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Abstract 

 

The trajectory and success of fetal, perinatal and infant growth and development is regulated 

and/or altered by a multitude of intrinsic and extrinsic factors. Both growth and development 

exhibit a degree of plasticity and thus may fluctuate in response to early life adversity. Non-

adult skeletal remains therefore provide a tangible record of growth and health disruption as a 

consequence of stress in the early life course.  

 

This study represents the first extensive and integrated osteological and palaeopathological 

assessment of fetal, perinatal and infant growth and health disruption. It seeks to determine 

skeletal responses to adversity and to provide a comprehensive consideration of the potential 

pathogeneses, etiologies and contextual factors which can affect intrauterine and postnatal 

health and growth.  

 

A total of 423 individuals from 15 different archaeological and historical samples, spanning a 

~2000-year time period, have been considered for analysis. Assessment reveals a complex 

and intricate narrative of health and growth disruption, revealing evidence of chronic early 

life exposure to stress, which resulted in death for these individuals. A total of 192 

individuals had both dental and skeletal elements preserved and 20% (N=39) of these were 

found to show significant evidence of growth disruption. Individuals from all time periods are 

represented, but those from post-Medieval London were found to exhibit the highest 

frequency and severest evidence of growth disruption. Palaeopathological analysis revealed 

high prevalence rates of both cranial (70%) and postcranial (30%) lesions, with cranial 

changes consistently more common throughout all periods and samples. New bone formation 

was the most commonly identified type of lesion and is considered to reflect evidence of both 

nutritional and infectious health stressors. Furthermore, it is suggested that socioeconomic 

status was a dominant factor in regulating exposure to stress. Additionally, periods of rapid 

cultural change also correlated with increased evidence of fetal and infant stress. 

 

This thesis makes a number of important contributions regarding fetal, perinatal and infant 

growth and health during the early life course.  
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Chapter 1: Introduction 

 

The field of bioarchaeology emerged in the 1970s and 80s as part of a scholarly movement 

which aimed to understand the simultaneous biological and cultural significance of lives of 

people in the past (Armelagos et al. 1982, 321; Ortner 2006, XIV; Zuckerman et al. 2012, 40-

41). The assessment and analysis of skeletal remains has thus long since been recognised as 

essential in generating meaningful interpretations and perspectives regarding past individuals 

and populations (Armelagos et al. 2009, 269). As Beck states, bioarchaeology is ‘…not about 

how [past] people died, but about how they lived’ (2006, 83). Furthermore, where previous 

decades focussed on individual case studies, unusual pathological ‘specimens’, and 

typologies (Buikstra & Cook 1980, 435; Buikstra 2006, 11; Buikstra & Roberts 2012, 768-

770; Buzon 2012, 59; Zuckerman et al. 2012, 34; Ellison 2018, 619), bioarchaeology today 

attempts to focus on more general population-based analyses (Wood et al. 1992, 344; Roberts 

2006, 423; Buikstra & Roberts 2012, 770; Zuckerman et al. 2012, 34). It has been recognised 

that such analyses must not only consider the wider archaeological context, but adopt an 

interdisciplinary approach to fully explore the potential of their findings (Roberts & 

Manchester 2010, 274; Zuckerman et al. 2012, 35; Martin et al. 2013, 7) (For further 

information on the history of bioarchaeological research see Angel 1981; Armelagos & Van 

Gerven 2003; Buikstra & Beck 2006). 

 

Analysis of non-adult skeletal remains, including those of fetal, perinatal and infant 

individuals, is known to provide a wealth of information concerning both their physical and 

social lives (Baxter 2005, 99; Lewis 2007, 1; Halcrow & Tayles 2008, 190; Finlay 2013, 209-

210; Halcrow & Ward 2017, 1). Assessment of both growth and development, and health and 

wellbeing, can reveal unique insights into early life experiences, and the factors to which 

individuals were exposed during their brief and precarious lives (Scheuer & Black 2000a, 5; 

Baxter 2005, 99; Lewis 2007, 1; Agarwal 2016, 130; Halcrow & Ward 2017, 1). Thus, this 

thesis endeavours to explore growth and health disruption in a multi-sample investigation of 

fetal, perinatal and infant individuals, elucidating the contextual significance of these findings 

in light of both ongoing archaeological and clinical investigations.  
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1.1 The Fetal, Perinatal and Infant Life Course 

The earliest stages of the human life course have been defined as those of the fetus, perinate 

and infant (e.g. Lewis 2007, 2; 2017c, 1; Halcrow & Tayles 2008, 194). This study has 

classified individuals between 0-36 gestational weeks of age as fetal, those between 36 and 

44 gestational weeks of age as perinatal, and individuals considered to be over 44 gestational 

weeks, up to 6 months of age postpartum, are referred to as infants. Employing this 

terminology has allowed distinctions to be made between individuals based on their 

biological age estimates, resulting in individuals also being combined into age groups which 

reflect the varying extent of their pre- and postnatal experiences.  

 

The fetal, perinatal and infant life stages are ones of demonstrable fragility, where growth, 

health and wellbeing are malleable, dependent on a complex interplay between both genetic 

and environmental factors (Cattaneo 1991, 39; Saunders & Hoppa 1993, 128; Bogin 1999, 

51; 228-239; King & Ulijaszek 1999, 161; Cardoso 2007, 223). With early life plasticity 

being a central dynamic in determining our long term developmental outcomes (Joseph & 

Kramer 1996, 158; Barker 1997, 807; 2012, 186; Barker et al. 2002, 1238; Said-Mohamed et 

al. 2018, 4), observing and identifying clear changes and disruption to growth and health in 

the early life course is an ongoing clinical concern (e.g. Azcorra et al. 2016; Fell et al. 2016; 

Fried et al. 2017; Holdsworth & Schell 2017; Hujoel et al. 2017). Both intra- and extrauterine 

life is regulated by a multitude of intrinsic and extrinsic factors, all of which the 

fetus/perinate/infant has limited individual regulation of (Cattaneo 1991, 39; Barker et al. 

2012, 30). Consequently, assessment of fetal, perinatal and infantile growth and health status 

provides a tangible reflection of maternal, as well as community, health and wellbeing 

(Goodman & Armelagos 1989, 239; Redfern 2003, 162; Baxter 2005, 99; Lewis 2007, 20).  

  

Understanding fetal, perinatal and infantile growth and health relies on consideration of the 

intricate relationship between child, mother and environment (where environment is 

considered to be any external factor, including those which are social, cultural, dietary or 

disease related). The mother-infant dyad is one in which previous and existing maternal life 

course experiences impact upon the growing fetus/perinate/infant (Redfern 2003, 162; Barker 

et al. 2012, 30-31; Gowland 2015, 533; Said-Mohamed et al. 2018, 7). Genetic information 

can pre-determine susceptibility and fragility to disease, as well as provide immunological 

resistance (Barker et al. 2012, 33), whilst environmental factors may limit or aid individuals 
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in reaching their genetic growth and health potential. With the offspring able to alter and 

change their developmental pathway due to the high degree of plasticity during the pre- and 

postnatal periods (Wadhwa et al. 2011, 352; Gowland 2015, 530-531; Said-Mohamed et al. 

2018, 4; Satterlee Blake 2018, 44), growth and health status can reflect the varying maternal 

experiences and environmental factors experienced during the intrauterine period. Therefore, 

the relationship between, and wellbeing of, both mother and child is complexly bound, with 

the mother able to dually regulate offspring growth and health via both genetics and exposure 

to, and regulation of, environmental conditions.  

 

The environmental conditions experienced during pregnancy by the mother, and thus by 

proxy the fetus also, can have a significant impact on intrauterine health and growth, as well 

as birth outcomes (Coussons-Read et al. 2012, 651; Dancause et al. 2012, 307; Glover 2015, 

270; Hoffman 2016, 655). The maternal body attempts to maintain the most optimal 

intrauterine environment, with it considered that the mother’s body instinctively prioritises 

the developing fetus (Gowland 2015, 533) regardless of her own health status. Consequently, 

during an ideal pregnancy, the offspring will typically receive nutritional and immunological 

safeguarding from the mother through her regulation of any environmental factors (Barker 

2003, XII; Barker et al. 2012, 31; Said-Mohamed et al. 2017, 7). Changes in environmental 

conditions, which may be either beneficial or detrimental to the developing fetus, can alter 

this maternal regulation through a complicated relationship between offspring, placenta and 

mother (Wadhwa et al. 2011, 353). With fetal/perinatal/infant and maternal health directly 

correlated, maternal inability to buffer against detrimental environmental conditions can lead 

to harmful consequences; severe environmental changes – such as high disease loads, limited 

nutrition, and psycho-social stressors – can limit offspring growth and health, as well as cause 

deleterious consequences for birth timing and outcome (Zhu et al. 2010, 1; Wadhwa et al. 

2011, 352; Coussons-Read et al. 2012, 650; Glover 2015, 270). Skeletal evidence of a poor 

intrauterine environment, such as growth disruption and pathological lesions, identified in 

fetal, perinatal and infant individuals, hence reveals not only the health status of these 

individuals, but also elucidates the health status of the often invisible mother (Gowland 2015, 

533).  

 

Significantly, research within the last few decades has also revealed that the environmental 

conditions to which we are exposed during early prenatal life can impact our gene expression 
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(epigenetic changes) and phenotype, reflecting the adverse or beneficial conditions 

experienced in utero (Cattaneo 1991, 40; Glover 2015, 277). Ultimately then, no longer is 

fetal, perinatal and infant growth and health status a reflection of either hereditary (genetic) 

or short-term environmental changes, but may in fact be the consequence of interaction 

between the two. Therefore, these epigenetic changes may predispose our susceptibility 

and/or resilience to certain environments or conditions, simply reflecting the ability of the 

human body to alter in response to alternative environmental conditions than those 

anticipated (Wadhwa et al. 2011, 352). Consequently, individuals are ‘best’ adapted for the 

environment to which they are exposed during intrauterine life (Keinan-Boker 2014, 2). The 

development of the Barker Hypothesis in the 1980s (Armelagos et al. 2009, 261; Keinan-

Boker 2014, 2), today known as the Developmental Origins of Health and Disease 

Hypothesis (DOHaD Hypothesis) (e.g. Barker 2012) has led to extensive research revealing 

the plethora of long term growth and health implications of a detrimental in utero experience 

(Ulijaszek & Henry 1996, 1; Barker 1997; 2003; 2012; Barker et al. 2002; 2012; Hoffman 

2016, 656). Today, both epidemiological and auxological research is revealing the wealth of 

factors that impact birth and life course outcomes, considering the epigenetic impact of 

environmental and lifestyle factors (e.g. Barker et al. 1990; Barker et al. 1991; Syddall et al. 

2005; Glover 2012). Contemporary concerns include the effects of maternal smoking (e.g. 

Cornelius & Day 2009; Langley et al. 2012; He et al. 2017), alcohol consumption (e.g. 

Coathup et al. 2017; Mamluk et al. 2017; Sundelin-Wahlsten et al. 2017) and 

vitamin/nutrient deficiencies (e.g. Roseboom et al. 2000; Rogne et al. 2017). Results of these 

studies have found that individuals exposed to such factors in utero have increased risk of 

diabetes (e.g. Stöger 2008), heart disease (e.g. Barker & Osmond 1986; Barker et al. 1989), 

behavioural disorders (e.g. Armelagos et al. 2009, 263; Malaspina et al. 2008; Khashan et al. 

2008; Egliston et al. 2007) and obesity (e.g. Vickers et al. 2000; Ojha & Budge 2017). 

 

The complexity of epigenetics is further exacerbated when multiple generations or lengthy 

temporal periods are considered – as in an archaeological context. Epigenetic traits become 

embedded within the overall genetic code, with the expression of these traits transferred from 

parent to child, and subsequently grandchild (Glover 2015, 277; Gowland 2015, 534; 

Satterlee Blake 2018, 43). As intrauterine experiences influence and determine susceptibility 

to disease over the life course (Barker 1994, 1), it has been suggested that those who 

experience a detrimental prenatal environment are more likely to be unable to provide an 
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optimum in utero environment for their own offspring as a result of ‘ancestral experiences’ 

and an accumulation of risk (Gowland 2015, 534). Ultimately, a predisposition to poor health 

over an individual’s life course is likely to result in similar or additional detrimental 

exposures in the offspring. This results in a cyclical process whereby epigenetic changes 

become embedded and cumulative across generations (Gowland 2015, 534-535). This 

complexity has led to Gowland (2015) conceptualising this mother-infant dyad and 

intrauterine period in terms of entanglement – where multigenerational, and both intrinsic and 

extrinsic factors, are entwined in determining the fetal/perinatal/infant life course. 

Consequently, we must no longer view individuals in isolation, considering only their 

immediate life course experience, but instead reflect on the life course experiences of their 

parents and grandparents also.  

 

In addition, pregnancy-related cultural practices, as well as response, treatment and care of 

the child once born can all also be reflected in individual growth and health status (Finlay 

2013, 212; Satterlee Blake 2018, 43 e.g. Wilkie 2013). As Sánchez Romero emphasises 

(2017, 18), from birth, cultural and care related practices are essential in not only enabling 

and contributing to survival of the offspring, but also providing the optimum conditions for 

health, growth and wellbeing. Indeed, growth and health status in turn reflect the social, 

cultural and economic conditions experienced in early pre- and postnatal life (Sánchez 

Romero 2017, 18).  

 

As a result, both the intra- and extrauterine environment, and the mother’s ability to regulate 

this, as well as the relationship and interaction between environmental, epigenetic, and 

genetic factors, must all be considered in relation to individual growth and health. 

Understanding the complexities of these relationships is however, somewhat problematic, as 

these multiple mechanisms can cause similar health and growth outcomes for the offspring 

(Kramer & Joseph 1996, 1254; Kramer 1998, 663; Armelagos et al. 2009, 264; See 

Armelagos et al. 2009, 268 for a comparison of how environmental, genetic and epigenetic 

factors could each be responsible for negative growth and health outcomes). Therefore, 

defining the precise cause/factor for growth and health disruption, and disentangling 

environmental factor from genetic is challenging, particularly in regards to archaeological 

skeletal remains. Yet, what must remain paramount is the acknowledgement that growth and 

health cannot be simply understood, and instead reflect a complex interplay of factors, which 
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extend from the immediately experienced pre- and postnatal environments, to 

intergenerational health and life course experiences.  

 

1.2 The Fetus, Perinate and Infant in Archaeology and Bioarchaeology 

The fetus/perinate/infant has long been a marginalised entity, remaining invisible within 

archaeological discourse until the last two decades (Scott 1999, 5; Lewis 2007, 1; 3; Halcrow 

& Tayles 2008, 191; Finlay 2013, 209-210; Sánchez Romero 2017, 16). This is partly a 

consequence of the historical notion, that was once widely held, that such young, fragile, and 

small individuals were worthless, unable to provide any data of value (Pollock 1983, 1; Lewis 

2007, 20; Kamp 2015, 162). As a result, fetal, perinatal and infant individuals have often 

been marginalised in the archaeological record (Baxter 2005, 2; Halcrow & Tayles 2008, 

191; 197; Kamp 2015, 162; Sánchez Romero 2017, 32); commonly missed, misidentified 

(Lewis 2007, 26; e.g. Ingvarsson-Sundström 2003, 15), or even discarded in the past (Becker 

2006, 655). Today increasing interest and awareness of the importance and value of these 

individuals is leading to their more thorough and careful excavation and assessment. 

Although osteological assessment of fetal/perinatal/infant individuals is still generally 

considered to be more difficult than that of older non-adults and adults (Lewis 2018, 113), 

increasing numbers of studies assessing aspects of fetal/perinatal/infant life are exposing the 

value and significance of their investigation (Finlay 2013, 212; Halcrow et al. 2018, 83). In 

the last 30-years numerous anatomical and archaeological collections of non-adults have been 

published and have primarily been used to test methodologies for determining biological age 

and sex (e.g. Moorrees et al. 1963a; 1963b; Redfield 1970; Maresh 1970; Garn et al. 1973; 

Garn & Clark 1975; Fazekas & Kósa 1978; Weaver 1980; Molleson 1990; Molleson & Cox 

1993; Schutkowski 1993; Scheuer & Black 1995; Scheuer 1998; Scheuer & Black 2000a; 

AlQahtani et al. 2010; Aleman et al. 2012).  

 

The 1980s saw the development of post-processual archaeology, within which gender-related 

and feminist focuses emerged (Lewis 2007, 1; e.g. Derevenski 1994; 1997; Moore & Scott 

1997; Meskell 2001; Diaz-Andreu 2005). These initial studies addressed aspects of the 

‘marginalised individual’ and thus began to consider the roles of women and ‘children’ 

within the archaeological record (e.g. Lillehammer 1989). However, many of these early 

studies focussed on the attitudes of adults towards these younger individuals rather than the 

experience or perception of the infants/children themselves (Scott 1997, 6-7; Baxter 2005, 17; 
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Lewis 2007, 3). In particular, non-adults were typically considered in relation to women, and 

the impact they had on the lives and work of women (Scott 1999; 5; Lillehammer 2000, 17; 

Lewis 2007, 1). Consequently, it was not until the 1990s that children, specifically fetal, 

perinatal and infant individuals, were considered as active, rather than passive, participants in 

life (Lewis 2007, 1; Mays et al. 2017, 1; e.g. Sofaer Derevenski 1994a; 1994b; 1997; Baker 

1997; Baxter 2005; Halcrow & Tayles 2008; 2011). Much of the literature regarding 

‘childhood’ has tended to focus on the cultural, social and burial environments and treatment 

they were afforded (e.g. Crawford 1991; Scott 1999; Sofaer Derevenski 2000; Baxter 2005) 

rather on the physiological data that can be gathered from the skeletal remains themselves 

(Shilling 2003, 21; 105; Prout 2005, 57). Today, an increasing awareness of the significance 

of fetal/perinatal/infant skeletal and dental remains is revealing important insights into the life 

course experiences of the youngest individuals in the past (e.g. Gowland 2017). The highly 

plastic nature of the skeleton during these early life stages means that not only are 

fetal/perinatal/infant individuals particularly susceptible to negative environmental 

onslaughts (Cardoso 2007, 223; Armelagos et al. 2009, 267), but their bony remains are more 

likely to reflect growth and health disruptions as a result. This is why these individuals 

(fetuses/perinates/infants) are considered to be some of the most sensitive barometers for 

population health and wellbeing (Lewis 2000, 39; Baxter 2005, 99).   

 

However, correlating concepts of growth and health disruption to archaeological skeletal 

material is often problematic. While bioarchaeology widely adopts an interdisciplinary 

approach, utilising methods and comparative data from fields including anthropology and 

medicine (Martin et al. 2013, 1; Zuckerman et al. 2012, 35), much of the literature continues 

to avoid skeletal changes relating to fetal, perinatal and infant individuals, despite these 

individuals providing unrivalled potential for investigating early life course experiences. 

With bone turnover in these young individuals exceptionally rapid (Ulijaszek & Henry 1996, 

2), responses to growth and health insults present much earlier, and often more severely, as a 

result of their immature immune system, than they would within an adult individual 

(Goodman & Armelagos 1989, 239; Perry 2005, 92; Halcrow & Tayles 2008, 336). 

Furthermore, clinical studies often focus on aspects of human systems unavailable for 

assessment in the archaeological record, such as soft tissue structures, and diseases which 

leave no discernible traces on the skeleton (Ortner 2008, 191). This means considering 
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archaeological and historical individuals is vital in understanding the skeletal mechanisms 

and responses to detrimental early life intra- and extrauterine experiences. 

 

1.3 Research Aims 

This research aims to investigate fetal, perinatal and infantile skeletal growth and health as a 

response to stress within a variety of temporally disparate archaeological and modern 

samples. Undertaking detailed macroscopic osteological analysis, and exploring multiple 

methodological approaches, this project considers the varying stressors which have impacted 

on early growth and health status. Consequently, intra- and inter-sample comparisons enable 

consideration of similarities and differences in the skeletal responses to health and growth 

disruption between individuals from different environments, social statuses and time periods. 

Thus, this study aims to further current understanding regarding the skeletal evidence for 

early life exposure to stressors, and to provide a comprehensive consideration of the potential 

pathogeneses, etiologies and contextual factors which lead to growth and health disruption. 

Individuals up to the age of six post-partum months have been considered for assessment. 

This upper age limit was determined to ensure all individuals assessed reflected the very 

earliest stages of the life course and the immediate pre- and postnatal environments; such a 

narrow age range meant that individuals assessed would have had a limited duration in which 

they could respond to, and recover from, pre- and postnatal insults. 

 

1.4 Research Objectives 

In order to achieve the intended research aims, this research study has seven primary research 

objectives: 

 

1. Synthesise and review the corpus of literature regarding the fetus, perinate and infant 

in archaeological and bioarchaeological discourse. Integrating clinical, 

anthropological and biological research, consider the developments in fetal/infant 

studies and the ongoing limitations.  

2. Undertake metric, dental and pathological assessment of 423 individuals from 15 

archaeological/modern samples. Compile databases of skeletal measurements, dental 

development and pathological lesions for each individual, where possible. 

3. Calculate age-at-death estimates for each individual (where possible) using metric and 

dental data collected.  
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4. Assess differences and variations in age-at-death estimates generated, and determine 

which skeletal element(s) show higher levels of variation/disruption. 

5. Record the presence and characteristics of pathological lesions, including their 

distribution within skeletal elements and the broader skeleton. 

6. Calculate the TPR (True Prevalence Rate) of lesions and consider the potential 

pathogeneses and etiologies of these lesions within and between samples. 

7. Examine correlations between evidence of growth disruption and health disruption, 

whilst integrating contextual information regarding the individuals/samples/time 

periods analysed. 

8. Synthesise metric, dental, pathological and contextual data to observe and explore 

temporal patterns of growth and health disruption and develop a narrative regarding 

the fetal, perinatal and infant life course in the past.  

 

1.5 Research Questions 

The primary research questions articulated in the study design of this project were as follows: 

 

1. Is there evidence of growth disruption (extreme variation) between skeletal elements 

of individuals considered within each sample or time period?  

2. How many individuals within each sample/time period show evidence of growth 

disruption? 

3. Is evidence of growth disruption consistent between samples/time periods?  

4. Which period has individuals with the most extreme evidence of growth disruption 

and why? 

5. Is there a correlation between growth disruption and pathological lesions?  

6. Which skeletal elements are most commonly found to have a pathological response 

and how do these lesions present?  

7. What are the etiological, pathogenic and contextual implications of evidence of health 

disruption? 

8. Can we differentiate between new bone formation as part of normal growth and 

pathological bone formation? 
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1.6 Thesis Outline 

This thesis has been sub-divided into 11 chapters in order to address the research aims, 

objectives and questions outlined above. Bioarchaeological, anthropological and clinical 

research has been widely considered throughout this thesis to reflect the multi-disciplinary 

interest and importance of such research. Consequently, Chapters 2 and 3 will provide a 

theoretical and biological framework to contextualise the themes, concepts and literature 

explored within this study. Chapters 4 and 5 outline the skeletal samples and methods utilised 

in this study. Chapters 6, 7, 8 and 9 are the research manuscripts presented in this thesis. The 

first three research manuscripts explore health and growth disruption within the contextual 

parameters of specific time periods. The fourth manuscript, Chapter 9, specifically explores 

the pathological lesions identified, as a proxy for evidence of health disruption. Chapter 10 

draws together the findings of the research manuscripts and discusses them in reference to the 

research questions listed above. Chapter 11 concludes this thesis by addressing the research 

aims, objectives and questions, outlining the results of this assessment and detailing the 

potential future recommendations and directions for fetal, perinatal and infant studies.  

 

The manuscripts in this thesis have been formatted for publication in peer-reviewed research 

journals and are thus multi-authored between Claire M. Hodson and Dr. Rebecca L. 

Gowland. All data collection and analysis was conducted by Claire M. Hodson. Dr. Rebecca 

L. Gowland and Prof. Charlotte A. Roberts were supervisors on this research project and 

provided support, guidance and editorial suggestions in the development and production of 

this research project, all four research manuscripts and the final thesis.  

 

A detailed structure of this thesis has been outlined below: 

 

Chapter 2: Investigating the Fetus, Perinate and Infant; The Emerging Bioarchaeological 

Field 

This chapter provides an overview of the history of fetal, perinatal and infant studies and 

discusses the existing bioarchaeological research in this field to document the major themes 

so far explored. As fetal/perinatal/infant studies have become a burgeoning field of study, 

new theoretical and methodological approaches to investigating these young individuals have 

been outlined. Common debates and ongoing limitations of non-adult studies have also been 

considered. This chapter will also reflect on the potential problems when working with 
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skeletal human remains, particularly those of such young individuals, and consider the 

limitations of retrieval, identification and of existing methods typically employed in analysis. 

This chapter will also discuss the ethical considerations of working with fetal, perinatal and 

infant individuals, particularly in regards to the Smithsonian Fetal collection.   

 

Chapter 3: The Beginnings of Life; Understanding Growth, Health and Stress in a 

Bioarchaeological Context 

This chapter discusses in detail the growth and development of both skeletal and dental 

tissues, considering in particular the biological mechanisms behind cranial and long bone 

growth. This chapter also considers the definitions and terminology associated with 

chronological and physiological age, as well as exploring the meaning of growth, health and 

stress in a bioarchaeological context. 

 

Chapter 4: Materials 

This chapter details each of the 15 archaeological or historical collections analysed within 

this research in chronological order.  This chapter provides contextual information regarding 

the history of each site, as well as information related to the burial, excavation and curation of 

the individuals assessed. The rationale for inclusion of these sites/collections within this 

study has also been outlined.  

 

Chapter 5: Methods 

This chapter outlines the methods used to both collect and analyse skeletal data for metric, 

dental and pathological assessment. It considers the limitations of these methods and justifies 

the use of these methods within this thesis. This chapter also discusses the methodologies that 

were not employed and included within this study and justifies their exclusion. This chapter 

also details results of intra- and inter-observer error calculations. 

 

Chapter 6 (Manuscript 1): Measure for Measure: A comparative study of the impact of 

stressors on fetal, perinatal and infant growth in Iron Age and Roman Britain. 

This article compares and contrasts growth changes and pathological indicators identified in 

individuals from Owslebury, Piddington and Barton Court Farm. This paper investigates 

correlations between pathological indicators and growth changes in the Iron Age and Roman 

individuals assessed, highlighting an increase in health disruption from rural Iron Age to rural 
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Roman individuals. Contextual implications for the growth and health disruption identified 

are also thoroughly discussed. This paper also exposes the need for dental development to be 

used to more accurately age fetal/perinatal/infant individuals, highlighting the inherent bias in 

the skeletal methods typically used for age assessment. Assessment of these individuals, 

using the methodologies outlined to accurately determine health and growth disruption, also 

supports arguments against infanticide, and emphasises the need for holistic interpretations of 

non-adult death and burial on rural settlement sites during the Iron Age and Roman periods.  

 

Chapter 7 (Manuscript 2): Like Mother, Like Child: Investigating change and continuity in 

fetal, perinatal, infant and maternal health stress in post-Medieval London.    

This article compares and contrasts growth changes and pathological indicators from 

individuals excavated from post-Medieval London. Although extensive research has been 

conducted on the adult individuals excavated from these contexts, little consideration of the 

fetal/perinatal/infant individuals has yet to be afforded. Assessment of such individuals 

explores the socioeconomic implications of being members of these communities, 

highlighting geographical, economic and status driven distinctions in growth and health 

status. This paper illuminates the deplorable and deleterious conditions that many faced 

during the post-Medieval period in London, revealing evidence of chronic, inescapable 

illness and poverty. Methodologically, the most revealing implication from the assessment of 

these individuals is that the pars basilaris appears to be a good proxy for dental, and 

subsequently chronological, age. Comparability between this cranial skeletal element and the 

dentition suggests prioritisation of growth within these elements, whilst post-cranial, 

particularly long bone growth, appears to be severely disrupted. Individuals assessed from 

post-Medieval samples in London were found to show the most extreme and consistent 

evidence for both growth and health disruption.  

 

Chapter 8 (Manuscript 3): Little Lives: A metrical and morphological evaluation of a 

documented 20th Century fetal and infant skeletal collection.  

This article considers growth and health disruption in a clinical sample stored at the 

Smithsonian Institute in Washington D.C. where cause of death, biological age-at-death, and 

biological sex are often recorded. This sample, although temporally and geographically 

disparate from the other samples assessed within this thesis, enables consideration of the 

accuracy of the methodologies applied to determine growth and health disruption. This paper 
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examines the differences in health and growth disruption based on biological age, biological 

sex and cultural background of these individuals, identifying clear differences in growth 

strategies based on these factors. The implications of targeted collection practices are also 

extensively considered within this paper, with these the likely cause of the high pathology 

rates within the sample; individuals were collected on the basis of their health/disease status 

and cause of death. Analyses of individuals within this fetal collection, and the relationships 

between growth and health status, hence provide a unique dataset for comparative analysis 

and aid in interpretation and understanding of these factors in the early life course.  

 

Chapter 9 (Manuscript 4): Perinatal Pathology in Bioarchaeology: Investigating the 

Potentials, Problems and Implications. 

This article focusses on the assessment of pathological lesions in fetal, perinatal and infant 

remains. Using all 423 individuals from the collections analysed throughout this thesis, this 

paper explores the difficulties and complications of assessing pathological changes in young 

individuals, considering in particular the ongoing debate surrounding the differentiation 

between normal and pathological new bone formation. This paper also considers the 

implications of the location and appearance/type of pathological lesions to consider the 

etiological and pathogenic differences, contextualising these within the archaeological and 

historical record to observe changes and continuity in patterns of health disruption over time. 

In addition, this paper comprehensively considers the DOHaD hypothesis and the 

implications of multigenerational health disruption, looking to the future and the further 

avenues of research to be pursued if the interactions between health and disease, and their 

combined implications on long term health, are to be truly understood throughout history. 

This paper proposes a new methodological approach to assessing fetal/perinatal/infant 

pathology and provides a comprehensive overview of the potential causes and consequences 

of identified lesions.   

 

Chapter 10: Discussion 

This chapter brings together findings from the research manuscripts and discuss the results in 

reference to the research questions outlined for this study. It highlights key findings regarding 

growth and health disruption and composes a comprehensive and complicated narrative of 

fetal, perinatal and infant health and growth through time.  
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Chapter 11: Conclusion and Recommendations 

This chapter concludes this thesis by addressing the research aims, objectives and questions 

of this study. It also considers the potential future recommendations and directions for fetal, 

perinatal and infant studies.  
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Chapter 2: Investigating the Fetus, Perinate and Infant – The 

Emerging Bioarchaeological Field 

 

This chapter provides an overview of fetal, perinatal and infant studies. The history and 

development of this field will be discussed, considering its origins within archaeological 

discourse, as well as the emerging focus in bioarchaeology of these young individuals. As a 

result of these new avenues of research, common themes, debates and interpretations 

surrounding the recovery and assessment of non-adult remains have also been considered and 

discussed. This chapter also examines the limitations of working with archaeological human 

remains, specifically those of fetal, perinatal and infant individuals, and discusses the 

problems arising from both excavation and analysis. A discussion of the ethical 

considerations of working with fetal, perinatal and infant individuals is also provided. 

 

2.1 The History and Development of Fetal, Perinatal and Infant Research  

The study of non-adults within bioarchaeology is still a relatively recent avenue of scholarly 

research (Halcrow & Tayles 2008, 191; Mays et al. 2017, 38-39); the recognition that these 

individuals provide important insights into health and the life course has only emerged more 

substantially over the last two decades (Scott 1999, 5; Cox & Mays 2000, 8; Lewis 2007, 1; 

3; Halcrow & Tayles 2008, 191). By contrast, the broader study of childhood and infancy in 

the past has seen a wealth of multidisciplinary studies, although many of these have focused 

on the social worlds of children, and past perceptions of childhood (Pollock 1983, 1; Scott 

1997, 6-7; Baxter 2005, 17; Lewis 2007, 3; Halcrow & Tayles 2008, 199; e.g. Lillehammer 

1989). Though many disciplines, including history, anthropology and sociology, were quick 

to investigate these young individuals, archaeological investigations were more tentative 

(Lillehammer 2015, 79-80). Thus, discourse has been dominated by the social context and 

material culture of children, rather than the individuals themselves (Shilling 2003, 22; 105; 

Prout 2005, 57; Halcrow &Tayles 2008, 191). Where biological assessment has been 

afforded it has tended to be sensationalist in nature, focussing on controversial aspects such 

as infanticide (Sofaer Derevenski 1994a, 8; Lucy 2005, 45; Finlay 2013, 210; e.g. Smith & 

Kahlia 1992; Mays & Faerman 2001). Today, bioarchaeological studies are rapidly 

redressing this balance, refuting notions of deliberate disposal and lack of care afforded 

towards infants in the past (e.g. Gowland & Chamberlain 2002; Millet & Gowland 2015; 
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Hodson 2017), instead focussing on the unique biological and contextual interpretations they 

can reveal. However, there is still great potential for the study of fetal, perinatal and infant 

individuals (Baxter 2005, 93; Halcrow & Tayles 2008, 209).  

 

Historically, two primary strands of childhood discourse emerged; the first of which was 

predominantly historical, considering the varying treatment of these individuals in the past 

(Mays et al. 2017, 38). The origin of these studies has been widely attributed to Ariès and the 

publication of ‘Centuries of Childhood: A Social History of Family Life’ (1962), translated 

into English in 1962 (Cunningham 1998, 1197). This work, although denoting a clear 

realisation that ‘children’ were important individuals deserving of scholarly consideration, 

viewed childhood as a modern construction that post-dated the seventeenth century (Ariès 

1962; Pollock 1983, 2; Lewis 2007, 2-3; Halcrow & Tayles 2008, 199). Ariès argued that 

adults, historically, cared less for their children, considering them to have less of an 

emotional attachment to their offspring due to the high levels of infant mortality commonly 

experienced in the past (Ariès 1962). He attributes the lack of childhood as a consequence of 

adults endeavouring to turn offspring into ‘mini-adults’ – seen in the way offspring were 

dressed and expected to behave as adults (Ariès 1962). Consequently, the role of the 

archaeological child and infant has typically been seen as unimportant, inferior to that of 

adults (Sofaer Derevenski 1997, 193), who in turn are historically considered to have treated 

infants and children with minimal care, affection and/or respect (Gowland & Chamberlain 

2002, 684). As Lewis states, ‘…we are led to believe that a child’s upbringing was a 

combination of neglect and cruelty’ (2007, 3). Indeed, such attitudes have become embedded 

within bioarchaeological and archaeological discourse, and have undoubtedly led to the 

assumption that non-adults are peripheral and passive in comparison to their adult 

counterparts.  

 

Such notions have, and continue to be, strongly rejected, with many studies investigating the 

care afforded to infants and children, as well as the agency and identity of these individuals, 

in the past (e.g. Sofaer Derevenski 1994a; 1994b; 1997; Baker 1997; Saunders 2000; Kamp 

2001; Baxter 2005; Gowland 2006; Halcrow & Tayles 2008; 2011; Lewis 2017b). This has 

been demonstrated in a range of research contexts, from burial treatment, evidence of 

material culture, through to social and legal legislation regarding children (Lewis 2007, 3; 

e.g. Carroll 2011; 2012; Wilkie 2000). Furthermore, infancy and childhood have been 
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recognised as significant transitions in the life course, and archaeological evidence refutes the 

idea that such stages of life were not acknowledged or marked within different societies in 

the past (Lucy 2005, 43-44).  

 

The second strand of childhood discourse is often attributed to the emergence of gender and 

feminist perspectives within archaeology, where the study of infancy and childhood was first 

widely addressed (Halcrow & Tayles 2008, 199; 2011, 333; Mays et al. 2017, 38; e.g. Moore 

& Scott 1997; Meskell 2001). These studies focused on ‘invisible’ demographics, attempting 

to also examine the socially constructed identities of childhood and adulthood (Mays et al. 

2017, 38). However, such studies typically sought to emphasise the place and role of women 

in history and prehistory (Halcrow & Tayles 2008, 199), where non-adults often became 

‘feminine’ and an extension of women’s ‘work’ - confined to the family and household 

(Baker 1997, 183; 186; Sofaer Derevenski 1997, 192; Scott 1999; 5; Lillehammer 2000, 17; 

Lewis 2007, 3). By relegating individuals into passive roles non-adults have long been 

considered as ‘others’ (Baker 1997, 187; Wyness 2006, 34-35). This ‘othering’ is also 

substantiated by the use of terminology such as sub-adult – suggesting these young 

individuals are inferior and incomplete versions of adults (Prout 2005, 10; 33; Sofaer 2006, 

121; Lewis 2007, 2; Halcrow & Tayles 2008, 193).  

 

The best data available to consider the lives of infants and children in the past are their 

skeletal remains, which provide insights into both their physical and social lives 

(Lillehammer 2000, 21; Baxter 2005, 93; Lewis 2007, 10; Halcrow & Tayles 2011, 336-338). 

Bioarchaeology has only recently acknowledged the significance of fetal, perinatal and infant 

skeletal remains and their ability to provide unique insights into past health, growth, and the 

social and cultural experiences and care afforded to them in their brief lives (Halcrow & 

Tayles 2008, 198; 202; 2011, 333; Mays et al. 2017, 39 e.g. Saunders 2000; Gowland 2001; 

Lewis 2007; Dawson 2017; Lewis 2017b).  However, the science-theory divide (Gowland 

and Knüsel 2006, ix; Halcrow & Tayles 2008; 2011, 333-334; Gowland & Thompson 2013, 

19; Mays et al. 2017, 41) has led to a lack of integration between biological (age, sex and 

pathology) and social studies regarding concepts of infancy within past populations. Today, 

biocultural studies are simultaneously addressing both the social and cultural constructions of 

life course experiences, and the biological and environmental processes affecting the body 
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(e.g. Robb 2002; Gowland & Knusel 2006; Gowland 2006; Sofaer 2006; Gowland and 

Thompson 2013).  

 

Furthermore, the publication of specific non-adult osteology texts has improved the 

identification and understanding of non-adult anatomy (Mays et al. 2017, 39; e.g. Scheuer 

and Black 2000; Baker et al. 2005; Schaefer et al. 2009). The publication of Lewis’ The 

Bioarchaeology of Children (2007) was the first to synthesize the theoretical and biological 

considerations of non-adult studies (Mays et al. 2017, 39). With ongoing research, and 

increasing publications regarding early life from archaeological samples around the world, 

our understanding, analysis and interpretation of these young individuals continues to become 

more precise, comprehensive and nuanced.  

 

For a thorough review of the development of non-adult studies, and a contemporary 

consideration of the major theoretical and analytical developments see Mays et al. (2017).  

 

2.2 Contemporary Research and Current Debates 

In a review of American Anthropologist, Schwartzman (2001, 16) found that only 4% of 

articles published contained detailed information regarding non-adults, whilst only three of 

those articles were published between 1986 and 2001 (Hirschfield 2002, 612). Such findings 

are a clear reflection of the continued marginalisation of non-adult individuals within 

anthropological and archaeological discourse (Baxter 2005, 2). A recent assessment of papers 

within the SSCIP (Society for the Study of Childhood in the Past) publication ‘Childhood in 

the Past’ found that 75% were of an archaeological focus (Murphy 2017, 3), though only 

26.5% focused on burial evidence (Murphy 2017, 4). Within the same volume Mays and 

colleagues (2017) assessed contributions to seven major anthropological/osteological journals 

between 2006 and 2015, finding that 15% of articles focussed primarily on non-adults. 

Despite this enduring legacy of underrepresentation in the literature, non-adult studies, 

specifically those looking at the youngest individuals (fetuses, perinates and infants) have 

emerged. Key debates have developed, often surrounding the methodological issues of being 

able to accurately determine age-at-death, biological sex and disease/health status of non-

adult individuals. The following section considers the primary discussions and works that 

have furthered the study of non-adult skeletal remains.  

 



19 

 
 

2.21 Age Estimation in Non-Adult Skeletal Remains 

Within bioarchaeology, initial studies concentrated primarily on the methodological 

approaches to determining biological age and sex (Lewis 2007, 11; e.g. Schour & Massler 

1941a; 1941b; Boucher 1955; Maresh 1970; Fazekas & Kósa 1978; Weaver 1980; 

Schutkowski 1993). Age estimation of non-adults is a central concern as it can aid 

interpretations of mortality, morbidity, demography, growth, health (both individual and 

population), and environmental conditions (Lewis 2007, 38; Satterlee Blake 2018, 34). 

Assessing age-at-death is probably one of the biggest methodological challenges for fetal, 

perinatal and infant investigations. Genetic and environmental factors interact to create 

variation in the timing and rate of growth between individuals (Cameron 2002, 13). 

Consequently, although there are multiple ways to determine age clinically, within 

bioarchaeology it is much harder to assess as estimation relies on physiological analysis of 

skeletal and dental remains (Scheuer & Black 2000a, 6; 13; Satterlee Blake 2018, 37). 

Methodologies primarily consist of metric assessment of skeletal remains, whilst both 

development and eruption can be considered for dentition. Although this chapter avoids 

detailed discussion of the methodologies (See Chapter 5 for this), major limitations exist in 

estimating non-adult age.  

 

A range of reference data has been used to calculate ‘standards’ for correlations between 

skeletal growth and chronological age. It is assumed that the biological stage of 

development/growth is a good proxy for chronological age, consequently diaphyseal length 

of long-bones has become the standard measurement used to calculate age-at-death (Scheuer 

& Black 2000a, 4; Lewis 2007, 43). However, today we acknowledge that genetic, 

environmental and epigenetic factors may all cause variation in the expected growth 

trajectory of an individual (Goodman & Armelagos 1988, 941-942; Goodman et al. 1988, 

169-170; Bush & Zvelebil 1991, 5; Scheuer & Black 2000a, 4-5; Satterlee Blake 2018, 35), 

and are thus critical of methodologies which use metric assessment of growth to estimate age 

(Lewis 2007, 43). Where possible, assessment of dental development is encouraged as this is 

considered more accurate (Moorrees et al. 1963b, 1490; Bang 1989, 216; Hoppa & Fitzgerald 

1999, 3; Gowland & Chamberlain 2002, 677; Satterlee Blake 2018, 38), but fetal, perinatal 

and infant dentition is small, often not recovered, or simply misidentified (Gowland & 

Chamberlain 2002, 677; Lewis 2007, 42; Satterlee Blake 2018, 38). Consequently, despite 
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this critique of metric assessment methodologies, they are still typically used to estimate 

fetal, perinatal and infant age (Scheuer & Black 2000a, 9).  

 

Many of these skeletal reference samples have been developed using archaeological or 

historical skeletal remains of deceased individuals – who are unlikely to represent healthy 

non-adults – and where no documented age or sex has been recorded (e.g. Fazekas & Kósa 

1978). Needless to say, documented collections, of sufficient size, are rare (Scheuer & Black 

2000b, 17; Lewis 2007, 14). Other methodologies have been developed using samples that 

are geographically and genetically disparate (e.g. Maresh 1943; 1955; 1970; Gindhart 1973), 

and equally likely to be dissimilar from the archaeological sample being analysed. Clinical 

studies have developed references from radiographic and sonographic analyses, rather than 

metric assessment of dry-bone (e.g. Scheuer et al. 1980; Jeanty et al. 1984; Jeanty & Romero 

1984). As a result, limitations exist in comparing archaeological samples to modern reference 

standards (Hoppa & Fitzgerald 1999, 18). As growth is known to respond to a multitude of 

intrinsic and extrinsic factors (Saunders & Hoppa 1993; Bogin 1999, 228-239), comparison 

of archaeological data to that of modern, known samples also increases variability and 

inaccuracy in results and interpretations obtained. Even when clear growth differences are 

identified, interpretation of these differences may be numerous (Saunders et al. 1993, 266). 

However, recent assessment of the Maresh (1970) reference data against WHO standards for 

normal, healthy growth found that this method does reflect a normal growth pattern, and as 

such can be used as a reference in bioarchaeological studies (Schillaci et al. 2012). Thus, 

choosing an appropriate reference standard is central to analysis and interpretation of non-

adult data. Furthermore, reference methods often pool data from both sexes, particularly 

methods for estimating age in fetal/perinatal individuals (e.g. Fazekas & Kósa 1978; Scheuer 

et al. 1980), meaning variance between standards and individuals assessed may also be 

increased (Saunders et al. 1993, 266). Though Lewis (2007, 21) lists numerous 

archaeological sites with large sample sizes, indicating the potential for future, multi-sample 

research, many of these collections are not of fetal or infant individuals. Consequently, 

studies of the very youngest individuals are still rare and hindered by the lack of comparable 

data (Loth & Henneberg 2001, 179; Aleman et al. 2012, 606; Halcrow et al. 2018, 86). 

Indeed, Lewis states that one of the biggest limiting factors is the lack ‘of modern non-adult 

skeletal collections’ (2007, 14).  
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2.22 Assessment of Growth and Development in Non-Adult Skeletal Remains 

The study of non-adult growth and development has been a major concern in bioarchaeology 

for a number of decades (Johnston & Zimmer 1989, 11; Hoppa & Fitzgerald 1999, 1; 

Halcrow et al. 2018, 85 e.g. Johnston 1962) – a focus which has dominated non-adult studies 

for over 40 years (Lewis 2007, 11). Throughout the last two decades, a wealth of studies has 

emerged considering growth and development (e.g. Gindhart 1973; Scheuer & Maclaughlin-

Black 1994; Huda & Bowman 1995; Cardoso et al. 2014). Given the previous discussion 

surrounding the correlation between growth/development and age-at-death estimation, many 

such studies are now beginning to consider the limitations of using growth as a proxy for age 

and are instead investigating the environmental determinants that may have affected growth 

and development (e.g. Gigante et al. 2009; Mays et al. 2009; Ruff et al. 2013; Zemel 2017; 

Ives & Humphrey 2017).  

 

Despite the acknowledgement that skeletal growth can no longer be used as an accurate and 

reliable proxy for chronological age, metric assessment has been significant in leading 

arguments surrounding infanticide, the deliberate disposal and killing of unwanted 

perinates/infants (Resnick 1970, 1414). Some archaeologists have used age profiles to 

support arguments for infanticide (e.g. Smith & Kahlia 1992; Mays 1993; Mays & Faerman 

2001; Mays & Eyers 2011). Clustering of individuals around 38-40 gestational weeks/birth 

has become interpreted as an ‘unusual’ demographic profile and thus considered to represent 

deliberate killing when large numbers of skeletal individuals have been recovered (Gowland 

& Chamberlain 2002, 677; Halcrow et al. 2018, 86). However, the regression methodology 

employed within these studies (Scheuer et al. 1980) has been critiqued as it has been found to 

generate age profiles which mimic the sample used to develop the methodology. Gowland 

and Chamberlain (2002) used Bayesian statistical assessment to redistribute this age-at-death 

profile and concluded that infanticide was not a plausible interpretation for the sample 

investigated. The regression methodology employed increases mimicry between reference 

and sample population (Bocquet-Appel & Masset 1982, 321; Gowland & Chamberlain 2002, 

678), thus, a similar neonatal peak emerged from analysis of the archaeological sample 

(Mays 1993; Mays & Faerman 2001; Mays & Eyers 2011) as that seen in the method utilised 

(Sheuer et al. 1980). Bayesian analysis considers the likelihood of individuals falling within 

age categories, in comparison to a natural mortality profile derived from perinatal and infant 

life tables (Lewis & Gowland 2007, 122), and so redistributes ages by probability (Gowland 
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& Chamberlain 2002, 684). Indeed, Bayesian analysis is likely the best way to attempt to 

access ‘true’ mortality profiles for fetal/perinatal/infant populations (Lewis & Gowland 2007, 

127). However, Bayesian analysis is also limited in its application here in that it considers the 

age distribution of the entire sample rather than generating age estimates for each individual 

(Lewis & Gowland 2007, 127). This limits detailed assessment of individuals and the 

potential for identifying growth disruption. Recent reconsideration of the skeletal remains 

from Ashkelon, Israel – another site where infanticide has been widely considered to have 

been practiced (Smith & Kahlia 1992) – has revealed that the original age estimations were 

incorrect (Gilmore & Halcrow 2014). As a result, fetal individuals, whose age-at-death 

estimates suggest they were unlikely to have survived in the postnatal environment, were also 

considered to be victims of infanticide within the original investigation (Halcrow et al. 2018, 

94). Indeed, it has been demonstrated that as bioarchaeologists we need to be extremely 

careful not only with the methodologies we employ, but the subsequent interpretations we 

derive.  

 

Furthermore, though age-at-death assessment is important for our understanding of mortality 

and morbidity profiles, it reveals very little regarding the potential birth point and experience. 

Although birth is standardly considered to be around the 40 gestational week mark (Satterlee 

Blake 2018, 35), maternal and offspring experiences can be radically different with birth 

possible at any point during a large window of time. ‘Full-term’ birth can happen at any point 

between 29 and 40 gestational weeks, depending on discrepancies in due date calculation, 

though most births occur between 38 and 39 gestational weeks (Jukic et al. 2013, 2850). 

Therefore, determining those who experienced premature/overdue birth, stillborn births, 

intrauterine growth restriction (IUGR) or were small for gestational age (SGA) is complex, as 

this ‘lived’ experience is almost impossible to discern from skeletal remains in the 

archaeological record. Today both premature (before 37 gestational weeks (Franco et al. 

2007, 518)) and overdue births still occur (Halcrow et al. 2018, 93). Though overdue births 

are more uncommon today due to medical intervention and induction (Satterlee Blake 2018, 

35), premature births have a high and increasing prevalence (Ong et al. 2015, 983). In fact, 

males in particular appear to be particularly vulnerable to growth disruption as a result of 

preterm birth (Haymond et al. 2013, 789). However, such experiences are rarely considered 

in an archaeological context. The point of birth is not recorded on skeletal remains, though 

can be traced through identification of the neonatal line using histological analysis of the 
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dentition (Satterlee Blake 2018, 36). As yet, no study has correlated evaluation of the 

neonatal line with dental and skeletal estimates of age to investigate evidence of prematurity 

but this is certainly an interesting research prospect.  

 

Within the skeletal record new methodological approaches (e.g. Booth 2016; Booth et al. 

2016) are beginning to investigate the potential to differentiate between live births and those 

of stillborn individuals. This research into the bioerosion and diagenesis of internal bone 

structures suggests that bone composition changes following feeding and the initiation of the 

gut microbiomes (e.g. White & Booth 2014; Booth 2016; Booth et al. 2016). Consequently, 

individuals who fail to show changes in bone composition, either through histological or 

micro-CT analysis, are suggested to have not fed and are thus more likely to have been 

stillborn (Booth et al. 2016, 132). This research still has limitations in that it is unknown as to 

when the infant gut microbiome is ‘activated’, which factors can lead to this activation, and 

the effects of differential food intake on the microbiome (Booth et al. 2016, 125). 

Furthermore, this method also cannot distinguish between deliberate avoidance of feeding 

and an inability to feed. However, such research is starting to further discussion surrounding 

the timing and outcomes of birth, and will further aid interpretations surrounding that of 

infanticide.  

 

The use of non-adult terminology, and the sub-division of very young individuals into 

multiple categories (e.g. fetus, perinate, neonate, infant) which often overlap, adds to the 

complexity of determining not only true chronological age, but birth experience and outcome 

(Scheuer & Black 2000b, 9; Satterlee Blake 2018, 35). As an example, individuals who are 

recorded as being 36 gestational weeks or younger are often referred to as a fetus, however, 

such terminology implies that they were not born (Halcrow et al. 2018, 84). In fact, it may be 

that they were premature, SGA, IUGR or stillborn, yet currently interpretations are limited in 

considering these aspects (Halcrow et al. 2018, 84). In part this thesis has attempted to 

minimise this potential uncertainty by using a larger perinatal range than standard practice 

(36-44 GWA). This was a deliberate action as those dentally aged to be less than 36 GWA, 

although may have been born prematurely, were unlikely to have survived in the postnatal 

environment. Similarly, those aged over 44 GWA are more likely to have experienced the 

postnatal environment to some degree. The complexity arises for those individuals aged 

dentally to be between 36 and 44 gestational weeks, where their pre- and postnatal 
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experiences are more ambiguous. However, this thesis uses terminology in a way that 

attempts to reflect better the developmental and life course stages that the individual 

experienced. 

 

Utilising both dental and skeletal tissues to examine age is one potential avenue in which to 

begin exploring SGA and IUGR individuals. Small for gestational age typically refers to 

individuals whose birth weight falls below the 10th percentile for their gestational age (Bogin 

2001, 69; Royal College of Obstetrician & Gynaecologists 2014, 6), but who are overall 

considered to be healthy and well-nourished (Cyrkowicz & Czekański 1998, 213). SGA 

babies are those who are genetically ‘small’ (Cyrkowicz & Czekański 1998, 213), but are 

considered to be appropriate size given maternal size and ethnicity (Royal College of 

Obstetrician & Gynaecologists 2014, 6). Furthermore, SGA individuals are considered to be 

‘symmetrical’, where skeletal and physical dimensions are consistently smaller purely as a 

result of a slower fetal growth rate (Strauss & Dietz 1997, 96; Hay et al. 2016, 881). In 

contrast, IUGR causes asymmetrical growth (Strauss & Dietz 1997, 96; Cameron & 

Demerath 2002, 162), with variation between skeletal structures due to prioritisation of 

certain elements, particularly that of the brain (Hay et al. 2016, 881). IUGR is often a 

consequence of ‘…a pathological restriction of the genetic growth potential’ (Royal College 

of Obstetrician & Gynaecologists 2014, 6). Consequently, IUGR is strongly correlated with 

fetal malformations, infections and placental dysfunction (Cyrkowicz & Czekański 1998, 

213; Kliegman 2011, 245; Wu et al. 2012, 18-19). Wu and colleagues (2012, 18-19) state that 

IUGR is responsible for ~50% of non-malformed stillbirths. In addition, IUGR often has 

implications for the rest of the life course, predisposing individuals to sarcopenia, insulin 

resistance and diabetes (Hay et al. 2016, 881). Of course, SGA and IUGR are strongly 

correlated though not always synonymous with each other (Kliegman 2011, 245; Royal 

College of Obstetrician & Gynaecologists 2014, 6; Ong et al. 2015, 974). The Royal College 

of Obstetrician & Gynaecologists (2014, 6) report that 50-70% of SGA babies are 

constitutionally (genetically) small and are thus, not IUGR. Despite this, both SGA and 

IUGR individuals are at an increased risk of perinatal/infant mortality, though those suffering 

from IUGR are of an even greater risk as they suffer more adverse intrinsic and extrinsic 

experiences (Bogin 2001, 69; Wu et al. 2012, 18; Royal College of Obstetrician & 

Gynaecologists 2014, 6; Schoenwolf et al. 2014, 178).  
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Attempting to identify SGA and IUGR individuals in the archaeological record will require 

detailed assessment of growth and health. Consideration of age estimations between dental 

and skeletal structures may allow for similarities and differences between these estimates to 

be highlighted, potentially exposing variability in growth strategies. Of course 

methodological limitations of assessing age-at-death, particularly within the skeleton, will 

hinder analyses of SGA individuals, as the inherent biases within the methods will not reflect 

individuals who are simply, genetically small. Instead, to access evidence of SGA 

individuals, consideration of the health status and uniformity in age estimates generated from 

varying skeletal structures will have to be made. However, lack of pathological changes does 

not necessarily indicate good health and interpretations of SGA may also have to consider 

wider population based assessment of size and stature, particularly regarding females within 

the sample. IUGR is potentially less problematic to identify, with evidence of growth and 

health disruption possible indicators of such a condition. For now, interpretations of IUGR 

are perhaps most robust when extremely large differences in skeletal/dental age estimates are 

identified in individuals, and where clear pathological conditions have been determined. The 

ability to identify SGA and IUGR within the archaeological record would be significant in 

furthering interpretations regarding maternal wellbeing and health.  

 

2.23 Palaeodemographic Studies of Non-Adult Skeletal Remains  

Age-at-death estimations have also become paramount for studies concerned with fertility, 

methods in which to quantify fertility, and the impact of fertility rates on environmental 

adaptation (Lewis 2007, 10; e.g. Buikstra et al. 1986; Bogin 1990; Paine & Harpending 1996; 

1998; Robbins 2011). These studies arose from a demographic concern to identify and 

evaluate population structures in prehistory (Brothwell 1971; Scheuer & Black 2000a, 13; 

Lewis 2000, 39; Lucy 2005, 44; Robbins 2011, 717), with major considerations including the 

energy expenditure of parturition, childcare and the social and economic benefits of offspring 

(e.g. Bogin 1997; 1998; Key 2000). Furthermore, infant mortality has also become a 

palaeodemographic tool, where-by population success and ability to adapt to environmental 

challenges can be interpreted (Scheuer & Black 2000aa, 5; Lewis 2000, 39; Lewis & 

Gowland 2002, 125; Halcrow & Tayles 2011, 339). Bogin (1990; 1998) has also investigated 

the development and evolution of ‘childhood’ as a socially constructed period in which we 

learn and develop the skills required for adult life.  
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2.24 Sex Estimation in Non-Adult Skeletal Remains 

Sex estimation of non-adult individuals has always been acknowledged to be difficult and 

unreliable (Hoppa & Fitzgerald 1999, 2; Scheuer & Black 2000a, 1; 15; 2000b, 9; Lewis 

2007, 47; Satterlee Blake 2018, 41). The skeletal biology of non-adult individuals is the 

primary limitation of this assessment, as individuals have not yet fully grown or even 

developed all of their skeletal structures. Furthermore, the hormonal influxes that alter the 

morphology of these structures are yet to occur (Hoppa & Fitzgerald 1999, 2; Scheuer & 

Black 2000a, 15; Lewis 2007, 47). As a result, macroscopic assessment of sex estimation in 

non-adult individuals is often avoided. However, attempts to determine biological sex based 

on the dimorphism of the skeleton have been made. Typically, methodologies have utilised 

similar skeletal structures to those analysed in adult individuals – primarily the bones of the 

pelvis and cranium (Scheuer & Black 2000a, 15; e.g. Boucher 1955; 1957; Weaver 1980; 

Schutkowski 1993; Loth & Henneberg 2001; Wilson et al. 2008) – however, other attempts 

have investigated variation in the humerus and dentition (e.g. Black 1978; Rogers 2009; Stull 

& Godde 2013).  

 

Biological sex is an important factor to consider, particularly in studies of fetal, perinatal and 

infant individuals as sex differentially affects growth/development (Scheuer & Black 2000a, 

4; 15; e.g. Gilsanz et al. 1997; Nyati et al. 2006f) and frailty (Lewis 2007, 48; Satterlee Blake 

2018, 40) – predisposition to health/disease status. Consequently, it is a vital factor which is 

currently missing from many of our interpretations, this thesis included. The inherent 

problems and inaccuracy of these methods makes estimating sex for such young individuals a 

game of chance. Studies testing methods of sex estimation have found that dimorphic traits 

can vary between populations, that the accuracy of these methods could not be reproduced, 

and in one case, that sex was only estimated correctly in 64% of individuals (Hunt 1990; 

Scheuer 2002; Cardoso & Saunders 2008; Vlak et al. 2008). In addition, there is substantial 

overlap between the categories of males and females (Satterlee Blake 2018, 41). Furthermore, 

given the limitation of estimating age, and subsequently determining stillborn, SGA and 

IUGR individuals, it is unknown what further complexities/changes these experiences add to 

the sexual morphology of the skeleton. Today, scientific advances have led to the emergence 

of studies considering DNA analysis to determine biological sex of infants and children 

(Hoppa & Fitzgerald 1999, 3; Aiello 2000, VII; Lewis 2000, 40; e.g. Waldron et al. 1999; 

Mays & Faerman 2001). Of course, this has been used to investigate arguments surrounding 
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infanticide (as more females are typically thought to be ‘disposed’ of than males). However, 

Mays & Faerman (2001, 556) found a prevalence of males within their archaeological 

sample. Given the predisposition for males to be more ‘frail’ (Lewis 2018, 113) and their 

alternative growth strategies in utero (Barker et al. 2012, 32) such a result may not be 

unexpected, and again support suggestions that these individuals reflect a normal mortality 

profile. Within this thesis sex estimation has not been attempted on the archaeological 

individuals as the methodologies are still too variable and inaccurate. The fetal collection at 

the Smithsonian has recorded biological sex for some of the individuals assessed (Hunt 

personal communication) and thus, where possible analysis has been conducted using these 

categories (male versus female). Although the author did record sexually dimorphic traits in 

accordance with Schutkowski (1993), testing this method on the Smithsonian collection has 

not been afforded within this thesis as no other sample uses sex estimation. It has been 

detailed that this is a further study for future consideration.  

 

2.25 Palaeopathological Studies of Non-Adult Skeletal Remains 

The first study to consider childhood health and palaeopathological evidence was that of 

Mensforth and colleagues (1978), but it was not until the 1990s that non-adults were 

routinely incorporated within archaeological and bioarchaeological literature (Mays et al. 

2017, 38). Assessing pathological changes in non-adults is considered to be particularly 

challenging (Lewis 2018, 113). This is because, despite increased osteological training, the 

identification remains from such young individuals is difficult, and understanding of their 

normal anatomy and growth limited (Lewis 2018, 113). Furthermore, identifying pathological 

changes, many of which are often subtle or identical to processes of normal growth, is 

troublesome (Lewis 2018, 113). Despite this, numerous investigations into non-adult health 

have been undertaken (e.g. Lallo et al. 1977; Schultz 1984; 1989; Anderson & Carter 1994; 

1995; Lewis and Roberts 1997; Mays et al. 2007; Lewis 2011; 2012; 2017a) – with particular 

focus on metabolic conditions (e.g. Stuart-Macadam 1988; Ortner & Ericksen 1997; Ortner & 

Mays 1998; Ortner et al. 1999; Brickley & Ives 2008). Pathological changes in such young 

individuals are considered to be particularly important to determine as they provide vital 

insights into intrauterine as well as maternal health. Fetal, perinatal and infant remains have 

become synonymous as the most sensitive members of past societies (Goodman & 

Armelagos 1989, 239; Cox & Mays 2000, 8; Lewis 2000, 39; Halcrow et al. 2018, 86), likely 

to express skeletal changes as a result stress due to their immature immune systems and 



28 

 
 

higher degree of bone turnover (Lewis 2000, 43; 2002a, 211; 2018, 115; Satterlee Blake 

2018, 44). These individuals also provide a unique proxy by which maternal wellbeing, 

experiences and health can be considered (Satterlee Blake 2018, 34; 43). Indeed, there remain 

very few cases where expectant mothers have been uncovered, or where individuals are 

suggested to have died during childbirth (Hoppa & Fitzgerald 1999, 16; Halcrow et al. 2018, 

86; e.g. Owsley & Jantz 1985; Roberts & Cox 2003, 389-390). Consequently, despite the 

limited mother-infant evidence in the burial record, the mother-infant nexus can still be 

extensively explored (Gowland 2015).  

 

Macroscopic assessment of fetal/perinatal/infant pathology is most commonly employed 

(Satterlee Blake 2018, 42) and some conditions/diseases are clearly identifiable and 

diagnosable despite the young age and immature development of these individuals. A variety 

of congenital disorders (e.g. hydrocephaly, anencephaly) as well as diseases such as syphilis, 

tuberculosis, rubella, and metabolic deficiencies can all be transmitted via the placenta during 

pregnancy (Lewis 2018, 113). Therefore, the historical assumption that the intrauterine 

environment is one of a sterile, encapsulated ‘bubble’ is not accurate and an array of 

detrimental conditions can affect the health and wellbeing of the offspring. Many case studies 

exploring evidence of various congenital and specific infectious conditions affecting non-

adult individuals have been published (e.g. Richards & Anton 1991; Murphy 1996; Dabernat 

& Crubézy 2009; Dudar 2010), though evidence still remains limited, primarily as a 

consequence of the rarity of such conditions and the limitations of preservation and 

identification. Additionally, many of the predominant causative factors of 

fetal/perinatal/infant death leave no discernable traces on the skeleton (Lewis 2018, 112), 

making assessment of early life health disruption in the archaeological record somewhat more 

troublesome.  

 

Analysis and diagnosis of a specific condition/infection is easier as a clear pattern of 

distinctive changes emerge (e.g. Hutchinson’s incisors and mulberry molars in congenital 

syphilis). However, non-specific stress, such as metabolic disturbances, general infections, 

psycho-social stress and sometimes even trauma, is more commonly represented as periosteal 

new bone formation (NBF) (Lewis 2018, 114). The ongoing major limitation within 

pathological studies of such young individuals is the differentiation between pathological 

NBF and that of NBF associated with normal growth (For a comprehensive discussion of 
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normal fetal/perinatal/infant skeletal growth and development see Chapter 3: Sections 3.1). 

Methods detailing how to distinguish between the two have yet to be developed (Lewis 2018, 

125), though current practice includes considering the location, aspect, and thickness of the 

NBF, whilst taking into consideration the age-at-death of the individual. Healthy NBF, 

associated with normal growth, is known to appear in an almost indistinguishable way to 

pathological NBF, as the process by which the bone forms is identical (Lewis 2000, 42). 

Consequently, timing of growth spurts must be taken into consideration, and various clinical 

investigations have suggested that NBF is a common finding in individuals at least over 1 

month of age (44 gestational weeks) (Shopfner 1966; Scheuer & Black 2000a, 24; de Silva et 

al. 2003; Kwon et al. 2002). Furthermore, NBF has been found to be commonly identified 

symmetrically on the femur, tibia and humerus, with the NBF being concentric around the 

diaphysis (De Silva et al. 2003, 1124). However, little is still known about the presence and 

implications of NBF found on individuals younger than 44 gestational weeks, and many 

pathological conditions do still result in the proliferation of NBF throughout the skeleton, 

primarily to the long bones (Lewis 2000, 43). Additionally, although bone responds quickly 

to insults in such young individuals, it is still unknown how long certain conditions take to 

present on non-adult skeletal remains (Lewis 2000, 40). As skeletal remains of fetal, perinatal 

and infant individuals are those of the non-survivors, it is not unexpected that pathological 

indicators would be present reflecting poor health and wellbeing. However, with so many 

variables regarding the formation of pathological NBF still unknown (timing, severity, 

extent), disentangling normal from abnormal bone formation remains problematic.   

 

Recent developments in stable isotopic and incremental dentine analyses are furthering 

pathological assessment, identifying weaning patterns and early life stress (e.g. Fuller et al. 

2006; Katzenberg 2000; Beaumont et al. 2013). Nitrogen ratios have been found to peak 

during periods of stress (Beaumont & Montgomery 2016), and by conducting incremental 

analysis, the exact period/timing of this stress can be assessed which is revealing further 

implications as to intrauterine and postpartum experiences (Beaumont et al. 2015). Thus, 

being able to correlate age-at-death assessment, pathological assessment and isotopic 

investigation is building a more intricate picture of early life health and stress exposure 

(Halcrow et al. 2018, 97). Again maternal experiences have become central to this narrative 

and recently the theoretical inclusion of the DOHaD Hypothesis (Developmental Origins of 

Health and Disease Hypothesis) has become prevalent within interpretations of the early life 
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course (e.g. Finlay 2013; Klaus 2014; Gowland 2015). This hypothesis, originating from 

clinical discourse (e.g. Barker & Osmond 1986; Barker 1997), has major implications for 

fetal, perinatal and infant studies, highlighting the long-term growth and health outcomes of 

detrimental in utero and immediate postnatal environments (Gluckman & Hanson 2006; 

Armelagos et al. 2009, 261; Halcrow et al. 2018, 97).  

 

2.3 The Archaeological and Methodological Issues  

Bioarchaeological studies of fetal, perinatal and infant individuals are relatively few in 

comparison to the wealth of multidisciplinary studies regarding older non-adults and adults 

(Lewis 2000, 39; Halcrow et al. 2018, 83). Although this has clearly been a consequence of 

the attitude historically held towards these individuals (discussed previously), 

bioarchaeological studies have also been limited by the recovery and excavation of such 

individuals, the difficulty of identification and analysis, and the methodological limitations of 

determining age-at-death, biological sex and evidence of pathological changes. As Lewis 

states, in order to enhance the discipline of fetal, perinatal and infant studies we must first 

understand the potential and limits of studying non-adult remains (2007, 1). This section 

discusses these limitations and considers the implications these factors have had on fetal, 

perinatal and infantile studies.  

   

2.31 Recovery and Excavation 

It has long been considered that non-adult remains did not survive the burial environment as 

well as adults, and that those of infants rarely survived at all (Watts 1989, 377; Scheuer & 

Black 2000a, 14; Lucy 2005, 44; Lewis 2007, 10-12; 20; Satterlee Blake 2018, 45). Absence 

of fetal/perinatal/infant remains was considered commonplace and some even considered that 

such young individuals completely dissolved in the ground (Angel 1969, 434; Lewis 2007, 

20). Perpetuation of these views has limited bioarchaeological investigation of these 

individuals – not only considered to be of less importance, but quite literally, invisible within 

the burial record - furthering the notion that assessment of these individuals was not only 

futile, but impossible. Buikstra and Cook (1980) argued that although the importance of non-

adult studies was being recognised, poor preservation and recovery, and thus small sample 

sizes, was hindering analysis and interpretation. However, Katzenberg (2000) reported that, 

at some sites, non-adult remains can in fact be better preserved than those of their adult 

counterparts. As a result, it is becoming more widely accepted that the notion of non-adult 
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skeletal remains not surviving the burial environment is unfounded (Lewis 2007, 37; e.g. 

Saunders 1992; Buckberry 2000; Hillson 2009). Furthermore, numerous excavations have 

now been conducted, and continue to be undertaken, from which large samples of non-adult 

individuals have been carefully excavated and recovered (Lewis 2007, 37).  

 

It has traditionally been considered that fetal/perinatal/infantile remains preserve 

differentially to that of adults (Hoppa & Fitzgerald 1999, 16; Scott 1999, 109; Scheuer & 

Black 2000a, 14; 2000b, 10). Guy and colleagues (1997) argued that the physiochemical 

properties of fetal/perinatal/infant bones were the leading cause as to why they preserved 

differently. Of course, no one factor is responsible for the level of bone decomposition or 

preservation, instead multiple factors determine preservation: chemistry, size, shape, density, 

porosity, age of the bone, groundwater, soil type, temperature, oxygen levels and flora 

(Scheuer & Black 2000b, 10; Stodder 2008, 81-85; Jackes 2011, 126; e.g. Gordon & Buikstra 

1981; Garland & Janaway 1989; Millard 2001). Bone is typically considered to decay in a 

three-phase process (See Collins et al. 2002 for further discussion). Despite this, studies have 

found it possible to extract DNA, stable isotope signatures and proteins from non-adult 

skeletons (Mays et al. 2017, 43).  

 

Indeed, true understanding of taphonomic processes on non-adult remains is still somewhat 

limited. Although new research (e.g. Booth et al. 2016) is considering the differential 

diagenesis of bone in burial conditions, and the implications of such, understanding the effect 

of various factors on fetal, perinatal and infant remains is ongoing. It is considered that 

infants who have had their first feed, compared to those who have not, will decompose more 

quickly due to bacteria introduced into the digestive biome (Booth 2014; Booth et al. 2016). 

However, decomposition has also been found to vary depending on age. Bone mineral 

content varies with age (Guy et al. 1997, 224), with the lowest levels found in those aged 

between one month and one-year-old (Guy et al. 1997, 224; Lewis 2007, 25). However, 

infants contain less trabecular bone than adults and older non-adults, which is known to 

decompose more rapidly than cortical bone. Additionally, lack of forensic knowledge on how 

such young individuals decompose today also hinders understanding, as the rarity of cases, 

particularly those that are buried, means very few studies have been conducted (Lewis 2007, 

23). Consequently, funerary treatment and mode of disposal will also differentially affect the 
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preservation or existence of infant remains within the archaeological record (Roberts 2009, 

60-61), which will influence the success of excavation and recovery.  

 

Given both the size and structure of the fetal and infant skeleton it is understandable that such 

individuals become disarticulated more easily (Lucy 2005, 44). As a consequence of their 

fragility and size, their remains are more likely to be found scattered or dispersed within an 

archaeological context. This is in part due to scavenging practices, with once again their 

small size, making them a prime target for animals (Lewis 2007, 27-28). Scavenging is also 

likely to be a consequence of the shallower graves in which fetal and infant individuals tend 

to be buried – it is considered the deeper the grave cut, the more likely an individual is to be 

well preserved and recovered (Lucy 2005, 44). Crawford (1993) has considered shallow 

graves to be a practical and logistical consequence of burying a small individual.  

 

In addition, shallow graves are also more susceptible to erosion, ploughing, and post-mortem 

taphonomic and stratigraphic changes (Johnston & Zimmer 1989, 12; Lewis 2000, 40). Such 

factors affect the excavation and recovery of these individuals. Furthermore, fetal, perinatal 

and infant individuals were commonly buried/deposited in alternative parts of sites and 

cemeteries to that of older individuals and adults (Scott 1999, 109; Lucy 2005, 44; Halcrow 

et al. 2018, 83; Satterlee Blake 2018, 45), often as a consequence of culturally and socially 

regulated practices as well as biological parameters. When open area excavation is not 

undertaken it is difficult to ascertain whether all individuals, particularly those of fetal/infant 

individuals have been fully recovered (Saunders & Barrans 1999, 184; Scheuer & Black 

2000b, 9), making skeletal individuals only a subset of a once living population (Scheuer & 

Black 2000a, 14). As a consequence, it cannot be considered that individuals exhumed and 

curated represent a true random sample of a population, and thus may not reflect an accurate 

representation, with regards to both biological and contextual variables (Waldron 2007, 26).     

 

Furthermore, the ability of the excavator to recognise, excavate and collect fetal and infant 

bones is also paramount (Scheuer & Black 2000a, 14; 2000b, 11; Lucy 2005, 44; Lewis & 

Gowland 2002, 125). The recovery of smaller skeletal elements, epiphyses and developing 

bones and teeth relies on a prior knowledge of what to potentially expect when excavating 

non-adult individuals. In addition, the porosity of these elements means that they often 

change colour, reflecting chemicals and nutrients in the soil and are thus more easily missed 
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by a non-specialist excavator (Lewis 2000, 40; 2007, 26). Sieving, despite being 

recommended within archaeological guidelines (e.g. BABAO Code of Practice), is often not 

employed due to time pressures of excavation, and so many individuals are likely to remain 

‘invisible’ as a result of archaeological practice (Roberts 2009, 59). Furthermore, lack of 

specific skeletal recording forms, listing/picturing the potential skeletal elements, means that 

many excavators are simply unaware and unsure of what to look for (Lewis 2007, 26). 

Excavation and recovery is also typically hindered by the financial and time constraints of 

commercial operations (Roberts 2009, 73-80).  

 

2.32 Identification and Analysis 

Many texts now thoroughly cover non-adult skeletal anatomy and detail precisely the very 

small skeletal elements expected to be present before, during and after birth (e.g. Fazekas & 

Kósa 1978; Scheuer & Black 2000a; Baker et al. 2005). Despite this, many individuals, even 

though excavated and recovered, are sent to faunal specialists because they are mistaken for 

birds and rodents (Scheuer & Black 2000a, 1; Lewis 2007, 26). Furthermore, those infants 

who are recognized as human are often accumulated into disarticulated remains bags (e.g. 

Buckberry 2005). Obviously, analysis of disarticulated human remains is limited due to the 

nature of the material, though much disarticulated material often remains unassessed (Lewis 

2007, 30). Furthermore, a lack of knowledge regarding human anatomy, especially that of 

non-adults, limits their assessment (Lewis 2018, 113), meaning few actively choose to study 

these individuals. In addition, it must be acknowledged that depending on the age of the 

individual, the number of potential bones to be recovered varies; fetal, perinatal and infant 

individuals have around 263 bony elements (Lewis 2007, 27). Consequently, the number of 

bones and their rapidly changing morphology can make identification of fetal, perinatal and 

infantile individuals particularly difficult.  

 

Analysis is hindered by the obvious caveat of all osteological studies – that the individuals 

studied are the ‘non-survivors’ of a given population (Wood et al. 1992, 344; 349; Lewis 

2000, 40; Jackes 2011, 108; Halcrow et al. 2018, 93; Satterlee Blake 2018, 40). 

Consequently, analysis of the biological parameters of age and sex, as well as investigation 

into pathological changes, is thus not representative of the survivors (Saunders and Hoppa 

1993, 128). Therefore, peaks in mortality around 40 gestational weeks of age should not be 

unexpected; both the birth process and the first few days following are considered to be the 
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most critical point in an individual’s life (Kelnar et al. 1995 cited in Halcrow et al. 2018, 93; 

Lewis 2018, 112). Lewis (2018, 112) states that contemporary estimates suggest ‘…four 

million babies die each year worldwide within the first month of life…’. Furthermore, such 

individuals are likely to reflect those of greater frailty and with increased health disruption. 

Today the biggest risks include preterm birth, low birth weight, infection and asphyxia 

(Lewis 2018, 112; WHO Newborns: Reducing Mortality; WHO Preterm Birth). Given the 

limitations and ongoing debates (outlined in section 2.2. Contemporary Research and Current 

Debates), biological and pathological assessment is particularly complex when considering 

non-adult remains and interpretations should be carefully constructed and considered.  

 

In addition, the ongoing, inconsistent application of terminology hinders the ability of many 

studies to be comparable. The non-standardised use of fetus, perinate, neonate, infant, child, 

juvenile, sub-adult and non-adult, often with a lack of definition for such categories, means 

individuals are often ascribed to socially constructed age categories, imbued with cultural and 

social connotations of what that individual should have been (Sofaer Derevenski 1997, 193; 

Gowland 2006, 144). Thus, terminology employed must always be clearly defined and 

clarified, with consideration as to the historical, social and cultural implications of these age 

categories explored.  

  

2.4 Ethical Considerations 

Many ethical considerations surround the excavation, collection and analysis of human 

remains (e.g. Fforde 2004; Sayer 2010). Although many of these concerns centre on the 

display of individuals within a museum setting to the general public (e.g. Barilan 2006), 

consideration must be given to the large number of skeletal individuals curated within 

museums and academic departments (Fforde 2004, 2; Márquez-Grant & Errickson 2017, 

193). The collection of human remains, and the origins of large museum collections, have 

come under scrutiny in recent years (Nilsson Stutz & Tarlow 2013, 7). Of course some 

envisage human remains as simply material objects, primarily concerned with their scientific 

value, whilst to others, human remains are imbued with religious, cultural and/or spiritual 

significance (Nilsson Stutz & Tarlow 2013, 7). The primary issue surrounding these 

individuals is the rites of the deceased, and whether we as researchers should be able to 

prioritise our own scientific motivations over those of individuals of the past (Márquez-Grant 

& Errickson 2017, 193). 
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Historically, the collection of human remains was to investigate ‘race’ and studies focused on 

determining morphological variation between individuals (Fforde 2004, 1). As a 

consequence, the last 30-years has seen indigenous groups campaign for the return of 

ancestral remains held within various institutions (Fforde 2004, 2-3). Wide scale repatriation 

programs (e.g. NAGPRA) have ensured that indigenous groups now have legal protection 

over the remains of their ancestors (DeWitte 2015, 12), once curated and housed in various 

museums, some of which are being systematically repatriated. However, within archaeology, 

where many human remains are excavated as part of rescue excavations, and would be 

destroyed otherwise, the recovery and curation issues become more complex. Indeed, it has 

been considered to be paramount that archaeological human remains are accessible to study, 

so that biological, social, and cultural information regarding past and present populations can 

be comprehended (Márquez-Grant & Errickson 2017, 194). However, skeletal remains are 

those of once living people and should be treated as such – the study of human remains is a 

privilege and not a right (BABAO Ethics and Standards). For a comprehensive review of 

ethics in bioarchaeology see Walker (2000). 

 

Fetal, perinatal and infant studies are limited with regards to the lack of modern comparative 

skeletal collections. Donation of non-adult remains to medical study is vital to assess the 

skeletal and overall bodily mechanisms that have been affected by certain conditions and 

diseases. Parents are often, understandably, unwilling to donate the bodies of their infants and 

children to medical science (Lewis 2007, 14). This has been further diminished by the 

unethical practices, which were undertaken at the Royal Liverpool Children’s Hospital (Alder 

Hey), where pathologists had routinely collected and stored organs, without permission, for 

research purposes (Carvel 2002, 55; Swain 2002, 95). Although it may be argued that the 

intentions were not malicious, such practices are entirely unethical. 

 

Consequently, when studying the remains of fetal, perinatal and infant individuals it is 

imperative to consider the context from which these individuals were recovered and whether 

consent was given by parents and guardians. Individuals from the Smithsonian Fetal 

Collection were collected from medical institutions in the early 1900s. Although it must be 

stressed that this is unclear, it is possible that many of these individuals may have been 

collected without the knowledge or permission of the parents/family. As a researcher this 
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collection provides unrivalled opportunity to analyse a ‘known’ sample; however, this study 

does not overlook the possibility that collection and curation of these remains may be 

considered contentious.  

 

This study does not attempt to investigate the ethical issues surrounding each of the samples 

analysed within this thesis, but does ensure that ethical guidelines (BABAO Ethics and 

Standards) were adhered to in undertaking this assessment. Consequently, the utmost care has 

been afforded when examining all of the very young and fragile individuals considered 

within this assessment. It must not be forgotten that these were once living individuals, and 

despite their short lives, deserve our highest regard and respect. 
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Chapter 3: The Beginnings of Life; Understanding Growth, 

Health and Stress in a Bioarchaeological Context 

 

This chapter aims to contextualise the use of the terminology surrounding growth, health and 

stress throughout this study and provide a detailed background as to the main concepts behind 

these processes. This chapter explores the principal concepts of human growth and 

development, centring discussion on the cranium, long bones and dentition during the early 

stages of life – those of the fetus, perinate and infant. An overview of skeletal growth, its 

mechanisms and processes is provided, alongside consideration of the ways that bone growth 

can be disrupted and altered as a result of both intrinsic and extrinsic factors. Furthermore, 

consideration of the terminology surrounding age, and the distinctions between 

chronological, biological and physiological age are discussed. Detailed consideration of 

stress, health and wellbeing is also provided, in particular considering how assessment and 

interpretation of skeletal pathology can aid our interpretations of past health and wellbeing.  

 

3.1 Introduction to Human Growth 

Ontogeny of the human body and its various systems is complex, and understanding the 

different processes and mechanisms behind development and growth is crucial. However, it 

must first be acknowledged that growth and development are not interchangeable terms and 

instead define fundamentally diverse, yet interrelated aspects of human ontogeny (Bogin 

2001, 64). Growth is defined as the ‘progressive, incremental changes in size and 

morphology, such as increase in bone length’ over time (Šešelj 2013, 38). That is the 

fundamental process by which bone dimensions change as a result of increasing physiological 

progression. Contrastingly, development is considered to be the process by which the skeletal 

system is considered to ‘mature’; the development of epiphyseal centres of ossification, 

fusion of skeletal elements, or morphological changes associated with sex-related maturation 

(i.e. puberty) can be defined in terms of development (Bogin 2001, 64; Šešelj 2013, 38). 

 

Anatomically modern humans have been acknowledged as having a uniquely long period of 

infancy/childhood (Hoppa & Fitzgerald 1999, 8; Bogin 2001, 102; Kuzawa et al. 2014, 

13010), a period of heightened dependency on older individuals within the 

community/population (Bogin 2001, 107; Said-Mohamed et al. 2018, 6). This lengthy 

process has been considered to be a result of our unique growth curve (Bogin 1998, 61), 
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which enables individuals to learn a range of complex social, cultural and behavioural skills 

(Bogin 2001, 102; Said-Mohamed et al. 2018, 6). Thus, growth and development are not 

merely biological process, but also relate to the maturing of individuals over the life course. 

Today we ascribe people into socially constructed age categories using not only their stature 

(growth/height) but their ability to undertake or meet certain criteria (e.g. ability to crawl, 

walk, talk, vote, drive a car). In addition, we visually see the passing of time through physical 

manifestations such as wrinkles and grey hairs (Sofaer 2011, 385). The way in which we 

socially construct and determine age is consequently also strongly correlated with key 

transitional points in our life course, and the physical study of growth and development often 

classifies individuals into developmentally functional stages (Bogin 1999, 54; 2001, 64) – 

those of infant, child, adolescent and adult.  

 

There is an underlying mechanism of all growth, which, regardless of species, is universal 

(Gesell 1928, 5). Therefore, humans (Homo sapiens), although each individual is unique, 

typically conform to certain biological processes, growth being one such process. Put simply, 

all humans, although genetically unique, grow according to the same standardised pattern 

through a series of common biological processes (Tanner 1978, 7; Hillson 2005, 207; 

Cameron 2012, 20). Indeed, growth is one of the most fundamental processes of life where all 

living organisms are subject to both the necessities and limitations of it (Gesell 1928, 1). That 

is not to say that we all grow identically, rather the ‘blue print’ for human growth is 

comparable between us all. However, the biology of human development is highly complex 

and growth manifests in multiple ways, particularly during the fetal, perinatal and infant 

stages of the life course. 

 

The prenatal period has been described as the most ‘spectacular phase of growth’ (Sinclair 

1985, 3), both in terms of growth rate and due to the range of structures growing. It is also 

one of the most fragile and influential periods in an individual’s life span, vitally important to 

future well-being (Tanner 1978, 37; Lejarraga 2012, 40; Sandman et al. 2016, 230). The 

prenatal, or intrauterine, period is typically divided into three trimesters, each of roughly 

three months’ duration (Bogin 1999, 55; 2001, 65; Schoenwolf et al. 2014, 1). During these 

trimesters there are four main stages to prenatal growth: fertilisation, implantation, 

gastrulation and embryogenesis.  
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Human growth/development begins with the fertilisation of the ovum, a single large cell, in 

which the cell membrane of a sperm fuses with the cell membrane of an oocyte (egg) (Bogin 

1999, 18; 2001, 64; Sadler 2014, 11; Schoenwolf et al. 2014, 14). When fertilised the egg 

divides into two cells, with each daughter cell containing half of the parent cell material 

(Sinclair 1985, 3-4; Schoenwolf et al. 2014, 14). The fertilized egg (zygote) spends four to 

five days moving down the fallopian tube before passing into the uterine cavity where it 

implants in the wall of the uterus; it is during this time that the cells divide steadily so that by 

the time it implants, the blastocyst constitutes around 150 cells (Tanner 1978, 37; Gluckman 

& Hanson 2005, 29). It is during this division process (mitosis) that the chromosomes 

become fundamental to our successful growth and development, replicating themselves to 

ensure that each daughter cell contains the same genetic information as the parent cell 

(Tanner 1978, 26; Bogin 2001, 65). It is from this ovum cell and its subsequent initial 

division that the entirety of the human form develops, an estimated total of 1012 cells 

(Sinclair 1985, 3; Bogin 1999, 18; 2001, 65).   

 

Once implantation has occurred, the blastocyst divides into a bilaminar disc (two-layered 

disc) (Scheuer & Black 2000a, 32). The outer layer of the blastocyst is termed the 

trophoblast, and along with the endometrium (uterine wall) forms the placenta (Gluckman 

1997, 153; Gluckman & Hanson 2005, 29; Sadler 2014, 38; Schoenwolf et al. 2014, 14). The 

placenta has two primary functions; firstly, the placenta is the structure through which all 

nutrients and waste will be exchanged (Hahn 1972, 1000; Slack 1991, 16; Sandman et al. 

2016, 230), and secondly the placenta in central in the production of hormones (Sadler 2014, 

98). The inner layer of cells of the blastocyst (embryoblast) go on to from the embryo proper 

(Sadler 2014, 38; Schoenwolf et al. 2014, 14). It is at this point that another small group of 

cells separates and develop into the amnion (Schoenwolf et al. 2014, 16). The amnion is the 

membrane which forms the embryonic fluid-filled sac which protects and cushions the fetus.  

 

The third phase of growth/development in utero is when the embryo undergoes the process of 

gastrulation. This is when the embryo forms a trilaminar (three-layered disc) and establishes 

three germ layers: the endoderm, ectoderm and mesoderm (Scheuer & Black 2000a, 32; 

Bogin 2001, 65; Sadler 2014, 55; Schoenwolf et al. 2014, 7). These three layers each give 

rise to specific tissues and organ systems (Scheuer & Black 2000a, 32; Bogin 2001, 65; 

Sadler 2014, 67; Schoenwolf et al. 2014, 7). The mesoderm also combines with trophoblastic 



40 

 
 

tissue to from the umbilical cord, connecting fetus to placenta. The process of cell 

specialisation is also referred to as histogenesis (Tanner 1978, 39). It is during histogenesis 

that embryogenesis, the last phase of development, occurs, causing tissues such as organs, 

muscles, nerves and skin, and regions of the body such as head, arms and legs begin to 

become identifiable (Tanner 1978, 39; Sadler 2014, XII; 3). This moulding of areas of the 

body into distinguishable shapes, normally completed by the 8th week gestational week, is 

called morphogenesis and occurs through differential growth and migration of cells (Tanner 

1978, 39). During histogenesis, cell division becomes subject to controls which maintain the 

correct balance of growth and determine when and where further division and specialisation 

can occur (Sinclair 1985, 17). It is during the period of embryogenesis that most 

malformations occur, though the initial periods of fertilisation and implantation are equally 

hazardous. Ten percent of fertilized ova fail to implant and of those that manage to implant 

50% are spontaneously aborted (Tanner 1978, 38; Bogin 2001, 68). Such abortions often 

happen without any knowledge of the mother and are a result of genetic and chromosomal 

abnormalities, highlighting how complex and intricate the process of growth is, and how 

reliant human survival is on the optimal conditions for growth and development. Of ova with 

genetic abnormalities 90% to 95% are spontaneously aborted (Tanner 1978, 38).  

 

The fetal period is classified from the 8th/9th gestational week (Sadler 2014, 3; 89) and is 

characterised by two distinct processes. The first is the rapid rate of growth of all tissues, with 

the second being the continued differentiation, specialisation and maturation of cells (Sadler 

2014, 89; Schoenwolf et al. 2014, 169). Throughout the life course the skeleton experiences 

various growth spurts, the first of which is during intrauterine life (Sinclair 1985, 3; 

Gluckman 1997, 153; Bogin 2001, 4). Fetal growth is greatest from the 8th to 16th gestational 

week during which the fetus will undergo a twenty-five-fold increase in weight (Cameron 

2012, 7). Growth in height reaches its peak velocity during the fourth, fifth and sixth 

gestational months (second trimester) of fetal development (Cameron 2012, 7-8; Sadler 2014, 

89; Schoenwolf et al. 2014, 169), when the average amount of growth is 1.5 mm per day 

(Sinclair 1985, 23; Bogin 2001, 4). Therefore, any stress present during these periods is likely 

to significantly affect function and growth. In the third trimester, growth of the individual 

slows (Tanner 1978, 41) as its increase in size constricts blood flow and the fetal-maternal 

‘exchange of nutrients, gases and wastes’ due to pressure it places against the surface of the 

uterus and placenta (Bogin 1990, 18).   
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Immediately after parturition, growth increases once more, with average infant body length 

increasing by 50% within the first year (Sinclair 1985, 26; Saunders & Barrans 1999, 183; 

Bogin 2001, 77). This heighted rate of growth extends until around three years of age, but 

gradually decelerates throughout this period (Karlberg 1987, 185; Bogin 2001, 4; Haymond 

et al. 2013, 787; Šešelj 2013, 38). Growth is not seen to accelerate again until puberty (Bogin 

2001, 87; Hillson 2005, 207, Lewis 2007, 60; Larsen 2015, 8). Consequently, the rapidity of 

growth and development within the pre- and postnatal period is an essential component as to 

why these individuals best reflect physiological adversity. Indeed, the physiological growth 

of non-adults is considered to be the most sensitive indicator of the social, economic and 

political environments experienced in the past (Johnston & Zimmer 1989, 13; Lewis 2007, 

60). The growth curve for post-parturition exactly mirrors that of the fetal growth curve 

(Bogin 2001, 4), with a rapid increase in growth and then a steady decline. This means that 

both second trimester fetal life, and early infancy, are the two most critical periods, during 

which exposure to stress is likely to be most detrimental to growth and health. In humans the 

correlation coefficient between length at birth and adult height is only around 0.3, but by the 

time the individual is two years of age the coefficient rises to nearly 0.8 (Tanner 1978, 43), 

supporting the notion that it is these early periods/years of development that most influence 

the rest of the life course.  

 

3.2 The Growth and Development of Skeletal Tissues 

The skeletal system develops from both the paraxial mesoderm, lateral plate mesoderm and 

from the neural crest (Sadler 2014, 125). Bone development proper begins in utero, around 

twelve gestational weeks (Lewis 2007, 61), and just as with postnatal bone growth, the 

prenatal skeleton can be formed in one of two ways: endochondrally (from hyaline cartilage 

models) or intramembrously (Scheuer & Black 2000a, 18; Oestreich 2008, 1; 20; Waldron 

2009, 12; White et al. 2012, 37; Sadler 2014, 125). Flat bones of the cranium and long bones 

of the limbs differ in their growth mechanism (intramembranous and endochondral 

ossification respectively) (Schultz 2001, 116; Waldron 2009, 12; White et al. 2012, 37). 

However, although some bones grow purely via one method (intramembranous or 

endochondral growth), many bones arise from an amalgamation of both processes (Oestreich 

2008, 1). Currently, it is still unknown as to why some bones develop from cartilaginous 

models, whilst others develop within a membrane (Scheuer & Black 2000a, 18).  
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Bone growth is typically to considered to be regulated by both the paracrine and endocrine 

systems (Karsenty & Kronenberg 2003, 120; Haymond et al. 2013, 787), which control 

various hormonal influences, affecting key biological process, including both bone modelling 

and remodelling (Cornish & Martin 2003, 217). Consequently, hormones provide a system of 

control and regulation for normal human growth and development (Bogin 1999, 353; Stevens 

& Williams 1999, 200; Helfrecht et al. 2017, 1). Major hormonal groups involved in this 

regulation include thyroid hormones, adrenal hormones, insulin-like growth factors, insulin, 

cortisol and growth hormones (Karlberg 1987, 191; Stevens & Williams 1999, 200).  

 

Growth hormone (GH) is particularly important in later gestation and postnatal life and is the 

principle force behind skeletal growth during these periods (Karsenty & Kronenberg 2003, 

121). Secretion of GH is considered to be permanently reduced by maternal undernutrition, 

consequently causing GH deficiency and a disruption in skeletal growth (Barker 1994, 27). 

GH is also important for the regulation of insulin-like growth factors (IGF) (Karsenty & 

Kronenberg 2003, 121). IGF are also important regulators in fetal growth (Cameron & 

Demerath 2002, 164; St. Jacques & Helms 2003, 101), though are also regulated by nutrition. 

Chronic undernutrition has been found to permanently reduce IGF production (Barker 1994, 

27). Insulin is of central importance to fetal growth because as it stimulates mitotic drive and 

nutrient availability for cell proliferation (Barker 1994, 26). Insulin hormones are able to 

respond to the nutrient levels of the mother, signalling to the fetus whether there is adequate 

nutrient availability (Barker 1994, 26). As a result, growth rates are regulated by insulin 

hormones to ensure they can be accommodated by nutrient supply (Barker 1994, 26). Cortisol 

is particularly important in the later stages of gestation, as cortisol hormones trigger 

maturation responses in various fetal tissues (Barker 1994, 26). This is to prepare the fetus for 

extrauterine life (Barker 1994, 26). In addition, cortisol, like insulin, is also able to signal 

nutrient insufficiency to the fetus (Barker 1994, 26). Thyroid hormones are important for the 

process of cell differentiation and also in the regulation and consumption of oxygen by the 

fetus (Barker 1994, 28).  

 

Bone growth initially results from the mesenchyme, the meshwork of embryonic connective 

tissues (Mays 1998, 8; Scheuer & Black 2000a, 19; Aubin & Heersche 2003, 44; Sadler 

2014, 125). Small areas of dense, clustered mesenchyme give rise to skeletal blastema, small 
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zones of condensed activity which develop into specific bones. Hox genes regulate this 

skeletal development, ensuring bones are developing in the correct locations (Scheuer & 

Black 2000a, 19; White et al. 2012, 39-40; Sadler 2014, 135). Growth and development of 

bone consists of the interaction of two primary cells: osteoblasts and osteoclasts. Osteoblasts 

are those cells which synthesise and secrete bone matrix, while osteoclasts resorb and remove 

bone (Mays 1998, 6-7; Scheuer & Black 2000a, 30; Aubin & Heersche 2003, 43; White et al. 

2012, 35). These two types of cells work in unison and are delicately balanced to ensure bone 

is accurately modelled and remodelled (Scheuer & Black 2000a, 23; Aubin & Heersche 2003, 

44; Cornish & Martin 2003, 217). As osteoblasts become trapped in the growing bone matrix 

they transform into osteocytes (Scheuer & Black 2000a, 23; Aubin & Heersche 2003, 43).  

Thus, bone growth is not solely the process by which the human body increases its size and 

morphology, but is also a process in which there is specialisation, destruction, removal and 

replacement of material (Sinclair 1985, 1-2; Scheuer & Black 2000a, 30; Bogin 2001, 68; 

White et al. 2012, 35). Therefore, the body is in a ‘constant state of flux’ with a continuous 

exchange and replacement of cells and their molecular constituents (Tanner 1978, 26). 

Although bone cells are already ‘coded’ to grow in a particular way, muscle usage and 

activity related stress can greatly alter bone morphology (Tanner 1978, 36; Aubin & 

Heersche 2003, 43; Oestreich 2008, 13; Duren et al. 2013, 49; 54). However, the highly 

plastic nature of the skeleton also means that bone cells are affected by disease, diet, and 

social, political, cultural or psycho-sociological stressors.  

 

Bone is a compound of both organic and mineral components: 20-30% of bone is organic, 

10% is water, and the rest is mineral (Cole 2003, 1). Bone is comprised of compact, cortical 

bone and trabecular, or spongy, bone (Mays 1998, 1; Brickley & Ives 2008, 21; Waldron 

2009, 12; White et al. 2012, 32). Cortical bone forms the thick outer shell of bone, whilst 

trabecular bone is that of the honeycomb structure found on the internal aspect (Mays 1998, 

1; Brickley & Ives 2008, 21; Waldron 2009, 12-13; White et al. 2012, 32). However, when 

cortical bone is modelled, or remodelled, it is not secreted directly as this matrix, but instead 

as woven bone. Woven bone, sometimes referred to as fibre bone (Ortner 2003, 19; Brickley 

& Ives 2008, 23), is characterised as immature, highly disorganised bone (Mays 1998, 6; 

Scheuer & Black 2000a, 30; White et al. 2012, 35). It is typical of fetal/perinatal/infant 

growth as it is formed very quickly (White et al. 2012, 35) and is often identified by its grey 

appearance. Woven bone matures and remodels into lamellar bone, that of a well organised, 
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linear bone structure (Scheuer & Black 2000a, 30; White et al. 2012, 35). Despite both 

woven and lamellar bone being characteristic of normal bone growth and development, they 

also can be observed when health insults or trauma are inflicted on the skeleton (Mays 1998, 

6; Brickley & Ives 2008, 23; White et al. 2012, 34). Response by the skeleton to 

environmental onslaughts (be they infectious, metabolic, traumatic) results in pathological 

new bone formation which is identical in process and appearance to normal, healthy new 

bone formation. This is because the process by which bone grows, remodels and responds is 

identical regardless of the stimulus. Consequently, where bone growth is proliferative in fetal, 

perinatal and infant individuals, woven bone is common-place. Distinguishing this normal 

bone growth from pathological bone growth is consequently highly problematic.  

 

With the aim of the following thesis being to examine the correlation and relationship 

between growth and exposure to stress through the analysis of infantile skeletal populations, 

the fundamental biological processes of ‘normal’ growth must first be outlined. ‘Normal’ 

growth is considered in this study to be when an individual grows to full potential without 

any limiting factor impacting upon this process (e.g. Slack 1991, 9). 

 

3.21 Growth and Development of the Cranium 

The cranium is divided into two separate parts, the neurocranium and the viscerocranium. 

The neurocranium consists of the bones which surround and protect the brain, whilst the 

viscerocranium form the skeleton of the face (Sadler 2014, 125). The neurocranium can be 

further divided into the membranous part – the flat bones of the cranial vault – and the 

chondrocranium – the base of the cranium (Sadler 2014, 125).  

   

Intramembranous growth is within a membrane, fibrous tissue or mesenchyme (Scheuer & 

Black 2000a, 23; Oestreich 2008, 1; 13) where no cartilaginous precursor is required (Mays 

1998, 8; Karsenty & Kronenberg 2003, 120). Instead the membrane is directly ossified by 

osteoblasts (Mays 1998, 8). The bones of the cranial vault are all intramembranous in origin 

(Oestreich 2008, 13), as well as the facial bones (viscerocranium) and the clavicle (Scheuer & 

Black 2000a, 23). The cranial base (chondrocranium) develops endochondrally. The dura 

mater acts on the endocranial surface of the cranial bones as the periosteum, while the true 

periosteum covers the ectocranial surface and sutures (Oestreich 2008, 16).  
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The cranial base, one of the most complex skeletal structures, first appears around the fourth 

gestational week; mesenchyme masses appear at particular sites during this period and spread 

anteriorly during the second intrauterine month (Scheuer & Black 2000a, 40; St. Jacques & 

Helms 2003, 78-79). At the end of the first gestational month the vault of the skull begins to 

develop. The ossification centre for the occipital squama develops posteriorly, as well as 

those for the temporal squamae, and frontal bones laterally (Scheuer & Black 2000a, 43). 

These bones begin as curved plates of mesenchyme which gradually extend downwards to 

meet the forming cranial base (Scheuer & Black 2000a, 43). The parietal bones do not begin 

ossification until the fetal period (Scheuer & Black 2000a, 43), though there is little 

agreement of the exact point these bones develop (Scheuer & Black 2000a, 99; St. Jacques & 

Helms 2003, 86). The parietal bones are characterised by their thickened central eminence 

from which a network of fine trabecular bone radiates (Scheuer & Black 2000a, 99). The 

frontal bones have a similar pattern of development, where a network of trabeculae radiate 

upwards during growth (St. Jacques & Helms 2003, 79). Within the flat bones of the cranium, 

bone is typically deposited in waves of concentric layers at the perimeter (sutures) of the 

skeletal element (Karsenty & Kronenberg 2003, 120; Lewis 2017, 3). Throughout pre- and 

postnatal life, neurocranial bones grow by apposition, with new bone laid down on the outer 

surface, whilst bone resorption occurs on the inner surface (Sadler 2014, 125).  

 

Intramembranous growth/ossification is the first to commence formation (Scheuer & Black 

2000a, 22) and is also considered to be more rapid than endochondral ossification due to the 

heightened requirement of these structures for support and protection (Scheuer & Black 

2000a, 18; 2000b, 14). The speed of growth within bones of the cranium is considered to be a 

reflection of the rapidity of brain growth during this age (Scheuer & Black 2000b, 14; Lewis 

2007, 61; 2017, 3). It is known that the body prioritises growth of particular skeletal and soft-

tissue structures, with the brain sitting at the top of this physiological hierarchy (Barker et al. 

2012, 30; Said-Mohamed et al. 2018, 5), consequently requiring the cranial bones to be 

adequately developed (Karsenty & Kronenberg 2003, 120). It has been found that infants 

dedicate up to 87% of their resting metabolic rate to brain development (Bogin 2001, 108; 

2012, 351; Said-Mohamed et al. 2018, 6), thus skeletal development of cranial bones must 

coincide with this prioritisation. Findings by Humphrey (1998, 62) also established that the 

cranial bones are some of the first to reach adult proportions: by the end of the first postnatal 

year the breadth of the frontal bones will have reached 80% of their adult size.  
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3.22 Growth and Development of Long Bones 

Endochondral ossification refers to the process whereby a cartilaginous model (hyaline 

cartilage model) first develops and this provides a template for bone development and growth 

(Cole 2003, 1; St. Jacques & Helms 2003, 78; Oestreich 2008, 8). Within endochondral 

ossification, osteoblasts deposit osteoid to gradually mineralize the cartilaginous model into 

one of bone (Tanner 1978, 32; Lewis 2007, 61). Within a long bone (i.e. a humerus or 

femur), the bone develops from a primary centre of ossification (Stevens & Williams 1999, 

196; Scheuer & Black 2000a, 18; White et al. 2012, 34). Most primary centres of ossification 

develop prenatally, such as those of the long bones which are all present by the 12th 

gestational week (Sadler 2014, 133), though some do not appear until postnatal or even 

adolescent life (Scheuer & Black 2000a, 18; St. Jacques & Helms 2003, 81). Once this 

primary centre has been established, growth occurs at the growth plate, or metaphyses (White 

et al. 2012, 38). The growth plate is the area between the cartilaginous models of the long 

bone diaphysis and the epiphysis; it is in this area and space between the two that new bone 

cells must be added to increase overall bone length (Stevens & Williams 1999, 196; Lewis 

2007, 62; Mays et al. 2009, 410). Cartilage cells directly beneath the epiphysis divide and 

pass into the growth plate, aligning themselves into columns of flattened cells 

(perichondrium) as they descend towards the end of the long bone diaphysis (Acheson 1959, 

124; Tanner 1978, 32-33; St. Jacques & Helms 2003, 79; Oestreich 2008, 1). When close to 

the diaphysis an intercellular substance surrounds the cells so that each column is enclosed in 

its own sleeve (Tanner 1978, 33). Once enclosed in these sleeves, the cartilage cells enlarge, 

lose the flattened nature of their appearance and become more disorganised; eventually those 

nearest the diaphysis of the long bone either die (apoptosis) or are converted into bone cells 

(Tanner 1978, 33; Aubin & Heersche 2003, 43; Brickley & Ives 2008, 24). 

 

Shortly before birth some of the secondary centres of ossification begin to appear (White et 

al. 2012, 38). These are typically the epiphyses which lie to the proximal or distal ends of the 

long bones (Scheuer & Black 2000a, 18; White et al. 2012, 34). However, for most of the 

limb bones these secondary centres do not ossify until after birth and are thus often not 

found/recovered from archaeological remains of fetal/perinatal/infant individuals. Like the 

long bones, epiphyses undergo the same process of laying down a cartilaginous model before 

being converted into bone (Tanner 1978, 32). Throughout growth the primary centres of 
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ossification (typically the diaphyses) are separated from the secondary centres of ossification 

(epiphyses) by the growth plate. It is not until the rate of ossification exceeds cartilage 

proliferation that this growth plate narrows, eventually resulting in epiphyseal fusion and the 

cessation of longitudinal growth (Scheuer & Black 2000a, 18; White et al. 2012, 38; Sadler 

2014, 135).  

 

The cortical bone of long bones is also covered by an outer surface known as the periosteum, 

except at the joints, or metaphyses in infant individuals (Mays 1998, 1; St. Jacques & Helms 

2003, 80; Brickley & Ives 2008, 21; Kini et al. 2012, 29). The periosteum is a fibrous 

connective tissue containing blood vessels and nerves (Tanner 1978, 35; Schultz 2001, 116; 

Kini et al. 2012, 29) and is also involved in the process of appositional growth (Waldron 

2009, 12; Kini et al. 2012, 29; White et al. 2012, 38). The periosteum is made up of two 

different layers: the outer layer is purely fibrous but the inner layer consists of cells which 

multiply and lay down new bone (Tanner 1978, 35; Waldron 2009, 20). Appositional growth 

of the long bone is intramembranous as no cartilage is present (Tanner 1978, 35), though the 

bone cells act very much like the cartilage cells in the growth plate at the metaphysis of a 

long bone, laying down layer after layer to the outer cortical surface of long bones, increasing 

their diameter (Tanner 1978, 35; White et al. 2012, 38).  

 

Where endochondral and intramembranous growth plates meet at the physis and metaphysis a 

layer, one cell thick, develops. This metaphyseal collar has been termed the periphysis by 

Oestreich (2008, 3). This collar circumscribes the more mature portions of the growth plate 

towards the diaphysis from the less mature/more recently developed bone cells and enables 

appositional/transverse widening at this point (Oestreich 2008, 3). The periphysis thus 

regulates growth at this point, both limiting and allowing this widening, ensuring growth is 

happening both endochondrally and intramembrously at the correct rate (Oestreich 2008, 3).   

 

Tempo of growth is known to vary between varying skeletal structures, and even within them 

(St. Jacques & Helms 2003, 81; Oestreich 2008, 8). The most rapid endochondral growth is at 

the distal femur whilst the distal radius is known to have a faster rate of growth than its 

proximal end (Scheuer & Black 2000a, 19; Oestreich 2008, 8). Environmental conditions 

which may affect rates of growth tend to affect the skeletal structures of greatest growth most 

prominently, making the largest bones the most likely to reflect growth disruption (Oestreich 
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2008, 8). Furthermore, vascular activity is also directly correlated to bone growth (Scheuer & 

Black 2000a, 19); increased vascular activity leads to increased bone growth (Oestreich 2008, 

13). This is significant as cortical thickness is thus potentially directly related to health or 

disease status (Oestreich 2008, 13); cortical thickness appears to be reduced when nutritional 

status is equally reduced (Mays et al. 2009, 410)  

 

Between 34 and 36 gestational weeks fetal long bone growth has often been found to reduce 

as a result in intrauterine space constriction (Lewis 2007, 63). Consequently, though 

individuals in utero are not weight-bearing, the confined intrauterine environment can lead to 

pressure on various skeletal elements (Oestreich 2008, 21-22), which may in turn be 

reflective of health/disease status (e.g. vitamin D deficiency).   

 

3.23 Growth and Development of the Dentition 

Teeth and the jaws (mandible and maxilla) have their own growth pattern, autonomous from 

the rest of the skeleton, and characterised by the two sets of dentition (Mays 1998, 10; 

Hillson 2005, 207; AlQahtani et al. 2010, 481). Humans typically have 20 deciduous teeth 

and 32 permanent teeth (Mays 1998, 10). Hillson states that the deciduous dentition is 

associated with the ‘shorter’, small face of young individuals, and the larger adult dentition is 

accompanied by a comparable growth in the facial skeleton (2005, 207). The process by 

which deciduous dentition develop, resorb and consequently become replaced by the 

permanent, adult dentition provides a useful timeline for determining age-at-death. This 

process is one which, disregarding any pathological/congenital circumstances, occurs 

throughout the period of infancy, childhood and adolescence in all individuals with regularity 

(Hillson 2005, 207).  

 

The dentition, both deciduous and permanent, develops in a systematic, sequential way 

making formation a good way to estimate age up to early adulthood (Blakey & Armelagos 

1985, 371; Huda & Bowman 1995, 139; AlQahtani et al. 2010, 481; 2014, 70). Deciduous 

dentition begins to develop in utero from around the sixth week (Scheuer & Black 2000a, 44; 

AlQahtani et al. 2010, 481) meaning assessment of dental development can be utilised in 

even the youngest individuals. Teeth grow systematically from the tip of the crown to the root 

(Blakey & Armelagos 1985, 371; Mays 1998, 11; Lewis 2007, 39). This happens at varying 
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yet relatively precise ages for each tooth (Hillson 1979, 147-148), with both enamel and 

dentine deposited in regular increments (Šešelj 2013, 44).  

 

Teeth consist of three hard tissues: enamel, cementum and dentine (Mays 1998, 10; Hillson 

2005, 146). Unlike bone, dental tissues do not remodel as they lack a blood supply (Mays 

1998, 10). However, like bone, teeth are comprised of both organic and inorganic 

components (Hillson 2005, 146). The predominant inorganic (mineral) components are 

calcium and phosphate, whilst collagen makes up the organic component (Hillson 2005, 146-

148). The proportions of these organic and inorganic components changes over the life 

course, with a much higher percentage of organic components in developing and newly 

developed teeth; as teeth ‘mature’ proteins are removed and a greater mineral content 

develops (Hillson 2005, 149).  

 

Enamel is a unique mammalian tissue due to its primarily inorganic and acellular 

composition (Hillson 2005, 155). Enamel formation, commonly referred to as amelogenesis 

(Hillson 2005, 155; 209), occurs within the enamel epithelium. Amelogenesis consists of 

three phases – formation, mineralisation and maturation (Mays 1998, 11). Initially an organic 

matrix is formed, where crystallites are seeded into the matrix, slowly mineralising the 

structure (Smith 1998, 128). This mineralised matrix has the appearance and features 

consistent with fully developed enamel, but is actually only one third mineral (Smith 1998, 

133; Hillson 2005, 155). Therefore, the third phase of development, maturation, occurs when 

both proteins (organic) and water components are removed, increasing the size of the 

crystallites, creating a densely mineralised structure – around 95% mineral (Smith 1998, 128; 

133; Hillson 2005, 155). This maturation process occurs both before, during and after 

eruption of the dentition into the oral cavity. Like bone, the dentition grows appositionally in 

layers (Smith 1998, 128; Hillson 2005, 209; Armelagos et al. 2009, 266), meaning that 

enamel mineralisation and maturation happens at different times within different individual 

teeth, with these processes occurring at the tip of the crown first (Hillson 2005, 156).  

 

Within the dentition dentine is the first material to form, before that of enamel (Hillson 2005, 

185; 208). Dentine, like enamel, is comprised of both organic and inorganic components. 

However, unlike enamel, dentine is a living tissue and odontoblasts (dentine cells) continue 

to secrete and line the sides of the pulp chamber throughout life (Hillson 2005, 184-185). 
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This is known as secondary dentine and continues after the initial formation phase (Hillson 

2005, 185). Growth and formation of primary dentine consists of two phases; the first phase 

is where the odontoblasts secrete an organic matrix (predentine), this then mineralises to 

become dentine by the seeding of crystallites into the matrix (Mays 1998, 11; Hillson 2005, 

185; 208). Predentine forms initially directly under the tooth cusps, before enamel is 

mineralised (Hillson 2005, 185). Although the initiation of dentine formation precedes the 

initiation of enamel formation, once commenced these processes proceed in parallel, with 

both dentine and enamel laid down layer by layer (Hillson 2005, 185). 

 

3.3 Altered and Affected Growth 

Growth is regulated by both intrinsic (genetic) and extrinsic (environmental) factors 

(Cattaneo 1991, 39; Saunders & Hoppa 1993, 128; Bogin 1999, 51; 228-239; King & 

Ulijaszek 1999, 161; Scheuer & Black 2000b, 11; Bogin & Rios 2003, 74; Cardoso 2007, 

223; Lewis 2007, 60; Duren et al. 2013, 49; Ong et al. 2015, 975) and the interplay between 

these various determinants affects and alters the growth process. Importantly, the interaction 

between genetics and environment is non-linear (Tanner 1978, 117). Though original models 

of the 1960s and 1970s considered it to be a linear process, the last ten years has seen the 

emergence of a ‘biocultural’ view. This view posits a constant and recurring interaction 

between the human biological aspect of growth and the environmental factors, importantly 

including where biological changes affect and modify social and cultural behaviour (Bogin 

2001, 15; Halfon et al. 2014, 348; Larsen 2015, 7).  

 

The human body is highly labile and physiological plasticity is the ability of an individual, 

group or population to change size and shape in response to environmental factors, be that 

positively or negatively (Bogin & Loucky 1997, 30; Bogin 2001, 74; Goodman & Martin 

2002, 19; Bogin & Rios 2003, 71; Clukay et al. 2018, 173). During the early years of growth 

and development the size and shape of the human skeleton is particularly plastic (Bogin & 

Rios 2003, 72). The nature of cell development and the constant need to exchange, replace 

and renew constituents of those cells and develop new cells means the body is always 

influenced by the environment in which those cells develop. Therefore, the constant turnover 

of material and the dynamic state of the body allows us and our cells to continually interact, 

react and adapt to a changing environment (Tanner 1978, 26).  
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Consequently, assessment of growth has been widely considered within bioarchaeological 

and anthropological discourse to consider the varying effects of adversity. Growth has long 

been acknowledged to be particularly susceptible to environmental onslaughts – those such as 

poor nutrition, reduced socioeconomic status and exposure to pathogens - during the growth 

period, making non-adults sensitive barometers of overall population health (Saunders & 

Hoppa 1993, 132; Bogin 1999: 228-239; Hoppa & Fitzgerald 1999, 13; Larsen 2015, 7). Boas 

(1912) was one of the first scholars to suggest extrinsic factors have a significant role in the 

regulation of growth. Indeed, determining evidence of growth disruption has long been a 

central concern within bioarchaeology, and is often utilised as a proxy for health status 

(Clukay et al. 2018, 173; Miller 2018). This has been particularly demonstrated in studies of 

non-adults, where death is indicative of an inability to adapt or recover from detrimental 

onslaughts (Goodman & Martin 2002, 19). Thus, as non-survivors of a population, growth 

disruption is very likely reflected in their skeletal remains.  

 

It has been long considered that there are ‘critical periods’ of human growth and 

development, where particular environmental stimuli at such points have greater regulation 

and impact, channelling growth in accordance to these benefits and/or limitations (Hahn et al. 

1972, 128; Cameron & Demerath 2002, 159; Gluckman & Hanson 2005, 23; Kuzawa & 

Quinn 2009, 143; Helfrecht et al. 2017, 2). The first 1000 days of life – from conception 

through to infancy – have been identified as the most fundamental for human growth 

plasticity (Barker 2012, 187; Said-Mohamed 2018, 4), making them the most influential in 

shaping future growth and health (Holdsworth & Schell 2017, 1). For developing bodily 

systems this critical period enables modifications in response to environmental stimuli 

(Kuzawa & Quinn 2009, 134; Sandman et al. 2016, 230). Consequently, environmental 

effects during the first 1000 days of life can affect cell number, cell type and epigenetic 

cellular gene expression within particular bodily systems (Kuzawa & Quinn 2009, 134; 

Chmurzynska 2010, 87). This critical period (the first 1000 days) closely aligns with points in 

the life course during which the mother is able to buffer offspring against environmental 

onslaughts to a greater degree (Kuzawa & Quinn 2009, 131; Said-Mohamed et al. 2018, 8), 

where nutrition and immunity can be directly transferred between mother and offspring via 

both placenta and lactation.   
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Fetal, perinatal and infant individuals are consequently the most vulnerable to a variety of 

environmental onslaughts, and their growth is hence a reflection of their experience in the 

intrauterine environment (Winick et al. 1972, 80; Bogin 2001, 68; Oestreich 2008, 20; 

Kuzawa & Quinn 2009, 132; Kuzawa & Sweet 2009, 3; Mays et al. 2009; Dancause et al. 

2012, 307; Lejarraga 2012, 24). Disease and nutritional deficiency are considered to be the 

two primary factors that most commonly disrupt growth (King & Ulijaszek 1999, 161; Mays 

et al. 2009, 410). Consequently, fetal development is heavily reliant on the maternal ability to 

provide adequate nutrition in utero (Barker et al. 2012, 31; Said-Mohamed et al. 2018, 6); 

maternal malnutrition is the most significant factor in fetal malnutrition (Hales & Barker 

2001, 7). The maternal body prioritises the wellbeing of the growing fetus, thus ensuring its 

optimal growth and development (Gowland 2015, 533; Said-Mohamed et al. 2018, 7). 

However, this requires the mother to have sufficient availability of nutrients to supply the 

placenta, and relies also on the placenta being able to transport these to the fetus (Gluckman 

1997, 153; Barker et al. 2012, 30). With particular regards to bone formation and growth, a 

ready supply of protein and energy is required (Prentice 2003, 255). Poor maternal diet and 

nutrition is also known to result in a plethora of detrimental outcomes for mother and 

offspring including lowered birth weight, maternal haemorrhage, pre-eclampsia, IUGR, pre-

term birth and birth defects (e.g. neural tube defects) (Winick et al. 1972, 86; Prentice 2003, 

255; Kuzawa & Quinn 2009, 133; Wu et al. 2012, 4). However, nutritional deficiencies (and 

stress more generally) experienced within the first trimester have been found to be more 

strongly correlated with these outcomes than when malnutrition is experienced in later 

gestation/third trimester (Wu et al. 2012, 13; Sandman et al. 2016, 238). Furthermore, 

Oestreich (2008, 21) suggests that detrimental environmental factors are able to disrupt bone 

growth both locally and systemically, supporting current hypotheses that when limited 

nutritional resources are available, the fetus is able to prioritise growth in particular bodily 

structures and systems (Barker et al. 2012, 30). As a result, there is often a trade-off between 

structures (Barker et al. 2012, 30; Said-Mohamed et al. 2018, 5), typically seen in the way 

longitudinal growth of the long bones may be expended for the benefit of the brain (Aiello & 

Wells 2002, 330-331; Kuzawa et al. 2014, 13010; Sandman et al. 2016, 230; Said-Mohamed 

et al. 2018, 5).  

 

Limitations in protein, calorie, vitamin and nutrient intakes all have varying effects on 

offspring growth (See Wu et al. 2012 for extensive discussion of varying nutritional factors). 
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However, it is not just the quantity but the quality of these factors that is important to 

successful fetal, perinatal and infant growth (Hahn 1972, 99). Maternal undernutrition of 

these required elements is associated with SGA, IUGR, low birth weight and premature 

individuals, with increased morbidity and mortality risks (Wu et al. 2012; Farewell et al. 

2018, 1; Said-Mohamed et al. 2018, 6). Placental function is also central to the growth and 

health of the offspring (Gluckman 1997, 153; Gluckman & Hanson 2005, 33; Luo et al. 2010, 

93), with faulty placental transfer of nutrients a common underlying cause of fetal 

malnutrition (Winick et al. 1972, 81; Hales & Barker 2001, 7), and thus, subsequently, 

growth disruption. The placenta is also important in regulating and producing hormones that 

influence fetal function and growth (Gluckman & Hanson 2005, 33; Kuzawa & Quinn 2009, 

135; Sadler 2014, 98), as well as delivering maternal antibodies, oxygen, blood and glucose 

to the developing offspring. Therefore, the fetus is also able to gain passive immunity against 

various infections and diseases from the mother through placental transfer (Sadler 2014, 100; 

Thorsell & Nätt 2016, 3). Consequently, disease and health status, that of exposure to 

infection pre- and postnatally, is also of fundamental importance for skeletal growth (Mays et 

al. 2009, 410). As the fetus is yet to develop their own functioning/mature immune system 

they are entirely reliant on maternal antibodies and buffering (Wu et al. 2012, 13; 

Schoenwolf et al. 2014, 176). Thus, diseases/infections which are minor in the mother, can be 

deleterious to the fetus and can even result in death (Schoenwolf et al. 2014, 176). As a 

result, infections have been found to have a profound influence on growth velocity 

(Blackwell et al. 2017, 452; Said-Mohamed et al. 2018, 9), thought to be as a result of 

prioritisation and reallocation of energy resources to immune function (Kuzawa & Quinn 

2009, 139; Said-Mohamed et al. 2018, 9).  

 

Both nutritional and immune factors can also have a profound impact on skeletal growth as 

the human body is able to alter hormone regulation as a result of exposure to these 

environmental conditions (Barker 1994, 132; Godbout & Glaser 2006, 421; Kuzawa & Quinn 

2009, 132). As discussed previously (See Section 3.2) a range of hormones control and 

regulate normal growth and development. However, prenatal exposure to maternal stress can 

alter regulation of the hypothalamic-pituitary-adrenal (HPA) axis (Armelagos et al. 2009, 

263; Davis et al. 2011, 119; Murgatroyd & Spengler 2011, 1). The HPA axis controls and 

regulates the body’s reaction to ‘stress’ as well as controlling the immune system (Oberlander 

et al. 2008, 97; Kuzawa & Quinn 2009, 138; Murgatroyd & Spengler 2011, 1; Sandman et al. 



54 

 
 

2016, 231). Ultimately, maternal nutritional, health and endocrine status can alter production, 

secretion and regulation of the various hormones required for intrauterine growth, as well as 

the ability to deliver nutrients via the placenta (Gluckman 1997, 154; Dancause et al. 2012). 

Therefore, growth disruption is not solely the physiological response to environmental 

conditions, but may in fact be regulated on a cellular level by such factors (Murgatroyd & 

Spengler 2011, 1) (See discussion on epigenetic mechanisms later in this chapter). As a 

result, disruption to the maternal HPA axis, and subsequent hormone secretion or receptors, 

can have detrimental effects on fetal skeletal growth (Stevens & Williams 1999, 200; 

Dancause et al. 2012, 307). This is because environmental factors, such as undernutrition and 

physiological and psychological stress, alter maternal regulation and secretion of hormones, 

which are signalled to the fetus via the placenta (Barker 1994, 132-133; Kuzawa & Quinn 

2009, 133; Wu et al. 2012, 13; Thorsell & Nätt 2016, 6). This results in fetal individuals 

having correlating hormonal (stress) levels as that of the maternal host (Kuzawa & Quinn 

2009, 141-142; Davis et al. 2011, 119). Glucocorticoids (GC) hormones restrict fetal growth 

and program endocrine and metabolic systems (Luo et al. 2010, 92; Thorsell & Nätt 2016, 3). 

Though normally fetal levels of GC hormone are much lower than those of the mother, due to 

the placental barrier, stress can result in overexposure and inhibition of placental enzymes 

which regulate GC hormone exposure (Cameron & Demerath 2002, 164; Kuzawa & Sweet 

2009, 5; Luo et al. 2010, 92). As a result, such overexposure to GC hormones as a result of 

maternal stress has been found to alter fetal HPA axis function, disrupting offspring ability to 

regulate responses to both physiological and behavioural stressors (Oberlander et al. 2008, 

97; Davis et al. 2011, 119; Thorsell & Nätt 2016, 3). Furthermore, it is well established that 

chronic and severe episodes of stress greatly affect immune response (Godbout & Glaser 

2006, 422; Armelagos et al. 2009, 265). It has been hypothesised that hormonal disruption of 

growth, as a result of stress, affects growth of the thymus, reducing immune function as a 

consequence (Barker 1994, 28-29; Armelagos et al. 2009, 265). However, immune responses 

are also regulated by the HPA axis and the release of glucocorticoid (GC) hormones (Selye 

1973, 695). GC hormones act as anti-inflammatory agents (Godbout & Glaser 2006, 422) and 

disruption to their secretion will limit immune response. These hormonal disturbances, as a 

result of exposure to stress, thus render the individual incapable of buffering against further 

detrimental environmental factors, likely leading to significant changes in growth.  
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Growth is also a sensitive indicator of the social, political and economic environments to 

which an infant is exposed (Bogin & Loucky 1997, 17; Thorsell & Nätt 2016, 1). 

Socioeconomic status (SES) has been identified as a key factor in early life viability and 

wellbeing (Bogin 2001, 70; García et al. 2017, 1). Typically, higher SES correlates with 

healthier, larger and taller offspring and thus birth weight and growth are used as useful 

proxies to assess the impact of SES (Bogin 2001, 70). It is considered that offspring success 

is interrelated with the ability of parents/guardians to invest economically, socially and 

culturally in their wellbeing (Bogin & Loucky 1997, 17). The higher the socioeconomic 

status of the individual, the increased preferential access they have to food resources, 

housing, health care, and general living conditions (Mays et al. 2009, 410).   

 

Human growth, and subsequently health, are dynamic processes which begin prenatally and 

remain throughout the life course (Halfon et al. 2014, 344), where environmental factors can 

influence these outcomes. However, research within the last few decades has revealed a 

greater intricacy to these processes. Since the 1980s work of Barker and colleagues (e.g. 

Barker & Osmond 1986; Barker 1994) revealed that the environmental conditions to which 

we are exposed during early prenatal life can have a significant impact on our future growth 

and health, whilst our genetic profile may be less influential than previously thought (Luo et 

al. 2006, 39; 2010, 90; Halfon et al. 2014, 345-346). These life course models suggested that 

short and long term health outcomes were no longer a product of purely genetic endowment, 

but were also regulated by environmental, social, cultural and psychological factors 

experienced in early life (Halfon et al. 2014, 345; Thorsell & Nätt 2016, 1). Consequently, 

exposure to a variety of conditions/stressors can result in epigenetic changes, those in which 

our gene expression, rather than the underlying DNA sequence, is altered, reflecting the 

adverse or beneficial conditions experienced in utero (Cattaneo 1991, 40; Chmurzynska 

2010, 88; Kuzawa 2012, 327; 329; Mortier & Vanden Berghe 2012, 162; Halfon et al. 2014, 

346; 350-351; Glover 2015, 277). Epigenetic changes predispose our susceptibility, and/or 

resilience to disease, through altering the structure and function of various biological systems 

(Slack 1991, 30-31; Cameron & Demerath 2002, 160; Luo et al. 2006, 39; Chmurzynska 

2010, 87; Mortier & Vanden Berghe 2012, 162).  

 

Although this ‘fetal origins’ or ‘fetal programming’ hypothesis is now widely accepted, the 

mechanisms behind epigenetic programming are yet to be fully comprehended (Luo et al. 
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2010, 89; Thorsell & Nätt 2016, 1-2). Epigenetic information, unlike that of the base genetic 

code, is plastic and in theory inherently reversible (Chmurzynska 2010, 88). Epigenetic 

programming is a normal physiological process of healthy fetal development, where 

epigenetic changes regulate cell differentiation (Luo et al. 2010, 93; Thorsell & Nätt 2016, 1). 

However, epigenetic changes can also be ‘pathological’, resulting from insults experienced 

perinatally (Luo et al. 2010, 93; Thorsell & Nätt 2016, 1). It is these potential ‘pathological’ 

epigenetic changes that are of most importance to this study, as the adverse environmental 

conditions experienced within the archaeological and historical samples assessed may be 

reflected. Consequently, epigenetic changes are either changes which are permanent or 

reversible for the individual, and may or may not be inherited depending on the environment 

experienced. Some epigenetic changes, particularly those resulting from DNA and histone 

methylation, result in epigenetic changes that are heritable through all future generations 

(Egger et al. 2004, 457; Luo et al. 2010, 92; Non et al. 2016, 84), resulting in permanent 

changes in the phenotype (Halfon et al. 2014, 346). These methylation mechanisms result in 

gene ‘silencing’, where epigenetic signals lock genes into ‘off’ positions (Egger et al. 2004, 

457; Phillips 2008, 116; Murgatroyd & Spengler 2011, 5). However, heritability is primarily 

in genes regulating the epigenetic modification (methylation), rather than the epigenetic 

change itself (Egger et al. 2004; Murgatroyd & Spengler 2011, 7). Consequently, even in 

these cases it is suggested that almost all health-related epigenetic changes are still potentially 

reversible with drug treatment and lifestyle changes (Egger et al. 2004, 460), meaning they 

are not necessarily permanent epigenetic mutations. In part, this may be because DNA 

methylation is particularly sensitive to undernutrition, reliant on adequate availability of 

methionine and vitamins B6, B12 and folate (Chmurzynska 2010, 87). Undernutrition (as 

discussed previously) has been commonly associated with increased susceptibility to disease 

and detrimental life course outcomes (Chmurzynska 2010, 87), yet nutritional 

supplementation is relatively straightforward to address. However, it is still unclear as to the 

precise biological mechanisms and limitations of epigenetic therapy (Egger et al. 2004, 461; 

Murgatroyd & Spengler 2011, 11). Today, understanding the processes and regulation behind 

epigenetic changes is still an ongoing clinical concern, but it is suggested the both the type of 

environmental influence and its timing are critical in influencing epigenetic expression 

(Murgatroyd & Spengler 2011, 11; Halfon et al. 2014, 346; 353).  
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Two primary hypotheses emerged: the thrifty phenotype hypothesis and the predictive 

adaptive response hypothesis. The thrifty phenotype hypothesis posits that poor fetal and 

infant nutrition, leading to changes in growth strategy, is the primary factor driving long term 

health consequences (Hales & Barker 2001, 7; Luo et al. 2006, 39; Armelagos et al. 2009, 

263; Chmurzynska 2010, 87; Halfon et al. 2014, 348). Fetal malnutrition has been linked to a 

variety of biological process and the incapacity for these to function correctly (e.g. insulin 

resistance) (Hales & Barker 2001, 7; Kuzawa & Quinn 2009, 135). As a consequence, the 

fetus is ‘thrifty’ in utilising its nutritional stores, prioritising growth in particular 

elements/structures/organ (Hales & Barker 2001, 7; Luo et al. 2006, 39; 2010, 90; Kuzawa & 

Sweet 2009, 4). This concept of the ‘thrifty phenotype’, where genetic expression is 

considered to be able to alter, regulate and buffer the offspring from the environmental 

factors being faced and predicted, posits that epigenetic changes occur to aid the immediate 

survival of the child, despite this often having long term impacts on adult health (Cameron & 

Demerath 2002, 159; Luo et al. 2006, 39; 2010, 90; Armelagos et al. 2009, 264; Kuzawa & 

Quinn 2009, 135). Consequently, individuals become ‘best’ adapted for the environment to 

which they are exposed during intrauterine life (Mortier & Vanden Berghe 2012, 162; 

Keinan-Boker 2014, 2; Said-Mohamed et al. 2018, 9). In contrast, the predictive adaptive 

hypothesis suggests that the fetus predicts the postnatal environment given the range of 

signals it receives from the mother in utero (Gluckman & Hanson 2005). This predictive 

adaptive response does not always provide immediate advantages for survival, instead 

predicting long term survival strategies (Gluckman & Hanson 2005, 24; Kuzawa & Quinn 

2009, 136). For this hypothesis, epigenetic adaptations remain favourable as long as the 

anticipated and coded for environment remains the same (Gluckman & Hanson 2004, 1735; 

2005, 24; Halfon et al. 2014, 349; Said-Mohamed et al. 2018, 9). If environmental conditions 

vary from those originally experienced, morbidity, mortality and health risks alter (Hales & 

Barker 2001, 7; 15; Murgatroyd & Spengler 2011, 1; Halfon et al. 2014, 349).  

 

Regardless of the epigenetic mechanism, it is these long term health impacts that the Barker 

Hypothesis, subsequently referred to today as the Developmental Origins of Health and 

Disease Hypothesis (DOHaD Hypothesis) has explored (Kramer & Joseph 1996, 1254; 

Armelagos et al. 2009, 261; e.g. Barker & Osmond 1986; Barker 1992; 1994; 2012; Barker et 

al. 2002), revealing a multitude of long term growth and health implications of a detrimental 

in utero experience (Ulijaszek & Henry 1996, 1; Barker 1997; 2003; 2012; Barker et al. 
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2002; 2012; Larsen 2015, 7; Hoffman 2016, 656; Clukay et al. 2018, 173). Multiple studies 

have investigated the correlations between early life course experiences and obesity (e.g. 

Benyshek 2007; Huang et al. 2007; Han et al. 2010), cardio vascular health (e.g. Dong et al. 

2004; Barker et al. 2005; Kuzawa & Sweet 2009), diabetes (e.g. Hales & Barker 2001), 

behavioural disorders (e.g. Van den Bergh et al. 2005; Talge et al. 2007), fertility (Plana-

Ripoll et al. 2016), and even academic achievement (e.g. Niederhofer & Reiter 2004).  

 

Longitudinal studies of famine victims have provided researchers with cohorts in which to 

explore the long term consequences of an adverse intrauterine environment on adult health 

and growth outcomes. During the Dutch Hunger Winter (1944-1945) individuals exposed in 

the first trimester to periods of starvation and famine have been found to show epigenetic 

changes consistent with their bodies adapting to a lower caloric intake (Roseboom et al. 

2001, 95-97). Thus, when food intake returned to normal the individuals were maladapted for 

their environment (Bogin et al. 2007, 633). This resulted in the individuals having higher 

body mass indexes (BMIs) as adults, and were consequently more likely to suffer from both 

obesity and cardiovascular disease (CVD) (Roseboom et al. 2001, 96). In contrast, those who 

experienced malnourishment during their third trimester tended to be of lower birthweight, 

but did not display similar increase in rates of obesity and CVD (Roseboom et al. 2001, 96-

97).  

 

The complexity of epigenetics is exacerbated when multiple generations or lengthy temporal 

periods are considered – as in an archaeological context (Mays et al. 2017, 42). Epigenetic 

traits can become ‘embedded’, with the expression of these traits transferred from parent to 

child, and subsequently grandchild (Kuzawa & Quinn 2009, 132; 138; Halfon et al. 2014, 

349; Glover 2015, 277; Gowland 2015, 534; Thorsell & Nätt 2016, 2; Satterlee Blake 2018, 

43). Holland-Jones (2005) has termed this as a ‘downstream effect’. Therefore, the fetus is 

able to adapt its growth strategy in accordance with the maternal phenotype (Gluckman 1997, 

154; Kuzawa & Quinn 2009, 132), which can be expressed via ‘…nutrients, growth factors, 

metabolites, hormones, and immune factors that reflect the mother’s cumulative experience 

of the local environment’ (Kuzawa & Quinn 2009, 134). This phenotypic transfer may reflect 

maternal environmental exposures during pregnancy, maternal environmental exposures 

during her life course, or intergenerational phenotypic expression of the matrilineal line 

(Kuzawa & Quinn 2009, 132; 138; Halfon et al. 2014, 358; Said-Mohamed et al. 2018, 7). In 
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fact, it has been suggested that an individual’s investment in offspring is regulated by grand-

maternal experiences, where by amalgamation of matrilineal experiences are signalled to the 

offspring by the expectant mother (Kuzawa & Quinn 2009, 138). This has been termed 

‘transgenerational phenotypic inertia’ (Kuzawa 2005). This multigenerational complexity has 

led to Gowland (2015) terming this mother-infant dyad and intrauterine period in terms of 

entanglement – where multigenerational, and both intrinsic and extrinsic factors, are 

entwined in determining the fetal/perinatal/infant life course. Consequently, predisposition to 

various health consequences as a result of unanticipated pre- and postnatal environments has 

had a fundamental impact on the way bioarchaeologists have interpreted growth and health 

status within non-adult remains (Mays et al. 2017, 42). The realisation that prenatal life can 

be influenced by previous multi-generational experiences challenges our ability to determine 

when an individual’s biography truly begins (Gowland 2015).    

 

Consequently, in light of these developments, compounding genetic, epigenetic and 

environmental constraints can all affect skeletal growth and development (Bogin 2001, 68). 

Understanding the intricate interplay between these factors, and identifying evidence within 

archaeological samples of these limitations is challenging. As this study aims to further 

current understanding regarding the skeletal evidence for early life exposure to stressors, 

growth must be considered a sensitive biological parameter by which evidence of adverse 

experiences and conditions can be identified. Consequently, by using growth and health as 

proxies for early life experiences, as well as maternal health and wellbeing, understanding of 

the critical and fragile early life stages of past individuals can begin to be illuminated.   

 

3.4 Terminology 

Throughout this thesis, discipline-orientated terminology has been employed. To understand 

the implications of this terminology the following section defines and outlines the concepts of 

health and wellbeing, growth and development, stress and stressors, as well as various age-

related terminologies, including the categories of fetus, perinate and infant.  

 

3.41 Age-Related Terminology 

Defining the terminology employed throughout this research, regarding age and age-at-death 

estimates, is imperative, as both are typically used in consideration of growth and 

development, and have also been used to make inferences regarding morbidity and 
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environmental conditions (Lewis 2007, 38). Age is a complex biological, chronological and 

cultural construction (Ginn & Arber 1995, 5; Gowland 2002, 10; Baxter 2005, 95-98; 

Gowland 2006, 143-144; Lewis 2007, 5; Sofaer 2011, 286-287) and much bioarchaeological 

literature has considered the varying social and physiological implications of distinctions 

made between individuals based on these varying categories of age (e.g. Stoodley 2000; 

Gowland 2001; 2002).  

 

This study uses age estimation as a tool for analysis, in distinguishing evidence of growth and 

health disruption, by comparing age-at-death estimates generated from a variety of skeletal 

structures. Age-at-death estimates have been employed as follows: ages generated from 

assessment of dentition have been referred to as dental age-at-death estimates, and those ages 

generated from the skeleton as skeletal age-at-death estimates (Huda & Bowman 1995, 136). 

Methods used in both dental and skeletal assessments are those which measure an aspect of 

physiological (biological) development (Johnston & Zimmer 1989, 12; Lewis 2007, 38; 

Couoh 2017, 671). That is, the stage of dental or skeletal development is indicative of a 

certain physiological point of growth within that individual’s trajectory. These physiological 

stages are then translated into estimates of chronological age (Johnston & Zimmer 1989, 12; 

Lewis 2007, 7; 38). Chronological age is a more standardised method of comparison across 

data-sets, especially where historic documentation exists (Huda & Bowman 1995, 136). 

However, due to variation in human growth and development the biological/physiological 

stage may differ from true chronological age (See Huda & Bowman 1995; Couoh 2017). 

Thus, chronological age estimates generated and used throughout this study are indeed just 

that, estimates. By considering both dental and skeletal ages this research considered 

variation between the chronological age estimates generated, from the different skeletal 

parameters. The inclusion and use of the 20th century Smithsonian Fetal Collection will 

explore the accuracy of age estimation techniques further, although these non-survivors may 

not be representative of normal fetal growth.   

 

Comparative studies of non-adults have been complicated by this heterogeneous mix of 

terminology (e.g. juveniles, sub-adults, children) with little concordance between existing 

studies (Lewis 2007, 2; Falys & Lewis 2011, 710). Typically, within archaeological discourse 

such terms have been ascribed to define both biological/physiological and chronological age. 

Thus, social constructs of age have often become entangled with biological definitions 
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(Lewis 2007, 2). Some scholars recommend the term ‘non-adult’ for classifying such 

individuals as it refrains from using the preposition, ‘sub’, which has been suggested to infer 

that the study of young individuals is inferior to the study of adults (Lewis 2007, 2). The 

terms fetus, perinate, and infant have been used with reference to stages of physiological 

growth and development (See Table 5.1) and in no way represent the social, or cultural 

constructs of age that may have been afforded to individuals from the varying skeletal 

samples assessed. Furthermore, as the relationship between physiological and chronological 

age is not straightforward, and individuals of the same age may vary greatly in their growth 

and development, our methods fail in being able to reflect this. Age categories, are by their 

nature, discrete (See Table. 3.1), whereas age is on a continuum (Bogin 2001, 76; Sofaer 

2011, 290).   

 

Terminology Gestational Age Range (In weeks) 

Fetus < 36 

Perinate 36-44 

Infant > 44 

 

 

Fetus is often used to define individuals considered to be within the period of intrauterine 

growth and development. Traditionally, fetal individuals are those between 8 gestational 

weeks of age and birth (e.g. Lewis 2007, 2). This study has classified individuals between 0-

36 gestationalweeks of age as fetal. The upper age limit of this term has been set at 36 

gestational weeks of age to allow for a distinction between those individuals estimated to be 

aged around the time of birth. Perinatal – literally around (peri), birth (natal) – has been 

considered to represent individuals as young as 24 gestational weeks of age through to 7 

postnatal days (e.g. Lewis 2007, 2). Thus, such a broad definition would, for this study, mean 

that most individuals would be termed as perinatal, even though up to four months could 

separate them. This study aimed to distinguish between those individuals who, if born 

prematurely, were unlikely to have survived in the past, from those who were close to full 

TABLE 3.1 Definitions of age-related terminology employed within this thesis. 
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term. Thus, the definition of perinate used within this study refers to those between 36 and 44 

gestational weeks of age. This range covers the commonly considered point of birth at 40 

gestational weeks, and allows a +/- 4 gestational weeks, or a month, either side of this point. 

The term infant has hence been used to describe those between 44 gestational weeks and 6 

months of age (64 gestational weeks of age), which is the upper age limit of this study. These 

individuals have been classified as a group due to the likelihood that all individuals termed 

‘infant’ were both born and survived for some days/weeks postpartum. Thus, by employing 

these terms and definitions, this study attempts to distinguish and examine individuals based 

on their physiological growth and development, as well as potential life course experiences 

(e.g. Wiley & Pike 1998). 

 

Throughout the rest of this thesis where gestational weeks of age have been recorded or 

mentioned, the abbreviation GWA will be employed.  

 

3.42 Health and Wellbeing 

The construction of health and wellbeing has long been debated, particularly within an 

archaeological and bioarchaeological context, where only a limited amount of information 

can be gleaned regarding an individual’s overall health and wellbeing status from their 

skeletal remains. However, attempting to reconstruct health and wellbeing in the past can 

disclose important demographic and population characteristics – those of mortality and 

morbidity, and fertility as well as the social, cultural and environmental structures and 

systems in which individuals functioned (e.g. Goodman et al. 1984, 264-265; 1988; Bush 

1991, 11; Steckel and Rose 2002, 3). Consequently, non-adults are central to such studies, 

and as aforementioned, represent sensitive barometers of population health and wellbeing 

(Lewis 2000, 39; 2007, 20). This is due to both their rapid growth trajectory, which enables 

health stresses to be more readily identified within the skeleton, and their immature immune 

system, which makes them more susceptible to adverse pre- and postnatal onslaughts 

(Goodman and Armelagos 1989, 239; Perry 2006, 92; Halcrow & Tayles 2008, 336).  

 

Health has been defined by the World Health Organization as ‘a state of complete physical, 

mental and social well-being and not merely the absence of disease or infirmity’ (WHO 

1946; Constitution). The Oxford English Dictionary defines wellbeing as ‘The state of being 

healthy, happy or prosperous’ (Oxford English Dictionary 2017). Consequently, determining 
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whether an individual was mentally or socially ‘happy’ or ‘prosperous’ is not only subjective 

but impossible within an archaeological context. As a result, it has been suggested that 

archaeologists have a penchant for using health and wellbeing as synonyms for disease 

(Waldron 2009, 9), particularly as even absence of disease/pathological indicators on a 

skeleton does not infer good health or wellbeing (Waldron 2009, 10). As a consequence, 

bioarchaeologists must interpret data with regards to the likelihood of the individual’s quality 

of life – affording consideration of their potential socioeconomic status, living and working 

environments, and dietary intake, as well as their ability to adapt, cope and maintain 

wellbeing when exposed to variations in these factors (Huber et al. 2011, 2; Reitsema and 

McIlvaine 2014, 181). Halfon and colleagues (2014, 355) determine health to be ‘… a 

developmental capacity that allows an individual to interact successfully with his biological, 

physical and social environments’. Thus, a bipartite biological and contextual approach to the 

study of health and wellbeing in the past is paramount.  

 

It has been considered that health and disease simply represent either ends of a spectrum, 

being respectively successful and unsuccessful attempts by the body to adapt to 

environmental conditions (Bush 1991, 11). In fact, Audy (1971, 142) states that health ‘does 

not disappear during an illness to return on recovery but continues, even though it may drop 

in level while the organism is adapting to the current insult’. This illustrates that health and 

wellbeing, disease and illness should not be considered as binary, discrete or even static 

bodily states, but as consistently fluctuating and changing along a continuum (Goodman et al. 

1988, 195; Larsen 2015, 9). Thus, health is a multifaceted and complex biological construct, 

yet, social regulation and perceptions of health must not be overlooked. Disease is often 

socially patterned, with socioeconomic status, availability of health care, wealth and nutrition 

all bound in determining individual health status (Halfon et al. 2014, 347). Additionally, what 

might be considered ‘healthy’ today is unlikely to directly correlate to perceptions of health 

in the past (King & Ulijaszek 1999, 173-174; Roberts 2009, 154). Furthermore, the direct 

comparison of modern clinical and anthropological data to archaeological human remains 

renders interpretations of health in the past to be subjective, particularly as these perspectives 

of health derive from skeletal remains of the non-survivors (Wood et al. 1992; Hoppa & 

Fitzgerald 1999, 13; Hillson 2005, 225; DeWitte and Stojanowski 2015, 406). 
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Consequently, this research considers health and wellbeing as part of the same continuum as 

disease and illness, whereby evidence of pathological lesions likely indicates presence of 

disease and a subsequent reduction in health status. This study has consistently addressed the 

contextual implications for the presence of pathological lesions, and as such endeavours to 

adopt a holistic approach to considering and exploring the concept of health within the fetal, 

perinatal and infant samples assessed. Therefore, the terms health and wellbeing have been 

utilised throughout, addressing one of the thesis’ primary aims of interpreting pathological 

changes in association and reflection of the socioeconomic and environmental contexts 

experienced by these individuals.   

 

3.43 Stress and Stressors 

Within this thesis stressors were considered to be those factors which have a negative and 

detrimental impact upon growth and health (Goodman et al. 1988, 169; Goodman & 

Armelagos 1989, 226; Reitsema & McIlvaine 2014, 181), with evidence of stress, or 

exposure to stress, interpreted from the growth and health disruption identified (Bush 1991, 

11; Bush & Zvelebil 1991, 4). Thus, stress and stressors are correlated with metric and 

pathological changes, suggested to be indicative of an abnormal physiological response (Bush 

1991, 11). Stressors may be considered as factors which influence pre- and postnatal life, 

such as maternal health/disease status, intra- and extrauterine nutrition, social, cultural and 

environmental changes, as well as the genetic predisposition and inherited fragility of the 

child. Consequently, stressors are defined as the multitude of both intrinsic and extrinsic 

factors which can affect and alter normal growth and health (Goodman & Armelagos 1988, 

941-942; Goodman et al. 1988, 169-170; Bush & Zvelebil 1991, 5).  

 

The work of Selye (1973) is perhaps the most influential in establishing a concept and 

theoretical framework for stress (Goodman et al. 1988, 173; Armelagos & Goodman 1991, 

45). He developed the general-adaptation-syndrome model (GAS), whereby stress is defined 

as the ‘non-specific response of the body to any demand upon it’ (Selye 1973, 692). There are 

three phases to this model: the alarm, resistance and collapse stages (Selye 1973, 694-695). 

The first stage considers the initial exposure to stress, which inevitably leads to an excessive 

bodily response due to the individuals’ low resistance (Selye 1973, 694). This is the ‘fight or 

flight’ response initiated by the autonomic nervous system which provides a rapid response to 

the stressor (Murgatroyd & Spengler 2011, 2). The HPA axis also responds to this initial 
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stressor, but at a much slower rate, though it is central to the long term regulation of stress 

responsivity (Murgatroyd & Spengler 2011, 2). If this initial stress exposure is severe enough, 

death can result in the individual at this initial stage (Selye 1973, 694). However, for most 

stressors, repeated and consistent exposure leads to a resistance stage, where the individual’s 

body has adapted to these pressures and is able to accommodate and maintain the effects of 

exposure (Selye 1973, 695). The final stage is that of collapse, where the individual has been 

subject to continued stress exposure and can no longer maintain resistance to this, and 

consequently either succumbs to the effects of this stressor, or as a result becomes more 

susceptible to further stressors (Selye 1973, 696). Consequently, this collapse stage ultimately 

leads to death of the individual (Selye 1973, 696). However, the Selyean concept of stress has 

been critiqued by many scholars for its focus on physiological stressors, avoiding the 

psychological stressors which equally impact bodily homeostasis (e.g. Goodman et al. 1988, 

174-175; Armelagos & Goodman 1991, 45; Bush 1991, 12; Weston 2012, 505). Thus, 

Selye’s concept and framework for stress focuses on the ability of the body to respond, adapt, 

recover and maintain homeostasis (1973, 695). Indeed, health is then considered not as lack 

of pathological lesions, but in fact evidence and ability of the skeleton to respond and recover 

from such insults.  

 

The model of stress (Depicted in Fig. 3.1) typically adopted within bioarchaeology is 

important due its consideration of environmental, extrinsic factors, as those which can both 

buffer individuals from stressful onslaughts, as well as generate them (Goodman et al. 1988, 

175; Goodman & Armelagos 1989, 226). It has been found that social and cultural practices 

can both mitigate stress, but also act as sources of stress through the adoption of these 

practices. Furthermore, individual perception of stress and stressors will alter experiences and 

response to stress, meaning physiological responses to stress, identified through the proxy of 

skeletal lesions, will be individual (Bush 1991, 17; Bush & Zvelebil 1991, 7). Thus, there is 

no universal response to stress, nor a universal stressor (Bush 1991, 17).  

 

Bioarchaeological interpretations of health, consequently, rely on identification and 

interpretation of skeletal and dental lesions (Goodman et al. 1988, 177-178; Armelagos & 

Goodman 1991, 51; Goodman & Martin 2002, 11; Reitsema & McIlvaine 2014, 181). These 

lesions are commonly referred to as ‘stress indicators’ (Goodman et al. 1988, 169-170; Lewis 

& Roberts 1997, 581; Goodman & Martin 2002, 12; Reitsema & McIlvaine 2014, 181; 
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Larsen 2015, 8-58), and can represent a variety of pathological conditions such as specific 

and non-specific infections, trauma and metabolic disturbances, as well as evidence of growth 

disruption (Goodman & Martin 2002, 12; Reitsema & McIlvaine 2014, 181). Thus, both 

growth and health disruption can be used as a proxy for exposure to stress. Although this 

research does not attempt to ascertain the mechanisms (physiological or psychological) 

behind the stress responses (i.e. the pathological or growth disruption identified), it must be 

acknowledged that identifying specific causes of stress is almost impossible due to the vast 

range of insults which can cause identical physiological responses (Goodman et al. 1984, 

259; 1988, 178; Bush & Zvelebil 1991, 5; Lewis & Roberts 1997, 584; Temple & Goodman 

2014, 186). Due to the nature of bone response, which is either bone formation or destruction, 

multiple stressors or insults can lead to identical changes within the skeleton (Bush & 

Zvelebil 1991, 5). Furthermore, if a disease is acute, or system specific (i.e. only affects soft 

tissue structures) no discernible changes will be observable to the skeleton, plus an individual 

may die before skeletal changes develop, or recover from insults experienced much earlier in 

life (Bush & Zvelebil 1991, 5; Cardoso 2007, 231). Consequently, although pathological 

lesions may present as those indicative of certain conditions and diseases, the aetiological 

cause, as to why an individual was subject to these insults, can rarely be elucidated. 

Exacerbating this complexity is the likelihood that individuals experience multiple stressors 

simultaneously (Goodman et al. 1988, 187). Therefore, the concept of stress is one which is 

both complex, and is still regarded varyingly within existing literature. 

 

Consequently, interpreting ‘health’ from evidence of pathological lesions (stress markers) 

and growth disruption is complex, as these identifiable skeletal changes represent a 

physiological response to overcome or maintain these insults. However, skeletal individuals 

equally represent the non-survivors, where exposure to stress potentially contributed to their 

death. In addition, fetal, perinatal and infant individuals represent some of the most 

vulnerable members of past societies (Goodman & Armelagos 1988, 936; 1989, 226; Rogers 

1997, 65-66; Lewis 2002b, 38; Lewis 2007, 5), inferring that stress markers may be more 

commonly identified within their remains. However, stress indicators, although providing 

insights into health, cannot reveal the entirety of an individual’s health and wellbeing status 

(Temple & Goodman 2014, 189-190), and contextual considerations of environmental, 

dietary and cultural factors to which the individual was exposed is essential. Within 

bioarchaeological studies it is hence recommended that a holistic approach to considering 
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indicators of stress is adopted to more accurately understand patterns of health in the past 

(Goodman et al. 1988, 169; Goodman 1993, 285). 

 

In addition, some indicators of stress have been used naïvely in interpretations of health in the 

past. For example, the use of Harris lines as an indicator of growth disruption, and thus 

exposure to stress has been widely debated (Bush & Zvelebil 1991, 4) (See Section 5.34 for 

further consideration). As a result, this thesis has avoided assessment of specific ‘stress 

indicators’, instead taking a broader approach to considering pathological changes, as 

recommended (e.g. Goodman et al. 1988; Goodman 1993). It is intended that this approach 

will be more revealing with regard to general health and stress exposure, and interpretations 

will not be limited by only a select few traits being observed. Consequently, within this 

thesis, consideration of both health and stress is afforded using pathological and growth 

changes as a proxy for these interpretations, whereby pathological and growth changes 

indicate a reduction in health as a consequence of exposure to stress.  

 

  

Figure 3.1 A model of stress and stressors, showing the ways in which exposure to stressors 

can be identified within the skeleton and the contextual implications. Image taken from 

Goodman & Armelagos (1989, 226). 
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Chapter 4: Materials 

 

This chapter details the archaeological and historical context of the 15 skeletal samples 

analysed throughout this thesis. The following sections provide details of the excavation, 

collection and curation of these remains, as well as the number of individuals analysed from 

each sample. Although this thesis, and manuscripts herein, are heavily focussed on 

methodological approaches to exploring growth and health disruption, it is essential to 

contextualise these findings within the ancient and historical worlds of the samples studied. 

Differing environments, and societal and cultural organization, will affect interpretations of 

the growth disruption and health stress identified. 

 

A summary table detailing the sites and their sample sizes in chronological order has been 

given below (Table 4.1). The dates listed for each skeletal sample are not representative of 

the whole archaeological sequence for these sites, instead referring only to the periods from 

which the skeletal individuals assessed come. Additionally, Table 4.2 details samples sizes 

for all of the fetal, perinatal and infant individuals by historic time period, regardless of the 

archaeological sites from which they derive. Figure 4.1 illustrates the location of each 

archaeological site. 

 

4.1 Sample Selection and Rationale 

Archaeological samples selected for this study all derive from the south and south-east of 

England. These archaeological sites were selected due to their relative proximity to each 

other as well as the known excavation and curation of fetal, perinatal and infant individuals 

from the sites.  

 

The sites of Owslebury, Piddington and Barton Court Farm were selected for study as they all 

represented rural sites which transitioned from Iron Age to Roman settlements, yet skeletal 

individuals recovered primarily reflected varying temporal periods. This has enabled this 

study (Chapter 6) to investigate health and growth of such young individuals over this 

significant cultural transition. Although many other Iron Age and Roman rural settlements 

have been excavated these three sites provided adequate sample sizes for assessment; though 

sample sizes for Owslebury and Piddington are not large, they are acceptable sample sizes for 

such young individuals given the archaeological and temporal context.  
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Medieval and post-Medieval individuals excavated from the City of London, curated and 

held by the Centre for Human Bioarchaeology at the Museum of London, were also chosen 

for analysis within this study. This was due to these individuals (N = 184) being available for 

analysis and representing a large collection from a major urban settlement. Though sample 

sizes vary greatly between individual sites (See Table 4.1), collectively they enable this study 

to provide a valuable insight into growth and health consequences of early life in an urban 

context. Furthermore, this study has deliberately chosen to assess individuals from varying 

temporal and contextual environments to enable comparisons between samples. Therefore, 

individuals analysed from the Museum of London (Chapter 7) provide a direct contrast to 

those from the Iron Age and Roman sites detailed above. As a result, this study attempts to 

detail similarities and differences in health and health disruption over time (Chapter 9). 

 

The skeletal collection assessed from the Smithsonian Institute, Washington D.C. is the only 

sample not derived from an archaeological context. Although this collection is geographically 

disparate to the other samples assessed, comprised of individuals from North-East America 

(Washington D.C., New York and Columbia), it is a unique historical collection (20th 

Century) of fetal, perinatal and infant individuals where age, sex, ‘ancestry’ and cause of 

death is often recorded. This sample not only reflects a large, documented collection of 

individuals, but has enabled this thesis to explore health and growth disruption in fetal, 

perinatal and infant individuals up to the 20th century, providing a unique chronological 

breadth to this research. By using a documented collection, osteological methods employed to 

age individuals, as well as assess pathological lesions, have also been able to be tested and 

evaluated. Although collection bias remains an inherent problem of this sample, inclusion and 

analysis of these individuals within this thesis enables the furthering of the narrative 

surrounding fetal, perinatal and infant health and growth disruption over time, a central 

concern of this research. 
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Time Period (Centuries) Archaeological Site Location 

Sample Size (N) by Chronological Age Category (Based on Dental Development) 

Total N 

Fetal (N) Perinatal (N) Infant (N) Unknown (N) 

3rd BC –  4th AD Owslebury Hampshire, U.K. 1 10 2 10 23 

1st AD Piddington Northamptonshire, U.K. - 13 3 8 24 

1st BC –  4th AD Barton Court Farm Oxfordshire, U.K. 1 11 7 33 52 

11th AD St. Benet Sherehog London, U.K. - - - 3 3 

13th AD Spital Square London, U.K. - - - 1 1 

14th AD East Smithfield London, U.K. - 5 1 2 8 

14th – 16th AD St. Mary Graces London, U.K. - - 1 2 3 

16th -17th AD St. Benet Sherehog London, U.K. - 2 7 10 19 

16th – 18th AD Broadgate London, U.K. - 2 11 8 21 

17th AD St. Thomas’ Hospital London, U.K. - 1 3 1 5 

17th – 19th AD St. Bride’s Lower London, U.K. - 12 17 23 52 

18th – 19th AD Chelsea Old Church London, U.K. - 1 4 2 7 

19th AD Cross Bones London, U.K. - 18 18 22 58 

19th AD Royal London Hospital London, U.K. - 1 - 6 7 

Early 20th AD 
Fetal Collection, 

Smithsonian Institute 

North East Coast, 

U.S.A. 
7 43 8 82 140 

   9 119 82 213 423 

TABLE 4.1 Number of individuals assessed in chronological order by archaeological site/collection. Breakdown of the individuals assessed by age for each sample has been provided based on dental 

development. Where dentition was unable to be assessed, individuals have been recorded in the ‘unknown’ column. 
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Historical Time Period  

Sample Size (N) by Chronological Age Category (Based on Dental Development) 

Total N 

Fetal (N) Perinatal (N) Infant (N) Unknown (N) 

Pre-Roman - 11 2 3 16 

Transition - 13 3 11 27 

Roman 1 7 6 25 39 

Saxon - - - 2 2 

Medieval - 5 2 8 15 

Post-Medieval - 37 60 72 169 

20th Century 7 43 8 82 140 

Undated 1 3 1 10 15 

 9 119 82 213 423 

TABLE 4.2 Number of individuals assessed in chronological order by historic time period. Breakdown of the individuals assessed by age for each sample has been provided based on dental 

development. Where dentition was unable to be assessed, individuals have been recorded in the ‘unknown’ column. 
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Figure 4.1 Map of the archaeological samples assessed within this thesis.  
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4.2 Owslebury 

Excavations at Bottom Pond Farm, Owslebury, near Winchester, Hampshire were conducted 

from 1961 to 1972 (Collis 1977, 26; 1994, 106). The site was originally identified when 

cremated remains were discovered in 1961 as a result of ploughing (Collis 1968, 18). Further 

trial trenching and aerial reconnaissance occurred in 1962, with small-scale excavation 

undertaken between 1963-65, and wide-scale excavation between 1966-72 (Collis 1968, 18; 

1970, 246; Wells & Collis [No Date], 1). These investigations revealed an archaeological 

sequence dating from the Bronze Age through to the 4th century AD (Collis 1968, 18; Collis 

1977, 26). A banjo enclosure provides the earliest evidence of human activity at the site, 

succeeded by successive phases of ditches, until the 1st century BC when the site appears to 

have been extensively remodelled (Collis 1994, 106). This led to a series of ditched 

enclosures and trackways that were not re-dug and extended until the Roman conquest (Collis 

1994, 106). Although this suggests a longevity to inhabitation/usage of the site, the principle 

phase of occupation was during the Iron Age, which commenced in, what Collis describes as, 

the ‘Belgic period’ (1968, 18). Collis distinguishes between occupation periods of ‘Iron Age 

(Early)’ and ‘Iron Age (Later)’ (1968; 1970), with the latter being the period he refers to as 

Belgic.  

 

The Belgic period is typically considered to date from the 1st century BC to the Roman 

conquest of Britain and references the ‘invasion’ of people, ideas and objects from Belgic 

Gaul to the south-east of Britain (Harding 1974, 201; Hill 1995, 79; Cunliffe 2004, 127). This 

Belgic influence is more typically associated with and referred to as the late La Tène culture 

(Harding 1974, 201; Hill 1995, 88; Cunliffe 2003, 66; 73-74), a European Iron Age culture. 

Collis makes no suggestion that those living and working at Owslebury were from the 

continent, instead seemingly employing the terms ‘Belgic’ and ‘La Tène’ to infer cultural and 

social practices. The presence of Belgic or La Tène cultural influences are suggested to be 

present by Collis due to a ‘warrior inhumation and Belgic cremations inside a rectangular 

enclosure’ (1968, 18).  

 

Collis suggests that during this predominant phase of occupation (Late Iron Age to early 

Roman), Owslebury was a ‘relatively’ wealthy site (1990, 215; 1994, 106). He suggests this 

due to the excavation of imported ceramic wares from Italy and Spain, as well as Gallo-
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Belgic and Gaulish fine potteries (Collis 1994, 106). In addition, silver coinage was 

recovered from a mid-1st century context (Collis 1994, 106). Such discoveries may indicate 

that the people of Owslebury were already trading with, and aware of, Roman and 

‘Romanized’ peoples. Collis suggests that Owslebury was inhabited by a ‘couple of nuclear 

families’ (1977, 27; 1994, 108).  

 

Within the internal enclosure ditches, to the north-east of the settlement, three concentrations 

of burials, referred to as cemeteries, were discovered (Collis 1968, 23-25; Collis 1977, 26). 

These burials, located proximally to the settlement (Collis 1994; 106), were found to have a 

combination of funerary practices with both adult and non-adult individuals buried and 

cremated (Wells & Collis [No Date], 27; Collis 1968, 25). The third cemetery was described 

by Collis as the infant cemetery, where the burials had been cut into a 1st century BC ditch 

and cut by a ditch dating from the 1st century AD (1977, 26), identifying them as Iron Age in 

date. Other non-adult remains were found within the settlement, including in additional 

ditches and under structures (Collis 1968, 23). Throughout the site, including those in the 

cemetery, 72 burials were discovered in total, from 70 graves as burials 1 and 35 were double 

inhumations (Collis 1977, 26). Of the 72 individuals, 33 were found to be non-adults. In total, 

24 of these non-adult burials were either fetal, perinatal or infantile, although only 23 could 

be analysed due to Burial 3 being missing from the collection. Another 46 

isolated/disarticulated remains, listed as ‘infant’, were recorded (Wells & Collis [No Date], 

24-27) but these skeletal elements were not included within this thesis as it is unknown 

whether they represent additional burials or belong to those already afforded burial numbers. 

The 23 fetal, perinatal or infantile individuals date from the 3rd century BC to the 4th century 

AD (Wells & Collis [No Date]; Nystrom & Swales [No Date], 1); 14 individuals are from the 

1st century BC Belgic Iron Age phase of the site, and five individuals are thought to date from 

post-Roman conquest - two from the 1st century AD and three from the 3rd century AD. Four 

individuals remain undated (Wells & Collis [No Date]; Nystrom & Swales [No Date], 1).  

 

4.3 Piddington 

Piddington, situated in the south of Northamptonshire, near the Buckinghamshire border, has 

undergone annual excavation since 1979 as part of a volunteer rescue operation conducted by 

the Upper Nene Archaeological Society (Upper Nene Archaeological Society 2009 Briefing 

Notes).  
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These excavations have uncovered an Iron Age settlement, with evidence of an early Roman 

military presence at the site between AD 45-60 (Upper Nene Archaeological Society 2009 

Phase Descriptions; Miller 2010, 7), which was followed by successive phases of Romano-

British settlement (Friendship-Taylor & Friendship-Taylor 2012). This extensive excavation 

has provided a rare opportunity to study the Iron Age and Roman phases in significant detail 

(Upper Nene Archaeological Society 2009 Interim Report), making it one of the most 

extensively explored sites in the country (Selkirk 1996, 57).  

 

Piddington is situated amongst a heavily concentrated area of prehistoric and Roman activity. 

The Iron Age settlement of Duston is only 6 miles to the north-west, the precursor to the 

modern town of Northampton (Friendship-Taylor & Friendship-Taylor 2012, 3), with the 

Iron Age fort of Hunsbury Hill an even shorter distance away. During the Romano-British 

period Piddington was also situated amongst, and en route to, other much larger Roman 

settlements such as Towcester (Lactodorum), Norton (Bannaventa) and Leicester (Ratae) 

(Miller 2010, 6; Friendship-Taylor & Friendship-Taylor 2012). The Watling Street Roman 

road was also nearby (Miller 2010, 6; Friendship-Taylor & Friendship-Taylor 2012), linking 

these settlements to a main access route in Roman Britain. Furthermore, evidence of an 

earlier Roman road has been unearthed to the south of Piddington, and is suggested to have 

connected the settlements of Duston and Fenny Stratford (Magiovinium) (Upper Nene 

Archaeological Society 2009 Phase Descriptions). 

 

Although archaeological evidence has been found at Piddington to suggest activity/presence 

at the site from Neolithic to Saxon times, the primary archaeological evidence is for an Iron 

Age and Romano-British settlement (Upper Nene Archaeological Society 2009 Phase 

Descriptions). The site provides evidence of a small Iron Age settlement with multiple 

roundhouses. These become co-extant with early phases of Romano-British activity at the 

site, and evidence for the presence of the Roman military being camped at Piddington has 

also been discovered (Upper Nene Archaeological Society 2009 Phase Descriptions). 

Subsequently, the site appears to have evolved and grown throughout the Roman occupation 

of Britain, first with a small proto-villa, which was then extended, before a larger villa was 

built and consistently extended to become a large winged villa compound, with associated 
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bathhouses, by the 3rd century AD (Miller 2010, 7; Friendship-Taylor & Friendship-Taylor 

2012).   

 

In total 34 burials were excavated at Piddington, consisting of six adult burials, 27 fetal, 

perinatal or infantile burials and one dog burial. All six of the adult individuals, along with a 

single perinate, are dated to the fourth and fifth century phases of the site. The remaining 26 

of the fetal, perinatal and infant burials from Piddington are recoded as being from the 1st 

century AD. Assessment of the location of the burials show that all of them lie within the 

villa compound, with the majority of burials seemingly between two of the larger Iron Age 

roundhouses and respecting the early Roman structures (Hodson 2012, 14). Stratigraphic 

records suggest that many of the burials have Iron Age features which post-date the interment 

of the remains, with all of the burials sealed by a layer of dark soil, known to be of Iron Age 

date (Miller 2010, 12). Thus, the individuals analysed, although considered to be Iron Age, 

are contemporary with a period of transition, where both Iron Age and Roman occupation 

was simultaneous, and the transition to a Romanized way of life was beginning at Piddington.  

 

4.4 Barton Court Farm 

Barton Court Farm, near Abingdon, Oxfordshire, was excavated between 1972 and 1976 and 

revealed an archaeological sequence dating from the Neolithic to the Saxon period (Miles 

1986). Aerial photographs taken in 1969/70 revealed a series of clear cropmarks covering 

about two hectares of the Barton Court Farm site (Miles 1986, 4), and indicated multiple 

phases of occupation. A trackway was also identified which led to Daisy Banks, where it is 

now known a Romano-British cemetery was located (Miles 1986, 4). 

 

Barton Court Farm is situated in a dense area of archaeological activity; the Upper Thames 

Valley has a complex network of settlements due to its suitability for inhabitation (Miles 

1986, 1). Nearby Barton Court Farm is a Neolithic causewayed enclosure, with possible 

associated mortuary enclosure and henge monument (Miles 1986, 1). Furthermore, a Bronze 

Age barrow cemetery and multiple round barrows are also located nearby (Miles 1986, 1). 

Therefore, it is unsurprising that evidence of prehistoric activity was identified at Barton 

Court Farm. Multiple pits, postholes and over 1kg of pottery was recovered from the 

Neolithic phases of the site, along with further structures, enclosures and burials, with at least 

two of these being infants, identified as Iron Age in date (Miles 1986, 4).  However, the 
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primary archaeological discoveries relate to the Romano-British date of the site; its peak 

being in the late 4th century AD when the farmhouse/villa consisted of at least eight ground 

floor rooms, a cellar, and was situated within a large ditched enclosure (Miles 1986, 12). 

Within this settlement a further building was identified, along with wells, ovens and, to the 

south-east of the enclosure, an area reserved for infant burial (Miles 1986, 12; 14).    

 

In total, 58 burials were excavated from Barton Court Farm; five of those burials were adults, 

two being Iron Age and three being Saxon in date (Miles 1986, 6; 18). The remaining 53 

burials were all either fetal, perinatal or infantile in age. Two individuals were definitely Iron 

Age in date, as they were buried at the bottom of Iron Age pits, with a further five suspected 

to also be from this period, though were stratigraphically less conclusive (Miles 1986, 6). Of 

the Romano-British individuals, 26 were excavated from shallow pits in the south-east corner 

of the site, an area of the site seemingly reserved for burial of young infants (Miles 1986, 15). 

An additional 12 other Romano-British individuals, plus five suspected to be of Romano-

British date, were also discovered throughout the settlement. Two of the perinatal/infantile 

individuals were Saxon (Miles 1986, 18) and one individual, dated from the 1st century BC to 

the 1st century AD, has been determined as ‘transitional’ for the purposes of this research. 

Furthermore, of the 53 fetal, perinatal, and infantile individuals only 52 were analysed due to 

burial 1151, excavated from the Romano-British ‘cemetery’, being missing from the 

collection currently curated within the county museum.  

 

Of note, no Romano-British adult burials were discovered at Barton Court Farm and it is 

considered that these individuals were instead buried at the cemetery located at Barrow Hills, 

800m from the site (Atkinson 1952, 32-34; Miles 1986, 16).  

 

4.5 St. Benet Sherehog 

Excavation at the site ‘1 Poultry’, in the city of London, was part of a large-scale 

redevelopment of the area, encompassing a multitude of streets and locations (Hill & 

Rowsome 2011, 4). Lying to the south of Poultry and within the Bank Conservation area 

(Miles et al. 2008, 1), this site was originally at the centre of the Roman town of Londinium 

and has been noted as having ‘outstanding archaeological survival’, with the deep, 

waterlogged strata preserving organic and environmental remains (Hill & Rowsome 2011, 1). 
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Thus, excavation at 1 Poultry revealed an archaeological sequence dating from the Roman to 

post-Medieval periods of London’s history. 

 

Antiquarian discoveries at the site of 1 Poultry began in the 19th century, with the famous 

Bucklersbury mosaic discovered in 1869 (Hill & Rowsome 2011, 1). After almost total 

destruction during the Second World War, archaeologists were able to reveal more of Roman 

London’s history with the discovery of the temple of Mithras (Hill & Rowsome 2011, 1-3). 

However, it was not until the 1980s that controlled archaeological excavation took place in 

the area of Poultry and Bank due to proprietor redevelopment and extension of the DLR 

(Docklands Light Railway) (Hill & Rowsome 2011, 3). It was these excavations of the 1980s 

that led to the wide-scale excavation of the site between March 1994 and June 1996 (Miles et 

al. 2008, 1; Hill & Rowsome 2011, 3; Burch et al. 2011, 7-9).  

 

In the summer of 1994, the site of St. Benet Sherehog, its burial ground and the underlying 

church, was discovered at the western limit of the site (Miles et al. 2008, 1; Hill & Rowsome 

2011, 4; 7; 8), and was found to overlay the old Roman road at Poultry (Cowal 2007a). This 

church was originally founded in the 11th century but was expanded in the 13th century, 

remaining in use until its destruction in 1666 during the great fire of London (Cowal 2007a). 

One of the primary aims of excavation was to remove all burials from the site, be they 

Medieval or post-Medieval (Miles et al. 2008, 3). The church during the Medieval period was 

found to be a simple structure, approximately 6.1m wide and 10.5m in length (Cowal 2007a). 

Due to its small size it is considered that during this time it was a private chapel until its 

expansion in the 13th century. However, it still remained one of the smallest parishes in the 

City of London (Miles et al. 2008, 7).  

 

In total, 280 burials were excavated from the parish church and burial ground of St Benet 

Sherehog, but only 270 were retained for analysis (Cowal 2007a). Of these 270 individuals, 

39 date to the later Medieval period due to their east-west alignment, with the head to the 

west end of the grave (Cowal 2007a). Of these 39 burials, 23 individuals were found to 

buried within the church, while a further 15 were external medieval graves (Hill & Rowsome 

2011, 12). Of these 39 individuals, 24 were adults and 15 were non-adults, with three of these 

non-adults being perinatal in age.  
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4.6 Spital Square 

Spital Square, previously known as ‘St Mary Spital’ (Thomas et al. 1997, 2; Cowal 2007b), is 

located North-East of the City of London on the northern side of Folgate Street (Cowal 

2007b). The site is approximately 500m north of Bishopsgate, the primary northern gate into 

the City of London (Thomas et al. 1997, 4). Originally known as the ‘Hospital of St Mary 

without Bishopgate’ this was the site of an Augustinian Priory and Hospital, and was 

amongst the largest hospitals in the country (Thomas et al. 1997, 2; Cowal 2007b). Due to 

extensive excavation and subsequent analysis of the archaeological material and burials from 

the site, this is considered one of the most comprehensively studied hospitals in the country 

(Thomas et al. 1997, 4).  

 

Discoveries from the site were first made in 1798 with subsequent discoveries in 1892 and 

1909 (Thomas et al. 1997, 4). However, the first official archaeological investigations took 

place between 1935 and 1938, due to redevelopment and extension of Spitalfields Market, 

revealing a range of medieval material and objects (Thomas et al. 1997, 4). Full scale, rescue 

excavations were once again undertaken in 1985, 1988 and 1989 in light of further 

redevelopment of the area (Thomas et al. 1997, 4; Cowal 2007b). These excavations revealed 

surviving levels of a Roman cemetery, the medieval priory and hospital of St Mary Spital and 

the post-Dissolution phases of the site (Thomas et al. 1997, 5).  

 

In total, 126 individuals were excavated from four areas of the site (Site codes: NRT85, 

NRF88, SPQ88 and SSQ88), with nine individuals (SSQ88) recovered from the priory (AD 

1197-1235), 102 individuals (NRT85, NRF88) recovered from the hospital cemetery (AD 

1235-1280), and 15 individuals (SPQ88) recovered from the first phases of the infirmary hall 

(AD 1280-1320) (Thomas et al. 1997, 219; Cowal 2007b). Although these successive phases 

of the development and expansion of St Mary Spital were recorded, it is the excavation of the 

‘new’ cemetery (AD 1235-1280) to the west of the hospital (OA5) that is of significance. 

This cemetery was approximately 20m by 27m and contained nine rows of around 25 graves 

per row (Thomas et al. 1997, 37). All graves were aligned east-west (Cowal 2007b), with the 

head to the west, except for one individual (Thomas et al. 1997, 38). All burials were also 

supine, except for burial 355 which was laid prone (Thomas et al. 1997, 38). However, this 

individual was a neonate and as Thomas et al. (1997, 38) suggests, this could be due to the 
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individual being unbaptised. This was the only perinatal individual recovered from Spital 

Square.  

 

4.7 East Smithfield 

The archaeological site of East Smithfield is situated to the east of the City of London (E1) at 

the Royal Mint. Lying to the north-east of the Tower of London, the Royal Mint site is 

approximately two hectares in size (Kausmally 2007). The site was first excavated in 1972 

with two small trial trenches being excavated (Grainger et al. 2008, 2-3). This was followed 

by further excavation in 1983 and 1984, before full excavation was conducted between 1986 

and 1988 (Kausmally 2007; Grainger et al. 2008, 3).  

 

This Black Death cemetery was established somewhere between the end of 1348 and early 

1349 as a measure to cope with the plague epidemic facing the City of London (Grainger et 

al. 2008, 1). This cemetery was the first of two established in London to manage the crisis 

(Kausmally 2007; Grainger et al. 2008, 1). No archaeological evidence for substantial 

buildings or activities at the site were found to predate this cemetery and it is considered that 

the land was primarily agricultural until its designation as a plague burial ground (Grainger et 

al. 2008, 2-3). A few prehistoric and Roman finds were identified but all recovered from 

Medieval and post-Medieval deposits (Grainger et al. 2008, 3).  

 

The cemetery was organised into two primary areas, the east (OA3) and west (OA2) 

cemeteries, with both individual and mass graves discovered in both of these locations 

(Grainger et al. 2008, 2; 12). It is thought that up to 2400 individuals may have been buried at 

the site during its existence (Grainger et al. 2008, 2). The significance of this archaeological 

discovery is that of 759 individuals excavated, 634 were able to be curated and stored for 

analysis and research (Grainger et al. 2008, 2).  

 

The western cemetery (OA2) was situated in the north-west corner of the site and is thought 

to have been only 50-60% excavated, with the remainder of the cemetery lying beneath the 

Royal Mint Court’s courtyard (Grainer et al. 2008, 12). The western cemetery had two mass 

burial trenches, a mass burial pit and 11 rows of individual graves. The larger of the mass 

burial trenches was 67m long with the individuals tightly, but carefully placed (Grainger et 

al. 2008, 12). Juvenile and infant remains were often used to fill spaces between the adults 
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(Grainer et al. 2008, 12). The eastern cemetery (OA3) consisted of four rows of individual 

graves and one mass burial trench (Grainger et al. 2008, 17). However, this area had been 

truncated by later 19th century redevelopment and so the remains were particularly poorly 

preserved and disturbed in this area (Grainger et al. 2008, 17). The mass burial trench in this 

area was over 125m in length (Grainger et al. 2008, 17-18).  

 

Of the 759 individuals excavated, 558 burials were from the western cemetery and 192 

individuals from the eastern cemetery (Kausmally 2007). The western cemetery revealed 300 

individuals from mass graves, with 258 excavated from individual graves (Kausmally 2007). 

The eastern cemetery uncovered 102 individuals from mass graves and 90 from single 

inhumations (Kausmally 2007). Eight fetal, perinatal and infantile individuals were analysed 

in this thesis, seven from the western cemetery and one from the eastern cemetery.  

 

4.8 St. Mary Graces  

St Mary Graces also forms part of the Royal Mint site, excavated between 1986-1988 

(Bekvalac 2007a), and was a large burial ground associated with the Cistercian abbey of St 

Mary Graces (Bekvalac 2007a). St Mary Graces stood to the north-east of the Tower of 

London, just beyond the boundary of the city wall (Grainger & Phillpotts 2011, 1). This 

abbey was extant from AD 1350-1540 and was established by Edward III, partly in thanks for 

his victory at Crécy, his escape from a shipwreck, and his survival of the Black Death 

(Honeybourne 1952, 16-17; Grainger & Phillpotts 2011, 7). St Mary Graces was also 

established as a memorial to all those who did perish of the Black Death, with some of the 

victims buried only meters away at the Royal Mint site (Grainger & Phillpotts 2011, 2).  

 

The site was first excavated in 1972 with two small trial trenches being excavated (Grainger 

et al. 2008, 2-3; Grainger & Phillpotts 2011, 3). This was followed by further excavation in 

1983 and 1984, before full excavation was conducted between 1986 and 1988 (Grainger et al. 

2008, 3; Grainger & Phillpotts 2011, 3). Excavation revealed 420 individuals buried in the 

churchyard and abbey buildings (Bekvalac 2007a).  

 

The churchyard cemetery, thought to be later 14th century (Grainger & Phillpotts 2011, 33) 

was located to the north of the church, extending westwards to overlay the earlier Black 

Death cemetery at the site (Bekvalac 2007a; Grainger & Phillpotts 2011, 33). This 
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churchyard cemetery went out of use by at the latest AD 1410 (Grainger & Phillpotts 2011, 

33), but probably by AD 1405 (Bekvalac 2007a). It is considered that the 221 burials 

excavated from this area may be representative of an epidemic event; not only do the burials 

stratigraphically overlie the Black Death burials, but were also buried in 12 neatly aligned 

rows, following the boundaries of the mass burial trenches (Grainger & Phillpotts 2011, 33). 

However, over time these burials seem to become less distinct, although an area for infant 

and juvenile burials seems to have been located to the west of the site (Grainger & Phillpotts 

2011, 33). The abbey also contained a number of burials throughout, including in the nave, 

choir, chancel, chapels, porch and cloister (Bekvalac 2007a). The abbey was in use between 

AD 1353 and AD 1538 (Bekvalac 2007a). One individual analysed was from the south 

chapel of the church. This is thought to be one of the lay burials present at the site, with no 

indication that any area was reserved for Cistercian burial rites or monks (Grainger & 

Phillpotts 2011, 106).  

 

Of the 420 individual excavated, 389 were retained for analysis, with 283 of the individuals 

being adults and 106 non-adults (Bekvalac 2007a). Three individuals from this site were 

found to be fetal/perinatal/infantile and have been analysed; one individual was from  the 

south chapel of the church, with two from the churchyard cemetery.  

 

4.9 St. Benet Sherehog  

As previously stated (See Above), the church and burial ground of St Benet Sherehog was 

excavated during wide-scale excavations at the site of 1 Poultry between 1994 and 1996 

(Cowal 2008; Hill & Rowsome 2011, 4). The church, originally established in the 11th 

century was expanded during the 13th century and later destroyed during the great fire of 

London in 1666 (Cowal 2007a; 2008). After this destruction, the parish of St Benet Sherehog 

declined and the land was used by both St Benet Sherehog and St Stephen Walbrook as a 

burial site until 1853 (Cowal 2008).   

 

Of the 280 individuals excavated, 212 individuals are from the post-fire burial ground, along 

with 18 burials which are considered to be pre-fire but still 17th century in date (Miles et al. 

2008, 70). 167 of these post-Medieval burials were adults, with the remainder being non-

adults (Cowal 2008). Of these non-adults, 19 were found to be fetal, perinatal or infantile and 

have thus been analysed in this thesis. 
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4.10 Broadgate 

Broadgate cemetery, located in the east of the City of London, was excavated as part of an 

extensive development project extending Liverpool Street Station. The cemetery had been 

destroyed and disturbed in the 19th century when Broad Street and Liverpool Street stations 

were originally constructed (Dyson et al. 1987, 1), but was only fully excavated between 

1984 and 1987 by the Museum of London Department of Urban Archaeology, now Museum 

of London Archaeological Services (MOLAS) (Museum of London 2015). This cemetery is 

located approximately 200m to the north of the City Wall and has revealed evidence of an 

archaeological sequence dating from the Roman to post-Medieval period (Dyson et al. 1987, 

3).  

 

This municipal cemetery, founded in 1569 by the City, was termed the ‘New Churchyard’ 

and intended to relieve the overcrowding of parish cemeteries at this time (Schofield & 

Maloney 1998, 216; Museum of London 2015). However, in practice this New Churchyard 

became the burial place for members of the poorer classes (Harding 2002, 95). As a result, 

the individuals were found to be tightly buried, with eight individuals per cubic meter found 

in some areas (Dyson et al. 1987, 8; Schofield & Maloney 1998, 216). Most individuals 

found were not buried in coffins, reflecting the low social status of the people buried in 

Broadgate. However, the end of the 17th century saw an increase in the number of richer 

individuals buried at Broadgate, and thus some lead coffins, and vaults with named 

individuals, were excavated (Museum of London 2015). Burials were interred at the New 

Churchyard until at least 1720 (Schofield & Maloney 1998, 216).  

 

Several hundred individuals were excavated from Broadgate, but many were reburied on site, 

with circa 400 individuals being retained for analysis (Museum of London 2015). Of the 

circa 400 individuals retained, 21 were found to be fetal, perinatal or infantile and thus 

analysed for the purpose of this project.  

 

4.11 St. Thomas’ Hospital  

Located to the north of St Thomas’ Street, this post-medieval cemetery was excavated over 

an eight-week period in 1991 as part of a redevelopment to New London Bridge House, 

Southwark (Jones 1991, 3; Bekvalac 2007b). Discovery of a burial ground in this location 
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had not been considered likely, as documentary evidence was sparse (Jones 1991, 13). 

However, it was deduced that the burial ground excavated was 17th century and associated 

with St Thomas’ Hospital (Jones 1991, 13-15). The hospital was founded possibly founded in 

1106 (Jones 1991, 18), but was re-established at the site just north of St Thomas’ Street in the 

13th century (Jones 1991, 18; Roberts & Cox 2003, 255). St Thomas’ Hospital was one of 

only three hospitals to survive the dissolution of the monasteries (Roberts & Cox 2003, 319). 

 

The cemetery was only partially excavated, with many individuals remaining in situ 

(Bekvalac 2007b). Excavation revealed a series of three mass burial trenches dating to the 

17th century. The burials excavated from this site are considered to be either those of paupers 

or evidence of an epidemic event (Bekvalac 2007b); there is evidence of rapid burial, with 

little or no soil found between the multiple layers of persons buried, indicative of a 

catastrophic burial event (Jones 1991, 31). However, it is thought that the majority of the 

burials had shrouds, although evidence for the use of coffins is extremely limited (Jones 

1991, 30; Bekvalac 2007b).  

 

In total, 227 articulated individuals were recovered, aligned east-west, with a large amount of 

disarticulated human bone found above, thought to be part of a 17th century charnel pit 

(Bekvalac 2007b). 193 individuals were retained for analysis and five individuals recovered 

were either fetal, perinatal or infantile.  

 

4.12 St. Bride’s Lower 

The site of St Bride’s Church has a history dating back to Roman times and has seen seven 

successive churches built on the site, the first of which was built in the 7th century (Huda & 

Bowman 1995, 135; Scheuer 1998, 100). The most renowned of the seven churches was 

designed by Sir Christopher Wren; built following the destruction of the previous church in 

the Great Fire of London, it opened in 1675 (Huda & Bowman 1995, 135; Scheuer 1998, 

100). However, after a cholera epidemic in 1854, parliament forbade burial in the City of 

London (Huda & Bowman 1995, 135). The remaining church was also destroyed by an air 

raid in 1940, and so the modern church standing on the site today is a replica of Wren’s 

original design (Scheuer 1998, 100).  
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Individuals buried in St Bride’s Parish are split between the crypt and those in the two 

external cemetery grounds – The Upper Ground and Lower Ground cemeteries (Scheuer 

1998, 103). The individuals analysed within this thesis are those excavated from the Lower 

cemetery. Excavation of the individuals buried at St Bride’s Lower cemetery was undertaken 

due to redevelopment of the cemetery land and occurred in two primary phases between June 

1991 and February 1992 (Miles & Conheeney 2005,1).  

 

St Bride’s Lower is located on the west bank of the river Fleet, which still flows beneath 

Farringdon Street today (Miles & Conheeney 2005, 1). The cemetery was founded in 1610, 

when the Bishop of London, Dr. Abbot, consecrated the area for the purpose of a new burial 

ground belonging to St Bride’s Church (Miles & Conheeney 2005, 1). The cemetery was 

formed due to the congestion and overcrowding of the original churchyard (Upper Ground 

cemetery) associated with St Bride’s to the south (Miles & Conheeney 2005, 1; Kausmally 

2008). Thus, this alternate cemetery was used throughout the 17th to 19th centuries by those 

who lived in the parish of St Bride’s (Kausmally 2008). However, those individuals 

excavated are thought to date primarily from the 18th and 19th centuries, and St Bride’s Lower 

cemetery became known variously as the ‘lower graveyard, Shoe Lane ground, new 

churchyard and, later, Fleet Market ground’ (Miles & Conheeney 2005, 1).   

 

St Bride’s Lower cemetery is one of the largest post-Medieval skeletal populations recorded 

from London (Kausmally 2008). Parish registers, although incomplete for the full period of 

the cemeteries use, detail the period between 1820-1849 exceptionally, with ‘name, age at 

death, abode, date of burial, place of burial and cause of death given for 99% of all the 

individuals buried in the parish’ (Scheuer 1998, 102). Of the 4520 entries for this period that 

have been transcribed, 4208 of these individuals were buried in the Upper and Lower Ground 

cemeteries (Scheuer 1998, 103). Although this information cannot be ascribed to any of the 

skeletons excavated from these burial grounds, this information is useful in generating a 

picture 19th century London life and its people.   

 

The individuals from the Lower Ground cemetery were excavated from two primary areas, 

with a total of 606 recovered (Miles & Conheeney 2005, 5; Kausmally 2008). However, only 

544 were retained for analysis, with 47 of those individuals excavated from the vault and 497 

excavated from the open yard (Kausmally 2008). Grave cuts were almost impossible to 
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identify due to the densely packed nature of the burial ground and the constant digging and 

re-digging of the site for burials (Miles & Conheeney 2005, 5). All of the burials were 

aligned east-west, except for 30 individuals who were orientated north-south (Miles & 

Conheeney 2005, 5; Kausmally 2008). Most of the burials excavated showed evidence of 

being buried in wooden coffins, though very few coffin plates survive or exist to identify 

these individuals (Kausmally 2008). The individuals were densely buried (Kausmally 2008), 

likely as a result of their low socio-economic status and the growing population in the parish. 

The Lower churchyard was the cheapest burial place in the parish and thus was not a 

preferred burial location, but was heavily used nonetheless throughout the 18th and 19th 

centuries (Miles & Conheeney 2005, 7). In addition, some of those buried in St Bride’s 

Lower cemetery are likely to be from Bridewell workhouse and Fleet Prison, both of which 

were in the locality (Miles & Conheeney 2005, 8; Kausmally 2008). Of the 544 individuals 

retained for analysis, 52 were identified to be fetal, perinatal or infantile in age.  

 

4.13 Chelsea Old Church  

Chelsea Old Church, located in the parish of Chelsea, and was one of eight recorded burial 

grounds in this area, and the earliest of three parish cemeteries (Cowie et al. 2008, 19). 

Chelsea Old Church has a long and colourful history; famous parishioners include King 

Henry VIII, Elizabeth I and Sir Thomas Moore (Russett & Pocock 2004, 1). The church was 

originally founded shortly before AD 1120, although recent excavations have revealed 

evidence of Roman occupation predating this, suggesting the area has at least been inhabited, 

if not used for religious purposes, before this point (Russett & Pocock 2004, 16-17). Russett 

& Pocock state that the 15th century saw ‘the beginning of the transition from rural 

backwater to built-up suburb, which was to transform the face of Chelsea over the next 400 

years’ (2004, 28).  From this point onwards Chelsea and the Old Church transformed and 

grew. By the 18th century a shift in demographic, due to the building of new brick terraces, 

for people of moderate means, away from the old village of Chelsea meant many now lived a 

long way from the Old Church (Russett & Pocock 2004, 108). The Population Book of 

March 1801 shows the parish of Chelsea had 12,080 inhabitants – this was ten times the 

population of the previous century (Russett & Pocock 2004, 110). As the population 

continued to grow, an extension to the churchyard was undertaken in 1790 (Russett & Pocock 

2004, 110), although eventually a New Church was required and the Holy Trinity Church 

opened in 1830 (Russett & Pocock 2004, 108). Although Chelsea Old Church was situated on 
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the edge of the City of London, and more of a rural area during the 18th and 19th centuries 

(Museum of London 2009), this period saw a gradual transition, with Chelsea turning into a 

London suburb (Cowie et al. 2008, 13). By the mid-18th century Chelsea was seen as a 

fashionable resort, and was considered a wealthy, prosperous and healthy area of London, 

especially in comparison to other areas during this period (Cowie et al. 2008, 13).  

 

Chelsea Old Church was completely destroyed by bombing during the Second World War 

and was rebuilt in the 1950s (Museum of London 2009). During the 1960s the building of a 

new vicarage and Petyt House saw the discovery of part of the 18th and 19th Old Churchyard 

(Russett & Pocock 2004, 149; Museum of London 2009). Permission was granted by 

parliament and the burials were exhumed (Russett & Pocock 2004, 149). In 2000 further 

redevelopment of the site was undertaken and it was discovered that the churchyard had not 

been entirely cleared (Russett & Pocock 2004, 149). MOLAS undertook excavations which 

recovered 290 individuals (Museum of London 2009), some whom were reinterred at 

Randall’s Green Cemetery in Leatherhead (Russett and Pocock 2004, 149). The cemetery is 

thought to have been in use between 1712 and 1842 due to the coffin plates recovered (Cowie 

et al. 2008, 21).  

 

Excavation revealed two vaults, two brick lined graves and a series of earth cut stacked 

graves (Museum of London 2009). The majority of individuals were recovered from the 

latter, with many having wooden coffins although some were found to be lead lined (Museum 

of London 2009). Interestingly, 25 of the individuals had legible coffin plates meaning 

biographical information regarding these individuals could be gathered (Cowie et al. 2008, 

21). The individuals excavated from this cemetery are representative of the high socio-

economic status of those living in Chelsea during the 18th and 19th centuries (Museum of 

London 2009).   

 

Of the 290 individuals exhumed, 198 were retained for analysis (Cowie et al. 2008, 21, 40). 

Seven of those retained were identified as fetal, perinatal or infantile. Two of those analysed 

were excavated from the pelvic areas of adult female individuals (Cowie et al. 2008, 21; 

Museum of London 2009).  
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4.14 Cross Bones  

The excavation area, of which Cross Bones Cemetery was a part, was located in the parish of 

St Saviour’s, in the borough of Southwark (Brickley et al. 1999, 2). The cemetery is located 

to the east of Redcross Way and to the north of Union Street (Brickley et al. 1999, 2; 

Mikulski 2007).  From documentary sources it was known that a post-Medieval burial ground 

was located in the area, having provided additional burial space for the parish (Brickley et al. 

1999, 2). A small excavation of the area was undertaken in 1990 to confirm this (Brickley et 

al. 1999, 2), with MOLAS undertaking partial excavation of the Cross Bones burial ground in 

1992 as part of redevelopment work for extension of the Jubilee underground line (Mikulski 

2007). Excavation lasted from November 1992 through to February 1996 (Brickley et al. 

1999, 3). Burials located on the site marked for redevelopment were exhumed, whilst those 

lying outside this area have remained in situ (Brickley et al. 1999, 3).  

 

Cross Bones burial ground was one of seven burial grounds in the St Saviour’s parish 

(Brickley et al. 1999, 5) and may have been established as early as the 16th/17th centuries 

(Mikulski 2007). It is considered to have originally been a single women’s burial ground (a 

burial ground for prostitutes) for those working in the brothels on Bankside (Brickley et al. 

1999, 5; Mikulski 2007). However, there is no documented evidence for this, except that the 

ground remained unconsecrated, in contrast to other burial grounds close by, including that of 

St Saviour’s Workhouse burial ground (Brickley et al. 1999, 6). The burial ground came into 

‘proper’ use in 1760 with the agreement of a lease for a new churchyard and from this date, 

until its closure in 1853 it remained a paupers’ cemetery (Brickley et al. 1999, 7; Mikulski 

2007). In total 148 individuals were excavated from the cemetery (Brickley et al. 1999, 4: 

Mikulski 2007), and are thought to date from the early to late 19th century phases of the site 

(Mikulski 2007). Those buried in the parish, and excavated and retained for analysis, are 

considered to be some of the poorest individuals in London at this time.  

 

Excavation revealed that all 148 individuals were buried supine and aligned east-west 

(Mikulski 2007). Due to the densely packed nature of the burials it was often difficult to 

identify individual grave cuts, but all burials were in wooden coffins, although only two of 

the coffin plates discovered were partially decipherable (Brickley et al. 1999, 25-26). 

Evidence of clothing, shoes and burial shrouds were also recovered during excavation 

(Mikulski 2007).  
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Of the 148 individuals excavated, a very high proportion were found to be fetal, perinatal or 

infantile. Consequently, 58 individuals from this site have been analysed as part of this 

research.  

 

4.15 Royal London Hospital  

Located 1.6km east of the City of London, the Royal London Hospital is situated in 

Whitechapel to the south of Whitechapel Road (Fowler & Powers 2012, 5). Founded in 1740 

the hospital was originally located in Aldgate, but construction began on its Whitechapel site 

in 1752, opening its first block in 1757 (Fowler & Powers 2012, 14-15). The hospital 

celebrated its awarding of a ‘Royal’ status in 1990, on its 250th anniversary (Fowler & 

Powers 2012, XVII). 

 

Excavation was undertaken in 2006 at the Royal London Hospital as part of redevelopment 

work (Fowler & Powers 2012, 5). Investigations consisted of both watching briefs and 

excavation, with 262 burials being discovered in the northern part of Area A, formerly known 

as Bedstead Square (Fowler & Powers 2012, 5). Burials recovered from this area are 

considered to date between 1825 and 1841/1842, the period of expansion of the burial ground 

and before a new burial ground was opened to the south (Fowler & Powers 2012, 28). A 

second area, Area B, was also excavated with the burials unearthed believed to date from 

1841 onwards (Fowler & Powers 2012, 5). These burials were exhumed and reinterred 

without any further analysis being undertaken (Fowler & Powers 2012, 5). Individuals and 

skeletal elements recovered from Area A are believed to be from unclaimed patients and 

show evidence of post-mortem and dissection, with some limbs/skeletal elements of multiple 

individuals interred together or alongside primary inhumations (Fowler & Powers 2012, 28). 

All of the primary burials were aligned east-west (Fowler & Powers 2012, 28). 

 

Of the circa 262 individuals excavated from the Royal London Hospital burial ground, seven 

individuals were found to be fetal, perinatal or infantile.  

 

4.16 Fetal Collection, Smithsonian Museum of Natural History 

The fetal collection, held and curated by the Smithsonian Museum of Natural History, 

Washington D.C., is a medical collection with the majority of the individuals of known 
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biological age and sex. The collection was compiled by Aleš Hrdlička who arrived at the 

museum in 1903 (Hunt personal communication). Whilst at the USNM (United States 

National Museum), now the NMNH (National Museum of Natural History), he corresponded 

with many active and practicing medical professionals, who donated or exchanged human 

remains with the museum (Hunt personal communication).  

 

Two of the primary, noteworthy donors were Frankline Paine Mall and Daniel Smith Lamb 

(Hunt personal communication); the fetal collection is occasionally termed the Lamb 

Collection in reference to the latter donor. In total, Hunt lists 26 donors, but notes that from 

some accession records it is evident that other donors were active, though remain unidentified 

in the record, instead often Mall, Lamb or Hrdlička are the names given for these individuals 

(Hunt personal communication).   

 

The individuals held within the collection are primarily from the Washington D.C. vicinity 

and the metropolitan areas on north-east coast of the United States of America. The majority 

of individuals were collected/donated from medical institutions in Washington D.C., 

Columbia and New York such as: Columbia Hospital, Freedman’s Hospital, Howard 

University, and University of Maryland School of Medicine (Hunt personal communication). 

 

Originally, 365 fetal individuals were collected and curated by the NMNH but today 320 of 

these are still present, with 45 having been damaged or mixed and as a result have been 

deaccessioned from the collection (Hunt personal communication). Of the 320 remaining the 

majority have secure biological age, sex and ‘ancestry’ identification (Hunt personal 

communication). When the collection was originally collected and curated the fetal 

individuals were assigned as either ‘Black’, ‘White’ ‘Coloured’ or ‘Mulato’ (Kosa 2002, 85). 

Although today, ethically, this practice and terminology would be inappropriate, the 

collection remains distinguished in this way.  

 

Of the 320 individuals available for analysis, 140 were selected for the purposes of this study. 

These 140 were a random sample of the collection and encompassed individuals donated 

from various medical institutions and known to exhibit a variety of congenital conditions. 

The individuals assessed were also of varying biological ages, sex and ‘ancestry’ (Table 4.3). 

Only 44% of the collection was analysed due to time constraints of the research project. 
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Age Category Age (GWA) N 
Male Female Unknown 

W B U W B C U W B U 

3 m. in utero 13-14 3 1 1   1      

4 m. in utero 18 2 1       1   

5 m. in utero 22-23 2  2         

6 m. in utero 26-27 5 1 1   3      

6.5 m. in utero 29 1 1          

7 m. in utero 31-32 8 4  1 2 1      

8 m. in utero 35-36 3  3         

8-9 m. in utero 35-40 2 1 1         

9 m. in utero 40 12 1 4  1 5    1  

Full Term 40 3  2  1       

1 Day 40 1     1      

7 Days 41 1  1         

25 Days 43-44 1     1      

40 Days 45-46 1     1      

2 m. 48 1     1      

4 m. 56 1  1         

4.5 m. 58 1   1        

5 m. 60 1     1      

7 m. 68 1     1      

Fetus < 36 75 25 9 1 26 7 1 1 1  4 

Newborn 36-44 6 2 1   2   1   

Died At Birth 36-44 1 1          

Infant > 44 3  1  1 1      

Child > 44 4  2   2      

Unknown - 1 1          

  140 39 29 3 31 28 1 1 3 1 4 

TABLE 4.3 Individuals assessed from the Smithsonian Fetal Collection recorded by 

chronological age, biological sex and ancestry. For chronological age the abbreviation ‘m.’ is 

used for months. Ancestry is recorded as W (White), B (Black), C (Coloured) or U (Unknown). 
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Chapter 5: Methods 

 

Multiple methods were employed to determine age-at-death and identify evidence of 

pathology for the fetal, perinatal and infantile individuals analysed within this thesis. These 

methods have been employed as both age estimates and pathological lesions have been used 

throughout this analysis as proxies for evidence of growth and health status. This chapter 

details these methods, elucidating why they were chosen, as well as critically considering 

their applicability to this study. Intra- and inter-observer error, and statistical methods 

employed are also detailed and discussed.  

 

All osteological and palaeopathological assessments undertaken throughout this study have 

been in compliance with BABAO guidelines for the recording of human remains (Brickley & 

McKinley 2004), BABAO Code of Ethics (BABAO Ethics & Standards) and the BABAO 

Code of Practice (BABAO Ethics & Standards). Institution guidelines of the host museums 

(Museum of London and Smithsonian Institution) were also adhered to throughout data 

collection. No destructive analysis was performed and all assessment was undertaken 

macroscopically.  

 

5.1 The Fetal, Perinatal and Infant Samples 

Within this thesis a total of 423 fetal, perinatal or infant individuals have been assessed from 

15 different archaeological and historical skeletal samples (See Chapter 4: Table 4.1 for 

detailed information). However, due to the nature of archaeological and historical collections, 

not all of the individuals had the skeletal elements required for full analysis. Therefore, the 

overall sample of 423 individuals can be broken down into three sub-samples:  

 

1. Those individuals where both dentition and at least one skeletal element can be 

assessed to determine age.  

2. Those individuals where only dental or skeletal elements can be assessed to determine 

age. 

3. The Smithsonian Collection where age and/or sex and/or ‘ancestry’ is documented for 

the majority of individuals (See Chapter 4: Table 4.3 for detailed information).  
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For the first three research papers presented (Chapters 6, 7, and 8) individuals have been 

assessed within specific temporal contexts: Chapter 6 - Iron Age to Roman transition, 

Chapter 7 – post-Medieval London, Chapter 8 – 20th century medical collection. Therefore, 

within each of these chapters there are sub-samples of individuals with(out) dentition and 

skeletal elements available for assessment. Table 5.1 provides a breakdown of individuals by 

archaeological sample, detailing the number of individuals (N) assessed within each chapter 

(6, 7, and 8), the number of individuals who had dentition, the number of individuals who had 

a least one skeletal element available for metric assessment (either femur, tibia, humerus, or 

pars basilaris), and the number of individuals where growth disruption could be investigated 

(where both dentition and skeletal assessment could be undertaken). 

 

This thesis only considers all 423 individuals in one research paper (Chapter 9). For Chapter 

9, an additional 15 individuals from Medieval archaeological samples from London were 

included in assessment. The limited sample sizes of individuals from these sites means they 

were excluded from previous analyses but were included within overall pathological 

assessment. These medieval sites are: Medieval St, Benet Sherehog, Spital Square, East 

Smithfield and St. Mary Graces. Consequently, of the 423 individuals assessed, 210 had 

dentition available for assessment, whilst 390 had at least one skeletal element present. 

Growth disruption, consideration of dental versus skeletal age-at-death estimates, could be 

undertaken in 192 individuals.  

 

5.2 Dental Ageing 

Physiological assessment of dental growth and development is one of the primary methods 

utilised in archaeological studies to infer chronological age-at-death of non-adult individuals 

(Moorrees et al. 1963b, 1490; Gustafson & Koch 1974, 297; Hillson 2005, 207; Lewis 2007, 

38; AlQahtani et al. 2014, 7). In non-adult individuals both dental development (the 

appearance and mineralization of teeth (Šešelj 2013, 39)) and eruption (the process of the 

tooth emerging through the gum and into the oral cavity (Šešelj 2013, 39)) can be assessed 

(Moorrees et al. 1963b, 1490; Lewis 2007, 38).  
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 Total N 

Age-at-Death Assessment Assessment of Growth  

Disruption (N) 

Documented 

Biological Age 

Documented 

Biological Sex 

Documented 

 ‘Ancestry’ Dentition (N) Skeletal Elements (N) 

Owslebury 23 13 16 11 - - - 

Piddington 24 16 22 15 - - - 

Barton Court Farm 52 19 48 19 - - - 

St. Benet Sherehog 3 0 3 0 - - - 

Spital Square 1 0 1 0 - - - 

East Smithfield 8 6 6 5 - - - 

St. Mary Graces 3 1 3 1 - - - 

St. Benet Sherehog 19 9 17 0 - - - 

Broadgate 21 13 15 10 - - - 

St. Thomas’ Hospital 5 4 5 4 - - - 

St. Bride’s Lower 52 29 50 28 - - - 

Chelsea Old Church 7 5 6 5 - - - 

Cross Bones 58 36 56 36 - - - 

Royal London Hospital 7 1 6 1 - - - 

Fetal Collection, 

Smithsonian Institute 
140 58 136 57 50 132 132 

 423 210 390 192    

TABLE 5.1 Number of individuals, by study sample, with dental and/or skeletal elements available for age-at-death estimation. Number of individuals where assessment of growth disruption (dental versus 

skeletal age estimation) has been possible is also detailed. Numbers of individuals from the Smithsonian Fetal Collection with documented biological age, biological sex or ‘ancestry’ have also been provided. 
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Deciduous tooth development begins before birth at around the sixth gestational week 

(Scheuer & Black 2000a, 44; AlQahtani et al. 2010, 481), mineralising from around the 15th 

gestational week (Massler et al. 1941, 44; Lewis 2007, 38), with all deciduous dentition 

tending to be complete by around the fourth postnatal year (Liversidge & Molleson 2004, 

172). The permanent dentition in contrast begin development around birth, continuing until 

circa 14 years of age, with eruption of the third molar occurring around 17-18 years of age 

(Lewis 2007, 38). Dental development is sequential, with teeth growing systematically from 

the tip of the crown to the root (Massler et al. 1941, 33; Blakey & Armelagos 1985, 371; 

Mays 1998, 11). Mineralisation begins with the tooth cusps and ceases with apex closure of 

the root (Lewis 2007, 39). During crown formation and mineralisation all teeth develop 

below the alveolar bone level (in the mandibular or maxillary crypt) (Liversidge & Molleson 

2004, 173). Deciduous dentition develops and grows at a faster rate than that of permanent 

dentition, both regarding the enamel and dentine structures (Liversidge & Molleson 2004, 

174). For further information regarding dental development see Chapter 3: Section 3.23.   

 

Though both hereditary and environmental factors may affect tooth growth and development 

(Massler et al. 1941, 34; Heuzé & Cardoso 2008, 275), it has been widely established that 

these show less variability and fluctuation than other growth and development parameters 

(primarily that of skeletal growth and development) (Gustafson & Koch 1974, 298; Bolaños 

et al. 2000, 98; Humphrey 2000a, 194; Liversidge & Molleson 2004, 172). Furthermore, 

deciduous dentition is also considered more resilient than permanent dentition to 

environmental influences (Lewis 2007, 41). Consequently, the sequential development and 

mineralisation of the deciduous dentition is considered to be more robust, and therefore more 

accurate and representative when determining an age estimate.  

 

5.21 Dental Ageing Methods Employed 

Within this study dental development was recorded in accordance with Moorrees et al. 

(1963a; 1963b) and AlQahtani et al. (2010). Scoring of formation for each tooth was recoded 

in accordance with Moorrees et al. (1963a; 1963b) with results falling into one of fourteen 

stages; the first six stages relate to the formation of the dental crown, with the following eight 

stages depicting formation of the root and apex. For each tooth, a dental development score 

was attributed based on the level of growth (e.g. C ½ (Crown ½), Cc (Crown Complete), Ri 

(Root Initial)) (Moorrees et al. 1963a; 1963b). Once tooth formation stages had been 
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established, age-at-death estimates were calculated based on these stages using the London 

Atlas of Human Tooth Development and Eruption (AlQahtani et al. 2010). If dental 

development was considered to fall between two age categories, the mid-point between those 

age groups was recorded, with the largest error/range level for either category afforded.  

 

Based on dental development/eruption charts it should be noted that both the permanent 

canine, and permanent first molar cusps may be present at birth (e.g. Moorrees et al. 1963a; 

AlQahtani et al. 2010). This study was able to detail and record numerous individuals who 

had at least one of these tooth cusps present and so it should not be forgotten that mixed 

dentition/dental development is possible from a very young age.   

 

All dental age-at-death estimations have been given in gestational weeks throughout (GWA). 

Thus, those over 40 GWA are those who are suggested to be post-partum, but for ease of 

comparison between individuals and methods employed, ages have remained in gestational 

weeks (e.g. 52 GWA).  

 

5.22 Methodological Limitations 

Multiple methods of assessing dental formation/eruption have, over the last century, been 

developed (Lewis 2007, 39). The most prominent methods that have been typically used 

within bioarchaeological studies are those of Schour and Massler (1941a; 1941b) and 

Ubelaker (1978). However, there are limitations to both of these methods, with the former 

providing no information regarding the sample/material used or of the methods employed, as 

well as unclear, ill-defined and varying tooth formation stages utilised between the methods 

(Gustafson & Koch 1974, 298; AlQahtani et al. 2014, 70). Furthermore, the number of 

individuals assessed for the development of these reference methods was limited (Gustafson 

& Koch 1974, 298). Although these methods were ‘ground-breaking for their time’ (Messer 

& Till 2013, 357; AlQahtani et al. 2014, 70), AlQahtani and colleagues produced the London 

Atlas of Human Tooth Development and Eruption (2010) as an evidenced based atlas, with 

illustrated tooth development for 31 age categories (AlQahtani 2010; AlQahtani et al. 2014, 

71). As a result, this was the chosen atlas to establish dental age-at-death estimates for this 

study as it illustrates development levels of the enamel, dentine and pulp for each tooth 

(AlQahtani et al. 2014, 71), resulting in definitive distinctions between age categories. 

Furthermore, the drawings for each age category represent the median tooth formation and 
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eruption for that group (AlQahtani et al. 2014, 71). This method was also created using 

documented age-at-death archaeological collections, as well as current dental patients 

attending a range of institutions in London (AlQahtani et al. 2014, 71). Studies assessing the 

accuracy of this method also found it to have high levels of reproducibility (AlQahtani et al. 

2014, 71) and was found to estimate chronological age more accurately that either the 

methods of Schour and Massler (1941a; 1941b), or Ubelaker (1978) (AlQahtani et al. 2014, 

71). However, it has been found that this method may underestimate true chronological age 

(AlQahtani et al. 2014, 72-73). 

 

Correlation of physiological dental development (Moorrees et al. 1963a; 1963b) to age 

defined stages (as presented in AlQahtani et al. 2010) provides an estimation of chronological 

age. Dental development has been considered as a good proxy for chronological age, as well 

as for the trajectory and pace of life histories (Šešelj 2013, 39). Dental development has also 

been found to be more accurate in younger infants and children, particularly those under 10 

years of age (Bolaños et al. 2000, 97; 103; Lewis 2007, 39-41; AlQahtani et al. 2014, 71). 

Bolaños et al. (2000, 103) suggest this is as a result of the increased number of distinctive 

developmental stages during infancy and childhood. As a result, dental age-at-death estimates 

within this study have been used as a marker of ‘true’ chronological age. However, variation 

in the timing of tooth formation is not fully understood, and both population and sex 

differences may account for variation in the timing of dental development (Moorrees et al. 

1963b, 1494-1497; Lewis 2007, 38-39; Heuzé & Cardoso 2008, 275). It is widely accepted 

that females reach developmental stages earlier than their male counterparts, with some 

females being between one and six months ahead in their overall dental development (Hillson 

2005, 210; Lewis 2007, 38-39). The canine is considered to be the most sexually dimorphic 

tooth (Lewis 2007, 39), whilst the central maxillary incisor and first mandibular molar are 

considered to be the most accurate for estimating age-at-death for both males and females 

(Bolaños et al. 2000, 104). However, it is widely considered that variation in tooth 

development between individuals and populations is negligible (Ruff et al. 2013, 30; 

AlQahtani et al. 2014, 77). Therefore, although there is uncertainty surrounding the 

suitability and applicability of a reference method for assessment of archaeological 

individuals (Hillson 2005, 211; Heuzé & Cardoso 2008, 275), the methods developed by 

Moorrees et al. (1963a; 1963b) and AlQahtani et al. (2010) are likely the most appropriate 

for estimating age in unknown fetal, perinatal and infant individuals. This is because both 
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methods have been developed using large samples of known individuals, and AlQahtani et al. 

(2010) have created average developmental stages using both male and female individuals.  

 

Consequently, within this thesis dental development/formation is considered to the most 

accurate method to establish age-at-death for non-adult individuals (Bang 1989, 213; Bolaños 

et al. 2000, 98; Lewis 2007, 58). Conversely, it must be remembered that dental development 

does not always inform us about, or correlate with, skeletal growth and development (Hillson 

2005, 213; Šešelj 2013, 39). This is because dental development is less variable (AlQahtani et 

al. 2010, 481) and more robust against environmental factors (e.g. socioeconomic status, 

health insults, nutritional inconsistencies) than skeletal growth (Acheson 1959, 127; Garn et 

al. 1960, 1053; Bang 1989, 217; Hillson 2005, 207; Lewis 2007, 38; AlQahtani et al. 2010, 

481; Šešelj 2013, 39; AlQahtani et al. 2014, 70).  

 

5.23 Excluded Dental Ageing Methods 

For the fetal, perinatal, and infantile individuals within this study, only dental development, 

not eruption, has been assessed and used to generate age-at-death estimations. This is because 

eruption only occurs from ~6 months post-partum onwards (See Massler et al. 1941; 

Liversidge & Molleson 2004; Hillson 2005; AlQahtani et al. 2010); as 6 months (64 GWA) 

was the upper age limit for this study it was unlikely that many individuals would show 

evidence of dental eruption, and those who did would be few in number. Furthermore, as this 

is an archaeological study, rather than clinical, the presence of any dental remains for such 

young individuals is limited. Tooth cusps of fetal, perinatal and young infant individuals are 

very small, easily lost, destroyed or misidentified in archaeological excavations (Gowland & 

Chamberlain 2002, 677; Lewis 2007, 42; Satterlee Blake 2018, 38). In addition, at this young 

age the mandibular and maxillary crypts are capacious in relation to the tiny developing tooth 

cusps which sit in them (Lewis 2007, 26; 42). Consequently, not only does this increase the 

chance of the dentition being lost both during and post-excavation, but assessment of eruption 

is impossible as the tooth cusps do not often sit, or remain in their original position (Lewis 

2007, 26; 42). Furthermore, there is a clear distinction between the clinical and 

archaeological definition of eruption. Within clinical contexts eruption is considered to be the 

emergence of the tooth through the gum, whilst eruption is recorded archaeologically in hard 

tissues when the tooth emerges from either the mandibular or maxillary crypt. Therefore, 

differences in the interpretation of eruption often means that archaeological individuals are 
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recorded to be older than they would be clinically, as their eruption sequence is identified 

earlier (Lewis 2007, 41).  

 

Eruption is also more variable in response to a range of factors including biological sex, 

population differences, hormonal and metabolic disturbances, as well as disease status 

(Moorrees et al. 1963b, 1490; Gustafson & Koch 1974, 299; Bang 1989, 217; Hillson 2005, 

212; Lewis 2007, 41; e.g. Demirjian 1990; Holman & Jones 1998; Holman & Yamaguchi 

2005). Dental eruption also only provides detail of a ‘specific phase of short duration’ 

(Moorrees et al. 1963b, 1490; Huda and Bowman, 1995, 138). Consequently, dental eruption 

is considered to be less reliable than dental development/mineralisation (Moorrees et al. 

1963b, 1490; Bang 1989, 216; Huda and Bowman, 1995, 138; Lewis 2007, 41) and therefore, 

dental eruption has not been assessed or considered within any chapters of this study: 

estimation of age-at-death using the dentition relies on assessment of stage of development 

alone. 

 

Although histological and radiographic assessment of dental development has commonly 

been used within archaeological investigations (Gustafson & Koch 1974, 298), this thesis did 

not employ these techniques to aid estimation of age-at-death. The benefit of histological 

assessment is that there is no extrapolation and conversation of data to reference methods to 

estimate age (Huda and Bowman, 1995, 138; 140; Lewis 2007, 42). Instead, age can literally 

be counted through analysis of the incremental markings within the dental microstructure 

(Massler et al. 1941, 34; Huda and Bowman, 1995, 136; Lewis 2007, 42). Conversely, 

radiographic assessment is considered to be the least accurate method to estimate age as X-

rays only show developing teeth which have mineralised enough to be observable (Huda and 

Bowman, 1995, 137; Hillson 2005, 225). Consequently, radiographs tend to underestimate 

age-at-death. However, neither of these methods were employed due to the financial, ethical 

and time constraints of this project. Given the large sample size (N=423) of individuals 

assessed within this thesis and their varying locations (See Chapter 4: Table 4.1 and Figure 

4.1), the ability to radiograph all individuals would have relied on the samples being able to 

be removed from their locations and the availability of equipment for use. Furthermore, 

histological assessment is destructive, requiring thin sections to be taken from the developing 

teeth. Therefore, access and permission to undertake histological assessment is unlikely to 

have been granted.  
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5.3 Skeletal Ageing 

Metric assessment of fetal, perinatal and infant skeletal remains is the most commonly 

employed method for determining chronological age-at-death (Humphrey 2000b, 30; Lewis 

2007, 43; Utczas et al. 2017, 1). This is likely due to skeletal elements being both better 

preserved in the archaeological record than the dentition (Gowland & Chamberlain 2002, 

677), as well as recognised and collected by the archaeologist. Historically, growth and 

development were thought to be a good proxy for age estimation (e.g. Fazekas & Kósa 1978; 

Scheuer et al. 1980). Although this may hold true for some populations, particularly those of 

high socioeconomic status, it has been long recognised that skeletal growth can be severely 

affected and disrupted by detrimental environmental factors (Cardoso 2007, 223). As a result, 

although growth, or metric assessment of skeletal elements, should enable assessment of 

chronological age, in principle it is unlikely to be accurate unless the population and 

individuals assessed within it have experienced a good environment in which to grow, akin to 

the modern reference populations.  

 

As with assessment of the dentition, age-at-death estimates derived from metric assessment 

of long bones have always been given in gestational weeks of age (GWA) throughout. 

 

5.31 Skeletal Ageing Methods Employed 

For each individual assessed as many bones as possible of the cranium, upper and lower 

limbs, and pectoral and pelvic girdles were measured. Although the manuscripts presented 

rely primarily on age estimates derived from the long bones and pars basilaris, it is worth 

noting that additional measurements were recorded; intra- and inter-element growth 

disruption has not been considered within any of the papers given, yet this aspect of 

investigation has been highlighted for future studies (See Chapter 11). All measurements 

were taken using digital sliding callipers (accuracy of +/-0.02mm), with all results recorded 

to the hundredth of the millimetre (although it is recognised that this is beyond the scope of 

human accuracy). All measurements undertaken to the skeletal elements listed were in 

accordance with the guidelines for assessment outlined in Fazekas & Kósa (1978) and 

subsequently, Schaefer et al. (2009). Results were recorded in a metric database developed 

using Microsoft Excel.  
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Throughout the following papers the long bone diaphyseal lengths have been used to 

calculate chronological age estimates. These were established using the published linear 

regression equations for long-bone diaphyseal lengths by Scheuer et al. (1980). Only the long 

bones of the skeleton have regression equations available for use in assessment. Where both 

left and right skeletal elements were available for assessment both were analysed and had age 

estimates generated, with the average age for that element used in analysis. The chronological 

age estimate generated has typically been plotted with the error level (+/- X gestational weeks 

of age) given as a range. This has enabled comparison of age-at-death estimates generated 

from each of the long bones to be compared against one another for each individual to 

highlight difference in growth between the skeletal elements. Where dental age-at-death 

estimates are available for consideration, identification of overall skeletal growth disruption 

is possible.  

 

The pars basilaris has also been used within some of the following studies to produce age-at-

death estimations. This bone was utilised as it is often recovered archaeologically due to its 

robust nature (Redfield 1970, 207; Scheuer & Maclaughlin-Black 1994, 377), but also 

because it is known to be indicative of certain aging thresholds, with both its size and 

morphology often found to be correlated strongly with age (Redfield 1970; Scheuer & 

Maclaughlin-Black 1994; Lewis 2007, 44). This is because the base of the cranium is 

considered to be the most stable area during growth and development (Redfield 1970, 207). 

Metric assessment of the pars basilaris was undertaken in accordance with the methods 

published by both Fazekas & Kósa (1978) and Schaefer et al. (2009), with sagittal length, 

maximum length and maximum width all recorded where possible. Employing methodology 

initially established by Redfield (1970), the pars basilaris measurements were considered 

against one another to determine if sagittal length, maximum length or maximum width was 

the largest measurement recorded. Dimensions of the pars basilaris have been identified to 

correlate with stages of fetal and postpartum growth and development: when maximum width 

is less than sagittal length the individual is considered to be less than 28 GWA (Scheuer & 

Maclaughlin-Black 1994); when maximum width is greater than sagittal length, but 

maximum width is less than maximum length the individual is between 28 GWA and 5 

months of age postpartum (60 GWA) (Redfield 1970; Scheuer & Maclaughlin-Black 1994); 

when maximum width is greater than maximum length the individual is over five months of 

age, postpartum (Redfield 1970) (See Table 5.2 for summary). Thus, maximum width was 
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compared against sagittal length and maximum length respectively and according to which 

measurement was greatest an age bracket was afforded. However, as this only provides large, 

broad age ranges, measurements were directly compared against those given in Scheuer & 

Maclaughlin-Black (1994) and more specific age estimations/age estimation ranges were 

established. As no ranges or error levels were given for this method (Scheuer & Maclaughlin-

Black 1994) for each specific age category, where measurements fell within a range of age 

categories the mean age category has been plotted, with the minimum and maximum age 

categories used as upper and lower age ranges. For example, a measurement which fell into 

the 3 weeks, 4 weeks, 7 weeks and 3-months age categories (43-52 GWA), has a mean point 

of 47.5 GWA, with a range of +/- 4.5 GWA.  

 

 

 

 

  

0 - 28 GWA 

 

Maximum Width less than Sagittal Length 

 

  

28 - 60 GWA 

 

Maximum Width greater than Sagittal Length 

 

 

Maximum Width less than Maximum Length 

 

  

60 GWA+ 

 

Maximum Width greater than Maximum Length 

 

TABLE 5.2 Age categories based on the metric dimensions of the pars basilaris. 
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Additionally, for some of the analyses in the following manuscripts the raw, metric data has 

been used to compare against reference data and growth charts, with no estimate of age 

afforded. Reference data that has been used includes the published standards of Fazekas and 

Kósa (1978) and Maresh (1970) as well as clinical growth charts (See Section 5.33). These 

reference data sets have been used to show that individuals assessed in this study, of the same 

chronological age group based on dental development, typically have skeletal metrics which 

fall below expected. Consequently, this comparison of raw data has once again been 

employed to provide evidence of growth disruption within the skeletal samples assessed. 

Multiple reference data sets were utilised to enable all individuals (both pre- and postnatal) 

and varying skeletal elements to be considered. 

 

5.32 Methodological Limitations 

This use of linear regression equations was employed by the author as it is one of the only 

methods available that provides an error level for age-at-death estimation, and is widely used 

in other studies making results of this assessment comparable (Lewis & Gowland 2007, 120; 

e.g. Mays 1993; Lewis 2002a; Halcrow et al. 2012). However, this linear regression method 

has been criticised, suggested to age individuals in a way which mimics the demographic 

make-up of the sample used to create the regression models (Gowland & Chamberlain 2002, 

678; 684; Lewis & Gowland 2007, 120). This has been a common criticism of many age-

estimation techniques and methods, with studies found to often reflect the age distribution of 

individuals within the reference sample (Gowland & Chamberlain 2002, 678; e.g. Bocquet-

Appel & Masset 1982). In fact, within this thesis only six individuals were estimated to have 

long bone elements that were over 46 GWA; the regression equations utilised were developed 

only considering individuals aged up to 46 gestational weeks of age (GWA) (Scheuer et al. 

1980). This is in comparison to 82 individuals having dental age estimates which exceed 46 

GWA. Therefore, although many of these individuals do show evidence of growth disruption, 

such clearly defined clustering of skeletal age estimates under 46 GWA is likely to be a 

product of the method and a mimicry between the reference and sample population. 

However, to limit the effect of this bias other studies have employed Bayesian statistics to 

redistribute the age estimations generated (e.g. Gowland & Chamberlain 2002). As discussed 

previously (See Chapter 2), Bayesian analysis considers the likelihood of individuals falling 

within age categories, in comparison to a natural mortality profile derived from perinatal and 

infant life tables (Lewis & Gowland 2007, 122). Therefore, by employing this assessment, 
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age estimates are redistributed by probability (Gowland & Chamberlain 2002, 684). 

However, Bayesian analysis considers all individuals as a whole, meaning age estimates 

cannot be generated for single individuals (Lewis & Gowland 2007, 127). This limits detailed 

assessment of individuals and the potential for identifying growth disruption. As a result, 

because this research aims to focus on identifying growth disruption within individuals, 

Bayesian statistical assessment has not been employed.  

 

Assessment of data collected within this study against a range of reference data will of course 

incur limitations due to the varying skeletal samples from which the reference methods were 

constructed. The inherent variation between samples may lead to limitations, and although an 

appropriate reference sample should be used for comparison, it is almost impossible to do this 

for archaeological assessments (Scheuer & Black 2000b, 13). As discussed previously 

regarding dental development, skeletal development also varies between population and is 

dependent on a range of variables including biological sex, ethnicity and health status (Nyati 

et al. 2006, 135). Growth is sex specific (Sofaer 2011, 287) and males and females are well 

known to have varying growth strategies (Barker et al. 2012, 32). Females are found to 

skeletally grow and mature more rapidly than males (Humphrey 2000a, 195; Lewis 2007, 48) 

and males also have a more precarious growth strategy (Barker et al. 2012, 32). This is why 

males are often considered to be more ‘frail’ and why might expect to see more males with 

growth disruption and within the archaeological burial record more generally (Lewis 2018, 

113). Difference between populations are also evident with American Black non-adults often 

developing/maturing earlier than American white non-adults (Lewis 2007, 46-47; Nyati et al. 

2006, 135; 138). African American non-adults have been found to have longer legs than 

Mexican American and Caucasian American non-adults, whilst Caucasian American 

individuals have the greatest trunk length of these three groups (Malina et al. 1987; Martorell 

et al. 1988; Nyati et al. 2006, 135). It is also being found that there is a racial disparity in 

health, which in turn reflects growth status (Kuzawa & Sweet 2009, 2). It has been 

considered that racial disparity is closely entwined with socioeconomic status, availability of 

health care, education and employment, resulting in a perpetuating cycle of disadvantage 

amongst certain population groups (Kuzawa & Sweet 2009, 2-4). Consequently, although 

suspected that there are biological and genetic differences in growth timings and tempos 

between populations, it is less clear as to the extent of these differences and whether they are 

purely biological difference or ones bound within biocultural and social spheres. Regardless, 
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the fact that many methods utilised to determine fetal, perinatal or infant age-at-death 

amalgamate biological sex and ethnicity into their reference measurements adds a potential 

additional level of error. 

 

Concerns regarding Fazekas and Kósa (1978) have also been raised as this reference method 

was developed using individuals of unknown age (Scheuer & Black 2000b, 13; Lewis 2007, 

44). In addition, others have suggested that disparities between archaeological and 

radiological assessment will exist due to the comparison of wet versus dry bone (Lewis 2007, 

43). Thus, the reference sample of Maresh (1970) may reveal greater metric difference as a 

result. However, research has suggested that there is no significant difference between 

archaeological and radiographic measurements (e.g. Warren 1999; Schillaci et al. 2012), and 

that in fact the Maresh data set (1970) generally reflects a normal pattern of human growth 

(Schillaci et al. 2012, 497). Therefore, data given by Maresh (1970) is suggested to be highly 

suitable for use in observing growth patterns in archaeological and historical skeletal 

collections (Schillaci et al. 2012, 497).  

 

Despite errors between long bone length and gestational age being well documented, such 

limitations are troublesome to control for (Lewis 2007, 43). This is as a result of all the 

potential stressors and factors (discussed previously in Chapter 3) which can alter and 

regulate fetal, perinatal and infant growth. Therefore, assessment and correlation of long bone 

length to chronological remains the primary method employed for age-at-death determination 

of fetal, perinatal and infantile individuals in archaeological studies. Thus, to make this study 

both applicable and comparable to the existing literature, skeletal ages-at-death have been 

calculated using regression equations (Scheuer et al. 1980) as well as utilising reference data 

sets of Fazekas and Kósa (1978) and Maresh (1970) throughout. Consequently, the need for a 

consistent and accurate method for ageing fetal, perinatal and infant skeletal remains is 

highlighted. 

 

Although this thesis in no way attempts to review or overhaul these reference datasets, it 

highlights the fact that more studies should consider multiple methods of age assessment – 

those of both dental and skeletal growth – to identify clearer patterns of both growth and 

health disruption (Šešelj 2013, 44).  
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5.33 Clinical Assessment of Growth 

In an attempt to overcome some of the limitations of the methods listed and discussed above, 

growth and growth disruption has also been considered utilising a commonly employed 

clinical methodology.  

 

Growth charts are well established within a clinical context (Altman & Chitty 1997, 174; 

Beukema et al. 2008; Evans 2010, 27; Cole 2012; Dodrill 2016, 267) and a plethora of 

varying growth charts have been developed for a wide range of fetal, perinatal and infant 

physiological aspects. Although many of these reference methods consider crown-rump 

length, biparietal breadth, fetal weight, abdominal circumference and head circumference 

(e.g. Maresh & Deming 1939; Lubchenco et al. 1966; Gindhart 1973; Tanner & Whitehouse 

1975; 1976; O’Brien & Queenan 1981; Hohler 1984; Jeanty & Romero 1984; Jeanty et al. 

1984a; 1984b; Deter & Harrist 1992; Altman & Chitty 1997), characteristics unobservable 

and unmeasurable within archaeological analyses, growth charts also exist for a variety of 

long bone diaphyseal lengths. Today, growth charts are usually presented as centiles 

(Humphrey 2000b, 30) and by comparing fetal, perinatal and infant skeletal measurements to 

growth charts, the centile(s) within which individuals align are recorded. Centiles are 

provided whereby the 50th centile represents the median measurement for that age group, 

with 50% of individuals falling above and below that point (Dodrill 2016, 267). Therefore, 

the 25th centile is where 25% of individuals fall below this measurement, with the 75th centile 

being where 25% of individuals are above this measurement. It is suggested that those 

individuals who fall outside of the 10th and 90th percentiles are clinically significant (Kiserud 

et al. 2017, 18; 20). Today, these extremes signify individuals who require further 

observation, monitoring, care or intervention. Indeed, those whose skeletal growth falls 

below the 10th percentile are often found to have negative birth outcomes (Kiserud et al. 

2017, 21). Thus, by utilising clinical growth charts, and transposing archaeological skeletal 

measurements on to these charts, this thesis has been able to highlight those individuals who 

appear to fall into these ‘critical’ percentiles. 

 

A limitation of this method is that these growth charts are unable to provide age estimates 

from skeletal dimensions. Consequently, only individuals who had dentition available for 

assessment could have their skeletal measurements plotted onto these charts. Therefore, 
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although not used within this thesis to determine accurate age-at-death estimates, employing 

comparison of skeletal measurements to growth charts has corroborated that many 

individuals were not only experiencing growth disruption, but experiencing it to an extent 

where birth outcome and health was likely to be severely affected.  

 

For prenatal (40 GWA or less) the clinical growth charts employed are those derived from the 

World Health Organisation, as given in Kiserud et al. (2017, 19-20). These growth charts are 

only available for diaphyseal lengths of the femur and humerus, and do not provide different 

growth centiles by biological sex, nor by ethnicity. Therefore, these growth charts have been 

utilised in the assessment of archaeological individuals dentally aged to be 40 GWA or less 

where biological sex and ethnicity is unknown. For postnatal individuals, growth charts given 

by Maresh (1970) have been used due to the fact this data set has been found to represent 

normal, healthy growth, and be a suitable reference for archaeological individuals (Schillaci 

et al. 2012, 497). Where individuals of known biological sex have been assessed (individuals 

from the Smithsonian collection) the specific male or female growth charts have been 

considered. However, for archaeological individuals where biological sex is unknown, long 

bone measurements have been plotted against both male and female growth charts.  

 

The major limitation of these growth charts is of course that they have been formulated using 

modern populations and are consequently less comparable to archaeological skeletal material 

(Lewis 2007, 72). However, as these charts are not able to determine age-at-death, they are 

still very informative in providing an insight into those individuals experiencing extremes of 

growth and growth disruption.  

 

5.34 Excluded Skeletal Ageing Methods 

To date, a variety of other ageing methodologies utilising skeletal remains have been 

established from which chronological age can be interpreted. For fetal, perinatal and early 

infant individuals these have tended to be the fusion and completion of the tympanic ring, 

closure of the sutura mendosa, fusion of the mental symphysis in the mandible and the 

closure of the metopic suture.  

 

The application of these methodologies was not employed within this thesis as this 

investigation aimed to assess and correlate evidence of metric growth disruption with health 
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status. As none of these methods rely on metric assessment they were not included in 

analysis. Furthermore, closure of the sutura mendosa, fusion of the mental symphysis and 

closure of the metopic suture are all purported to occur during the first postnatal year. 

Consequently, as all of the individuals assessed within this study are suggested to be within 

this age range, the presence/absence of these characteristics would reveal little in regards to 

determining a more accurate age-at-death estimation.  

 

5.4 Assessment of Growth Disruption 

It has been widely accepted that the relationship between metric assessment and 

chronological age is not a reliable one (Lewis 2007, 43). Consequently, this study has 

employed metric assessment to calculate age-at-death estimations, not to use as ‘true’ 

chronological estimates of age, but to compare against dental age-at-death estimates, which 

are considered to be more accurate (Cardoso 2007, 223). This practice of comparing skeletal 

and dental age-at-death estimations has often been employed to identify evidence of 

physiological stress (Humphrey 2000b, 29; Lewis 2007, 45). This means that throughout the 

following manuscripts consideration of skeletal age estimations has often been in conjunction 

with dental age-at-death estimates, with the discrepancies between the two being explored as 

evidence of both growth and health disruption as a consequence of stress exposure (Lewis 

2007, 45).  

 

5.5 Intra-Observer and Inter-Observer Error 

To determine the accuracy of metric assessment both intra-observer and inter-observer error 

or TEM (technical error measurement was calculated). This was employed to determine the 

level of accuracy in recording measurements taken from the skeleton and demonstrate that 

the author, and the methods employed, are reliable.  

 

Intra-observer and inter-observer error was calculated for two bones of the skeleton: 

diaphyseal length of the femur and the maximum length of the pars basilaris. These two 

bones were chosen for assessment as measurements of long bones and the pars basilaris are 

the most commonly used throughout this study to generate age-at-death estimates. 

Measurements from 10 individuals were collected twice by the author, for each element for 

calculation on intra-observer error. Measurements from 10 individuals were collected once by 
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the author, and once by a osteologist (who is not a specialist in fetal/infant analysis) for each 

of the elements assessed to calculate inter-observer error.  

 

Calculation of Relative TEM (%) was based on the equation:  

 

 

Relative TEM (%) =  
Absolute TEM

VAV
  X 100 

 

 

This required both VAV (Variable Average Value) and Absolute TEM to be calculated first 

and this was undertaken in accordance with the methods outlined by Perini et al. (2005) and 

Ulijaszek and Kerr (1999). Absolute TEM was calculated using the following equation: 

 

 

Absolute TEM = √
∑𝑑2

2n
  

 

 

Where: 

∑𝑑2 = Sum of deviation raised to the second power 

N = Number of skeletal elements measured 

 

This is where the difference between measurement 1 and measurement 2 is calculated (the 

deviation) for each of the 10 femoral or pars basilaris elements assessed. This deviation is 

then squared for each of the 10 elements and all 10 are summed, calculating the sum of 

deviations squared. This is then divided by two times the number of elements assessed – in 

this study 2 x 10 elements = 20. Thus, the square root of, the sum of deviations squared, over 

20, calculates absolute TEM.  

 

Variable average value was calculated by determining the mean measurement (between 

measurement 1 and measurement 2) for each of the 10 skeletal elements assessed. The ten 
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measurements were then summed and divided by the number of elements assessed (in this 

case ten) to generate an overall average for the measurement. Using VAV and Absolute 

TEM, relative TEM (%) can now be generated.  

 

Tables 5.3 and 5.4 detail the process of calculating Relative TEM (%) for intra-observer 

error. These tables detail the repeated measurements collected for both the femora and pars 

basilaris elements, the deviations, deviations squared, and average measurements for each of 

the elements. Sum of deviations squared, Absolute TEM and VAV have been given for both 

the femoral and pars basilaris assessments. Table 5.5 provides the intra-observer and inter-

observer error (TEM %) for both the femoral and pars basilaris measurements. The low 

percentages indicate that there is a high rate of precision between these measurements (Perini 

et al. 2005, 87). 10% TEM has been considered an acceptable lever of error (Perini et al. 

2005, 89), thus, the TEM percentages for this study fall substantially beneath this and 

indicate that there is a high level of precision in the measurements recorded and used within 

this study. 
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TABLE 5.3 Calculations for Sum of Deviations Squared, Variable Average Value and Absolute TEM for intra-observer error of femoral 

diaphyseal length measurements (mm). 

 

 

Sum of Deviations Squared = 2.3987 

Variable Average Value = 63.2865 

Absolute TEM = 0.346316 

 

  

 1 2 3 4 5 6 7 8 9 10 

Measurement 1 81.99 60.58 56.25 76.74 51.63 58.5 47.94 57.45 72.07 68.82 

Measurement 2 81.95 60.97 56.02 76.25 51.97 58.59 48.05 57.48 73.39 69.09 

Deviations 0.04 -0.39 0.23 0.49 -0.34 -0.09 -0.11 -0.03 -1.32 -0.27 

Deviations² 0.0016 0.1521 0.0529 0.2401 0.1156 0.0081 0.0121 0.0009 1.7424 0.0729 

Average 81.97 60.775 56.135 76.495 51.8 58.545 47.995 57.465 72.73 68.955 
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TABLE 5.4 Calculations for Sum of Deviations Squared, Variable Average Value and Absolute TEM for intra-observer error of pars basilaris 

maximum length measurements (mm). 

 

 

Sum of Deviations Squared = 0.2222 

Variable Average Value = 14.598 

Absolute TEM = 0.105404 

 

 

 1 2 3 4 5 6 7 8 9 10 

Measurement 1 18.86 14.69 16.72 9.65 13.56 14.93 15.91 12.00 13.25 16.37 

Measurement 2 18.66 14.92 16.64 9.7 13.64 14.72 15.99 12.05 13.46 16.24 

Deviations 0.2 -0.23 0.08 -0.05 -0.08 0.21 -0.08 -0.05 -0.21 0.13 

Deviations² 0.04 0.0529 0.0064 0.0025 0.0064 0.0441 0.0064 0.0025 0.0441 0.0169 

Average 18.76 14.805 16.68 9.675 13.6 14.825 15.95 12.025 13.355 16.305 
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TABLE 5.5 Intra-observer and inter-observer errors (Relative TEM %) for femoral 

diaphyseal length measurements and pars basilaris maximum length measurements. 

 

 

5.6 Pathological Assessment 

Many issues surround the field of fetal/infant osteology and palaeopathology – the most 

predominant being that of determining true evidence of pathology. Historically, fetal, 

perinatal and infant remains have been neglected within archaeological literature (Buckberry 

2000, 2; Lillehammer 2015, 79) Many excavators simply refrained from exhuming these 

individuals, or literally disposed of them (Becker 2006, 55), meaning that very few were 

considered in a worthwhile manner in archaeological reports before the 1980s (Mays et al. 

2017, 38). However, the last two decades have seen an increasing interest in these young 

individuals, which has led to a variety of studies focussing on the infant and child within 

archaeology. Despite this increased interest, pathological analyses of fetal, perinatal and 

infant individuals have been somewhat limited until recently (e.g. Lewis 2007; Lewis 2017a), 

and as such disease manifestations, processes and aetiologies are still largely non-specific and 

unknown.  

 

Assessing pathological changes in non-adults is considered to be particularly challenging 

(Lewis 2018, 113). Despite this, numerous investigations into non-adult health have been 

undertaken (e.g. Lallo et al. 1977; Schultz 1984; 1989; Stuart-Macadam 1988; Anderson & 

Carter 1994; 1995; Lewis & Roberts 1997; Ortner & Ericksen 1997; Ortner & Mays 1998; 

Ortner et al. 1999; Mays et al. 2007; Brickley & Ives 2006; 2008; Lewis 2011; 2012; 2017a). 

Pathological changes in such young individuals are considered to be particularly important to 

Intra-observer 

Relative TEM 

Femoral Length 0.54722 % (0.5%) 

Pars Basilaris Length 0.722044 % (0.7%) 

   

Inter-observer 

Relative TEM 

Femoral Length 0.689823 % (0.7%) 

Pars Basilaris Length 0.702692 % (0.7%) 
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determine as they provide vital insights into intrauterine as well as maternal health. Fetal, 

perinatal and infant remains have become synonymous as the most sensitive members of past 

societies (Goodman & Armelagos 1989, 239; Lewis 2000, 39; Halcrow et al. 2018, 86), 

likely to express skeletal changes as a result stress due to their immature immune systems and 

higher degree of bone turnover (Lewis 2000, 43; 2002a, 211; 2018, 115; Satterlee Blake 

2018, 44). These individuals also provide a unique proxy by which maternal wellbeing, 

experiences and health can be considered (Satterlee Blake 2018, 34; 43). 

 

Macroscopic assessment of fetal/perinatal/infant pathology is most commonly employed 

(Satterlee Blake 2018, 42) and some conditions/diseases are clearly identifiable and 

diagnosable despite the young age and immature development of these individuals. A range 

of causes (disease/infection (specific and non-specific), nutrition (metabolic), trauma 

(including accidental (i.e. birth trauma) and deliberate trauma) and congenital conditions) can 

all cause identifiable changes to fetal, perinatal and infant skeletal remains. A variety of 

congenital disorders (e.g. hydrocephaly, anencephaly) as well as diseases such as syphilis, 

tuberculosis, rubella, and metabolic deficiencies can all be transmitted via the placenta during 

pregnancy (Lewis 2018, 113). Various case studies exploring evidence of several congenital 

and specific infectious conditions affecting non-adult individuals have been published (e.g. 

Richards & Anton 1991; Murphy 1996; Dabernat & Crubézy 2009; Dudar 2010), though 

evidence still remains limited, primarily as a consequence of the rarity of such conditions and 

the limitations of preservation and identification. Additionally, many of the predominant 

causative factors of fetal/perinatal/infant death leave no discernable traces on the skeleton 

(Lewis 2018, 112), making assessment of early life health disruption in the archaeological 

record somewhat more troublesome. When a specific condition is suspected, analysis and 

diagnosis may be easier as a clear pattern to the pathology emerges of distinctive changes 

(e.g. Hutchinson’s incisors and mulberry molars in congenital syphilis). However, non-

specific stress, such as metabolic disturbances, general infections, psychosocial stress and 

sometimes even trauma, is more commonly represented as periosteal new bone formation 

(NBF) (Lewis 2018, 114). 

 

5.61 Methodological Limitations 

A major hindrance to the development of fetal/infant palaeopathology is the limited literature, 

both bioarchaeological and clinical, which considers normal skeletal anatomy of the growing 



115 

 
 

child. The clinical literature is not as concerned with the skeletal manifestations of many 

diseases, as diagnoses are derived from the soft tissue. Indeed, many conditions leave no, or 

very few skeletal traces, instead primarily affecting soft tissues; e.g. plague, cholera, small 

pox and rubella (Ortner 2008, 191). Furthermore, acute conditions may result in pathological 

lesions being quick to heal, or indeed result in rapid death, meaning no skeletal lesions were 

able to manifest (Roberts 2000, 145; Ortner 2008, 191-192). 

 

The major limitation however, within pathological studies of such young individuals is the 

differentiation between pathological NBF and that of NBF associated with normal growth 

(Lewis 2017, 2-3) (For a comprehensive discussion of normal fetal/perinatal/infant skeletal 

growth and development see Chapter 3: Sections 3.1). Response by the skeleton to 

environmental onslaughts (be they infectious, metabolic, traumatic) results in pathological 

new bone formation. Healthy NBF, associated with normal growth, is known to appear in an 

almost indistinguishable way to pathological NBF, as the process by which the bone forms is 

identical (Lewis 2000, 42). Furthermore, NBF is an anticipated observable change in these 

very young, and rapidly growing, individuals (Lewis 2017, 8). Consequently, distinguishing 

this normal bone growth from pathological bone growth is consequently highly problematic. 

Therefore, timing of growth spurts and age-at-death estimations of the individuals assessed 

must be taken into consideration, as various clinical investigations have suggested that NBF 

is a common finding in individuals at least over 1 month of age (44 GWA) (Shopfner 1966; 

Scheuer & Black 2000a, 24; de Silva et al. 2003; Kwon et al. 2002). However, little is still 

known about the presence and implications of NBF found on individuals younger than 44 

gestational weeks, and many pathological conditions do still result in the proliferation of NBF 

throughout the skeleton, primarily to the long bones (Lewis 2000, 43). Thus, being able to 

distinguish between normal patterns of growth, and evidence of abnormal growth as a result 

of a disease process is complex (See Chapter 9 for further discussion).  

 

Furthermore, bone can only respond in one of two ways to health/disease insults (bone 

growth and bone destruction) and thus, although there a multitude of possible pathologies, the 

resulting skeletal changes will be similar (Goodman & Armelagos 1989, 228; Gowland 2004, 

139; Ortner 2008, 192-193; Roberts & Manchester 2010, 7). As discussed in Chapter 3: 

Section 3.2, NBF, regardless of whether it is normal or pathological, is secreted as woven 

bone, sometimes referred to as fibre bone (Ortner 2003, 19; Brickley & Ives 2008, 23). 
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Woven bone is immature, highly disorganised bone (Mays 1998, 6; Scheuer & Black 2000a, 

30; White et al. 2012, 35) typically found in fetal/perinatal/infant individuals who are 

growing as it is formed very quickly (White et al. 2012, 35). However, the distinctive grey 

appearance of woven bone is also synonymous as evidence of pathological NBF – a 

physiological response by the body to an environmental stressor. Lamellar bone is bone that 

has remodelled and matured, as in the normal bone formation process, or can also represent 

healing bone if the stimulus was pathological. Lamellar bone is well organised, striated bone 

(Scheuer & Black 2000a, 30; White et al. 2012, 35). Consequently, it is imperative to 

recorded whether NBF is either woven or lamellar in appearance as changes in these states 

have important implications for pathological assessment. However, although bone responds 

quickly to insults in such young individuals, it is still unknown how long certain conditions 

take to present on non-adult skeletal remains (Lewis 2000, 40). Therefore, evidence of 

lamellar bone - evidence of healing in response to a stressor - would suggest that the 

individual has been exposed to that stressors for a substantial period of time for the skeleton 

to not only respond but show evidence of healing.  

 

Biological parameters of age and sex also alter the expression and pattern of pathological 

lesions (Roberts 2000, 146). This means it is imperative that the pattern and the type of bony 

response is recorded, and interpretation of these lesions considers both the age-at-death of 

individuals affected and contextualises them within the archaeological record.   

 

5.62 Determining, Identifying and Recording Pathological Lesions 

Due to pathological changes and lesions being so troublesome to identify and record within 

fetal, perinatal and infant skeletal remains, this thesis employed a strategy whereby no 

particular ‘stress indicator’ or skeletal element was to be observed, instead considering the 

whole of the skeleton and recording any potential pathological change. This was to ensure 

that pathological changes were not overlooked, and prevented the author from observing only 

certain conditions which tend to be located on specific elements (e.g. metabolic conditions). 

This resulted in a wide range of changes and lesions being observed in varying skeletal 

elements and to various aspects of these elements. Furthermore, severity of lesions was 

inherently variable between individuals.  
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As normal bone growth and pathological bone formation can currently not be distinguished 

between, any evidence of NBF was recorded, though a grading scheme was employed to 

differentiate between extensive NBF and that which was only minor (See below for more 

detailed explanation). By employing a tripartite strategy to assessing pathological changes 

(type, severity and location of pathology) along with a grading scheme specifically for NBF, 

it is suggested that ‘true’ pathological NBF can be deduced and separated from that of normal 

NBF. This is because the pattern (location) and severity of NBF, when assessed by age-

estimation and known growth patterns, can be seen to vary from the expected pattern of 

normal NBF.  

 

Assessment of pathology was undertaken macroscopically and relied on detailed and close 

assessment of the skeletal individuals. Each pathological change/lesion was recorded 

descriptively by the author and documented photographically. Pathological assessment within 

this thesis has relied on three primary avenues of investigation: 

 

 

1. Type of pathology: 

Because bone only has two responses, regardless of stimulus/stressors, type of lesion 

was recorded as either bone formation or bone destruction/resorption. Bone formation 

was recorded as ‘NBF’ (New Bone Formation) and bone destruction/resorption was 

recorded as being ‘Lytic’.  

 

For NBF, type of bone formation was also recorded. Type of bone was recorded as 

either woven or lamellar bone, and also whether it spiculated (Ortner 2003, 45-64). 

Lytic lesions were not recorded in this way due to the destructive nature of these 

lesions.  

 

Expansion of the metaphyses was also recorded when present. Typically, such 

changes may be expected in the long bones and ribs and when identified the 

individual skeletal elements have been detailed. Morphological change (e.g. bowing) 

was also recorded to each individual skeletal element affected.  
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2. Severity of pathology: 

Severity of pathological change has been recorded in accordance with a grading 

system established by the author (See Section 5.73 below for details). Grading 

systems were established to consider severity of NBF, lytic lesions and metaphyseal 

expansion. For each type of pathology, a severity score of 1, 2 or 3 has been afforded 

in accordance with the severity description outlined below. It was considered to be 

imperative that severity was recorded to observe and identify individuals who appear 

to be more affected by pathological changes. By recording severity, correlations 

between this variable, the location of pathological lesions and the type of lesion were 

able to be considered, aiding etiological, pathogenic and contextual interpretations of 

health stress.  

 

Furthermore, as it is hypothesised that those with more severe lesions will show 

greater growth disruption, correlation between severity of lesions and growth 

disruption was able to be considered.  

 

3. Location of pathology: 

Location was firstly documented as cranial or postcranial, then by specific skeletal 

element (e.g. right tibia, left frontal bone) and then by aspect (e.g. endocranial, 

ectocranial, medial, lateral). The location was documented in this very specific way so 

that pathological lesions could be recorded and located as precisely as possible. 

Furthermore, by documenting the aspect of the bone that was affected it could be 

determined whether the element was affected circumferentially/across the surface, or 

whether pathological changes were limited to a particular aspect of the skeletal 

element. By employing this recording strategy the patterning of pathological lesions 

could be assessed by skeletal element. Given that some diseases/infections/conditions 

are known to affect certain elements and certain locations more commonly it was 

considered that recording the location of pathology was of particular importance.  

 

 

Table 5.6 provides an example (Skeleton 4 from Cross Bones) of how pathological lesions 

were recorded for each of the 423 fetal, perinatal and infant individuals assessed. This table 



119 

 
 

details how results for each of the categories listed above have been recorded, with type of 

lesion split into ‘Type I’ (NBF, lytic, metaphyseal extension, morphological change) and 

‘Type II’ (woven, lamellar, spiculated). Once this information was recorded, the data was 

transferred into an excel spreadsheet – an example of which is given in Table 5.7 (also using 

Skeleton 4 from Cross Bones as an example). Data was transferred into a database to enable 

easier statistical assessment of the results. Within this database it is listed whether the 

individual has cranial and post-cranial elements present and whether there are pathological 

changes observed to any of these elements. There is then a breakdown of the main skeletal 

elements with the presence of pathological changes recorded with a ‘Y’ for ‘yes’. Type I and 

Type II categories are listed at the far end, again with a ‘Y’ given for ‘yes’ if that type was 

recorded within the individual.  

 

5.63 Pathological Definitions, Examples and Grading Systems 

The following section outlines and provides examples as to the varying locations, types and 

severity of lesions identified in assessment of the fetal, perinatal and infant individuals 

considered within this study. Definitions, as well as photographic examples, have been given 

for NBF, lytic lesions, metaphyseal expansion and morphological changes. Photographic 

examples of woven, lamellar and spiculated bone have also been provided. Finally, grading 

systems from 1 to 3 have been documented photographically and descriptively for NBF, lytic 

lesions, and metaphyseal expansion. 
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TABLE 5.6 Example, using Skeleton 4 from Cross Bones, of how pathological lesions were recorded for each individual, listing location, type and severity of the lesion. 

 

 

 

 

TABLE 5.7 Example, again using Skeleton 4 from Cross Bones, of how recorded pathological lesions were transposed into an Excel spreadsheet to enable easier statistical assessment of results. The data presented in 

this table corresponds to the more detailed information recorded above (Table 5.6). Where ‘Y’ has been given it records the presence of pathology to that location or type. Due to the expanse of this table, 

archaeological samples and their time periods have been abbreviated. In this instance ‘CB’ represents the site of Cross Bones and ‘PM’ stands for post-Medieval. 

 

 

 

 

Skeleton 

Number 
Sample 

Time  

Period 

Dental  

Age 

Cranial or  

Postcranial 

Skeletal  

Element 
Aspect 

Type I 

(NBF/Lytic/Met./Morph.) 

Type II 

(Woven/Lamellar/Spiculated) 

Severity  

(Grade 1-3) 

4 Cross Bones Post-Medieval 46 

Cranial 

Frontal Bone 

(Left & Right) 
Endocranial NBF Woven & Lamellar 2 

Parietal Bone 

(Left & Right) 
Endocranial NBF Woven 2 

Occipital Bone Endocranial NBF Woven 2 

Post-Cranial Tibia Medial NBF Woven 1 
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5.63.1 Examples and Definitions: 

 

1. New Bone Formation (NBF): 

Where deposits of woven and/or lamellar bone can be identified, typically appearing to be on top of the original cortical bone surface. Multiple layers of NBF may be observed, and along with variation in 

thickness of the NBF, may provide indication as to the severity and or length of exposure to stress. NBF can be identified on any element and may appear as an isolated patch or cover entire surfaces/aspects. 

 

  Skeleton 253860 Smithsonian Collection Skeleton 253866 Smithsonian Collection 

Skeleton 82 Cross Bones Museum of London 

Skeleton 2259 St. Bride’s Lower Museum of London 

Skeleton 2228 St. Bride’s Lower Museum of London 
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2. Lytic Lesions: 

Lytic lesions are those where destruction and resorption of the original cortical bone can be identified. Evidence of porosity has also been considered within this category. Variation in the severity and extent of 

lytic lesions can be observed, with some skeletal individuals having isolated areas/elements showing lytic lesions, whilst others show extensive evidence to multiple skeletal elements. Within the cranial vault, 

lytic lesions can often be observed as fenestrations, where destruction and thinning of the vault can be observed before complete perforation of the vault occurs. Within the cranial vault these lytic lesions are 

often found to be in association with areas of bone densification, which typically appear to outline and surround the lytic lesions (as seen in some of the images below).  

 

 

 

 

  

Skeleton 253868 Smithsonian Collection Skeleton 253860 Smithsonian Collection Skeleton 255285 Smithsonian Collection 
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3. Metaphyseal Expansion: 

Metaphyseal expansion refers to the widening (typically laterally) of the metaphysis. This typically occurs at the distal ends of long bones, but can be observed at the proximal ends, as well as in the ribs. 

Metaphyseal expansion is often identified due to the changes in the metaphyseal margin, which becomes irregular, misshapen and often has a ridge/lip of bone extending past the metaphysis. Metaphyseal 

expansion can also be identified from observing the inner trabecular bone structure (as seen below), where there is marked expansion in the trabecular structure.  

  

Skeleton 253852 Smithsonian Collection Skeleton 253862 Smithsonian Collection Skeleton 253862 Smithsonian Collection 

Skeleton 731 Broadgate Museum of London 

Skeleton 1231 St. Bride’s Lower Museum of London 

Skeleton 616 St. Benet Sherehog Museum of London 
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4. Morphological Changes: 

Morphological changes are defined as those where clear shape changes have occurred, typically meaning the process of normal growth and development has been altered. Within this thesis morphological 

changes primarily refer to the identification of bowing within the long bones. However, as can be seen from the images below, congenital malformations also commonly cause morphological changes. Due to 

the wide array of changes that may be identified, a grading system for morphological changes has not been employed. Instead each morphological change identified has been described in detail by the author.  

  

Skeleton 299453 Smithsonian Collection 

Skeleton 255287 Smithsonian Collection 

Skeleton 218141 Smithsonian Collection 

Skeleton 433 Royal London Hospital 

Museum of London 
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5. Woven Bone: 

Woven bone is immature, highly disorganised bone typically found in fetal/perinatal/infant individuals who are growing as it is formed very quickly (White et al. 2012, 35). However, the distinctive grey 

appearance of woven bone is also synonymous as evidence of pathological NBF – a physiological response by the body to an environmental stressor. 

 

  

Skeleton 253852 Smithsonian Collection 

Skeleton 2278 St. Bride’s Lower Museum of London 

Skeleton 1610 St. Benet Sherehog Museum of London 
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6. Lamellar Bone: 

Lamellar bone is bone that has remodelled and matured or is in the process of doing so. Lamellar bone can represent part of the normal bone formation process, or can also represent healing bone if the stimulus 

was pathological. Lamellar bone tends to be well organised, striated bone or is bone that is transitioning to this state from woven bone.   

 

 

Skeleton 253868 Smithsonian Collection 

Skeleton 31B Piddington 

Skeleton 1541 St. Bride’s Lower Museum of London 
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7. Spiculated Bone:  

Spiculated bone typically refers to bone which is perpendicular to the normal growth 

plate. Thus, the appearance of ‘hair-on end’ bone formation is commonly associated 

with spiculated bone. However, more generally spiculated bone can refer to bone 

which is growing in an atypical aspect. Consequently, for the greater wing of 

sphenoid pictured below the additional bone growth has also been referred to as a 

bone spicule.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Skeleton Piddington Skeleton 4 Piddington 
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5.63.2 Grading Systems 

 

1. New Bone Formation (NBF):  

 

a. Grade 1: New bone formation, which may be woven or lamellar in appearance, will be considered to be grade 1 when the NBF is not clearly apparent and the margins are unable to be clearly defined 

from that of normal cortical bone. Grade 1 NBF is likely to be isolated in location, appearing minimally across the skeletal element. 

 

b. Grade 2: New bone formation recorded as being grade 2 will be clearly identifiable as a definable area of woven or lamellar bone formation. There will be clear boundaries/borders to the NBF and it will 

obviously differ from the normal cortical bone of the skeletal element. Grade 2 NBF is likely to be distinguishable as a clear layer of bone on top of the original cortical surface. It is likely that NBF 

listed within this category will be formed of a single layer though may extend over a large aspect area of the skeletal element.  

 

c. Grade 3: New bone formation recorded as being grade 3 will be the more severe type of NBF, with clear, multi-layered or thick NBF across a large area/aspect of the skeletal element. The NBF may be 

woven or lamellar in appearance and is clearly seen to be on top of the original cortical bone.  

 

  

Skeleton 82 Cross Bones Museum of London 
Skeleton 1610 St. Benet Sherehog Museum of London 

Skeleton 272404 Smithsonian Collection 

Grade 1 

Grade 2 

Grade 3 
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2. Lytic Lesions: 

 

a. Grade 1: Lytic lesions considered to be grade 1 likely consist primarily of macro-porosity. This porosity will be relatively minor, though may extend over a large skeletal area, and no clear destruction of 

the cortical bone will be apparent.  

 

b. Grade 2: Lytic lesions considered to be grade 2 will likely show evidence of some cortical destruction as well as porosity. However, cortical destruction will not be widespread throughout the skeletal 

element and is instead likely to be in isolated concentrations.  

 

c. Grade 3: Lytic lesions considered to be grade 3 will show extensive cortical destruction and/or porosity. Destruction will be widespread throughout the element.  

 

  

Skeleton 25 Owslebury 

Skeleton 253860 Smithsonian Collection 

Skeleton 125 Cross Bones Museum of London 

Grade 1          Grade 2        Grade 3 
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3. Metaphyseal Expansion: 

 

a. Grade 1: Metaphyseal expansion considered to be grade 1 will likely consist of noticeably widened/flared metaphyses which do not appear proportional for the long bone diaphysis. However, despite this 

expansion no change to the metaphyseal margin or trabecular bone structure will be observed.  

 

b. Grade 2: Metaphyseal expansion will be considered to be grade 2 when involvement of the metaphyseal margin is apparent. This will result in atypical and misshapen metaphyseal margins often 

combined with a discernible brim/lip to the metaphysis. 

 

c. Grade 3: Metaphyseal expansion considered to be grade 3 will be the most severe and where involvement of the trabecular bone structure can be seen. Individuals displaying grade 3 metaphyseal 

extension will likely have more porous metaphyses and the trabecular structure will appear clearly expanded and widened. Involvement of the metaphyseal margin may still be apparent though this may 

be lost due to the trabecular expansion.  

Skeleton 456 Chelsea Old Church Museum of London 

Skeleton 1231 St. Bride’s Lower Museum of London 

Skeleton 253862 Smithsonian Collection 

Grade 1         Grade 2         Grade 3 
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5.64 Excluded Methods 

It has become common throughout palaeopathological literature that for certain skeletal 

lesions to be synonymous with evidence of ‘stress’ and health disruption. Consequently, 

many studies have assessed evidence of cribra orbitalia (Facchini et al. 2004; Kyselicová et 

al. 2015; Rivera & Lahr 2017), DEH (dental enamel hypoplasia) (Blakey & Armelagos 1985, 

371; Armelagos et al. 2009, 265; e.g. Goodman & Rose 1990), and Harris lines (e.g. Gindhart 

1969), correlating presence of these lesions as evidence for health disruption and disease 

(Lewis & Roberts 1997, 581). However, this study considered it more appropriate to take a 

broad approach to recording of pathological lesions, recording all lesions identified rather 

that targeting particular categories of lesions. It was considered that this would provide a 

broader and better dataset from which to consider health and wellbeing of the individuals 

assessed. Therefore, the following analyses avoided consideration of particular stress markers 

and indicators, instead adopting a broader approach to reveal a more general narrative of 

health.  

 

DEH is considered to be indicative of physiological disruption and stress (Massler et al. 

1941, 42; Blakey & Armelagos 1985, 371; Hillson 2005, 168; Franco et al. 2007, 518; 

Armelagos et al. 2009, 261; 266) with location of these defects able to be correlated to 

specific periods of growth and thus, age (Blakey & Armelagos 1985, 371; Armelagos et al. 

2009, 266). Disruptions in enamel secretion, mineralisation and maturation can be observed 

as defects on the mature enamel surface and reflect episodic exposure to stress during crown 

formation (Massler et al. 1941, 42; Hillson 2005, 169). Hypoplastic defects occur in hard, 

well mineralised dentition (Hillson 2005, 170), where there is a local deficiency in the enamel 

thickness as a result of the experienced disruption (Blakey & Armelagos 1985, 371; Franco et 

al. 2007, 518; Armelagos et al. 2009, 266). These bands/lines/pits tend to be linearly 

orientated around the circumference of the tooth, following the line of the perikymata 

(Hillson 2005, 170); perikymata being the incremental growth lines within enamel (Hillson 

2005, 163). Though many studies have assessed DEH macroscopically, microscopic 

assessment provides a better indication as to this disruption (Hillson 2005, 172; 174). Thus, 

microscopic assessment of perikymata and the number of perikymata involved can be tracked 

through multiple tooth crowns to identify a systemic disruption to tooth formation and 

development (Hillson 2005, 171).  
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Multiple aetiologies of DEH have been considered, all of which explore a variety of 

detrimental life course outcomes; these include premature birth, low birth weight, metabolic 

disturbances and specific and non-specific infections (Cutress & Suckling 1982, 117; Blakey 

& Armelagos 1985, 371; Franco et al. 2007, 518; Roberts & Manchester 2010, 75-77). As 

enamel does not repair or remodel (Blakey & Armelagos 1985, 371; Lewis & Roberts 1997, 

581; Franco et al. 2007, 518), teeth are able to permanently record episodes of physiological 

stress experienced both intra- and extrauterine (Blakey & Armelagos 1985, 371; Armelagos 

et al. 2009, 265). Thus, being able to identify DEH within fetal/perinatal and infant samples 

would provide a valuable insight into maternal and intrauterine health and wellbeing, 

allowing bioarchaeologists to definitively trace growth disruption and stress exposure. 

Although growth and development of the deciduous dentition can be affected from around 

the fifth fetal month (Blakey & Armelagos 1985, 371; Armelagos et al. 2009, 265), rarely has 

DEH been identified on fetal, perinatal and infant tooth cusps (Massler et al. 1941, 59; e.g. 

Blakey & Armelagos 1985). This is because the deciduous dentition is typically still required 

to complete most of its growth and development during these life stages, and both enamel and 

dentine is poorly mineralised during these initial deposits (Hillson 2005, 210). Hillson (2005, 

170) states that DEH can only be observed in well mineralised dental tissues, and due to the 

early stage of formation of the dentition analysed, where the majority of tooth cusps would 

not have undergone the second enamel secretion and mineralisation stage, they are not well-

developed enough to assess for DEH. Franco and colleagues (2007, 522) also state that the 

optimum time to observe enamel defects is immediately after tooth eruption. Consequently, 

due to the majority of the dentition assessed within this thesis being very early in its 

development process DEH would be almost impossible to identify macroscopically and 

would certainly require histological assessment to identify. Additionally, it is typical for DEH 

to be assessed on multiple teeth from the same individual where crown development is 

complete (e.g. Blakey & Armelagos 1985). Again, due to the immature age of these 

individuals very few had multiple teeth where crown development was complete, meaning 

assessment of DEH would have been very limited. Furthermore, due to the ethical 

considerations of destroying archaeological material, and financial and time constraints 

(Huda & Bowman 1995, 145), this study considered it unwise to histologically sample the 

dentition available and as such refrained from using DEH as a pathological criterion.  
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Similarly, assessment of Harris lines would have required radiographic evaluation of skeletal 

elements and this study was unable financially and logistically to undertake this assessment. 

Harris lines have been typically used as evidence of growth arrestment – thought to be 

indicative of points where growth has been suspended as a result of health disruption – where 

a radiodense line or band, often identified in long bones, is observed (Mays 1999, 307; 

Scheuer & Black 2000a, 28; White et al. 2012, 430; Larsen 2015, 42). Harris lines are 

typically identified in the distal and proximal ends of the long bones, with most studies 

observing these in the bones of the lower limb (femur and tibia) (Mays 1995, 511-512). It has 

been suggested that these lines are a result of stress and signify growth disruption (Mays 

1995, 511; Scheuer & Black 2000a, 28; Lewis 2007, 107). However, many reservations are 

widely held about this method (Lewis & Roberts 1997, 583; Larsen 2015, 43). It is still 

unknown whether these Harris Lines represent normal episodes of growth arrestment, where 

the body is naturally regulating and fluctuating according to its growth trajectory, or whether 

these do indeed represent periods when growth has been halted, as a way to maintain bodily 

function, as a result of health disruption (Larsen 2015, 43; e.g. Magennis 1990; Lampl et al. 

1992; Lampl & Jeanty 2003; Alfonso-Durruty 2011; Papageorgopoulou et al. 2011). Mays 

(1995, 519) found in his study that there was no significant relationship between Harris lines 

and femoral length, suggesting that they are not always indicative of health stress. However, 

he interprets absence of Harris lines as a result of catch-up growth and the ability of all the 

skeletal individuals investigated to have fully recovered from any health insult (Mays 1995, 

519). Despite this, other investigations similarly found that Harris lines were present in 10% 

of individuals when no stressful event had occurred (Gindhart 1969).  

 

The recording of Harris lines is also troublesome, with different authors considering skeletal 

elements from varying aspects, and also counting lines incongruently – some only counting 

lines across the whole of the skeletal element, others also counting those which reach at least 

half way (Lewis & Roberts 1997, 583; e.g. Macchiarelli et al. 1994). It has also been found 

that depending on the type and side of skeletal element investigated, there is variation in the 

number of Harris lines observed, with the distal tibia and left side of skeletal elements found 

to exhibit more Harris lines (Hughes et al. 1996). Other investigations have attempted to 

determine the age at which these lines formed (Lewis 2007, 109; White et al. 2012, 430; e.g. 

Hunt & Hatch 1981; Maat 1984; Byers 1991). However, results have been found to have 

mixed success. Consequently, due to the incongruities in recording and documenting Harris 
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lines, as well as the ongoing ambiguity surrounding their etiology, this study has not included 

such assessment within its palaeopathological analysis.  

 

Finally, cribra orbitalia has not been used as a pathological criterion within this thesis. 

Cribra orbitalia (CO) presents as a ‘…localised appearance of porotic lesions on the roof of 

the orbits’ (Facchini et al. 2004, 126; Wapler et al. 2004, 333; Rivera & Lahr 2017, 1). 

Primarily due to the physiology of these individuals it would be unexpected for many of them 

to present with these lesions. Although possible that porosity, in association with CO, may be 

observed in such young individuals, the orbits are highly vascular and NBF is typically 

observed within them. This means that porous layers of concentric new bone formation can 

often be seen and as such identifying porosity, as evidence of CO is unlikely in such young 

individuals. Furthermore, although cribrotic lesions are commonly recorded, their aetiology 

has recently been debated (e.g. Wapler et al. 2004; Walker et al. 2009; Oxenham & Cavill 

2010). Typically, cribra orbitalia has been attributed to be a consequence of iron deficiency 

anaemia (Wapler et al. 2004, 333; Kyselicová et al. 2015, 16; Rivera & Lahr 2017, 1), 

thought to be the preliminary phase of the condition before other skeletal changes, 

particularly to the cranial vault (such as porotic hyperostosis), occur (Wapler et al. 2004, 333; 

Rivera & Lahr 2017, 2). However, recent investigations have questioned this (Lewis & 

Roberts 1997, 583; Zuckerman et al. 2012, 44; e.g. Walker et al. 2009; Oxenham & Cavill 

2010), considering a multifactorial etiology to the lesions (Kyselicová et al. 2015, 16). This 

has been suggested to include tuberculosis, rickets, scurvy and trauma (Kyselicová et al. 

2015, 16; Rivera & Lahr 2017, 16). Rivera and Lahr (2017, 2) state that complexities in 

identifying the precise etiology of CO (and pathological lesions more generally) is 

compounded by the fact that there are many more illnesses than there are skeletal responses. 

In fact, the duality by which the skeleton can respond to stressors and environmental 

influences means that there is a very constrained physiological skeletal response (Rivera & 

Lahr 2017, 2). Consequently, the difficulties in identifying and assessing cribra orbitalia 

within fetal, perinatal and infant individuals, along with the ambiguity over the interpretation 

of these lesions, means that this thesis has avoided particular assessment of these lesions as 

markers of stress.  

 

Assessment of vertebral neural canal size and dimensions has also become commonplace 

within bioarchaeological assessments of non-adult growth, development and physiological 
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disruption (Watts 2013, 120-121). This is because the fusion of the vertebral neural arches to 

that of the vertebral body happens during childhood when growth and development is still 

greatly influenced by the environmental conditions to which you are exposed (Watts 2013, 

121). Consequently, it has been discovered that a reduction in VNC measurements reflects 

disrupted growth and has hence been used as a marker and indicator of stress (e.g. Newman 

& Gowland 2015). However, investigation of the vertebral neural canal (VNC) size could not 

be undertaken for this thesis due to the age of the individuals considered for assessment. 

Neural canal dimensions are considered to be stabilised by around 3-5 years of age (Watts 

2013; Newman & Gowland, 156) – thus reflecting early life experiences – however, the 

neural arches and bodies of the vertebrae are not developed sufficiently or fused in fetal, 

perinatal and young infant individuals to enable analysis of VNC dimensions (Armelagos et 

al. 2009, 269).  

 

Additionally, due to the limitations of costs, time, availability and ethical permissions as 

listed previously, radiographic assessment of new bone formation was also not undertaken. 

Although this would have enabled the thickness of the new bone formation to be established 

– which is thought to be critical in determining pathological from normal new bone formation 

– it was beyond the scope of this thesis to be able to radiographically assess the 423 

individuals analysed. Instead, this thesis has attempted to propose a methodical, logical 

approach to recording potential pathological changes in fetal, perinatal and infant individuals, 

which enables consideration of location, type and severity of change in accordance with 

estimated age. As no method has yet been proposed to analyse and record pathology within 

these young individuals this thesis attempts to investigate the potential of recording 

pathological changes in this way and aims to identify clear correlations between growth and 

health disruption – it being hypothesised that the greater the health stress experienced (i.e. 

more numerous and severe pathological lesions), the greater the growth disruption (i.e. the 

greater the difference between dental and skeletal age-at-death estimates). However, it is 

resoundingly acknowledged that radiographic investigation of new bone formation, 

particularly its thickness, would aid in unravelling the ongoing debate surrounding the 

differentiation of normal from pathological new bone formation (See Chapter 11: Section 

11.2 for further discussion).  
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5.7 Biological Sex Estimation 

Biological sex, as discussed in the previous sections, has a clear impact on growth and 

development, with males and females not only having sexually dimorphic morphology to 

their skeleton but varying growth strategies. Therefore, determining dental and skeletal 

growth without consideration of biological sex induces further error, yet sex estimation of 

non-adult individuals is acknowledged to be notoriously difficult and unreliable (Hoppa & 

Fitzgerald 1999, 2; Scheuer & Black 2000a, 15; 2000b, 12; Satterlee Blake 2018, 41).  

 

The skeletal biology of non-adult individuals is the primary limitation of this assessment, as 

individuals have not yet fully grown or even developed the skeletal structures typically 

required for sex assessment in adult individuals. Furthermore, the hormonal influxes that alter 

the morphology of these structures are yet to occur (Hoppa & Fitzgerald 1999, 2; Scheuer & 

Black 2000a, 15 Lewis 2000, 40). Although, hormones are released during fetal development, 

particularly testosterone during the ~10th gestational week if the individual is male, sexually 

dimorphic traits are considered not to become clearly apparent until puberty (Saunders 2000; 

Loth & Henneberg 2001, 179). As a result, macroscopic assessment of sex estimation in non-

adult individuals is often avoided.  

 

Despite these limitations attempts to determine biological sex based on the dimorphism of the 

skeleton have been made. Typically, methodologies have utilised similar skeletal structures to 

those analysed in adult individuals – primarily the bones of the pelvis and cranium (Scheuer 

& Black 2000a, 15; Lewis 2007, 47; e.g. Boucher 1955; 1957; Weaver 1980; Schutkowski 

1993; Loth & Henneberg 2001; Wilson et al. 2008) – however, other attempts have 

investigated variation in the humerus and dentition (e.g. Black 1978; Rogers 2009; Stull & 

Godde 2013).  

 

Studies testing methods of sex estimation have found that dimorphic traits can vary between 

population, that the accuracy of these methods could not be reproduced, and that there is 

substantial overlap between the categories of males and females (Hunt 1990; Scheuer 2002; 

Lewis 2007, 48; Cardoso & Saunders 2008; Vlak et al. 2008; Satterlee Blake 2018, 41). In 

fact, most methods, when tested, have failed to yield accuracies of over 70% (Lewis 2007, 

48). Males tend to have larger dentition than females (Black 1978), though when tested, 

sexual dimorphism utilising this method had an accuracy of 75%. Furthermore, sexual 
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dimorphism was also found to be less in deciduous teeth than in permanent dentition (Lewis 

2007, 48-49), and again disease status and environmental factors can cause changes in the 

tooth crowns (Lewis 2007, 49). Schutkowski (1993) reported that his method for observing 

sexual dimorphism in the pelvis and mandible was between 70-90% accurate. However, 

when Loth (1996) tested this, accuracy rates were only found to be between 30-40%. Loth 

and Henneberg (2001) have further developed this method for using the mandible to 

determine biological sex, but as this method primarily looks at chin shape (requiring the 

mandible to be fused at the mental symphysis), most of the individuals considered within this 

study are too young to be assessed in this way. Sex determination using the mandible is often 

considered to be the most reliable (Lewis 2007, 58), but given that many of the traits assessed 

cannot be observed in individuals aged to be less than 6 postpartum months (64 GWA), it 

was impossible to utilise these methods consistently within this thesis.  

 

The sciatic notch of the ilium has also been prominent in assessment of fetal pelvis, currently 

thought to be the most dimorphic and accurate variable to assess for biological sex within the 

ilium (Vlak et al. 2008, 309). However, results and interpretations have differed (Lewis 2007, 

53) and when tested, sciatic notch depth, breadth and angle was found to only be 61% 

accurate (Vlak et al. 2008, 312). Weaver (1980) developed a method whereby the auricular 

surface was considered to be elevated in females and non-elevated in males. The original 

investigation suggested that the method was accurate in 75% of females and 91% of males 

(Weaver 1980, 191). However, Mittler and Sheridan (1992) found that although males were 

accurately predicted in 85% of cases, females were only accurate in 58%, arguing that there 

is a strong male bias within this method. In fact, many of the methodologies developed are 

suggested to have a strong bias in identifying males (Lewis 2007, 58; e.g. Schutkowski 1993; 

Wilson et al. 2008).  

 

Today, scientific advances have led to the emergence of studies considering DNA analysis to 

determine biological sex of infants and children (Hoppa & Fitzgerald 1999, 3; Aiello 2000, 

VII; Lewis 2000, 40; e.g. Waldron et al. 1999; Mays & Faerman 2001). However, given the 

ethical, time and financial constraints of conducting ancient DNA analysis (aDNA), 

combined with the possibility that no aDNA would be surviving, this was not considered to 

be a suitable line of investigation within this thesis.  
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Consequently, within this thesis sex estimation has not been attempted on the archaeological 

individuals as the methodologies are still too variable and inaccurate. The fetal collection at 

the Smithsonian has recorded biological sex for some of the individuals assessed (Hunt 

personal communication) and thus, where possible analysis and interpretation has been 

conducted using these categories (male versus female). Although the author did record 

sexually dimorphic traits in accordance with Schutkowski (1993), testing this method on the 

Smithsonian collection has not been afforded within this thesis as no other sample uses sex 

estimation in its analysis. As such, it has been detailed that this is a further study for future 

consideration. 

 

5.8 Data Analysis and Statistical Assessment  

The statistical methods of assessment employed throughout this study have been deliberately 

minimal and limited as a result of both the nature of the data sets, sample sizes and research 

questions considered. 

 

The primary use of statistical tests within this study is to determine whether there are 

significant differences in skeletal metrics/age estimations when compared to the dental age 

group. The aim of determining whether there is a significant difference is to identify 

individuals who present evidence of growth disruption. However, although the data set is 

large for an archaeological fetal/perinatal/infant study it is still relatively limited in terms of 

number of individuals assessed when samples are divide by discrete categories, such as dental 

age estimation. Furthermore, the number of individuals decreases rapidly when those without 

dentition are excluded from assessment and individuals are grouped by time period/sample 

and then by dental age. For some of these dental age groups only one or two individuals are 

present. In addition, regardless of the methods employed there are no two datasets which can 

be compared; either raw metric data for individuals within an age group is compared against 

a data point from a reference method (where only an average measurement for that skeletal 

element is recorded for that age group), or skeletal ages for a particular element are compared 

against their dental age category. This means that data recorded/calculated in this study is 

typically only able to be compared against a single point. As a result, the primary statistical 

assessments employed are t-tests, where the comparative mean can be given by the author 

(either dental age or reference metric). T-test analysis was undertaken in PAST (developed by 
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Hammer, Harper and Ryan 2001), a free, downloadable programme which has been 

specifically designed for paleontological analysis.  

 

For the third manuscript, ANOVA (analysis of variance) has been utilised to consider 

statistical differences between dental and skeletal age estimates and true documented ages. 

This method of assessment was able to be used within this manuscript as multiple age 

estimation methods were able to be tested against documented age. Tests were also 

undertaken in PAST, and were double checked by running the analyses for a second time in 

Microsoft Excel. Significance was set to 0.05 (95% confidence), whereby p-values below 

0.05 were considered to be statistically significant.  

 

However, using the metric data collected, summary statistics (mean, standard deviation, 95% 

confidence intervals) have also been calculated for select individuals (detailed within the 

individual manuscripts). 

 

For pathological assessment, limited statistical methods were employed to assess data as 

pathology cannot be ‘quantified’ in a way that enables extensive statistical analysis. 

However, both True Prevalence Rates (TPRs) and chi-squared tests have been utilised, 

primarily in manuscript 4 (Chapter 9). True Prevalence Rates were calculated by 

documenting how many individuals out of the 423 analysed had a particular skeletal 

element(s) present, and then out of those with the element(s), how many showed pathological 

changes. Within the manuscripts presented, totals have been given for numbers of individuals 

assessed, along with separate columns of totals for the number of a particular element able to 

be observed, and then the number found to be affected and showing pathological changes.  

However, these TPR rates may be better expressed as corrected CPRs (Crude Prevalence 

Rates) as for some elements, such as long bones, there are bilateral pairs of that element. This 

is because this study does not calculate prevalence rates for each element by side, instead 

amalgamating these bilateral pairs. It was considered that this study was not required to 

consider pathological changes by side, as the focus of investigation was to consider the 

location of these lesions more generally (i.e. were more appendicular/axial elements 

affected).  
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Chi-squared tests for independence at 99.5 % confidence (p < 0.05) were also employed for 

pathological categories to observe whether there was any relationship between various 

pathological variables. Typically, only two pathological variables have been used for each 

chi-squared test, but these have been considered by dental age categories, samples and time 

periods. For example, chi-squared tests were run by dental age group for comparisons 

between new bone formation to the femur and new bone formation to the tibia. Chi-square 

results are presented numerically, where p < 0.05 shows there is a significant relationship 

between the variables, whilst p values > 0.05 indicate there is no significant relationship. Chi-

Squared values (X²) have also been given.  
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Chapter 6: Manuscript 1 

Measure for Measure: A comparative study of the impact of ‘stressors’ on 

fetal, perinatal and infant growth from three rural Iron Age and Romano-

British samples.   

Claire M. Hodson1 and Rebecca L. Gowland1    

1. Department of Archaeology, University of Durham 

KEY WORDS: Intrauterine; Metric; Pathology; Health; Well-being.   

 

Abstract: Growth is a dynamic process which responds to environmental as well as genetic 

factors, making it a useful biological parameter for examining stress in early life. Exposure 

to stress can leave identifiable skeletal changes, and as such analysis of fetal, perinatal and 

infantile individuals can reveal important information regarding maternal health, living 

environments and infant care. This paper examines growth and pathological lesions in 99 

individuals, aged between 32 gestational weeks and six months of age (64 gestational weeks 

of age), from three rural settlements dating from the late Iron Age to Romano-British periods 

in England. These sites span an important period of social and cultural change in Britain. 

Growth disruption and pathological lesions were identified in individuals from all three time 

periods (Pre-Roman, Transition, Roman). The extent and severity of growth and health 

disruption was found to increase from the 1st century A.D. onwards, during the Roman 

occupation of Britain. These findings support previous studies which demonstrate a reduction 

in health as a consequence of the Roman conquest, but are the first to demonstrate that these 

health deficits were initiated in utero.  

 

The biology of human growth is complex, particularly during the embryological and fetal 

stages of life, when it is most prolific (Sinclair 1985; Lejarraga 2002; Bogin 2002). Growth is 

defined as quantitative, physiological change (Bogin 2001), and is regulated by both intrinsic 

(genetic) and extrinsic (environmental) factors (Tanner 1978; Hoppa 1992; Cameron 2002; 

Bogin & Rios 2003). Embedded within each individual is a genetic ‘blueprint’ for growth, yet 

our ability to attain this genetic potential is controlled by the environmental conditions to 

which we are exposed both pre- and postnatally (Cameron 2002; Agarwal 2016). 

Physiological plasticity enables a degree of modification in skeletal morphology in response 

to environmental variables (Bogin & Loucky 1997; Bogin & Rios 2003; Agarwal 2016). The 
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susceptibility of fetal, perinatal and infant individuals to growth and health stress is typically 

maternally regulated, reliant on maternal ability to protect and buffer offspring against 

environmental conditions encountered both pre- and postnatally (Barker 1997; Gowland 

2015). Maternal diet and nutrition, exposure to disease and infection, as well as social, 

cultural, political and psychological pressures faced during pregnancy, are all factors that can 

impede offspring growth. As such, it is essential to acknowledge that indicators of growth 

and health stress identified on fetal, perinatal and infant individuals, often provide a sensitive 

indication of maternal, as well as community, health and well-being (Goodman & Armelagos 

1989; Hoppa 1992; Redfern 2003). Therefore, assessment of growth has long been utilised in 

the determination of overall health, with results often compared within and between 

populations to investigate skeletal responses to stress (Agarwal 2016; e.g. Saunders & Hoppa 

1993). 

 

A wealth of research in the medical, bioarchaeological and anthropological literature has 

investigated the relationship between environmental adversity and birth outcomes (e.g. Bogin 

& Loucky 1997; Cameron & Demerath 2002; Cardoso 2007; Abu-Saad & Fraser 2010; 

Bogin & Baker 2012). Detrimental birth outcomes include preterm birth, small for gestational 

age (SGA), intrauterine growth restriction (IUGR), still birth and birth defects (Winick et al. 

1972; Prentice 2003; Kuzawa & Quinn 2009; Wu et al. 2012), as well as increased morbidity 

and mortality risks (Wu et al. 2012; Farewell et al. 2018; Said-Mohamed et al. 2018). These 

detrimental outcomes have often been strongly found to correlate with negative maternal 

experiences and poor health status during pregnancy (e.g. Chiswick 1985; Goldenberg & 

Thompson 2003; Abu-Saad & Fraser 2010; Cussons-Read et al. 2012; Beaudrap et al. 2013; 

Fell et al. 2016; Melby et al. 2016). Evidence of growth disruption – defined as the 

interruption of the ‘normal’ growth trajectory and inability to attain ones’ potential maximum 

growth – in fetal, perinatal and infantile remains is hence suggestive of a poor in utero 

environment.  

 

Ongoing research into the Developmental Origins of Health and Disease Hypothesis 

(DOHaD) is exploring the impact that early-life environmental factors have on growth, 

morbidity and mortality in later childhood and adulthood (e.g. Barker & Osmond 1986; 

Barker 1997; 2012; Barker et al. 2002). This hypothesis has become prevalent within 

interpretations of the early life course (e.g. Finlay 2013; Klaus 2014; Gowland 2015), 
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highlighting the long-term growth and health outcomes of detrimental in utero and immediate 

postnatal environments (Gluckman & Hanson 2006; Armelagos et al. 2009; Hoffman 2016; 

Clukay et al. 2018; Halcrow et al. 2018).  

 

Intrauterine stress can leave specific and non-specific pathological lesions on the skeleton – 

known as stress indicators (Goodman et al. 1988; Lewis & Roberts 1997; Goodman & Martin 

2002; Reitsema & McIlvaine 2014; Larsen 2015). These can represent a variety of 

pathological conditions such as specific and non-specific infections, trauma and metabolic 

disturbances, as well as evidence of growth disruption (Goodman & Martin 2002; Reitsema 

& McIlvaine 2014). As fetal, perinatal and infant individuals represent some of the most 

vulnerable members of past societies (Goodman & Armelagos 1988; 1989; Rogers 1997; 

Lewis 2002b; 2007), indicators of stress may be more commonly identified within their 

remains. This is as a consequence of their immature immune system (Goodman and 

Armelagos 1989; Perry 2006; Halcrow & Tayles 2008), as well as the rapidity of bone 

turnover within fetal, perinatal and infant individuals (Lewis 2000; 2002a; 2018; Satterlee 

Blake 2018). 

 

This study examined the relationship between health and growth in 99 fetal, perinatal and 

infant individuals from the 3rd century B.C. to the 4th century A.D in Britain. Pathological 

changes, combined with dental and skeletal assessment of biological age-at-death, were 

recorded and analysed between three samples spanning the Iron Age to Roman transition in 

Britain. 

 

The concept of Roman Britain has long been the focus of scholarly debate, with ongoing 

consideration as to the interaction, transition and adoption of Roman cultural, social and 

economic practices in Britain (Molleson 1992; Hill 1995; Pitts 2008; Redfern et al. 2012; 

Rohnbogner & Lewis 2017). Though settlement patterns, housing structures, religious beliefs 

and trading protocols may have differed in pre-Roman Iron Age communities, these societies 

were not necessarily oblivious, or indeed ambivalent, towards Romanised practices. 

Conversely, it is now widely accepted that there were extensive relations between pre-Roman 

Britain and the Romanised European mainland (Hill 1995; Pitts 2008). Thus, the people who 

inhabited pre-Roman and Roman Britain have long been debated - who they were, where 

they came from and whether they were Roman, Romanised, or native (Webster 2001; 
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Mattingly 2006; Pitts 2008; Leach et al. 2009; Rohnbogner & Lewis 2017). Today, the model 

of ‘Romanisation’ is often considered a crude and narrow vision, and instead this significant 

cultural and social transition is conceptualised as a negotiation of identities (Pitts 2008). 

Consequently, the transition of Britain from that of Iron Age communities to Roman or 

Romanised ones, must not be considered as a rapid, brutal and bloody result of warfare. That 

is not to say that all communities and individuals adopted Roman customs willingly, but the 

perception that transition was ruthlessly forced on the entire population is untenable.  

 

Despite this, the conquest of Britain brought with it significant changes. Until this point most 

of the population had lived in rural communities, typically farmsteads or small villages, 

focussing on agricultural subsistence (Molleson 1992; Hill 1995; Mattingly 2006; Redfern et 

al. 2012). In contrast, the Roman conquest saw the establishment of larger towns and cities 

(Molleson 1992; Redfern et al. 2012; 2015). Public bathing complexes, water systems, 

sanitation and sewerage systems were also established (Scobie 1986), whilst changes in diet 

and religious beliefs also occurred (Redfern et al. 2012; Rohnbogner & Lewis 2017). The 

rural landscape of Britain also altered with expansive villa estates established, and the 

introduction of new crops and farming techniques (Redfern et al. 2015). Consequently, with 

this period of transition, not only was there an influx of new people into Britain but new ideas 

and practices also.  

 

Recent findings have suggested that despite the introduction of public health systems and 

improvements in sanitation, population health was seen to decrease in Roman Britain (e.g. 

Roberts & Cox; Redfern & Roberts 2005; Gowland & Redfern 2010; Redfern et al. 2011; 

2012). Furthermore, establishment of larger towns and cities added to the increased risk of 

disease and infection, as high concentrations of people aided easier and quicker transmission 

of pathogens (Rawson 2003; Roberts & Cox 2003; Redfern & Roberts 2005). In addition, 

new pathogens were introduced as people from across the empire migrated to Britain 

(Gowland & Redfern 2010). Despite rural communities often being considered to be healthier 

than their urban counterparts, high prevalence rates of pathological lesions have also been 

identified within these groups. (Pitts & Griffin 2012; Redfern et al. 2015).  

 

Therefore, this study aims to further consideration as to how this transition impacted on 

health and growth of fetal, perinatal and infant individuals. Despite increasing interest and 
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investigation into non-adult health in later time periods, individuals from Iron Age and 

Roman contexts, particularly rural contexts, are notoriously lacking from analyses 

(Rohnbogner & Lewis 2017). Assessing 99 individuals from three rural populations, 

spanning pre-Roman to Roman Britain (3rd Century B.C. to 4th Century A.D.), this study 

interprets the evidence for intra- and extrauterine growth and health disruption within the 

context of the rapid social and cultural changes occurring at this time.  

 

Research Context 

Owslebury was excavated between 1961 and 1972 (Collis 1977; 1994), with the main phase 

of inhabitation dating from the mid-2nd century B.C. to the Roman conquest of Britain. 

Owslebury consisted of a small Iron Age settlement, comprised of a couple of nuclear 

families (Collis 1977; 1994). In total 23 individuals were analysed, fourteen of whom date 

from the Iron Age (pre-Roman), five from the Roman period and four remain undated (Wells 

& Collis [No Date]; Nystrom & Swales [No Date]).  

 

The site of Piddington was originally an Iron Age settlement with evidence of early Roman 

military presence at the site between 45-60 A.D. (Upper Nene Archaeological Society 2009 

Phase Descriptions; Miller 2010). This is followed by successive phases of Romano-British 

settlement (1st to 3rd Centuries A.D.), during which the site evolved into a large villa 

compound (Miller 2010; Friendship-Taylor & Friendship-Taylor 2012). A total of 26 fetal, 

perinatal or infant burials are recorded as dating to the 1st century A.D. Of the 26 burials, 25 

have been analysed within this study, though only 24 individuals are recorded as one double 

burial (12a/12b) was comingled.  

 

Barton Court Farm consisted of a large Iron Age enclosure and settlement, which was 

followed by successive periods of Roman occupation and buildings (Miles 1986). The 

primary phases of inhabitation date to the Romano-British period, with the peak in the late 4th 

century A.D. (Miles 1986). To the south-east of this enclosure, an area was excavated which 

seemed to be reserved for infant burials (Miles 1986). In total, 53 fetal, perinatal or infantile 

burials were excavated from Barton Court Farm. 52 of these individuals were analysed for 

this study, 36 of which were Roman. Of the other burials, two were Iron Age (pre-Roman), 

two were Saxon (Miles 1986), and one individual, who dated from the 1st century BC to the 
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1st century AD, has been categorised as ‘transitional’ for the purposes of this research. The 

remaining 11 individuals were undated.  

 

These sites were selected for assessment as they all represented rural sites which transitioned 

from Iron Age to Roman settlements, yet skeletal individuals recovered primarily reflected 

varying temporal periods (pre-Roman, Transition and Roman). Consequently, this study is 

able to investigate health and growth of fetal, perinatal and infant individuals during this 

significant cultural transition. The sites are all located in the south of Britain and had 

adequate sample sizes of non-adult individuals (below 6 months of age) available for 

assessment.   

 

Categorical terminology of pre-Roman, Transition and Roman have been employed 

throughout the remainder of this study. These have been used to correlate chronological dates 

with the Roman conquest. Thus, the terms pre-Roman and Roman, simply reflect that 

individuals dated to these periods died before or after the roman conquest, whilst transitional 

individuals died during the period of Roman conquest. These terms have been employed to 

avoid any ambiguity surrounding whether individuals were Roman, Romanised or native.  

 

Individuals from all three sites have been combined into these temporal categories, with the 

aim to observe growth and health disruption trends through the transition from pre-Roman to 

Roman Britain. Individuals who have been listed as either pre-Roman, Transition or Roman 

have all been securely stratigraphically dated. Dates for these categories have been given in 

Table 1.2. Any individual where dating was unsecure, or where no stratigraphical information 

was recorded, have been listed as undated. As the three archaeological sites are all located in 

the south of Britain, are all rural, and all were originally Iron Age settlements which 

transitioned into Roman sites, they are similar enough in profile to allow the combining of 

individuals by time period. Furthermore, consideration of individuals by site would not have 

enabled such detailed consideration of growth and health disruption over time, as each 

archaeological site primarily consisted of individuals from a single temporal period.  

 

Table 1.1 outlines the sample sizes for each archaeological site, whilst Table 1.2 details the 

number of individuals by time period. Where abbreviations have been utilised, ‘BCF’ is an 
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abbreviation for Barton Court Farm, ‘OW’ an abbreviation for Owslebury, and ‘PID’ an 

abbreviation for Piddington.  

 

Methods 

Gestational age-at-death was estimated for each individual based on dental development and 

metric assessment of selected long bones, where preserved. It has been widely accepted that 

the relationship between metric assessment and chronological age is not a reliable one (Lewis 

2007). Consequently, this study uses dental age-at-death estimates, which are considered to 

be more accurate (Cardoso 2007), as estimates of chronological age. Therefore, skeletal age-

at-death estimates generated from metric assessment are compared to these dental age 

estimates for evidence of growth disruption. This practice of comparing skeletal and dental 

age-at-death estimations is typical when attempting to identify evidence of physiological 

stress (Humphrey 2000; Lewis 2007).  

 

Diaphyseal lengths of long bones for each individual were taken using digital sliding callipers 

(accuracy of +/-0.02mm). Metric analyses were taken in accordance with those outlined in 

Fazekas & Kósa (1978), with results recorded to the nearest hundredth of a millimetre. 

Gestational age-at-death estimations were calculated from these measurements using the 

published linear regression equations for long-bone diaphyseal lengths by Scheuer et al. 

(1980). Where both left and right skeletal elements were available for assessment both were 

analysed and had age estimates generated, with the average age for that element used in 

analysis. Where individuals only had one element of a bilateral pair available for assessment 

(e.g. right femur only), that element has been solely used to generate an age estimate. All 

following analyses of long bone diaphyseal length estimates are where results have been 

given in this way. This use of linear regression equations was employed as it is one of the 

only methods available to provide error levels for age estimation, and is widely used in other 

studies making results of this assessment comparable (Lewis & Gowland 2007; Bonsall 2013; 

e.g. Mays 1993; Lewis 2002a; Halcrow et al. 2012; Rohnbogner & Lewis 2017). 

Additionally, English fetal, perinatal and infant individuals were used to develop this 

methodology. 
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Figure 2. Map of Great Britain and Ireland displaying the location of the three skeletal 

samples studied; Owslebury, Hampshire, Barton Court Farm, Oxfordshire and Piddington, 

Northamptonshire.  
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TABLE 1.1 Total number (N) and percent (% given in brackets) of individuals with dentition and skeletal elements available for assessment by archaeological site. Total number of individuals where growth disruption 

could be assessed is also given by archaeological site. 

 

 

 

 

TABLE 1.2 Total number (N) and percent (% given in brackets) of individuals with dentition and skeletal elements available for assessment by time period. Total number of individuals where growth disruption could 

be assessed is also given by time period. 

 

 

Time Period  

(Centuries) 
Archaeological Site Location Total N 

 Age-at-Death Assessment Assessment of Growth 

Disruption  Dentition  Skeletal Elements 

3rd BC –  4th AD Owslebury Hampshire, U.K. 23 
 

13 (57) 
 

16 (70) 11 (48) 

1st AD Piddington Northamptonshire, U.K. 24 
 

16 (67) 
 

22 (92) 15 (63) 

1st BC –  4th AD Barton Court Farm Oxfordshire, U.K. 52 
 

19 (37) 
 

48 (92) 19 (37) 

   99 
 

48 (48) 
 

86 (87) 45 (45) 

Time Period  

(Centuries) 
Historical Time Period Total N 

 Age-at-Death Assessment Assessment of Growth 

Disruption  Dentition  Skeletal Elements 

3rd BC - 1st AD Pre-Roman 16 
 

13 (81) 
 

13 (81) 11 (69) 

1st AD Transition 27 
 

16 (59) 
 

25 (93) 15 (56) 

1st AD – 3rd AD Roman 39 
 

14 (36) 
 

36 (92) 14 (36) 

3rd AD – 4th AD Saxon 2 
 

-  
 

2 (100) - 

Unknown Undated 15 
 

5 (33) 
 

10 (67) 5 (33) 

  99 
 

48 (48) 
 

86 (87) 45 (45) 
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TABLE 1.3 Total number (N) and percent (% given in brackets) of individuals by chronological age category, based on dental development age estimate, for each archaeological site.  

 

 

 

 

 

TABLE 1.4 Total number (N) and percent (% given in brackets) of individuals with skeletal elements (femur, humerus, tibia, pars basilaris) by archaeological site. 

 

  

Archaeological Site Total N 

 Sample Size (N (%))  by Chronological Age Category (Based on Dental Development) 

 Fetal Perinatal Infant Unknown 

Owslebury 23 
 

1 (4) 6 (26) 6 (26) 10 (43) 

Piddington 24 
 

- 3 (13) 13 (54) 8 (33) 

Barton Court Farm 52 
 

1 (2) 4 (8) 14 (27) 33 (63) 

 99 
 

2 (2) 13 (13) 33 (33) 51 (52) 

Archaeological Site Total N 

 Sample Size (N (%)) by Skeletal Element 

 Femur Humerus Tibia Pars Basilaris 

Owslebury 23 
 

11 (48) 8 (35) 6 (26) 15 (65) 

Piddington 24 
 

15 (63) 17 (71) 14 (58) 14 (58) 

Barton Court Farm 52 
 

37 (71) 33 (63) 28 (54) 19 (37) 

 99 
 

63 (64) 58 (59) 48 (48) 48 (48) 
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TABLE 1.5 Total number (N) and percent (% given in brackets) of individuals by chronological age category, based on dental development age estimates, for each historical time period. 

 

 

 

TABLE 1.6 Total number (N) and percent (% given in brackets) of individuals with skeletal elements (femur, humerus, tibia, pars basilaris) by time period. 

Historical Time Period  Total N 

Sample Size (N) by Chronological Age Category (Based on Dental Development) 

Fetal Perinatal Infant Unknown 

Pre-Roman 16 - 7 (44) 6 (38) 3 (19) 

Transition 27 - 3 (11) 13 (48) 11 (41) 

Roman 39 1 (3) 2 (5) 11 (28) 25 (64) 

Saxon 2 - - - 2 (100) 

Undated 15 1 (7) 1 (7) 3 (20) 10 (67) 

 99 2 (2) 13 (13) 33 (33) 51 (52) 

Historical Time Period  Total N 

Sample Size (N) by Skeletal Element 

Femur Humerus Tibia Pars Basilaris 

Pre-Roman 16 11 (69) 9 (56) 6 (38) 12 (75) 

Transition 27 17 (63) 18 (67) 15 (56) 16 (59) 

Roman 39 27 (69) 24 (62) 22 (56) 15 (38) 

Saxon 2 1 (50) 2 (100) - - 

Undated 15 7 (47) 5 (33) 5 (33) 5 (33) 

 99 63 (64) 58 (59) 48 (48) 48 (48) 
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Chronological age estimates generated have been plotted with the error level given as a range 

in accordance with the +/- gestational weeks given by Scheuer et al. (1980) for each skeletal 

element. All skeletal age-at-death estimations have been given in gestational weeks 

throughout (GWA). 

 

The pars basilaris has also been assessed to determine whether individuals were fetal, 

perinatal or infantile. This bone was utilised as it is often recovered archaeologically due to 

its robust nature (Redfield 1970; Scheuer & Maclaughlin-Black 1994), and because it is 

indicative of certain aging thresholds, with both its size and morphology often found to be 

correlated strongly with age (Redfield 1970; Scheuer & Maclaughlin-Black 1994; Lewis 

2007). Metric assessment of the pars basilaris was undertaken in accordance with the 

methods published by both Fazekas & Kósa (1978) and Schaefer et al. (2009), with sagittal 

length, maximum length and maximum width all recorded where possible. Measurements 

were directly compared against those given in Scheuer & Maclaughlin-Black (1994). Where 

a single age estimate has been used for the pars basilaris, an average age estimate has been 

derived from the three potential dimensions analysed.  

 

Direct measurements from the femur and humerus have also been plotted against clinical 

reference data and growth charts. Centiles are provided whereby the 50th centile represents 

the median measurement for that age group, with 50% of individuals falling above and below 

that point (Dodrill 2016). Therefore, the 25th centile is where 25% of individuals fall below 

this measurement, with the 75th centile being where 25% of individuals are above this 

measurement. It is suggested that those individuals who fall outside of the 10th and 90th 

percentiles are clinically significant (Kiserud et al. 2017). Indeed, those whose skeletal 

growth falls below the 10th percentile are often found to have negative birth outcomes 

(Kiserud et al. 2017). For prenatal (40 GWA or less) the clinical growth charts employed are 

those derived from the World Health Organisation, as given in Kiserud et al. (2017). For 

postnatal individuals, growth charts for the femur and humerus given by Maresh (1970) have 

been used as this data set has been found to represent normal, healthy growth, and be a 

suitable reference for archaeological individuals (Schillaci et al. 2012). 

 

Dental development is regarded as a more accurate method for estimating gestational age as it 

is less susceptible to external factors, and thus less easily disrupted (Garn et al. 1960; Hillson 
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2005; AlQahtani et al. 2010; Bonsall 2013). Tooth cusp development was recorded in 

accordance with Moorrees et al. (1963) and age-at-death estimates attributed using the dental 

development atlas developed by AlQahtani et al. (2010). If dental development was 

considered to fall between two age categories, the mid-point between those age groups was 

recorded, with the largest error/range level for either category afforded. All dental age-at-

death estimations have been given in gestational weeks throughout (GWA). 

 

Assessment of the presence and characteristics of pathological lesions was undertaken 

macroscopically. Due to pathological lesions being troublesome to identify and record within 

non-adult skeletal remains, this thesis employed a strategy whereby no particular ‘stress 

indicator’ or skeletal element was to be observed, instead considering the whole of the 

skeleton and recording any potential pathological change. Each pathological change/lesion 

was recorded descriptively by the author and documented photographically.  

 

Location was firstly documented as cranial or postcranial, then by specific skeletal element 

(e.g. right tibia, left frontal bone) and then by aspect (e.g. endocranial, ectocranial, medial, 

lateral). The location was documented in this very specific way so that pathological lesions 

could be recorded and located as precisely as possible. Type of pathology was recorded as 

either ‘NBF’ (New Bone Formation) or ‘Lytic’ for where bone destruction/resorption was 

evident. For NBF, type of bone formation was also recorded. Type of bone was recorded as 

either woven or lamellar bone, and also whether it was spiculated (Ortner 2003). Expansion 

of the metaphyses was also recorded when present, as well as any morphological changes 

(e.g. bowing to the limbs). As normal bone growth and pathological bone formation can 

currently not be distinguished between, any evidence of NBF was recorded, though a grading 

scheme was employed to differentiate between extensive NBF and that which was only 

minor. Grading systems were also established to consider severity of lytic lesions and 

metaphyseal expansion. For each type of pathology, a severity score of 1, 2 or 3 has been 

afforded, with 1 being the least severely affected and 3 being the most. Table 2. outlines the 

grading systems employed.



154 

 
 

 

TABLE 2. Grading systems for new bone formation, lytic lesions and metaphyseal expansion employed for assessment of pathological lesions within this study. 

 

 

 Grade 1 Grade 2 Grade 3 

New Bone 

Formation 

New bone formation, which may be woven or lamellar in 

appearance, will be considered to be grade 1 when the NBF is 

not clearly apparent and the margins are unable to be clearly 

defined from that of normal cortical bone. Grade 1 NBF is 

likely to be isolated in location, appearing minimally across the 

skeletal element. 

New bone formation recorded as being grade 2 will be clearly 

identifiable as a definable area of woven or lamellar bone 

formation. There will be clear boundaries/borders to the NBF and it 

will obviously differ from the normal cortical bone of the skeletal 

element. Grade 2 NBF is likely to be distinguishable as a clear layer 

of bone on top of the original cortical surface. It is likely that NBF 

listed within this category will be formed of a single layer though 

may extend over a large aspect area of the skeletal element. 

 

New bone formation recorded as being grade 3 will be the 

more severe type of NBF, with clear, multi-layered or thick 

NBF across a large area/aspect of the skeletal element. The 

NBF may be woven or lamellar in appearance and is clearly 

seen to be on top of the original cortical bone. 

Lytic Lesions Lytic lesions considered to be grade 1 likely consist primarily 

of macro-porosity. This porosity will be relatively minor, 

though may extend over a large skeletal area, and no clear 

destruction of the cortical bone will be apparent. 

Lytic lesions considered to be grade 2 will likely show evidence of 

some cortical destruction as well as porosity. However, cortical 

destruction will not be widespread throughout the skeletal element 

and is instead likely to be in isolated concentrations. 

 

Lytic lesions considered to be grade 3 will show extensive 

cortical destruction and/or porosity. Destruction will be 

widespread throughout the element. 

Metaphyseal 

Expansion 

Metaphyseal expansion considered to be grade 1 will likely 

consist of noticeably widened/flared metaphyses which do not 

appear proportional for the long bone diaphysis. However, 

despite this expansion no change to the metaphyseal margin or 

trabecular bone structure will be observed. 

Metaphyseal expansion will be considered to be grade 2 when 

involvement of the metaphyseal margin is apparent. This will result 

in atypical and misshapen metaphyseal margins often combined 

with a discernible brim/lip to the metaphysis. 

Metaphyseal expansion considered to be grade 3 will be the 

most severe and where involvement of the trabecular bone 

structure can be seen. Individuals displaying grade 3 

metaphyseal extension will likely have more porous 

metaphyses and the trabecular structure will appear clearly 

expanded and widened. Involvement of the metaphyseal 

margin may still be apparent though this may be lost due to 

the trabecular expansion. 
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Statistical analysis to assess growth disruption was assessed using T-test analyses. T-tests 

were employed to determine significant differences in skeletal metrics/age estimations when 

compared by dental age group. T-test analysis was undertaken in PAST (developed by 

Hammer, Harper & Ryan 2001). Significance was set to 0.05 (95% confidence), whereby p-

values below 0.05 were considered to be statistically significant. Prevalence rates were 

calculated for pathological lesions by documenting how many individuals out of the 99 

analysed had a particular skeletal element(s) present, and then out of those with the 

element(s), how many showed pathological changes. Totals have been given for numbers of 

individuals assessed, along with separate columns of totals for the number of a particular 

element able to be observed, and then the number found to be affected and showing 

pathological changes. Chi-squared tests for independence at 99.5 % confidence (p < 0.05) 

were also employed for pathological categories to observe whether there was any relationship 

between various pathological variables. Chi-squared analyses were employed for pathological 

lesions by time period (3 x 2) and dental age (7 x 2). Chi-square results are presented 

numerically, where p < 0.05 shows there is a significant relationship between the variables. 

Chi-Squared values (X²) have also been given. As the sample sizes were small, Fisher’s exact 

test was used to determine p values. 

 

For this study fetal individuals are those assessed to be 36 gestational weeks and under, 

perinates were classed as those aged 36-44 gestational weeks, and the term infant was used 

for those over 44 gestational weeks and up to six months of age (64 GWA), the upper age 

limit of this study.  

 

Tables 1.1 and 1.2 detail the individuals assessed by archaeological site and by time period, 

listing the number of individuals who had dental and/or skeletal elements available for 

analysis. Numbers of individuals available for assessment of growth disruption (where both 

dental and skeletal age estimates were recorded) have also been given. The number of 

individuals by age category, based on dental age assessment, have been given by site (Table 

1.3) and time period (Table 1.5). The number of individuals with various skeletal elements 

available for assessment (femur, humerus, tibia, pars basilaris) have also been given by site 

(Table 1.4) and time period (Table 1.6).  
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Results 

In total 99 fetal, perinatal and infantile individuals were analysed from across the three sites, 

48 of whom had dentition present for analysis, with 86 individuals having at least one skeletal 

element (femur, humerus, tibia or pars basilaris) available for assessment. As a result, 

growth disruption – comparison between dental and skeletal age-at-death estimations – could 

be assessed in 45 individuals.  

 

When the frequency of age-at-death estimates were considered for all 99 individuals by 

chronological age category (fetus, perinate, infant), dental and skeletal methods of assessment 

were found to yield very different interpretations regarding age (Table 3.). Analysis of dental 

development revealed that the majority of individuals (N=33) were aged to be infants (> 44 

GWA). Conversely, assessment of long bone diaphyseal length suggested that almost all of 

the individuals were perinatal (36-44 GWA). Assessment of long bone length revealed no 

individuals skeletally determined to be infantile (> 44GWA), with only one individual 

determined to be fetal in assessment of both the humerus and tibia. Analysis of the pars 

basilaris again suggested that the majority of individuals were perinatal, though four 

individuals were aged to be infants.  

 

TABLE 3. Frequency of individuals (N) by chronological age category (fetus, perinate, 

infant) for dental and skeletal methods of age estimation. 

 

 

Individuals who could be ascribed to a particular time period (N=84) were considered by 

chronological age category (Fig. 2). This pattern, whereby dentition typically generated older 

age estimates in comparison to skeletal assessment, is clearly observable in the pre-Roman, 

Transition and Roman samples. Both Transition and Roman samples have many more 

 Dentition Femur Humerus Tibia Pars Basilaris 

Fetus 2 0 1 1 0 

Perinate 13 63 57 47 44 

Infant 33 0 0 0 4 

Unknown 51 36 41 51 51 
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individuals dentally aged to be infants than perinates. Three Transition individuals are 

dentally aged as perinates, compared to 13 individuals determined to be infantile, whilst two 

Roman individuals are perinatal, and 11 infantile based on assessment of dental development. 

Only the pre-Roman individuals show an alternating trend, whereby more individuals (N=7) 

are dentally determined to be perinatal rather than infantile (N=6). In comparison, 

disregarding the individuals listed as ‘unknown’ who did not have particular skeletal 

elements available for assessment, skeletal age typically determines individuals to be 

perinatal, rather than fetal or infantile. Only the pars basilaris generates skeletal age 

estimates over 44 GWA.  

 

Assessment of the frequency of age-at-death estimates (in GWA), for both dental 

development and metric assessment of varying skeletal elements (Fig. 3), further 

demonstrates that skeletal remains typically generate younger age estimates than assessment 

of the dentition. For all three of the selected long bones, age-at-death estimations were found 

to peak between 37 and 40 GWA. In particular, the femora have a very narrow range of age 

estimations, (36 to 43 GWA), whereas the tibiae have the broadest (32 to 44 GWA). The pars 

basilaris, despite the majority of age estimations also clustering around 39-40 GWA, is 

identified as the skeletal element with the widest range of age-at-death estimates (38 to 56 

GWA).  

 

Of those with dentition (N=48), the average dental age-at-death estimate is 46 GWA. From 

assessment of diaphyseal length, the average age-at-death estimate for those with femora 

(N=63) is 39 GWA; the average age estimate from tibial diaphyseal length (N=48) is 40 

GWA; and of those with humeri (N=58) the average age-at-death estimate is 39 GWA. 

Therefore, between dental and long bone age estimates there is at least a six-week age 

difference on average. The average age-at-death estimation of the pars basilaris is 41 GWA. 

However, these averages do not account for whether the dental and skeletal elements 

analysed derive from different individuals. Therefore, to account for this, individuals have 

been assessed discretely. 
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Figure 2. Number of individuals determined to be fetal, perinatal, infantile or unknown by time period (pre-Roman, Transition, Roman or Saxon). Numbers of individuals for each chronological age category are based 

on assessment of femoral, humeral, tibial and pars basilaris metric assessment, as well as by assessment of dental development. 
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Figure 3. Number of individuals by gestational week based on assessment of femoral, humeral, tibial and pars basilaris metrics, as well as assessment of dental development. 
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Of the 48 individuals with dentition, 33 also have a femoral age-at-death estimate, with 27 

individuals having a tibial age estimate, and 35 individuals a humeral age-at-death estimate. 

Therefore, a total of 39 individuals have at least one long bone element where diaphyseal 

length can be assessed for age estimation. This means that for these 39 individuals dental and 

skeletal age-at-death estimates can be directly compared. Figure 4. plots these 39 individuals, 

in ascending order according to their dental age estimates, with their respective femoral, 

humeral and tibial age estimates also plotted where possible. 

 

In total, four individuals have long bone length age estimates which plot above dental age: 

one individual dentally aged to be 34 GWA (BCF 400), one individual dentally aged to be 38 

GWA (BCF 860), and two individuals dentally aged to be 40 GWA (OW 43 and BCF 913). 

The remaining 35 individuals have long bone length age estimates that are younger than 

dental development. The majority of these long bone length age estimates fall within the error 

range of the corresponding dental age estimates, though most are towards the tail end. For the 

older infants (52 GWA and older), diaphyseal length age estimates are younger than dental 

ages and error ranges in all but one individual (BCF 905i). However, where error ranges for 

skeletal estimates are also considered, only three individuals have dental and skeletal age 

estimates and ranges which do not correspond or overlay. All three of these individuals are 

dentally aged to be 58 GWA and are from Barton Court Farm. There is one individual from 

the pre-Roman period, one Roman individual, and one undated individual. 

 

Table 4 displays the average differences, in gestational weeks, between dental age-at-death 

estimates and those generated from femoral, humeral and tibial diaphyseal length 

measurements. To obtain accurate differences between dental and skeletal age estimates, only 

individuals who had both elements available for assessment were used to calculate these 

averages. Differences have been given for each of the long bone elements, grouped by both 

time period and dental age.  Results suggest that individuals dating to the Transition and 

Roman periods have marginally greater differences on average between dental and skeletal 

age estimates than those from the pre-Roman period. Age-at-death estimates derived from the 

Roman femora are particularly young when compared to dental age-at-death estimates. The 

average difference between skeletal and dental age-at-death can also be seen to substantially 

increase as gestational age also increases. 
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Figure 4. Each individual with a dental age-at-death estimate and their corresponding skeletal age-at-death estimates derived from femoral, humeral and/or tibial diaphyseal length. Error bars have been given for 

each age estimate in accordance with error ranges provided by AlQahtani et al. (2010) for dental age estimates and by Sheuer et al. (1980) for diaphyseal length estimates. Individuals have been plotted in ascending 

order according to dental age-at-death estimate.  
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TABLE 4. Average differences (in gestational weeks) between dental and femoral, humeral 

and tibial age-at-death estimations. These differences have been categorised by time period 

and by dental age estimation. Number of individuals (N) is given for each group considered. 

Results in italics are those where only one individual had both dental and the particular 

skeletal element available for age-at-death assessment.  

 

 

T-test statistical assessment was undertaken to determine which, if any, skeletal age-at-death 

estimates were significantly different from dental age-at-death estimates. Skeletal age 

estimates derived from assessment of diaphyseal length for each skeletal element (femur, 

humerus and tibia) were compared by dental age group to dental age (in gestational weeks). 

Summary statistics (mean, 95% confidence intervals and significance (where p < 0.05)) were 

established for each element by age group (Table 5.). Only dental age groups where more 

than one skeletal age estimate was present have been tested. Results show that for all skeletal 

elements, average skeletal age follows the trend of increasing with dental age. Statistically 

 
Dental - Femur Dental - Humerus Dental - Tibia 

N GWA N GWA N GWA 

Overall 33 7 35 7 27 6 

Pre-Roman 10 5 9 5 6 4 

Transition 9 7 12 7 8 6 

Roman 10 8 11 7 10 6 

Undated 4 9 3 8 3 9 

34 GWA 1 -3 1 -3 1 -4 

38 GWA 3 0 3 1 1 -1 

40 GWA 5 2 6 1 4 1 

42 GWA 1 3 - - 1 3 

43 GWA 1 3 1 2 1 3 

46 GWA 15 7 16 7 14 6 

52 GWA 3 13 4 13 2 13 

58 GWA 4 17 4 16 3 17 
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significant differences have been identified between dental and skeletal age-at-death 

estimations, primarily for the dental age groups of 46 GWA and older.  

 

 

TABLE 5. Summary statistics and the results of t-test analyses considering evidence of 

significant differences between dental and skeletal age-at-death estimates. 

 

 

To determine the significance and potential health implications for evidence of growth 

disruption, direct comparison of femoral and humeral diaphyseal length measurements (mm) 

against clinical reference data (WHO: Kiserud et al. 2017 and Maresh 1970) was undertaken 

(Fig. 5.1; 5.2). This was to eliminate any error in converting skeletal diaphyseal length 

measurements to chronological age estimates, and observe whether any individuals had 

measurements which fall into, or below, clinically significant centiles (10th and 90th centiles). 

 
Dental 

Age 

 

Mean Skeletal 

Age 

 

T-test 

Lower 

95% 

Conf. Int. 

Higher 

95% 

Conf. Int. 

P SIG 

F
e
m

u
r
 

38 37.7 -0.69 35.8 39.6 0.56 N 

40 38.2 -2.54 36.1 40.2 0.06 N 

46 39.0 -26.20 38.4 39.6 2.71E-13 Y 

52 38.6 -17.39 35.3 41.9 0.003 Y 

58 40.8 -19.84 38.0 43.6 0.0002 Y 

H
u

m
e
r
u

s 

38 37.1 -0.88 32.7 41.5 0.47 N 

40 39 -1.18 36.8 41.2 0.29 N 

46 39.2 -23.21 38.6 49.8 3.62E-13 Y 

52 39.0 -28.38 37.5 40.4 9.60E-05 Y 

58 41.4 -20.72 38.9 43.9 0.0002 Y 

T
ib

ia
 

40 38.8 -1.04 35.2 42.4 0.37 N 

46 39.6 -20.53 38.9 40.2 2.73E-11 Y 

52 39.1 -9.59 21.9 56.2 0.07 N 

58 42.2 -16.56 38.1 46.3 0.004 Y 
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Only individuals who had dental age estimates could be considered against these growth 

charts, where skeletal measurements (mm) were plotted by dental age (GWA).  

 

Assessment of femoral measurements against clinical reference data demonstrates that almost 

all individuals who are dentally considered to be fetal and perinatal (< 44 GWA) show no 

evidence of growth disruption. Conversely, two individuals (BCF 400 and OW 43) have 

femoral diaphyseal lengths that are above the 90th percentile for growth according to WHO 

standards. A further individual (BCF 860) is also shown to have femoral lengths which align 

very closely with the 90th growth percentile. Only one individual (PID 2) appears to show 

significant growth disruption, falling below the 10th centile. When considering these results 

against age estimates generated from these measurements (Fig. 4), it can be seen the age 

estimates generated for PID 2 are much younger than the dental estimate. However, due to 

the large error ranges of the age estimation methods, growth disruption could not be 

definitively suggested for this individual considering these age estimates alone. Therefore, by 

directly comparing diaphyseal lengths to clinical data, this individual can be confirmed to 

show evidence of significant, and likely detrimental, growth disruption. For individuals 

dentally considered to be infants (> 44 GWA), the majority fall below the 10th growth centile 

as given by Maresh (1970); all individuals aged 52 and 58 GWA have femoral measurements 

which are below the 10th growth centile, whilst those aged 46 GWA show a mixed pattern. In 

total, ten individuals aged 46 GWA (listed on Fig. 5.1) have femoral measurements below the 

10th growth centile. Three further individuals aged 46 GWA have femoral measurements 

which cluster around the 10th growth centile for male individuals, but which still fall below 

the 10th growth centile for females. Only one individual aged 46 GWA (PID 5) has a femoral 

measurement which is above the 10th growth centile for either male or female individuals. 

Consideration of femoral diaphyseal length measurements against clinical data suggests 

infant individuals (those older than 44 GWA) appear to experience greater levels of growth 

disruption compared to perinatal and fetal individuals.  

 

Consideration of humeral diaphyseal length measurements has revealed a similar pattern, 

whereby minimal growth disruption is identified in fetal and perinatal individuals (those 

younger than 44 GWA), whereas the majority of infant individuals (> 44 GWA) show 

evidence of growth disruption, falling below the 10th growth centile. Only one fetal individual 

(OW 32), aged to be 38 GWA, shows evidence of clinically significant growth disruption. 
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Figure 5.1 Comparison of individuals with femoral diaphyseal length measurements against clinical reference data/growth charts (WHO: Kiserud et al. 2017; Maresh 1970). Femoral measurements taken from the 

archaeological individuals have been plotted in accordance with their dental age-at-death estimates in GWA. 
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Figure 5.2 Comparison of individuals with humeral diaphyseal length measurements against clinical reference data/growth charts (WHO: Kiserud et al. 2017; Maresh 1970). Humeral measurements taken from the 

archaeological individuals have been plotted in accordance with their dental age-at-death estimates in GWA. 
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Again, two individuals (BCF 913 and OW 43), both dentally aged to be 40 GWA, show 

evidence of growth beyond the 90th percentile. The majority of the fetal individuals can be 

seen to have humeral measurements which fall between the 10th and 90th growth percentiles. 

For the infant individuals the humeral diaphyseal length, like that of the femur, can be seen to 

consistently fall below the 10th centile for individuals aged 52 and 58 GWA. However, these 

humeral measurements are closer to the 10th centile than those of the corresponding femoral 

measurements. This may indicate that the humerus is seemingly reflecting less growth 

disruption. This is corroborated by those individuals aged to be 46 GWA where, although six 

individuals still fall below the 10th growth centile, more individuals have humeral lengths 

which fall between the 50th and 10th growth centiles (both male and female) in comparison to 

femoral diaphyseal lengths. For both femoral and humeral diaphyseal lengths no infant 

individual has a measurement which falls above the 50th growth percentile. It must also be 

noted that where bilateral pairs of elements were available for assessment, their 

measurements are often coupled when plotted.     

 

True Prevalence Rates (TPR) of pathological lesions observed on both the cranial and 

postcranial elements are presented in Table 6.1. Individuals were found to have high 

prevalence rates of cranial pathological lesions, with over 50% of individuals affected from 

all periods. The TPR for the transitional period individuals is exceptionally high for both 

cranial and postcranial lesions, while the Roman individuals also have high levels of 

pathology. In total, 165 skeletal elements within the individuals assessed had evidence of 

NBF, whilst only 5 elements showed evidence of lytic lesions. Of the NBF identified, 89 

elements consisted of lamellar bone, 76 of woven and one of spiculated. Additionally, 

regarding severity, the majority of elements (N=96) were found to be grade two, whilst 71 

elements were grade one. Only three skeletal elements were recorded as being grade three. 

Two skeletal elements showed evidence of metaphyseal expansion, with one pre-Roman 

individual and one Roman individual affected. Eighteen skeletal elements showed evidence 

of morphological changes, again with the highest prevalence rate being amongst Transition 

individuals. 

 

When prevalence rates of pathological lesions are considered by skeletal element (frontal 

bone, parietal bone, occipital bone, humerus, femur, tibia) the frontal bone in transitional 

individuals can be seen to have the highest rate of lesions from the cranial elements (Table 
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6.2). The transitional individuals also have the highest prevalence rates of postcranial 

pathology, with 55% of individuals showing changes to their tibiae. In total, 83% of 

individuals observed show pathological changes to the frontal bone, the highest for the 

cranial elements. Comparatively, 42% of individuals observed showed pathological changes 

to their tibiae. When the type of pathology is considered by affected skeletal elements, 96-

97% of cranial pathologies were found to be NBF, with 60-100% of lesions found to be NBF 

in the postcranial affected elements.  

 

Assessment of NBF by affected skeletal elements for both type (woven, lamellar, spiculated) 

and severity (Grade 1, 2, or 3) is presented in Table 6.3. For both the frontal bone and parietal 

bone all NBF lesions are lamellar, whereas the occipital bone typically has more NBF lesions 

which are woven in appearance. For the postcranial elements the majority of NBF lesions are 

woven bone. When divided by skeletal element, typically most NBF lesions were found to 

have a severity of grade two.  

 

True prevalence rates of pathological lesions were also considered for each time period by 

dental age (Table 6.4). However, small sample sizes of individuals when broken down by 

dental age means all of the age categories have high percentage rates of pathological lesions.   

 

Chi-squared statistical assessment of pathological lesions by skeletal element (Table 6.5) 

(where p < 0.05) revealed significant associations between femoral and tibial pathology by 

time period (X²=11.348 for both), as well as statically significant association between 

femoral pathology and dental age (X²=13.015). Pre-Roman individuals were found to have 

significantly more tibial pathology than Transition individuals (p = 0.015) when using 

Bonferroni’s adjusted p value. Additionally, Transition individuals have significantly more 

femoral pathology than Roman individuals (p = 0.004).  
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TABLE 6.1 Number and percentage of individuals observed with cranial and postcranial pathology given by time period. Total number of skeletal elements by type of pathology and severity have also been given by 

time period. 

 

  

Table 6.2 Number and percentage of individuals observed with pathology by skeletal element for each time period. Of those with pathology, the number and percentage of individuals who had lesions which were NBF 

have been given. 

 

Time Period N 

Postcranial Elements Cranial Elements  

NBF Lytic 
Metaphyseal  

Expansion 

Morphological  

Change 
Woven Lamellar Spiculated 

Severity 

Observed Affected  N (%) Observed Affected  N (%)  1 2 3 

Pre-Roman 16 13 3 (23) 14 8 (57) 
 

12 4 1 4 2 10 0 2 14 0 

Transition 27 24 17 (71) 26 24 (92) 
 

83 0 1 8 46 37 1 36 45 2 

Roman 39 35 14 (40) 29 22 (76) 
 

70 1 0 6 28 42 0 33 37 1 

      
 

165 5 2 18 76 89 1 71 96 3 

 

Frontal Bone Parietal Bone Occipital Bone  Humerus Femur Tibia 

 
Obs. 

Affected 

N (%) 

NBF 

N (%) 
 Obs. 

Affected 

N (%) 

NBF 

N (%) 
 Obs. 

Affected 

N (%) 

NBF 

N (%) 
 Obs. 

Affected 

N (%) 

NBF 

N (%) 
 Ob. 

Affected 

N (%) 

NBF 

N (%) 
 Ob. 

Affected 

N (%) 

NBF 

N (%) 

P
re

-R
o
m

an
  

7 
5  

(71) 

4  

(80) 

 

4 
3  

(75) 

2  

(67) 

 

13 
3  

(23) 

2  

(67) 

 

12 0 - 

 

11 
1  

(9) 
0 

 

9 
1  

(11) 

1  

(100) 

T
ra

n
si

ti
o
n

  

17 
15 

(88) 

15  

(100) 

 

18 
13  

(72) 

13  

(100) 

 

21 
13  

(62) 

13  

(100) 

 

21 
3  

(14) 

2  

(67) 

 

21 
10  

(48) 

9  

(90) 

 

20 
11  

(55) 

11  

(100) 

R
o
m
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17 
14  

(82) 

14  

(100) 

 

16 
11  

(69) 

11  

(100) 

 

24 
11  

(46) 

11  

(100) 

 

27 
2  

(7) 

1  

(50) 

 

29 
3  

(10) 

3  

(100) 

 

23 
10  

(43) 

10  

(100) 

T
o
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l 

 

41 
34  

(83) 

33 

(97) 

 

38 
27 

(71) 

26 

(96) 

 

58 
27 

(47) 

26  

(96) 

 

60 
5 

(8) 

3 

(60) 

 

61 
14  

(23) 

12  

(86) 

 

52 
22  

(42) 

22 

(100) 
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TABLE 6.3 Of those individuals recorded with pathological NBF (see Table 6.2), the number of individuals with woven and/or lamellar lesions has been given for each skeletal element by time period. The frequency of 

the severity (1, 2, or 3) of the woven and/or lamellar lesions has also been recorded. 
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TABLE 6.4 Number and percentage of individuals observed with cranial and postcranial pathology given by dental age. 

 

 

 

TABLE 6.5 Results of chi-squared analysis (X²) of pathological lesions by both time period and dental age for various skeletal elements. P results highlighted in bold are those found to be statistically significant. 

Dental  

Age 

 
Pre-Roman  

 
Transition 

 
Roman 

 
Postcranial Cranial 

 
Postcranial Cranial 

 
Postcranial Cranial 

 
Obs. Affected (N/%) Obs. Affected (N/%) 

 
Obs. Affected (N/%) Obs. Affected (N/%) 

 
Obs. Affected (N/%) Obs. Affected (N/%) 

34 
 

- - - - 
 

- - - - 
 

1 1 (100) 1 1 (100) 

38 
 

2 1 (50) 2 2 (100) 
 

- - - - 
 

1 1 (100) 1 1 (100) 

40 
 

2 1 (50) 3 2 (67) 
 

2 2 (100) 2 2 (100) 
 

1 0 1 1 (100) 

42 
 

1 1 (100) 1 1 (100) 
 

- - - - 
 

- - - - 

43 
 

        
 

1 1 (100) 1 1 (100) 
 

- - - - 

46 
 

4 0 4 2 (50) 
 

8 7 (88) 10 10 (100) 
 

5 3 (60) 5 4 (80) 

52 
 

        
 

1 1 (100) 2 2 (100) 
 

5 1 (20) 4 2 (50) 

58 
 

1 0 2 1 (50) 
 

1 0 1 1 (100) 
 

1 1 (100) 1 1 (100) 

 Frontal Bone Parietal Bone Occipital Bone Humerus Femur Tibia 

 X² d.f. p X² d.f. p X² d.f. p X² d.f. p X² d.f. p X² d.f. p 

Time Period 3.395 2 0.183 4.682 2 0.96 4.682 2 0.96 2.288 2 0.218 11.348 2 0.003 11.348 2 0.003 

Dental Age 9.199 7 0.149 10.478 7 0.53 7.974 7 0.179 16.846 7 0.223 13.015 7 0.04 10.761 7 0.103 
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Discussion  

To understand results of this analysis and their implications, the interplay between a 

multitude of biological, pathological and contextual factors must be acknowledged. Fetal, 

perinatal and infant individuals are the most vulnerable to a variety of environmental 

onslaughts, and their growth is hence a reflection of their experience in the intrauterine 

environment (Winick et al. 1972; Bogin 2001; Lejarraga 2002; Oestreich 2008; Kuzawa & 

Quinn 2009; Kuzawa & Sweet 2009; Mays et al. 2009; Dancause et al. 2012). During the in 

utero period a constant interaction between the fetus, placenta and mother is taking place 

(Harding & Johnston 1995). Consequently, fetal development is heavily reliant on the 

maternal ability to provide adequate nutrition and protection in utero from a variety of 

harmful environmental stressors (Bateson et al. 2004; Barker et al. 2012; Said-Mohamed et 

al. 2018). In fact, both mother and placenta typically act as barriers and regulators from 

external stressors (Barker 2012), prioritising the wellbeing of the developing fetus, and thus 

ensuring its optimal growth and development (Gowland 2015; Said-Mohamed et al. 2018). 

However, maternal exposure to environmental health stresses results in the ‘giving’ potential 

of the mother being limited (Bateson et al. 2004). This may interrupt the interaction between 

fetus, placenta and mother, leading to a host of detrimental birth and life course outcomes 

(e.g. anaemia, maternal haemorrhage and IUGR) (Wu et al. 2012). IUGR can be a result of a 

limited nutrient and/or oxygen supply in utero, whilst spontaneous abortion or stillbirth can 

be a result of maternal illness, infection, chronic disease and extreme malnutrition 

(Goldenberg & Thompson 2003; Lewis 2007). Prenatal stress exposure has also been found 

to correlate with increased frailty and vulnerability of the individual in postnatal life, 

associated with the subsequent changes in immune function (McDade 2005; Boersma & 

Tamashiro 2015). The timing of this maternal exposure to stress has been considered to be 

vital in the long term implications for offspring health and growth. If subjected to stressors 

prenatally, the most precarious phase of life, the offspring is likely to exhibit physiological, 

and possible biological, alterations as a result (Bateson et al. 2004; Boersma & Tamashiro 

2015). Consequently, a mother’s disease status, particularly during pregnancy, plays a crucial 

role in determining the health of her child, both in utero and beyond (Gowland 2015). 

 

Birth is one of the most stressful biological events in our life course and heralds a multitude 

of biological, physical and environmental changes (Bogin 2001; Lewis 2017a). The offspring 

is entering a world full of pathogens (McDade 2005; Lewis 2017a), and although remains 
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heavily reliant on the mother, there is a marked reduction in maternal ability to buffer against 

environmental conditions. Passive immunity from diseases and/or infections, as well as vital 

nutrients, are instead transferred via lactation (breast milk) (Bogin 2002; Eisenberg et al. 

2017; Lewis 2017b). Consequently, multiple stressors could cause a detrimental postnatal 

environment: a reduced or non-existent food/nutrient supply via the mother, exposure to 

disease and infection, or other social and cultural factors. With postnatal nutrition being vital 

to healthy growth and development, death of the mother in childbirth, or inability to breast 

feed could both lead to detrimental growth and health outcomes for the child (Fujita et al. 

2017).  

 

Age-at-death assessment identified a clear difference between the demographic profiles when 

considering skeletal versus dental age estimation methodologies (See Table 3.). Dental age-

at-death demonstrated a much broader age range, despite less individuals having dentition 

available for assessment. Skeletal methods for determining age-at-death have long been 

criticised. In fact, the linear regression method has been strongly critiqued, suggested to age 

individuals in a way which mimics the demographic make-up of the sample used to create the 

regression models (Gowland & Chamberlain 2002; Lewis & Gowland 2007). This method 

has previously been found to cluster individuals around the perinatal period and 

interpretations of deliberate disposal and killing (infanticide) have been supported from such 

findings (e.g. Mays 1993; Mays & Faerman 2001; Mays & Eyers 2011).  

 

Many studies have considered the contextual implications of infant burials (e.g. Scott 1999, 

Pearce 2001, Gowland 2001, Moore 2009), particularly on rural sites, where high numbers of 

fetal, perinatal and infant burials tend to be uncovered (Hodson 2017). Due to the custom of 

burying infants within habitation buildings, under floors and in ditches, some authors have 

interpreted these findings as evidence of infanticide and deviant burial (Scott 1989; Moore 

2009; e.g. Heneage Cocks 1921; Mays & Faerman 2001; Mays & Eyers 2011). Ethnographic 

and historical studies of infanticide have suggested that reasons for such putative killing 

include ‘population control, illegitimacy, inability of the mother to care for the child, greed 

for power or money, superstition, congenital defects, and ritual sacrifice’ (Resnick 1970; also 

Rawson 2003; Bonsall 2013). Age-at-death estimations, using skeletal elements, have 

supported these interpretations, with samples found to show peaks in mortality around 40 

GWA (Bonsall 2013; e.g. Smith & Kahila 1992; Mays 1993; Mays & Faerman 2001). 

However, Gowland and Chamberlain (2002) have demonstrated that assessment of age-at-
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death using skeletal regression equations can strongly bias interpretations, with results 

mimicking the age-at-death profile of the reference sample. In addition, contemporary 

interpretations of infanticide have failed to consider the pathological data supporting 

evidence of disrupted health, which is clearly a major consequence of many perinatal, infant 

and fetal deaths. 

 

Results from this study supports conclusions rejecting infanticide, demonstrating that age-at-

death assessment from skeletal elements alone cannot be utilised to substantiate 

interpretations of infanticide. Indeed, for individuals within this study, dental age-at-death 

was found to range from 34 to 58 GWA. Conversely, long bone age estimates suggest no 

individuals assessed are over 44 GWA. As dental estimates are considered much more robust 

and accurate (Moorrees et al. 1963; Gustafson & Koch 1974; Bang 1989; Hoppa & 

Fitzgerald 1999; Bolaños et al. 2000; Humphrey 2000; Liversidge & Molleson 2004; Hillson 

2005; AlQahtani et al. 2014; Satterlee Blake 2018), it seems pertinent that many more 

individuals are dentally suggested to be infantile (over 44 GWA) than perinatal or fetal. This 

suggests that many of the individuals analysed were not killed at birth, but instead likely 

survived for some days or weeks in the postnatal environment. Furthermore, detailed 

assessment of pathological changes has shown that individuals from all periods have changes 

consistent with a reduced intra- and extrauterine environment. Therefore, it is suggested that 

these individuals perished as a result of the harmful conditions to which they were exposed, 

rather than as a consequence of deliberate disposal.  

 

Results of dental age assessment has clearly demonstrated that both pre- and postnatal 

individuals were at risk of growth and health disruption, signifying that both endogenous and 

exogenous factors were influential in affecting growth and health outcomes. Additionally, 

this suggests that maternal health and wellbeing was often reduced during pregnancy, as well 

as postnatally. Given that birth and the transition to this new environment signals the change 

from a highly regulated to a highly pathogen-loaded environment (McDade 2005; Lewis 

2017a), it is not unexpected that more individuals have been found to be postnatal perinates 

and infants, than prenatal fetuses and perinates. Subsequent inability of the mother, through 

poor health, to transfer nutrients and immunity via lactation to the offspring would only 

predispose the infant to further environmental hazards. Individuals from all three time periods 

show both intrauterine and extrauterine growth disruption. However, the severity of postnatal 

growth disruption, with a peak in mortality seen at 46 GWA based on dental ages, may 
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indicate particularly adverse exogenous environmental conditions were predominantly 

accountable for many of the physiological changes identified (Lewis & Gowland 2007).  

 

For those dentally aged to be 37 gestational weeks or less, it may be considered that they 

were premature (Tocheri et al. 2005). Thus, given the young age estimates of these 

individuals, it may be considered that these individuals represent those that were premature, 

still born or died shortly after birth. Furthermore, the limited growth disruption identified 

within the skeletal remains of these individuals may suggest that they did not survive long 

enough for observable physiological changes to occur. Individuals born prematurely also face 

significantly increased risks of mortality and disability (Tocheri et al. 2005).  

 

To further counter the skewed analysis that sole consideration of skeletal age-at-death 

produces, this study considers skeletal and dental age estimates in unison for evidence of 

growth disruption. When individuals with both of these estimations were considered, the 

overall average difference between dental and skeletal age estimates was approximately six to 

seven gestational weeks (Table 4.). However, substantially greater differences were observed 

when individuals were categorised by time period or dental age. Roman individuals were 

found to show the greatest average difference between dental and long bone age estimates, 

followed by transitional individuals. Furthermore, those dentally aged to be 46, 52 and 58 

GWA were found to have the greatest differences in dental and skeletal ages. From 46 GWA, 

skeletal age-at-death estimates become statistically significantly younger than dental 

development (Table 5.). Comparative assessment of diaphyseal length metrics to published 

data for fetal, perinatal and infant individuals (Fig. 5 and Fig. 6) corroborates this finding, 

showing that intrauterine growth appears relatively ‘normal’, where as extrauterine 

diaphyseal length measurements fall substantially below these reference data sets, suggestive 

of a sub-optimal postnatal environment. Furthermore, multiple individuals were shown to fall 

within or below the 10th growth percentile, indicating severely disrupted growth. 

Consequently, adverse birth outcomes and subsequent reduction in health and growth status 

are likely for these individuals.  

 

In total, eight individuals demonstrated a minimum of a 12-week difference between dental 

and skeletal age-at-death estimates. All of these individuals were dentally aged to be either 52 

or 58 GWA. Of those individuals, four are Roman, two are transitional, with one pre-Roman 

and undated individual also. However, when error ranges for both dental and skeletal 
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methods are considered, only three individuals have age estimates and ranges which are 

found not to correspond. Individual 103 from Barton Court Farm shows the largest 

difference, with an age difference of 19.1 GWA between dental and femoral estimates (Fig. 

4). 

 

Of those found to be over 44 GWA (N=27), nine individuals are transitional and ten are 

Roman, whilst only 5 individuals are from the pre-Roman group and three are undated. 

Therefore, both the transitional and Roman periods have more individuals suggested to be 

infants and thus, survive into the postnatal period. However, when considered by dental age 

(Table 1.5) pre-Roman individuals have a similar frequency between perinatal and infant 

individuals, compared to the transitional and Roman periods which have more individuals 

aged to be infants. Therefore, it may be that the greater number of older individuals recovered 

from the transitional and Roman contexts is simply the product of the archaeological sample, 

with a bias in regards to both retrieval and identification, as well as the potential for selective 

funerary practices. However, given that the pre-Roman individuals actually have the highest 

frequency of individuals with dentition (Table 1.2), it would appear that these results are 

fairly representative of the whole pre-Roman sample, and may substantiate suggestions that 

postnatal mortality (after one month of age) was particularly high in transitional and Roman 

samples. This again suggests that postpartum exogenous factors were likely significantly 

impacting on the health and wellbeing of individuals categorised within the transitional and 

Roman time periods.  

 

Findings of growth disruption show some relationship to evidence of pathological lesions, 

with a greater prevalence of both growth and health disruption in the transitional and Roman 

samples (Table 6.1 and Table 6.2). Statistical assessment of pathological lesions by time 

period shows that there is a statistically significant association between femoral and tibial 

pathology by time period (Table 6.5). Furthermore, given that both Transition and Roman 

individuals had much higher numbers and percentages of individuals with pathological 

lesions to these elements (Table 6.2) it suggests that there is an increase in health disruption 

within these periods. Despite small sample sizes, prevalence of pathological lesions also 

suggests that both pre- and postnatal health was adversely affected (Table. 5.4), with 

elements from all dental age categories showing pathological changes.  
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Non-adult pathological lesions are still a topic of much debate, particularly in fetal, perinatal 

and infantile remains (Ortner 2003). New bone formation, most typically identified and 

recorded as a pathological response, is also indicative of normal somatic growth where new 

bone formation is laid down both longitudinally and appositionally (Redfern 2007; Lewis 

2017a). Discerning between normal and abnormal bone formation often relies on 

consideration of location, severity and thickness (e.g. Rana et al. 2009; Kwon et al. 2002). 

New bone formation is typically considered to be part of the initial physiological response to 

stress (Armelagos et al. 1991; Goodman & Martin 2002; DeWitte 2014; Larsen 2015) and 

rapidity of bone turnover in these individuals is considered to result in health insults being 

quickly reflected on their remains (Kwon et al. 2002; Lewis 2017a). However, the non-

specificity of new bone formation, as a response to stress, means precise pathogenic/disease 

processes are rarely discernible (DeWitte 2014). The diagnosis of specific conditions in fetal, 

perinatal and infant skeletons is complex because they can only respond in a limited number 

of ways to a multitude of conditions (Ortner 2003; Gowland 2004; Redfern 2007). This 

means that multiple stressors or insults can lead to identical changes within the skeleton 

(Bush & Zvelebil 1991). Furthermore, if a disease is acute, or system specific (i.e. only 

affects soft tissue structures) no discernible changes will be observable to the skeleton, plus 

an individual may die before skeletal changes develop, or recover from insults experienced 

much earlier in life (Bush & Zvelebil 1991; Cardoso 2007). Individual responses to 

disease/infection also vary during pregnancy, and exposure to detrimental environmental 

insults is likely to result in a variety of outcomes for both mother and offspring (Goldenberg 

& Thompson 2003; Redfern 2007). Thus, the pathological lesions identified on skeletal 

remains ‘…represent a small percentage of the total disease load in that population’ 

(Redfern 2003).  

 

By considering lesions by severity, this investigation has attempted to discern that 

pathological changes can be definitively identified on fetal, perinatal and infant remains. In 

total, 71 skeletal elements were found to have a severity of 1, with 96 having a severity of 2 

and only three elements having a severity of 3 (Table 6.1). For all time periods a severity 2 

was found to be most common, followed by severity 1. Of the three skeletal elements with a 

pathology of severity 3, all were from either the Transition or Roman periods. Even if 

pathological changes scored to be of severity 1 are discounted - as elements within this 

category are most likely to be an assimilation of pathological and normal bone changes – 

pathological changes (of severity 2 or 3) are still highly prevalent throughout all of the time 
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periods. Furthermore, transitional individuals would still be those found to show the highest 

percentage of pathological changes, followed by Roman individuals.  

 

Only two individuals, those with skeletal elements of severity 3, appear to show multiple 

episodes of exposure to stress and responses by the body and skeleton as a result (PID 31B 

and BCF 1256). This layering of bone formation substantiates the assumption that these 

lesions are pathological, as normal growth results in a single layer of bone formation 

(Shopfner 1966; Lewis 2007; Weston 2012). A repeated ability by these individuals to 

overcome, heal and survive stressful events and conditions is consequently insinuated. As 

transitional individuals from the 1st Century A.D. have the highest prevalence rates of 

pathologies, with the pre-Roman individuals the lowest (Table 6.1), it may indicate that those 

from the period of transition experienced the most ‘stressful’ pre- and postnatal life, but may 

equally have been the most resilient in overcoming these stressors. Unfortunately, neither 

individual (PID 31B and BCF 1256) has both dental and skeletal elements available for 

assessment, meaning consideration of growth disruption in relation to pathological changes 

cannot be afforded.  

 

From pathological assessment, new bone formation is widely found within many of the 

individuals assessed (Table 6.2), but particularly for the transitional and Roman individuals. 

When considered by type of lesion, woven and lamellar NBF shows a distinct pattern. Within 

the cranium the majority of lesions appear to be lamellar, suggestive of some initial healing 

response, whereas the long bones typically have woven NBF suggesting it was an active 

lesion at time of death. This may indicate a prioritisation of the body for healing within the 

cranium. Body functions, including immune response, requires major energetic investment by 

the offspring (McDade 2005). Therefore, if experiencing a stressful intrauterine environment, 

the fetus does not have sufficient resources to be able to counter all of the stressful impacts. 

Therefore, prioritisation of skeletal and bodily structures, both in terms of growth and 

maintenance, occurs. This may explain why different skeletal elements are showing varying 

stress responses and levels of healing. Such prioritisation may also support why growth and 

health disruption is found to correlate, with both those in the Transition and Roman samples 

showing the severest disruption to both factors. High investment in immune activity, in 

response to pre- and postnatal stressors, is likely to result in a significant disruption in growth 
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as the offspring diverts resources to a particular function – e.g. immune response over 

skeletal growth (McDade 2005).    

 

New bone formation has often been correlated with nutritional deficiency. Nutrients such as 

vitamin C, vitamin D, calcium and iron, are vital for optimal growth and health in utero as 

well as in the initial stages of life outside the womb (Lewis 2007); lack of these nutrients 

would further make the individuals more susceptible to a range of diseases and infections. 

The presence of both metaphyseal expansion and morphological changes, consistent with 

limb bowing, within the samples suggests that vitamin deficiencies are the likely cause of 

many of the pathological changes observed. Despite it being considered that rickets, and 

associated bowing deformities, are typically considered to be a disease of childhood, with 

bowing of the limbs due to weight-bearing and the commencement of crawling and/or 

walking (Holick 2005), bowing can be observed pre- and perinatally also (e.g. Innes et al. 

2002). Space constraint prenatally is one of the possible causes of morphological changes. 

Bonneau and colleagues (2011) found changes in femoral torsion as a result on intrauterine 

pressure. Therefore, if deficiency was being experienced, and associated ‘softening’ of the 

long bones occurred due to changes poor mineralisation of the osteoid matrix, prenatal space 

restriction could result in the bowing of long bones. Intrauterine rickets has long been 

reported (e.g. Abbott 1901) as a result of maternal deficiency during pregnancy and 

subsequent investigations have found that maternal deficiency, as a result of cultural practice 

or inability to synthesise vitamin D, is still a contemporary concern (Anatoliotaki et al. 2003). 

Like with other deficiencies, the fetus relies on maternal stores of vitamin D for healthy bone 

growth (Innes et al. 2002; Anatoliotaki et al. 2003). Evidence of vitamin D deficiency within 

the individuals analysed suggests that some of the mothers were likely vitamin D deficient. 

 

The high levels of NBF, as a result of subperiosteal haemorrhages, along with the changes at 

the metaphyses may also be indicative of vitamin C deficiency (Brickley & Ives 2006; 

Besbes et al. 2010). Vitamin C deficiency is a lack of ascorbic acid, which only be ingested 

from dietary sources (Brickley & Ives 2006). Lack of vitamin C results in weakened blood 

vessels which are easily ruptured, leading to extensive haemorrhaging (Aufderheride & 

Rodríguez-Martín 1998; Brickley & Ives 2006; DeWitte 2014). These changes result in NBF 

within the skeleton, as well as the thinning of the cortex and increased trabecular spacing 

(Brickley & Ives 2006). It is suggested that it can take several months for associated skeletal 

changes to become evident in vitamin C deficient individuals, though it is suspected that this 
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period is significantly reduced in non-adults whose bone turnover and remodelling is much 

more rapid (Brickley & Ives 2006). However, evidence of vitamin C deficiency within such 

young individuals is suggestive of extensive maternal malnutrition as the offspring would 

need to be deficient for multiple months for lesions to be present, suggesting a lack of access 

to vitamin C prenatally. Consequently, maternal health and the ability of the mother to 

continue to provide adequate buffering against dietary, health and environmental stressors, 

can greatly affect the experience of the child, and ultimately its survival.  

 

The Roman conquest of Britain in 43 A. D. fundamentally changed the cultural, economic 

and demographic landscape of Britain (Redfern et al. 2012; Rohnbogner & Lewis 2017), 

although Roman influence was already present prior to the invasion. The Iron Age population 

at Owslebury was one that manoeuvred in a complex network and landscape of communities 

who traded with and were influenced by Roman culture (Collis 1994), whilst those 

individuals living at Piddington and Barton Court Farm, both sites where Roman villas have 

been subsequently excavated (Miles 1986; Friendship-Taylor & Friendship-Taylor 2012), 

were likely to have been strongly influenced by Roman culture, social practices and policies. 

Indeed, it cannot be known for sure, without further DNA and isotopic analysis, whether the 

individuals recovered from these sites represent those of native (local) or Roman (non-local) 

individuals. However, regardless of who they were, they were likely conceived and/or born 

into a world that was strongly regulated by Roman practices. This can be determined from the 

imports of pottery, foodstuffs, and even marble, which demonstrate that these sites certainly 

operated within the complex social and economic network of the Roman Empire. However, 

the extent of this Roman influence is unknown, yet despite this, the Roman way of life clearly 

prevailed at these sites. Thus, it must be supposed that adoption of Roman practices 

influenced and impacted these communities.  

 

Previous studies have highlighted that the Roman invasion of Britain brought a marked 

reduction in the health of the population in general (Molleson 1989; 1992; Redfern 2008; 

Redfern & DeWitte 2011; Griffin et al. 2011, 545; Redfern et al. 2012; Pitts & Griffin 2012), 

with an increase in the prevalence of infectious disease, joint disease, respiratory disease, 

metabolic disease, dental disease, and general indicators stress (Roberts & Cox 2003; Lewis 

2010). This is attributed to various factors, including the significant population growth, the 

introduction of new diseases and pathogens by migrants and the army, and new dietary 

profiles (Redfern 2003; Redfern et al. 2012). The growing trade networks and increased 
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migration to Britain saw new pathogens being introduced to non-immune, ‘local’ populations 

(Roberts & Cox 2003). This increase in population also denoted a period of social 

reorganisation and intensified social stratification (Scobie 1986; Molleson 1992; Roberts & 

Cox 2003; Pitts & Griffin 2012). This social stratification consequently led to differing access 

to dietary and nutritional resources, as well as medical care and living conditions contributing 

to the observed increase in metabolic disease in Roman-Britain (Scobie 1986; Roberts & Cox 

2003). Furthermore, social reorganisation and increased social stratification is known to 

affect population health (Babones 2008), increasing psychosocial stress, which impacts on 

immunological function (Roberts & Cox 2003). Consequently, it is particularly interesting 

that the Transition and Roman period groups assessed in this study show greater evidence of 

health and growth disruption, as it is possible that these changes reflect an increasingly 

stratified society.  

 

Rural economies were reliant on the market economy and the continual supply of foods. 

Withholding of resources, or differential access to food products based on social position, 

was also likely to affect susceptibility to stress and overall health status (Klaus 2014; 

Rohnbogner & Lewis 2017). Clear social divisions are suggested to have been particularly 

prevalent within rural settlements, suggesting a very limited population mobility (Pitts & 

Griffin 2012). Consequently, as social inequality is known to increase susceptibility to poor 

health and disease (Schell 1997; Griffin et al. 2011; Pitts & Griffin 2012), increased social 

inequality experienced by the transitional and Roman individuals is reflected in their growth 

and health profiles. As a consequence, it maybe that higher prevalence rates of these 

disruptions signal that the individuals are those of lower social status. However, growth and 

health disruption may also be a product of the social and cultural disturbance and instability 

experienced, where individuals were subjected to ‘…unprecedentedly complex world of 

market forces, new religions, a standing army, and political upheavals’ (Scott 1989). 

 

Despite many of the existing studies focussing on major and minor urban settlements 

(Rohnbogner & Lewis 2017; e.g. Gowland & Redfern 2010), the pattern of growth and health 

disruption identified at these rural sites is not markedly different. Though it may be 

anticipated that rural communities experienced a healthier lifestyle, in fact lack of health care, 

poor ventilation, limited access to a variety of dietary sources, and close contact with animals 

all brought increased risks of disease and infection (Rohnbogner & Lewis 2017). An 

investigation by Pitts and Griffin (2012) found that individuals from rural settlements tended 
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to have poorer health than individuals from urban settlements, having increased rates of 

abscesses, enamel hypoplasias, joint disease, and neoplastic disease. This suggests that those 

living at rural settlements were facing equally compromised living conditions as those 

inhabiting urban and nucleated settlements. Thus, it appears that many rural individuals likely 

experienced growth and health disruption as a result.  

 

Behaviour towards and treatment of an infant once born can vary, and social status and 

culture can dictate the level of care, feeding and health the child has access to (Redfern 2003; 

Gowland 2004). Changes in maternal health and social and cultural practices associated with 

the raising and care of infants might also have been influenced and altered as a result of the 

incoming Roman ideas and practices (Lewis 2010; Rohnbogner & Lewis 2017). Furthermore, 

the status of the mothers must also be questioned. Servants and slaves were an integral part of 

the social organization of Iron Age and Romano-British communities, particularly on 

agricultural and villa estates (Webster 2005; Redfern 2007). Webster (2005) suggests that 

positions of servitude and slavery were common amongst these communities and, even 

though little archaeological evidence has been found to substantiate this, it is commonly 

accepted that there was a large network in the trading of people and slaves within Britain 

before the Roman conquest. Exposure to, and treatment for disease is also regulated by social 

status, gender and age, with access to adequate nutrition and healthcare controlled by these 

culturally contingent factors (Gowland 2004). Consequently, an individual’s susceptibility 

and immune response to disease was reliant on these factors (Gowland 2004). The high levels 

of pathological lesions identified in the transitional and Roman period individuals thus, might 

not only be a consequence of social and cultural change, but indicative that the mothers of 

these infants were those of the lower, lesser status individuals living and working at these 

sites.  

 

Furthermore, cultural and social practices surrounding pregnancy, birth and wet nursing have 

also been documented in Roman Britain (e.g. Redfern et al. 2012). Soranus recommended 

that new born offspring were not to be breastfed for the first three weeks of life. It was 

considered that colostrum was harmful for the infants, and consequently, withholding of this 

important nutritious and immunological substance from new born infants may have greatly 

affected survival chances, increasing susceptibility to infection (Edmond et al. 2006; Bonsall 

2013). In addition, the presence of wet-nurses within Roman Britain may further contribute to 
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high infant mortality rates, with offspring once again failing to receive adequate nutritional 

and immunological buffering via breast milk. 

 

Finally, it must be considered that infant mortality, although not any easier to accept, was a 

consequence of life in ancient communities (Weidemann 1989; Rawson 1986). As 

Weidemann states ‘In Roman times, being a centenarian was remarkable, dying as an infant 

was not’ (1989). Thus, the abundance of fetal, perinatal and infantile remains excavated and 

recovered from rural sites may not be unanticipated, and simply reflect the harsh reality of 

high infant mortality rates. Chamberlain (1997) suggests that up to 50% of individuals born 

would not reach maturity, highlighting the high mortality rates likely to be reflected within 

archaeological samples. In addition, many scholars have cited cultural, social and religious 

reasons as to why infants were buried amongst settlements (Redfern et al. 2012; e.g. 

Gowland & Chamberlain 2002; Moore 2009; Gowland et al. 2014; Millet & Gowland 2015). 

Moore (2009) suggests that associations between fetal, perinatal and infant burials and 

inhabitation structures as well as a variety of other domestic and agricultural buildings, 

indicates that burial was ‘…not the random disposal of the unwanted or marginalised, but the 

result of careful choices’. Therefore, the precarious nature of these early stages of life were 

well known to these communities and as such, many individuals were not named until a 

particular age or point of survivorship was achieved (Moore 2009). Consequently, those 

assessed within this study represent those of the non-survivors, who ultimately succumbed to 

the deleterious conditions they faced.  

 

Conclusion 

This study has provided an important contribution to our understanding of the Iron Age to 

Roman transition and its impact on growth and health in the youngest members of past 

societies in a rural context. This synthesis of growth and health assessment provides a robust 

picture of disruption throughout these populations and time periods, and supports previous 

studies suggesting that health and well-being deteriorated after the Roman conquest, 

extending this data into the fetal, perinatal and infant period. 

 

This paper also highlights that dental assessment of age-at-death must be considered where 

possible for all fetal, perinatal and infant individuals, as skeletal age-at-death has been found 

to mimic reference data. Thus, interpretations surrounding infant death may be biased when 

only skeletal elements are assessed for age, and to avoid this, comparison of dental and 
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skeletal ages should be sought. Furthermore, by assessing individuals in this way it is 

possible to explore growth disruption on an individual level. This avoids the need for 

Bayesian statistics, as previous studies have utilised (Gowland & Chamberlain 2002), and 

means direct comparisons between growth and health data, as well as between individuals 

can be made. This has enabled this study to investigate temporal differences between growth 

and health disruption experienced by individuals.  

 

Assessment of pathological lesions has identified that health disruption was prevalent in all 

three time periods. Pathological lesions were found to increase during the transitional period 

and remain elevated in the Roman period individuals. Furthermore, individuals of all 

chronological ages were found to show evidence of health disruption, despite sample sizes 

being small. This suggests that both intrinsic and extrinsic stressors were impacting the 

wellbeing of these individuals. This indicates that both the intrauterine and extrauterine 

environment was compromised, suggesting that maternal health also decreased during the 

transitional and Roman periods.  

 

This research aimed to consider the contextual implications of this growth and health 

disruption, but this is a complex and intricate narrative reliant on a multitude of factors 

including social status, access to dietary resources and health care, as well as the social, 

cultural and political spheres in which mother and child lived. Determining the key factors in 

causing this disruption is almost impossible, but it is likely that there is a consistent interplay 

between many factors, with not one, but multiple stressors, causing the growth and health 

disruption identified. For all sites, it can be suggested that individuals experienced poor 

health, though the number of individuals and severity of health disruption experienced is seen 

to increase with the simultaneous increase in ‘Romanisation’. Therefore, although growth and 

health was clearly disrupted in many individuals from all of these populations, a distinct 

pattern emerges suggesting pre- and postnatal life was particularly precarious from the 1st 

Century onwards.  
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Like Mother, Like Child: Investigating change and continuity in perinatal and 

maternal health stress in Post-Medieval London. 
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Abstract: Post-Medieval London represented an inherently stressful environment. Poor 

sanitation, deleterious living and working conditions, and extensive levels of pollution 

contributed to make London notorious for its unhealthy environment. In response to these 

harmful conditions, clear changes can be observed within archaeological skeletal samples, 

revealing evidence of growth and health disruption. Fetal, perinatal and infant individuals 

are considered to provide the most sensitive depictions of past population health. 

Consequently, assessment of 169 individuals, aged to be six months or younger (< 64 GWA), 

from seven post-Medieval archaeological sites in London provide evidence of chronic growth 

and health disruption. Significant differences were found between dental and skeletal age 

estimates for all age categories. Furthermore, six of the seven samples assessed show 

evidence of growth disruption, with individuals from the middling status samples identified as 

having the highest frequency of individuals affected. However, those of the low status 

samples were found to show the severest growth disparities between dental and skeletal age 

estimates. Metric assessment of the pars basilaris has revealed that age estimates derived 

from this skeletal element show parity with dental age estimates, suggesting it can be utilised 

as a proxy for dental, and potentially chronological age. Pathological lesions were identified 

in all of the archaeological samples regardless of social status. However, individuals from 

Cross Bones and St. Bride’s Lower, low status populations, were found to show the most 

extensive cranial pathological changes. Middling status individuals were also identified to 

have high rates of pathological lesions. These findings support previous investigations in 

demonstrating the clear health consequences, to even the youngest members of these 

populations, of living in London during the post-Medieval period.  

 

Introduction 

Post-Medieval London (16th-19th centuries) was a thriving urban centre which witnessed 

rapid expansion, particularly with the arrival of the Industrial Revolution (Beier 1978; Lewis 
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2002a; DeWitte et al. 2016). This transition heralded a new technological age and provided 

unrivalled economic potential (Storey 1992). Despite this progression, social inequalities 

continued to widen, and a highly stratified society of ‘rich’ and ‘poor’ dominated social 

structure (Lindert 1994; Storey 1992; Lewis 2002b; Beaumont et al. 2013). With marked 

disparities in socioeconomic status known to be causative factors of health disruption and 

mortality (Saunders & Hoppa 1993; Farmer 1996; Schell 1997; Babones 2008; Cavigelli & 

Chaudhry 2012; DeWitte et al. 2016), life course adversity is often reflected and identified 

within skeletal remains (e.g. De la Rúa et al. 1995; Pinhasi et al. 2006; Lewis & Gowland 

2007; DeWitte et al. 2016; Ives & Humphrey 2017). Social disparity is, in itself, not the 

direct cause of growth and health disruption, rather social status predisposes and mediates 

resource access, which in turn affects nutrition, health care, and immunity (Martorell & 

Habicht 1986; Floud et al. 1990; Nicholas & Steckel 1991; Schell 1997; Stinson 2000; Robb 

et al. 2001; Steckel 2009; Halfon et al. 2014; DeWitte et al. 2016). Indeed, social status is 

still one of the most prevalent determinants of health today, with those at the lowest social 

strata often experiencing vastly poorer health and shorter life expectancies that those of the 

highest (Farmer 1996; Marmot 2005). Today, in low socioeconomic populations, average 

infant mortality is suggested to be 55 per 1000 live births (WHO Infant Mortality). This is 

over five times the contemporary rate for infant mortality in the European Region, which is 

considered to be generally of high socioeconomic status (WHO Infant Mortality). 

Consequently, despite modern clinical interventions and increased awareness of these 

associations, social disparity is still one of the biggest factors in determining birth and health 

outcomes (Phelan et al. 2010; Cavigelli & Chaudhry 2012; Robertson et al. 2013).  

 

Post-Medieval London was an overcrowded and unsanitary urban centre (Forbes 1972; 

DeWitte et al. 2016). Many migrated to the capital from the countryside in search of work, 

particularly during the Industrial Revolution (Beier 1978). Migrants to London typically 

relocated from pastoral and agricultural occupations to those of servants and apprentices, 

which were unstable, temporary or seasonal occupations of low wage (Beier 1978; DeWitte 

et al. 2016). It is widely considered that post-Medieval London consisted of extremely poor 

living conditions, associated with increased risks of ill health and mortality (DeWitte et al. 

2016). Areas of slum housing were notorious hotspots for disease and infection, as a 

consequence of the extreme poverty faced by many (Beier 1978). Houses were divided up 

with numerous individuals living within each room, even the cellars, and some landlords are 

thought to have constructed hovels in the alleyways (Beier 1978; Boulton 2000). Despite this, 
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a range of dietary sources are considered to have been available, though whether the poor 

were able to afford or access these resources is questionable. It has been suspected that many 

of the poor did occasionally consume fish (Mayhew 1985; Picard 2005), though isotopic 

evidence has yet to corroborate these suggestions (Beaumont et al. 2013). Therefore, as 

conditions in post-Medieval London were demonstrably impoverished for the majority of 

individuals living and working within this urban centre, it is widely accepted that 

archaeological skeletal remains from these contexts will have identifiable health and growth 

changes as result of exposure to such conditions. Social status is thus pivotal in regulating 

access to nutritional resources, hygienic living conditions and exposure to diseases and 

infections (Floud et al. 1990; Tanner 1994; Dowler & Dobson 1997; DeWitte et al. 2016). As 

the youngest members of both living and dead populations, fetal, perinatal and infant 

individuals are often found to reflect social conditions and inequalities most severely, 

meaning analysis of their skeletal remains is paramount for comprehension of the 

implications of this early life adversity.  

  

The study of non-adult skeletal remains has vastly increased within the last decade, with a 

proliferation of bioarchaeological studies investigating health and growth disruption in the 

skeletal remains of children (Humphrey 2000a; Lewis 2002a; 2002b; Halcrow & Tayles 

2008). Despite this, fetal, perinatal and infant individuals are currently under-represented in 

the literature (Halcrow & Tayles 2008; Kamp 2015; Halcrow et al. 2017; Lewis 2017c; 

Sánchez Romero 2017). However, these individuals represent a unique opportunity for 

tangible considerations of both individual and maternal health and wellbeing, regardless of 

the archaeological recovery of maternal individuals. Thus, fetal, perinatal and infant 

individuals, and assessment of their growth and health, provides an unparalleled insight into 

pre- and postnatal experiences (Scheuer & Black 2000a; Baxter 2005; Lewis 2007; Agarwal 

2016; Halcrow & Ward 2017).   

 

The malleable biological processes and parameters of growth and health are ones which 

commence in utero, but continue and remain throughout the life course (Halfon et al. 2014). 

Both pre- and postnatal life is regulated by endogenous and exogenous factors (Cattaneo 

1991; Saunders & Hoppa 1993; Bogin 1999; King & Ulijaszek 1999; Cardoso 2007), yet the 

offspring has limited control over their exposure to these (Cattaneo 1991; Barker et al. 2012). 

Instead, both the intra- and extrauterine environments are largely maternally regulated. The 

mother-infant dyad is one in which previous and existing maternal life course experiences 
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impact upon the growing fetus/perinate/infant (Redfern 2003; Barker et al. 2012; Gowland 

2015; Said-Mohamed et al. 2018). Susceptibility and fragility to disease, as well as 

immunological resistance, can be genetically regulated (Barker et al. 2012). Furthermore, 

offspring experiences rely on maternal ability to supply and buffer nutrients and antibodies 

via both the placenta and lactation. Consequently, both genetic and environmental factors 

may limit or aid individuals in attaining their growth and health potential. A high degree of 

plasticity during the pre- and postnatal periods (Wadhwa et al. 2011; Gowland 2015; 

Agarwal 2016; Said-Mohamed et al. 2018; Satterlee Blake 2018), means that growth and 

health status reflects the varying maternal and environmental exposures encountered. 

Therefore, fetal, perinatal and infant life stages are inherently fragile, complexly bound to 

maternal life course experiences and wellbeing. As such, assessment of fetal, perinatal and 

infantile growth and health status provides a tangible reflection of maternal, as well as 

community, health and wellbeing (Goodman & Armelagos 1989; Redfern 2003; Baxter 2005; 

Lewis 2007). 

 

The Developmental Origins of Health and Disease Hypothesis (Barker & Osmond 1986; 

Barker 1994; 1997; 2003; 2012), has proposed that maternal health, and the environmental 

factors to which she is exposed, both during and prior to pregnancy, can significantly impact 

and alter growth and health of the offspring (Gowland 2015). Epigenetic changes are where 

gene expression, and not the underlying DNA sequence, has been altered in response to the 

adverse or beneficial conditions experienced in utero (Cattaneo 1991; Chmurzynska 2010; 

Kuzawa 2012; Mortier & Vanden Berghe 2012; Halfon et al. 2014; Glover 2015). Such 

changes predispose individual susceptibility, and/or resilience to disease, by altering the 

function of various biological systems (Slack 1991; Cameron & Demerath 2002; Luo et al. 

2006; Chmurzynska 2010; Mortier & Vanden Berghe 2012). Importantly, immune function 

has been found to alter as a consequence of prenatal stress exposure, altering offspring 

phenotypic expression, and potentially increasing their susceptibility to disease (Boersma & 

Tamashiro 2015). 

 

Epigenetic traits can become ‘embedded’, transferred from parent to child, and subsequently 

to grandchild, suggesting epigenetic signatures may be transmitted over multiple generations 

(Kuzawa & Quinn 2009; Halfon et al. 2014; Boersma & Tamashiro 2015; Glover 2015; 

Gowland 2015; Thorsell & Nätt 2016; Satterlee Blake 2018). Holland-Jones (2005) has 

termed this as a ‘downstream effect’. The realisation that prenatal life can be influenced by 
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previous multi-generational experiences challenges our ability to determine when an 

individual’s biography truly begins (Gowland 2015). Consequently, fetal, perinatal and infant 

remains are valuable proxies for maternal and even generational health. However, 

disentangling the etiological and contextual implications of growth and health disruption 

identified within the skeletal remains of these individuals is complex, and a holistic 

interpretation of these factors is required.  

 

Health is a complex biological construct, though what might be considered ‘healthy’ today is 

unlikely to directly correlate to perceptions of health in the past (King & Ulijaszek 1999; 

Roberts 2009). Therefore, although the concept of health has long been fundamental to 

bioarchaeological studies, there has been a re-emergence of the consideration of ‘stress’ as a 

pivotal factor in the regulation of physiological response to adversity (Temple & Goodman 

2014). Stressors are considered to be those intrinsic and extrinsic factors and influences 

which have a negative and detrimental impact upon growth and health (Goodman et al. 1988; 

Goodman & Armelagos 1989; Reitsema & McIlvaine 2014). Stress indicators are the effects 

of those influences, leaving discernible changes to the skeleton, despite many typically being 

non-specific in presentation (Goodman et al. 1988; Lewis & Roberts 1997; Goodman & 

Martin 2002; Reitsema & McIlvaine 2014). Growth disruption and pathological lesions are 

widely considered to be proxies for evidence of exposure to stress (Goodman et al. 1988; 

Armelagos & Goodman 1991; Goodman & Martin 2002; Reitsema & McIlvaine 2014). This 

is because both are indicative of an abnormal physiological response (Bush 1991). Growth 

disruption signals an arrestment of growth, suggesting that the body is unable to maintain 

growth to its full potential, whilst pathological lesions provide direct evidence for 

conditions/diseases impacting upon the skeleton. 

 

To date, a number of bioarchaeological studies have considered growth and health in London, 

particularly during the post-Medieval period (e.g. Harvey 1968; Ogden et al. 2007; Nitsch et 

al. 2011; Beaumont et al. 2013; DeWitte et al. 2016; Ives & Humphrey 2017; Newman & 

Gowland 2017). However, despite this abundance of contemporary research, few studies have 

considered the fetal, perinatal and infantile individuals in detail. Furthermore, consideration 

of these young individuals from all of the available archaeological samples has not previously 

been undertaken. Therefore, this study represents the first to consider fetal, perinatal and 

infantile health and growth disruption for post-Medieval London, contributing to the ongoing 

discussion surrounding detrimental early life experiences. The seven post-Medieval samples 
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will include individuals of differing socio-economic status (low, middling and high status) 

and locations within and around the City of London (See Fig. 1). The impact of 

overcrowding, poor sanitation, and socially-differentiated access to resources on the skeletal 

parameters of growth and non-specific indicators of physiological stress (pathological 

lesions) will be examined. Construction of a contextualised narrative, exploring the mother-

infant dyad will reveal preliminary insights into the health and wellbeing of these individuals 

in post-Medieval London.   

 

Research Context: 

Databases for all post-Medieval sites catalogued, curated and held by the Museum of London 

(Wellcome Online Database) were searched for individuals determined to be fetal (< 36 

gestational weeks of age (GWA)), perinatal (36 - 44 GWA) and infantile (44 GWA – 64 

GWA (6-months post-partum)). In total 169 post-Medieval individuals were identified and 

analysed (Table 1.). Socioeconomic status has been documented as recorded for each sample 

(Table 1.).  

 

In total, individuals from seven post-Medieval samples were assessed (Fig. 1). The 

cemeteries of both Broadgate and St Bride’s Lower were formed to relieve overcrowding of 

parish cemeteries (Schofield & Maloney 1998; Miles & Conheeney 2005). Broadgate 

cemetery was a municipal cemetery, founded in 1569 by the City (Museum of London 2015). 

This New Churchyard became the burial place predominantly for the poorer classes (Harding 

2002). At St Bride’s Lower grave cuts were almost impossible to identify due to the densely 

packed nature of the burial ground (Miles & Conheeney 2005). The Lower churchyard was 

the cheapest burial place in the parish and heavily used throughout the 18th and 19th centuries 

(Miles & Conheeney 2005). In addition, some of those buried in St Bride’s Lower cemetery 

are likely to have been inmates in the adjacent Bridewell Workhouse and Fleet Prison (Miles 

& Conheeney 2005; Kausmally 2008). Similarly, Cross Bones Cemetery, located in 

Southwark (Brickley et al. 1999), was a burial place for the poorest individuals living in 

London at this time. It is thought to have originally been a single women’s burial ground for 

those working in the brothels on Bankside (Mikulski 2007; Brickley et al. 1999). The burial 

ground came into ‘proper’ use in 1760, and, until its closure in 1853, remained a paupers’ 

cemetery (Mikulski 2007; Brickley et al. 1999). In total 148 individuals were excavated from 

this site (Brickley et al. 1999) and are thought to date from the early to late 19th century 

phases of the site (Mikulski 2007). St Thomas’ is a 17th century burial ground associated with 
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St Thomas’ Hospital (Jones 1991). Excavation revealed three mass burial trenches, 

considered also to be those of paupers, or victims of an epidemic event (Bekvalac 2007). In 

contrast, Chelsea Old Church was situated on the edge of the City of London, a rural area 

during the 18th and 19th centuries (Museum of London 2009). By the mid-18th century 

Chelsea was considered a wealthy, prosperous and healthy area of London (Cowie et al. 

2008). The individuals excavated from this cemetery consist of individuals of a higher socio-

economic status (Museum of London 2009). Two of the individuals analysed were still in 

utero when buried (Museum of London 2009; Cowie et al. 2008). Finally, individuals 

excavated from the Royal London Hospital Burials are thought to date between 1825 and 

1841/1842 (Fowler & Powers 2012). Social status for these individuals is unknown and it 

maybe that their skeletal remains were retained because the individuals expressed uncommon 

medical complaints.  
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TABLE 1.1 Number of individuals with dental and skeletal elements available for assessment by archaeological sample.  

 

 

TABLE 1.2 Frequency of individuals aged to be fetal, perinatal or infantile based on dental development. Unknown individuals are those where no dentition was available for assessment.  

Archaeological Sample Date (Century) Status Number of Individuals (N) 

Sample Size (N) By Dental and Skeletal Element 

Dentition Femur Tibia Humerus Pars Basilaris 

St Benet Sherehog 16th-17th Middle 19 9 9 6 10 9 

Broadgate 16th-18th Low 21 13 8 5 8 12 

St Thomas’ Hospital 17th Low 5 4 2 2 2 5 

St Bride’s Lower 17th-19th Low 52 29 35 33 40 37 

Chelsea Old Church 18th-19th High 7 5 2 2 5 4 

Cross Bones 19th Low 58 36 41 44 43 43 

Royal London Hospital 19th Unknown 7 1 6 6 6 1 

Overall Total   169 97 103 98 114 111 

Population Date (Century) Status Number of Individuals (N) 

Sample Size (N (%))  by Chronological Age Category (Based on Dental Development) 

Fetal Perinatal Infant Unknown 

St Benet Sherehog 16th-17th Middle 19 0 1 8 10 

Broadgate 16th-18th Low 21 0 2 11 8 

St Thomas’ Hospital 17th Low 5 0 1 3 1 

St Bride’s Lower 17th-19th Low 52 0 3 26 23 

Chelsea Old Church 18th-19th High 7 0 1 4 2 

Cross Bones 19th Low 58 0 12 24 22 

Royal London Hospital 19th Unknown 7 0 1 0 6 

   169 0 21 76 72 
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Figure 1. Map detailing the location of the seven post-Medieval populations assessed.  
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Methods: 

Age-at-death estimations based on both dental development, and metric assessment of long bone 

diaphyseal lengths and the pars basilaris, have been calculated.  

 

Dental development is widely utilised to infer chronological age-at-death of non-adult 

individuals (Moorrees et al. 1963b; Hillson 2005; Lewis 2007; AlQahtani et al. 2014). Teeth 

grow systematically from the tip of the crown to the root. This happens at relatively consistent 

ages for each tooth (Hillson 1979). Thus, as this growth and development follows a regular 

sequence and trajectory, physiological stage of dental development correlates most closely with 

chronological age (Bang 1989; Hillson 2005; AlQahtani et al. 2014). Though both genetic and 

environmental factors may affect tooth growth and development (Massler et al. 1941; Heuzé & 

Cardoso 2008), it is widely accepted that tooth development shows less variability and 

fluctuation than other growth and development parameters (Moorrees et al. 1963b; Gustafson & 

Koch 1974; Bang 1989; Hoppa & Fitzgerald 1999; Bolaños et al. 2000; Humphrey 2000a; 

Liversidge & Molleson 2004; Satterlee Blake 2018). Estimation of chronological age using 

dental development has also been found to be more accurate in younger infants and children, 

particularly those under 10 years of age (Bolaños et al. 2000; 103; Lewis 2007; AlQahtani et al. 

2014). Consequently, within this study dentally derived age estimates are considered as a proxy 

for chronological age.  

 

Tooth cusp development was recorded in accordance with Moorrees et al. (1963a; 1963b) and 

age-at-death estimates attributed using the dental development atlas developed by AlQahtani et 

al. (2010). For individuals where tooth cusp development fell between two age estimates, a 

midpoint between those two estimates was assigned in gestational weeks, and the maximum 

error level afforded. The standard developed by AlQahtani et al. (2010) was utilised in 

assessment as it is the most recently established dental development chart, and uses both 

historical and clinical known age-at-death individuals. Furthermore, this methodology has been 

found to have high levels of reproducibility (AlQahtani et al. 2014). All dental age-at-death 

estimations have been given in gestational weeks throughout (GWA). 
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Metric assessment of fetal, perinatal and infant skeletal remains is the most commonly employed 

method for determining chronological age-at-death (Humphrey 2000b; Lewis 2007; Utczas et al. 

2017). This is likely due to skeletal elements being both better preserved in the archaeological 

record than the dentition (Gowland & Chamberlain 2002), as well as recognised and collected by 

the archaeologist. As with assessment of the dentition, age-at-death estimates derived from 

metric assessment of long bones have always been given in gestational weeks of age (GWA) 

throughout. 

 

Metric assessment of the skeletal remains focused on diaphyseal length measurements of the 

femora, tibiae, and humeri. Measurements were taken using digital sliding callipers (accuracy of 

+/-0.02mm), with all results recorded to the hundredth of the millimetre, in accordance with the 

metric analyses outlined in Fazekas & Kósa (1978). Gestational age-at-death estimations were 

calculated using the published linear regression equations for long bone diaphyseal lengths by 

Scheuer et al. (1980). Only the long bones of the skeleton have regression equations available for 

use in assessment. Where both left and right skeletal elements were available for assessment both 

were analysed and had age estimates generated, with the average age for that element used in 

analysis. The chronological age estimate generated has typically been plotted with the error level 

(+/- X gestational weeks of age) given as a range.  

 

This use of linear regression equations was employed by the author as it is one of the only 

methods available that provides an error level for age-at-death estimation, and is widely used in 

other studies making results of this assessment comparable (Lewis & Gowland 2007; e.g. Mays 

1993; Lewis 2002a; Halcrow et al. 2012). However, this linear regression method has been 

criticised, suggested to age individuals in a way which mimics the demographic make-up of the 

sample used to create the regression models (Gowland & Chamberlain 2002; Lewis & Gowland 

2007). This has been a common criticism of many age-estimation techniques and methods, with 

studies found to often reflect the age distribution of individuals within the reference sample 

(Gowland & Chamberlain 2002; e.g. Bocquet-Appel & Masset 1982). To limit the effect of this 

bias other studies have employed Bayesian statistics to redistribute the age estimations generated 

(e.g. Gowland & Chamberlain 2002). Bayesian analysis considers the likelihood of individuals 

falling within age categories, in comparison to a natural mortality profile derived from perinatal 
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and infant life tables (Lewis & Gowland 2007). Therefore, by employing this assessment, age 

estimates are redistributed by probability (Gowland & Chamberlain 2002). However, Bayesian 

analysis considers all individuals as a whole, meaning age estimates cannot be generated for 

single individuals (Lewis & Gowland 2007). This limits detailed assessment of individuals and 

the potential for identifying growth disruption. As a result, because this research aims to focus on 

identifying growth disruption within individuals, Bayesian statistical assessment has not been 

employed. 

 

Measurements were also taken from the pars basilaris, as due to the changes in morphology, and 

thus the measurements obtained, the pars basilaris is considered to be indicative of certain age 

thresholds (Redfield 1970; Scheuer & Maclaughlin-Black 1994; Lewis 2007). Maximum width, 

sagittal length and maximum length were all recorded for the pars basilaris when possible. 

Redfield (1970) established a preliminary method by which to tell broad age categories based on 

the morphology and size of this bone. Measurements of the pars basilaris were assessed using 

this method (Redfield 1970), with specific gestational weeks attributed using Scheuer and 

Maclaughlin-Black (1994). A limitation of this method is that no ranges or error levels were 

given for each specific age category (Scheuer & Maclaughlin-Black 1994). Therefore, where 

measurements fell within a range of age categories, the mean age category has been plotted, with 

the minimum and maximum age categories used as upper and lower age ranges. For example, a 

measurement which fell into the 3 weeks, 4 weeks, 7 weeks and 3-months age categories (43-52 

GWA), has a mean point of 47.5 GWA, with a range of +/- 4.5 GWA.  

 

Inherent limitations will be incurred as a result of comparing skeletal metric data collected within 

this study against a range of reference data. This is due to the varying skeletal samples from 

which the reference methods were constructed. Although it is almost always suggested that an 

appropriate reference sample should be used for comparison, it is almost impossible to do this for 

archaeological assessments (Scheuer & Black 2000b). The application of age estimation methods 

derived from a specific reference sample to an archaeological sample, far removed temporally 

and geographically, is a well-known source of error (Bocquet-Appel & Masset 1982). 

Furthermore, many reference samples have been developed using archaeological or historical 

skeletal remains of deceased individuals. Therefore, these individuals are unlikely to represent 
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healthy non-adults, and are often lacking vital biological data such as documented age or sex 

(e.g. Fazekas & Kósa 1978). Additionally, as growth is known to respond to a multitude of 

intrinsic and extrinsic factors (Saunders & Hoppa 1993; Bogin 1999), comparison of 

archaeological data to that of modern, known samples is likely to increase variability and 

inaccuracy in the results and interpretations obtained. Consequently, the ability to compare 

archaeological samples to modern reference standards is limited (Hoppa & Fitzgerald 1999). It is 

therefore important to be mindful of the error ranges associated with each particular ageing 

technique and interpret the results accordingly. Consequently, for individuals where dental and 

skeletal age estimates and ranges have been identified to correspond/overlap, an interpretation of 

growth disruption has not been attributed. Growth disruption has only been reported in those 

individuals where age estimates show no correlation. Therefore, error ranges specified for both 

dental development and metric assessment of the long bones have always been afforded. 

Furthermore, where pars basilaris measurements were found to correlate to multiple age 

categories, the largest applicable error range was used. This was to ensure that for all individuals, 

growth disruption was only reported where clear distinctions between age estimates could be 

identified.  

 

Assessment of pathological lesions was undertaken macroscopically. Each pathological 

change/lesion was recorded descriptively by the author and documented photographically. As 

identification of pathological lesions within fetal, perinatal and infant individuals is still 

ambiguous, grading schemes were employed to differentiate between extensive and minor 

changes. Grading schemes (outlined below) consisted of three discrete categories, where those in 

categories 2 and 3 likely represent pathological changes, whilst those in category 1 may 

represent changes which could equally be associated with normal growth and bone formation. As 

we are still unable to distinguish between normal and pathological changes, particularly for new 

bone formation (NBF), it was intended that all potential changes were recorded, regardless of 

their case or etiology. By employing a grading system, the severity and prevalence of lesions to 

particular elements could be observed, and those lesions considered to be more ambiguous 

isolated from those definitively identified to be pathological.  
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Location, type and severity of pathological lesions was recorded for each lesion observed. Table 

2. details the variables recorded for each of these categories, whilst Table 3. outlines the grading 

systems employed to determine severity of NBF, lytic lesions and metaphyseal expansion.  

 

 

TABLE 2. Categories and variables used in the recording of pathological lesions. 

 

 

 

T-tests were employed to determine significant differences between skeletal and dental age 

estimations. T-test analysis was undertaken in PAST (developed by Hammer, Harper & Ryan 

2001) where significance was set 95%. Therefore, p-values below 0.05 were considered to be 

statistically significant. Prevalence rates were calculated for pathological lesions for all 169 

individuals assessed. Total numbers of individuals and skeletal/dental elements have been given, 

with the numbers and percentages of individuals showing pathological changes to the element 

recorded. Chi-squared tests for independence at 99.5 % confidence (p < 0.05) were also 

employed for pathological categories to observe whether there was any relationship between 

various pathological variables and social status. Chi-square results are presented numerically, 

where p < 0.05 shows there is a significant relationship between the variables. Chi-Squared 

values (X²) have also been given. As the sample sizes were small, Fisher’s exact test was used to 

determine p values. 

 

Category Variable 

Location Cranial or Postcranial 

Skeletal Element e.g. Femur, Tibia, Frontal Bone 

Aspect e.g. Endocranial, Anterior, Circumferentially 

Type I NBF, Lytic, Metaphyseal Extension, Morphological change. 

Type II Woven, Lamellar and/or Spiculated 

Severity Grade 1, 2, or 3 
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TABLE 3. Grading systems for new bone formation, lytic lesions and metaphyseal expansion employed for assessment of pathological lesions within this study.   

 Grade 1 Grade 2 Grade 3 

New Bone 

Formation 

New bone formation, which may be woven or lamellar in 

appearance, will be considered to be grade 1 when the NBF is 

not clearly apparent and the margins are unable to be clearly 

defined from that of normal cortical bone. Grade 1 NBF is 

likely to be isolated in location, appearing minimally across the 

skeletal element. 

New bone formation recorded as being grade 2 will be clearly 

identifiable as a definable area of woven or lamellar bone 

formation. There will be clear boundaries/borders to the NBF and it 

will obviously differ from the normal cortical bone of the skeletal 

element. Grade 2 NBF is likely to be distinguishable as a clear layer 

of bone on top of the original cortical surface. It is likely that NBF 

listed within this category will be formed of a single layer though 

may extend over a large aspect area of the skeletal element. 

 

New bone formation recorded as being grade 3 will be the 

more severe type of NBF, with clear, multi-layered or thick 

NBF across a large area/aspect of the skeletal element. The 

NBF may be woven or lamellar in appearance and is clearly 

seen to be on top of the original cortical bone. 

Lytic Lesions Lytic lesions considered to be grade 1 likely consist primarily 

of macro-porosity. This porosity will be relatively minor, 

though may extend over a large skeletal area, and no clear 

destruction of the cortical bone will be apparent. 

Lytic lesions considered to be grade 2 will likely show evidence of 

some cortical destruction as well as porosity. However, cortical 

destruction will not be widespread throughout the skeletal element 

and is instead likely to be in isolated concentrations. 

 

Lytic lesions considered to be grade 3 will show extensive 

cortical destruction and/or porosity. Destruction will be 

widespread throughout the element. 

Metaphyseal 

Expansion 

Metaphyseal expansion considered to be grade 1 will likely 

consist of noticeably widened/flared metaphyses which do not 

appear proportional for the long bone diaphysis. However, 

despite this expansion no change to the metaphyseal margin or 

trabecular bone structure will be observed. 

Metaphyseal expansion will be considered to be grade 2 when 

involvement of the metaphyseal margin is apparent. This will result 

in atypical and misshapen metaphyseal margins often combined 

with a discernible brim/lip to the metaphysis. 

Metaphyseal expansion considered to be grade 3 will be the 

most severe and where involvement of the trabecular bone 

structure can be seen. Individuals displaying grade 3 

metaphyseal extension will likely have more porous 

metaphyses and the trabecular structure will appear clearly 

expanded and widened. Involvement of the metaphyseal 

margin may still be apparent though this may be lost due to 

the trabecular expansion. 
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Results 

Average skeletal age estimates for femoral, humeral and tibial measurements have been 

calculated for each dental age group. Table 4 details summary statistics (mean, standard 

deviation and confidence interval (+/-)) for each of the skeletal long bones assessed. T-test 

analysis was undertaken considering skeletal age estimates, by bone element and age group, in 

comparison to dental age. Results presented in bold are those where differences between mean 

dental and skeletal age-at-death estimates were found to be significantly different (where P < 

0.05). Results of assessment (Table 4.) show that there are significant differences between dental 

and skeletal age estimates for almost every dental age group and skeletal element. Only those 

dentally aged to be 39 GWA show no significant differences between their tibial and femoral 

ages when compared to dentition.  

 

Plotting these mean skeletal age estimates by dental age (Fig. 2) for the femora, humeri and 

tibiae assessed, demonstrates that the growth profiles for all three of these long bones fall below 

the ‘optimal growth trajectory’. The optimal growth trajectory is simply the assumption that 

dental and skeletal age estimates should be identical within a single individual. Thus, in an 

individual of optimal growth, both dental and femoral, humeral and tibial age should correspond. 

Mean skeletal age estimates are shown to increase with dental age, and despite long bone growth 

profiles showing a similar trajectory for the majority of age categories, profiles appear to be 

diverging in the 64 GWA dental category. The femur is shown to have the highest growth 

trajectory, whilst the tibia has the lowest.  

 

To explore evidence of growth disruption on an individual level, those with dental age estimates 

and at least one skeletal age estimate (femoral, tibial or humeral) were assessed (Fig. 3). In total 

79 individuals were found to have both dental and one skeletal long bone element available for 

age-at-death assessment; 57 individuals had femora, 71 humeri, and 53 tibiae. Assessment 

reveals 22 individuals had dental and skeletal age estimates where mean age estimates and age 

ranges do not overlap, unambiguously indicative of growth disruption. Of these 22 individuals, 

ten were from the archaeological sample of Cross Bones, six were from St Brides’ Lower, three 

from St Benet Sherehog, and one individual was identified from the sites of Chelsea Old Church, 

Broadgate, and St Thomas’ Hospital. 
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TABLE 4. Mean skeletal age estimates (GWA) by dental age group for the femora, humeri 

and tibiae. Results of t-test analyses in bold are those where significant differences were 

found between mean dental and skeletal age estimates. 

Dental Age (N) Mean Skeletal Age S.D. 
95% Conf. (+/-) 

on the mean 
T-Test 

FEMUR 

38 8 32.3 1.7 1.4 -9.48 

39 2 33.9 2.5 22.4 -2.91 

43 4 36.2 2.2 3.5 -6.23 

46 10 36.5 2.6 1.8 -11.64 

52 23 38.8 2.5 1.1 -25.14 

58 7 42.4 4.4 4.1 -9.32 

64 2 47.5 1.1 10.3 -20.34 

HUMERUS 

38 8 32.9 2.2 1.8 -6.53 

39 4 32.5 1.8 2.8 -7.24 

43 6 36.9 2.3 2.4 -6.59 

46 13 37.2 2.6 1.6 -12.23 

52 28 38.6 2.0 0.8 -35.32 

58 9 42.4 3.5 2.7 -13.17 

64 3 44.1 3.8 9.4 -9.09 

TIBIA 

38 7 32.5 1.9 1.7 -7.75 

39 3 33.3 2.8 6.9 -3.58 

43 4 36.5 3.3 5.3 -3.95 

46 8 36.9 2.3 1.9 -9.90 

52 20 38.9 2.8 1.3 -20.98 

58 8 42.4 4.1 3.4 -10.70 

64 3 42.6 4.3 10.7 -8.62 
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Figure 2. Mean skeletal age estimates (GWA) plotted by dental age. Optimal growth trajectory represents the expected growth profile if dental and skeletal age estimates were found to be identical for each age group. 

Error bars in accordance with dental age estimates have been plotted for optimal growth trajectory to highlight that average skeletal ages typically fall outside of these error ranges.  
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Figure 3. Skeletal and dental age-at-death estimates plotted for each individual with age-estimates available. Error ranges (in GWA) have been afforded to both dental and skeletal age estimates in accordance with 

the age estimation methodologies employed (AlQahtani et al. 2010; Scheuer et al. 1980). Individuals considered to show evidence of growth disruption are those where dental and skeletal age estimates and ranges 

do not overlap.     
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Consideration of individual growth disruption by dental age estimate (Table 5.1), archaeological 

sample (Table 5.2) and sample status (Table 5.3) was afforded. Results show that those aged 64 

GWA and 58 GWA have the highest prevalence of growth disruption. Individuals sampled from 

St Benet Sherehog and St Thomas’ Hospital are the samples with highest prevalence of growth 

disruption. However, given the small sample sizes for these sites, results may be over-

emphasised.  

 

TABLE 5.1 Number and percentage of individuals with growth disruption by dental age. 

Dental Age  

(GWA) 
Total N  N Growth Disruption % Growth Disruption 

38 10 3 30 

39 4 2 50 

40 1 0 - 

43 6 0 - 

46 14 0 - 

52 29 6 21 

58 11 8 73 

64 4 4 100 

 

 

TABLE 5.2 Number and percentage of individuals with growth disruption by sample.  

Sample Total N  N Growth Disruption % Growth Disruption 

St Benet Sherehog 7 4 57 

Broadgate 6 1 17 

St Thomas’ Hospital 2 1 50 

St Bride’s Lower 24 6 25 

Chelsea Old Church 4 1 25 

Cross Bones 35 10 29 

Royal London Hospital 1 0 0 
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TABLE 5.3 Number and percentage of individuals with growth disruption by sample status. 

 

 

Assessment of the pars basilaris displays alternative results with limited evidence of growth 

disruption and a strong relationship with dental age-at-death estimates (Fig. 4). In total, 78 

individuals had dental and pars basilaris age-at-death estimates which could be compared. Only 

three individuals had ages derived from assessment of the pars basilaris where no overlap or 

correlation with dental age and age range is present. Results suggest that maximum length and 

maximum width most closely correlate with dental age, whilst sagittal length appears to often 

over-estimate age, particularly for postnatal infant individuals. Averaged age estimates from 

assessment of the three dimensions of the pars basilaris have been considered by dental age (Fig. 

5). Though these averaged age estimates show the pars basilaris also generates younger age 

estimates on average than dental age, comparison of these results to average age estimates 

derived from skeletal long bones (Fig. 2), demonstrates that pars basilaris metrics generates 

estimates which more closely align with dental age.  

 

Pathological assessment of the 169 individuals was undertaken, differentiating lesions by 

location: cranial and postcranial (Table 6.1). Cranial pathology is more prevalent than postcranial 

pathology in all skeletal samples, except St Thomas’ Hospital. The samples from Cross Bones, 

St Bride’s Lower and Broadgate have very high prevalence rates of cranial lesions. St Thomas 

has the highest prevalence rate of postcranial lesions, though both St Benet Sherehog and Cross 

Bones also have high prevalence rates.  

 

 

Sample Status Total N  N Growth Disruption % Growth Disruption 

High 4 1 25 

Middle 7 4 57 

Low 67 18 27 

Unknown 1 0 0 
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Figure 4. Pars Basilaris and dental age-at-death estimates plotted for each individual with age-estimates available. Error ranges (in GWA) have been afforded in accordance with the age estimation methodologies 

employed (AlQahtani et al. 2010; Scheuer & Maclaughlin-Black 1994). Individuals considered to show evidence of growth disruption are those where dental and skeletal age estimates and ranges do not overlap.     

Figure 4. Pars basilaris age-at-death estimates plotted against dental age-at-death for individuals with both estimates available. Results show that the pars basilaris generates similar age estimates as dental 

development. Linear trend lines have been imposed on the data to show this correlation between skeletal and dental age estimates.  
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Figure 5. Mean pars basilaris age estimates (GWA) plotted by dental age. Optimal growth trajectory represents the expected growth profile if dental and skeletal age estimates were found to be identical for each age 

group. Error bars in accordance with dental age estimates have been plotted for optimal growth trajectory to highlight that average skeletal ages typically fall outside of these error ranges.   
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TABLE 6.2 Cranial vault bones by number observed and percentage affected by socioeconomic status. Pathological lesions to each vault element have been documented by location (endo- or ectocranial) and by 

severity (Grade 1, 2 or 3). Percentages for location and severity have been calculated using only those affected. Occasionally percentages for location and severity by each status group total over 100%. This is 

because some individuals showed both endo- and ectocranial pathological changes within a single skeletal element and/or had multiple severity scores. 

 

  

 

 

Sample Total N 
Postcranial Cranial 

Observed N Affected N (%) Observed N Affected N (%) 

Broadgate 21 21 3 (14) 17 12 (71) 

Chelsea Old Church 7 6 1 (17) 7 2 (29) 

St Bride’s Lower 52 52 10 (19) 46 39 (85) 

Royal London Hospital 7 7 2 (29) 4 2 (50) 

St Benet Sherehog 19 19 10 (53) 16 12 (75) 

Crossbones 58 58 24 (41) 54 48 (89) 

St Thomas’ Hospital 5 3 2 (67) 5 3 (60) 
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1 2 3 1 2 3 1 2 3 

High 2 100 100 50 50 100 0 2 100 100 0 50 50 0 4 50 100 0 0 100 0 

Middle 6 100 100 0 17 83 0 7 100 86 14 0 100 14 14 57 100 0 38 63 0 

Low 85 99 99 6 20 67 19 75 99 100 1 30 68 4 109 69 100 0 28 68 5 

TABLE 6.1 Number and percentage of individuals observed with cranial and postcranial pathology given by archaeological sample. 
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TABLE 6.3 Postcranial long bones by number observed and percentage affected by socioeconomic status. Pathological lesions to each long bone have been documented by type of lesion (NBF, Metaphyseal Expansion, 

Morphological Change (e.g. bowing)) and by severity (Grade 1, 2 or 3). Percentages for type of lesion and severity have been calculated using only those affected. Occasionally percentages for lesion type and severity 

by each status group total over 100%. This is because some individuals showed both multiple types of pathological changes within a single skeletal element and/or had multiple severity scores. 

 

 

 

 

TABLE 6.4 Results of chi-squared analysis (X²) of pathological lesions by both socioeconomic status and by archaeological sample. P results in bold are those which are statistically significant. 

 

 

 

 

 

Sample Status 

Humerus Femur Tibia 
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1 2 3 1 2 3 1 2 3 

High 6 0 - - - - - - 3 33 0 100 0 0 100 0 3 33 100 100 0 0 100 0 

Middle 15 27 100 0 0 0 100 0 13 31 75 25 25 25 75 0 9 78 86 14 14 0 100 0 

Low 118 12 79 36 50 28 71 14 111 19 67 52 10 5 90 24 101 26 81 27 12 15 73 19 

 Frontal Bone Parietal Bone Occipital Bone Humerus Femur Tibia 

 X² d.f. p X² d.f. p X² d.f. p X² d.f. p X² d.f. p X² d.f. p 

Sample Status 8.564 2 0.014 3.564 2 0.164 2.812 2 0.24 2.868 2 0.192 0.406 2 0.826 3.356 2 0.223 

Archaeological Sample 21.856 5 0.0001 16.327 5 0.005 5.77 5 0.312 10.66 5 0.033 5.313 5 0.255 9.959 5 0.071 
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Table 6.2. demonstrates that of the cranial vault elements, the frontal bone and parietal bone 

are more commonly affected that the occipital bone. However, all three elements have a 

much greater percentage of endocranial to ectocranial lesions. Severity of grade two is seen 

to be the most prevalent for the individuals assessed, though interestingly the low status 

individuals typically have more lesions of severity three than either the middle or high status 

individuals. This pattern is substantiated from pathological assessment of the postcranial long 

bones (Table 6.3), where only low status individuals have recorded lesions of grade three 

severity. Analysis suggests that the tibia is the most commonly affected element within all 

social status groups, though most commonly affected in the middle class individuals. New 

bone formation has been identified as the primary pathological lesion recorded within these 

long bones, however, metaphyseal expansion is also prevalent, particularly within the low 

status sample. Limited statistically significant associations were found between social status 

and prevalence of pathological lesions (Table 6.4). However, when considered by individual 

archaeological samples, multiple statistically significant associations emerge. This may 

suggest that combining archaeological samples by status masks the individual differences 

between the samples.   

 

Discussion: 

Non-adults, particularly those of the youngest age categories (e.g. fetal, perinatal and infant 

individuals) are widely considered to be the most vulnerable to adverse environmental 

conditions and experiences (Humphrey 2000a; Newman & Gowland 2017). A consequence 

of age, both an under-developed immune system (Rogers 1997; Perry 2006; Halcrow and 

Tayles 2008), and a total reliance on others for care and wellbeing both pre- and postnatally 

(Lewis 2017a), makes them the most physiologically susceptible members of a community to 

health and growth disruption. A wealth of intrinsic and extrinsic factors are known to regulate 

growth and health, and result in adverse birth and life course outcomes (Goodman & 

Armelagos 1988; Goodman et al. 1988; Bush & Zvelebil 1991). Though the reflection of 

detrimental and limiting factors on the skeletal remains of adults and older children have 

widely been considered, lack of studies regarding the youngest age categories prevails 

(Halcrow & Tayles 2008; Halcrow et al. 2017; Lewis 2017c).  

 

With recent development of the DOHaD hypothesis, the intrinsic links between maternal and 

infant wellbeing, and the sociocultural and environmental conditions of pre- and postnatal life 
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have become of paramount consideration (Barker et al. 2002; Agarwal 2016). Ultimately 

then, fetal, perinatal and infant growth and health status is a reflection of the interaction 

between both environmental and genetic factors. The intrauterine environment is one which 

the fetal offspring has limited regulation of, being reliant entirely upon the mother for 

nutritional and immunological buffering against stressful exposures (Bateson et al. 2004; 

Barker et al. 2012; Boersma & Tamashiro 2015). Consequently, identification of health and 

growth disruption within these young individuals signals an adverse pre- and/or postnatal 

environment.  

 

Assessment of skeletal growth profiles for the 169 post-Medieval individuals analysed from 

post-Medieval London has revealed that growth disruption was present within all samples. 

Consideration of dental and skeletal age estimates has revealed a varying pattern of growth 

disruption, seemingly dependent on the skeletal element considered. Diaphyseal lengths of 

long bones have been shown to consistently under-age individuals compared to dental age, 

though the pars basilaris appears more comparable to dental age-at-death estimates. The pars 

basilaris is typically considered to be a robust bone of the base of the cranium (Redfield 

1970). The cranial base, is one of the most complex skeletal structures, and first appears 

around the fourth gestational week (Scheuer & Black 2000a; St. Jacques & Helms 2003). It is 

known that the body prioritises growth of particular skeletal and soft-tissue structures, with 

the brain sitting at the top of this physiological hierarchy (Barker et al. 2012; Agarwal 2016; 

Said-Mohamed et al. 2018). This prioritisation of the brain requires the cranial bones to be 

equally adequately developed (Karsenty & Kronenberg 2003). Therefore, the speed of growth 

within bones of the cranium is considered to be a reflection of the rapidity of brain growth 

during this age (Scheuer & Black 2000b; Lewis 2007). In fact, infants dedicate up to 87% of 

their resting metabolic rate to brain development (Bogin 2001; 2012; Said-Mohamed et al. 

2018), thus, skeletal growth of the cranium must coincide with this prioritisation. When 

growth disruption is experienced, there is often a trade-off between skeletal structures 

(Barker et al. 2012; Said-Mohamed et al. 2018). Typically, longitudinal growth of the long 

bones is expended for the benefit of the brain and bones of the cranium (Aiello & Wells 

2002; Kuzawa et al. 2014; Sandman et al. 2016; Said-Mohamed et al. 2018). This is because 

energetic resources (e.g. nutrition) are redistributed with certain bodily structures prioritised, 

typically resulting in the slowing and disruption of skeletal growth (Agarwal 2016). Findings 

from this study support the conclusion that the pars basilaris is prioritised in regards to 

growth, and is found to be more robust against environmental changes. Hence, the pars 
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basilaris is less likely to reflect evidence of growth disruption, and therefore, more likely to 

align with dental age-at-death estimates. Consequently, when individuals were considered 

discretely by dental and pars basilaris age, results were found to show parity. Therefore, the 

growth and development of both dentition and the pars basilaris is considered to be resilient 

against environmental stressors. 

 

Assessment of diaphyseal growth of the long bones shows a much more variable growth 

profile, with average age estimates, by dental group, almost all falling significantly below 

dental age. Individuals within the 64 GWA dental category show a diverging growth 

trajectory between femoral, humeral and tibial elements. Though small sample sizes inhibit 

the discussion of these findings, it is possible that these skeletal elements are each adopting 

various growth trajectories. Though growth is known to vary between element, in terms of 

the growth increment afforded each week/month (e.g. Issel 1986), growth profiles should 

result in all elements following a similar trajectory. Variation in growth, whereby one 

element appears to be disrupted or limited, is often considered to be a reflection of poor 

environment. The bones of the lower limb are considered to have more sensitive growth 

profiles, as they are some of the most rapidly growing bones of the body (Lewis 2002a). In 

particular, the tibia has commonly been considered to be the long bone element which shows 

increased variability and disruption when stress is experienced (Pomeroy et al. 2012). 

Though limited, findings of growth disruption within this study supports these previous 

conclusions, showing the tibia often reflects the greatest growth disruption. Furthermore, the 

tibia has also been identified within this study as the long bone which shows the highest 

prevalence rates of pathology (Table 6.3), corroborating the assumption that this bone is the 

most sensitive to growth and health stress.  

 

Increased evidence of growth disruption in the older age categories (58-64 GWA) may be 

indicative of a postnatal drop off in growth. The ability for a mother, regardless of her own 

health status, to buffer the child from environmental and external factors is greater in utero 

than postnatally (Gowland 2015) – though passive immunity and nutritional buffering can be 

afforded from breast milk (Eisenberg et al. 2017; Lewis 2017b). Interestingly, no individuals 

dentally aged to be 46 GWA show any evidence of growth disruption, though individuals 

dentally aged to be both younger and older do. However, Cross Bones is the only site where 

perinatal individuals (38 and 39 GWA) were found to show growth disruption. Therefore, 

growth disruption may be suspected to be present in individuals where postnatal buffering is 
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insufficient to protect them from the extensive pathogenic environment into which they were 

born. Conversely, those showing prenatal growth disruption represent the most fundamentally 

deprived, where maternal regulation of the intrauterine environment is highly compromised 

as a result of deleterious stressors experienced. Thus, those aged 46 GWA may represent 

those who were able to be buffered to some extent both pre- and postnatally, evident in the 

lack of growth disruption, despite growth profiles beginning to fall during this age category. 

However, ultimately those aged 46 GWA were still individuals who succumbed to death, 

though this may have been so rapid that minimal changes to the skeleton can be observed.  

 

Growth disparities within infants and older children have been widely documented, 

particularly in regards to varying socioeconomic status and poverty factors (Sinclair 1985). 

Results of this study suggest that socioeconomic and environmental impacts on growth can 

be traced in individuals of much younger ages, and even within pre- and perinatal individuals. 

This study has shown that individuals aged dentally to be as young as 38 GWA show 

evidence of growth disruption. Growth disruption is a cumulative process, whereby evidence 

of disruption increases as the individual continues to be exposed to the detrimental stressor. 

For significant growth changes to occur in individuals as young as 38 GWA, interpretations 

of chronic exposure to stress are supported. 

 

Evidence from individual assessment of growth disruption also identified Cross Bones and St 

Bride’s Lower as having the most individuals showing prevalence of growth disruption 

(Table 5.2). Although when considered by percentage of overall sample St Benet Sherehog is 

found to have the highest prevalence rate, this is likely a product of the small sample sizes 

considered. In contrast, both Cross Bones and St Bride’s Lower have larger samples of 

individuals, with around ~25-30% of individuals showing growth disruption. Correlation of 

these disruptions with evidence of pathological lesions shows that Cross Bones and St 

Bride’s Lower have the two highest prevalence rates for cranial pathology (Table 6.1). 

Furthermore, if findings from St Thomas’ Hospital are overlooked, due to small sample size, 

Cross Bones equally has the most evidence for postcranial pathological lesions. 

Consideration of growth disruption by social status (Table 5.3) suggests that the middle status 

individuals show the highest frequency of growth disruption, followed by the low status 

individuals. However, when individual growth disruption is considered (Fig. 3), those with 

the greatest evidence of growth disruption (the biggest differences in gestational weeks 

between skeletal and dental age estimates), are primarily from the Cross Bones and St. 
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Bride’s Lower samples. This suggests that although individuals from the middle status 

sample show greatest frequency of growth disruption, individuals from the low status 

samples have the severest evidence of growth disruption.  

 

Pathological lesions corroborate this assumption, showing that the low status samples of 

Cross Bones and St. Bride’s Lower typically have both the highest frequency of, and 

severest, pathological changes. Despite the prevalence of pathological changes in all samples, 

with similarly high prevalence rates in the middle status individuals, the severity of changes 

in the low status samples supports suggestions that disease exposure and susceptibility is 

increased in those of the lowest social strata. In fact, Southwark, where Cross Bones is 

located, has been described as ‘…nurseries…of the begging poor that swarm within the City’ 

(Beier 1978), whilst mortality books from the parish of St Bride’s reveal that the first year of 

life was the most perilous (Forbes 1972). Diseases of poverty are typically those associated 

with nutritional deficiency as a result of reduced food intake and a limited diversity of 

available foodstuffs (Dowler & Dobson 1997). Food has been suggested to be the most 

flexible in terms of household expenditure, and thus often the variable most compromised on 

(Dowler & Dobson 1997). Only those of low status were found to have postcranial lesions 

recorded within the grade three severity category, and also showed high rates of metaphyseal 

expansion. These changes are consistent with diseases of nutritional deficiency. 

 

Vitamin C and vitamin D deficiency are the most commonly considered within 

bioarchaeological literature, however, a diverse range of nutrients and vitamins could be the 

underlying cause of such changes. Interpretations of vitamin D deficiency can be supposed 

due to the bowing identified within some of the limb bones assessed (N=10). Though these 

individuals are too young to be weight-bearing, intrauterine restriction may be responsible for 

these changes (Abbott 1901). Indeed, similar changes to those observed within this study 

have been identified clinically in cases of congenital rickets (Innes et al. 2002; Anatoliotaki 

et al. 2003). Consequently, such large expansion at the metaphyses, combined with extensive 

expansion of the trabecular bone structure, suggests that many of the individuals, and 

subsequently their mothers, were chronically vitamin D deficient. Similarly, scurvy has been 

identified clinically within fetal and perinatal individuals (Besbes et al. 2010) and is 

considered to occur in individuals where there is poor maternal intake of fresh fruit and 

vegetables (Brickley & Ives 2006). Skeletal changes consistent with vitamin C deficiency are 

expansion of the metaphyses and periosteal NBF as a consequence of weakened blood 
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vessels which easily rupture and haemorrhage (Aufderheide & Rodríguez-Martín 1998; 

Brickley & Ives 2006; Besbes et al. 2010). Vitamin C deficiency is suggested to only be 

observable in the skeleton after ~6 months of chronic deficiency, though this time may be 

less in rapidly growing and remodelling bones of non-adults (Brickley & Ives 2006; Mays 

2014). However, skeletal evidence for Vitamin C deficiency within the individuals analysed 

suggests a severe prenatal deficiency, likely as a consequence of maternal deficiency. Such 

changes would not be observable unless chronic malnutrition was being experienced, and is 

suggestive that these high prevalence rates of NBF, particularly within the lower status 

archaeological samples, are reflecting poor maternal health and a deprived dietary intake of 

sufficient vitamins and nutrients.  

 

Urban centres, such as London, were known for their poverty, poor living and working 

conditions and heavy pollution (De Witte et al. 2016; Newman & Gowland 2017). Mortality 

rates within such places were extremely high and life expectancy was decreased (Storey 

1992; Feinstein 1993). Urban environments of the post-Medieval period are considered to 

have been places where diseases flourished (Lewis 2002b). Diseases such as cholera, 

smallpox, measles, whooping cough, tuberculosis, scarlet fever and typhoid are considered to 

prosper in the deleterious environmental conditions or urban centres at this time (Forbes 

1972; Lewis 2002b). Social inequalities have been found to increase disease emergence and 

spread between individuals (Farmer 1996). The severity of lesions identified within the low 

status samples assessed may corroborate an infectious origin of the stressors experienced. 

Furthermore, evidence for syphilis and tuberculosis have been found within the adult 

populations supporting evidence for a high pathogen filled environment within post-Medieval 

London (Museum of London: Wellcome Osteological Research Database). Eight individuals 

(Broadgate = 1, St Thomas’ Hospital = 1, Cross Bones = 5, and Royal London Hospital = 1) 

have evidence of systemic pathological lesions, where new bone formation has been 

identified throughout the long bones and all recorded as being of grade three severity. These 

individuals may hence best reflect evidence for infectious disease. Significantly, all of these 

individuals are from the low status samples, except for the individual from the Royal London 

Hospital where status is unknown. 

 

Social stratification is suggested to have altered individuals’ susceptibility to disease, thus the 

lower your position within the social hierarchy, the greater the chance of health disruption 

(Beier 1978; Babones 2008). Multifactorial consequences of this increased predisposition and 
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susceptibility include living and working environments, diet, access to health care, and 

education and understanding of healthcare practices (Feinstein 1993; Dowler & Dobson 

1997). However, some studies have suggested that there is an intrinsic link between immune 

function and social position, suggesting exposure to stressful early life environments can alter 

immunity and regulation of bodily responses to infections (Babones 2008). This means 

maternal stress, as a consequence of the given factors (e.g. living conditions, poor diet, 

limited healthcare), can regulate offspring immune response, predisposing individuals to an 

inability to initiate or maintain sufficient immune responses to disease. Individuals from 

Cross Bones and St Bride’s Lower may therefore show severe pathological changes 

consistent with this inability, where individuals are unable to regulate and overcome 

stressors, and in turn again reflect the poor health status of maternal individuals within these 

populations.  

 

A recent study by Newman and Gowland (2017) has considered older infants and children 

from some of the same samples in post-Medieval London. Their results also highlight Cross 

Bones as the sample showing greatest growth and health disruption as a consequence of 

increased morbidity and mortality risks (Newman & Gowland 2017). However, their findings 

also highlight the unexpected level of growth disruption in the high status population of 

Chelsea Old Church, which they attribute to the class defined child rearing practices of the 

time rather than poverty (Newman & Gowland 2017). Cultural practices of swaddling, 

staying indoors and the wearing of heavy clothes would have all limited exposure to sunlight 

and consequently, high status individuals were also commonly found to show evidence of 

rickets. For low status individuals, increased incidence of vitamin D deficiency are likely the 

result of living and working conditions, and heavy atmospheric pollution. Pregnancy-related 

cultural practices, as well as response, treatment and care of the child once born can all also 

be reflected in individual growth and health status (Finlay 2013; Satterlee Blake 2018; e.g. 

Wilkie 2013). Furthermore, class defined practices of pregnancy-related care must not be 

overlooked (Boulton 2000), as distinct differences in experiences for expectant mothers are 

likely between those of high and low social status. 

 

Many low status women had to return to work as soon as possible after birth of offspring, as 

household economies often relied on both parents earning an income (Boulton 2000). This 

means that many children were not breastfed, and instead were left in the care of elderly 

parents, neighbours or siblings (Boulton 2000). Of course some children were not reared at 
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all by their family and were instead handed over to authorities (Boulton 2000), though it is 

suspected this was only intended to be a temporary measure for the majority of parents. 

However, it has been well established that pauper households were deliberately fragmented, 

in an attempt for survival (Boulton 2000). Postnatal health and growth of offspring likely 

reflects these survival strategies, particularly in regards to the lack of breastfeeding practices.  

 

Breastfeeding practices have been found to be strongly regulated by social status (Fildes 

1988; 1995; Nitsch et al. 2011; DeWitte et al. 2016). Perinates and infants who are artificially 

fed, rather than breastfed, have been found to have increased disease and mortality risks 

(Fildes 1995; DeWitte et al. 2016). Though wet-nursing was popular among the higher social 

strata, dry-feeding became popular throughout society (DeWitte et al. 2016). With dry 

feeding, perinates and infants were fed a mixture of grains, water, broth and milk (DeWitte et 

al. 2016). Breastmilk, particularly that of colostrum (the initial thick breastmilk available 

directly after birth), is important for both the nutritional and immunological wellbeing of the 

infant (Eisenberg et al. 2017; Lewis 2017b). Breastmilk enables the transfer of maternal 

antibodies, as well as triggering the individuals own immune system and functioning 

(DeWitte et al. 2016). Therefore, breastfeeding is the optimum feeding practice as it buffers 

the offspring from environmental stressors during a period when their own immune function 

is immature and precarious. Maternal breast milk is also known to have high concentrations 

of vitamin A, needed to sustain rapid growth in the postpartum environment (Fujita et al. 

2017, 1-2). Therefore, restriction and withholding of this dietary resource through cultural 

feeding practices predisposes the offspring to increased disease susceptibility. Lower status 

women comprehensively adopted the practice of dry feeding, often as it meant they could 

return to work quickly and was cheap (DeWitte et al. 2016). Growth and health disruption, 

particularly in postnatal individuals from the low status samples assessed may reflect these 

detrimental feeding practices.  

 

This study has identified individuals from the middling class, those from St Benet Sherehog, 

to show a reduction in both growth and health status. However, though this middle social 

class shows the highest frequency of both growth and health disruption, low status 

individuals show a greater severity to both variables. A higher frequency of individuals 

showing these changes may then instead be consistent with a greater survival rate for these 

middling class individuals. Despite being exposed, and suffering from these disruptions, 

wide-scale identification of these changes within the skeletal samples suggests that, despite 
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many individuals being exposed to detrimental conditions, many also survived long enough 

for skeletal changes to occur. Particularly because the severity is reduced in these middle 

status individuals it may be suggested that they are somehow able to buffer and cope with the 

detrimental stressors more readily. In contrast, low status individuals show significant 

evidence of growth disruption, with the biggest difference being over 20 GWA between 

skeletal and dental estimates. Pathological lesions for the low status individuals were also 

found, in general, to be more severe. Therefore, despite high prevalence rates of growth and 

health disruption within the middling class, severity of changes may be more enlightening as 

to the type and profusion of health stresses experienced.  

 

The importance of a wealth of environmental factors for early life success and wellbeing 

cannot be downplayed. Disparity in growth between individuals in the first seven years of life 

has been purported as being almost completely environmentally regulated (Habicht et al. 

1974). Johnston et al. (1976) corroborated this suggestion finding growth variation in 

between Guatemalan and European children was not found to be hereditary, but instead 

dependent on living environment. Furthermore, Feinstein (1993) emphasises that poverty 

above all factors is the most predominant factor regulating health, growth and mortality. 

Considering this in relation to the known deprived and deleterious living environments of 

post-Medieval London suggests that conditions experienced by mothers and their offspring 

pre- and postnatally were paramount in causing growth and health disruption. By the mid-19th 

century it is suspected that nearly half the population of England lived in urban centres 

(Schofield 1994). The overcrowding and lack of housing, particularly of sufficient sanitary 

condition, meant those living within these ‘slums’ were at higher risk of exposure to disease, 

infection and thus ultimately, death. Sever postnatal evidence of growth and health disruption 

is likely a consequence of individuals emerging into a heavily pathogen-loaded environment. 

Given the potential for an already reduced health and growth status as a result of maternal 

deprivation, lack of breastfeeding and polluted living conditions only appears to have 

exacerbated the levels of stress individuals were exposed to.  

 

Despite clear evidence for health and growth disruption, no individuals, from any of the 

samples, or from any of the social status groups were dentally aged to be fetal. This may be 

significant in suggesting very few individuals were born, and died, prematurely. However, it 

is more likely to be a result of dental remains being unavailable for recovery and assessment 

in the younger individuals, or even that individuals who were born prematurely/still born, 
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were not buried within the cemetery samples. That is not to say these individuals do not exist 

within the samples, especially as these detrimental birth outcomes (e.g. prematurity/stillbirth) 

are strongly correlated with exposure to intrinsic and extrinsic stressors (e.g. Chiswick 1985; 

Goldenberg & Thompson 2003; Abu-Saad & Fraser 2010; Cussons-Read et al. 2012; 

Beaudrap et al. 2013; Fell et al. 2016; Melby et al. 2016). Instead some of these individuals 

may instead be reflected in the perinatal or infant individuals, where they subsequently went 

on to survive for a number of days/weeks afterwards. However, assessment of skeletal 

diaphyseal lengths revealed that the youngest age estimates generated for the femora, tibiae 

and humeri were 26, 25 and 22 GWA respectively. Regardless of the potential for skeletal 

growth disruption, analysis of skeletal remains suggests that premature and/or stillborn 

individuals are present within the sample. In fact, 40 individuals have femoral age estimates 

which fall into the fetal age range, with 41 individuals having tibial, and 43 individuals 

having humeral diaphyseal length measurements which generate fetal age-at-death estimates. 

Consequently, given the youngest skeletal age estimates generated from diaphyseal length 

measurements are between 20 and 30 GWA it is likely that these individuals were premature 

and/or still born regardless of what their dental development would have suggested. 

Significantly, of the 40 individuals with femoral measurements under 36 GWA, 35 are from 

the low status sample, three are from the middling group, whilst two are unknown. Similar 

patterns are observed for the tibiae and humeri, though one high status individual from 

Chelsea Old Church has the lowest humeral age estimate of 22 GWA. Consequently, these 

findings suggest that detrimental birth outcomes may show some correlation to social status 

within these samples. 

 

Finally, despite genetic variation not being considered central to evidence of disruption, 

increasing research into epigenetics and phenotypic plasticity has established a link between 

early life stress and intergenerational consequences (Gowland 2015; Mays et al. 2017; e.g. 

Bateson et al. 2004). Ultimately, adverse early life experiences decrease longevity and 

increase frailty (Gowland 2015). Holland Jones (2005) highlights a critical point, 

acknowledging that adaptive phenotypic consequences become integral to future generations’ 

genetic structure, meaning what was an adaptive response by one individual becomes the 

basis of ‘future life history tactics’ in the offspring. This potentially predisposes offspring to 

(mal)adaptation in response to the adverse or beneficial environments experienced. Thus, the 

fetal, perinatal and infant individuals assessed do not represent a static representation of 

health and wellbeing for post-Medieval London. Conversely, the health and growth 
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disruption identified within these individuals may represent multigenerational, cumulative 

consequences of deprived living environments.  

 

Conclusion 

With modern infant mortality still known to be substantially reliant on a multitude of socially 

and environmentally regulated parameters (Marmot 2005), evidence of growth and health 

disruption, particularly within the samples of individuals from Cross Bones and St Bride’s 

Lower, suggests that socioeconomic status was central in regulating adversity to health and 

growth. Levels of growth disruption were found to be statistically significant for all age 

groups suggesting a universally deprived pre- and postnatal environment. Evidence of such 

significant growth disruption, and high prevalence rates, particularly of cranial lesions, 

indicates that maternal health was fundamentally reduced to such an extent where buffering 

of the offspring had been minimal for a substantive period of time. Furthermore, 

consideration of long-term health consequences and epigenetic changes may mean these 

individuals reflect cumulative exposure to detrimental early life experiences. Parity between 

dental age-at-death estimates and those generated from the pars basilaris indicates that 

utilising these measurements as proxies for chronological age is applicable. Therefore, when 

dentition is absent and unavailable for assessment, it is suggested that metric analysis of the 

pars basilaris provides an adequate substitution. As such, the diaphyseal length of limb bones 

are indicated to be highly variable and severely altered in response to stressors, correlating 

with other published findings. Subsequently, diaphyseal lengths of long bones should no 

longer be used in generating age-estimates which will be used as proxies for chronological 

age.  

 

Ultimately, assessment of growth and health has revealed that clear patterns of disruption can 

be identified in the very youngest members of past populations from post-Medieval London. 

These findings have substantiated ideas of a bounded experience between mother and off-

spring, where maternal regulation of both intrinsic and extrinsic factors is central to infant 

health and wellbeing.  
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Abstract: Evaluating growth in order to estimate age-at-death for fetal, perinatal and infant 

individuals has long been an anthropological concern. Growth standards, from which ages in 

gestational weeks are derived, have been developed using both documented and 

archaeological samples. Within bioarchaeology, these methods are commonly employed to 

generate age estimates, often with little consideration of the comparability between the 

reference data and sample assessed. This study considers 140 individuals from the 

Smithsonian Fetal Collection of known age, sex and ancestry. Skeletal growth profiles, 

plotting mean skeletal and dental ages against documented age, were constructed for these 

individuals. Skeletal growth profiles for the femur, tibia and humerus were developed. 

Analysis of dental, skeletal and documented age was also undertaken to explore specific 

evidence of growth disruption. Results suggest that dental development, when error ranges 

are included, can be used as a proxy for chronological age within this population. However, 

both female and black individuals have increased dental development for gestational age, 

resulting in over-estimations of age-at-death. Conversely, age-at-death estimates based on 

diaphyseal length were found to consistently show significant underestimation of age, 

particularly within postnatal age categories, with ages derived from long bone diaphyseal 

lengths found to cluster around ~40 GWA, a common problem of this age estimation 

methodology. Furthermore, the tibia was found to be the most sensitive long bone to growth 

disruption. Metric analysis of the pars basilaris suggests that this element shows parity with 

both dental and documented age. Consequently, this bone may be suggested to be a good 

proxy for chronological age. Findings from this study contribute to the ongoing discussion 

considering the multitude of environmental and biological parameters that can regulate 

growth in the early life course, highlighting diverging growth strategies between individuals 

and the potential implications for archaeological assessment and interpretation of age-at-

death.  
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Introduction 

Estimating age-at-death has been a central concern within bioarchaeological and 

anthropological studies (Falys & Lewis 2011). Such assessment is paramount to the 

construction of osteobiographies and for biocultural interpretations of the life course (Robb 

2002; Sofaer 2006; Gowland 2006; Falys & Lewis 2011). Consequently, research into the 

‘normal’ trajectory of growth and development has been ongoing for more than a century 

(e.g. Boas 1930; Tanner 1978; Bogin 1999), and has resulted in a well-established 

chronological sequence for healthy skeletal and dental progression in non-adults. Prior to 

skeletal maturity, changes in bone and dental size and morphology, together with the 

ossification and fusion of skeletal elements, provides a wide range of biological parameters to 

use for age estimation (Falys & Lewis 2011). For fetal, perinatal and infant skeletons, the 

rapidity of growth during this period provides a high degree of chronological resolution; ages 

are often estimated within an error range of two or four gestational weeks up until the 

perinatal period, extending to a range of a few months thereafter until one year of age (e.g. 

Scheuer et al. 1980; AlQahtani et al. 2010). Until recently, detailed studies of fetal, perinatal 

and infant remains were relatively scarce in the bioarchaeological literature (Halcrow et al. 

2018). However, the importance of these early life stages for understanding longer-term 

health has stimulated interest in the mother-infant nexus and the intersection of biology and 

culture at the beginnings of life.  

 

This study aims to investigate the complex relationship between growth and the assessment 

of age-at-death in fetal, perinatal and infant remains. A large documented medical collection 

was examined to assess the veracity of multiple methods for estimating age-at-death. This 

analysis explicitly recognises the contextual nature of this medical collection and the 

potential for growth disruption and adversity to have impacted on the growth and health of 

these individuals during their brief and fragile existence. Indeed, it is important to 

acknowledge that such skeletal collections do not represent a ‘biological control’: these 

individuals did not live their short lives and die within a social vacuum. Nor should we be 

insensitive to the circumstances of structural violence, which may have been responsible for 

their curatorial end, as opposed to burial (Gindhart 1989; Nystrom 2014). The fetuses, 

perinates and infants that constitute this collection were conceived and grew within social 

worlds, and will have been affected by maternal well-being: moulded by genetic, epigenetic 

and environmental factors. Nevertheless, large, documented samples of fetal and young 
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infants are scarce and such analyses have the potential to advance our understanding of this 

neglected demographic in the more distant past (Halcrow et al. 2018; Lewis 2018). 

 

Fetal, Perinatal and Infant Growth and Development: 

Intrauterine growth represents the most rapid phase of human development (Sinclair 1985; 

Roth 1992; Gluckman 1997). The developing fetus will receive all of their nutrition, and 

immunological and environmental buffering from their mother (Gowland 2015); if maternal 

health and environment is compromised, fetal growth and development will be adversely 

affected (Gowland 2015). Postnatal maternal nutritional deficiencies or infections may also 

impact the ability of the mother to provide optimal nutrients via breastfeeding, affecting 

immunology and increasing disease susceptibility (Fujita et al. 2017). The rapidity of growth 

and development during early life also contributes towards the precariousness of this period, 

which is characterised as one of enhanced plasticity, when life course trajectories are most 

easily diverted from the optimum (Roth 1992; Armelagos et al. 2009). 

  

The quick and rapid turnover of bone in fetal, perinatal and infant individuals also means that 

any insults are likely to be reflected more quickly within the skeleton (Lewis 2017). 

Conversely, more acute insults may heal more rapidly and leave no discernible trace (Bush & 

Zvelebil 1991, 5; Cardoso 2007, 231). The mother is generally conceptualised as a buffer, 

absorbing the brunt of adverse environmental conditions at the cost of her own health 

(Gowland 2015). Evidence of intrauterine growth disruption reflects the fact that the mother 

no longer retains sufficient stores to adequately buffer or optimally support the fetus/infant 

(Barker et al. 2012). Fetuses with no identifiable growth disruption, therefore, did not 

necessarily develop within an ideal environment, instead their growth was prioritised and 

maintained at expense of the mother (Gowland 2015).  

 

Many clinical and anthropological studies have considered both intrinsic and extrinsic 

factors, such as nutrition, parity, health and socioeconomic status, political changes and 

psychological health on growth and development (e.g. Schell 1981; Adair 2004), all of which 

have been found to affect the size of the child at birth, and thus the diaphyseal length of long 

bones (Lewis 2007). The interplay between such impacts and growth is complex. Growth 

disruption is not experienced uniformly between individuals, regardless of whether the 

adversity faced is similar or not, and individual experience, predisposition and susceptibility 

to disruption will ultimately reflect varying growth and age profiles between individuals 
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(Rogers 1997; Falys & Lewis 2011; Garcia et al. 2017). Those factors, which can have a 

limiting effect on growth and development, have been termed as non-specific ‘stressors’ 

throughout much of the published literature (Goodman et al. 1988; Lewis & Roberts 1997; 

Goodman & Martin 2002) and are referred to as such within this study. 

 

Unravelling Age-Related Terminology: 

Age is a complex biological, chronological and cultural construction (Gowland 2002; Baxter 

2005; Lewis 2007) and bioarchaeology has utilised chronological age as a standardised unit 

of analysis with which to investigate past life courses, health and social practice (e.g. 

Stoodley 2000; Gowland 2001; 2002; 2006). This study uses age estimation as a tool for 

analysis to distinguish evidence of growth disruption, by comparing age-at-death estimates 

generated from a variety of cranial and postcranial bones and teeth (Huda & Bowman 1995). 

Dental and skeletal assessments are those which measure an aspect of physiological 

(biological) development (Lewis 2007; Couoh 2017) and these are then translated into a 

chronological age via the medium of modern known age reference standards (Gowland 

2006). However, given the ways in which growth and development can be altered and 

disrupted, age estimates derived from a stage of physiological development do not always 

correlate to ‘true’ chronological age (Saunders et al. 1993). By investigating individuals of 

known age-at-death, accuracy of ageing methodologies elements can be assessed, as well as 

the impact of health stress on growth and development.  

 

As this is a documented population, true chronological age estimates for some of the 

individuals assessed were provided. Consequently, these ‘known’ ages have been referred to 

as documented ages throughout this study. However, although many of the individuals were 

ascribed an age-at-death at time of curation (see Materials section for more details), the 

terminology employed lacks standardisation. Thus, this study, though constrained by the 

terminology employed in collection of the individuals, suggests the use of the terms fetus, 

perinate and infant to distinguish between individuals based on their physiological growth 

and development (Table 1.). These age-at-death categories and terminologies were also 

defined in consideration of the potential life course events these individuals experienced (e.g. 

Wiley & Pike 1998). 

 

All age estimates throughout this study have been provided in gestational weeks of age, 

referred to as GWA.  
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Materials 

The fetal and infant collection dates to the first two decades of the 20th century and was 

compiled by Aleš Hrdlička (Gindhart 1989; Hunt personal communication) who, whilst 

working at the USNM (United States National Museum), now the NMNH (National Museum 

of Natural History), corresponded with many active and practicing medical professionals, 

who donated or exchanged human remains with the museum (Hunt personal communication). 

The skeletons derive primarily from Washington D.C., Baltimore, Maryland and the 

metropolitan areas on the north-east coast of the United States of America (Gindhart 1989). 

The individuals within the collection are believed to have been acquired between 1903 and 

1917 (Gindhart 1989) and collected/donated from medical institutions including Columbia 

Hospital, Freedman’s Hospital, Howard University, and University of Maryland School of 

Medicine (Hunt personal communication).  

 

Originally, 365 fetal individuals were collected and curated by the NMNH, but today 320 of 

those are still present, with 45 having been damaged or mixed, and consequently 

deaccessioned (Hunt personal communication). Of the 320 skeletons, the majority have a 

recorded age, sex and ‘ancestry’ (Hunt personal communication). When the collection was 

originally curated the skeletons were assigned as either ‘Black’, ‘White’, ‘Coloured’ or 

‘Mulato’ (Kósa 2002). Although today, ethically and racially, this practice and terminology is 

inappropriate and misleading, the collection currently still remains distinguished in this way.  

  

Of the 320 individuals available for analysis, only 140 were assessed for the purposes of this 

study due to time and access constraints. This sample was randomly chosen and encompassed 

individuals of a range of gestational ages, sex and ancestry, as well as with a range of medical 

conditions. As yet there is no database or record of the individuals considering their 

Fetus < 36 GWA 

Perinate 36-44 GWA 

Infant > 44 GWA 

TABLE 1. Definitions of age-related terminology employed within this study. 
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preservation, or detailing the skeletal elements available for analysis. Therefore, it was 

unknown how many individuals in total had dentition and/or skeletal elements available for 

analysis. Although ideally, only individuals with both dentition and skeletal elements would 

have been studied, there was no way to determine which individuals would be best for 

assessment without visually considering each one. Consequently, a random sample was 

selected. As a result of this selection strategy, no individuals afforded the term ‘Mulato’ were 

considered in assessment, and only one ‘coloured’ individual was analysed. This was not a 

deliberate selection or assessment bias, but likely reflects the fact that less individuals termed 

to be ‘Mulato’ or ‘coloured’ are listed within the medical sample.   

 

Although this population provides a rare opportunity to consider a historical ‘known’ 

fetal/infant population, there are some limitations to the documentation that need to be 

addressed. Ethical considerations of the collection and curation methods employed have not 

been widely addressed, but individuals are likely to have been retained as a result of highly 

unethical procedures (See Gindhart (1989) for a comprehensive discussion of collection and 

curation practices). Indeed, although black and white individuals broadly comprise of fifty 

percent of the sample each, Gindhart (1989) does consider that those remains of black 

individuals may have been targeted for collection. Furthermore, many of the individuals have 

specific congenital conditions, particularly those of neural tube defects, and thus may have 

been collected based on the diseases/conditions they presented. As a result, this sample may 

show elevated levels of particular pathological conditions and associated growth disruption. 

Black individuals are also considered to have been more likely to present with pathological 

conditions, as they commonly experienced higher rates of disease/infection in life (Gindhart 

1989), and so likely received greater selection for collection.  

 

Ages-at death were recorded by a number of terms – gestational months and weeks/days were 

provided in varying instances. Table 2 outlines the range of specific terminology that was 

recorded for individuals within the collection. Conversion of these terms into gestational 

weeks, to enable easier comparison between individuals, was undertaken and is also 

presented in Table 2. This has been undertaken in accordance with the standards outlined by 

Huxley and Angevine (1998) who provide a conversion chart for the transfer of ages reported 

in gestational and lunar months into those of gestational weeks.  
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Individuals with no specific age recorded (e.g. months/days) were noted as either a fetus, 

infant or child. Some individuals were afforded the additional detail of ‘Newborn’ or ‘Died at 

Birth’. This study assumes that those individuals classified as ‘Newborn’ or ‘Died at Birth’ 

were around or close to full term, particularly as other individuals described as such are aged 

to be ‘9 in utero months’ or ‘Full Term’. Table 2 also outlines the age ranges attributed for 

this various terminology. Within assessment of these individuals, as no precise age-at-death 

in gestational weeks is known, skeletal and dental age estimates are only considered in 

correlation to the age ranges ascribed to them based on terminology. Although the categories 

of ‘infant’ and ‘child’ are both classified as simply being comprised of those individuals over 

44 GWA, there does seem to be a clear distinction in the historical recording of these 

individuals. Consequently, it is supposed that ‘children’ represent older individuals than those 

classified as ‘infants’. However, as no age-at-death estimates in gestational weeks are 

recorded for these individuals both have simply been classified as over 44 GWA. To 

determine whether those defined as ‘children’ are indeed older on average than those 

classified as ‘infants’, these categories have remained discrete.   

  

Table 3 details the number of individuals assessed by gestational age/age category, biological 

sex and ‘ancestry’. Individuals in the categories ‘9 months in utero’, ‘full term’ and ‘one day 

old’ have been combined as their age estimates are all 40 gestational weeks.  
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TABLE 2. Age-related terminology used in the Smithsonian Fetal Collection and conversion 

to terminology and age estimates employed within this study. 

 

 

  

 

 

 

Study Terminology Collection Terminology 
Age Estimation 

(Gestational Weeks of Age) 

Fetal 

Individuals 

Fetus < 36  

3 months in utero 13-14 

4 months in utero 18  

5 months in utero 22-23 

6 months in utero 26-27 

6.5 months in utero 29 

7 months in utero 31-32 

8 months in utero 35-36 

Perinatal 

Individuals 

8-9 months in utero 35-40 

9 months in utero 40  

Newborn 36-44  

Died At Birth 36-44  

Full Term 40 

1 Day Old 40 

7 Days Old 41  

25 Days Old 43-44 

Infant 

Individuals 

40 Days Old 45-46 

2 Months Old 48 

4 Months Old 56 

5 Months Old 60 

Infant > 44  

Child > 44  
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TABLE 3. Summary of individuals assessed, with individuals listed by recorded 

chronological age, biological sex and ancestry. For chronological age ‘m.’ has been used as 

an abbreviation for months. Ancestry has been recorded as W (White), B (Black), C 

(Coloured) or U (Unknown). 

 

 

Age Category Age (GWA) N 
Male Female Unknown 

W B U W B C U W B U 

3 m. in utero 13-14 3 1 1   1      

4 m. in utero 18 2 1       1   

5 m. in utero 22-23 2  2         

6 m. in utero 26-27 5 1 1   3      

6.5 m. in utero 29 1 1          

7 m. in utero 31-32 8 4  1 2 1      

8 m. in utero 35-36 3  3         

8-9 m. in utero 35-40 2 1 1         

9 m. in utero 40 12 1 4  1 5    1  

Full Term 40 3  2  1       

1 Day 40 1     1      

7 Days 41 1  1         

25 Days 43-44 1     1      

40 Days 45-46 1     1      

2 m. 48 1     1      

4 m. 56 1  1         

4.5 m. 58 1   1        

5 m. 60 1     1      

7 m. 68 1     1      

Fetus < 36 75 25 9 1 26 7 1 1 1  4 

Newborn 36-44 6 2 1   2   1   

Died At Birth 36-44 1 1          

Infant > 44 3  1  1 1      

Child > 44 4  2   2      

Unknown - 1 1          

Totals  140 39 29 3 31 28 1 1 3 1 4 
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Methods 

Gestational age-at-death estimations for each individual were determined based on dental 

development and metric assessment of selected long bones and the pars basilaris, where 

possible. Dental development provides a useful chronology for life history events and is used 

to infer chronological age within bioarchaeological studies (AlQahtani et al. 2014). Teeth 

develop in a predictable sequence over the first ~20 years of life (AlQahtani et al. 2014; Bang 

1989): they have ‘morphologically distinct stages of formation and mineralization’ which 

have been found to correspond well with certain age ranges (Bang 1989). Thus, for the 

dentition, methods of age-at-death estimation rely on assessing the stage of development for 

each tooth as they grow systematically from the tip of the crown to the root. Tooth cusp 

development was recorded in accordance with Moorrees et al. (1963a; 1963b) and age-at-

death estimates attributed using the dental development atlas developed by AlQahtani et al. 

(2010).  

 

Dental development is a more accurate method for estimating gestational age as it is less 

susceptible to external factors, and thus less easily disrupted (Garn et al. 1960; Hillson 2005; 

AlQahtani et al. 2010). Consideration of dental age estimates against the documented 

chronological age estimates has allowed for assessment of the accuracy of these dental age 

estimation methods. The London Dental Atlas (AlQahtani et al. 2010) has been typically 

found to underestimate chronological age (by 0.1 of a year (5.2 gestational weeks) on 

average) based on dental development (AlQahtani et al. 2014); however, it underestimates 

age to a lesser extent than the previous methods developed by Schour & Massler (1941a; 

1941b) and Ubelaker (1978). It is commonplace that modern clinical standards are compared 

to archaeological populations, as absence of tooth development and eruption sequences for 

past populations, makes it impossible to generate more accurate dental age estimations. 

Furthermore, evidence from living populations suggests that early development and growth is 

relatively similar between populations, as long as the environment is optimal (Ruff et al. 

2013).  Thus, the standard developed by AlQahtani and colleagues (2010) is the most recent 

example of this method, and uses both known age-at-death historical populations and modern 

clinical data. For individuals for whom tooth cusp development fell between two age 

estimates a midpoint between those two estimates was assigned in gestational weeks.  
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Long-bone length is traditionally considered to be useful in determining chronological age 

(Jeanty & Romero 1984; Jeanty et al. 1984). Consequently, diaphyseal length measurements 

of all present long-bones were recorded for each individual. All measurements were taken 

using digital sliding callipers in accordance with the metric analyses outlined in Fazekas & 

Kósa (1978) and Schaefer et al. (2009). Results were recorded to the nearest tenth of a 

millimetre. To interpret these metric data, and consider growth disruption, gestational age-at-

death estimations were calculated using the published regression equations for long-bone 

diaphyseal lengths by Scheuer et al. (1980). Two-way ANOVA statistical analysis (analysis 

of variance) was utilised to analyse differences between skeletal and dental ages by 

documented age groups.  

 

Metric assessment of the pars basilaris was also conducted as due to the changes in 

morphology, and thus the measurements obtained, it is considered to be indicative of certain 

age thresholds (Redfield 1970; Scheuer & Maclaughlin-Black 1994; Lewis 2007). 

Furthermore, previous research by the authors has suggested that age estimates derived from 

the pars basilaris align closely with dental, and thus chronological age. By analysing the pars 

basilaris within a documented age sample this association has been able to be tested. 

Maximum width, sagittal length and maximum length were all recorded when possible. 

Measurements of the pars basilaris were correlated into chronological age estimates (in 

GWA) using Scheuer and Maclaughlin-Black (1994). Though this methodology has major 

limitations, particular its small sample sizes per age group, and its lack of given error or age 

ranges, it still provides a useful assessment for determining age-at-death. Where 

measurements fell within a range of age categories, the mean age category has been plotted, 

with the minimum and maximum age categories used as upper and lower age ranges. For 

those individuals who were found to fall with the 40 GWA or younger categories Fazekas 

and Kósa (1978) was also employed to determine a more specific age estimate. However, no 

methodology as yet exists to metrically consider the pars basilaris in older perinates and 

infants.  

 

Although, in principle, assessment of skeletal dimensions provides an accurate and reliable 

way to assess age, in reality skeletal growth and development is variable depending on a 

variety of genetic and environmental factors. Thus, both dental and skeletal age estimates 

have been derived for each individual where possible to compare against one another. In 

comparison to other growth systems, such as the skeleton, the dentition is minimally affected 
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by environmental and nutritional onslaughts (AlQahtani et al. 2014; Garn et al.1965a; 1965b; 

Elamin & Liversidge 2013), thus it is suggested that growth disruption can be determined by 

considering the difference in dental and skeletal age estimates calculated. Consequently, this 

study considers the accuracy of dental and skeletal methods of age-at-death estimation by 

comparing estimates generated to known chronological ages. Furthermore, this enables 

identification and assessment of growth disruption. Despite a variety of other methods being 

available to aid in determining chronological age (e.g. closure of the mendosal suture and 

fusion of the tympanic ring to the pars petrosal), this investigation intended to observe and 

investigate growth disruption from metric analysis of the skeleton.  

 

Results 

Although selective criteria may have been used in the collection of these individuals, the 

sample studied was generally reflective of the overall collection structure, in terms of both 

biological sex (Fig. 1) and age categories. Percentages of individuals by chronological age 

category, for the whole collection and those sampled were calculated. Two sample t-test 

analysis shows no statistical significance between the collection and those sampled (P= 

0.99). 

 

The individuals assessed were categorised by documented chronological age, biological sex 

and ‘ancestry’ (Table 3.). Only one individual assessed did not have a recorded age, with 

biological sex unknown in eight individuals. Of the 140 individuals, only 57 have age 

estimates which can correlate to a gestational age, with 82 individuals only able to be 

attributed to one of the broad age categories. In total, 71 males and 61 females were assessed, 

with 72 individuals recorded as white, 58 recorded as black, and one individual recorded as 

‘coloured’. Overall, 8 individuals did not have ancestry recorded.  

 

In total, 58 individuals assessed had dentition available for analysis, with 117 individuals 

having femora, 118 having tibiae, and 122 individuals having humeri available for 

assessment of diaphyseal length.  
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Assessment of dental age estimates and femoral, tibial and humeral age estimates, based on 

diaphyseal length (Scheuer et al. 1980), was undertaken for individuals with documented 

ages (Table 4.). Summary statistics for the individuals assessed are presented in Table 4. For 

age estimates where only one individual was selected for assessment (categories 41-68 

GWA) standard deviation and confidence intervals could not be established. Results in bold 

are those for which significant differences based on t-test analysis (p < 0.05) were found 

between the skeletal age estimates and known age. Again statistical analysis could not be 

undertaken where only one individual was present for an age category.  

39

50

11

All Individuals

Females Males Unknown

43

49

8

Sampled Individuals

Females Males Unknown

Figure 1. Percentage of individuals, by biological sex, in the total collection and sampled. 
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KNOWN AGE   DENTAL   FEMUR   TIBIA HUMERUS  

GWA N  N Mean Conf. Int. (+/-) S.D.   N Mean Conf. Int. (+/-) S.D.   N Mean Conf. Int. (+/-) S.D.   N Mean Conf. Int. (+/-) S.D.  

13.5 3  0 - - -   3 20.1 7.8 3.1   2 20.9 23.1 2.6   3 18.0 9.5 3.8  

18 2  0 - - -   2 20.6 1.0 0.1   1      2 18.5 6.1 0.7  

22.5 2  0 - - -   2 28.3 27.2 3.0   2 28.2 30.7 3.4   2 27.6 33.0 3.7  

26.5 5  3 32.7 5.7 2.3   3 27.3 6.6 2.6   4 27.4 4.5 2.8   3 28.5 4.6 1.8  

31.5 9  3 38.7 2.9 1.2   8 28.8 1.9 2.1   9 29.3 2.2 2.6   9 29.0 2.0 2.4  

35.5 3  3 39.3 2.9 1.2   2 38.0 3.0 27.2   2 39.4 34.9 3.9   2 38.7 26.0 2.9  

37.5 2  2 39.5 6.4 0.7   2 34.4 14.1 1.6   2 34.1 17.9 2.0   2 33.9 26.4 2.9  

40 23  19 45.2 2.7 5.5   16 36.9 1.4 2.6   17 37.7 1.4 2.8   17 36.4 1.7 3.2  

41 1  1 46 - -   1 39.1 - -   1 40.3 - -   1 39.8 - -  

43.5 2  2 46 - -   2 38.2 11.0 1.2   2 38.9 16.3 1.8   2 38.1 13.6 1.5  

48 1  1 58 - -   1 40.3 - -   1 41.0 - -   1 40.6 - -  

56 1  1 64 - -   1 42.3 - -   1 42.8 - -   1 42.6 - -  

58 1  0 - - -   0 - - -   0 - - -   0 - - -  

60 1  1 58 - -   1 45.1 - -   1 45.6 - -   1 46.0 - -  

68 1  1 70 - -   0  - -   0  - -   0  - -  

TABLE 4. Mean dental, femoral, tibial and humeral age estimates by documented age-at-death category (GWA). Where documented age-at-deaths generate a range of estimates the mid-point has been utilised.  

Standard deviation and confidence intervals +/- have also been given for skeletal age estimates. Number of individuals (N) has been given for each skeletal element. Where only one individual was available for 

assessment statistical analysis was not conducted. Mean age estimates in bold are those found to be significantly different from documented age.   
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Figure 2. Mean age estimates for dental and skeletal elements by known age category. Error bars of in accordance with AlQahtani et al (2010) and Scheuer et al (1980) have been plotted.      
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Mean skeletal and dental age estimates by known age category have been presented, with error 

bars/age ranges given in accordance with AlQahtani et al. (2010) and Scheuer et al. (1980) (Fig. 

2) given as an age range for each skeletal estimate. Dental age estimates have been found to be 

consistently older on average than documented age, except for the 60 GWA category. Although 

standard deviation could not be calculated in the older age categories (48-68 GWA), average 

dental age can still be seen to align with documented age closely. This is in contrast to 

diaphyseal age estimates, which fall below (younger than) documented age. Consideration of 

average skeletal and dental estimates, with error ranges provided by the published methods, 

show average dental age can be seen to correlate with documented age for all age categories 

except 31-32 GWA (7 months in utero) and 40 GWA (9 months in utero). Conversely, skeletal 

age-at-death estimates only correlate with documented age for three of the age categories (18, 

26.5 and 41 GWA). For those aged 13.5 GWA, 22.5 GWA and 35.5 GWA average skeletal 

estimates were found to be older than documented age. For those aged 43.5 GWA and older, 

average skeletal estimates were all younger than documented age. Given these findings, skeletal 

age-at-death estimates appear to be generating older estimates than documented age in fetal 

(prenatal) individuals, whilst generating younger estimates than documented age for infants 

(postnatal).  

 

For individuals ascribed to the broad categories of fetus, newborn, infant and child, mean dental 

and skeletal age estimates were calculated (Table 5.). All mean dental and skeletal age estimates 

increase with documented age. Importantly, the average dental and skeletal ages for those in the 

‘infant’ and ‘child’ categories do show differences, with those listed as ‘children’ appearing to be 

between 3-10 GWA older than ‘infants’. Thus, the individuals remain classified in these two 

distinct groups throughout the remainder of this study. Dental ages all fall within documented 

age ranges, except for the fetal category. Again, skeletal age estimates show variable results with 

many estimates younger than documented age range.  

 

ANOVA analysis, where sample size allows, of the dental age and skeletal age estimates 

generated (using Scheuer et al. (1980) and AlQahtani et al. (2010)) supports these findings 

(Table 6.), corroborating significant differences between skeletal and dental age estimates for the 
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documented age categories of ‘7 months in utero’, ‘9 months in utero’, and ‘Fetus’ (where p < 

0.05).  

 

TABLE 5. Results of mean age estimate, by age category, for dental and skeletal elements 

assessed. Standard deviations have also been given.  

 

 

TABLE 6. Results of ANOVA testing of skeletal and dental age estimates by chronological age 

category. Results highlighted in bold are statistically significant, where p < 0.05.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Documented 

Age Category 

Age Estimation 

(GWA) 

Dental Age Femoral Age Tibial Age Humeral Age 

Mean SD Mean SD Mean SD Mean SD 

Fetus < 36 39.5 4.3 25.1 4.6 25.1 5.4 24.1 5.6 

Newborn 36-44 42 5.6 35.5 3.3 36.1 3.5 33 1.5 

Infant > 44 48 3.5 39.7 5.6 40.2 5.9 40.2 6 

Child > 44 58 10.4 43.7 3 45.2 4.5 43.3 3.3 

Age Category GWA F P 

6 m. in utero 26-27 3.227 0.075 

7  m. in utero 31-32 40.26 5.708E-06 

8  m. in utero 35-36 0.07855 0.966 

8-9  m. in utero 35-40 6.134 0.147 

9  m. in utero 40 14.64 1.55E-06 

Fetus < 36 33.26 1.24E-17 

Newborn 36-44 2.18 0.191 

Infant > 44 1.673 0.586 

Child > 44 1.564 0.303 
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To consider individual differences between dental and skeletal age estimates, those with 

dentition (N=58) were plotted with their femoral, humeral and tibial age estimates, derived from 

diaphyseal lengths (Scheuer et al. 1980). One individual was excluded from analysis as dental 

age was simply determined to be less than 30 GWA. Documented ages were also included, 

where possible. Dental and skeletal results have been plotted with age ranges (+/- X GWA) in 

accordance with those provided in AlQahtani et al. (2010) and Scheuer et al. (1980). Figure 3. 

shows that typically, dental and skeletal age estimates, and documented ages were similar, or fall 

within the age range of both dental and skeletal age-at-death estimates. Age estimates derived 

from tibial diaphyseal lengths, however, appear to most commonly fall below other age estimates 

generated. In total, 17 individuals have tibial age estimates which do not correspond or overlap 

with documented or dental age estimates. Of these 17 individuals, 12 are those recorded as black, 

with 4 individuals recorded as white. One individual has no recorded ancestry. Furthermore, 10 

of these individuals with tibial growth disruption are female, whilst 6 are male. Again one 

individual had no recorded biological sex. Of these 17 individuals, 15 have no known 

pathological condition recorded, with only two individuals, both of 31-32 GWA recorded age (7 

months in utero) and white females, having anencephaly. The presence of this condition may 

account for their young age and untimely death.    

 

Mean femoral, humeral and tibial age estimates have been plotted by documented age 

distinguished by both ancestry (black and white individuals (Fig. 4.1)) and biological sex (male 

and female (Fig. 4.2)). Of the 56 individuals with documented age (in GWA), 47 had ancestry 

and 52 had biological sex recorded along with diaphyseal long bone lengths. Figure 4.1 shows 

that black individuals have greater diaphyseal lengths on average than white individuals, 

correlating to older age estimates. This is particularly evident for the prenatal individuals, though 

there appears to be more convergence in the perinatal stages. White individuals appear to have a 

steeper growth profile compared to black individuals. When compared by biological sex (Fig. 

4.2) females can be seen to have a relatively steady and consistent increase between documented 

and skeletal age-at-death estimates. In comparison, male individuals show a much more varied 

and irregular growth profile, with both those aged 13.5 GWA and 68 GWA appearing to fall 

substantially below that of female growth profiles.  
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Figure 3. Mean age estimates for individuals with dental and skeletal elements available for assessment. Known chronological age, if available, has also been plotted for these individuals. Error ranges for 

dental and skeletal age estimates have been plotted in accordance with the reference methods of AlQahtani et al. (2010) and Scheuer et al. (1980).  
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Figure 4.1 Mean femoral, tibial and humeral age estimates by documented age group and ancestry. 
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Figure 4.2 Mean femoral, tibial and humeral age estimates by documented age group and biological sex. 
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Consideration of the average differences between dental, documented and skeletal age 

estimates complicates the picture of growth disruption. When compared to documented age, 

the tibia and femur are seen to show the greatest growth disruption. Furthermore, white and 

female individuals are shown to have greater levels of growth disruption when compared to 

documented age. This may suggest that despite females having a steadier and more consistent 

growth trajectory (Fig. 4.2), this growth profile is consistently falling below true documented 

age. Black individuals are known to have longer diaphyseal lengths than white individuals 

(Martorell et al. 1988; Nyati et al. 2006) and thus, the greater growth disruption seen in white 

individuals compared to documented age may reflect this. Conversely, when skeletal age 

estimates are compared to dental age estimates, black individuals show a much greater level 

of growth disruption. Thus, despite skeletal growth closely aligning to chronological age, it 

appears it is lagging behind dental development. This suggest dental development within 

black individuals is more rapid than white individuals, and thus may be over-estimating age-

at-death. Similarly, the growth disruption evident in female individuals when comparing 

dental and skeletal estimates may indicate that dental development within female individuals 

is more rapid than in their male counterparts.  

 

TABLE 7. Average differences between skeletal, dental and documented age estimates.

 
Dental - Femur Dental - Humerus Dental - Tibia 

N GWA N GWA N GWA 

Overall 28 8 32 8 31 7 

Black 21 10 22 9 22 9 

White 6 5 9 5 8 4 

Male 14 7 15 6 16 6 

Female 13 10 16 10 14 9 

 
Documented - Femur Documented  - Humerus Documented  - Tibia 

N GWA N GWA N GWA 

Overall 43 3 43 2 45 3 

Black 28 3 27 2 28 3 

White 13 4 17 4 14 4 

Male 27 2 26 2 27 2 

Female 16 4 19 4 16 2 
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Figure 5. Mean age estimates for individuals with dental and pars basilaris elements available for assessment. Individuals have been plotted in ascending order according to their known chronological ages. Error 

ranges for dental and skeletal age estimates have been plotted in accordance with the reference methods of AlQahtani et al. (2010) and Scheuer & Maclaughlin Black. (1994).  
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Comparison between the pars basilaris and documented age (Fig. 5) shows that there is 

greater parity between age estimates derived from this skeletal element and documented age 

than those of the long bones (Fig. 3). The authors have previously shown that age from the 

pars basilaris is a good approximation of chronological age. This assessment typically 

supports these conclusions, but further analysis is needed as the methods for correlating 

metric results and chronological age are limited due to small sample sizes and lack of error 

range.  

 

Discussion 

Analysis of 140 individuals from the Smithsonian Fetal Collection has revealed significant 

differences both within and between dental and skeletal age-at-death estimates. Although 

only 57 individuals had documented ages, assessment has revealed considerable variation in 

the pattern of dental and, more particularly, skeletal development. Fayls and Lewis (2011) 

suggest that to make comparisons between varying skeletal samples less problematic, broad 

age categories and ranges should be employed. Many methodologies utilised for estimating 

age in fetal individuals determine ages in gestational weeks, or week bands. Thus, broad, 

general age categories are not possible when assessing growth/age within samples of only 

fetal/perinatal/infant individuals as the ability to distinguish between these young ages would 

be negated. Rapidity of bone growth and turnover within the pre- and immediate postnatal 

life also results in quantifiable differences in limb proportions in as little as a week: 

diaphyseal longitudinal growth in early postnatal life can be as much as 3mm per week (Issel 

1985). Although this study has relied on methodologies which derive age estimates as a 

single gestational week (Scheuer et al. 1980; AlQahtani et al. 2010), error ranges for these 

ages have been considered to account for individual variability and plasticity in growth. As a 

consequence, dental and skeletal age-at-death estimates are regularly found to overlap, 

suggesting a correlation between the levels of physiological development. In these cases, 

regardless of by what proportion these age estimates correlate, growth disruption was not 

implied. By adopting this conservative approach to the data, the evidence of growth 

disruption identified is more robust.  

 

Dental development has long been considered an accurate method by which age can be 

attributed to a skeletal individual (Bolaños 2000). Dentition within the individuals assessed 

was found on average to over-estimate age in comparison to documented age. The method 
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employed for recording and scoring dental development has typically been found to under-

estimate age by 5.2 gestational weeks on average (AlQahtani et al. 2014); therefore, these 

results were not anticipated. When individual dental and skeletal age estimates were analysed 

(Fig. 3) nine individuals were found to have average dental age and error ranges which show 

no overlap/correlation to documented age. Of these nine individuals, six were recorded as 

female and three as male. Assessment of differences between dental and documented ages 

found that the male individuals have differences of 5 and 4.5 GWA. Conversely, females 

have differences of 24, 8.5, 7.5, and 6.5 GWA between dental and documented ages. One 

female (224861) is clearly an outlier with a 24 GWA difference between skeletal and dental 

ages, however, the females do show slightly larger differences between estimates than the 

males. However, given the small sample size it is impossible to make any wide-scale 

assumptions as to the pattern of growth disruption.  

 

Female growth trajectories are considered to vary in comparison to males (Humphrey 2000; 

Lewis 2007; Sofaer 2011; Barker et al. 2012), yet development of the dentition is typically 

considered to only vary minimally between the biological sexes (Scheuer & Black 2004). 

Though female growth profiles appear much more regulated and consistent than male profiles 

when compared to documented age (Fig. 4.2) the clear differences when compared to dental 

age (Table 7.) support assumptions of very different growth strategies adopted by the 

biological sexes. Though appearing to have older age estimates (Table 7.), male growth 

profiles are much more irregular (Fig. 4.2). These findings may support the more ‘risky’ 

intrauterine growth strategies employed by male individuals (Ulizzi & Zonta 2002; Barker et 

al. 2012; Lewis 2018), whereby male growth is at the expense of the maternal wellbeing. In 

comparison, female individuals reflect life course maternal health and wellbeing, and regulate 

growth accordingly (Barker et al. 2012). Males typically grow more rapidly than females, and 

as a result of prioritisation of skeletal/bodily growth, have limited placental growth in 

comparison. This compromises their wellbeing by putting them at greater risk of under- or 

malnourishment. Therefore, though on average generating younger skeletal age estimates, 

female individuals may reflect a more robust growth strategy. Conversely, males, though 

found to be experiencing greater growth, reflect a highly variable growth profile, likely to be 

subsequently associated with increased frailty and reduced maternal health in later pre-

/postnatal life (Green 1992; Synnes et al. 1994; Ulizzi & Zonta 2002). Consequently, male 

individuals are suggested to have a higher risk of perinatal death than females (Crawford et 

al. 1987; Green 1992; Synnes et al. 1994; Ulizzi & Zonta 2002), thus, the variability shown 
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in the male growth profiles (Fig. 4.2) may be elucidating this rapid but risky growth strategy. 

Furthermore, in 17 individuals for whom tibial age estimates fell below all other skeletal 

estimates, six individuals were found to be male and ten were female. Evidence for fewer 

males showing growth disruption within this skeletal element may support evidence for male 

offspring maintaining rapid skeletal growth regardless of maternal health, and thus, in 

stressful environments, continuing to grow at the expense of maternal health. However, this 

study found that frequencies of death by biological sex were similar for both pre- and 

postnatal individuals (Table 3.). However, this may reflect the collection strategy of the 

sample and not true mortality profiles, thus these findings cannot be substantiated as showing 

similar mortality risks between males and females.   

 

Mean dental age estimations were found to be significantly different from documented age 

for those documented as seven, eight and nine months in utero (Table 3.). This may be a 

result of the small sample sizes, with only three individuals having dentition available for 

assessment in the seven and eight month in utero categories. Similarly, the small standard 

deviation given for these age categories might be a consequence of the limited sample size. 

However, when average dental age estimates are plotted with error bars (+/- GWA) according 

to the dental development method employed (AlQahtani et al. 2010; Fig. 2), dental age is 

seen to be comparable to documented age in all but two categories (31.5 GWA and 40 

GWA). The significance of the difference between dental and known age is thus diminished; 

significance only refers to the exact mean itself, making no consideration for the error range 

which should be afforded. Of particular note is that both female and/or black individuals 

appear to show accelerate dental development in comparison to documented and skeletal age 

(Table 7.). Black individuals show much greater differences suggesting that dental 

development is more advanced within black individuals than white individuals of the same 

documented age. This may suggest that dental ages for black individuals are overestimating 

in comparison to documented age. When considered by biological sex, female individuals are 

shown to have much larger average age estimate differences between skeletal and dental 

ages. This may again indicate that dental development in more advanced within female 

individuals than male individuals of the same documented age. Growth is sex specific (Sofaer 

2011) and males and females are well known to have varying growth strategies (Barker et al. 

2012). It is widely accepted that females reach both skeletal and dental developmental stages 

earlier than their male counterparts (Humphrey 2000; Lewis 2007), with some females being 

between one and six months ahead in their overall dental development (Hillson 2005; Lewis 
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2007). However, despite this individual variation in dental development as a result of 

biological sex and/or ‘ancestry’ (Table 7.), dental development can be used as a proxy for 

establishing age-at death as long as error levels for methodologies employed are utilised (Fig. 

3).  

 

Growth disruption (where dental and skeletal mean age estimates and error levels do not 

overlay) was evident in 21 (41.2%) individuals where dental and skeletal long bones were 

both available for assessment. In total, 14 (32%) individuals have dental/femoral age 

estimates which do not correlate, 17 (35%) have dental/tibia growth disruption, with 19 

(39%) individuals having dental/humeral age estimates which do not correspond. Frequencies 

of those with disruption were found to show those aged to be 38-40 GWA (N=8) and those 

over 52 GWA (N=7) most commonly had growth disruption. A clear distinction between pre- 

and postnatal birth becomes apparent, with those in the older age categories evidently unable 

to maintain a growth trajectory which mirrors dental or documented age (Fig. 2). This may be 

a consequence of the methodology employed, where utilisation of linear regression equations 

means results from the sample assessed mimic the reference population. Therefore, the 

clustering of individuals, based on long bone diaphyseal lengths, around the perinatal period 

might be artificially confining the true range of chronological ages. Furthermore, only 

individuals up to 46 GWA were considered in the creation of this reference methodology. 

Therefore, the drop off in growth identified in the postnatal individuals within the infant 

category might be a product of the methodology. As a result, only where individuals show 

now correlation or overlap in dental and skeletal age estimates and ranges, has an 

interpretation of growth disruption been afforded.  

 

Although the femora and humeri were found to most commonly show growth disruption 

when compared to dental age, the tibiae and femora showed the most disruption compared to 

documented age (Table 7.). The lower limb is suggested to be the most variable in terms of 

growth profiles, and thus, though limited, the study supports this conclusion. Furthermore, 

where compared by both biological sex and ancestry (Fig. 4.1 and 4.2), the humerus, despite 

generating the lowest age estimates on average in prenatal individuals appears to generate the 

oldest age estimates in postnatal individuals. Therefore, for both biological sexes and black 

and white individuals, humeral growth appears to generate older age estimates on average 

than either femora or tibiae. In particular, the tibia is considered to be more sensitive to health 

and growth insults than other skeletal elements (Pomeroy et al. 2012). Consequently, the fact 
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that the tibiae within the individuals assessed shows evidence of growth disruption supports 

these recent studies (Pomeroy et al. 2012).  

 

Metric and morphological differences are widely accepted to be present within racially 

divergent groups (e.g. Nyati et al. 2006; Kósa 2002), and this study support these findings. 

Differences between populations determine that American Black non-adults often 

develop/mature earlier than American white non-adults (Lewis 2007; Nyati et al. 2006). 

African American non-adults have been found to have longer legs than Mexican American 

and Caucasian American non-adults, whilst Caucasian American individuals have the 

greatest trunk length of these three groups (Malina et al. 1987; Martorell et al. 1988; Nyati et 

al. 2006, 135). When compared to documented age (Table 7.) long bone lengths show less 

average disruption in black individuals, with white and black individuals appearing to have 

diverging strategies to long bone growth (Fig. 4.1). In particular, black individuals have been 

found to show greater femoral and tibial lengths. This is particularly evident within the 

prenatal individuals, where black individuals show a greater growth profile. White 

individuals appear to show smaller skeletal diaphyseal lengths compared to black individuals 

for early prenatal development, correlating to younger skeletal age estimates. However, white 

individuals appear to show a steeper growth profile and incline, though it is difficult to 

confirm that this pattern would continue postnatally as white individuals with documented 

age, as well as long bones, were all 40 GWA or younger. However, if this pattern did 

continue it might be indicative of a slower postnatal growth profile in black individuals. 

Thus, despite black individuals appearing to initially have longer diaphyseal lengths, it does 

appear likely that they would have dropped off and been overtaken by white individuals 

postnatally. This may be a result of the diverging postpartum environments experienced by 

black and white individuals, reflecting greater social inequalities and exposure to stressors for 

the black individuals. 

 

It is widely acknowledged that there is a racial disparity in health, which in turn reflects 

growth status (Kuzawa & Sweet 2009). It has been considered that racial disparity is closely 

entwined with socioeconomic status, availability of health care, education and employment, 

resulting in a perpetuating cycle of disadvantage amongst certain population groups (Kuzawa 

& Sweet 2009). Consequently, although suspected that there are biological and genetic 

differences in growth timings and tempos between the black and white individuals assessed, 
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it is less clear as to the extent of these differences and whether they are purely biological 

difference or ones bound within biocultural and social spheres.  

 

The maternal-infant nexus is central to evaluating the etiological causes of growth disruption. 

Maternal regulation of both the pre- and postnatal period is essential to health and wellbeing, 

whereby a wealth of essential resources are provided by the mother to the offspring (Harding 

& Johnston 1995; Bateson et al. 2004; Barker et al. 2012; Said-Mohamed et al. 2018). 

Passive immunological and nutritional buffering safeguards the infant from exposure to a 

plethora of environmental stressors – the period of birth marks the transition into a world full 

of pathogens (Lewis 2017) – meaning maternal wellbeing is essential for postnatal wellbeing 

of the child. Evidence from the individuals assessed shows skeletal growth ‘drops off’ after 

~40 GWA. This pattern of growth disruption within the skeleton may reflect a detrimental 

postnatal experience. However, it has equally been identified that illness and exposure to 

stressors later in gestation/pregnancy has a greater effect on fetal growth and health than 

those experienced earlier in pregnancy (Heinke & Kuzawa 2008). Thus, the fact that the older 

individuals show more evidence of skeletal growth disruption, both with more skeletal 

elements affected and greater differences between age-estimates, might not be unexpected. 

Instead this pattern may reflect the precarious period of later gestation which they 

experienced, and consequently survived, allowing skeletal changes to manifest. Lack of such 

significant skeletal growth changes in younger age categories may simply reflect a lack of 

time for manifestations of growth disruption to develop. In turn, those who died at younger 

ages, particularly prenatally, may be considered to be more fragile and susceptible to 

stressors, and consequently were unable to adapt to the conditions experienced. 

 

Gindhart (1989) acknowledges that high infant mortality rates were common among all racial 

groups in the United States during this time. However, death rates for infants less than one 

year of age from Washington DC show that over three times more ‘Black’ infants died than 

‘White’ (Gindhart 1989). Even today, black individuals have higher rates of morbidity and 

mortality in the United States, suggesting health, wellbeing and thus growth, is related to 

culturally constructed racial distinctions (Rogers 1997). Black individuals are not especially 

over-represented within this collection, although are more numerous than white individuals as 

a consequence of the collection strategy, rather than population demographics. However, 

growth changes identified have been found to be more common and severe in black 

individuals suggesting racial disparities may be contributing to this disruption.  
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Disparity in socioeconomic status is often associated with poorer nutrition, access to health 

care and living standards (Martorell & Habicht 1986; Floud et al. 1990; Nicholas & Steckel 

1991; Schell 1997; Stinson 2000; Steckel 2009; Halfon et al. 2014; DeWitte et al. 2016). 

Scholars considering racial inequalities have often purported environmental stressors and lack 

of health care as pivotal causes of morbidity and mortality (Donald 1952). In fact, multiple 

environmental and psychosocial stressors are known to have a high correlation to detrimental 

birth outcomes (Chiswick 1985; Goldenberg & Thompson 2003; Abu-Saad & Fraser 2010; 

Cussons-Read et al. 2012; Beaudrap et al. 2013; Fell et al. 2016; Melby et al. 2016) and 

prolonged exposure to stress can alter functions and regulation of the immune system 

(Babones 2008; Boersma & Tamashiro 2015). Ultimately, stress exposure weakens the ability 

for immune response, thus leading to greater disease/infection susceptibility (Rogers 1997). 

Holmes (1980) suggests that the leading causes of infant deaths in America during the early 

20th century were ‘respiratory diseases, diarrhea and enteritis, premature birth, congenital 

debility, atrophy, marasmus, whooping cough, and influenza’. He also suggests that maternal 

death was common during this period, although high disease loads in the population meant 

that many mothers were already of chronically reduced health status (Holmes 1937). 

However, it must be remembered that although this is a historical population, individuals 

studied would have had greater access to medical care than archaeological samples of fetal 

and perinatal individuals that have traditionally been considered. Developments in obstetric 

care, midwifery and maternal/pregnancy care would have all improved chances of survival 

and optimal growth and health (Lewis 2007), even though environmental conditions are 

likely to still have been still poor. Consequently, it may be that these individuals have been 

collected and curated on the basis of pathology/disease being present. Thus, results, although 

corroborating with much of the published literature, are ultimately biased by the demographic 

structure of this collection. 

 

Indeed, the collection of these individuals themselves may be a reflection of the low 

socioeconomic status of these individuals. Structural vulnerability of poor and socially 

marginalized groups has been purported as a potential reason for curation and collection of 

individuals (Nystrom 2014). Social marginalization of these individuals and their parents may 

have rendered them politically and economically powerless, particularly in regards to 

preventing acquisition of remains by large institutions. As Gindhart (1989) describes, black 

individuals became worried about going to hospital for fear of being not only collected, but 



286 

 

deliberately killed to do so. Thus, curation and collection of these individuals may be 

intrinsically bound to their social and economic status.  

 

Pathological lesions are a further biological marker which can reveal evidence of structural 

violence. Indeed, Klaus (2012) suggests that socially regulated resources have the ability to 

affect physiological wellbeing, with paucity of resources as a result of race, sex or age 

leading to skeletal manifestations indicative of reduced health status (Nystron 2014). Thus, 

both growth and health disruption is paramount for considering life course experiences. 

Furthermore, it has been suggested that pathological conditions can affect age-at-death 

estimation, making results significantly more inaccurate (Sherwood et al. 2000). Previous 

studies, considering neural tube defects, particularly anencephaly and spina bifida, instead 

found that individuals with these conditions tended to have skeletal elements which overaged 

the individual (Sherwood et al. 2000). Furthermore, the presence of alternative infectious and 

metabolic conditions is potentially a causative factor of growth disruption. Therefore, the 

association between health and growth disruption needs to be explored further.  

 

Recorded pathological conditions and causes of death for the individuals assessed include 

spina bifida, anencephaly, pneumonia, gastrointestinal problems, and mechanical problems, 

thought to refer to birth trauma. However, pathological lesions were not isolated to only those 

with known and recorded conditions. In total, 58% of individuals were found to show 

pathological changes cranial elements, whilst postcranial elements were affected in 17% of 

the individuals assessed. Though this study avoids detailed assessment of pathological 

changes, focussing on evidence of growth disruption and the methodologies employed to 

determine this, health disruption is a likely the impetus behind much of the growth disruption 

identified. Furthermore, given the inferred low socioeconomic status of the individuals 

assessed, health disruption is likely.  

 

Conclusion: 

Fetal and perinatal individuals have rarely been considered within bioarchaeological 

discourse, with infant studies primarily focussing on the postnatal period (Halcrow et al. 

2017). This study has demonstrated that these very young individuals are able to reveal 

valuable insights into the highly vulnerable stages of early life. Establishing evidence of 

growth disruption within this fetal, perinatal and infant collection has relied on dual analysis 

of dental and skeletal age estimates, but importantly has also been able to consider these 
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estimates in correlation with known, documented ages. Dental age estimation, when error 

ranges are included, has been found to show a strong relationship with documented age and it 

is argued can hence be used as a proxy for true age. Skeletal age estimates were found to vary 

significantly, particularly post-40 GWA, where long bone growth and error ranges were 

found to be significantly younger than documented age. This is likely a result of the existing 

methodologies and the way regression based analyses skew results towards the mean. This 

has resulted in mimicry between sample and reference population age estimates. Thus, the 

use of long bone diaphyseal length assessment to determine age-at-death should be avoided 

where possible. Instead the dentition should always be utilised. However, this study has 

supported initial findings by the authors suggesting that the pars basilaris is also a good 

proxy for chronological age. Again, limitations exist with current methodologies, but further 

investigation into the universal applicability of this bone to be used for age estimation should 

be undertaken. Comparison of long bone growth between black and white individuals found, 

on average, a comparable trajectory between the two, though black individuals were found to 

be more prevalent when considering evidence of tibial growth disruption. The tibia is 

considered to be the most sensitive of the long bones and results from this analysis further 

support these conclusions. Female and male individuals showed variation between their 

growth strategies, with male individuals reflecting a more fluctuating trajectory. Racial 

inequalities and environmental adversity are suggested to have been central causes for growth 

disruption identified, and are indicative of reduced mother-infant wellbeing. This study 

suggests further assessment of growth disparities utilising this known age collection is 

paramount for investigating the skeletal evidence of growth disruption in fetal, perinatal and 

infant remains.  
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Abstract: Pathological lesions identified within the skeleton represent physiological response 

to detrimental and harmful onslaughts. These can range in etiology and pathogenicity and 

may be acute or chronic. Despite this variability, identifiable pathological changes to the 

skeleton are able to reveal insights into past health, and the biocultural impetus and response 

to these insults. Investigation into intrauterine and early extrauterine life has recently 

intensified, revealing how these initial experiences are vital for health and wellbeing across 

the life course. Yet, relatively little attention has been focused on the identification and 

interpretation of pathological lesions in fetal, perinatal and infant individuals. Consequently, 

many uncertainties still surround the study and reporting of non-adult pathology. This study 

analysed 423 fetal, perinatal and infant skeletons from a wide temporal span (Iron Age to 

20th century) to explore the prevalence and characteristics of pathological lesions within 

these individuals. Addressing the continuing debate surrounding differentiation between 

normal and pathological new bone formation, this study extensively details location, type and 

severity of pathological changes by both time period and gestational age. New bone 

formation was the most typical lesion identified and is often suggestive of systemic, infectious 

and/or metabolic disturbances. Changes to the frontal bone and tibia were the most 

prevalent, though lamellar and woven bone respectively were found to be the most common 

type of NBF identified within these elements. Pathological changes were identified in both 

pre- and postnatal individuals, indicative of pervasive poor maternal health. This study 

attempts to provide a systematic way in which to record pathological lesions in non-adults, 

generating an important narrative regarding the nexus between mother and child, and the 

impact and experience of health stress in the past.   
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Introduction 

Assessment of skeletal remains for evidence of pathological lesions has long been considered 

the most direct way of accessing evidence of disease in the past (Waldron 2009; Rivera & 

Lahr 2017; Bush & Zvelebil 1991). Associations between a range of diseases (pathogens) and 

changes to skeletal morphology have been established (pathogenesis) (Roberts & Manchester 

2010), with the diagnostic criteria for the interpretation of pathological lesions in skeletal 

remains constantly being improved (e.g. Ortner 2003; Aufderheide & Rodriguez-Martin 

1998). Such analyses, when fully contextualised, enable a consideration of ‘local biologies’ 

and the social and cultural implications of skeletal pathologies (Lock 1993; Ortner 2003; 

Roberts 2017). Central to bioarchaeological interpretation of pathological lesions are factors 

such as diet, living conditions, sanitation and access to health care (Krenz-Niedbala & 

Lukasik 2017; Cattaneo 1991), all of which are variables that can determine both exposure 

and susceptibility to disease. 

 

Diagnosis of skeletal pathology must rely on a strong clinical knowledge-base (Roberts & 

Manchester 2010) – understanding how disease and poor health affects the body today is 

imperative for determining the skeletal manifestations in past populations. However, there are 

a number of limitations to be faced when applying clinical criteria to the bioarchaeological 

record Firstly, there may be differences between the clinical and archaeological presentation 

and manifestations of disease; indeed, prior to the antibiotic era, the progress of a number of 

diseases would have gone unchecked, leading to more severe skeletal changes (Roberts & 

Manchester 2010). Acute disease rarely affects the bones, meaning palaeopathological 

evidence is primarily limited to chronic evidence of conditions. Clinicians are primarily 

concerned with soft tissue manifestations of disease and their observations and interpretations 

of skeletal lesions are often limited, making direct comparison between modern and 

archaeological data-sets problematic. Bone has a limited response to health/disease insults 

(bone growth and bone destruction), meaning a number of pathological lesions have multiple 

and overlapping etiologies, making identification and interpretation of the lesions an even 

greater challenge (Goodman & Armelagos 1989; Gowland 2004; Ortner 2008; Roberts & 

Manchester 2010). Individual expression of disease/illness must also be considered; the same 

disease will not affect everyone identically (Reitsmea & McIlvaine 2014; Temple & 

Goodman 2014). As Gowland (2004) states, disease risk and expression is culturally 

contingent; individuals will be differentially exposed to health risks and treatment of 



301 

 

conditions may be based on gender, status and age. Such factors may also lead to differential 

access to nutrition, sanitary living conditions and a predisposition to occupation, all of which 

may result in differences in vulnerability and susceptibility to disease (Gowland 2004). Thus, 

constructing and establishing health status for archaeological individuals is a complex 

practice.  

 

The pathological assessment of fetal, perinatal and infantile skeletal remains is further limited 

by the current corpus of bioarchaeological and medical literature, for which precise 

description and definition of skeletal pathologies is lacking. In addition, there is limited 

clinical literature regarding the appearance and differentiation of true pathological bone from 

that produced during normal growth (Lewis 2017a). The lack of clear photographic and 

descriptive evidence for the appearance of normal new bone formation (NBF) in the medical 

and anatomical literature only limits the discussion further. Consequently, the validity of the 

evidence of pathological change in fetal and infant remains has been brought into question 

(Lewis 2017a). Multiple methods for identifying the presence of disease/illness have been 

employed to identify lesions, including macroscopic and microscopic analysis, radiography, 

bone histology, ancient DNA and isotopic analyses (e.g. Beaumont et al. 2015; Faerman 

1999). However, although these studies may indicate physiological ‘stress’ (e.g. 

malnutrition), or determine the presence of a particular pathogen, definitive etiologies and 

clear documentation of pathological changes in infants are still lacking. Consequently, 

macroscopic analysis of fetal, perinatal and infant individuals typically still relies on only a 

few textual sources (e.g. Ortner 2003; Lewis 2007; Aufderheide & Rodriguez-Martin 2008).  

 

This study presents evidence for pathological lesions, including appearance and distribution 

in the skeleton, from a large sample of fetal, perinatal and infant skeletons from different time 

periods. This study describes the location and appearance of putative pathological changes 

and develops a systematic way to classify and record lesions. Furthermore, this study 

considers pathological lesions within a biocultural sphere, reflecting on the infant-mother 

dyad as well as the varying social, cultural and status-dependent environments these 

individuals were exposed to.  

 

Materials 

A total of 423 individuals from 14 different archaeological sites, and one 20th century medical 

collection, were assessed (Table1.1). The sites date from the Iron Age (3rd century B.C.) 
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through to the post-medieval period (20th century). Sample sizes by time period have been 

given in Table 1.2. Individuals in the category labelled ‘Transition’ date to the 1st Century 

AD and are from sites which include both Iron Age and Roman material. The undated 

individuals are all from the sites of Owslebury or Barton Court Farm. The 20th century 

medical collection is a partially documented sample, with some individuals having recorded 

biological age and sex.  

 

The samples from Owslebury, Piddington and Barton Court Farm are the only rural sites 

included and while some of these individuals are associated with Roman villas, the status of 

these individuals is not known (Collis 1968; 1970; 1977; Friendship-Taylor & Friendship-

Taylor 2012; Miles 1986), The post-Medieval samples of Cross Bones, St Brides and 

Broadgate are low-status individuals from the City of London (Harding 2002; Kausmally 

2008; Mikulski 2007; Brickley et al. 1999; Hunt personal communication). Those from 

Chelsea Old Church, also located in London, were likely to have been from high-status 

families living a semi-rural existence within the suburbs (Museum of London 2009). Those 

from the post-Medieval site of St. Benet Sherehog are of middling status, whilst the 

individuals curated within the Smithsonian fetal collection are those of low status individuals 

dating from the 20th century. The remaining individuals Medieval and post-Medieval London 

are of unknown status. 

 

In this study, fetus refers to those 36 gestational weeks of age (GWA) or younger (Lewis 

2018, 1), perinatal is ascribed to those between 36 and 44 GWA (Lewis 2018, 1), and infant 

identifies those 44 GWA and older (up to 6 months or 64 GWA). Throughout the rest of this 

study all ages are referred to in GWA for ease of comparison between individuals. Table 1.3 

provides the frequency of individuals assessed by dental age.  

 

The total sample analysed (N=423) comprises of individuals aged six months (64 gestational 

weeks of age) or under. Typically, age estimates are derived from long bone and thus, those 

assessed, were those skeletally determined and recorded to be 64 GWA or younger. As this 

study was guided by the existing databases and age estimates derived for these individuals, 

three individuals were found to be dentally over 64 GWA. However, as they were still 

skeletally aged to be younger than 64 GWA, and were already included within the sample, 

they have been retained in analysis.  
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TABLE 1.1 Number of individuals by sample. Status for these samples has also been 

documented where known.  

Sample Status Total N 

Owslebury Unknown 23 

Piddington Unknown 24 

Barton Court Farm Unknown 52 

Medieval St. Benet Sherehog High 3 

Spital Square Unknown 1 

East Smithfield Unknown 8 

St. Mary Graces Unknown 3 

Post-Medieval St. Benet Sherehog Middle 19 

Broadgate Low 21 

St. Thomas’ Hospital Low 5 

St. Bride’s Lower Low 52 

Chelsea Old Church High 7 

Cross Bones Low 58 

Royal London Hospital Unknown 7 

Fetal Collection, Smithsonian 

Institute 
Low 140 

Total  423 
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TABLE 1.2 Number of individuals by chronological time period. 

 

Time Period Pre-Roman Transition Roman Saxon Medieval Post-Medieval 20th Century Undated 

Total (N=423) 16 27 39 2 15 169 140 15 

 

 

 

 

 

TABLE 1.3 Number of individuals by dental age estimate (in GWA). 

 

Dental Age Estimate (GWA) 30 34 36 38 39 40 42 43 46 52 58 64 70 76 82 Unknown 

Total (N=423) 1 7 3 23 6 16 1 11 59 43 21 15 1 1 1 214 
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Methods 

Ages-at-death are provided in gestational weeks and were calculated using dental development. 

The stage of dental development was recorded using standards outlined by Moorrees et al. 

(1963a; 1963b) and conversion to chronological ages-at-death estimated using AlQahtani et al. 

(2010). Dental development is considered to be a more accurate and reliable measure of age-at-

death (Hillson 2005; Bang 1989; Moorrees et al. 1963b); the growth of deciduous and permanent 

dentition has been found to be less susceptible to fluctuations in environmental stress than 

skeletal growth (AlQahtani et al. 2014; Šešelj 2013; Bang 1989; Garn et al. 1960; Hillson 2005; 

AlQahtani et al. 2010). Thus, dental development is considered to be genetically regulated, and 

hence, is most robust against a multitude of perturbations that could be experienced in utero (for 

example: dietary, health, social, cultural stresses) (AlQahtani et al. 2014; Ruff et al. 2013).  

 

Where this study considers pathological lesions by age, these ages have solely been determined 

from dental development. Only those individuals where dentition was available for assessment 

(N= 210) have thus been used in assessment of pathological lesions by age estimate. However, as 

one individual could only be recorded has having dental development of below 30 GWA they 

have been removed from pathological assessment by age. Consequently, 209 individuals have 

had pathological lesions considered by gestational age estimate. Three individuals had dental age 

estimates above 64 GWA (6 months of age) (Table 1.3), however, their skeletal development 

was suggested to be much younger and falls within the infant age range. Therefore, these three 

individuals were retained within this study and the subsequent analyses.  

 

Assessment of pathology was undertaken macroscopically and relied on detailed assessment of 

the skeletal individuals. Each pathological change/lesion was recorded descriptively by the 

author and documented photographically. Pathological assessment within this thesis has relied on 

three primary avenues of investigation: location, type and severity of pathology.  

 

 

1. Location of pathology: 

Location was firstly documented as cranial or postcranial, then by specific skeletal 

element and then by aspect. By employing this recording strategy the patterning of 
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pathological lesions could be assessed by skeletal element. Given that some 

diseases/infections/conditions are known to affect certain elements and certain locations 

more commonly it was considered that recording the location of pathology was of 

particular importance.  

 

2. Type of pathology: 

Type of lesion was recorded as either bone formation, bone destruction/resorption, 

metaphyseal expansion or morphological change. Bone formation was recorded as ‘NBF’ 

(New Bone Formation) and bone destruction/resorption was recorded as being ‘Lytic’. 

For NBF, type of bone formation was also recorded as either woven or lamellar bone, and 

also whether it spiculated (Ortner 2003).  

 

3. Severity of pathology: 

Severity of pathological change has been recorded in accordance with a grading system 

established by the author (See below for details). Grading systems were developed to 

consider severity of NBF, lytic lesions and metaphyseal expansion. For each type of 

pathology, a severity score of 1, 2 or 3 has been afforded.  

 

 

Table 2. details the variables recorded for each of these categories, whilst Table 3.1 descriptively 

outlines the grading systems employed to determine severity of NBF, lytic lesions and 

metaphyseal expansion. Images taken from individuals within this study have been used to 

support these grading categories (Table 3.2). It is hoped that this grading system will provide a 

systematic way for fetal, perinatal and infant pathological lesions to be categorised in the future.  

 

True prevalence rates of pathological lesions were calculated by documenting how many 

individuals out of the 423 analysed had a particular skeletal element(s) present, and then out of 

those where the element(s) could be observed, how many showed pathological changes. Totals 

have been given for numbers of individuals/skeletal elements observed and the number affected. 

Results have typically been given in percentages affected (%) out of total observed (N). 

However, these TPRs may be better expressed as corrected CPRs (Crude Prevalence Rates) as 
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for some elements, such as long bones, there are bilateral pairs of that element. This study does 

not calculate prevalence rates for each element by side, instead amalgamating these bilateral 

pairs. Thus, TPRs may be considered as corrected CPRs. 

 

Chi-squared tests for independence at 99.5 % confidence (p < 0.05) were also employed for 

pathological categories to observe whether there was any relationship between various 

pathological variables. Chi-square results are presented numerically, where p < 0.05 shows there 

is a significant relationship between the variables. Chi-Squared values (X²) have also been given.  

 

 

 

TABLE 2. Categories and variable used in the recording of pathological lesions. 

 

 

Category Variable 

Location Cranial or Postcranial 

Skeletal Element e.g. Femur, Tibia, Frontal Bone 

Aspect e.g. Endocranial, Anterior, Circumferentially 

Type I NBF, Lytic, Metaphyseal Extension, Morphological change. 

Type II Woven, Lamellar and/or Spiculated 

Severity Grade 1, 2, or 3 
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TABLE 3.1 Descriptive grading systems for new bone formation, lytic lesions and metaphyseal expansion employed for assessment of pathological lesions within this study. 

 

 

  

 

 

 Grade 1 Grade 2 Grade 3 

New Bone 

Formation 

New bone formation, which may be woven or lamellar in 

appearance, will be considered to be grade 1 when the NBF is 

not clearly apparent and the margins are unable to be clearly 

defined from that of normal cortical bone. Grade 1 NBF is 

likely to be isolated in location, appearing minimally across the 

skeletal element. 

 

 

New bone formation recorded as being grade 2 will be clearly 

identifiable as a definable area of woven or lamellar bone 

formation. There will be clear boundaries/borders to the NBF and it 

will obviously differ from the normal cortical bone of the skeletal 

element. Grade 2 NBF is likely to be distinguishable as a clear layer 

of bone on top of the original cortical surface. It is likely that NBF 

listed within this category will be formed of a single layer though 

may extend over a large aspect area of the skeletal element. 

 

New bone formation recorded as being grade 3 will be the 

more severe type of NBF, with clear, multi-layered or thick 

NBF across a large area/aspect of the skeletal element. The 

NBF may be woven or lamellar in appearance and is clearly 

seen to be on top of the original cortical bone. 

Lytic Lesions Lytic lesions considered to be grade 1 likely consist primarily 

of macro-porosity. This porosity will be relatively minor, 

though may extend over a large skeletal area, and no clear 

destruction of the cortical bone will be apparent. 

Lytic lesions considered to be grade 2 will likely show evidence of 

some cortical destruction as well as porosity. However, cortical 

destruction will not be widespread throughout the skeletal element 

and is instead likely to be in isolated concentrations. 

 

Lytic lesions considered to be grade 3 will show extensive 

cortical destruction and/or porosity. Destruction will be 

widespread throughout the element. 

Metaphyseal 

Expansion 

Metaphyseal expansion considered to be grade 1 will likely 

consist of noticeably widened/flared metaphyses which do not 

appear proportional for the long bone diaphysis. However, 

despite this expansion no change to the metaphyseal margin or 

trabecular bone structure will be observed. 

Metaphyseal expansion will be considered to be grade 2 when 

involvement of the metaphyseal margin is apparent. This will result 

in atypical and misshapen metaphyseal margins often combined 

with a discernible brim/lip to the metaphysis. 

Metaphyseal expansion considered to be grade 3 will be the 

most severe and where involvement of the trabecular bone 

structure can be seen. Individuals displaying grade 3 

metaphyseal extension will likely have more porous 

metaphyses and the trabecular structure will appear clearly 

expanded and widened. Involvement of the metaphyseal 

margin may still be apparent though this may be lost due to 

the trabecular expansion. 
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TABLE 3.2 Photographic grading systems for new bone formation, lytic lesions and metaphyseal expansion employed for assessment of pathological lesions within this study. 

 

 

Grade 1 Grade 2 Grade 3 

New Bone Formation 

  

 

 

 

 

 

 

 
  

Lytic Lesions 

 

 

 

 

 

 

 

 

 

 

 

 

 

Metaphyseal Expansion 
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Results: 

Of the 423 individuals assessed, 209 had dentition available for assessment. Table 4. details the 

number and percent of individuals by dental age (in GWA) who had cranial and/or postcranial 

pathological lesions. Results show that, overlooking those age categories where only one 

individual was assessed, cranial pathology rates are around ~80%, compared to postcranial 

percentages which are ~30-50%. Chi square analysis found no statistical significant associations 

between cranial pathology and dental age (X² = 23.93, d.f. 14, p = 0.13) nor between postcranial 

pathology and dental age (X² = 13.17, d.f. 14, p = 0.34). This supports the finding that 

pathological lesions are found consistently throughout individuals of all dental ages, showing 

evidence of both pre- and postnatal pathological changes.  

 

TABLE 4. Prevalence rates of cranial and postcranial pathology by dental age. 

Dental Age (GWA) N Cranial Pathology N (%) Postcranial Pathology N (%) 

30 1 1 (100) 0 (0) 

34 7 6 (86) 3 (43) 

36 3 1(33) 0 (0) 

38 23 18 (78) 10 (43) 

39 6 5 (83) 1 (17) 

40 16 13 (81) 9 (56) 

42 1 1 (100) 1(100) 

43 11 9 (82) 6 (55) 

46 59 54 (92) 19 (32) 

52 43 37 (86) 14 (33) 

58 21 18 (86) 7 (33) 

64 15 8 (53) 4 (27) 

70 1 1 (100) 0 (0) 

76 1 1 (100) 0 (0) 

82 1 0 (0) 0 (0) 
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TABLE 5.1 Cranial elements by number observed and number affected out of all individuals assessed (N=423). 

 

TABLE 5.2 Postcranial long bones by number observed and number affected out of all individuals assessed (N=423). 

Skeletal Element Observed (N) Affected N (%) 

Frontal Bone 225 215 (96) 

Parietal Bone 178 162 (91) 

Occipital Bone 320 162 (51) 

Temporal Bone 252 29 (12) 

Sphenoid 227 53 (23) 

Zygomatic 220 18 (8) 

Skeletal Element Observed (N) Affected N (%) 

Femur 343 63 (18) 

Tibia 317 77 (24) 

Fibula 277 18 (6) 

Humerus 364 39 (11) 

Radius 342 21 (6) 

Ulna 348 19 (5) 
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When pathological prevalence rates are considered by skeletal element for both cranial 

(frontal bone, parietal bone, occipital bone, temporal bone, sphenoid, zygomatic) and 

postcranial long bones (femur, tibia, fibula, humerus, ulna, radius) the frontal bone and tibia 

are found to be the most commonly affected elements (Tables 5.1 and 5.2). 

 

When all individuals were assessed by time period for varying skeletal elements (Table 6.) 

similar patterns emerge; the frontal bone is typically the most affected cranial element and the 

tibiae the most affected postcranial element. Only within the 20th century sample does the 

femur marginally show greater prevalence of pathological lesions than the tibia. Saxon and 

undated individuals have been removed from this analysis, as Saxon individuals gave falsely 

elevated prevalence rates of pathology due to the small sample size (N=2), and undated 

individuals (N=15) do not further analysis of pathological lesions by time period.  

 

Consideration of type of lesion by skeletal element (Table 7.) shows that NBF is the most 

commonly found lesion within both the cranial and postcranial elements assessed. Cranial 

vault bones then most typically show lytic lesions, though the sphenoid shows a high 

prevalence rate of morphological change. The limb bones assessed show no evidence of lytic 

lesions in comparison, though for all limb bones over 20% show evidence of metaphyseal 

expansion.   

 

As new bone formation is the most commonly identified type of pathological change, 

consideration of the type of NBF (woven, lamellar, spiculated) was afforded for various 

cranial and postcranial elements (Table 8.). Woven bone is the most commonly identified 

type of NBF in all elements assessed, except for within the frontal bone and parietal bone. 

These elements show a much higher prevalence of lamellar bone formation in comparison. 

Only the sphenoid was identified to have evidence of spiculated NBF. Within the long bones, 

woven bone formation is also the most prevalent type of NBF. 

 

Consideration of individuals with dental age estimates for evidence of pathological lesions to 

various skeletal elements (Table 9.) shows that, despite small sample sizes for some dental 

ages, there is comparability between prevalence rates of pathology for the various ages. 

Therefore, it appears that regardless of dental age, skeletal elements show similar prevalence 

rates of pathological changes. This means there is no pre- or postnatal peak in pathology 

identified for the majority of these skeletal elements. The only element where a postnatal 
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peak in pathology may be observed is in the occipital bone. Chi-squared assessment of 

prevalence of skeletal elements affected by dental age (Table 10.) suggests that there is only a 

significant association between pathology and dental age for both the occipital bone and 

parietal bone. Therefore, seemingly, the other skeletal elements show comparable 

pathological lesions between dental ages.  

 

Considering severity of lesions to the frontal bone and tibia – the elements found to most 

commonly show pathological lesions – identified that severity of grade two is most 

commonly seen for both elements, for all dental ages. Grade three severity is the most 

unlikely score in almost all ages for both the frontal bone and tibia, and both pre- and 

postnatal individuals have been found to have lesions of this severity. Again this suggests that 

there is no peak in the prevalence and severity of pathological lesions by age. Furthermore, 

consideration of NBF, and its type (woven, lamellar) by dental age (Table 12.) for the femur, 

tibia and humerus has supported these conclusions, showing similar prevalence rates of NBF 

between ages.  
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TABLE 6. Skeletal elements by number observed and number found to show pathological changes by time period. 

 

 

  

Skeletal 

Element 

Pre-Roman Transition Roman Medieval Post-Medieval 20th Century 

Observed 

(N) 

Affected 

 N (%) 

Observed 

(N) 

Affected 

 N (%) 

Observed 

(N) 

Affected 

 N (%) 

Observed 

(N) 

Affected 

 N (%) 

Observed 

(N) 

Affected  

N (%) 

Observed 

(N) 

Affected  

N (%) 

Frontal Bone 7 5 (71) 17 15 (88) 17 14 (82) 7 6 (86) 95 94 (99) 76 76 (100) 

Parietal Bone 4 3 (75) 18 13 (72) 16 11 (69) 8 8 (100) 85 84 (99) 42 39 (93) 

Occipital Bone 13 3 (23) 20 12 (60) 24 11 (46) 7 4 (57) 128 86 (67) 117 43 (37) 

Temporal Bone 13 1 (8) 16 3 (19) 19 3 (16) 9 1 (11) 100 11 (11) 86 10 (12) 

Sphenoid 11 2 (18) 15 6 (40) 19 6 (32) 9 3 (33) 98 16 (16) 117 19 (16) 

Femur 11 1 (9) 21 10 (45) 29 3 (10) 12 4 (33) 134 28 (21) 125 15 (12) 

Tibia 9 1 (11) 20 11 (55) 23 10 (43) 7 4 (57) 119 36 (30) 132 14 (11) 

Humerus 12 0 (0) 21 3 (14) 27 2 (7) 14 3 (21) 146 19 (13) 135 11 (8) 

Radius 10 0 (0) 22 2 (9) 25 0 (0) 14 2 (14) 132 8 (6) 131 8 (6) 

Ulna 12 0 (0) 23 2 (9) 23 1 (4) 13 1 (8) 132 7 (5) 133 6 (5) 
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TABLE 7. Type of pathological lesion by skeletal element. Only those elements affected by pathological changes have been considered. For each skeletal element, type of pathological lesion percentages may go beyond 

100% as some individuals were found to have multiple types of changes within a single element.  

 

 

 

 

  

Skeletal Element Affected (N) New Bone Formation N (%) Lytic Lesions N (%) Metaphyseal Expansion N (%) Morphological Change N (%) 

Frontal Bone 215 204 (95) 13 (6) - 6 (3) 

Parietal Bone 162 151 (93) 7 (4) - 5 (3) 

Occipital Bone 162 153 (94) 9 (6) - 8 (5) 

Temporal Bone 29 16 (55) 6 (21) - 7 (24) 

Sphenoid 53 34 (64) 2 (4) - 21 (40) 

Femur 63 42 (67) 0 (0) 23 (37) 9 (14) 

Tibia 77 63 (82) 0 (0) 17 (22) 7 (9) 

Humerus 39 28 (72) 0 (0) 10 (26) 3 (8) 

Radius 21 13 (62) 0 (0) 8 (38) 4 (19) 

Ulna 19 12 (63) 0 (0) 5 (26) 5 (26) 
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TABLE 8. Type of new bone formation by skeletal element. Only those elements identified as having new bone formation have been considered. For each skeletal element, type of new bone formation percentages may 

go beyond 100% as some individuals were found to have multiple types of new bone formation within a single element.  

 

 

  

Skeletal Element Affected (N) 

Affected by Type of New Bone Formation 

Woven N (%) Lamellar N (%) Spiculated N (%) 

Frontal Bone 204  50 (25) 172 (84) 0 (0) 

Parietal Bone 151  34 (23) 121 (80) 0 (0) 

Occipital Bone 153  129 (84) 27 (18) 0 (0) 

Temporal Bone 16  10 (63) 6 (38) 0 (0) 

Sphenoid 34  31 (91) 1 (3) 2 (6) 

Femur 42  38 (90) 4 (10) 0 (0) 

Tibia 63  58 (92) 5 (8) 0 (0) 

Humerus 28  21 (75) 7 (25) 0 (0) 

Radius 13  9 (69) 4 (31) 0 (0) 

Ulna 12  9 (75) 3 (25) 0 (0) 
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TABLE 9. Number and percentage of pathological lesions by dental age for both cranial and postcranial elements. Only individuals with dental age estimates have been assessed.  

 

 

  

Skeletal 

Element 

Observed 

(N) 

Affected 

(N) 

Affected by Dental GWA (N Affected out of N Observed) (%) 

30 34 36 38 39 40 42 43 46 52 58 64 70 76 82 

Frontal Bone 149 142 
1/1 

(100) 

6/6 

(100) 

1/1 

(100) 

16/17 

(94) 

5/5 

(100) 

12/13 

(92) 

1/1 

(100) 

9/9 

(100) 

45/48 

(94) 

29/30 

(97) 

11/11 

(100) 

5/5 

(100) 

1/1 

(100) 

0/0  

(0) 

0/1 

(0) 

Parietal Bone 131 119 
0/0  

(0) 

3/3 

(100) 

1/1 

(100) 

7/10  

(70) 

3/3 

(100) 

10/10 

(100) 

1/1 

(100) 

8/8 

(100) 

40/44 

(91) 

31/32 

(97) 

11/13  

(85) 

4/5  

(80) 

0/0  

(0) 

0/0  

(0) 

0/1 

(0) 

Occipital Bone 190 122 
0/1  

(0) 

3/7  

(43) 

0/2  

(0) 

6/20 

(30) 

3/6  

(50) 

9/15  

(60) 

1/1 

(100) 

8/11 

(73) 

41/57 

(72) 

27/37 

(73) 

13/18 

(72) 

9/12 

75) 

1/1 

(100) 

1/1 

(100) 

0/1 

(0) 

Temporal Bone 172 25 
0/1 

(0) 

1/7 

(14) 

0/3 

(0) 

1/17 

(6) 

0/4 

(0) 

4/15 

(27) 

1/1 

(100) 

1/10 

(10) 

10/51 

(20) 

4/35 

(11) 

1/17 

(6) 

2/9 

(22) 

0/1 

(0) 

0/1 

(0) 

0/0 

(0) 

Sphenoid 160 40 
1/1 

(100) 

3/7 

(43) 

0/3 

(0) 

4/17 

(24) 

2/6 

(33) 

5/13 

(38) 

0/1 

(0) 

1/10 

(10) 

17/52 

(33) 

4/33 

(12) 

1/10 

(10) 

2/6 

(33) 

0/1 

(0) 

0/0 

(0) 

0/0 

(0) 

Femur 164 39 
0/1 

(0) 

1/4 

(25) 

0/3 

(0) 

2/19 

(11) 

1/6 

(17) 

4/11 

(36) 

1/1 

(100) 

4/10 

(40) 

12/46 

(26) 

6/32 

(19) 

5/18 

(28) 

3/12  

(25) 

0/1 

(0) 

0/0 

(0) 

0/0 

(0) 

Tibia 158 44 
0/1 

(0) 

2/5 

(40) 

0/3 

(0) 

4/17 

(24) 

0/5 

(0) 

5/12 

(42) 

0/1 

(0) 

3/10 

(30) 

15/50 

(30) 

6/27 

(22) 

6/17 

(35) 

3/9 

(33) 

0/1 

(0) 

0/0 

(0) 

0/0 

(0) 

Humerus 191 27 
0/1 

(0) 

1/7 

(14) 

0/3 

(0) 

4/23 

(17) 

0/6 

(0) 

3/13 

(23) 

0/1 

(0) 

4/11 

(36) 

6/52 

(12) 

3/41 

(7) 

3/18 

(17) 

3/14 

(21) 

0/1 

(0) 

0/0 

(0) 

0/0 

(0) 

Radius 177 15 
0/1 

(0) 

1/6 

(17) 

0/3 

(0) 

1/22 

(5) 

0/6 

(0) 

1/13 

(8) 

0/1 

(0) 

2/11 

(18) 

3/51 

(6) 

2/35 

(6) 

2/16 

(13) 

2/11 

(18) 

0/1 

(0) 

0/0 

(0) 

0/0 

(0) 

Ulna 177 13 
0/1 

(0) 

1/7 

(14) 

0/3 

(0) 

1/21 

(5) 

0/5 

(0) 

1/13 

(8) 

0/1 

(0) 

1/11 

(9) 

2/49 

(4) 

2/38 

(5) 

2/15 

(13) 

2/12 

(17) 

0/1 

(0) 

0/0 

(0) 

0/0 

(0) 
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TABLE 10. Results of chi-squared analysis (X²) of pathological lesions by dental age for various skeletal elements. P results highlighted in bold are those found to be statistically significant. 

 

 

TABLE 11. Assessment of severity of pathological lesions for the frontal bone and tibia by dental age. Only individuals with dental age estimates and pathological changes to either the frontal bone or tibia have been 

assessed. Again numbers and percentages of severity scores may not match number of individuals affected or 100% as some elements were afforded multiple severity scores due to multiple types of lesions being 

identified. Additionally, those elements identified as having morphological changes were not assigned a severity grade and therefore are not reflected within this assessment.  

  

 Frontal Bone Parietal Bone Occipital Bone Humerus Femur Tibia 

 X² d.f. p X² d.f. p X² d.f. p X² d.f. p X² d.f. p X² d.f. p 

Dental Age 22.806 14 0.053 27.969 14 0.007 24.318 14 0.018 10.805 14 0.67 11.390 14 0.639 8.12 14 0.691 

Dental Age 
Frontal Bone 

Affected (N) 

Severity N (%) Tibia 

Affected (N) 

Elements by Severity N (%) 

Grade 1 Grade 2 Grade 3 Grade 1 Grade 2 Grade 3 

30 1 0 (0) 1 (100) 0 (0) 0 - - - 

34 6 3 (50) 2 (33) 0 (0) 2 1 (50) 0 (0) 1 (50) 

36 1 0 (0) 1 (100) 0 (0) 0 - - - 

38 16 2 (13) 13 (81) 0 (0) 4 0 (0) 4 (100) 0 (0) 

39 5 1 (20) 3 (60) 3 (60) 0 - - - 

40 12 3 (25) 7 (58) 1 (8) 5 2 (40) 3 (60) 1 (20) 

42 1 0 (0) 1 (100) 0 (0) 0 - - - 

43 9 2 (22) 4 (44) 3 (33) 3 1 (33) 1 (33) 1 (33) 

46 45 11 (24) 32 (71) 4 (9) 15 5 (33) 9 (60) 0 (0) 

52 29 2 (7) 23 (79) 7 (24) 6 1 (17) 4 (66) 0 (0) 

58 11 4 (36) 7 (64) 1 (9) 6 2 (33) 6 (100) 0 (0) 

64 5 2 (40) 3 (60) 0 (0) 3 0 (0) 2 (66) 2 (66) 

70 1 0 (0) 1 (100) 0 (0) 0 - - - 
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TABLE 12. Assessment of new bone formation and type of new bone formation by dental age for the humerus, femur and tibia. 

 

  

Dental 

Age 

Humerus Femur Tibia 

Observed N 
NBF  

 N (%) 

Woven   

 N (%) 

Lamellar   

 N (%) 
Observed N  

NBF  

 N (%) 

Woven    

N (%) 

Lamellar   

 N (%) 
Observed  N  

NBF  

 N (%) 

Woven   

 N (%) 

Lamellar  

  N (%) 

30 1 0 (0) 0 (0) 0 (0) 1 0 (0) 0 (0) 0 (0) 1 0 (0) 0 (0) 0 (0) 

34 7 1 (14) 1 (100) 0 (0) 4 1 (25) 1 (100) 0 (0) 5 2 (40) 2 (100) 0 (0) 

36 3 0 (0) 0 (0) 0 (0) 3 0 (0) 0 (0) 0 (0) 3 0 (0) 0 (0) 0 (0) 

38 23 4 (17) 4 (100) 0 (0) 19 1 (5) 1 (100) 0 (0) 17 4 (24) 4 (100) 0 (0) 

39 6 0 (0) 0 (0) 0 (0) 6 0 (0) 0 (0) 0 (0) 5 0 (0) 0 (0) 0 (0) 

40 13 2 (15) 2 (100) 0 (0) 11 4 (36) 4 (100) 0 (0) 12 5 (42) 5 (100) 0 (0) 

42 1 0 (0) 0 (0) 0 (0) 1 0 (0) 0 (0) 0 (0) 1 0 (0) 0 (0) 0 (0) 

43 11 2 (18) 1 (50) 1 (50) 10 4 (40) 3 (75) 1 (25) 10 3 (30) 2 (67) 1 (33) 

46 52 2 (4) 2 (100) 0 (0) 46 7 (15) 6 (86) 1 (14) 50 10 (20) 10 (100) 0 (0) 

52 41 3 (7) 2 (67) 1 (33) 32 4 (13) 4 (100) 0 (0) 27 5 (19) 5 (100) 0 (0) 

58 18 2 (11) 2 (100) 0 (0) 18 2 (11) 2 (100) 0 (0) 17 4 (24) 4 (100) 0 (0) 

64 14 1 (7) 0 (0) 1 (100) 12 1 (8) 0 (0) 1 (100) 9 1 (11) 0 (0) 1 (100) 

70 1 0 (0) 0 (0) 0 (0) 1 0 (0) 0 (0) 0 (0) 1 0 (0) 0 (0) 0 (0) 
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Discussion 

The analysis of this large sample of fetal, perinatal and infant remains has revealed a complex 

pattern of pathological lesions, with high percentages of individuals from all populations, and 

of all dental ages, showing evidence of pathological changes. This suggests that many of the 

individuals experienced a reduced health status. 

 

High prevalence rates of pathological changes, particularly within the cranial elements may 

be questioned as to whether these changes observed are true pathological indicators. This is 

particularly pertinent regarding analysis and identification of NBF within the individuals, as 

this type of lesion in particular has been the subject of much bioarchaeological debate. 

However, before expanding upon the nuances and evidence this data provides, it is important 

to consider that this is an assessment of non-survivors. Consequently, patterns of pathological 

changes observed within these individuals may not be representative of the ‘normal’ 

population and indeed may be inflated as a consequence of their frailty and ultimately, 

untimely death. These individuals died either prior to, during, or shortly after birth in the 

following days, weeks or months. Hence, the high rates of pathological lesions are not 

unexpected (Krenz-Niedbala & Lukasik 2017). While not all individuals in the sample would 

be expected to show skeletal manifestations of disease, as most conditions do not leave 

skeletal traces (Goodman & Armelagos 1989), many will have perished as a result of disease, 

infection or other environmental stresses transmitted to them during their most precarious 

time of life. Furthermore, it must not be overlooked that some of the pathological lesions 

identified may also be the consequence of birth trauma. In particular, NBF can be a 

consequence of intra-cranial haemorrhage, which is a common occurrence within modern 

clinical settings (O’Driscoll et al. 1981; Fenichel et al. 1984; Looney et al. 2007).  

 

It is well documented that fetal, perinatal and infant life is fragile; such individuals are wholly 

dependent on others for their development and care (Lewis 2017a; 2017b; Ramji 2009; 

Baxter 2005). Fetal, perinatal and infant death is still widespread; there are 4.5 million infant 

(under the age of one) deaths per year, and these represent 75% of all children dying under 5 

years of age (WHO Global Health Observatory). An additional 2.6 million stillbirths are 

estimated to occur every year (WHO Sexual and Reproductive Health). Of these stillbirths, 

half occur during labour and birth (WHO Sexual and Reproductive Health), and of the ‘133 

million babies born alive each year, 2.8 million die in the first week of life’ (WHO Maternal 
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and Perinatal Health). This emphasises how, even today, the process of birth and the hours 

and days after are some of the most precarious of our life course. Many of these fetal and 

infant deaths today are in low and middle-income countries (WHO Sexual and Reproductive 

Health), where access to medical care and treatment is often limited. Within archaeological 

populations, similar conditions and limited medical knowledge, treatment and care of 

pregnant women and their children may have been likely. Thus, exceptionally high infant 

mortality, combined with maternal co-morbidity would not be unexpected. It is considered 

that up to 50% of infants in pre-industrial societies would have perished before reaching 

adulthood (Chamberlain 1997), whilst maternal mortality rates are purported to be between 7 

and 17 per 1000 live births in post-Medieval England (Wrigley & Schofield 1989). 

Furthermore, the presence of pathological lesions to a high percentage of the individuals 

assessed simply reflects the high pathogen load and stress exposure that many of these 

populations are likely to have been subjected to.    

 

Complexities of identifying and diagnosing pathological lesions 

The results of pathological assessment demonstrated that the bones of the cranial vault 

(frontal bone, parietal bone and occipital bone) and the tibiae and femora are most commonly 

affected by pathological changes. Although these bones - flat bones of the cranium and long 

bones - differ in their growth mechanism (intramembranous and endochondral ossification 

respectively) (Schultz 2001), the importance of these skeletal elements within the body may 

be why these elements typically show pathological changes. It is known that the body 

prioritises growth of particular bodily and skeletal structures, with the brain sitting at the top 

of this physiological hierarchy (Barker et al. 2012), consequently requiring the cranial bones 

to be adequately developed.  

 

Bones of the cranial vault are initially formed within the first trimester, with growth in these 

elements continuing across the plate and at the sutures throughout the intrauterine period 

(Lewis 2017a). The cranium is a highly vascular structure, and the high number of fissures 

and foramina means infection and disease can spread rapidly (Chapman et al. 2013a; 2013b). 

As a consequence, this structure is where NBF would perhaps be most expected, both as a 

result of normal growth and pathological response to health insults. However, growth of the 

cranial vault elements happens concentrically, with normal NBF originating from the centre 

of the bone, with growth in dimension occurring at the sutural edges (Lewis 2017a). 
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Although distinguishing normal from pathological NBF is difficult, evidence of both woven 

and lamellar NBF, of varying severities has been identified throughout the individuals 

assessed. For the frontal bone, one individual was found to have only ectocranial lesions, 201 

individuals had endocranial lesions, while seven individuals showed evidence of both. None 

of the individuals assessed showed evidence of a concentric formation to the NBF, with many 

of the lesions instead appearing to follow, or be bounded by, vascular structures on the 

endocranial surface. Many lesions were also transverse in organisation, isolated across the 

endocranial surface, and in 6% of cases were associated with lytic lesions also.   

 

Woven bone is produced when osteoblastic cells produce osteoid rapidly – such as in fetal 

and infant growth, but also as a result of pathological response (Kini et al. 2012). Woven 

bone is disorganised in appearance and often appears as a fine, porous, grey layer on bones 

(Kini et al. 2012; Schultz 2001). In contrast, lamellar bone is characterised by its regular, 

linear appearance and is found as a result of healing or as part of the remodelling process in 

growth and development (Kini et al. 2012; Schultz 2001).  

 

When part of the normal growth process of the cranium, it is expected that the NBF would be 

isolated to the sutural edges of the vault bones. Instead this woven and lamellar bone 

formation was found across the entirety of the endocranial surface of vault bones; there was 

no indication that NBF was specific to particular areas, suggesting it is unlikely to be a part of 

the normal NBF process, and instead a result of pathological bony changes. Additionally, 

many endocranial lesions also show evidence of meningeal/arterial grooves running though 

the NBF which has been considered to be indicative of enlarged or atypical vascular 

structures (Schultz 2001; Rumbaugh & Potts 1966). This may support the suggestion that, 

due to its highly vascular physiology, the cranium often reflects evidence of pathological 

changes both first, and perhaps most severely, as infections/systemic conditions would be 

easily transported to the cranium. It may be that lesions are identified particularly within the 

cranium as a result of the high bone turnover within these elements, though both normal and 

pathological NBF would be influenced by this. However, given that the severity of frontal 

lesions are typically grade two, it is suggested that the majority are not associated with 

normal NBF as a result of physiological growth. Furthermore, pathological lesions may be 

identified more readily within the cranial vault bones as the body may be attempting to 

maintain growth within these elements. Thus, it would follow that if these are the bones 

where growth is attempted to be maintained that they are equally likely to be the first bones 
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to show a pathological response. Additionally, if these lesions were associated with normal 

NBF it would be anticipated that there would be a peak in these lesions from 40 GWA 

onwards, as the postnatal growth spurt would be increasing NBF at this point. Findings 

suggest a similar prevalence rate of lesions amongst all dental ages, advocating that these 

lesions are pathological, and demonstrating that these lesions are not correlated with ages 

where known growth spurts occur (e.g. 40 GWA onwards). 

 

In contrast, the long bones develop endochondrally, where a cartilaginous precursor is laid 

down before ossification commences (Lewis 2017a). This endochondral ossification means 

that new bone develops and grows from the internal aspect of the bone (from within the 

medullary cavity), and ossifies at the metaphyseal growth plates (Kini et al. 2012). The 

cortical bone is covered by an outer surface known as the periosteum, except for at the joints, 

or metaphyses in infant individuals (Kini et al. 2012). The periosteum is a fibrous connective 

tissue containing blood vessels and nerves, which helps to protect, nourish and aid in NBF 

(Kini et al. 2012; Schultz 2001). The periosteum is also involved in the process of 

appositional growth (Kini et al. 2012). It is this appositional growth which has caused much 

debate within bioarchaeology, as again the appearance of woven bone around the diaphyses 

of skeletal long bones has been argued to be both a pathological response, and part of the 

normal growth process. In fetal, perinatal and infant individuals the periosteum is both more 

active (in terms of normal growth) but is also more weakly attached to the cortical bone 

which it covers (Rana et al. 2009). This means that pathological changes to the periosteum 

can be identified earlier in infants but also tend to be more common and aggressive (Rana et 

al. 2009). The presence of NBF on the diaphyses of long bones can then represent both 

normal and pathological changes (Kwon et al. 2002). Distinguishing between the two has 

been contested at length, with no definitive method for macroscopic assessment of dry-bone 

yet established. Recent clinical literature has explored periosteal NBF, seemingly able to 

distinguish pathological bone on the basis of both the number of layers of NBF and its 

thickness (Rana et al. 2009; Kwon et al. 2002).  

 

Kwon et al. (2002) found that NBF is often found in individuals aged 1-4 months and is 

suggestive of normal growth. However, NBF in neonates (younger than 1 month) and older 

infants (older than 4 months) was not identified and is suggested to be abnormal (Kwon et al. 

2002). Periosteal NBF, if pathological, is often interpreted as being associated with metabolic 

disorders, such as vitamin C and D deficiency (Schultz 2001; Lewis 2007; Dawson 2017), 
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hypervitaminoses A and infections such as congenital syphilis (Kwon et al. 2002; Rana et al. 

2009), soft tissue infections, and leprosy and tuberculosis (Schultz 2001) – all conditions 

known to cause pathological NBF within the skeleton. Kwon et al. (2002) found that 35% of 

the individuals assessed had NBF to at least one bone, with 55% of individuals between 2 and 

3 months of age having the highest rate of NBF. However, it must be noted that the sample 

considered within Kwon and colleague’s analysis (2002) is of individuals who suffered SIDS 

(Sudden Infant Death Syndrome). SIDS is defined as the sudden, and unexplained, death of 

an infant below 1 year of age (Moon & Fu 2012; Adams et al. 2015). Despite this apparent 

lack of cause of death, true health status is unknown. Besides, individuals who were 

premature, small for gestational age, or experienced intrauterine growth restriction are of 

increased risk of SIDS (NHS; Sudden Infant Death Syndrome). Therefore, though minimising 

the inclusion of ‘unhealthy’ individuals within their sample, Kwon and colleagues’ 

investigation (2002) was not undertaken on individuals of known health status and remains 

an assessment of deceased individuals.  

 

Archaeological and historical individuals from this investigation showed that between 33-

55% of individuals aged 43-52 GWA showed postcranial pathological changes (Table 4.), 

with the long bones found to show pathological changes in between 5-24% of all individuals 

(Table 5.2). For individuals aged 43-52 GWA, 13% of those with femora show pathological 

lesions, 15% of those with tibiae, and 7% of those with tibiae (figures calculated using Table 

9.). When only NBF is considered for the age groups 43-52 GWA (Table 12.), 4-40% of long 

bones show these changes. Consequently, the rates of pathological lesions identified within 

these individuals are lower than the published study identified (Kwon et al. 2002) and are 

consequently not suggestive of over-recording. Furthermore, this study revealed that NBF to 

the limb bones (humerus, femur, tibia) was found throughout the age groups (Table 12.), with 

those both below 1 month (44 GWA), and over 4 months (56 GWA), showing similar 

percentages of NBF as those aged between 1-4 months.  

 

The fact that patterns of postcranial pathology observed within this study contradict the 

findings of Kwon et al. (2002) helps substantiate that the NBF identified on the 

archaeological individuals studied is not associated with normal growth. However, the pattern 

of bones most typically shown to have NBF are similar to those outlined by Kwon et al. 

(2002), with the tibiae most commonly affected, followed by the humerus and femur, with 

radius and ulna showing the least prevalence of NBF (Table 7.). However, given than both 
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metaphyseal changes and morphological changes, consistent with bowing, were also 

identified within the limb bones (Table 7.) suggests that pathological stimuli were impacting 

on these individuals. Thus, the prevalence of NBF within the skeletal remains is posited to 

show evidence of pathological changes.  

 

The tibia is known to be particularly sensitive to health insults (Klaus 2014) and so the high 

prevalence rate of lesions to this skeletal element within non-survivors of archaeological 

samples is not unexpected. In total, 25 out of the 63 tibiae (39 %) to show NBF, had lesions 

located on the anterior. This was the location with the greatest prevalence of lesions, in 

comparison to those recorded as lateral, medial or circumferential. The anterior tibia is 

widely considered to be the most sensitive and indicative of pathological changes, 

particularly regarding NBF. This tendency is considered to be a result of its close proximity 

to the skin/surface and greater vascularity (Roberts & Manchester 2010). This study supports 

these assumptions, demonstrating that, of the postcranial bones, the tibia most commonly 

shows pathological lesions, both in general (Table 5.2), and by time period (Table 6.).  

Consequently, it may be that, once again, the pattern of pathology is reflecting the pattern of 

growth; if these bones are suspected of showing evidence of NBF as part of appositional 

growth, it would be likely that when affected by health insults, these bones would also be first 

to be affected and show evidence of pathological change. Thus, thickness of the NBF may be 

imperative in discerning between normal and pathological periosteal NBF, as suggested by 

Kwon et al. (2002). 

 

To conclusively determine whether NBF identified on the 423 individuals assessed are part of 

normal or pathological growth processes, the NBF would have to be over 2mm in thickness 

(Kwon et al. 2002). As this study did not employ any destructive methods of analysis, nor 

have the ability to radiograph all 423 individuals, the thickness of the NBF has not been 

metrically assessed. However, by including assessment of severity within analysis, 

individuals who showed NBF of severity grade three are suggested to clearly demonstrate 

evidence of pathological NBF. However, such obvious determination of pathological from 

normal NBF is not as simple for many of the individuals. Clinical studies do not describe 

macroscopic features of pathological NBF, instead relying on radiological assessment (e.g. 

Kwon et al. 2002). Thus, diagnostic evidence of pathology currently requires radiographic 

analysis, whilst macroscopic assessment of archaeological remains still lacks precise 

diagnostic criteria.  
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Currently a major limitation in the assessment of pathological lesions is the ambiguity 

surrounding the body’s ability to mount a response to pathological stimuli if indeed 

experiencing detrimental health stress. Addressing this concern is important for pathological 

assessment of all individuals not just non-adults, though is particularly pertinent for those 

individuals who are growing and developing so rapidly (e.g. fetal, perinatal and infant 

individuals). Weston (2012) has argued that NBF should not be used as an indicator of health 

stress due to NBF being inhibited under subjection to stress. Ultimately then, NBF should not 

be identifiable as a physiological response to stress, and instead absence of NBF may be more 

remarkable in revealing interruption and cessation of growth. However, as Selye has 

highlighted (1973), there are multiple phases to the stress response. The general-adaptation-

syndrome model is defined as the ‘non-specific response of the body to any demand upon it’ 

(Selye 1973, 692). There are three phases to this model: the alarm, resistance and collapse 

stages (Selye 1973). Within this conceptual framework, although the initial phases of bodily 

response may be to halt growth as part of the alarm mechanism, the resistance and collapse 

stages may result in physiological skeletal changes as the body attempts to accommodate, 

adapt to, and overcome health stresses. Thus, bony changes may be indicative of the body 

endeavouring to maintain homeostasis (Selye 1973). Klaus (2014) supports this notion 

suggesting that stress and growth has a much more intricate and bounded relationship than 

simply an on or off mechanism. Consequently, NBF, both woven and lamellar may be 

indicative of a healing response. With bones of the cranial vault typically found to have the 

highest prevalence rates of NBF it is then considered that this is as a result of the body 

prioritising maintenance and healing within these elements.  

 

Etiological Interpretations 

Regarding the etiology of the lesions identified some are consistent with metabolic stress 

(Lewis 2007; Mensforth et al. 1978). Individuals expressing NBF, metaphyseal expansion, 

and torsion/bowing of the limbs might be more obviously diagnosed with suspected cases of 

vitamin D and C deficiency. Even today vitamin deficiencies, particularly vitamin D, are 

common in pregnant women and it has been advised since 2007 that pregnant women in the 

U.K should take additional supplements of vitamin D (Mahon et al. 2010; Scientific 

Advisory Committee on Nutrition 2007). However, diagnosis is complex and such changes 

are likely as a result of the mother being unable to provide adequate nutrition to the 
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individual in utero and beyond (Mahon et al. 2010). As a result, many other conditions and 

diseases, which may take a varying form in the adult skeleton, may be expressed as a vitamin 

deficiency in the developing fetus and perinate. Parasitic infections would cause pathological 

lesions consistent with vitamin deficiency by restricting the flow of nutrients across the 

placenta (Barker et al. 2012), although various other diseases would also inhibit this ability 

by reducing the mother’s health status and causing her own body to metabolically respond by 

limiting nutrients to the fetus.  

 

Vitamin C and D deficiencies can affect growth and development of the skeleton; lack of 

vitamin C results in defective osteoid formation (development of new bone cells) (Brickley & 

Ives 2006) while vitamin D deficiency affects the calcification of bone (Lewis 2007; Kini et 

al. 2012). Enlarged or widened and porous metaphyses, identified in 29% of the individuals 

with pathological changes, are also an indication of vitamin D deficiency, in which cartilage 

at the growth plates does not mineralize properly (Roberts & Manchester 2010). Although 

some argue that enlarged or ‘splayed/flared’ metaphyses should only be visible when limbs 

are weight-bearing (e.g. Holick 2005), a recent clinical investigation has demonstrated that 

fetal femoral metaphyseal cross-sections are enlarged when their mothers are either vitamin 

D insufficient or deficient (Mahon et al. 2010). Furthermore, this study also found that such 

changes in metaphyseal dimensions were observable from as early as 19-weeks gestation 

(Mahon et al. 2010). Similarly, Innes and colleagues (2002) found that bowing in association 

with congenital rickets can be observed pre- and perinatally also. It is posited that prenatal 

space constraint and restriction in utero can alter morphology (e.g. Bonneau et al. 2011).  

 

Metaphyseal changes can also indicate the presence of vitamin C deficiency as widening at 

the metaphyses could suggest chronic bleeding at the joints (Aufderheide and Rodriguez-

Martín 2008). Lack of vitamin C can result in blood vessels becoming fragile and easily 

ruptured (Brickley and Ives 2006; Ortner and Ericksen 1997; Besbes et al. 2010). This can 

lead to haemorrhaging, including in the vessels supplying the metaphyses, but particularly 

within the cranium (Roberts and Manchester 2010). With many of the individuals assessed 

exhibiting evidence of NBF to the endocranium, it may indicate that cranial haemorrhaging 

(Brickley and Ives 2006; Schultz 2001) and chronic bleeding (Ortner et al. 1999) was 

experienced as a result of nutritional deficiencies. Lesions associated with cranial 

haemorrhaging are typically found around meningeal grooves, on the frontal bones and at the 
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cruciate eminence of the occipital bone, where they present a web-like appearance (Lewis 

2004; 2007). Furthermore, many of the lesions identified are comparable to those considered 

by Lewis (2004) and Schultz (2001) as evidence of pathological lesions. However, the exact 

etiology of NBF in the cranium is debated (Lewis 2007) and other possible causes include 

meningitis, anaemia and venous drainage disorders (Lewis 2004; 2007). 

 

Vitamin A deficiency is a further factor to be considered as we are unable to synthesize this 

nutrient and are required to get our intake from dietary sources (Fujita et al. 2017). 

Importantly, we require this vitamin for a variety of functions, including both our growth and 

immunity (Fujita et al. 2017). In particular, maternal breast milk is known to have high 

concentrations of vitamin A as a result of the post-partum infant requiring increased levels of 

this nutrient to be able to sustain rapid growth (Fujita et al. 2017). Vitamin A deficiency is 

one which is still estimated to claim one million infant lives a year (Fujita et al. 2017) and 

thus, maternal deficiency of this nutrient within any of the archaeological populations would 

likely have contributed to the compromised fetal, perinatal and infant health and wellbeing 

identified. Considering the fact that nutritional deficiency is often experienced in conjunction 

with other deficiencies, vitamin A deficiency is an etiology which needs further consideration 

within the bioarchaeological literature. 

 

The presence of NBF is non-specific and multiple causes could be attested (Nade 1983). 

Klaus (2014) and Weston (2008) have highlighted the multiple mechanisms under which new 

bone can form, particularly that which involves an inflammatory response. Weston (2008) 

considers it imperative to note that periosteal NBF is an inflammatory response (a vascular 

response) by the body to neutralise infection or repair/heal damaged bone. Infections are 

pathogenic organisms, which typically result in an inflammatory response, but as Weston 

(2008) states ‘…not all such responses are caused by infection’. Infections are considered to 

be relatively typical during early development (Eisenberg et al. 2017; Degani 2006), and 

many infections are possible: these include meningitis, rubella, measles, smallpox, puerperal 

fever and diarrhoeal diseases (Anderson & Gonik 2011; Lewis 2017a). Although the specific 

pathological lesions for such conditions are unknown, some of the non-specific lesions 

identified may be attributable to them. In particular, individuals with extensive NBF to the 

long bones which produces a distinct thickening (See Table 3.2; New Bone Formation Grade 

3) may be indicative of osteomyelitis. Osteomyelitis is a result of inflammation elevating the 

periosteum away from the cortical bone surface and creating a new layer of bone, often 
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resulting in a thick, bony sleeve of bone around the original cortical surface (Rana et al. 

2009). Osteomyelitis can be caused by fungal infections, tuberculosis, typhoid fever, 

congenital syphilis and small pox (Lewis 2017a). However, attributing a specific cause to 

these lesions is challenging (Schmit & Glorion 2004). The tibia has been identified as the 

bone which most commonly shows evidence of osteomylitic infections (Rasool 2001). Given 

that the tibia has similarly been identified within this study to be the most susceptible to 

pathological changes, and with five individuals having NBF of severity grade three identified 

on the tibia, osteomyelitis is a likely diagnosis, despite the true etiology remaining unknown. 

Smallpox is known to increase fetal mortality (Reid 1990), and historical studies of 19th and 

20th century populations have shown that as smallpox declined and was eradicated, fetal and 

maternal mortality also declined (Reid 1990). Smallpox can also be transmitted during 

pregnancy from mother to the in utero child (Woods 2008). Therefore, particularly within the 

post-Medieval collections, smallpox maybe a further contributing aetiology to consider in 

relation to the high levels of NBF observed in the individuals from this period.  

 

Endocranial lesions may also result from infectious disease, including tuberculosis, fungal 

infections (Vattoth et al. 2013) and treponemal diseases (Schultz 2001). However, normal 

vaginal birth has been found to be associated with intracranial haemorrhage (ICH) with no 

correlation to duration of labour or traumatic/assisted birth (Looney et al. 2007). Other 

studies however, have identified that traumatic birth, breech delivery, and forceps delivery all 

increase the risks of ICH (O’Driscoll et al. 1981; Fenichel et al. 1984). ICH has also been 

considered to be strongly associated with anoxemia (deficiency in oxygen with the arterial 

blood supply), with symptoms of ICH including appetite loss, vomiting and convulsions 

(Yongen 1980). Yongen (1980) also found that ICH was strongly correlated to mortality, 

with 33% of those expressing lesions dying within the first few day/weeks of life. 

Consequently, evidence of NBF within the cranium of many individuals assessed within this 

study potentially reflect birth trauma and the morbidity and mortality consequences of such.  

 

The Biocultural Perspective: Implications of fetal, perinatal and infant pathology 

The maternal-infant nexus is a relationship that many, multidisciplinary studies, are now 

considering in more detail due to its ability to influence the morbidity and mortality outcomes 

during earlier and later life (e.g. Gowland 2015). From a bioarchaeological perspective, this 

nexus provides insights into maternal health, as well as overall population health (Baxter 

2005; Redfern 2003; Goodman & Armelagos 1989). Fetuses, perinates and infants should not 
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be considered to be autonomous (Gluckman 1997), but instead their fortunes are intrinsically 

entangled with those of their mothers (Gowland 2015; Redfern 2003). The mother’s own 

health and/or disease status plays a crucial role in determining the health of her child while in 

utero and beyond (Gowland 2015; Wilcox 2010). 

 

The fetus has often been referred to as a parasite (Rivara & Miller 2017), leaching nutritional 

resources from the mother for optimal growth and development (Gowland 2015). However, 

the mother has to have sufficient availability of nutrients to supply the placenta, and thus the 

offspring, and is reliant on the placental transfer of these resources to the fetus (Barker et al. 

2012; Gluckman 1997). When limited nutritional resources are available, the fetus prioritises 

growth to particular skeletal structures and bodily systems (Barker et al. 2012). As a result, 

there is often a trade-off between bodily and skeletal structures (Barker et al. 2012). 

Consequently, nutritional status of the mother both at time of conception as well as both prior 

to and throughout pregnancy can affect the health and wellbeing of the offspring (Barker et 

al. 2012). This is because the child relies on the stored maternal resources of nutrients, 

including protein and fat (Barker et al. 2012). Malnutrition in a pregnant mother can lead to 

IUGR (intrauterine growth restriction), low birth weight, preterm birth and birth defects – 

including neural tube disorders (Wu et al. 2012), and has been shown to have long-term 

correlations with rates of obesity, insulin resistance and coronary heart disease (Barker et al. 

2012). In addition, maternal endocrine regulation – the supply, release and regulation of 

hormones to the fetus – can also severely affect health and development (Gluckman 1997). 

Therefore, maternal health and nutrition is central in regulating the health stresses which the 

offspring faces.  

 

Postnatal health and wellbeing is also dependent on a variety of factors, generally regulated 

by the mother/caregiver, such as feeding practices and the nutritional status of the 

breastfeeding mother (Gowland 2015; Ramji 2009). Breastmilk, particularly that of colostrum 

(the initial thick breastmilk available directly after birth), is important for both the nutritional 

and immunological wellbeing of the infant (Eisenberg et al. 2017; Lewis 2017b). Inability of 

the ill/nutritionally deficient mother to provide adequate milk would further exacerbate any 

deficiency experienced by the child and potentially increase their susceptibility to a range of 

diseases and illnesses post-partum. Birth is not only obstetrically risky for mother and child 

alike (Reid 1990), but signals the transition for the child from a protected environment into 

one full of pathogens, and bacteria, all of which the individual needs to build an immune 
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response to (Lewis 2017a). It is the mother who is required to provide protection, both 

nutritionally and immunologically, for her child postnatally (Eisenberg et al. 2017). 

However, it cannot be known whether the mothers of the individuals considered in this 

assessment survived childbirth, or were willing and/or able to breastfeed. Lack of, or limited, 

maternal nutritional and immunological buffering makes the initial post-partum period even 

more perilous, and as a result, one in which many infants, both historically and today, are 

unable to survive.  

 

Both pre- and postnatal individuals were found to show evidence of pathological lesions to 

multiple skeletal elements, with both similarities in prevalence rates, types of pathological 

lesions and severity. As such, when all 423 individuals are considered simultaneously, no 

clear evidence for a particularly stressful pre- or postnatal environment emerges. However, 

given the archaeological and historical samples assessed it may be insinuated that maternal 

health was likely universally reduced. As a consequence, pathological lesions identified 

throughout the 423 fetal, perinatal and infant individuals may have been regulated by the 

environmental conditions to which these individuals were exposed both pre- and postnatally.   

 

Conclusion: 

 Pathology can be identified on fetal, perinatal and infant individuals but it is 

challenging and there are some ongoing issues/debates, particularly concerning 

differentiation between normal and pathological NBF, that need to be rectified 

before standards of recording can be fully implemented. 

 This assessment has outlined potential factors (location, type of lesion, severity) 

for consideration when assessing pathology and has provided a detailed 

methodology for recording fetal, perinatal and infant pathological lesions.  

 This study has shown that NBF is the most commonly found pathological change. 

These lesions are inherently non-specific resulting in a wide consideration of 

potential pathogenic and etiological causes.   

 This study has demonstrated that NBF can be distinguished from normal new 

bone formation when severity (grade 1, 2, or 3) and type of lesion (woven or 

lamellar) is considered. Furthermore, to substantiate this finding, individuals of all 

ages showed evidence of NBF lesions, countering current medical findings which 

suggest NBF is typically found in individuals aged between 44 and 56 GWA, as a 
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result of the postnatal growth spurt. A varying pattern of NBF within these 

individuals has been identified and is thus suggestive of a pathological stimulus.  

 Assessment has suggested that bones of the cranium are most typically affected by 

adverse conditions. This may be because it is both a highly vascular structure and 

a vital structure within the body. As a result, if health insults are experienced it 

may be that we see lesions in the cranium as the body is trying to manage and 

preserve the health and wellbeing of these structures.  

 This study corroborates previous findings identifying the tibia as the most 

sensitive postcranial element to health stress. NBF, particularly to the anterior of 

the tibia, was found to be the most prevalent lesions within all long bones. The 

tibia was still found to be the most commonly affected long bone when lesions 

were considered by archaeological/historical time period and dental age.  

 Pathological lesions, of all types and severity, do not appear to be isolated to a 

particular age group, with both cranial and postcranial changes found in all age 

categories. This counters arguments suggesting pathological lesions, in particular 

those of NBF, are found to be most prevalent in individuals who may be 

experiencing growth spurts. 

 

It is imperative that investigation into skeletal pathology of fetal, perinatal and infantile 

individuals continues to develop and attempts to address the challenges raised within this 

paper. This study provides a large sample of the very youngest individuals from a broad 

temporal period. It is hoped the methodology for assessing pathological lesions outlined and 

the findings will provide a useful comparison for future studies. Most importantly, the notion 

that osteological assessment of such young individuals is futile must be overcome. A wealth 

of information, regarding health and wellbeing can be discerned from analysis of these 

individuals, and provides a unique insight into early life experiences, the infant/mother nexus, 

and ultimately, the physiological response to health stress.   
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Chapter 10: Discussion 

 

This chapter integrates the results of the four previous manuscripts, considering evidence of 

growth and health disruption within and between the archaeological and historical samples of 

fetal, perinatal and infant individuals. This chapter discusses the implications of these results, 

contextualising findings with regards to the environmental, social and cultural conditions to 

which individuals were exposed. This discussion aims to address the research questions 

stated within the introduction of this thesis and to develop a holistic and nuanced 

interpretation of fetal, perinatal and infant growth and health disruption within the different 

time periods analysed.  

 

This discussion is divided into three main sections, the first seeks to examine evidence of 

growth disruption, the second evidence of health disruption, and the third section considers 

the link between the two, contextualising findings within the archaeological and historical 

frameworks of the samples assessed. Within these main sub-sections, discussion of dental and 

skeletal age-at-death and pathological assessment is presented, and considered with respect to 

etiological and pathogenic implications. This discussion concludes with an exploration of 

how this analysis of fetal, perinatal and infant individuals has revealed unique insights into 

the precarious experiences of early life.  

 

10.1 Growth Disruption:  

Examining and considering evidence of growth disruption has long been a central concern of 

many anthropological and clinical studies (Kaplan 1954, 780; e.g. Johnston 1962; Tanner 

1963; Maresh 1970; Tanner 1978; Johnson & Zimmer 1989). Many of these were primarily 

interested in the effects of a range of environmental factors on growth and attempted to 

correlate these environmental stresses with evidence of growth disruption (Kaplan 1954, 780; 

e.g. Tanner 1981; Johnston & Zimmer 1989; Bogin & Loucky 1997; Bogin et al. 2007). 

Today, implications of a reduced in utero and postnatal environment and experience have 

been widely considered (Holland Jones 2005, 22; e.g. Barker 1997; 2012; Barker et al. 2002; 

2012), highlighting a complex interaction between evidence of growth disruption and 

exposure to stress. Stress is a complex concept (See Chapter 3; Section 3.43 for discussion) 

with growth disruption typically considered to be an indicator of stress, whereby detrimental 

conditions have affected the optimal development and growth of the individual (Goodman et 
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al. 1988, 169; Goodman & Armelagos 1989, 226; Reitsema & McIlvaine 2014, 181). 

Determining the etiology of growth disruption is challenging, relying on a multifaceted 

consideration of both intrinsic and extrinsic factors (Johnston et al. 1976; Goodman & 

Armelagos 1988, 941-942; Goodman et al. 1988, 169-170; Bush & Zvelebil 1991, 5). For 

archaeological individuals the identification of growth disruption is of greater complexity as 

the age of the individual, and thus their expected growth attainment, their sex, and the social 

and environmental conditions to which they were exposed, must all be considered in relation 

to their growth and development. These variables are ones which can be attributed and 

estimated using various archaeological and bioarchaeological methodologies. However, there 

are inherent limitations when interpreting skeletal remains for past populations. 

 

Growth disruption is identified using age estimates calculated from dental and skeletal 

elements, whereby stress and stressors may be correlated with metric changes and 

inconsistencies between growth profiles, indicative of an abnormal physiological and skeletal 

response (Bush 1991, 11). For individuals identified within this thesis where skeletal age-at-

death estimates lag considerably behind dental age estimated, growth disruption has been 

posited. As all individuals were assessed using the same methods, the same inherent 

limitations exist in all samples. The methods employed were used due to their ease of 

application, their comparability to other published studies, and their ability to provide error 

ranges for the age estimates derived.  

 

Individuals analysed throughout this thesis derive from varying skeletal samples (See Chapter 

4; Tables 4.1 and 4.2). Consequently, variation between the archaeological samples and the 

reference sample from which age estimation methodologies were produced, may result in 

higher levels of inaccuracy and variability (Lewis 2007, 38; e.g. Demirjian 1990; Saunders et 

al. 1993). Furthermore, age estimation methods derived in clinical/anthropological contexts 

(e.g. Maresh 1970) are based on samples of healthy non-adults, limiting the comparison of 

non-survivors from archaeological contexts (Saunders & Hoppa 1993; Lampl & Johnston 

1996). It has been suggested that the direct comparison of modern clinical and 

anthropological data to archaeological human remains renders interpretations of health in the 

past problematic (Wood et al. 1992; Hoppa & Fitzgerald 1999, 13; DeWitte & Stojanowski 

2015, 406). Furthermore, intrinsic genetic variables which affect growth, such as ancestry and 

sex (See Chapter 8 for evidence and discussion), cannot be controlled for in the 

archaeological samples. However, current literature suggests that any disparities as a result of 
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these biological differences should not be significant (Ruff et al. 2013, 30); Habicht et al. 

(1974) first reported that variation in growth in the first seven years of life is almost 

exclusively regulated by the environment, not genetics. In fact, optimal in utero experiences 

will make individuals from different populations comparable (Ruff et al. 2013, 30). Despite 

clear differences in growth trajectories when individuals of known biological sex and 

ancestry were assessed (Chapter 8), when error ranges for age estimates were included there 

was parity between dental and documented ages. Consequently, within this study, wide age 

ranges, based on error levels given within the methodologies utilised, have been afforded in 

order to encompass variability between dental and skeletal age estimates, so that small 

differences are not interpreted as evidence of growth disruption. By applying error ranges to 

both dental and skeletal data the chance of age estimates over-lapping ranges increases. 

Where growth disruption is reported here, it is only when there are substantial differences 

between physiological age estimates, beyond the error ranges of the methods utilised. As this 

study is not primarily concerned with the demographic profiles of the samples assessed, but 

evidence of growth disruption, what is significant here are the differences between dental and 

skeletal age estimates on an individual level.  

 

As dental development is considered to be less susceptible to environmental stressors than 

skeletal growth (Gustafson & Koch 1974, 298; Bolaños et al. 2000, 98; Humphrey 2000a, 

194; Liversidge & Molleson 2004, 172), dental age estimates have been used throughout this 

thesis as a proxy for chronological age. Consideration of documented age, against age 

estimates derived from dental development, found a close relationship between the two (See 

Chapter 8). Further comparison of documented age estimates to the pars basilaris 

corroborated that dental age is a relatively accurate proxy for chronological age. This is 

because parity was found between documented and pars basilaris age estimates and dental 

and documented age estimates. Thus, the pars basilaris appears to be a good proxy for dental 

development and dental development a good proxy for chronological age. It is considered 

that the pars basilaris, over those of the long bones, is a reliable skeletal element for age 

estimation. This is because formation at the base of the cranium appears to show a 

prioritisation in growth and hence be more robustly buffered from environmental stressors in 

comparison to postcranial elements. Further research into the applicability of the pars 

basilaris to estimate age accurately is subsequently required, though analysis of this bone in 

manuscript two also demonstrated comparable age-at-death estimations between this element 

and dental age.  



347 

 

 

Consequently, the methodology and practices assumed within this study are suggested to be 

robust in distinguishing true evidence of growth disruption.  

 

10.11 Interpreting Evidence of Growth Disruption: 

Of the 423 individuals assessed within this study, 209 had dentition available for assessment 

and 390 had at least one long bone measurement which could be assessed for age-at-death. 

However, only 192 individuals had both dental and skeletal elements available for 

assessment. Of these, 175 individuals with dentition and long bone measurements (femoral, 

tibial and humeral) have been plotted in Figure 10. 1 – individuals have been plotted in 

ascending order according to dental age estimates, with the time period from which they 

derive denoted by the data marker used. Of these, 39 individuals display clear evidence of 

growth disruption, where no skeletal age estimates or age ranges overlap with dental age 

estimates and ranges (Table 10.1). Only eight individuals have long bone age estimates that 

exceed dental age: three individuals from Barton Court Farm, one Owslebury individual, two 

East Smithfield individual, and two individuals from the Smithsonian Fetal collection. Given 

these limited numbers of individuals, particular within a sample of deceased non-adults, it 

may be that these individuals reflect evidence of healthy growth.  

 

 

 

 N Growth Disruption (N) Growth Disruption (%) 

Dental - Femoral 139 57 41 

Dental - Tibial 130 50 38 

Dental - Humeral 159 63 40 

TABLE 10.1 Number of individuals (%) with growth disruption between dental age and 

femoral, tibial and humeral age. 
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Figure 10.1 Skeletal and dental age-at-death estimates plotted for each individual with age-estimates available. Error ranges (in GWA) have been afforded to both dental and skeletal age estimates in accordance with the age estimation methodologies employed (AlQahtani et al. 2010; 

Scheuer et al. 1980). Individuals considered to show evidence of growth disruption are those where dental and skeletal age estimates and ranges do not overlap.     
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However, many more individuals are suggested to have growth disruption when skeletal 

elements are considered individually (Table 10.1), which suggests that the femur is most 

frequently affected, followed by the humerus and tibia. This pattern of growth disruption 

identified was unanticipated given that the femur and tibia are known to be the most sensitive 

long bones to environmental stress (Pomeroy et al. 2012). However, when individual 

differences between dental and skeletal estimates are considered, for those found to show 

evidence of growth disruption, the tibia was found to have the severest evidence of growth 

disruption, with one individual showing a difference of 26GWA between dental and skeletal 

estimates (Table 10.2). Thus, the susceptibility of the tibia to environmental and social stress 

(Pomeroy et al. 2012) may be reflected in the severity, rather than the frequency, of growth 

disruption.   

 

When considered by dental age those determined to be 39, 52, 58 and 64 GWA were found to 

have the greatest number of individuals showing growth disruption (Table 10.3). These large 

differences may be attributed to variable causes. Firstly, it may be that inherent limitations of 

the methods employed are affecting these results. Skeletal age-at-death estimates have been 

generated using Scheuer et al. (1980) who only developed these regression equations using 

individuals aged up to 46 GWA (Scheuer et al. 1980, 258). Thus, eight individuals have 

skeletal age estimates above this 46 GWA threshold, suggesting that this method of skeletal 

age estimation may not be appropriate for these individuals (Gowland & Chamberlain 2001; 

2002).  

  

However, such severe growth disruption in these older infants may result from an adverse 

postnatal environment. Once born, individuals are fundamentally more exposed to increased 

numbers of environmental, social and cultural stressors (Lewis & Gowland 2007). 

Immunological buffering, typically provided by the mother through feeding, is not 

automatically afforded and relies on her capability to feed the child. Death in childbirth and 

maternal nutritional deficiency can result in compromised or non-existent maternal feeding, 

with inadequate substitute foods used instead. Furthermore, cultural practices regarding infant 

feeding vary and social factors may be implicated within some of these individuals. Thus, it 

must be considered that the post-partum environment provides increased nutritional 

challenges for these infants, which in turn increases their susceptibility and vulnerability to a 

range of disease processes. In addition, care of these individuals, with regard to their 

environment and socialisation, has been found to be central to their healthy growth and 
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development (Hannault 2002). Keeping an infant warm, and social interaction with a child 

has been found to increase success of growth (Hannault 2002), though social practices such 

as swaddling, and keeping infants in doors – which were considered to be ‘good practice’ – 

can be similarly detrimental (Brickley & Ives 2008; Newman & Gowland 2017). Thus, 

although the intrauterine environment is highly variable and significantly regulated by 

maternal practices and experiences, extrauterine life is even more precarious, in which the 

infant can be exposed to a broader range of potential stressors. Furthermore, for the older 

infants, more severe growth disruption might simply reflect a longer period in which skeletal 

evidence can manifest, meaning much of this disruption is likely to have commenced in 

utero. 

 

Growth disruption has also been found to vary depending on the gestational age at which an 

insult or stressors was experienced. ‘Critical periods’ for growth and development have long 

been acknowledged, and fetal growth is considered to be most prone to disruption 

(Armelagos et al. 2009, 267). Heinke and Kuzawa (2008) have demonstrated that growth is 

affected much more severely later on in utero in response to reduced maternal health status. 

Although growth is known to be prolific within the first trimester, when limb bones can grow 

up to 3mm within a week (Issel 1985), it slows down as gestation increases, to around 1mm a 

week in the third trimester (Issel 1985). This is a result of both the reduced need and capacity 

for growth to occur. Growth of certain skeletal structures is known to be prioritised in utero –  

the cranium in particular (Barker et al. 2012, 30). Consequently, the individuals who show 

excessive growth disruption in the older gestational age categories may reflect a more severe 

disruption experienced immediately prior to birth, where the growth of other skeletal 

elements was prioritised. Furthermore, if the mother was experiencing poor health 

immediately prior to birth, it may be that the illness/stressors were likely to have continued 

(either briefly or more chronically) into the postnatal period. This is turn may be reflected in 

the offspring’s growth and development and their increased vulnerability after birth.   

 

Considering the individuals by time period, the post-Medieval individuals have the highest 

growth disruption (Table 10.4). There is an increase in growth disruption throughout the time 

period up to the post-Medieval period, where after this, the 20th century individuals show a 

marginal reduction in growth disruption. Growth disparities thus may reflect the increasingly 

stressful and pathogen-filled environments over time. Furthermore, increasing socioeconomic 
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stratification and poverty factors may explain this increase in growth disruption throughout 

the periods.  

 

 

TABLE 10.2 Differences (GWA) between dental age estimates and skeletal age estimates for 

individuals found to show evidence of growth disruption to the femur, tibia and humerus. 

 

 

 

 

Age Difference (GWA) 
Femora Tibia Humeri 

N=57 N=50 N=63 

4 1 1 1 

5 2 3 2 

6 4 2 3 

7 7 7 4 

8 1 3 6 

9 - - 1 

12 - - 1 

13 12 9 7 

14 5 6 13 

15 8 1 5 

16 4 3 6 

17 4 6 7 

18 3 2 2 

19 3 2 1 

20 - - 2 

21 - 2 1 

22 1 - - 

23 2 1 2 

24 - 1 - 

25 - - 1 

26 - 1 - 
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TABLE 10.4 Percentage of individuals, of those with both dental and skeletal elements 

available for assessment, with growth disruption by time period.  

Dental Age Estimate (GWA) N Growth Disruption (N) Growth Disruption (%) 

30 1 0 0 

34 7 1 14 

36 3 1 33 

38 23 11 48 

39 6 4 67 

40 16 4 25 

42 1 0 0 

43 11 0 0 

46 59 3 5 

52 43 28 65 

58 21 15 71 

64 15 8 53 

70 1 0 0 

76 1 0 0 

82 1 0 0 

Time Period N Growth Disruption (N) Growth Disruption % 

Pre-Roman 13 1 8 

Transition 16 2 13 

Roman 14 5 36 

Medieval 7 3 43 

Post-Medieval 97 46 47 

20th Century 57 17 30 

Undated 5 1 20 

TABLE 10.3 Number of individuals with growth disruption by dental age. 
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10.2 Health Disruption: 

Although health may typically be considered as the overall wellbeing of an individual and the 

lack of any disease processes being present, health is in fact a much more variable construct 

based on individual response to potential insults (Goldenberg & Thompson 2003). Ultimately 

what might affect one individual, may not affect another, while interpretations of 

‘healthiness’ are contingent on the perception of health and its representation within that 

society (Goodman et al. 1988; Roberts 2009: 154; Huber et al. 2011; Reitsema and McIlvaine 

2014: 181).  

 

Health and healthiness is also considered to be an interpretation which, within 

bioarchaeology, we have to be very cautious in attributing (Waldron 2009, 10). In fact, what 

we can reconstruct is not in fact health, but evidence of disease, yet lack of disease does not 

equate to health (Waldron 2009, 9). Both psychological factors, which cannot be identified 

within the archaeological record, and the paradoxical limitations of evidence of disease, 

hinder and complicate interpretations. Few diseases cause physical changes to the skeleton, 

meaning diagnosis of conditions is limited, especially when the skeleton can only respond in 

a limited number of ways to a multitude of conditions (Ortner 2003, 45; Gowland 2004, 139). 

Thus, the pathological lesions identified on skeletal remains ‘…represent a small percentage 

of the total disease load in that population’ (Redfern 2003, 150). However, any response at 

all by the skeleton is suggestive of an attempt by the body to adapt to the conditions 

experienced (Klaus 2014). Although many studies use woven bone as an indicator of the very 

initial stages and exposure of stressors, this bony response has been considered by some to 

instead simply be the very first stage of healing (Klaus 2014). Weston (2012) argues that all 

bodily growth (including woven bone) ceases under adverse circumstances, whereas others 

argue that the skeleton is still able to mount a response to adversity (Klaus 2014). Although 

new bone formation is the most commonly considered non-specific indicator of stress, other 

skeletal changes can be observed and this study has attempted to also consider bone 

destruction and altered morphology. 

 

However, it must be remembered that all of the individuals assessed within this study were 

non-survivors. Consequently, they represent all of those who could not maintain and regulate 

homeostasis. With fetal, perinatal and infant individuals, this study assumes that these 

individuals do not represent victims of infanticide, partially due to lack of evidence 
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(Goodman & Armelagos 1989, 228), but also because infant mortality is known to have been 

relatively common in the past (Guy et al. 1997, 221). Therefore, these individuals are those 

who either suffered from an intrinsic genetic or congenital abnormality, or who were unable 

to buffer and respond to a multitude of stressors experienced. The similarity in the ways 

disease processes present, as well as the likelihood that many disease process will never or 

very rarely affect the skeleton means constructing ‘normal’ profiles for expected amounts of 

disease within this population is inherently problematic. 

 

10.21 Evidence of Health Disruption: 

Of the 423 individuals considered within this study, 386 were found to have either cranial or 

postcranial skeletal elements present for analysis.  Individuals from all samples and time 

periods were found to show evidence of lesions. Individuals within this study have been 

found to have an overall prevalence rate of 70% for cranial pathological lesions and 30% for 

postcranial lesions. When considered by time period, cranial lesions were found to be most 

prevalent in the Transition and post-Medieval samples, and postcranial lesions in the 

Transition sample. These high rates of pathological lesions are not unexpected (Krenz-

Niedbala & Lukasik 2017, 375) given that these individuals represent the non-survivors.  

 

10.22 Pathological Lesions –Their Location and Presentation: 

The bones most commonly found to show evidence of pathological lesions are the frontal 

bone and the tibia. It might be considered that these bones are most commonly found to show 

pathological lesions as a result of various mechanisms, including the stressor/insult being 

experienced, the severity of that insult and the importance of growth prioritisation within that 

element.  

 

It is suggested that the bones of the cranial vault are typically affected due to both their 

highly vascular structure, and the need for growth to be prioritised within these elements 

(Humphrey 2000a; Barker et al. 2012, 30; Chapman et al. 2013a, 386). Thus, as a result of 

their vascular nature, NBF might be considered to be more prolific as the body, and bone, 

attempt to maintain and continue growth within these elements, despite stress being 

experienced. If indeed growth does completely arrest when stress is experienced (Weston 

2012) it might be that the cranial elements are the last to see this cessation, and as a result 

show more prolific evidence of a pathological response.  
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Periosteal NBF has long been considered to be a non-specific pathological lesion, and thus 

indicator of stress. Weston (2008; 20012) has found that the periosteum responds in an 

identical way to a multitude of varying etiologies, highlighting how specific causes cannot be 

attributed. Furthermore, she considers that the typical association of periosteal NBF with 

pathological processes of infection, rather than other causes, may be over-exaggerating the 

level of infectious disease processes in the past. As manuscript 4 discusses, there are 

complexities when interpreting the implications of NBF in fetal, perinatal and infant 

individuals. Normal somatic growth results in NBF which mirrors the appearance of 

pathological bone formation – woven bone is commonly deposited during the rapid phases of 

growth during pre- and postnatal life (Lewis 2007; 2017a). Early clinical investigations found 

that it was difficult to distinguish between pathological and normal bone formation (e.g. 

Shopfner 1966), and subsequently, such opinions have been widely disseminated within 

bioarchaeological literature (Ribot & Roberts 1996; Lewis 2004; Weston 2012; Lewis 

2017a). However, recent clinical investigations have revealed that NBF is not commonly 

found in individuals less than 44GWA and more than 56GWA (Kwon et al. 2002). This 

suggests that when NBF is identified on individuals who are aged to be younger or older than 

this range (44 -56 GWA), the impetus can be suspected to be pathological. However, this 

interpretation is limited in that it fails to consider then how fetal, perinatal and infant bones 

continue to grow. Consequently, it may be that NBF in association with normal growth is 

present beyond these suggested age ranges, however, NBF is particularly marked and obvious 

during this 44-56 GWA window due to the rapid postpartum growth spurt. Thus, it may be 

suggested that it is during this narrow age range that normal and pathological NBF is most 

difficult to determine and distinguish between. Further investigations into these distinctions 

are required, though this study has detailed extensive NBF (of severity 2 and 3) that is present 

in individuals both within and beyond this age range.  

 

Lewis suggests that evidence of NBF which is a result of pathological processes is more 

likely to be localised and unilateral (2007, 135), compared to NBF associated with normal 

growth which will be circumferential and a thick single layered deposit (Shopfner 1966; 

Lewis 2007: 135; Weston 2012: 497). However, many health insults, particularly those of 

metabolic disturbances are systemic and thus unlikely to affect individual elements. Thus, 

evidence of NBF bilaterally does not mean that pathological processes are not a potential 

cause. Furthermore, the periosteum is more susceptible to disturbance in these young 

individuals, because it is less securely attached to the cortical surface – this makes it more 
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likely to rupture and respond to health insults (Resnick 2002: 2397; Lewis 2007: 135). Thus, 

NBF would be expected to be more commonly identified in these individuals as a result of 

both pathological and normal processes. However, differentiating between normal and 

pathological formation within the archaeological record is problematic. It is suggested that 

future studies require analysis of location, type, laterality, thickness (including evidence of 

multiple layers) and should be considered in relation to estimated age-at-death.  

 

Weston (2012, 506) has argued that NBF should not be used as an indicator of stress due to 

NBF being inhibited under subjection to stress. However, as Selye (1973) has highlighted, 

there are multiple phases to the stress response, so although the initial phases may be to halt 

growth as part of the alarm mechanism, the body then attempts to adapt and accommodate 

these stresses – thus it is likely that bony responses can occur. Klaus (2014) supports this 

notion suggesting that stress and growth has a much more intricate and bounded relationship 

than simply an on or off mechanism (Klaus 2014, 295-299). Thus, NBF itself, even in the 

woven response stages, may indeed reflect a healing response, whereby the body has 

stabilised and is expending energy in order to attempt to maintain and accommodate stress 

exposure. As ever, the paradox of this is that lack of lesions may indicate both an absence of 

stress and an inability for the individual to respond to the stress. 

 

New bone formation was the most common type of lesion identified in the individuals 

assessed, for all age groups and for all time periods. It could be argued that some of the 

instances of NBF recorded represent normal bone formation – perhaps in the severity grade 

one category - and thus the identification of pathological lesions has been over-represented 

here. However, the NBF recorded in these individuals was similar to that recorded in other 

studies describing the presentation of these lesions, and corresponds to locations where 

pathological changes are believed to be most expected (e.g. anterior tibia). Although 

periosteal NBF can occur on any bone surface, the anterior tibia has been found to commonly 

show these lesions. This tendency is considered to be a result of its close proximity to the 

skin/surface and greater vascularity (Roberts & Manchester 2010, 173). The tibia was found 

to be the most commonly affected postcranial element with regards to pathological lesions 

identified. Thus, patterns of pathology identified appear to correlate with the known 

expression of conditions and helps substantiate that this bone is one of the primary skeletal 

elements to show pathological changes. Furthermore, the majority of both cranial and 

postcranial skeletal lesions were recorded as being of severity two, suggesting these lesions 
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were typically more defined/thicker than those of severity grade one, which are perhaps more 

likely to be associated with normal NBF.  

 

Within the cranium NBF is typically concentric (Lewis 2017a, 3), and for the frontal bone 

and parietal bone in particular, NBF is found in patterns which do not appear to correlate to 

concentricity but instead vascular structures – typically mirroring and outlining the paths of 

vascular structures in a manner considered to be abnormal (Schultz 2001, 128; Rumbaugh & 

Potts 1966, 532-534). Furthermore, for some individuals there are multiple isolated lesions, 

again not consistent with a normal pattern of growth. Within the long bones NBF is much 

harder to distinguish as pathological, with diagnosis typically relying on the thickness and 

extent of the formation (Kwon et al. 2002). For some individuals analysed (N=35), there is a 

circumferential layer of new bone formation, with many of the pathological lesions extending 

to the metaphyses. The thickness, in many cases of this NBF, is also indicative of its 

pathological nature. Although thickness was not accurately recorded, and requires 

radiological assessment, this is a consideration for future study. Only individuals aged 

between 44-56GWA are thought to show periosteal NBF on the long bones as part of a 

normal growth process (Kwon et al. 2002).  In contrast to these clinical findings, individuals 

of all ages were found to show evidence of NBF in this study.  

 

If NBF is indeed considered to reflect stress exposure, it might be anticipated that these 

detrimental insults would quickly be reflected within fetal, perinatal and infant skeletal 

remains, as bone growth and turnover is exceptionally rapid at this point (Lewis 2007). 

Consequently, these individuals may rapidly reflect the stressors and insults being faced just 

prior to death. These initial, active phases of bony response to a variety of stressors manifests 

as rapidly deposited disorganised and porous (woven/fiber) bone (Schultz 2001, 115; Ortner 

2003, 206; Lewis 2007, X; Kini et al. 2012, 30). If and when healing commences, this NBF 

becomes remodelled, gradually becoming orientated into linear, organised and smooth 

cortical bone (Schultz 2001, 115; Ortner 2008, 198; Kini et al. 2012, 30; Larsen 2015, 87). 

Depending on the type of bone identified, it is possible to determine whether physiological 

responses were active, healing or healed at time of death (Mays 1998, 179-182).  

 

In the majority of the individuals assessed, for postcranial lesions NBF was primarily woven 

in appearance. This indicates that although the body had time for a physiological response to 

manifest, the stressors and impetus for this lesion are likely to have still been active at the 
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time of death. For cranial bones, particularly the endocranial surface, NBF was primarily 

lamellar, indicative of an initial healing response. It is suggested healing may have been 

prioritised within the cranial elements so as to maintain healthy skeletal growth and brain 

development. The fact that many of the cranial lesions did show a healing response may 

indicate that many were able to mount an immune response to the health stress experienced. 

However, evidence within the majority of individuals for both lamellar (within the cranium) 

and woven (within postcranial elements) bone formation may also suggest that individuals 

were exposed to multiple stressors, or multiple episodes of stress. In total 21 individuals show 

evidence of both woven and lamellar bone formation within a single skeletal element. 

Differential healing stages may indicate that whilst an immune response was attempted, 

ultimately the individual was unable to overcome the stressor(s) experienced. However, given 

that many individuals also show evidence of growth disruption it may also be considered that 

bone turnover, and consequently healing bony responses, were slower in these individuals. Of 

course, it must not be overlooked that the sample of fetal, perinatal and infant individuals 

assessed is that of the non-survivors, and given the health and growth disruption identified, 

likely represent those who succumbed to death as a result of exposure to various stressors.  

 

Evidence for metaphyseal expansion (flaring) is considered to be indicative of metabolic 

disturbances where both bone and vascular structures are weakened, leading to morphological 

changes within skeletal elements, particularly the long bones (Brickley & Ives 2008). 

Metabolic disorders are equally correlated to evidence of NBF (Brickley & Ives 2008), thus 

co-occurrence of NBF and metaphyseal expansion within individuals assessed suggests many 

may have been suffering from metabolic disturbances and deficiencies. Morphological 

changes and metaphyseal expansion were both found to be more prevalent in dentally older 

(> 40GWA) individuals. This may similarly indicate that the postnatal environment 

compromised individuals in different ways. Metaphyseal expansion may be more apparent in 

older individuals as a consequence of increased weight-bearing, where unmineralized osteoid 

leads to the bowing of the limbs (Brickley & Ives 2008). However, metaphyseal expansion 

has been identified in those as young as 19 GWA in utero (Mahon et al. 2010, 14), 

suggesting that metabolic disturbances do result in morphological changes prior to bone 

loading. Furthermore, skeletal elements which have decreased mineralization, as a 

consequence of nutritional deficiency, are thus, ‘soft’, and can display morphological changes 

(i.e. bowing) as a result of space restriction in utero (Bonneau et al. 2011).  

 



359 

 

10.23 Interpreting Pathological Lesions as Health Disruption 

Regarding the etiological, pathogenic and contextual implications of these pathological 

lesions a very complex and nuanced narrative emerges of health disruption. It can be 

considered that given the prevalence rates of pathological lesions and the presence of these 

within all age categories, time periods, and expressed in multiple ways, shows it is likely that 

many of these populations experienced chronic health stress. To understand the intrinsic and 

extrinsic interpretations of theses pathological changes aetiological and contextual 

implications are considered. 

 

10.24 Pathogenic Interpretations: 

Given the pathological lesions recorded, it is likely that two main pathogenic causes 

stimulated these changes – metabolic disorders and infectious disease (both specific and non-

specific). However, it must not be overlooked that some of these changes may equally 

represent congenital conditions and more traumatic processes such as birth trauma.  

 

Metabolic changes are considered to be the most prevalently recorded lesions as malnutrition 

often results in general indicators of ill health (Lewis 2007, 66; 97; Mensforth et al. 1978). 

Many nutrients and micronutrients are vital for our growth and health, particularly in utero. 

Thus, although metabolic disorders are often considered to leave non-specific pathological 

lesions, their known presentation correlates with many of the lesions identified on individuals 

studied.  

 

Nutrients such as vitamin C, vitamin D, calcium and iron, are vital in the initial stages of life 

outside the womb (Lewis 2007, 98); lack of these nutrients would further make the 

individuals more susceptible to a range of diseases and infections. Individuals expressing 

NBF, metaphyseal expansion and torsion/bowing of the limbs might be considered to have 

experienced vitamin D and C deficiency. Vitamin C and D deficiencies can affect growth and 

development of the skeleton; lack of vitamin C results in defective osteoid formation 

(development of new bone cells) (Brickley & Ives 2006, 163) while vitamin D deficiency 

affects the mineralization of bone (Lewis 2007, 121; Kini et al. 2012, 55). Lack of vitamin C 

can result in blood vessels becoming fragile and easily ruptured (Brickley and Ives 2006, 

163; Ortner and Ericksen 1997, 213). This can lead to haemorrhaging, including in the 

vessels supplying the metaphyses, but particularly within the cranium (Roberts and 

Manchester 2010, 235). Some of the individuals with evidence of NBF to the endocranium 
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may have suffered cranial haemorrhaging (Brickley and Ives 2006, 168; Schultz 2001, 117) 

and chronic bleeding (Ortner et al. 1999, 328) as a result of nutritional deficiencies. Vitamin 

A deficiency is a further factor to be considered as we are unable to synthesize this nutrient 

independently and are required to get our intake from dietary sources alone (Fujita et al. 

2017, 1). Importantly, we require this vitamin for a variety of functions, including both our 

growth and immunity (Fujita et al. 2017, 1). In particular, maternal breast milk is known to 

have high concentrations of vitamin A as a result of the post-partum infant requiring 

increased levels of this nutrient to be able to sustain rapid growth (Fujita et al. 2017, 1-2).  

 

Infectious diseases are less readily identifiable in fetal and young infants. Although many 

infectious diseases can transfer to the fetus through the placenta, many lesions may still be 

soft-tissue related, or present later in life. For example, congenital syphilis is known to cause 

Hutchinson incisors and mulberry molars (Ortner 2003; Ogden et al. 2007), and although 

dentition does develop and is present in utero, definitively identifying these changes in such 

young individuals is difficult. Conditions such as tuberculosis are known to attack vertebral 

bodies and joints, such as the femoral head and acetabulum, but these structures are not 

sufficiently ossified at this age for lesions to be identifiable. Furthermore, the bones do not 

tend to be affected until later on in the disease process. Thus, bony response to specific 

infectious diseases is limited. Non-specific pathological lesions, such as NBF, may be an 

indicator of infectious conditions in some instances, but it would be difficult to differentiate 

between etiologies (Nade 1983, 113). 

 

Infections are considered to be relatively typical during early development (Eisenberg et al. 

2017, 1; Degani 2006, 329), and many infections/diseases are possible: these include 

meningitis, rubella, measles, smallpox, puerperal fever and diarrhoea (Lewis 2017a). 

Although the specific pathological lesions for such conditions are unknown, some of the non-

specific lesions identified may be attributed to such conditions. In particular, extensive and 

thick NBF to the long bones may be indicative of osteomyelitis. Osteomyelitis is a result of 

inflammation elevating the periosteum away from the cortical bone surface and creating a 

new layer of bone, often resulting in a thick, bony sleeve of bone (Rana et al. 2009, 265). 

Additionally, Rana et al. (2009) suggest that bilateral evidence of periosteal NBF is evidence 

of systemic disease response, although some contradict this sentiment, suggesting bilateral 

formation is more indicative of normal growth processes (Lewis 2007, 135).  
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Congenital conditions were known to be present in eight individuals from the Smithsonian 

Fetal Collection, and six individuals from the other samples are suspected of presenting 

congenital changes. Congenital conditions are those in which either genetic or environmental 

factors adversely affect the developing fetus. Within the 20th century population assessed a 

number of individuals were diagnosed with spina bifida, hydrocephaly, anencephaly and 

iniencephaly (Hunt, personal communication). Scalloping and fenestration of the cranial 

vault and cranial base elements is suggestive of either increased cranial pressure or 

haemorrhage (Chapman et al. 2013b, 462), often as a result of one of the previously listed 

conditions.   

 

10.25 Etiological Interpretations: 

The etiological implication behind these various disease processes include disease load of the 

population, nutrition, the pre- and postnatal environment, and both genetic and epigenetic 

factors.  

 

During the in utero period there is a constant interaction between the fetus, placenta and 

mother (Harding & Johnston 1995), with the mother and placenta typically acting as barriers 

and regulators from external stressors (Barker 2012, 187). This dyad between mother and 

child ensures the optimal in utero environment, prioritising the needs of the unborn child and 

increasing the chances of survival (Gowland 2015, 4). Consequently, maternal nutrition is 

pivotal for the health and wellbeing of offspring, as well as their optimum growth and 

development. Maternal nutritional status both during and after pregnancy, and in fact even 

throughout her whole life course, is vital in regulating the nutritional resources available for 

the offspring. However, if the mother is experiencing nutritional or health stress, the ‘giving’ 

potential of the mother is limited. This may result in the interrupted interaction between fetus, 

placenta and mother, leading to a host of detrimental conditions and birth outcomes arising 

(e.g. anaemia, maternal haemorrhage and IUGR) (Wu et al. 2012, 4).  

 

One of the earliest studies into maternal nutritional disruption studied famine victims from 

the First World War (Ivanovski 1923). This study was one if the initial publications to 

highlight the intrinsic link between skeletal growth, health and diet. Maternal nutritional 

status and weight can regulate growth and development of the fetus, and thus the diaphyseal 

lengths of long bones (Hauspie et al. 1994; Adair 2004), as well as reduce immune function 

for both mother and child, which can result in physiological and psychological stress, disease 
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and death (Lewis 2007, 66). IUGR (Intrauterine Growth Restriction) can also be a result of a 

limited nutrient and/or oxygen supply in utero, whilst stillbirth can be a result of maternal 

illness, infection, chronic disease and extreme malnutrition (Lewis 2007, 134; Goldenberg & 

Thompson 2003). Thus, a mother’s disease status, and her biocultural experiences, play a 

crucial role in determining the health of her child, both in utero and beyond (Gowland 2015). 

 

In addition, postnatal health and wellbeing is also dependent on a variety of factors, generally 

regulated by the mother/caregiver, such as feeding practices and the nutritional status of the 

breastfeeding mother (Gowland 2015; Ramji 2009, 625). Breastmilk, particularly that of 

colostrum (the initial thick breastmilk available directly after birth), is vital for both the 

nutritional and immunological wellbeing of the infant (Eisenberg et al. 2017, 2; Lewis 2017b, 

31). Inability of the ill/nutritionally deficient mother to provide milk would further exacerbate 

any deficiency experienced by the child and potentially increase their susceptibility to a range 

of diseases and illnesses post-partum. 

 

The point of birth is one of the most stressful biological events in our life course and heralds 

a multitude of biological, physical and environmental changes (Bogin 2001, 69). Birth is not 

only obstetrically risky for mother and child alike (Reid 1990, 621), but signals the transition 

for the child from a protected environment into one full of pathogens, and bacteria, all of 

which the individual needs to build an immune response to (Lejarraga 2012). It is the mother 

who is required to provide protection, both nutritionally and immunologically, for her child 

postnatally (Eisenberg et al. 2017, 6). 

 

Obstetric death is one factor which must also be considered in light of perinatal mortality. 

Today rates of maternal death in the U.K. are low (8.5 women in 100,000 (MBRRACE-UK 

Maternal Death 2016 Lay Summary)) but it is unlikely that these rates were so low for 

archaeological and historical populations. Wrigley and colleagues (1997, 236) have estimated 

that mortality rates in England between 1580-1837 were between 4.7 and 17 per 1000 births. 

In particular, death rates of infants were known to be substantially high for the post-Medieval 

samples (Forbes 1972). Obstetric death can be caused by obstructed labour, breech birth, 

haemorrhage and placental detachment (Lewis 2007, 34). All of these conditions were likely 

experienced in archaeological populations, yet without modern medical care, would have led 

to high levels of obstetric death (Lewis 2007, 34). Obstetric death is significant because it 

clearly has implications for health and wellbeing of mother and offspring alike – chances of 
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survival would be poor and so many individuals (mother and child) likely died as a 

consequence. However, for those offspring who did survive without their mother there may 

have been long term health consequences, particularly as a result of compromised feeding 

strategies.  

 

In addition, this study cannot overlook the theoretical implications of epigenetics and the 

DOHaD Hypothesis. Epigenetic research has expanded rapidly over the last decade, and 

theoretical implications of this work have started to be incorporated within the corpus of 

bioarchaeological literature (e.g. Gowland 2015). Fetal individuals must not be considered to 

be autonomous (Gluckman 1997, 153), as bounded or discrete entities, but instead their life 

course is intrinsically entangled with that of their mothers (Gowland 2015; Redfern 2003, 

162). Epigenetic changes are those in which gene expression can be altered as a result of the 

environmental determinants being experienced in utero (Cattaneo 1991, 40). Such changes 

affect the phenotype, simply the expression of our genetic ‘code’ (Cattaneo 1991, 40). This 

genetic adaptation to the conditions experienced in utero can cause long term health 

consequences for the fetus (Barker 1997; 2012; Barker et al. 2012; 2002). Changes such as an 

increased risk of heart disease and diabetes have been found to be related to adverse early-life 

environments (Barker 2012). Epigenetic changes are known to directly impact on several 

generations (Holland Jones 2005). Barker coined the idea of a ‘100 years of nutritional flow’ 

(2012, 31) showing the multigenerational impact of a single detrimental in utero experience. 

This is a theoretically important concept when considering fetal, perinatal and infant 

individuals who may be considered ‘frail’, having an inherent biological inability to 

withstand many of the stressors experienced in the early life course.  

 

10.3 Understanding Early Life Disruption: Stressed at Birth? 

The following discussion considers the evidence for growth and health disruption presented 

and contextualises these results in regards to the archaeological and historical context of these 

samples. Correlations between growth and health disruption show that certain samples and 

age groups appear to have experienced more stressful starts than others. 

 

Although levels of growth and health disruption may be considered to be relatively high in 

these samples, early life mortality was exceptionally high in many of these populations (Volk 

& Atkinson 2008, 103), and thus many individuals are likely to have died as a result of 

adverse early life experiences. Within preindustrial societies ‘children’ would have 
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constituted at least one third of the population (Chamberlain 2006, 178) and infant mortality 

is often considered to be somewhere between 30-50% (e.g. Schultz 2001, 129; Gowland 

2001, 155; Wiedemann 1989, 12-16). Vulnerability is considered to be at its peak in the first 

year of life, where susceptibility to disease and death is highest – this vulnerability decreases 

with age, although it is not until after the first year that survival chances significantly increase 

(Lewis 2007, 5). Coupled with the environmental and social stressors that many individuals 

would have been exposed to, death of those within the most precarious age bracket is not 

unlikely, and thus, reflection of this fragility in growth and health disruption is not 

unexpected.  

 

The relative lack of individuals aged dentally to be between 38 and 42 GWA is very 

intriguing. This is typically considered to be the point at which birth is most likely to occur, 

and as a result we may expect an increase in the number of individuals dying at around this 

time. Of all 423 individuals assessed, 46 fell within this age category based on dental 

estimates, with 11 aged to be younger than 38GWA and 152 over 42 GWA. Although 

obstetric risks are present regardless of what point birth occurs, both pre-term and post-term 

births have been found to have higher rates of mortality (Jeanty & Romero 1984, 127). Thus, 

although we may expect to see a higher frequency of individuals aged between 38-42 GWA 

to represent perinatal mortality associated with birth, we must remember that in the past, as 

today, birth can occur at multiple points and result in very differing outcomes. Those under 

38 GWA and over 42 GWA at birth are considered to be riskier and have higher associated 

mortality. Those individuals assessed to be under 38 GWA potentially represent those of 

premature birth who were unable to survive either birth or postnatal experiences. In contrast, 

a higher representation of individuals in the post-42 GWA category could represent both 

individuals who were born at full-term and who succumbed to death after numerous weeks in 

the postnatal environment, or may equally represent those of individuals who were post-term 

and died within the birth process. However, it is uncommon for individuals to be over 2 

weeks overdue, suggesting evidence for these individuals might be scarce within the 

archaeological record. Furthermore, being able to distinguish between individuals who were 

born and not born, and identifying those who were likely to have been small for gestational 

age (SGA) becomes of paramount importance to interpretation, as varying implications as to 

their death could be attributed. Work by Booth et al. (2016) is beginning to unravel these 

complexities, considering evidence of bioerosion as an indication of survivorship, and 

ultimately distinguishing those who had fed, from those who had not. 
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10.31 Contextual Interpretations of Growth and Health Disruption 

Socioeconomic status, maternal working and living conditions, parity, access to health care, 

and community response to infants are all factors affecting survivorship and health status. 

Socioeconomic status is considered to be the most influential in terms of regulating an 

individual’s exposure and susceptibility to growth and health disruption (Saunders & Hoppa 

1993; Farmer 1996; Schell 1997; Babones 2008; Cavigelli & Chaudhry 2012; DeWitte et al. 

2016). In fact, socioeconomic status dictates a multitude of factors including nutrition, 

exposure to disease, and living and working environments (Kaplan 1954, 791; 797; Johnston 

et al. 1976, 469; Lewis 2007, 22). Thus, exposure to, and treatment for disease is also 

regulated by social status, gender and age, with access to adequate nutrition and healthcare 

controlled by these culturally contingent factors (Gowland 2004, 137). Consequently, an 

individual’s susceptibility and immune response to disease was reliant on these factors 

(Gowland 2004, 137). The high levels of pathological lesions identified in the post-Medieval 

and Transition periods might be indicative of the socioeconomic status and social and cultural 

changes these individuals were experiencing. Social inequality is known to increase 

susceptibility to poor health and disease (Griffin et al. 2011, 533; Pitts & Griffin 2012, 254). 

Consequently, individuals from both of these samples are from known ‘transitional periods’ – 

those of the Roman invasion and the Industrial Revolution. Much work has considered the 

impact of wide scale social, cultural and economic changes on health and growth and found 

that these periods represent some of the most physiologically ‘risky’ periods.  Increased 

prevalence rates of NBF in populations of low socioeconomic status and poor living 

conditions have been identified (Larsen 2015, 88).  

 

Rates of congenital conditions are also known to increase in low socioeconomic and poor 

environmental conditions (Lewis 2017a, 35; Dudar 2010, 877). Although the 20th century 

population shows in general a reduction in pathological lesions from the post-Medieval 

sample, this may be expected due to the improvements in maternal, fetal/infant and obstetric 

care. However, the low status of these 20th century individuals (Hunt, personal 

communication) may still be reflected in the extremely high prevalence rates of congenital 

conditions, and may even be suggestive of socially and culturally restricted access to health 

care. However, given the suspected collection strategy employed in the curation of this 

sample, congenital defects maybe overrepresented as a result. This is because individuals 

suffering from these conditions may have been of greater selection bias.  
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Social and cultural practices and community response to infants can regulate exposure to 

growth and health stress. Infanthood and childhood have been recognised as social, rather 

than biological, constructions, with each culture and population able to define these liminal 

periods independently (Prout 2005; Wyness 2006). The behaviour towards and treatment of 

an infant once born can vary, and social status and culture can dictate the level of care, 

feeding and health the child has access to (Gowland 2004, 135; Redfern 2003, 151), having 

consequences for the health of these individuals.  

  

Although this study refrains from considering the funerary context of these individuals with 

regards to burial goods and material culture, all of them were deliberately buried and placed 

within their graves. Although some individuals clearly represent those of lower 

socioeconomic individuals (e.g. Cross Bones and St. Bride’s individuals) none appear to have 

been casually ‘disposed of’. While none had been afforded extravagant burials, or even 

coffins in most cases, it must be remembered that many of their adult counterparts were 

afforded identical treatment in death. Furthermore, the recovery of young individuals from 

within settlements and dwellings is not uncommon and has been found in sites dating from 

the Neolithic to the Roman period (Lewis 2007, 31). Thus, the individuals analysed from 

Owslebury, Piddington and Barton Court Farm are not suggested to represent those 

deliberately or unwantedly disposed of. Instead they represent individuals buried in the 

normal tradition for such small individuals, and given the growth and health disruption 

identified within these samples (Hodson 2017), they display clear evidence of difficult early 

life experiences. There is no suggestion here that these infants were deliberately neglected or 

uncared for, despite the clear biological disturbances they experienced. Instead, growth and 

health disruption is far more likely to be a result of chronic, inescapable exposure to 

environmental stressors, to which mothers, parents and communities alike were unable to 

buffer these individuals.  

 

The evidence of greater growth disruption in individuals aged over 40GWA, particularly in 

those age 52 and 58 GWA may indicate that social and cultural practices were also 

detrimental to growth and health. Although many infant care practices were untaken with the 

belief that they were beneficial, often this was unfounded and instead predisposed the child to 

greater growth and health disruption. Within the Roman, Medieval and post-Medieval 
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samples assessed swaddling is likely to have been widely practiced. This would have 

restricted the movement of the infant, but also restricted exposure to sunlight and contribute 

to vitamin D deficiency (Brickley & Ives 2008; Newman & Gowland 2017). With evidence 

of metaphyseal expansion and NBF evident metabolic disturbances are widely considered to 

be an important aetiological cause, particularly in post-medieval individuals.  

 

Variable feeding practices may equally result in growth and health changes. Thus increased 

growth and health disruption may potentially also be reflective of this cultural practice. In 

Roman Britain it is known that infants were often sent to the countryside from cities (such as 

Londinium) as it was considered to be healthier (Scott 1999). Infants would be wet nursed 

and cared for, typically at villa sites (Scott 1999) – which may equally be a consequence of 

why we find many young individuals at these sites. Comparably, those of high status in post-

Medieval London would be equally likely to employ a wet nurse, as society dictated, and thus 

immunological buffering was inherently limited in these individuals. This may be a cause of 

predominantly older individuals (>40GWA) occurring in samples at Chelsea Old Church. In 

fact, recent investigations by Newman and Gowland (2017) have suggested that growth 

changes were seen more severely in infancy in the high-status population of Chelsea as a 

result of fashionable social and cultural practices undertaken. However, dry-feeding became 

fashionable among the lower social classes (DeWitte et al. 2016). Once again, withholding of 

colostrum and maternal antibodies and nutrition, as a result of these feeding practices, may 

have resulted in these required resources for optimal postnatal survival being unattained. 

Consequently, postnatal survivorship, and health and growth, would have been disrupted and 

it is likely the severe growth and health disruption identified in the postnatal individuals 

assessed is partly a consequence of some of these practices.  

 

10.4 Conclusions 

Assessment of fetal, perinatal and infant skeletal and dental remains provides osteologists 

with the most intimate evidence of their lives in the past (Lewis 2007, 10). The early life 

course is commonly considered to be the most sensitive and fragile of the human life 

sequence (Roth 1992), with these youngest members of past societies a sensitive indicator of 

social, cultural and environmental parameters and experiences (Goodman & Armelagos 

1989). Their immature immune system and rapid growth makes them vulnerable to adverse 

health and nutritional influences (Goodman and Armelagos 1989, 239; Perry 2006; Halcrow 

and Tayles 2008, 336). As poor health and nutrition in the prenatal period and/or early 
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childhood has been shown to have broader health implications in later life, such as 

compromised immunity, the study of childhood health provides a “sensitive barometer” for 

overall population health (Lewis 2007, 20). 

 

Pre-industrial populations are typically considered to have significantly higher levels of 

mortality and morbidity than populations of today (Wrigley & Schofield 1989). This study 

has demonstrated that when careful assessment and analysis is undertaken, both health and 

growth disruption can be identified within infant skeletal remains. Although growth 

disruption is identifiable in all age groups and from all samples and time periods analysed, 

there are certainly variations in the patterns of growth disruption identified. Individuals from 

post-Medieval London show the greatest evidence of both growth and health disruptions, 

while the Pre-Roman individuals show the least evidence of both. This demonstrates that 

there is a strong temporal relationship between growth and health, pertaining to the varying 

social, cultural and environmental stressors experienced within these periods. In particular, 

social transitions and social stratification appear to have had severe impacts on growth and 

health.  

 

There are a multitude of ways in which socioeconomic status can affect the physiological 

parameters of growth and health; it has been traditionally considered that low socioeconomic 

status predisposes individuals to poorer nutrition, living and working environments and thus a 

higher disease and pathogen load. Consequently, metabolic, infectious and congenital disease 

processes are all much more likely. Post-Medieval individuals show clear differences 

between status groups; those from Cross Bones, the lowest status sample assessed, were 

identified as having the most severe growth and health disruption, whilst those from Chelsea 

Old Church, the highest status population had the least. However, nuances in interpretation 

must not be overlooked and although this general relationship between status and disruption 

is evident, cultural and social practices of maternal and perinatal/infant care still had 

implications for growth and health of these individuals.  

 

A myriad of varying extrinsic factors have been considered as to the etiological and 

contextual causation of growth and health disruption identified. Given the variability in the 

age of the individuals affected, the extent and severity of changes, and the type and location 

of pathological lesions, it is likely that there are a multitude of factors which affected health 

and growth.  
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Furthermore, evidence from these individuals has found that health and growth disruption can 

be identified both pre- and postnatally. As a consequence, the theoretical implications of the 

DOHAD hypothesis should also be considered. Although epigenetic changes have not been 

directly investigated, predisposition to poor health as a result of multi-generational exposure 

to detrimental and limiting conditions may have resulted in some of these individuals being 

of increased susceptibility to poor health.  

 

Of course, as discussed throughout, there are many limitations of this study and although 

attempts to overcome these in the best way possible have been made, individual variation in 

growth and disease response is always a confounding factor. However, by employing a robust 

methodology and strategy for investigating health and growth disruption, this study supports 

the wealth of other literature, with findings highlighting that these individuals are indicative 

of the most fragile and precarious lives of people in the past.  

 

Ultimately this study has initiated an avenue of study which must continue to be developed 

and explored, highlighting the essential need to evaluate both dental and skeletal 

development to synthesise age-at-death data and investigate evidence of growth disruption. 

By considering multiple populations and attempting to compare and contrast growth 

disruption over time, this study has been able to evaluate diachronic trends, implicating the 

significance of socioeconomic status and environmental stressors as key factors for regulating 

fetal, perinatal and infant growth and health. Today, growth and health disruption is an 

ongoing clinical concern and thus understanding the ways in which the skeleton responds to 

stress and insults is imperative. Consequently, holistic consideration of both growth and 

health disruption supports the suggestion that many of these individuals were ‘stressed’ at 

birth. 
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Chapter 11: Conclusions and Recommendations 

 

11.1 Conclusions 

The primary focus of this thesis, and manuscripts herein, has been the identification and 

consideration of health and growth disruption in fetal, perinatal and infant individuals from 

archaeological and historical populations. Current clinical and anthropological studies are 

revealing the multitude of ways that early life can be disrupted, detailing both the 

mechanisms behind, and physiological responses to, these onslaughts (e.g. Barker 1997; 

2012; Barker et al. 1990; 2002; Abu-Saad & Fraser 2010; Holdsworth & Schell 2017; Hujoel 

et al. 2017). This growing discourse has been pivotal in identifying these young individuals 

as central to interpretations of overall community and population health (Goodman & 

Armelagos 1989, 239; Redfern 2003, 162; Baxter 2005, 99; Lewis 2007, 20). Only within the 

last decade have fetal, perinatal and infant individuals received comprehensive attention in 

the bioarchaeological literature (Halcrow & Tayles 2008, 191; Mays et al. 2017, 38). The 

failure of archaeologists and bioarchaeologists to acknowledge the potential of these remains 

for yielding important insights into past health, has resulted in the most perilous stage of life 

being systematically absent from many bioarchaeological interpretations. Thus, if we are to 

understand the health and wellbeing of an archaeological sample we must not overlook the 

most fragile members of these societies. Adopting a holistic approach, considering the vast 

multidisciplinary discourse on health and growth disruption, this study has been able to 

consider and contextualise results of assessment to develop a comprehensive narrative on the 

causes, manifestation and implications of physiological disruption. Therefore, this thesis 

makes an important contribution to the study of fetal, perinatal and infant remains within 

bioarchaeology.  

 

This study comprises of a uniquely large sample size of fetal, perinatal and infant skeletal 

remains. In addition, inclusion and assessment of a documented collection has enabled 

specific investigation as to the effects of sex and ethnicity on growth and health disruption. 

Thus, the samples analysed are perfectly suited to the aims of the project and have enabled 

extensive consideration of growth and health disruption in these young individuals over a 

lengthy chronological time period.  
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Within this thesis, the novel approach adopted, comparing age estimations established from 

assessment of dental development against ages calculated from diaphyseal length of the long 

bones has proved highly effective in determining growth disruption. It is suggested that such 

an approach should be commonly employed, where possible, for all future studies of these 

young individuals. Consequently, this thesis has demonstrated that dental development, and 

the corresponding age-at-death estimates it generates, is a reliable method whereby proxies of 

chronological age can be generated. Consideration of a known age-at-death population has 

helped in establishing this claim. Furthermore, assessment of the pars basilaris, a bone 

considered to be robust against environmental stress, has found a strong parity between dental 

age and age estimates derived from metric assessment of this cranial element. This research 

has proven that establishing evidence of growth disruption, by considering skeletal age in 

comparison to dental age, is a robust methodology. Furthermore, the inclusion of error 

ranges, as outlined by the age estimation methodologies employed, results in growth 

disruption only being recorded for individuals where significant differences are found 

between the age estimates.  

 

Evidence of systemic growth disruption, where multiple skeletal elements were found to be 

shorter, and generate younger age estimates, than dental age, has thus been identified in all of 

the samples/time periods considered for analysis. Although only 39 individuals out of the 423 

assessed showed this evidence of growth disruption, where all long bone elements had age 

estimates which failed to correlate or overlap with dental age, many additional individuals 

were found to have disruption within particular long bone elements (See Chapter 10 and 

Table 10.1). Overall, considering all individuals with evidence of growth disruption (N = 

170) to at least one skeletal element, the post-Medieval period was found to have the highest 

prevalence of growth disruption. Prevalence rates of growth disruption were not found to be 

similar between time periods/samples. Instead growth disruption appears to be intrinsically 

linked to the socioeconomic, cultural and environmental constraints acting upon individuals 

within a sample.  

 

This thesis has also attempted to the explore evidence of pathological lesions within these 

individuals, although it is acknowledged that this is a challenging area of research which 

requires further investigation. Evidence of pathological lesions was found in individuals from 

all samples and time periods analysed. Cranial lesions were the most commonly identified 

pathology throughout all samples and time periods (TPR 70%), although prevalence rates 
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were shown to vary substantially between these categories. Postcranial lesions were 

consistently less prevalent in all samples (TPR 30%), although again variation in prevalence 

was identified between time periods. New bone formation was the type of lesion most 

frequently identified in all individuals. Morphological change and metaphyseal expansion 

were not regularly identified, except for those in the infant age category. Similarities between 

samples in type and location of lesion suggests a comparable physiological response between 

individuals, regardless of the particular heath stress experienced. Yet, disparity in prevalence 

rates between samples indicates a variable exposure to stress over time – those of post-

Medieval and Transition samples showing exceptionally high pathological prevalence rates 

compared to those of the pre-Roman sample. Inherent variation in the social, cultural and 

environmental experiences of individuals within these samples has once again been suggested 

to be a contributing factor to this variation.  

 

Growth and health disruption are both likely to be a result of an amalgamation of detrimental 

insults. Nutritional deficiency, specific and non-specific infections, as well as congenital 

conditions, endocrine disorders and psychosocial deprivation (Haymond et al. 2013, 787) 

have all been implicated in growth and health disruption. Consideration of the pathological 

lesions identified within individuals assessed, typically NBF, in correlation with growth 

disruption, is argued to indicate that metabolic disturbance was the most likely etiology for 

many of the physiological disruptions identified. That it not to say that multiple pathogenic 

and etiological impetuses were not experienced – many disease processes are found to co-

occur – but simply that specific disease processes were concealed by this non-specific 

response. Furthermore, specific diseases often manifest as nutritional deficiency within fetal, 

perinatal and infant individuals due to their reliance on maternal care, and nutritional and 

immunological safeguarding. Extracting specific pathogenic, etiological and contextual 

origins for growth and health disruption is thus challenging when skeletal responses to such 

insults are often non-specific.  

 

This thesis has attempted to establish unequivocal evidence of growth and health disruption, 

as widespread methodological limitations and reservations often result in limited assessment 

of fetal, perinatal and infant individuals. By examining physiological disruptions in a large 

sample of temporally disparate individuals, this study has attempted to demonstrate that early 

life disruption can be quantified throughout the archaeological record. Yet, despite this focus 

on the physical parameters of skeletal remains, comprehensive consideration of social, 
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cultural and environmental variables has demonstrated that a myriad of factors can influence 

and affect the early life course. Social and cultural practice, maternal buffering and regulation 

of the environment are central to overall growth and health, whereby these variables can 

themselves often be either intrinsically or extrinsically regulated (Goodman & Armelagos 

1988, 941-942; Goodman et al. 1988, 169-170; Bush & Zvelebil 1991, 5). Consequently, it is 

argued that understanding the implications of growth and health disruption is complex, 

particularly as physiological responses are typically non-specific with regards to pathological 

lesions (Goodman et al. 1984, 259; 1988, 178; Bush & Zvelebil 1991, 5; Lewis & Roberts 

1997, 584; Temple & Goodman 2014, 186). Given this skeletal mechanism, identifying 

specific and exact causes of stress and insult is implausible within archaeological material, 

especially when only macroscopic assessment is undertaken.     

 

Indeed, interpreting health and growth disruption by considering physiological skeletal 

responses is itself fraught with debate. After all, it might not be so unexpected that growth 

and health disruption is prevalent when it is the non-survivors of past populations being 

considered (Krenz-Niedbala & Lukasik 2017, 375). With infant mortality considered to be 

exceptionally high within past populations – estimates range from 30-50% (e.g. Schultz 2001, 

129; Gowland 2001, 155; Chamberlain 1997, 249; Wiedemann 1989, 12-16) - it is anticipated 

that young individuals frequently succumbed to the detrimental environments and stressors of 

intra- and extrauterine life. Identification of clear growth changes and pathological lesions, 

indicative of a reduced health status, are consequently not unexpected, and conversely may 

only represent a portion of the actual number of individuals experiencing stress. Rapidity of 

skeletal response within fetal, perinatal and infant individuals means health disruption is 

often reflected on their skeletal remains (Ortner 2003, 206; Lewis 2007, 60; Schultz 2001, 

115; Kini et al. 2012, 30) – more so than on those of adults – yet acute or particularly severe 

insults, where death was almost instantaneous, do not always have time to manifest within the 

skeleton. It can be argued that the prevalence rates and percentages of those showing growth 

and health disruption presented within this study ultimately reflect lower estimates of 

disruption than what may have truly been experienced.  

 

Research objectives outlined within the introduction of this thesis have been thoroughly 

achieved. As a result, four major findings from this research, which will advance analyses of 

fetal, perinatal and infant remains, have been established: 
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1. The pars basilaris is a useful proxy for dental ageing, which in turn is a good proxy 

for chronological age. 

2. Diaphyseal lengths of long bones, which are commonly used to age perinates, will 

skew chronological age estimations to the centre as they are based on regression 

equations. This means there is a mimicry between reference and sample populations, 

with results simply reflecting the standard from which they derive. The use of dental 

age estimation methodologies, instead of these skeletal ones, protects against this bias. 

Therefore, diaphyseal lengths should no longer be used to estimate age-at-death. 

3. The tibia has been demonstrated to be the most sensitive to a range of environmental 

stressors, showing the greatest evidence of growth and postcranial health disruption. 

This finding supports previous results, though extends the evidence into the fetal, 

perinatal and infantile period.  

4. Error levels are central to interpretations of both chronological age and growth 

disruption, with growth disruption only identified in individuals where skeletal and 

dental age estimates showed no correlation or overlap. Thus, it is vital that error 

ranges provided by each of the methods are considered to ensure assessment of both 

age and evidence of growth disruption is robust.  

 

This thesis has demonstrated that growth and health disruption can be identified within these 

youngest members of past societies and provide valuable insights into early life experiences. 

Confining fetal, perinatal and infant individuals to grey literature is no longer an option, as 

sensitive indicators of samples/populations these individuals provide unique opportunities to 

study these most fragile and precarious lives. Determining growth and health profiles of the 

samples and individuals assessed, this study has revealed a fluctuating pattern of 

physiological responses within and between past populations. Consideration of individual 

experience is imperative - based on age, environment, predisposition to disruption and 

insults, and time period -  revealing the intrinsically variable, yet broadly comparable way the 

early life course represents the most precarious period of human life. Extensive evidence of 

physiological disruption throughout the samples assessed reveals a narrative of individuals 

inherently ‘stressed’ at birth.  

 

11.2 Future Directions and Recommendations 

To support and expand findings presented in this study six central future considerations have 

been outlined.  
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1. Increased studies and samples sizes of fetal, perinatal and infant individuals recording 

dental and skeletal development to construct age-at-death profiles.  

a. Further data (skeletal, dental and pathological) to consider known age-at-death 

individuals. Increasing sample size of known age individuals would further 

comprehension of growth disruption within archaeological samples.  

b. Increased sample sizes would also enable further statistical assessment to 

consider age-dependent differences between chronological and skeletal and 

dental ages.  

 

2. Investigating varying aspects of skeletal growth metrically to determine skeletal 

elements most commonly disrupted in growth.  

a. Given that the tibia is typically considered to be the most variable and 

responsive to stress, future studies should investigate other distal segments of 

long bones (radius, ulna and fibula) to explore intra-limb growth prioritisation 

and variation. 

b. Consideration of allometry and asymmetrical growth would enable further 

indication of stress. In particular, clinical studies indicate that SGA offspring 

have shorter radii and ulnae in comparison to humeri (Brooke et al 1984). 

Furthermore, asymmetric growth is considered to be indicative of IUGR. 

Consequently, by determining disproportional growth within and between 

skeletal elements interpretations surrounding both stress exposure and birth 

experiences would be aided.  

c. Intra-element growth disruption should be considered; e.g. comparisons 

between diaphyseal lengths and metaphyseal widths of femora and humeri. 

d. Diaphyseal mid-point width should also be investigated as growth and health 

disruption is known to prioritise interstitial, rather than appositional growth.  

 

3. Radiographic investigation of fetal, perinatal and infant long bones. 

a. Radiograph long bones with suspected pathological NBF to determine 

thickness of periosteal NBF in order confirm presence of pathological 

changes. 

b. Measure total cortical thickness to investigate appositional growth changes. 

Disruption to growth is not only considered to result in small diaphyseal 
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diameters, but reduction in cortical thickness also. Investigation would support 

metric investigation of diaphyseal mid-point width.  

 

4. Isotopic incremental dentine analysis to determine ratios of nitrogen isotopes within 

samples assessed.  

a. Investigate whether nitrogen isotope ratios are increased in individuals 

showing more evidence of pathological lesions/severer growth disruption.  

b. Determine nitrogen isotope profiles for individuals, considering peak values 

and whether these were still rising or dropping at point of death.  

c. Consider whether rising or falling nitrogen isotpe ratios correlate with 

pathological lesions showing either an initial response (woven bone) or a 

healing response (lamellar bone formation).  

 

5. CT scanning of fetal, perinatal and infant long bones to assess evidence of bioerosion. 

a. Investigate whether age-dependent differences in bioerosion can be identified, 

substantiating correlation between age and survival. 

 

6. Histological assessment of the neonatal line. 

a. By determining the presence of the neonatal line, comparison of dental and 

skeletal growth and health disruption can aid interpretations of prematurity, 

SGA or IUGR.  

 

The above future directions have been considered as interesting prospective avenues to 

explore to enhance consideration of fetal, perinatal and infant growth and health disruption.  
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