Namely,

(1) D =
π − σ/a√

Var (πi,j − σ/a)
,

where

(2) π =

∑
i

∑
j<i

πi,j

/(n
2

)
,

a =
n−1∑
i

1
i
.

In [21], the denominator of Tajima’s D is given by the function of σ,√
Var (πi,j − σ/a) =

√
g1σ + g2σ (σ − 1),

where

g1 =
1+n

3(n−1) −
1
a

a
,

g2 =
a2
a2 − 2+n

an +
2(3+n+n2)

9n(n−1)

a2 + a2
,

a2 =
n−1∑
i=1

1
i2
.

To calculate Tajima’s D, we require only (i) the site-specific frequency of each nu-
cleotide among sampled sequences f , and (ii) the number of sampled sequences n. In
the next subsection, we start with the calculation of Tajima’s D for a specific site and
then expand the calculation to include multiple sites.

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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TAJIMA’S D DURING INFECTIOUS DISEASE OUTBREAK 2159

2.1.1. Tajima’s D for a specific site. In this subsection, we focus on a specific
site, the lth site, in the sequences to calculate Tajima’s D. Let fkl be the relative
frequency of nucleotide k in the lth site among sampled sequences, where

k ∈ {1, 2, 3, 4}, f1
l + f2

l + f3
l + f4

l = 1.

The numerator in the right-hand side of (2) is the sum of pairwise distances with
respect to the lth site among all pairs of existing sequences and can be written as fkl .
The sum of pairwise distances is the product of (i) the number of pairs classified by
the nucleotide, e.g., 1 and 1, 1 and 2,. . ., 4, and 4, and (ii) the pairwise distance for
the pair classified by the nucleotide. The number of pairs classified by the nucleotide
except self-pairing is given by

n2f1
l f

1
l − nf1

l n2f2
l f

1
l n2f3

l f
1
l n2f4

l f
1
l

n2f1
l f

2
l n2f2

l f
2
l − nf2

l n2f3
l f

2
l n2f4

l f
2
l

n2f1
l f

3
l n2f2

l f
3
l n2f3

l f
3
l − nf3

l n2f4
l f

3
l

n2f1
l f

4
l n2f2

l f
4
l n2f3

l f
4
l n2f4

l f
4
l − nf4

l

 .

The pairwise distance for the pair classified by the nucleotide is given by
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .

Therefore, the total pairwise distance per each pair classified by the nucleotide is
written as 

0 n2f2
l f

1
l n2f3

l f
1
l n2f4

l f
1
l

n2f1
l f

2
l 0 n2f3

l f
2
l n2f4

l f
2
l

n2f1
l f

3
l n2f2

l f
3
l 0 n2f4

l f
3
l

n2f1
l f

4
l n2f2

l f
4
l n2f3

l f
4
l 0

 .

Note that this matrix is a symmetry matrix, and the sum of all elements of this matrix
counts each nucleotide pair twice. Then

(3)
πl =

n2[f1
l (1−f1

l )+f2
l (1−f2

l )+f3
l (1−f3

l )+f4
l (1−f4

l )]
2(n

2)

=
n[f1

l (1−f1
l )+f2

l (1−f2
l )+f3

l (1−f3
l )+f4

l (1−f4
l )]

n−1 .

With respect to the number of segregating sites for the l1th site, σl, we have from its
definition the following:

σl =

{
0 if f1

l = 1 or f2
l = 1 or f3

l = 1 or f4
l = 1,

1 otherwise.

Assuming that the sequence sampling process is random and the sampling process
of the nucleotide in the lth site follows a multinomial process, the maximum likelihood
estimate of the frequency of nucleotide k in the lth site among the population is equal
to fkl . Therefore, the sampling probability of σl among n sampled sequences is given
by

Pr (σ(t) = 0) =
(
f1
l

)n
+
(
f2
l

)n
+
(
f3
l

)n
+
(
f4
l

)n
,

P r (σ(t) = 1) = 1−
((
f1
l

)n
+
(
f2
l

)n
+
(
f3
l

)n
+
(
f4
l

)n)
.

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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2160 RYOSUKE OMORI AND JIANHONG WU

The expected value of σl is

(4) E (σl) = 1−
((
f1
l

)n
+
(
f2
l

)n
+
(
f3
l

)n
+
(
f4
l

)n)
.

Meanwhile, Tajima’s D at the lth site Dl is given by

(5) Dl =
πl − σl/a√

g1σl + g2σl (σl − 1)
.

Assuming σl = E(σl), from (3), (4), and (5) we notice that Dl is determined only by
f1
l , f2

l , f3
l , f4

l , and n.

2.1.2. Tajima’s D for L sites. Assuming no linkage between sites, the mean
pairwise distance among L sites of n sampled sequences is simply given by the sum
of πl,

(6) π =
L∑
l=1

n
[
f1
l

(
1− f1

l

)
+ f2

l

(
1− f2

l

)
+ f3

l

(
1− f3

l

)
+ f4

l

(
1− f4

l

)]
n− 1

.

σ is given by

σ =
L∑
l=1

σl,

where

(7) σl =

{
0 if f1

l = 1 or f2
l = 1 or f3

l = 1 or f4
l = 1,

1 otherwise.

If the site-specific frequency of nucleotides is assumed to be independent, i.e., the
sampling process of site-specific nucleotides follows a multinomial process (E(fkl ) =
fkl ), then the expected number of segregating sites σ among n sampled sequences is

(8) E (σ) =
L∑
l=1

1−
((
f1
l

)n
+
(
f2
l

)n
+
(
f3
l

)n
+
(
f4
l

)n)
.

Substituting (6) and (7) or (8) into (1) yields immediately that Tajima’s D is deter-
mined only by fkl and n.

2.2. Disease dynamics model. To explore the relationship between Tajima’s
D and disease dynamics, we construct a multistrain SIR model [3, 7, 15]. Here, the
classification of strain is such that two sequences are considered the same strain if and
only if they have identical sequences. We also assume that the number of sequences in
the host population is proportional to the number of infected individuals correspond-
ing to the strain. To focus only on the impact of disease dynamics, we assume that
the evolution of the pathogen is neutral and has no effect on the phenotype. Then
the transmission rate and recovery rate are identical among all sequences, and the
established immunity against a strain carrying one sequence protects hosts against
infections, with all strains carrying any other sequences. The population dynamics of
the hosts infected with the strain carrying sequences x, Ix, can be described by

(9)

S′(t) = −βS(t)
∑
y Iy(t),

I ′x(t) = βS(t)Ix − γIx(t) +
(∑

y µy→xIy(t)
)
−
(∑

y µx→y

)
Ix(t),

R′x(t) = γIx(t),

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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TAJIMA’S D DURING INFECTIOUS DISEASE OUTBREAK 2161

where β denotes the transmission rate, γ denotes the recovery rate, and µx→y denotes
the mutation rate from sequence x to sequence y. Here we assume that every mutation
in a given host replaces the dominant genotype of the pathogen. Suppose the epidemic
duration is short compared to the life span of the host; in this case the host population
size is constant:

S(t) +
∑
x

Ix(t) +
∑
x

Rx(t) = N.

2.2.1. 1-site model. We start from the simplest 1-site model. We assume that
only one site (the lth site) in the genetic sequences can mutate and that the nucleotides
in other sites are the same among all sequences. Therefore, only four sequences can
exist. Hereafter we refer to them as x1, x2, x3, and x4. The nucleotides in the lth
site of sequences x1, x2, x3, and x4 are 1, 2, 3, and 4. Mutation can occur (Ix can be
Iy by mutation, where Ix denotes the number of infected individuals with strain x).
In population genetics, many models for mutation have been proposed. For example,
Jukes and Cantor assumed that all site-specific mutation rates between nucleotides
are the same [10], and Kimura assumed two mutation rates: a constant rate for the
mutation between A and G and between C and T (U), and a different rate for all other
mutations [12]. If we follow the simplest mutation model and use the Jukes–Cantor
assumption, (9) can be written as

(10)

S′(t) = −βS(t)
∑
y Iy(t),

I ′x(t) = βS(t)Ix(t)− γIx(t) +
(∑

y µIy(t)
)
− 4µIx(t),

R′x(t) = γIx(t),

where µ denotes the mutation rate among sequences x1, x2, x3, and x4 (i.e., a constant
mutation rate among sequences x1, x2, x3, and x4 by the Jukes–Cantor assumption).
Suppose that only one sequence, x1, exists at the beginning of an outbreak, the
number of infected individuals is small, and all other individuals are susceptible; then
we have (for sure ε� 1)

(11)
S(0) = N − ε,

Ix1(0) = ε,
Ix2(0) = Ix3(0) = Ix4(0) = Rx1(0) = Rx2(0) = Rx3(0) = Rx4(0) = 0.

2.2.2. L-site model. We now expand the 1-site model into an L-site model,
assuming that the number of mutable sites is L. In this model, 4L sequences can
exist. We denote the infected hosts and recovered hosts with the strain carrying
sequence x = {x1, x2, . . . , xL} by Ix1,x2,...,xL

and Rx1,x2,...,xL
. The maximum number

of mutations for each time step is assumed to be one for each sequence. Therefore, the
number of unmatched sites between parent sequence and child sequence is always one.
For the sake of simplicity, we use the Jukes–Cantor assumption for mutation, which
is a constant rate for the mutations in a site; however, the mutation rates among
different sites can vary, so µl denotes the mutation rate among nucleotides at the lth

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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2162 RYOSUKE OMORI AND JIANHONG WU

site. Following these assumptions, (9) can be written as

(12)

S′(t) = −βS(t)
∑
y1

∑
y2
· · ·
∑
yL
Iy1,y2,...,yL

(t),

I ′x1,x2,...,xL
(t) = (βS(t)− γ)Ix1,x2,...,xL

(t) +
(∑4

y1=1 µ1Iy1,y2,...,yL
(t)

+
∑4
y2=1 µ2Iy1,y2,...,yL

(t) + · · ·+
∑4
yL=1 µLIy1,y2,...,yL

(t)
)

−4
(∑L

l=1 µl

)
Ix1,x2,...,xL

(t),
R′x1,x2,...,xL

(t) = γIx1,x2,...,xL
(t).

Suppose that only one sequence, {1, 1, . . . , 1}, exists at the beginning of an outbreak,
the number of infected individuals is small, and all other individuals are initially
susceptible. Then

(13)

S(0) = N − ε,
I1,1,...,1(0) = ε,

Ix1,x2,...,xL
(0) = 0 for {x1, x2, . . . , xL} 6= {1, 1, . . . , 1},

Rx1,x2,...,xL
(0) = 0 for all {x1, x2, . . . , xL}.

3. Main results.

3.1. Deterministic model. We start the analysis of the genetic variation of
pathogens from the above deterministic SIR model. For a given site l1 ∈ {1, . . . , L}
and a given nucleotide k1 ∈ {1, 2, 3, 4}, we define

Gk1l1 = {(x1, . . . , xL) ; xi ∈ {1, 2, 3, 4} for 1 ≤ i ≤ L, xl1 = k1}

to be the set of all sequences with the nucleotide k1 in the li site. Let Ik1l1 (t) be the
number of infectives whose sequences belong to Gk1l1 , and let fk1l1 (t) = Ik1l1 (t)/I(t) be
the frequency of nucleotide k1 in the l1 site. Here I(t) denotes the total number of
infected individuals among all sequences:

I(t) =
4∑

k1=1

Ik1l1 (t).

We start with the 1-site model as shown in (10). In the 1-site model, four different
sequences can exist: x1, x2, x3, and x4. At only one site can a nucleotide mutate, and
nucleotides in other sites are identical among sequences. For the purpose of induction,
we introduce an inductive notation,

Ix1 = I11
l1
, Ix2 = I21

l1
, Ix3 = I31

l1
, Ix4 = I41

l1
.

From (10), we get (
I11
l1

)′ − (I21
l1

)′
= (βS − γ − 4µ)

(
I11
l1
− I21

l1

)
and

(14) I11
l1

(t)− I21
l1

(t) =
(
I11
l1

(0)− I21
l1

(0)
)(

exp
[∫ t

τ=0
βS − γ − 4µdτ

])
.

It follows immediately that

(15) I11
l1

(t)− I21
l1

(t) = I(0)
(

exp
[∫ t

τ=0
βS − γ − 4µdτ

])
.

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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TAJIMA’S D DURING INFECTIOUS DISEASE OUTBREAK 2163

Substituting (11) and (15) into (14), we have

I11
l1

(t)− I21
l1

(t) = I(t) exp [−4µt] .

Recalling fk1l1 (t) = Ik1l1 (t)/I(t), we obtain the site-specific nucleotide frequency, fk1l1 (t)
as follows:

(16)
f11
l1

(t) =
I
11
l1

(t)
I(t) = 1+3 exp[−4µt]

4 ,

f21
l1

(t) = f31
l1

(t) = f41
l1

(t) =
I
21
l1

(t)
I(t) =

I
31
l1

(t)
I(t) =

I
41
l1

(t)
I(t) = 1−exp[−4µt]

4 .

Therefore, fk1l1 (t) is completely determined by the mutation rate µ.
For a more general L-site model, from (12) the dynamics of Ik1l1 can be written as

(17)

d
dtI

k1
l1

(t) = βS(t)Ik1l1 (t)− γIk1l1 (t) +
(∑

m6=l1 4µm
)
Ik1l1 (t)

+µl1I(t)− (
∑
m 4µm) Ik1l1 (t)

= (βS(t)− γ − 4µl1) Ik1l1 (t) + µl1I(t).

Here the term (
∑
m 4µm) Ik1l1 (t) describes the new strains from sequences ∈ Gk1l1 ,

including the mutations from Gk1l1 to Gk1l1 . The term (
∑
m 6=l1 4µm)Ik1l1 (t) describes the

new strain from Gk1l1 to Gk1l1 , which should result from the mutation at sites other than
the l1 site. The term µl1I(t) describes the new strains, which become elements of Gk1l1
by the mutation at the l1th site, including the mutation from Gk1l1 to Gk1l1 . Therefore,

(18)

d
dtf

k1
l1

(t) = I(t)−2
[{

(βS(t)− γ − 4µl1) Ik1l1 (t) + µl1I(t)
}
I(t)

−{βS(t)− γ} I(t)Ik1l1 (t)
]

= −4µl1f
k1
l1

(t) + µl1 ,

from which we conclude that fk1l1 (t) is completely determined by the initial condi-
tion fk1l1 (0) and the mutation rate µl1 . Assuming that the sequence existing at the
beginning of an outbreak has nucleotide 1 at the lth site as shown in (13), we obtain

(19)
f11
l1

(t) =
1+3 exp[−4µl1 t]

4 ,

f21
l1

(t) = f31
l1

(t) = f41
l1

(t) =
1−exp[−4µl1 t]

4 .

Recalling that Tajima’s D is determined only by fk1l1 and n, we have the following.

Lemma (induction lemma on Tajima’s D). Tajima’s D is completely deter-
mined by the sample size n and site-specific mutation rate µl1 .

In population genetics, the sign of Tajima’s D is believed to be affected by the
population dynamics [5]. However, we have observed here that from the determinis-
tic disease dynamics, Tajima’s D is independent of the disease dynamics (precisely,
independent of the parameters characterizing the disease dynamics, i.e., β and γ).
This is true even if the assumption of mutation follows Kimura’s assumption [12]; see
subsection 5.1. Figure 2 illustrates the dependence of the sign of Tajima’s D with
mutation rate µ and sample size n. Tajima’s D tends to be negative at the beginning
of an outbreak and becomes positive as time passes, except when n is small. Tajima’s
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Fig. 2. The dependence of the sign of Tajima’s D with mutation rate µ (a) and sample size n
(b) when the number of mutable sites L = 500 and the mutation rate is constant among sites. The
black area denotes negative Tajima’s D and the gray area denotes positive Tajima’s D.

D can be positive from the beginning to the end of an outbreak when n is small. The
time point at which Tajima’s D = 0 becomes earlier with increasing µ. Tajima’s D
becomes 0 at the latest time point when the sample size n is intermediate.

We continue to define G, I, and f by fixing two nucleotides k1 and k2 and the
two different sites l1 and l2. That is,

Gk1,k2l1,l2
= {(x1, . . . , xL) ; xi ∈ {1, 2, 3, 4} for 1 ≤ i ≤ L, xl1 = k1, xl2 = k2} ,

Ik1,k2l1,l2
(t) = the number of infectives at time t with the sequence belonging toGk1,k2l1,l2

,

fk1,k2l1,l2
(t) =

I
k1,k2
l1,l2

(t)
I(t) .

Then we have

d
dt

[
Ik1,k2l1,l2

]
= (βS − γ) Ik1,k2l1,l2

− 3µl1I
k1,k2
l1,l2

− 3µl2I
k1,k2
l1,l2

+µl1
∑4
j=1,j 6=k2 I

j,k2
l1,l2

+ µl2
∑4
j=1,j 6=k1 I

k1,j
l1,l2

= (βS − γ) Ik1,k2l1,l2
− 4µl1I

k1,k2
l1,l2

− 4µl2I
k1,k2
l1,l2

+ µl1I
k2
l2

+ µl2I
k1
l1
,

where the term µl1
∑4
j=1,j 6=k2 I

j,k2
l1,l2

describes holding k2 at the l2 site with a mutation
in the l1 site, and the term µl2

∑4
j=1,j 6=k1 I

k1,j
l1,l2

describes holding k1 at the l1 site with
mutation in the l2 site, and

(20)
d

dt

[
fk1,k2l1,l2

]
= −4 (µl1 + µl2) fk1,k2l1,l2

+ µl1f
k2
l2

+ µl2f
k1
l1
.

Therefore, since we have proved in the induction lemma that fki

li
(t) (i = 1, 2) are

determined from fki

li
(0) (i = 1, 2) and µli (i = 1, 2), we conclude that fk1,k2l1,l2

(t) is
determined by µl1 , µl2 , and the initial frequencies fk1l1 (0), fk2l2 (0), and fk1,k2l1,l2

(0).
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TAJIMA’S D DURING INFECTIOUS DISEASE OUTBREAK 2165

Inductively, for a fixed m ∈ {1, . . . , L− 1, L}, for fixed l1, . . . , lm ∈ {1, . . . , L− 1}
with li 6= lj (1 ≤ i, j ≤ m), and for fixed nucleotide, k1, . . . , km ∈ {1, 2, 3, 4}, we define

Gk1,...,km

l1,...,lm
=
{

(x1, . . . , xL) ; xi ∈ {1, 2, 3, 4} , 1 ≤ i ≤ L, xlj = kj , 1 ≤ j ≤ m
}
,

Ik1,...,km

l1,...,lm
(t) = the number of infectives with the sequence ∈ Gk1,...,km

l1,...,lm
,

fk1,...,km

l1,...,lm
(t) =

I
k1,...,km
l1,...,lm

(t)
I(t) .

Then

d
dt

[
I
k1,...,km,km+1
l1,...,lm,lm+1

]
= (βS − γ) Ik1,...,km,km+1

l1,...,lm,lm+1
− (3µl1 + · · ·+3µlm + 3µlm+1) Ik1,...,km,km+1

l1,...,lm,lm+1

+ µl1
∑4
j=1,j 6=k1 I

j,k2,...,km,km+1
l1,...,lm,lm+1

+ · · ·+µlm+1

∑4
j=1,j 6=km+1

Ik1,...,km,j
l1,...,lm,lm+1

= (βS − γ) Ik1,...,km,km+1
l1,...,lm,lm+1

− 4
(
µl1 + · · ·+µlm+1

)
I
k1,...,km,km+1
l1,...,lm,lm+1

+ µl1I
k2,...,km,km+1
l2,...,lm,lm+1

+ µl2I
k1,k3,k4,...,km,km+1
l1,l3,l4,...,lm,lm+1

+ · · ·+µlm+1I
k1,...,km

l1,...,lm
,

from which we conclude that

(21)
d
dt

[
f
k1,...,km,km+1
l1,··· ,lm,lm+1

(t)
]

= −4 (µl1 + · · ·+ µlm+1) fk1,...,km,km+1
l1,...,lm,lm+1

+µl1f
k2,...,km+1
l2,...,lm+1

+ · · ·+ µlm+1f
k1,...,km

l1,...,lm
.

Thus, fk1,...,km,km+1
l1,...,lm,lm+1

(t) is determined by µl1 · · ·µlm+1 and the initial condition of

fki

li
(0) (i=1, . . . ,m+ 1), fki,kj

li,lj
(0) (i, j=1, . . . ,m+ 1), . . . , fk1,...,km

l1,...,lm
(0), fk1,...,km+1

l1,...,lm+1
(0).

The induction ends when we are able to calculate fk1,...,km+1
l1,...,lm+1

(t). In summary, we have
proved the following.

Theorem. The frequencies fk1,...,kL

l1,...,lL
with k1, . . . , kL ∈ {1, 2, 3, 4} and l1, . . . , lL ∈

{1, 2, . . . , L} can be calculated inductively from (18), (20), and (21), and these frequen-
cies are independent of the disease population dynamics ({β, γ}) and are completely
determined by the site-specific mutation rates and initial frequency values.

The frequencies fk1,...,kL

l1,...,lL
describe the genetic diversity of the pathogen. Thus, we

observe from the deterministic model that the genetic diversity of the pathogen under
neutral evolution (where mutation has no effect on the pathogens’ phenotypes, i.e., β
and γ) is independent of the disease dynamics.

3.2. Stochastic model. What happens if we expand the deterministic 1-site
model into a stochastic 1-site model following a continuous time Markov process?
From (21), the time differentiation of the expected number of infected hosts with the
strain carrying the sequence whose nucleotide k1 at the specific site l1, E(Ik1l1 ), and
the expected number of the total number of infected hosts, E (I), can be written as

(22)
E
(
Ik1l1 (t)

)′
= (βE (S(t))− γ − 4µ) E

(
Ik1l1 (t)

)
+ µE (I(t))

+ βCov
(
S(t), Ik1l1 (t)

)
,

E (I(t))′ = (βE (S(t))− γ) E (I(t)) + βCov (S(t), I(t)) .
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2166 RYOSUKE OMORI AND JIANHONG WU

With manipulations similar to those for the deterministic 1-site model, we obtain

(23)

E
(
f11
l1

(t)
)

= E
(
I
11
l1

(t)
I(t)

)
= 1

4

(
1 + exp [−4µt]

∑
k1 6=1 g

k1
l1

(t)
)
,

E
(
f21
l1

(t)
)

= 1
4

(
1 + exp [−4µt]

∑
k1 6=1 g

k1
l1

(t)− 4 exp [−4µt] g21
l1

(t)
)
,

E
(
f31
l1

(t)
)

= 1
4

(
1 + exp [−4µt]

∑
k1 6=1 g

k1
l1

(t)− 4 exp [−4µt] g31
l1

(t)
)
,

E
(
f41
l1

(t)
)

= 1
4

(
1 + exp [−4µt]

∑
k1 6=1 g

k1
l1

(t)− 4 exp [−4µt] g41
l1

(t)
)
,

where Cov (x, y) denotes covariance of x and y and

gk1l1 (t) = exp
(
−β
∫ t
τ=0

Cov(S(τ),I(τ))
E(I(τ)) −

Cov
(
S(τ),I11l1

(τ)
)
−Cov

(
S(τ),Ik1

l1
(τ)

)
E

(
I
11
l1

(τ)
)
−E

(
I

k1
l1

(τ)
) dτ

)
= exp

(
−β
∫ t
τ=0

E(S(τ)I(τ))
E(I(τ)) −

E
(
S(τ)

(
I
11
l1

(τ)−Ik1
l1

(τ)
))

E
(
I
11
l1

(τ)
)
−E

(
I

k1
l1

(τ)
) dτ

)
.

Unlike the deterministic model, the expected value of the site-specific nucleotide fre-
quency in the stochastic model can be affected by disease dynamics. This is also
true when we expand the stochastic 1-site model into a stochastic L-site model with
varying mutation rates among sites as follows:

(24)
E
(
Ik1l1 (t)

)′
= (βE (S(t))− γ − 4µl1) E

(
Ik1l1 (t)

)
+ µE (I(t))

+βCov
(
S(t), Ik1l1 (t)

)
,

E (I(t))′ = (βE (S(t))− γ) E (I(t)) + βCov (S(t), I(t)) ,

from which it follows that

(25)

E
(
f11
l1

(t)
)

= E
(
I
11
l1

(t)
I(t)

)
= 1

4

(
1 + exp [−4µl1t]

∑
k1 6=1 g

k1
l1

(t)
)
,

E
(
f21
l1

(t)
)

= 1
4

(
1 + exp [−4µl1t]

∑
k1 6=1 g

k1
l1

(t)− 4 exp [−4µl1t] g
21
l1

(t)
)
,

E
(
f31
l1

(t)
)

= 1
4

(
1 + exp [−4µl1t]

∑
k1 6=1 g

k1
l1

(t)− 4 exp [−4µl1t] g
31
l1

(t)
)
,

E
(
f41
l1

(t)
)

= 1
4

(
1 + exp [−4µl1t]

∑
k1 6=1 g

k1
l1

(t)− 4 exp [−4µl1t] g
41
l1

(t)
)
,

where

gk1l1 (t) = exp

−β ∫ t

τ=0

E (S(τ)I(τ))
E (I(τ))

−
E
(
S(τ)

(
I11
l1

(τ)− Ik1l1 (τ)
))

E
(
I11
l1

(τ)
)
− E

(
Ik1l1 (τ)

) dτ

 .
3.2.1. Monte Carlo simulations. We now show that the impact of disease

dynamics on Tajima’s D is hidden in the stochasticity of the disease dynamics. The
term in Tajima’s D that includes the effect of stochasticity of disease dynamics, as
shown in (24), cannot be expressed in a closed form [9]. To explore the behavior
of Tajima’s D in a stochastic model, we employ an individual-based Monte Carlo
(IBM) simulation. The infection state of each host is recorded as 0, 1, or 2 in the
IBM simulation. The infection states 0, 1, and 2 indicate that the host is susceptible
(S), currently infected (I), or recovered (R), respectively, assuming each infected
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Fig. 3. The impact of disease dynamics on the temporal evolution of Tajima’s D with varied
basic reproduction number R0 = β/γ. The solid lines show the 1000-iteration average of the time
evolution of Tajima’s D when R0 = 2.0 (a), 5.0 (b), and 10.0 (c), respectively. At each time step of
the IBM simulation, Tajima’s D was calculated when I(t) ≥ 200. The dashed lines show Tajima’s
D in the deterministic model.

Time
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Fig. 4. The impact of disease dynamics on the time evolution of f1 with varied basic reproduc-
tion number R0. The solid lines show the 1000-iteration average of the time evolution of f1 when
R0 = 2.0 (a), 5.0 (b), and 10.0 (c), respectively. At each time step of the IBM simulation, f1 was
calculated when I(t) ≥ 200. The dashed lines show f1 in the deterministic model, which is given by
(19).

individual has only one nucleic acid sequence of the pathogen, and each infected
individual and nucleic acid sequence is recorded. Secondary cases have the same
sequence as the primary case when transmission occurs. During infection the mutation
replaces the dominant sequence of the pathogen by a constant rate µ.

We set the parameters to their baseline values as follows: N = 200,000, L = 500,
γ = 0.3, ∆t = 1, n = 200. We assume initially that one host is infected with a
strain carrying a sequence whose nucleotides at all sites are 1, and all other hosts
are susceptible for all possible strains. The IBM simulations run until there are no
infected individuals. Figure 3 shows the impact of disease dynamics on the temporal
evolution of Tajima’s D with varied basic reproduction number R0 = β/γ. The
difference between the deterministic model and the stochastic model increases as R0
decreases. The duration of epidemics in the IBM simulation also increases when R0
decreases.

As discussed in the previous sections, Tajima’s D is a function of the site-specific
nucleotide frequency fk1l1 . The frequency of nucleotide 1, which is identical in all
sequences at the beginning of an outbreak, f11

l1
, is calculated. As we assume the

site-specific mutation rate is identical among different sites, the expected value of
fk1l1 is also identical among different nucleotides and different sites. We can then
calculate the average of f11

l1
among all sites, f1. Figure 4 shows the impact of disease

dynamics on the time evolution of f1 with varied basic reproduction number R0. The
deterministic model predicts f1 in the corresponding stochastic model, and the impact
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Fig. 5. The time evolution of π with varied basic reproduction number R0. The solid lines show
the 1000-iteration average of the time evolution of π. At each time step of the IBM simulation, π
was calculated when I(t) ≥ 200. The dotted lines show the theoretical π, which is given by (6) using
deterministic f1, f2, f3, and f4 given by (19). The dashed lines show the theoretical π, which is
given by (6) using the 1000 iteration average of the time series of f1, f2, f3, and f4 with IBM.
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Fig. 6. The time evolution of σ/a with varied basic reproduction number R0. σ denotes the
number of segregating site, and a denotes

∑n−1
i=1 1/i. The solid lines show the 1000-iteration average

of the time evolution of σ when R0 = 2.0 (a), 5.0 (b), and 10.0 (c). At each time step of the IBM
simulation, σ/a was calculated when I(t) ≥ 200. The dotted lines show the theoretical σ, which is
given by (8) using the deterministic f1, f2, f3, and f4 given by (19). The dashed lines show the
theoretical σ, which is given by (8) using the 1000 iteration average of the time series of f1, f2, f3,
and f4 with IBM.

on R0 is small for f1.
As shown in (1), Tajima’s D can be decomposed into two functions of f1, the

mean pairwise distance between sampled sequences π and the number of segregating
sites among sampled sequences σ. Specifically, the relationship between π and σ/a
determines the sign of Tajima’s D. Therefore, we explore the difference between π
and σ/a for the deterministic model and the stochastic model. Figure 5 shows the
difference in the time evolution of π with varied basic reproduction number R0. π is
the function of f1, f2, f3, and f4, and there is a gap between theoretical and simulated
π even if f1, f2, f3, and f4 are all fixed. This gap also depends on R0: the smaller
R0, the larger the gap.

Figure 6 shows the difference in the time evolution of σ with the varied basic
reproduction number R0. This gap also depends on R0: again, the smaller R0, the
larger the gap. The gap between theoretical and simulated Tajima’s D is large at the
early stage of an epidemic. Comparing π and σ/a, σ/a shows a large gap between
the deterministic and stochastic models.

4. Discussion. In this paper we investigated the time evolution of Tajima’s D
in a nonendemic disease outbreak situation, and we conclude that (i) Tajima’s D in a
deterministic SIR model is completely determined by the mutation rate and sample
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TAJIMA’S D DURING INFECTIOUS DISEASE OUTBREAK 2169

size, and (ii) the time evolution of genetic diversity of an infectious disease pathogen
in a deterministic SIR model is completely determined by the mutation rate. We
observed that Tajima’s D is independent of disease dynamics, and we found that the
sign interpretation of Tajima’s D (i.e., negative (positive) Tajima’s D shows popula-
tion expansion (contraction)) is not always true for disease transmission dynamics.
Employing a stochastic model, we demonstrated that the dependence of Tajima’s D
on the disease transmission and evolution dynamics is a result of the stochasticity
of those dynamics. The same is true for the dependence related to genetic diversity.
Interestingly, the period when Tajima’s D remains negative is longer than the period
when the infected population increases, as shown in Figure 3.

Our observation that Tajima’s D is dependent on stochasticity in disease transmis-
sion during an outbreak can be useful for the estimation of insightful epidemiological
and evolutional parameters. If the sequence data reflect stochastic transmission and
evolution dynamics, e.g., sequences of pathogens sampled from a small outbreak in
a limited host population, then Tajima’s D depends on both the mutation rate and
R0. Therefore, a joint estimation of the mutation rate and R0 from Tajima’s D is
possible. If the disease dynamics can be approximated by a deterministic SIR model,
then Tajima’s D is not biased by disease dynamics and can be determined by the
mutation rate alone.

Tajima’s D depends largely on the sample size, as shown in Figure 2. In particular,
with a small sample size, small changes in the sample size causes significant bias in
Tajima’s D. At a practical level, the sampling probability during an outbreak changes
over time due to reporting bias, so careful study is required.

If we can assume that the sampling probability, p, is constant over time, and
that the sample size is proportional to the number of infected individuals, n = pI(t),
then Tajima’s D depends on the disease dynamics even in the deterministic model.
Even in such a case, the sign of Tajima’s D is not directly related to the sign of the
time-derivative of the pathogen population I ′(t), as seen in the study with monotonic
population growth [18, 20]. Tajima’s D is determined not only by R0, but also by
the mutation rate and sampling probability. In this case we can estimate R0 from
deterministic Tajima’s D. However, this estimate of R0 is equivalent to the estimate
of R0 fitting an SIR model, with the time series of the sample size as the time series
of the number of infective individuals.

Previous studies show that a sudden change in the sign of Tajima’s D implies the
replacement of the dominant strain under strong natural selection [6]. If R0 and the
mutation rate are given, the confidence interval of the site-specific Tajima’s D, Dl,
can be obtained from our stochastic model. This confidence interval gives the confi-
dence interval for neutral mutation. Using this confidence interval, we can discover
the significant mutations in terms of their impact on phenotypes. The estimation of
R0 using epidemiological data, e.g., the time series of the number of infected hosts [2]
and the estimation of the mutation rate using sequence data [4] have already been de-
veloped, and the estimation of significant mutations is possible if both epidemiological
and sequence data are available.

Sampling time series of sequences of pathogens during an outbreak has become
a common practice for infectious disease surveillance. Methodologies analyzing evo-
lution and disease dynamics from such sequence data are in great demand. Many
sequence datasets of infectious disease are sampled from nonendemic situations, as
described by the SIR model. In the SIR model, the fitness of a pathogen and effective
reproduction number are changing over time, even if there is no mutation. In such
nonequilibrium population dynamics, the interpretation of the existing methods for

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

06
/2

0/
18

 to
 1

33
.5

0.
96

.3
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



2170 RYOSUKE OMORI AND JIANHONG WU

evolutionary analysis may be different from that in simple population dynamics, e.g.,
neutral evolution or exponential growth. Theoretical analysis of the impact of popu-
lation dynamics on common evolutionary analysis can help interpret results of such
analysis.

5. Appendix.

5.1. The disease dynamics with Kimura’s assumption. If we follow the
mutation model of Kimura’s assumption [12], (10) can be written as

(26)

S′ = −S (
∑
x βIx) ,

(Ix1)′ = (βS − γ − (2µ1 + µ2)) Ix1 + µ1Ix2 + µ1Ix3 + µ2Ix4,

(Ix2)′ = (βS − γ − (2µ1 + µ2)) Ix2 + µ1Ix1 + µ2Ix3 + µ1Ix4,

(Ix3)′ = (βS − γ − (2µ1 + µ2)) Ix3 + µ1Ix1 + µ2Ix2 + µ2Ix4,

(Ix4)′ = (βS − γ − (2µ1 + µ2)) Ix4 + µ2Ix1 + µ1Ix2 + µ1Ix3.

The initial condition of the system shown in (26) is the same as that of (11). From
(26),

(Ix1)′ − (Ix4)′ = (βS − γ − 2 (µ1 + µ2)) (Ix1 − Ix4) .

By a computation similar to that used in the 1-site model with the Jukes–Cantor
assumption, we obtain

Ix1 − Ix4 = I(t) exp (−2 (µ1 + µ2) t) .

We also compute the time derivative of Ix1(t)− Ix2(t) using Ix2(t) = Ix3(t),

(Ix1)′ − (Ix2)′ = (βS − γ − 4 (µ1 − µ2)) (Ix1 − Ix2)− (µ1 − µ2) (Ix1 − Ix4) .

Therefore, we obtain the site-specific nucleotide frequency, fk1l1 (t), as follows;

f11
l1

(t) = 1
4 (1 + exp (−4µ1t) + 2 exp (−2 (µ1 + µ2) t)) ,

f21
l1

(t) = f31
l1

(t) = 1
4 (1− exp (−4µ1t)) ,

f41
l1

(t) = 1
4 (1 + exp (−4µ1t)− 2 exp (−2 (µ1 + µ2) t)) .

Regarding the L-site model, we can derive fk1l1 (t) similarly to the L-site model with
the Jukes–Cantor assumption as follows;

f1
l1

(t) = 1
4 (1 + exp (−4µl1,1t) + 2 exp (−2 (µl1,1 + µl1,2) t)) ,

f21
l1

(t) = f31
l1

(t) = 1
4 (1− exp (−4µl1,1t)) ,

f41
l1

(t) = 1
4 (1 + exp (−4µl1,1t)− 2 exp (−2 (µl1,1 + µl1,2) t)) ,

where µl1,1 (µl1,2) denotes the mutation rate µ1 (µ2) in the 1-site model at the l1th
site.
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