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Sonifying data uncertainty with sound dimensions 

The communication of data uncertainty is a crucial problem in data science, information 

visualization, and geographic information science (GIScience). Effective ways to 

communicate the uncertainty of data enables data consumers to interpret the data as 

intended by the producer, reducing the possibilities of misinterpretation. In this article, we 

report on an empirical investigation of how sound can be used to convey information about 

data uncertainty in an intuitive way. To answer the research question How intuitive are 

sound dimensions to communicate uncertainty?, we carry out a cognitive experiment, 

where participants were asked to interpret the certainty/uncertainty level in two sounds A 

and B (N=33). We produce sound stimuli by varying sound dimensions, including 

loudness, duration, location, pitch, register, attack, decay, rate of change, noise, timbre, 

clarity, order, and harmony. In the stimuli, both synthetic and natural sounds are used to 

allow comparison. The experiment results identify three sound dimensions (loudness, 

order, and clarity) as significantly more intuitive to communicate uncertainty, providing 

guidelines for sonification and information visualization practitioners. 

Keywords: sonification; uncertainty; aural cognition; sound variables; communication 

Introduction 

The understanding and representation of uncertainty is a persistent challenge in 

GIScience and its cognate fields (Çöltekin, Bleisch, Andrienko, & Dykes, 2017). As all 

spatio-temporal data is constrained by spatial, temporal, and thematic precision and 

accuracy (Ballatore & Zipf, 2015), it is paramount to communicate uncertainty 

effectively, both to scientists and non-specialist audiences. For example, different 

weather forecasts have a varying probability to occur; environmental models are devised 

to simulate sea level rise scenarios, ranging from likely to unlikely; remotely-sensed night 

lights indicate economic activities to varying degrees of certainty in different 

geographical areas. Depending on the context, data present different types of uncertainty, 

starting from the conceptualization, to the measurement, and analysis of data. Uncertainty 

also includes conceptual and semantic dimensions, as some geographical notions are 

imbued with vagueness and have several, only partially compatible definitions. This 

broadly applies to land use, land cover, and to urban/rural classifications that are 

commonly used in the environmental and social sciences. 
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Ideally, every piece of geospatial information should be presented with its 

associated uncertainty, helping the user understand it correctly. In addition to text-based 

meta-data (e.g., “50m satellite imagery”, “the classification precision is 80%”, 

“measurement accuracy ±5%”), visualization methods have been employed to represent 

data uncertainty in an intuitive way, showing the spatial variation in uncertainty. In a 

cartographic context, visual metaphors such as transparency, fog, and blur have been 

shown as relatively effective in communicating this aspect of the data (Kinkeldey, 

MacEachren, & Schiewe, 2014). 

Despite the advances in this field, in practice, representing uncertainty has proven 

difficult in many contexts, and misunderstandings are common. While it is increasingly 

easy and inexpensive to produce and disseminate data representations, cognizing the data 

uncertainty correctly is challenging, particularly for non-expert data consumers (Brown 

et al., 2013). For this reason, cognitive psychological inquiries can help uncover the 

cognitive patterns (and errors), leading to more cognitively adequate representations. 

Notably, showing different designs of hurricane forecasts to citizens tends to result in 

different risk evaluations (Ruginski et al., 2016).  Along similar lines, alternative visual 

designs of the “blue dot” that signals the user location in Google Maps significantly 

influence the user perception and reasoning about locational uncertainty (Hegarty, 

Friedman, Boone, & Barrett, 2016; McKenzie, Hegarty, Barrett, & Goodchild, 2016). 

Importantly, this work indicates that some people have a difficulty understanding the 

uncertainty inherent to the display in the visual channel, highlighting how the type of 

display and task influence the cognition of uncertainty.  

The majority of efforts in the communication of uncertainty have focused on the 

visual channel, leaving the other senses unexplored, including the aural channel. Sound-

based communication offers several advantages that can complement, and—in some 

contexts—replace visual media. For more than two decades, the discipline of sonification 

has explored the communication of information through non-speech sounds, devising 

techniques to translate data into audible sound waves (Hermann, Hunt, & Neuhoff, 2011). 

For instance, seismic waves generated by earthquakes have been used to generate sounds 

and even music (http://www.seismicsoundlab.org, accessed on January 2018). The core 

driver in this area is the possibility of tapping into the unused aural channel to offload 

semantic content from the overcrowded visual channel (Dubus & Bresin, 2013). 

Sonification is used in several fields for system monitoring, for sports analytics, for 

science outreach, for vision-impaired users, and for exploratory data analysis (EDA), 



 4 

exploiting the ability of the human auditory system to discriminate the amplitude and 

frequency of sounds. 

Sonification has been deployed in several scientific domains but, to date, little 

research has tackled the communication of uncertainty using auditory techniques 

(Bearman, 2013). In this article, we investigate whether sound can be used to convey 

information about data uncertainty intuitively, identifying the most effective basic sound 

metaphors for this purpose. Despite the limited applicability observed to date, we consider 

communicating uncertainty with sound an avenue worth exploring for several reasons. In 

cartography-based visualizations, the visual channel is often overloaded with several 

pieces of information, making aural augmentation desirable. Changes in sound 

dimensions, such as pitch and volume, can be detected by most people and are cognitively 

general and simple. Hence, we hypothesize that intelligible aural representations can be 

devised. Rather than focusing on specific applications, we aim at uncovering foundational 

aspects. General findings in this area can inform a number of fields that deal with varying 

levels of uncertainty in spatial data. 

Grounding this interdisciplinary work in cognitive psychology and semiotics 

(MacEachren et al., 2012) and sonification research (Hermann et al., 2011), we designed 

a cognitive experiment to investigate how sound dimensions can be used to signify 

uncertainty to non-expert users. In this experiment, we focus on the research question: 

How intuitive are sound dimensions to communicate uncertainty? Participants are asked 

to compare 26 pairs of sounds, interpreting the meaning of the stimuli intuitively as more 

or less certain. In each pair, a different sound dimension varies, e.g., duration, loudness, 

pitch, etc. All sound stimuli are available online as supplementary material, as well as in 

our repository (https://github.com/andrea-ballatore/SonificationUncertainty). 

The remainder of this article is organized as follows. The next section discusses 

prior work in this area, including GIScience, cognitive psychology, and sonification, 

which inform our study. Subsequently, we outline the experiments, and we report on the 

tasks and stimuli design. For each experiment, we discuss the results and the guidelines 

that can be derived for scientists and sonification practitioners. Finally, we draw 

conclusions from these experiments and we indicate possible directions for future 

research. 
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Related work 

In our effort to sonify uncertainty, we draw on concepts and findings from GIScience, 

cognitive psychology, and sonification. This section reviews these research areas, 

highlighting the lack of systematic assessments. 

Data quality and uncertainty in GIScience 

Assessing and expressing the quality of geospatial information is a core part of GIScience 

(Zhang & Goodchild, 2002). Several terms are used in GIScience interchangeably to refer 

to data quality issues, including uncertainty, certainty, and errors. This terminology is 

problematic and includes implicit biases. Notably, the terms “uncertainty” and “error” 

have a negative connotation, while “certainty” and “quality” suggest positive qualities. 

All terms refer to the discrepancy between some knowable state of affairs in the real world 

and the knowledge acquired through scientific observations, which is necessarily limited 

and imperfect (Couclelis, 2003). The concept of quality (and uncertainty) has been 

dissected into orthogonal dimensions, such as accuracy, precision/resolution, 

completeness, lineage, and currency (Ballatore & Zipf, 2015). 

While no clear terminological consensus exists, spatial data and models should 

embed notions of quality, guiding data consumers to the correct assessment of fitness-

for-purpose, particularly for critical decision making (Zhang & Goodchild, 2002). 

Uncertainty is epistemically present in all phases of the information life-cycle, starting 

from the conception, representation, and collection of the data, to its processing and 

analysis. In this sense, data quality issues are propagated cumulatively from one step to 

the next in each analysis (Longley, Goodchild, Maguire, & Rhind, 2015). In recent years, 

the emergence of crowdsourcing and the big data paradigm has prompted new research 

on uncertainty, focusing on contexts of abundant but non-representative information 

samples (Kitchin, 2014). 

The semiotics of uncertainty 

As understanding and describing uncertainty is paramount in scientific work, the 

communication of uncertainty poses an important challenge, both for scientists, decision-

makers, and journalists. When presenting datasets, models, and forecasts, several ways 

exist to describe their associated uncertainty, minimizing the semantic gap between the 

information producers and consumers. To meet this challenge, studies in GIScience and 
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cartography analyze how uncertainty can be represented visually. Adopting a semiotic 

framework, uncertainty is a “signified” that must be associated with effective “signifiers,” 

for which no clear conventions and standards exist. Uncertainty can be displayed either 

together with the data, or in a separate channel. Different types of uncertainty, such as 

lineage, positional accuracy, and completeness, are best represented with different 

techniques, varying Bertin’s visual variables, e.g., color, size, and shape (MacEachren et 

al., 2005). Visualizations can be static or dynamic, including a temporal dimension. 

Effective communication of uncertainty can benefit information users in diverse contexts, 

such as hurricane forecast and user self-location (McKenzie et al., 2016; Ruginski et al., 

2016). 

More than 40 empirical evaluations have been carried out on the symbolization of 

uncertainty, exploring different communication techniques and tasks (Kinkeldey et al., 

2014), confirming overall that uncertainty is not just another variable, but that it deserves 

special treatment. In particular, MacEachren et al. (2012) investigated alternative 

visualizations of uncertainty, asking participants how intuitive each representation was 

with respect to different dimensions of spatial uncertainty. Different iconic and abstract 

symbols obtained different scores of intuitiveness, showing that fuzziness is the most 

effective visual metaphor of uncertainty, hence providing guidelines for more effective 

data visualizations. We adopt this methodology for our study as well. 

Sonification research 

The translation of data into intelligible sounds has been investigated systematically for 

more than two decades (Hermann et al., 2011; Kramer, 1994; Kramer, Walker, 

Bonebright, Cook, & Flowers, 1999). Sonification techniques mainly consist of 

producing synthetic sound waves to represent some input non-sonic data, e.g., seismic 

waves, crime rates, and air pollution levels. This approach differs from “earcons,” fixed 

sonic motifs that are used to signify actions and events in user interfaces (e.g., emptying 

the trash can on a computer). Foundational research in sonification aims at identifying 

effective mappings between ordinal or nominal variables and sound dimensions, in order 

to support the design of usable aural representations. Empirical investigations explored 

the effects of varying pitch (low/high), volume (quiet/loud), spatialization (left/right, 

front/back), timbre (violin/guitar), and tempo (slow/fast), reducing the huge sonic 

combinatorial space to manageable samples (Dubus & Bresin, 2013). It is reasonable to 
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assume that, as for visual metaphors, some sonic metaphors are more intuitive than others: 

For example, high pitch can be employed to represent high values, and vice-versa. 

Sonification can be used for both complementing and replacing the visual channel 

through aural communication. Listening to data has proven useful not only in the arts and 

music composition, but also in seismology and astrophysics, for example to interpret data 

streams from the Voyager 2 space probe (The Economist, 2016). While evidence of major 

scientific discoveries made through sonification remains scant, auditory displays are 

common in several domains, including environmental monitoring (e.g., Geiger counters), 

complex system monitoring (e.g., telecom networks and stock market trends), and, 

perhaps more obviously, in interfaces for vision-impaired users (Grond & Hermann, 

2014; Loomis, Golledge, & Klatzky, 1998; Nesbitt & Barrass, 2004). 

In the context of GIScience, abstract sound variables have been discussed as a 

way to represent spatial information. Sounds can be shaped by varying location, loudness, 

pitch, register, timbre, duration, rate of change, order, and attack/decay (Krygier, 1994). 

Bearman (2013) also compiled an extensive review of the use of sonification to tackle 

geographic problems. In his thorough appraisal of the field, he notes that some pioneering 

authors have suggested ways of sonifying uncertain data, without providing empirical 

evidence (e.g. Fisher, 1994; Pang, Wittenbrink, & Lodha, 1997). In his own work, 

Bearman evaluated sonification to communicate positional uncertainty through pitch, 

using piano notes as signifiers (Bearman & Lovett, 2010). As limited research on the 

sonification of uncertainty has been carried out, particularly using different sound 

dimensions, the remainder of this article outlines our empirical investigation to fill this 

knowledge gap. 

Sound dimensions and design  

To support the sonification of uncertainty, in this article, we aim at identifying the most 

effective sound variables that can be intuitively associated with different levels of 

uncertainty. As suggested by MacEachren et al. (2014) in the context of visual metaphors, 

our study can be framed as a semiotic problem: What sound variables can signify 

uncertainty? To what extent are these variables intuitive to an untrained participant? 

Hence, our experimental design required the development of (1) a set of tasks, 

and (2) a set of sound stimuli. The purpose of this design is to include all major sound 

dimensions that can be used in sonification and observe how they perform in the 
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sonification of uncertainty with participants. For this purpose, we adopted the tasks from 

MacEachren et al. (2014) and the sound dimensions by Krygier (1994) as starting points. 

While the tasks are relatively simple and described in each experiment’s section, the 

sound design has proven to be more complex, and deserves detailed treatment.  

An important distinction in our sound design is that between abstract, machine-

generated sounds and natural, real-world sounds. Natural sounds are associated to a 

known referent (human speech, birds chirping, wheel screeching, musical instruments, 

etc.), while abstract sounds are not, although they can occasionally appear similar to 

natural sounds (e.g., continuous noises). This distinction is analogous to abstract and 

iconic visualizations by MacEachren et al. (2012). For our experiments, we designed a 

set of sounds to capture these two categories, distinguishing between natural (acoustic) 

and abstract (synthetic) sounds.  

Sound dimensions were more complex to select, as the range of possibility is 

extremely broad. Hence, we selected 13 dimensions, making sure to include all the basic 

dimensions (see Table 1 for a summary). While the human ear can discriminate between 

more than two levels in a single dimension, we limited our design to two levels to control 

experimental complexity. For each sound dimension, we designed two clearly distinct 

sound stimuli, described as low and high sounds. Three of the most basic sound 

dimensions are loudness, a sound’s perceived amplitude, duration, the length of a sound, 

and location, where a sound appears in space, e.g. to the left, right, in front of, or behind 

the listener. We hypothesized that loudness and duration might be effective in the 

sonification of uncertainty: As loudness is correlated with the distance of the source to 

the listener, louder sounds could indicate greater certainty, and vice-versa. The sonic 

metaphor for duration seems less clear, and it is possible to hypothesize that short duration 

could either indicate high certainty, or vice-versa. Location, by contrast, was included in 

the experiment for completeness, assuming a sound from the left and right can be 

associated with uncertainty arbitrarily.  
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Sound 
dimension 

Description Sample values Visual 
depiction 

loudness A sound's perceived amplitude. Quiet, loud 

 

duration Length of a sound. Short, long 

 

location Where a sound appears in space. Left, right 

 

pitch Perceived frequency of a sound. C, D 

 

register Octave in which a note or melody is played. C4, C5 

 

attack How a sound increases in volume before 
reaching its highest point (sustain level). 

Short, long 

 

 decay How a sound decreases in volume from the 
sustain level before reaching zero 
amplitude. 

Short, long 

 

rate of 
change 

How rapidly the sound changes. Slow tempo,  
fast tempo 

 

noise Unwanted signal or distortion; 
mathematically, the degree of randomness 
in a complex sound spectrum. 

Noisy, clear 
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clarity Amount of original sound heard, rather than 
distorted or hidden in noise 

Distorted, 
undistorted 

 

timbre Hard to define. Parameter that encompasses 
all aspects not captured by the other 
parameters. Brightness, tone quality. 

Flute, trumpet 

 
order Order of execution of different sounds. Regular, 

irregular 

 

harmony Consonance or dissonance between notes 
played at the same time 

Consonant, 
dissonant 

 

Table 1: Core sound dimensions, based on Krygier (1994). 

 
Pitch and register, refer, respectively, to the perceived frequency of a sound and 

the octave in which a note or melody is played. Changing a note’s pitch moves it to a 

different frequency (e.g., C to D), while changing the register of a note causes the same 

note (e.g. C) to be played at a different octave. During the sound design phase, we had no 

clear intuition as to how pitch or register might convey the certainty or uncertainty of 

data. Unlike pitch and register, which refer to perceived frequency, attack and decay refer 

to the “envelope” of a sound, that is, how its amplitude changes over time. More 

specifically, attack describes how long a sound increases in volume before reaching its 

highest point (sustain level), while decay describes how long it takes for a sound to 

decrease from the sustain level to zero amplitude. We hypothesized that shorter 

attack/decay times might indicate higher certainty, as a faster volume change could 

appear as a more certain statement than a slow one. Another parameter, rate of change, 

referring to how rapidly a sound changes, can be interpreted in a number of ways. To 

keep the sound design reasonably simple, we interpreted rate of change in terms of slower 

and faster tempos. 

An important dimension that we added to the original set is noise. Commonly 

described as an “unwanted disturbance” in a signal, noise can be acoustically defined as 

“sound in which the amplitude over time changes with a degree of randomness” (Roads, 
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2015, p. 97). Intuition suggests that noisier sounds might convey greater data uncertainty, 

while less noisy sounds could convey greater certainty. We included three kinds of noise: 

white noise, pink noise and red noise. White noise, containing equal energy for all 

bandwidths, has the highest degree of randomness. In contrast, for pink noise, amplitude 

is determined by 1/f (1/frequency), attenuating the higher frequencies; while for red noise, 

also known as brown or Brownian noise, amplitude is given by 1/f2, representing a sharper 

attenuation of the upper frequencies. Since pink and red noise have lower amplitudes at 

higher frequencies, they better approximate acoustic sounds, such as wind or crashing 

waves (Oxenham, 2013). 

When designing noisy stimuli, potential unpleasantness for participants was a 

concern. We anticipated that pink and red noise would appear less unpleasant than white 

noise since they are closer to natural sounds; however, even pink and red noise, if 

unmodified, can seem harsh to the listener. Since unmodified noise can be unpleasant, 

filtered noise is often used in electronic music to create sounds that appear less “synthetic” 

to the listener than pure synthesized sounds. Applying a bandpass filter to a pure noise 

signal creates a noise band of a given width. If the band is narrow enough, the result can 

be described as “pitched” noise, mixing unpitched white noise and a sine wave (Roads, 

2015). In the sounds used in the experiment, a bandpass filter was applied to sounds in 

each of the noise parameters to attempt to reduce unpleasantness. Within each sound pair, 

a wider band of noise for the high condition sound was compared to a narrower noise 

band for the low condition. Since a narrower noise band is quieter than a wider one, in 

each case the amplitude of the low condition sound was boosted to match the volume of 

the high condition sound. 

In contrast to noise, the sound parameter of clarity represents the degree to which 

an original signal is present without being distorted by or covered in noise (Alten, 2013, 

p. 4). We separate noise and clarity into two categories to reflect the fact that noise can 

both be a sound source and a signal added to another sound. Whereas the noise category 

compares bands of pure noise of different widths, the clarity category adds distortion to 

an existing sound. Timbre is often defined negatively, as the “perceptual attribute that 

enables us to distinguish among orchestral instruments that are playing the same pitch 

and are equally loud” (Risset & Wessel, 1999, p. 26). As it typically conveys the identity 

of a sound source, it seems timbre can be useful for the sonification of uncertainty, 

although we had no clear intuition on what different timbres may suggest. It is important 

to note that the parameters of clarity and timbre are linked, since a reduction in sound 
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clarity will likely affect timbral characteristics as well. Like timbre, we hypothesized that 

the parameter of clarity may potentially be effective to signify uncertainty, as processes 

such as distorting or muffling a sound could intuitively convey that data has been 

degraded or lost.  

Two of the more complex sound dimensions, order and harmony, refer to 

relationships between sounds, rather than qualities of individual sounds. The order 

dimension might hold potential for the sonification of uncertainty, as sounds that are out 

of order could convey greater uncertainty, suggesting less structured data. At its most 

basic level, harmony refers to the consonance or dissonance between notes played at the 

same time. A “harmonic interval” is the ratio between the frequencies of two 

simultaneously sounding notes. Harmonic intervals with low whole number ratios, such 

as 3/2, 4/3, 5/4 and 6/5 sound consonant, while other intervals sound dissonant (Plomp & 

Levelt, 1965). A musical chord contains three or four notes, whose combinations in 

harmonic intervals make the chord sound harmonious or inharmonious. We hypothesized 

that harmony could be a potentially useful parameter for the experiment, since an 

inharmonious chord could suggest greater uncertainty.  

It is worth noting that many sound dimensions perceptually correspond to physical 

quantities in non-linear ways. For instance, pitch is perceived logarithmically with respect 

to sound frequency: an increase of one octave corresponds to a doubling in frequency 

(Moore, 2012). Since, in our study, participants compare discrete sounds with high and 

low values clearly distinguishable from each other, these considerations are mainly 

applicable to future research investigating representations of continuous changes in 

uncertainty through sound. 

From a technical viewpoint, acoustic sounds are based on violin recordings 

available in the public domain, modified with the audio editing software Audacity 

(https://www.audacityteam.org). Synthetic sounds were either generated algorithmically 

by the Minim library for Processing 2.1 (http://code.compartmental.net/minim), created 

manually in Audacity, or a combination of both. All sounds are available in our online 

repository as open data (https://github.com/andrea-ballatore/SonificationUncertainty). 

The experiment is described below. Informed consent was obtained for each 

participant, and all experiment procedures were approved by the University of California, 

Santa Barbara, Human Subjects Committee, before the trials. Participants were always 

free to leave at any time during all trials. 
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Experiment: Comparison of two sounds 

In this experiment, we investigate the sonification of uncertainty through a set of sound 

dimensions. Participants were asked to compare two sounds (A and B), indicating which 

one evokes “better” or “worse” quality. The core research question targeted by this 

experiment is: 

How intuitive are different sound dimensions to communicate uncertainty?  

The experiment was first tested on a pilot run with ten participants, identifying and 

correcting several design issues. The final design used in the main experiment is described 

below. 

Stimuli design 

For this experiment, we designed a set of sound stimuli, containing alternative sonic 

representations of the dimensions in Table 1. We designed 26 separate stimuli, including 

11 acoustic stimuli and 15 synthetic stimuli, varying 16 sound dimensions: attack/decay, 

clarity, duration, harmony, location 1, loudness, noise pink, noise red, noise white, order, 

pitch, rate of change, register, timbre, timbre 1, and timbre 2. To produce the 52 sounds, 

many technical choices had to be made, reducing the huge space of possibilities to a small, 

manageable, intelligible, and yet representative set, summarized in Table 2. Each stimulus 

is generated in a high-low pair, for a total of 52 sound waves. In order to provide sufficient 

technical clarity and ensure replicability, we detail below the rationale, techniques, and 

tools used in this sound design. The sound files and full result tables are accessible in the 

online repository.  

 

 

 
Dimension Dimension 

variation 
Sound 
type 

Sound design description 

attack_decay Fast vs. slow Synth Sine tone at C4 (261.6 Hz) 
- 

 
Acoustic Violin note C4 played legato non-vibrato 

clarity Clear vs. 
distorted 

Synth High: triangle waveform played at C4 (261.4 Hz) 
Low: distorted triangle waveform at C4 (261.4 Hz) 

- 
 

Acoustic High: violin note G2 played legato non-vibrato 
Low: violin note G2 note digitally distorted          

duration Short vs. long Synth High: sine tones at C4, 1 second durations 
Low: sine tones at C4, 0.5 second durations 

- 
 

Acoustic High: legato violin note C4 1 second notes 
Low: legato violin note C4 0.5 second notes 
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harmony Harmonious 
vs. 
inharmonious  

Synth High: sine tone major chord, E-flat, G and B-flat 
Low: sine tone major chord with detuned G 

- 
 

Acoustic High: violin major chord, E-flat, G and B-flat 
Low: violin major chord with detuned G 

location Left vs. right Synth High: sine tone in right channel 
Low: sine tone in left channel.     

- 
 

Acoustic High: violin C4 legato non-vibrato in right channel 
Low: violin C4 legato non-vibrato in left channel 

loudness Soft vs. loud  Synth High: sine tone C4 normal volume 
Low: sine tone C4 lower volume 

- 
 

Acoustic High: violin note C4 normal volume 
Low: violin note C4 lower volume 

noise_white Small vs. 
wide band 

Synth High: 400 Hz white noise band 
Low: 40 Hz white noise band.   

noise_pink Small vs. 
wide band 

Synth High: 400 Hz white noise band 
Low: 40 Hz white noise band.   

noise_red Small vs. 
wide band 

Synth High: 400 Hz white noise band 
Low: 40 Hz white noise band.   

order Low vs. high 
order 

Synth High: rising chromatic scale from C4 to F4 
Low: unpredictable sequence 

- 
 

Acoustic High: rising chromatic scale from C4 to F4 
Low: unpredictable sequence 

pitch Low vs. high Acoustic High: violin note B-flat 4  
Low: violin note at C4 

- 
 

Synth Low: sine tone at C4  
High: sine tone at B-flat 4 

rate_of_change Slower vs. 
faster tempo 

Acoustic High: violin staccato C4 notes: 3/second 
Low: violin staccato C4 notes: 1/second 

- 
 

Synth High: sine tone pulses on C4: 3/second 
Low: sine tone pulses on C4: 1/second 

register Low vs. high 
octave 

Acoustic High: violin note G4 
Low: violin note G3 

- 
 

Synth High: sine tone G4 
Low: sine tone G3 

timbre Tremolo vs. 
legato 

Acoustic High: violin note G3 with tremolo  
Low: violin note G3 legato non-vibrato 

timbre_1 Simple tone 
vs. Complex 
tone 

Synth High: square wave approximation with 5 sine waves 
Low: sine tone at C4 

timbre_2 Simple tone 
vs. Complex 
tone 

Synth High: sawtooth wave approximation with 5 sine 
waves 
Low: sine tone at C4 

Table 2: The 16 sound dimensions used in the experiment, resulting in 26 sound pairs. The 

sounds files are available online (https://github.com/andrea-ballatore/SonificationUncertainty). 

 

In this experiment, most sounds were 4.0-second long, with a 0.5-second fade out, 

a suitable length that we determined empirically, balancing the intelligibility and 
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pleasantness of sounds, as well as task duration. The exceptions were attack/decay, 

duration, and rate of change, since these dimensions require different sound lengths 

between high and low sounds. For the duration parameter in the synth category, a sine 

tone at C4 was used for both the low and high conditions. In the acoustic category, a 

violin note at C4 played legato non-vibrato was used for both the low and high duration 

sounds. For both categories, the notes are spaced 1.5 seconds apart, and for the high 

condition, the notes are 1-second long, while for the low condition the notes have a shorter 

duration of 0.5 seconds. 

In the harmony dimension in the synth category, the high condition sound consists 

of three simultaneous sine tones forming a major third chord, or E-flat, G and B-flat. The 

low condition is the same chord, but instead of the sine tone G being played, a sine tone 

lower than G by ½ semitone was used. In the acoustic category, the sounds for the 

harmony dimension were created using a similar method, except instead of sine tones, the 

sound sources were violin notes played legato non-vibrato. To produce the inharmonious 

chord, the violin G note was detuned using the Audacity Change Pitch feature. In the low 

condition for both categories, since the harmonic interval between E-flat and the detuned 

G is not the major third, but an interval with a non-whole number ratio, the low condition 

should sound less consonant to the listener. 

The high clarity synth sound consists of an unmodified triangle waveform played 

at C4 (261.4 Hz), using the Minim library. Since we wanted the low clarity synth to be 

noticeably distorted, yet not become unpleasant to the listener, we followed a two-step 

process. First, using the Wavetable.warp method in the Minim library, a slightly distorted 

triangle waveform at 261.4 Hz was recorded. Next, in Audacity, the Noise Removal 

plugin was applied to the whole sound to reduce the distortion noise to a more tolerable 

level. Noise Removal requires a noise profile, for which a small portion from the middle 

of the sound of about 0.2 seconds was used. Finally, the amplitude was adjusted slightly 

to bring it back to the same level as the high condition sound.  

To design the loudness dimension in the synth category, we chose a sine tone at 

C4 as the high sound, while the low sound was created by using Audacity to lower the 

volume of the sound by -12 dB. In the acoustic category, the sound for the high condition 

is the note C4 played legato non-vibrato on the violin, while the low condition sound was 

produced by lowering the volume by -6.3 dB in Audacity. A smaller decrease in 

amplitude is needed for the acoustic sound, to account for the fact that in complex tones, 

where sonic energy is present in several critical bands, “[t]otal loudness is greater than 
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when the same amount of energy is concentrated within one critical band” (Oxenham, 

2013, p. 12). 

For the clarity dimension in the acoustic category, the high clarity sound is the 

note G2 played legato non-vibrato on the violin. For the low clarity sound, the G2 note 

was digitally distorted using Audacity. Specifically, a short portion of audio, around 0.4 

seconds, was loaded as a noise profile and the Noise Isolation feature was used, boosting 

the amplitude of the portions of the harmonic spectrum contained in the noise profile, but 

maintaining the same fundamental frequency. As the noise isolation process reduces the 

volume, the overall amplitude was later adjusted to match the original sound. 

For the low condition sound for each noise parameter, the raw noise was filtered 

using a bandpass filter with a width of 40 Hz. This bandwidth was used since it would be 

noticeably smaller than the high condition, yet wide enough that it would avoid a clear 

sense of pitch. In the high condition sound, the noise signal was filtered using a bandpass 

filter with a width of 400 Hz. The 400 Hz bandwidth filter was chosen to produce a noise 

band clearly wider than the low condition, yet still avoid some of the unpleasantness of 

unfiltered noise. As pink noise is quieter than white noise, due to containing fewer high 

frequencies, and red noise contains fewer high frequencies than either white or pink noise, 

volume levels of the sounds needed to be adjusted to match. 

The sounds for order were tested by comparing a smooth chromatic scale with a 

disconnected sequence of notes. As the chromatic scale is a regular pattern, we used it to 

indicate a high degree of order. In both the synth and acoustic categories, the high 

condition is a rising chromatic scale from C4 to F4. For the low condition in the synth 

category, an unpredictable sequence of notes was used: A3, Bb4, G5, C#4, E5, G#3. For 

the low condition in the acoustic category, a different unpredictable sequence of notes 

was used: D4, A4, E4, G3, Eb4, B4. 

For the rate of change dimension in the synth category, the sound source was a 

sine tone, while in the acoustic category the sound source is a violin note played staccato. 

In both the acoustic and synth categories, the high condition sound consisted of short C4 

notes, about 0.25-seconds long, with a short gap separating the notes, so the pulses repeat 

at a rate of three per second. For the low condition, silence was added in between notes 

so that the pulses sound at one per second. 

Timbre is a complex meta-dimension that mixes several other sound dimensions 

(Risset & Wessel, 1999). For timbre, the acoustic sounds used were a violin note G3 

played legato non-vibrato for the low condition and the same note played with a tremolo 
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effect for the high condition. There are two timbre parameters in the synth category, 

which we called timbre #1 and timbre #2. In the synth category for timbre #1, the low 

condition sound is a sine tone at C4, while the high sound was generated with a waveform 

approximating a square wave through the addition of five harmonically related sine 

waves. The Minim wavetable function used was Waves.squareh(5). Timbre #2 compared 

a sine tone at C4 for the low condition with five sine harmonics approximating a sawtooth 

wave for the high condition. The Minim wavetable functions used was Waves.sawh(5). 

We avoided using pure square and sawtooth waves in Timbre #1-2, since these sounds 

might be unpleasant for the listener. 

Task design 

Based on cognitive psychological work in the area of communication of uncertainty 

(MacEachren et al., 2012), we designed a task for non-expert participants. The task 

consists of listening to two sounds (high and low) for a set of dimensions, to then express 

a judgement about them. After preliminary consultation with participants, the term 

“certainty” and “uncertainty” were deemed to be too confusing, and the term “data 

quality” was considered clearer. To reduce the positive/negative bias, a positive and 

negative phrasing of the task were alternated between subjects, using either “better” or 

“worse” in each trial. The core question was phrased as followed: 

Which sound, A or B, seemed as if it was coming from a source with 

BETTER/WORSE data quality? 

To present participants with a meaningful and interesting context, a scenario was 

formulated, where a scientist needs vision for data collection, and a computer system is 

being designed to communicate about the data quality through sound. Hence, the 

participant is asked to help train the computer to learn how humans interpret different 

sounds (see Appendix 1 for the complete experiment protocol). The instructions state 

explicitly that task has no right or wrong answer. Each participant carried out the tasks 

individually, and not in groups of participants. 

To ensure that all sounds are clearly audible, not unpleasant nor too loud, a volume 

calibration phase was introduced at the beginning of the task, testing both the loudest and 

faintest sounds. As stated in the ethical clearance, participants were asked to fill in an 

informed consent form, and were free to interrupt the experiment and leave at any time. 

Participants were instructed to listen to each of two sounds presented through consumer 

over-the-ear headphones for approximately four seconds each. 
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Each sound was presented with a green bounding box that indicated which sound 

was currently playing, sound A or B. After both sounds concluded, both boxes were 

bound with green lines along with the question above, asking participants to make a 

choice to this question. Each participant then chooses between sound A and sound B to 

answer the question by pressing the number pad key marked with stickers indicating their 

association. The interface flow is summarized in Figure 1. 

 
Figure 1: Task interface, starting from the top-left screen, and then moving to the other ones. 

 

After the calibration phase, participants were given four practice trials, selected 

from the set of all stimuli pairs. In order to minimize possible effects on the results and 

reduce confusion, no new sound was introduced and the selection was randomized across 

participants. Subsequently, each participant was asked to evaluate 26 high-low pairs of 

stimuli, shown in random order to reduce ordering bias. To increase intra-subject 

reliability, each of the 26 pairs was played twice, once in the high-low order, and once in 

low-high, for a total of 52 sound pairs. At the end of the task, participants were asked to 

provide feedback in a separate online form on the Qualtrics platform. 
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Results 

The experiment was run on 36 participants at University of California, Santa Barbara, in 

April and May 2015. The total duration of the task ranged from 9:03 to 16:01 minutes, 

with 12:37 as the average. Each participant evaluated four test pairs, 52 sound pairs (26 

sound designs in two playing orders), for a total 56 selections. Three participants were 

removed from the dataset as they stated in the feedback that they had made mistakes in 

the task. As a result, 1,848 responses from 33 participants were analyzed, including 20 

female (60%) and 13 male participants (40%). Participants were mostly undergraduate 

students, with age ranging from 18 to 39, with a median of 19. The responses were 

verified in terms of completeness and collated, and are illustrated in Figure 2 and 3. 

Response times 

The median response time (RT) in milliseconds was collected for each judgement, 

indicating how much cognitive processing is necessary to give an answer. The values fall 

in a broad range, from 1ms to 25s. As the median is relatively low (613ms), values above 

5 seconds can be considered as a small tail. For this reason, we consider medians as robust 

indicators of cognitive load, and not means. The median per participant indicates a broad 

range of response times, from about 250ms to 1.5s. These values are coherent with the 

task, and we did not find values indicating unusually fast responses. In terms of medians, 

male and female participants do not show significant differences (t  = -0.63, df = 23.7, 

p=0.5). Similarly, the type of stimulus (acoustic or synthetic) does not show significant 

RT differences (t = 0.64, df = 1493.6, p = 0.5). Even the positivity of the question (“better” 

or “worse”) does not seem to influence the RT at all (t = -0.41, df = 1710.8, p = 0.7). 

Different RTs can also be observed in the sound dimensions (see Figure 2). The 

median RT of each sound dimension ranges from about 500ms to 870ms, with a median 

of 620. This suggests that some sound dimensions (and therefore stimuli) are easier to 

cognize, such as clarity, loudness, and register (RT < 600ms), while a significantly higher 

load is needed to process order and rate of change (RT > 700ms). Interestingly, the 

complexity of timbre is visible in the wide range of RTs for the three alternative designs. 

The easiest to process is the square wave (timbre 1, 512ms), followed by the sawtooth 

wave (timbre 2, 578ms). The violin stimulus is, in fact, the slowest dimension (timbre, 

872ms). As the parametric assumptions of ANOVA are not met, we use the Kruskal-

Wallis test as a non-parametric alternative to test the significance of these differences for 

each pair of dimensions. While the inter-dimension differences appear significant as a 
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whole (Kruskal-Wallis chi-squared = 45.6, df = 15, p < .001), most of the comparisons 

are not statistically significant when observed pair-wise (p > .05). By observing the 

median per stimulus pair (see Figure 3), the values span from about 480ms (synth 

loudness, acoustic clarity, and synth clarity) to more than 800ms (acoustic timbre, 

acoustic rate of change, synth order). Similarly, the data shows significant differences 

(Kruskal-Wallis chi-squared = 49.9, df = 25, p < .01), but most pair-wise differences are 

not significant (p > .05), limiting the conclusions that can be drawn from RTs alone. 

Furthermore, it must be noted that the protocol did not include rewards for fast answers, 

limiting the informativeness of RTs. 

 

Figure 2: Results for sound dimensions, aggregating acoustic and synthetic stimuli (33 

participants, 1,848 responses). For each of the 16 sound dimensions, it shows the median 

response time (RT), the better/worse divergence index (BWD), and the preference index (PI), 

and its corresponding binomial probability at 95% confidence, (.) p < .1, (*) p < .05, (**) p < 

.01, (***) p < .001. 
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Better and worse divergence 

The answer to the comparison question (“sound A” or “sound B”) is the core piece of 

information to consider. As the task poses two questions with terms “better” and “worse”, 

it is important to first evaluate the impact of this difference on the responses. For this 

purpose, we devised a better/worse divergence (BWD) index, ranging from 0 (no 

difference between the two terms) to 1 (all responses are skewed to either better or worse). 

BWD is calculated as follows: 

tot = better_low + better_high + worse_low + worse_high 

BWD = ( | better_high - worse_low | + | worse_high - better_low | ) / tot 

Where better_high is the number of participants who selected the high sound while being 

asked the question with the “better” option, and tot is the total number of responses. A 

low value of BWD can be interpreted as better/worse having little or no effect, hence 

indicating a positive outcome for the experimental design. Relatively high values might 

indicate, by contrast, a possible bias, as the two terms (“better” or “worse”) resulted in 

different responses. In Figure 2, relatively high values (BWD > .1) are visible for 

loudness, timbre 2, order, and register, while the other sound designs obtained very low 

values, in the range [.03,.06]. 

As this is a potential concern for the experimental design, the differences between 

the two modes were analyzed with Fisher's exact test. For each of the 26 designs, we built 

a contingency table with low/high as rows, better/worse as columns, and the number of 

user selections as values. For the vast majority of designs, the odd ratios were in the range 

~.8 and ~1.2, indicating a balanced choice between the “better” and “worse” options. All 

tests were non-statistically significant (p > .5). Only in three cases (acoustic loudness, 

synth register, and acoustic order), while still non-significant, odd ratios were more 

divergent, respectively .49, .62, and 1.42. As even these three cases result in non-

significant, moderate divergence, we consider the task design robust. 

 



 22 

 

Figure 3: Results for sound designs (33 participants, 1,848 responses). For each of the 26 sound 

designs, it shows the median response time (RT), the better/worse divergence index (BWD), the 

preference index (PI), and its corresponding binomial probability at 95% confidence, (.) p < .1, 

(*) p < .05, (**) p < .01, (***) p < .001. 
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High-low preference 

The preference assigned by participants to either sounds in each trial marks the 

intuitiveness of those sound stimuli to be used for the signification of uncertainty. To 

quantify the extent to which participants prefer either “high” or “low” version of a sound 

pair, we devised the preference index (PI), calculated as follows: 

tot_pref_high  = better_high + worse_low 

tot_pref_low   = better_low + worse_high 

PI = (tot_pref_high - tot_pref_low) / tot 

Where tot is the total number of preferences expressed. PI ranges from -1 (all participants 

prefer the low sound as indicating “high quality”) to 1 (all participants prefer the high 

sound as indicating “high quality”). Values around 0 indicate that half participants 

selected the low sound, while the other half selected the high sound. Hence, values close 

to 1 and -1 are an indicator of effective designs, because users tend to express a 

preference, showing that the sound design matches the participants' intuition. By contrast, 

values near 0 suggest that those sound designs are ineffective.  

To test the significance of the PI, we observe the divergence of the user selection 

from a random selection (p(low) = p(high) = .5) using an exact binomial test. This test is 

designed to either confirm or reject the null hypothesis by calculating the probability of 

success in a Bernoulli experiment with successive trials (low/high sound selections in this 

context), with the corresponding p-value. For example, when exposed to the loudness 

stimuli, participants selected the same sound (“high”) 104 times out of 132 trials, resulting 

in a binomial probability of .79 at 95% confidence, with p < .01. As is possible to observe 

in Figure 2, 8 out of 16 dimensions resulted in significant preferences (p < .05), indicating 

a positive result—namely, that the selection shows a clear non-random pattern, 

corresponding to high PIs. The other 8 dimensions show a binomial probability too near 

.5 (i.e., random selection), indicating them as ineffective sound dimensions. 

As each participant expressed their opinion about a sound pair twice, we also 

analyze the consistency in this choice by counting for how many pairs the participants 

expressed the same preference (selection of high or low sound twice), and for how many 

pairs elicited contradictory responses (selection of high and low sounds). A consistency 

index ranging from 0 (all selections were contradictory) to 1 (all selections were 

consistent) was calculated for each sound pair. This index ranged from .4 to .88, with a 

median .63. When comparing this index with the PI, high variability in the infra-subject 

consistency emerges for the sounds with low PI ([.2,-.2]). However, for high PI 
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(significant binomial probability > .65), high values for the consistency index are 

obtained (> .7), indicating that most participants selected the same sound twice. As this 

corroborates our main findings, and for the sake of brevity, we do not include the full 

values for this index. 

Acoustic and synthetic sounds 

Differences between acoustic and synthetic sound designs are important to observe. As 

shown in Figure 4, the values of PI for the different sound designs vary from -.36 to .73, 

with a median of .17. BWD and PI show no correlation (r = .1, p > .4), indicating that 

they capture orthogonal aspects of the results. Synthetic loudness, acoustic order, and 

acoustic clarity emerged as stimuli for which participants had a strong preference (PI > 

.4). Out of 26 designs, ten obtained a binominal probability higher than .64 (p < .05), 

indicating a significant non-random preference. The top four designs (synth loudness, 

acoustic order, acoustic clarity, and acoustic loudness) obtain probability higher than .7 

(p < .001). 
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Figure 4: Comparison of acoustic and synthetic sound designs for each sound dimension (33 

participants, 1,848 responses). For each of the 26 sound designs, it shows the preference index 

(PI). The sound dimensions are ordered by maximum PI in descending order. 

Discussion 

This experiment shows a large variability in the judgements expressed by participants. 

As shown in Figure 2, overall, 23% of the 26 sound designs obtained PI > .3, with 

binomial probability > .65 (p < .01). We consider this to be reasonably strong evidence 

for usable sound designs in aural interfaces to signify uncertainty. Interestingly, noise 

pink and noise white also show high preference, but opposite to the expected one (PI < -

.3). The cases with PI < .3 do not exhibit a sufficient preference to recommend usage, 

suggesting unsuitable designs (and sound dimensions). Synthetic loudness is without 

doubt the most effective and robust sound design (PI = .73, BWD = .03, bin. prob. = .86, 

p < .001). Among the selected sound dimensions, loudness definitely features as the most 

promising for practical use to signify uncertainty (see Figure 2). Order provides a 

promising dimension (PI = .33), contrasting highly structured and random-sounding 

sequences. Clarity in its acoustic version (PI = .42) appears usable, as well as timbre 2 

(sawtooth wave, PI = .39). 

We had anticipated that since loudness carries an association with sound source 

distance, a louder sound would appear closer, which would be seen to represent greater 

data certainty. The strong results in the loudness dimension support this hypothesis, 

though further research is needed to determine the precise intuition behind this 

preference. For example, other sonic metaphors are possible besides that of a sound 

source moving closer or farther away, including that of a speaker putting emphasis on 

certain words. The positive results for order provide support for the claim that an ordered 

sequence of notes, compared to an unordered, random-sounding sequence carries an 

intuition of greater data quality. Interestingly, the preference for order is stronger for the 

acoustic sounds than for the synthetic sounds. Random notes on a violin seem to convey 

a greater sense of unpredictability, perhaps due to a cultural expectation that violin sounds 

will appear more melodious than synthetic tones, or that disordered notes become less 

unpredictable or unpleasant when heard as simple sine waves. 

The timbre 2 dimension, comparing a sine tone (low) with an approximation of a 

sawtooth wave, revealed a preference for the high condition, contrasting with a slight 

preference for the low condition for timbre 1, which compares a square wave (high) with 
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a sine wave (low). Since we had little intuition how timbre might convey data quality, the 

high and low conditions for timbre were designated largely arbitrarily, so we were not 

surprised that results for timbre 1 and timbre 2 diverged. Since timbre is a complex 

dimension, many possible factors could contribute to this result. One possible explanation 

is that a richer or “brighter” harmonic spectrum makes a sound appear more “present,” 

creating a positive association with data certainty. Since a sawtooth wave has “brighter,” 

richer timbre than a sine wave, this theory could explain the preference for the high 

condition in timbre 2. Since a square wave, on the other hand, is missing the even 

harmonics (2nd, 4th, 6th, etc.), it tends to be described as “hollow,” which perhaps can 

explain the preference for the low condition in timbre 1. In absence of further research, 

these considerations remain rather speculative. 

Interestingly, two of the noise-based sound designs (pink and white noise) 

obtained significant preferences (PI = -.36, bin. prob. = .68, p < .01), but inverted with 

respect to our intuition during the design phase. The preference for narrower noise bands 

in the pink and white noise dimensions was surprising, since we had anticipated that wider 

noise bands would seem noisier and therefore be associated with greater uncertainty. Only 

the red noise parameter seems to weakly support our hypothesis. As red noise contains 

the fewest high frequencies, a feature shared with natural sounds such as wind, it is the 

least noisy of the three. One explanation of the divergent results for red noise could be 

that only in this category was the low condition sound “clear” enough for the noise 

metaphor to take precedence. For pink and white noise, both conditions may have 

appeared “noisy” enough, so that a sonic metaphor more related to richness of spectrum 

or “presence” took precedence, similar to the preference shown for the high condition in 

the timbre 2 dimension, a sawtooth wave. If this is the case, future research might 

investigate different configurations of red noise, or devise a different way of testing the 

pink and white noise parameters. 

A rather unexpected result lies in the variability between synthetic and acoustic 

versions of the same dimensions, compared in Figure 4. As is possible to notice, sound 

dimensions with a strong temporal component obtained tightly clustered results 

(attack/decay, location, duration, and rate of change). Other dimensions, including those 

that obtained the best results, show instead high variability between the designs (loudness, 

order, clarity, register, and pitch). A possible explanation is that acoustic sounds suggest 

different sonic metaphors than synthetic sounds, perhaps due to their association with a 

musical context. The results might also reflect the fact that acoustic sounds, even solo 
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violin notes, are more complex and contain a richer harmonic spectrum, so it is harder to 

isolate their effects.  

While we consider the aforementioned results to be robust and usable for 

uncertainty sonification, the experimental design shows limitations that should be borne 

in mind. First, the experiment has a very abstract focus and does not address the 

communication of spatial information, which is of more direct relevance to GIScience 

and geo-visualization research and applications. Furthermore, all participants came from 

a homogenous, young population, and a more diverse sample in terms of age group and 

ethnicity would be desirable. For instance, older participants might perceive the stimuli 

differently, particularly those involving higher frequencies.  

The experimental protocol included instructions aimed at reducing the ambiguity 

of terms such as “uncertainty” and “quality,” explicitly referring to a scenario involving 

a probe that captures data (see Appendix 1). When asked how well they understood the 

task on a 1-7 Likert scale (1 not at all, 7 very well), participants rated their understanding 

of the task itself fairly high in general (M = 5.27, SD = 1.61). Some participants offered 

feedback indicating that they felt confident while performing the task, but found it 

difficult not be influenced by their own aesthetic preferences (“I wasn't sure if I was 

supposed to choose the sound I liked better, or the one where the quality is more clear”; 

“The sounds can be pleasing when it comes to music but I become conflicted because the 

abrupt sounds may give you a better understanding when it comes to data.”). Although 

some participants were able to articulate this issue, it is likely that others were not.  

User feedback (both informal and formal) indicated that the semantics of terms 

“certain,” “uncertain,” “high,” and “low quality” was deemed to be problematic by 

several participants. Of the twelve participants offering feedback regarding the nature of 

the task, many stated some degree of confusion regarding the interpretation of “data 

quality.” Examples of participant statements include: “I was unsure on what was 

considered a better data quality sound” and “‘Quality’ is somewhat subjective.” However, 

This problem has already been encountered by previous cognitive psychological work 

(MacEachren et al., 2005), and seems to be avoidable only through experimental designs 

that do not mention any of these terms. Thus, these results highlight a need for indirect 

methods of assessing behavior without reliance on each person’s intuition of the construct 

in question. 
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Conclusions 

In this article, we have explored empirically the challenge of representing uncertainty 

through sound. This approach can be useful to complement and even replace visual 

representations of spatial data, tapping into an under-utilized communication channel. 

After reviewing the existing work in the interdisciplinary field of uncertainty semiotics 

and sonification, we selected a number of sound dimensions to investigate how 

appropriate they are to represent uncertainty, such as loudness, duration, pitch, and 

register. In order to explore empirically the intuitiveness of these dimensions, we 

designed a set of pairs of aural stimuli, including acoustic and synthetic sounds, in which 

only one of these dimensions was altered. These stimuli were then used in an experiment 

with human participants (N=33), which collected their intuitive judgements about the 

sound stimuli meaning with respect to perceived data quality.  

This data, freely available in our online repository, allows ascertaining to what 

extent different dimensions and sound stimuli elicit a preference for a specific sound, as 

opposed to a random choice. The analysis of results revealed a number of findings, useful 

to provide guidelines for practitioners and sonification designers. The findings can be 

summarized as follows: 

1. The most effective dimensions, which provide statistically significant preferences, 

are loudness, order, clarity, timbre based on a sawtooth wave, as well as pink and 

white noise (see Figures 2 and 3 for details). The other dimensions generated 

judgements that do not diverge from random in a significant way, indicating their 

unsuitability for the representation of uncertainty. 

2. Pitch, the most popular dimension used in sonification to represent quantities 

(Dubus & Bresin, 2013), obtains near-random results. This indicates the need for 

specific metaphors for the sonic representation of uncertainty, as occurred in the 

visual domain (MacEachren et al., 2012). 

3. For dimensions focused on temporal changes (attack-decay, location, duration, and 

rate of change), acoustic and synthetic sound designs strongly converged to similar 

results. By contrast, non-temporal dimensions show more divergent results, 

indicating a higher impact of properties specific to acoustic and synthetic designs 

(see Figure 4), possibly related to expectations about known musical instruments. 

In this sense, synthetic sounds should be preferred as less culturally loaded. 
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4. In our experiment, some participants reported semantic confusion around terms 

“certainty,” “uncertainty,” and “quality”. While this might prove hard in practice, 

the experimental design in further work should favor more indirect tasks that do not 

mention these ambiguous terms. 

These guidelines provide the first step towards effective sonification techniques of data 

uncertainty. However, more work is needed to develop effective sonic and multi-sensorial 

representations of uncertainty in order to support data exploration and interpretation in 

data science and analytics. As the work in this article focuses on sound dimensions in an 

abstract space, further work is needed to explore the spatial dimension that is central to 

cartographic representations, benefitting GIScience more directly. In future experiments, 

it will be worth tackling spatially structured information, arranging the sound stimuli in 

two-by-two grids, asking participants to listen to, interpret, and compare sound 

sequences. Based on the guidelines reported in this article, this approach will enable the 

design of experiments with right and wrong answers, getting closer to usable sound 

designs. 

From a methodological standpoint, it will be important to develop tasks that allow 

cognitive measurement without eliciting an explicit semantic interpretation by 

participants. For example, as uncertainty is an inherently difficult concept to understand, 

other research has asked participants to use uncertainty in the visual channel to perform 

a secondary task rather than to estimate uncertainty directly (Hegarty et al., 2017; 

Ruginski et al., 2015). Knowing which sound dimensions individuals find intuitive can 

support this type of experimental design.  

More research is also needed to investigate the properties of complex sound 

dimensions, such as timbre and noise, as well as the impact of volume on the results, 

going beyond the sound design presented in this article. In parallel, sonification 

approaches should be tested in more concrete scenarios, in different domains and 

contexts, such as risk assessment, decision-making in emergencies, and data quality 

assessment. Such an approach will allow researchers to further verify our findings, and 

would suggest novel designs, hopefully enabling real applications of sonification in 

GIScience and geo-visualization, which have, to date, failed to appear. Communicating 

uncertainty effectively in sonic representations would be greatly beneficial to support 

complex scientific, political, and administrative tasks, beyond vision-impaired users that 

constitute the most obvious beneficiaries of the sonification of uncertainty. 
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Appendix 1: Experiment protocol 

Experimenter: “The first thing you see in front of you is an informed consent sheet that 

outlines your rights as a participant. Please read over this informed consent sheet 

carefully. If you have any questions, please let me know. 

Before we start today, we just need to calibrate our headphones. I will play a few 

sounds for you to listen to. After each sound I will ask if you could hear it and if it was 

comfortable or too loud. Okay? Please put the headphones on ensuring the left headphone 

in over your left ear and right over your right ear.” 

Play the calibration sound and ask: (follow up questions: Can you hear this? Was 

the sound uncomfortable or too loud?) 

[Begin] 

Today you are going to participate in an experiment on sound and data quality. 

You work for a team of scientists preparing to investigate an unknown planet. The 

team is sending a probe equipped with a new device to capture data about the planet. The 

pilot on this mission must continuously monitor the device to make sure it is capturing 

accurate data, but she needs her vision to navigate the probe safely. The team plans to 

program the device so that it will indicate the quality of the data it collects using sound. 

 The computer has generated a large number of sounds for this task, but it needs 

to know how humans will respond to the sounds. Your job is to help the computer learn 

which sounds might be the most effective at indicating data certainty. Ask your 

experimenter if you have any questions. [Continue] 

Okay, great. Let’s do some practice problems. [Begin trials] 

You have completed the practice problems. Please hit the 's' key to continue. 

The computer will play two short sounds. Then, it will ask you to choose which 

sound corresponds to BETTER/WORSE data quality. [Loop through comparison trials] 

You have finished the first part of the experiment. Please inform the experimenter. 

[End] 

Experimenter: “Now I will ask you to fill out some questions on the computer. At 

the end of each page is a double arrow click button. Please press it to move on. If you any 

questions as you work through them please let me know.”  

 

 


