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Thesis Summary

Orally disintegrating tablets (ODTs) are a dosage form ideal for paediatric or geriatric patients as they
disintegrate/disperse within the oral cavity. Direct compression manufacture of ODTs is increasing in
popularity due to its cost effectiveness and use of traditional tableting equipment, however excipients
are required to fulfil certain requirements to form robust, fast disintegrating tablets. Mannitol is a vital
excipient for ODT manufacture due to its high palatability, however its fragmentation behaviour under
compression leads to mechanically weak and friable tablets. The work in this thesis aimed to
investigate the fragmentation behaviour of milled mannitol, followed by development of preblends
to obtain ideal ODT properties without the use of any superdisintegrant. Development of a novel
method for ODT disintegration testing was also conducted due to the lack of current techniques that
are representative of oral conditions.

Mannitol fracture occurred primarily at the (011) crystal plane, which was the most hydrophilic,
therefore increasing the wettability of milled mannitol. Resulting ODTs had a faster disintegration time
than the unmilled equivalent, with enhancement in compressibility due to increased plastic
deformation. Milled mannitol presented a suitable alternative for ODT production compared to
current commercial grades, with high mechanical strength and improved disintegration time. Novel
optimised ODT preblends were developed with milled mannitol incorporated alongside micro
crystalline cellulose (MCC) and silica to aid powder flow.

Dry particle coating was also employed to develop an MCC/silica hybrid to enhance MCC properties.
Silicified MCC had previously been shown to enhance MCC compression, whilst improving MCC
powder flow and reducing lubricant sensitivity. Dry coated MCC was optimised with 1%w/w silica,
with ODT disintegration being significantly lower than the spray dried alternative or uncoated MCC,
whilst allowing a 40% drug load of a non-compressible APl to be formed into a robust fast
disintegrating ODT.

A novel ODT disintegration method was developed to mimic In Vivo oral conditions. A vastly improved
correlation to In Vivo results was observed with the newly developed method, in comparison to the
recommended USP tester, with a linear correlation obtained with the new test method compared to
the curved dataset gathered with the USP test.

Novel preblends were developed utilising dry particle coating, with resultant ODTs showing improved
ODT behaviour, with disintegration time being low even without the use of superdisintegrant. To
supplement ODT disintegration, novel ODT disintegration time test method was developed and results
indicated it was a superior alternative compared to the currently recommend USP test.
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Figure 2.2: A schematic diagram of some of the mill parameters used in the calculation for energy
input. This includes angular velocity of the disk (W;) angular velocity of the vial (W,), disk radius (Ry)
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Figure 2.3: X-ray diffraction patterns showing that all powders tested represent a strong fit for 3-D-
Mannitol. The patterns for milled mannitol (F1-F8) also indicate the extent of peak intensity reduction
across all milled powders compared to unmilled mannitol (FO), with Table 1.2 showing the
corresponding percentage of peak intensity redUction. .......cccoueeeiiciiii e 88
Figure 2.4: A graph comparing measured values of peak intensity reduction to the values calculated
using Equation 18, against energy input per unit mass, showing that this model represents a good fit
and provides a novel method of calculating energy input during milling. .......cccccevveviiiiniiiee i 89
Figure 2.5: DSC scan of non-milled mannitol (FO) compared to milled powders (F1-F8) showing no
difference in melting point, enthalpy of fusion or onset of melting, indicating there was no alteration
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Figure 2.6: SEM images showing the morphology of the mannitol powders; A - FO (control) showing
needle like morphology at x1200 magnification (all milled samples are at x5000 magnification); B - F1,
with circle indicating particle fracture at the (011) plane; C - F2, with circle indicating particle fracture
atthe (011) plane; D - F3, with arrows indicating agglomeration of particles; E - F4, with circle indicating
particle fracture at the (010) plane, and arrow indicating agglomeration of particles; F - F5, with circle
indicating particle fracture at (011) plane; G - F6; H - F7, with arrows indicating agglomeration of
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Figure 2.7: A graph showing the hardness and disintegration of the manufactured ODTs at a
compression force of 75 and 225MPa. At 75MPa hardness of the milled ODTs has improved indicating
improved compressibility of the milled mannitol. At 225MPa disintegration time has improved for
milled ODTs even with the increased mechanical strength of the tablets, indicating improved

wettability of the milled powders (p<0.05). Data presented as mean £ SD.......cccccceeevveeeeciieeeecnneenn. 96
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with further improvement in flow seen at all starch concentrations (only 4% starch showed statistical
significance. Data presented as mean = SD (N=3, P<0O.05).....ccceevuirrciereriieenieeereeeeeeerire e e ereeeseeee s 104
Figure 2.15: A graph showing the angle of repose of the milled mannitol + 0.5% silica mixed in the
novel composite blender at different parameters. It shows that increased speed does help in
improving the flow behaviour of the powder, with a significant improvement seen between the
powder tested at 1500rpm and 2000 with 1bar of air pressure. Data presented as mean + SD (n=3,
PO.05). ettt ettt ettt e bt e b e e e bt e ea bt e bt e b e e be e beeeheeeateebeenbeenaeesanena 106
Figure 2.16: A graph showing the angle of repose of the various milled mannitol powders comparing
cube mixing and composite mixing for 10minutes. It can be seen in general that composite mixing
proves advantageous in improving flow, with significant flow improvement observed with 0.5% silica.
Data presented as mean £ SD (N=3, P<O.05).....ccciiiiiieeiieeeieeeeee e sieeeeeesre e sre e s rrae e s teeesaeesateessaeesnnes 107
Figure 2.17: A graph showing the angle of repose of milled mannitol + 0.5% silica comparing cube and
composite blending over a 30min period, highlighting that composite blending is advantageous over
cube mixing as flow improvements are evident, with mixing at 10mins being statistically significant.
Data presented as mean £ SD (N=3, P<0.05)......cceiiiiiieeiiiieeeeirieee e ecteeeeectte e e e etreeeseebreeeessateeeeseseaeeeennes 109
Figure 2.18: A picture showing tablets produced from the auto tablet press for the 4 powder milled
mannitol blends test; 1 — Cube blended with starch, 2 — Cube blend with MCC, 3 — Composite blend
with Starch and 4 — Composite blend with MCC. Observed that tablets made from cube blended
powder were prone to capping and lamination, and the quality of the tablets were very poor
compared to compositely blended powders which provided uniform tablets with very little/no
[T g oT=T i £=Tot 1 Te] o - PPPUPRRN 112
Figure 3.1: SEM images showing the morphology of the graded mannitol products compared to milled
mannitol (F2); A — F2 Milled mannitol showing very small particle size at x2000 magnification; B —
Mannogem powder showing crystalline structure at 500x magnification; C — Mannogem 2080 and D —
Mannogem Granular highlighted granulated mannitol both at 800x magnification; E — Mannogem EZ

illustrating a porous spray dried mannitol at 800x magnification; F — Pearlitol 50C showing a crystalline
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mannitol powder with needle like structure at 500x magnification; G — Pearlitol 500DC highlighting
granular mannitol at 100x magnification and H — Pearlitol 200SD showing a spray dried mannitol at
250X MAGNITICAtION .c.etiiiiieeie e e e et e e st e e et e e e ba e e e e b aeeeennraaeean 126
Figure 3.2: A graph showing the flowability of the graded mannitol powders compared to the ideal
milled powder, F2, through Carr’s Index and Hausner Ratio. Results show that the crystalline mannitol
forms have very poor flow alongside the F2 control. All graded powders display an improved flow as
expected due to the physical modifications to the mannitol particle, leading to an enhanced particles
Size and MOre UNIFOrM SNAPE.........iiiiee e e e e e e e e e et e e e e eabeeeeeareeas 127
Figure 3.3: Particle sizing graph for the crystalline Mannogem powder indicating a wide particle size
range within the powder, with sizes varying from 0.6-100um, with VMD being 36.97um (n=3)......128
Figure 3.4: Particle sizing graph for the crystalline Pearlitol 50C powder indicating a slightly narrower
particle size range within the powder compared to Mannogem Powder, with sizes varying from 0.6-
80um, with VMD being 35.33um (n=3), although SEM showed particles of around 50um (Figure 3.1
(53 ) PO OO PRSPV TPPTURRPPPOUOt 128
Figure 3.5: Particle sizing graph for the Milled mannitol powder (F2) a very small particle size range
with a bimodal distribution, with a high proportion of particles within the 1-2um VMD size range and
a high proportion in between the 10-20um size range, with the VMD being 11.76 um (n=3). ......... 129
Figure 3.6: XRD patterns for the different Mannogem grades tested in this study. The Mannogem
powder and the two granulated forms represented very crystalline powders with a strong fir for the 8
polymorph, however the Mannogem EZ, the spray dried form, showed peaks that are clearly
representative of the a polymorph as well as for the B polymorph. .......cccoooeiiiiiiiii e, 133
Figure 3.7: XRD patterns for the different Pearlitol grades tested in this study. The Mannogem powder
and the granulated form represented very crystalline powders with a strong fir for the B polymorph,
however the Pearlitol 200SD, the spray dried form, showed peaks that were clearly representative of

the a polymorph as well as for the B polymorph. ... e 134
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Figure 3.8: A graph showing the in die Heckel profile of the commercial mannitol grades tested in this
study, with all powders, with the exception of Mannogem 2080, compressing through brittle
fragmentation, as highlighted by obtained yield pressures shown in Table 3.2. ......c.ccooeecivieeenennnn. 136
Figure 3.9: A graph showing the hardness of the commercially available mannitol grades compared to
milled mannitol F2. Significant improvements in hardness were observed with the milled mannitol
compared to the Mannogem 2080 (only at 225MPa), Mannogem Granular, Pearlitol 50C and Pearlitol
500DC. However both spray dried grades (Mannogem EZ and Pearlitol 200SD) were significantly higher

in mechanical strength compared to the milled mannitol. Data presented as mean * SD (p<0.05, n=3).

Figure 3.10: A graph showing the disintegration times of the commercial mannitol grades compared
to the milled mannitol. The results clearly show that milled mannitol provides advantages for tablet
disintegration with the milled mannitol being significantly better than all grades at both compaction
forces (except for the Mannogem Powder and Pearlitol 50C at 75MPa. Data is presented as mean +
SD (N3, PLO.05). ettt ettt et e b et s a e et e e e e bt e bt e he e eae e et e e bt e be e be e beesaeesaeeearean 143
Figure 4.1: A graph showing the powder flow of the MCC/mannitol preblends, comparing the
difference between milled and unmilled mannitol in the two different mixing processes, through the
angle of repose. Results indicated that unmilled mannitol had a superior flow (p<0.05), whilst
composite blending was also beneficial in reducing the angle of repose (p<0.05) for milled mannitol.
Data is presented as MEaN £ SD (N=3). .iociiieciiieiiieciee ettt ettt e et e e str e e s e e s are e sbeeetaeeenteeesaeesnnes 156
Figure 4.2: A graph showing the disintegration times of manufactured ODTs containing the model API
ibuprofen at concentrations varying from 10-50% comparing milled and unmilled mannitol. Only
compositely blended tablet data is shown on the graph. Results indicated that at concentrations of
30% ibuprofen and above tablets containing milled mannitol had significantly lower disintegration
times than tablets containing unmilled mannitol. Data is presented as mean + SD (n=3, p<0.05 at all

concentrations except 10% ibUPIrOTEN).......eiiiiie i sre e 157
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Figure 4.3: A graph showing the hardness of manufactured ODTs containing the model APl ibuprofen
at concentrations varying from 10-50% comparing milled and unmilled mannitol. Only compositely
blended tablet data is shown on the graph. Data is presented as mean * SD (n=3, p<0.05 for all
conditions eXCePt MCC/IDU 10%)......cccveeeireeeeieeeiieeeeteeeecteeeete et eeeteeeseteeeeteeeetbeesbeeeesseesabesesesesseeenns 158
Figure 4.4: A graph showing the friability of manufactured ODTs containing the model APl ibuprofen
at concentrations varying from 10-50% comparing milled and unmilled mannitol, showing a mixed
pattern with friability for both unmilled and milled mannitol being similar, ranging from 1.5-3.5%. Only
compositely blended tablet data is shown on the graph. ........cccoeeeiiiiicie e 159
Figure 4.5: SEM images showing images of a typical MCC particle within the investigated preblends. A
— Cube mixed milled mannitol/MCC; B — Cube mixed unmilled mannitol/MCC; C — Compositely mixed
milled mannitol/MCC and D — Compositely mixed unmilled mannitol/MCC, with compositely mixing
milled mannitol resulting in higher levels of dry coating........cccceevvciiiiiriiiii e 161
Figure 4.6: A graph showing the disintegration time of manufactured ODTs containing the model API
ibuprofen at concentrations varying from 10-50%, comparing the cube and composite mixing
methods, with statistically significant results only observed at MCC/Ibu 50%. Only milled mannitol
results are shown in the graph. Data is presented as mean £ SD (n=3, p<0.05). .......cccecvvvrrercirreeenns 162
Figure 4.7: A graph showing the hardness of manufactured ODTs containing the model API ibuprofen
at concentrations varying from 10-50% comparing the cube and composite mixers, with no
statistically significant results observed between the methods. Only milled mannitol data is shown on
the graph. Data is presented as mean £ SD (N=3, P>0.05).....ccceeeviieririeiiieeriee et ereeerre e vee e 163
Figure 4.8: A graph showing the friability of manufactured ODTs containing the model API ibuprofen
at concentrations varying from 10-50% comparing the cube and composite mixer. Results indicated
no clear pattern in friability for the mixing methods, and friability was varied according to a particular
blend. Only milled mannitol data is shown on the graph.........ccccceeeiiiicc e, 164
Figure 4.9: A graph showing the effect of silica concentration on the flow of the preblend powder

through angle of repose. Significant differences were observed at 0.5%/1.5% and 2% compared to the
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blend where all of the excipients were mixed together (0.5% blended 30mins). Was seen that after 1%
of silica addition a flow category improvement was seen, from fair to good. (n=3, p<0.05 for all powder
L=y oYl K 4 Y14 T =Y o Vo ) SN 166
Figure 4.10: SEM images showing particles of: A — 0.5% silica blended for 30mins alongside milled
mannitol and MCC; B — 1% silica mixed for 5mins after 30min blend of milled mannitol and MCC; C —
2% silica mixed for 5mins after 30min blend of milled mannitol and MCC. Images clearly show that
increasing the concentration of silica increases the surface coverage of silica on the larger preblend
particles, with 2% silica having the highest levels of surface adhered silica. .........coceeevciiieiecineennns 167
Figure 4.11: A graph showing hardness of the tablets produced from the preblends mixed with
differing concentrations of ibuprofen. Results indicated that in general as the concentration of silica
increased the hardness of the dosage form also increased. Significant differences were observed
between several tablets, with 10% ibuprofen showing an improved hardness at 0.5% blended for

30mins and 1.5% silica and 30%/50% ibuprofen showing improved hardness at 2% (n=3, p<0.05).

Figure 4.12: A graph showing the disintegration of the tablets produced from the preblends mixed
with differing concentrations of ibuprofen. Results gave a clear indication that as silica concentration
increased the disintegration time of the tablet al/so increased, which was especially evident at 30 and
50% ibuprofen concentration, with concentrations of 1% silica and above significantly different to the
0.5% total blend at 30% ibuprofen concentration and concentrations of 1% silica and above being
significantly longer disintegrating than either of the 0.5% silica preblends at 50% ibuprofen
concentration (N=3, P<O.05). ..ocuiiiciieiiee ettt eerte et e estre e s te e e baeesbeesbaeessreesabaeessseesasaeeasseesaseeanns 169
Figure 4.13: A graph showing the porosity of the tablets produced from the preblend powders
containing different concentrations of silica at different ibuprofen drug loads. Results indicated that
as the concentration of silica increased the porosity of the tablets decreased; at 10% ibuprofen load
statistical significance was observed at all concentrations except when comparing the two 0.5% silica

preblends and between 1.5% and 2% silica; and at 30% and 50% ibuprofen load significant differences
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were observed at all concentrations of silica except between the two 0.5% blends and between 1%
and 2%/1.5% and 2% (N=3, P<O.05). c.ueeiuiiiieiieeiecieeste e e seeere e eteesteebe e teesbaestaesabesabeenbeeteestaessaessaenns 170
Figure 4.14: A graph showing the friability of the tablets made from preblends containing different
concentrations of silica, at three different ibuprofen drug loads. It was seen that no clear observable
pattern was seen with friability, with the 0.5% total blend have very good friability whereas 5min
mixed silica blends had higher friability. Could also be said that a general reduction in friability was
seen as the silica concentration increased UP t0 1.5%. ....ccccuueeeieiiieeiciiiie e 172
Figure 4.15: A graph showing the effect of silica mixing time on the flow of the preblend powder
through angle of repose. Significant improvements in flow were observed after a 10min mixing time
compared to the 5min silica mixed powder, with 20 and 30min mixed powders also being significantly
more flowable than powder mixed for 10mins (N=3, P<0.05).....ccceeririieriiieriiieeiiee e 173
Figure 4.16: SEM images of the calculated surface coverage blends compared to the all in one mixtures
with A- showing an uncoated particle of MCC PH102; B- showing an uncoated particle of MCC PH102;
C - showing the all in one powder blend of PH102; D — the PH102 blend with calculated surface
coverage; E — the all in one powder blend of PH101 and F — the PH101 blend with calculated surface
coverage. Levels of coating appeared to be slightly higher on the calculated surface coverage blends

for both PH102 and PH101, although the loading amount of the mannitol and silica was high in both

Figure 4.17: A graph showing the flow of the surface coverage calculated blends compared to the all
in mixed blends for the two sizes of MCC investigated, through the angle of repose. The general
pattern was that surface coverage resulted in a slight worsening in flow, with a statistically significant
difference seen with the PH101 blends (n=3, P<0.05). ....coeciieiiiieeiiiieciee et eetee e sreeesraeesvee e 177
Figure 4.18: A graph showing the hardness of the surface coverage blends compared to the total
addition of powder blends at three difference concentrations of ibuprofen. No observable pattern was
seen in the results, however a significant increase in hardness was seen at 50% ibuprofen for both of

the surface coverage blends compared to their total addition counterpart (n=3, p<0.05). .............. 178
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Figure 4.19: A graph showing the friability of the surface coverage blends compared to the total
addition of powder blends at three difference concentrations of ibuprofen. No observable pattern was
seen when comparing the surface coverage blends to the total addition blends. ...........cccccccnnee. 179
Figure 4.20: A graph showing the disintegration time of the surface coverage blends compared to the
total addition of powder blends at three difference concentrations of ibuprofen. No observable
pattern was seen in the results, with PH102 MCC showing lower disintegration with surface coverage
blending, whereas PH101 showed lower disintegration with the total addition of the powder.

Statistical significance was seen between 10%ibu for PH102, and 30% lbu for PH101 (n=3, p<0.05).

Figure 4.21: A graph showing the flow of glyceryl Behenate and Ethocel compared to Silica through
angle of repose. Results indicated that powders containing silica flowed significantly better than
powders containing the other two excipients. Ethocel flowed significantly better than glyceryl
BEheNate (N=3, P<O.05)....cceiiireeeetee ettt e et ettt ete e et e e eateeeaeeesaeeeebesesaeeeeaseesebeeessteeenbeeessteesseeesnnes 181
Figure 4.22: A graph showing the hardness of the tablets manufactured from the powders containing
the two new investigated flow aids compared to silica, with different ibuprofen drug loads. The general
pattern observed was that glyceryl behenate had the lowest hardness at 10 and 30%, with silica being
significantly harder at 10 and Ethocel being significantly harder at 30% ibuprofen drug load and silica
being significantly harder than Ethocel at 10% ibuprofen load. Glyceryl behenate was significantly
harder than silica at 50% ibuprofen load (N=3, P<0.05). ....ceeeviiiiiieeiee e 183
Figure 4.23: A graph showing the disintegration times of the tablets manufactured from the powders
containing the two new investigated flow aids compared to silica, with different ibuprofen drug loads.
The general pattern observed was that there was no clear difference in disintegration time at 10/30%
ibuprofen load, however at 50% the Ethocel was faster disintegrating compared to the silica and
glyceryl behenate(nN=3, P<0.05). ...uuiieiiiiiieeciiee e et ettt e et e e e et e e e e e are e e e e abeeeeeareeesenreeeeenteeasennsenas 184
Figure 5.1: Raman spectroscopy data showing the Raman signature for silica, uncoated Avicel PH101

and dry coated Avicel PH101 with 2% silica loading. Raman signature shows MCC peak reduction post

25


file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440594
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440594
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440594
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440595
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440595
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440595
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440595
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440595
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440595
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440596
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440596
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440596
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440596
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440597
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440597
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440597
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440597
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440597
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440597
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440598
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440598
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440598
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440598
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440598
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440599
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440599

dry coating, indicating a lower MCC signal due to lower exposure of the MCC surface due to the
presence of fine silica particles on the MCC sUIface. .....cuuviiiciiiiiiciiie e 197
Figure 5.2: Raman spectroscopy data showing the Raman signature for silica, uncoated Avicel PH102
and dry coated Avicel PH102 with 2% silica loading. Raman signature shows MCC peak reduction post
dry coating, indicating a lower MCC signal due to lower exposure of the MCC surface due to the
presence of fine silica particles on the MCC SUITaCe. .....c..eevieciiiiiicciiee e e 198
Figure 5.3: SEM images of the different powders investigated in this study, with A, C and E at 1000x
magnification and B, D, F at 500x magnification; A — Prosolv P50 showing a rough particle surface, B —
Prosolv P90 showing again a rough surface; C — Avicel PH101 showing a smoother particle surface
compared to the Prosolv; D — Avicel PH102 showing a smoother particle surface compared to the
Prosolv; E — Avicel PH101/1% silica dry coated blend, showing an MCC particle with a clear coating of
silica upon the particle surface and F — Avicel PH102/1% silica dry coated blend with clear evidence of
silica dry coated upon the MCC particle SUITaCe. ......coociiieeiii ittt e e e e 199
Figure 5.4: SEM images of the Avicel PH102 with different silica loading, with all images at 2000x
maghnification; A—0.5% silica; B— 1% silica and C — 2% silica. Images indicate a large difference in silica
loading between 0.5 and 1%, however when the concentration is increased up to 2% a significant
difference in silica loading upon the MCC is NOt OBSEIVEd..........eevieciiiiieiiiieeeceee e 200
Figure 5.5: A graph showing the powder flow, through angle of repose, of the Prosolv P50 compared
to the dry coated Avicel PH101 powders, with uncoated Avicel PH101 used as a control. Little
difference observed between the Prosolv and the dry coated powders (n=3, p>0.05).......cccccuvene. 201
Figure 5.6: A graph showing the powder flow, through angle of repose, of the Prosolv P90 compared
to the dry coated Avicel PH102 powders, with uncoated Avicel PH102 used as a control. Significant
difference was observed between the Prosolv and all of the dry coated powders, with dry coated
powders providing a more flowable powder (N=3, P<0.05). .....oeeeeiiiieieiiiee et 203
Figure 5.7: A graph showing the hardness and disintegration time of the tablets compressed at 75MPa

of the Prosolv P50 and Avicel PH101 dry coated tablets/control, with different proportion of silica,
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with hardness represented by the line and disintegration time by the bars. Results indicated that
Prosolv displayed advantageous mechanical strength compared to dry coated grades (n=3 p<0.05),
however disintegration time was significantly improved with the dry coated grades, even though
mechanical strength was still very high (n=3, P<0.05).......coeiiiiiiiieiieee e e eeee e 204
Figure 5.8: A graph showing the hardness and disintegration time of the tablets compressed at 75MPa
of the Prosolv P90 and Avicel PH102 dry coated tablets/control, with different proportion of silica,
with hardness represented by the line and disintegration time by the bars. Results indicated that
Prosolv displayed advantageous mechanical strength compared to dry coated grades (n=3 p<0.05),
however disintegration time was significantly improved with the dry coated grades, even though
mechanical strength was still very high (N=3, P<0.05).....cccciiiiiiiiiiieceeeseecee e 205
Figure 5.9: A graph showing the compressibility profile of the Prosolv P50 and Avicel PH101 dry coated
powders, with results displaying a very similar compressibility profile between all powders, this
indicated bonding area was very similar amongst all POWdErs. ........ccoovciiiiiriiiie e 209
Figure 5.10: A graph showing the compactability profile of the Prosolv P50 and Avicel PH101 dry
coated powders, with results showing Prosolv and the Avicel control had superior compactability, and
therefore bond strength compared to dry coated POWErS. .........oeeeeeiiiiiiiiiee e e 209
Figure 5.11: A graph showing the tabletability profile of the Prosolv P50 and Avicel PH101 dry coated
powders, with results showing Prosolv and the Avicel control had increased tabletability, due to the
increased compactability of the powders compared to the dry coated powder. ........ccocveevvciieennns 210
Figure 5.12: A graph showing the compressibility profile of the Prosolv P90 and Avicel PH102 dry
coated powders, with results displaying a very similar compressibility profile between all powders, this
indicated bonding area was very similar amongst all POWdErs. .........coovcvieiiiiiiii e 210
Figure 5.13: A graph showing the compactability profile of the Prosolv P90 and Avicel PH102 dry
coated powders, with results showing Prosolv and the Avicel control had superior compactability, and

therefore bond strength compared to dry coated POWErS. .........oeeeeeiiieeiciiiie e 211

27


file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440605
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440605
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440605
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440605
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440606
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440606
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440606
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440606
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440606
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440606
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440607
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440607
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440607
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440608
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440608
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440608
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440609
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440609
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440609
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440610
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440610
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440610
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440611
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440611
file:///C:/Users/konerjs/Documents/PhD/Thesis/With%20Prof%20Edits/Final%20thesis%20chapters/Final%20Doc/Final%20Document%205%20List%20of%20Tables.docx%23_Toc486440611

Figure 5.14: A graph showing the tabletability profile of the Prosolv P90 and Avicel PH102 dry coated
powders, with results showing Prosolv and the Avicel control had increased tabletability, due to the
increased compactability of the powders compared to the dry coated powder. .........ccocvevirciiennnnns 211
Figure 5.15: A graph showing the powder flow through angle of repose of the APl loaded Prosolv P50
and Avicel PH101 dry coated powders/control, with very little difference observed between the flow
of the powders at both preblend [0ads (N=3, P>0.05).....cccuuiiiiiiiiieeiiieeeecee e e e saree e 214
Figure 5.16: A graph showing the powder flow through angle of repose of the APl loaded Prosolv P90
and Avicel PH102 dry coated powders/control, dry coated Avicel PH102 showing an improvement in
flow compared to both the Prosolv P90 and Avicel control for both preblend loads (n=3, p<0.05). 214
Figure 5.17: A graph showing the disintegration time and hardness of tablets compressed at 75MPa
produced from the APl loaded Prosolv P50/Avicel PH101 dry coated powders investigated in this
study, with disintegration time displayed on the bars and hardness on the line. Results indicated that
hardness for Prosolv was improved over the Avicel PH101 dry coated powder and control (n=3,
p<0.05) at 59.5% preblend load, with little difference observed at 29.5% preblend load (n=3, p>0.05).
However disintegration time was markedly improved for the dry coated powder over the Prosolv (n=3,
p<0.05) at the 59.5% preblend load, again with little difference seen at the 29.5% preblend load (n=3,
P30.05). ettt et e bt sh ettt et e e bt e e bt e eh e e eub e e bt e be e bt e abeeeheeeabeeabeenbeenaeesaneea 215
Figure 5.18: A graph showing the disintegration time and hardness of tablets compressed at 75MPa
produced from the API loaded Prosolv P90/Avicel PH102 dry coated powders investigated in this
study, with disintegration time displayed on the bars and hardness on the line. Results indicated that
hardness for Prosolv was improved over the Avicel PH102 dry coated powder and control (n=3,
p<0.05) at 59.5% preblend load, with little difference observed at 29.5% preblend load (n=3, p>0.05).
However disintegration time was markedly improved for the dry coated powder over the Prosolv (n=3,
p<0.05) at the 59.5% preblend load, again with little difference seen at the 29.5% preblend load (n=3,

D30.05). ¢.eveeveeereeeeeeseseeeeeseseses s e e es s et st es e eeses et et e st e s e et st e s e e st et et ee s ee e s eesreesereres 216
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Figure 6.1: A diagram illustrating a typical set up for the standard USP disintegration test for solid oral
dosage forms, that is utilised for ODT disintegration testing. It shows how the basket would typically
by placed within the beaker/water bath, and how the dissolution vessels are arranged within the
DASKET. ..ttt h e sttt et b e be e sh et eae e et e e nbeenheesanena 221
Figure 6.2: A schematic diagram showing the proposed design of the specific disintegration tester for
ODTs, comprising of conditions representative of the oral cavity, including temperature/humidity,
disintegration medium flow rate and applied pressure on the tablet. An area for collection of the

disintegrating fragments from the tablet could also be added to assess drug leakage/absorption in the

Figure 6.3: Diagram of the setup of the new disintegration tester, highlight all key components of the
equipment. The texture analyser probe comes through an entrance at the top of the container which
has been cut out and covered with silicon sheeting to allow humidity and temperature to be retained
but still allow the probe to enter without triggering the texture analyser probe.........ccccevvciveennns 226
Figure 6.4: An image of Phase One of the modified disintegration test being developed. It shows the
texture analyser probe using a large upper palate pressing down on to an ODT which is placed upon
the bovine tongue. The heating block maintains tongue temperature at 37°C, and a hot plate placed
behind the peristaltic pump is used to keep saliva at 37°C. ......ooeeeiiieiciiee e 233
Figure 6.5: An image of Phase Two of the modified disintegration test being developed. It shows the
texture analyser probe with an ODT attached by double sided sticky tape. The disintegration bed is a
watch glass with 10ml of water in with a piece of filter paper placed on top to simulate the tongue.
The heating block maintains tongue temperature at 37°C, and a hot plate placed behind the peristaltic
pumMp is Used t0 KEEP SAlIVA @t 37°Cuii it e et e e e sbaa e e e eanes 234
Figure 6.6: A distance versus time plot of the disintegration time of Nurofen Meltlet® tablets obtained

using the Phase 2 modified disintegration test (n=3), the plateau represents the end of disintegration.
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Figure 6.7: A distance versus time plot of the disintegration time of the laboratory manufactured
tablets obtained using the Phase 2 modified disintegration test (n=3), the plateau represents the end
(o) le TRy TN A=Y =4 14 e Yo T RPN 236
Figure 6.8: Distance against time plot representing disintegration time of placebo ODTs manufactured
in the lab (n=3) measured from time 0 to when plot plateaus and starts reducing in extension. Areas
1-4 highlight the different disintegration phases of ODT disintegration........c..ccccecvveeieciveeeecviieeeens 237
Figure 6.9: Distance against time plot representing disintegration time of Nurofen® Meltlet ODTs (n=3)
measured from time 0 to when plot plateaus and starts reducing in extension. .........cccccceeecciveeennns 238
Figure 6.10: Distance against time plot representing disintegration time of standard Paracetamol
tablets that are not designed to disintegrate within the oral cavity (n=3) measured from time 0 to
when plot plateaus and starts reducing in @XtENSION. .......uvveiiiiiiiiiiiieeee e e e 239
Figure 6.11: A graph showing the disintegration times of the various tablets tested in the new
disintegration testing equipment. Values for the matrix tablet and paracetamol tablet are at the
maximum time of 180s of the disintegration tester and represent a tablet that did not disintegrate
during the test. All data is presented as mean £ SD (n=8, p<0.0001).......cccceeeeerrrrercirireeeirreeeeeireeens 241
Figure 6.12: Disintegration profiles (Distance vs time plots) of the seven formulations tested within
this study, showing marked differences between disintegration pathways for ODTs and
standard/controlled release formulations, and statistical significance observed (n=8, p<0.05). ...... 242
Figure 6.13: A graph comparing disintegration times for the new ODT specific disintegration test and
the standard USP test, showing that for ODTs the USP test provides much lower disintegration times
than the new test. Both values for the matrix tablet and the disintegration time for the paracetamol
both reach the maximum time of 180s in the new test and 1800s in the USP test, so values have been
set at 180s to represent maximum. Data is presented as mean + SD (n=8 for new test and n=3 for the

USP test, p<0.0001 between tests indicating results are significantly different between the two tests).
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Figure 6.14: A graph comparing the correlation between hardness and disintegration time data for
both the new disintegration test and the standard USP test, with results indicating a better correlation
with the newly developed disintegration tESt. .......uiiiiiiiiiiiieeecee e 246
Figure 6.15: A graph comparing the correlation between tensile strength and disintegration time data
for both the new disintegration test and the standard USP test, with results indicating a better
correlation with the newly developed disintegration test. ........cccceeciveiiiiiieee e 247
Figure 6.16: A graph comparing the correlation between porosity and disintegration time data for both
the new disintegration test and the standard USP test, with results indicating a better correlation with
the newly developed disintegration tESt. ........iviiiiiii it e 248
Figure 6.17: A graph comparing the correlation between compression force of the tablet press and
disintegration time data for both the new disintegration test and the standard USP test, with results
indicating a better correlation with the newly developed disintegration test.......c.ccccoecvveeircieennnns 249
Figure 6.18: A graph showing the IVIVC of the newly developed disintegration tester compared to the
standard USP disintegration test. Results show that the newly developed tester has a linear correlation
for the In Vivo In Vitro disintegration times whereas the USP tester appears to show a curved data set

therefore indicating a direct correlation is not observable with the USP tester..........cccccccccuvveenneen. 250
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1.1 Paediatric Drug Delivery

Over the last decade, paediatric drug delivery has come to the forefront of pharmaceutical
formulation due to the financial rewards and patent extensions offered to big Pharma from the
regulatory bodies in the US and within the EU (Turner et al., 2014). The companies had previously
focussed on making ‘lower risk, higher reward’ solid oral dosage forms targeted at adult populations,
due to the increased financial reward and the development of fixed dose dosage forms required for
a typical adult patient. This resulted in few paediatric friendly dosage forms being available, with
liquids being the primary treatment option, and many treatments plans, especially in primary care,
consisting of unlicensed and off label use of adult medicines for a paediatric patient (Ilvanovska et al.,
2014). Due to the clinical and safety issues arising from the limited research into drug treatment for
paediatric patients, legislation was drawn up in the US and the EU, led by the World Health
Organisation (WHO), which stated a need for more paediatric drug research, offering financial

incentives and patent extensions (EU, 2006, FDA, 2007).

The paediatric age range varies significantly up to adulthood, with the first 18 years of life subdivided
into different categories starting from Premature new-borns (<38 weeks gestational age); Term new-
borns (>38 weeks gestational age); Neonate (0-30 days); Infant (1 month-2 years); Young child (2-6
years); Child (6-12 years) up to Adolescents (12-18years) (Kellie and Howard, 2008). Due to the rapid
rate of development within paediatric patients, variations in pharmacokinetics and
pharmacodynamics present a multitude of challenges, leading to different dosing requirements for
different ages, as well as a preference for certain dosage forms, depending both on the patients
capability to take the medicine, as well as their liking of the dosage form (EMA, 2006). Medication
adherence is governed by the acceptability of the dosage form by the patient with taste, colour, shape
and size of dosage form being very important (Alyami et al., 2016a). Liquid dosage forms were, and
still are, the most common dosage form for paediatric patients, due to their ease of administration
and ability to adjust doses according to the age of the patient (Nunn and Williams, 2005). However,

due to the newer legislation and the subsequent increase in research into paediatric
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pharmaceutics/formulation, the availability of newer, more suitable and advantageous dosage forms

has also risen.

1.2 Types of Paediatric Dosage Form

The type of dosage form that a paediatric patient is capable of taking varies throughout the age range
as the patient ages from 0-18 years. Thus there are a wide range of dosage forms used in paediatric
drug delivery, and each of them have their own advantages and disadvantages. The key to paediatric
drug development in the current climate is the manufacture of age appropriate formulations for
paediatrics; as the child grows their needs and capabilities develop and thus the production of age
appropriate formulations is vital for therapeutic effect and patient adherence to their medication

regime (Lopez et al., 2015).

1.2.1 Liquid Oral Dosage Forms

Liquid dosage forms are currently the most popular type of dosage form utilised in paediatrics due to
their favourable opinion amongst healthcare professionals and patients themselves, with liquids being
acceptable from birth, throughout the whole paediatric age range and into adulthood (van Riet-Nales
et al., 2013). Liquid formulations include solutions, suspensions, syrups and drops (lvanovska et al.,
2014). The key advantage to liquid dosage forms is that they can be easily administered to paediatric
patients from birth, with good dose flexibility that is near to the required therapeutic amount, through
either oral syringes or measuring spoons. The most common paediatric medicines are formulated as
liquids for this precise reason, with paracetamol, ibuprofen and a wide range of antibiotics readily
available as liquids (Ilvanovska et al., 2014). However there are numerous disadvantages to liquid
preparations which has resulted in current formulation efforts going towards developing more
suitable dosage forms. Liquids have various stability issues related to highly moisture sensitive drugs,
which often leads to formulations with short expiry dates and those that need to be reconstituted
upon dispensing, this is especially evident for antibiotic formulations. Transportation of liquids can

also be problematic as they come in bulky containers, and storage conditions often require liquids to
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be refrigerated (Lopez et al., 2015, lvanovska et al., 2014). Taste and palatability is a key disadvantage
of liquid formulations as paediatric patients, especially those below 6 years will often spit out the
medicine with unpleasant taste, thus affecting medication adherence. Most drugs have a bitter taste,
therefore flavours and sweeteners need to be added to mask the taste which often leads to increased
costs of liquid preparations (Mennella et al., 2013). From a formulation aspect, the limited availability
of controlled release formulations amongst liquids also affects patient adherence, as liquids are often
required to be administered numerous time throughout the day, and research efforts are ongoing
towards developing a wider range of controlled release paediatric formulations (Cuna et al., 2000,

Childress and Sallee, 2013).

1.2.2 Solid Oral Dosage forms

Solid oral dosage forms for paediatrics encompass a wide variety of dosage forms, including traditional
tablets and capsules, chewable/crushable tablets, orally disintegrating tablets, orally disintegrating
films and mini tablets. Traditional tablets and capsules have been the dosage form of choice for the
pharmaceutical formulators/industry due to their high stability, ease of manufacture and low
manufacture cost, whilst formulators have the ability to develop modified release formulations/fixed
dose combinations that can increase medication adherence whilst reducing medication burden on the
patient (EMA, 2006). Specifically for paediatrics, taste of the tablets doesn’t become an issue as the
tablet would be swallowed whole, or the drug would be incorporated within the capsule shell.
However traditional tablets and capsules also present disadvantages for paediatrics that include
limited dose flexibility, which is a necessity in paediatrics, risk of choking on the dosage form due to
the sizes of dosage forms, and the fact that most tablets and capsules are manufactured and licensed

only for adult patients (EMA, 2006, lvanovska et al., 2014, Lopez et al., 2015).

Attempts have been made to improve solid oral dosage forms for paediatrics, with the development
of mini tablets which are around 2mm in diameter. These have proved to be safer for paediatric

patients, however dose flexibility becomes an issue due to the limited weight available to incorporate
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the API (Lopez et al., 2015, Spomer et al., 2012). The development of chewable/crushable tablets and
orally disintegrating films has also accelerated due to their benefits in paediatrics.
Chewable/crushable tablets are designed to be chewed or crushed before administration, which
reduces the safety risk/risk of choking of the dosage forms, however formulation of these can be
complex and they often require special packaging due to the fragile nature of the tablets (Dahiya et
al., 2015). Orally disintegrating films (ODF) are a fairly new innovation in pharmaceutics, which
incorporate API within a hydrophilic polymer that forms a wafer thin film designed to disintegrate
rapidly in the oral cavity. The advantage of ODFs is that it reduces the choking risk associated with
traditional solid oral dosage forms, however they can be complex to formulate, whilst dose flexibility

is also very limited (Irfan et al., 2016).

1.2.3 Parenteral Dosage Forms

Parenteral administration is a common dosing method in neonates as well as in emergency drug
delivery. It bypasses first pass metabolism and makes the API readily available for therapeutic effect.
Specifically in paediatrics its advantages lie in the absence of the need of complex formulation as there
is no need for taste masking APls, or formulating them into oral dosage forms. It also provides a rapid
onset of action, and can be formulated as controlled release preparations. However the disadvantages
do outweigh the advantages for paediatric drug delivery as the comfort aspect of injections is very
low, often resulting in pain for the paediatric patient, with regular parenteral drug delivery causing
high levels of discomfort (Vega et al., 2014, lvanovska et al., 2014). Due to the limited acceptance by
the paediatric patient, parenteral formulations are rarely used unless in emergency cases and for

vaccination.

1.3 Orally Disintegrating Tablets (ODT)
Orally disintegrating tablets (ODTs) are a dosage form designed to disperse on the tongue when it
comes into contact with saliva, thereby reducing the need for tablets to be swallowed whole with

water. This makes them ideal dosage forms for paediatric and elderly populations who may have
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difficulties swallowing conventional tablets (Sastry et al., 2000). The standards for a dosage form to
be classed as an ODT are that ‘it must disintegrate rapidly in the oral cavity, with an in-vitro
disintegration time of approximately 30 seconds or less’, and in general have a weight of no more than
500 mg (FDA, 2008). Although the USP states a disintegration time of 30 s the European
Pharmacopoeia provides a much longer disintegration time of 180s (Ph.Eur, 2013). However it is more
common to adhere to the 30 s disintegration time guidance as 180 s would be a very long time for a
tablet to be present within the mouth, especially for paediatric patients. A study conducted by Alyami
et al. (2016a) found that paediatric patients much preferred a fast disintegrating tablet that would
disintegrate within the USP time of 30 s. This study also provided very interesting results, with the
paediatric population giving an overwhelming positive attitude towards ODTs as a suitable dosage
form, indicating that they would prefer an ODT compared to other commonly utilised paediatric

dosage forms (Alyami et al., 2016a).

ODTs present many advantages over traditional dosage forms used in paediatric drug delivery, by
combining the stability/suitability of a solid oral dosage form whilst possessing the safety profile and
acceptability similar to a liquid formulation. Due to the rapid disintegration of the dosage form within
the oral cavity, ODTs reduce the risk of choking as the dosage form is designed to disperse into a
viscous semi-solid/liquid state upon contact with saliva. The manufactured formulation retains a high
stability profile, especially for moisture sensitive drugs, as they are manufactured into a solid tablet
and often stored in regular tablet blisters (McLaughlin et al., 2009, Hirani et al., 2009). They also
provide a more palatable dosage form compared to liquids, as upon disintegration ODTs can provide
a cooling effect in the mouth and with the use of solid taste masking techniques providing a more
acceptable dosage form for the patient. ODTs also increase medication adherence compared to
liquids, due to the less bulky nature of the tablets, and therefore transportability does not become an
issue (Navarro, 2010). It can also be stated that increased bioavailability may be an advantage of ODTs
as buccal absorption may occur, and upon swallowing the already disintegrated tablet would provide
a faster onset of action compared to a traditional solid oral dosage form (Lopez et al., 2015).
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As mentioned above, palatability of ODTs can be an advantage, but the use of sweeteners and
flavourings can be limited in improving the taste of very bitter/bad tasting APIs. This will often require
complex multiparticulate taste masking technologies, which will invariably lead to rises in formulation
costs (Barra et al., 1999). Dose flexibility is also limited with ODTs, as with traditional solid oral dosage
forms, ODTs are formulated in fixed strengths and the ability to alter the dosage form prior to
administration is difficult, which may not be ideal for patients requiring tailored doses (Lopez et al.,
2015) . Due to patient dosing capability it has been established that ODTs are only suitable for patients
above the age of 6, as the size of tablets up to 500 mg may still present a hazard to younger patients
(EMA, 2006). As the drug/tablet is designed to disintegrate rapidly in the mouth, highly soluble drugs
may be absorbed through buccal or sublingual pathways, and therefore the patient may be exposed

to very high doses as the drug would avoid first pass metabolism (Buck, 2013).

Table 1.1 provides a summary and comparison of all types of paediatric dosage form highlighting both

the advantages and disadvantages of the different types.

39



Introduction and Literature Review

Table 1.1: Table highlighting advantages and disadvantages of paediatric dosage forms

Formulation Advantages Disadvantages
Type
oDT e Canincrease medication e  Usually requires taste masking
compliance e Limited dose flexibility
e Safer to use than traditional tablets e  Only suitable from 6 years onwards
— low choking risk e Buccal/sublingual absorption may
e Require no water lead to too high dosing
e  More stable / longer shelf life than e Lack of availability of certain drugs

liquid dosage forms
e No transportability issues i.e. no
bulky containers
e s perceived as acceptable by
paediatric populations

e Increased bioavailability

Liquids e Ease of administration e Require taste masking
e Can be used from birth e Can be unstable — have short shelf
e Good dose flexibility — measuring life
spoons / syringes e May have to be stored in the fridge
e Most commonly recognised / e  Transportability issues
prescribed e Lack of MR capability
Tablets / e Cost effective e Risk of choking — presents a safety
Capsules e Palatability / taste not usually an risk to the paediatric patient
issue e Dose flexibility
e Controlled release capability e Doses usually too high for
e Large variety of drugs available paediatrics
Chewable / e Canincrease medication e May need to administer with water
Crushable compliance e Can be expensive to formulate
tablets e Present less of a safety risk e Require taste masking
ODF’s e Very safe to use — low choking risk e Require complex formulation
e Rapid disintegration in the mouth e Limited dosing flexibility
e Increased bioavailability e Can only incorporate small

amounts of API

Parenteral e  Provide rapid onset of action — e Can be painful / cause distress
useful in emergency e Can be expensive
e No first pass metabolism e Hypersensitivity / extravasation risk
e No need to taste mask is high
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1.4 Manufacturing Methods for ODTs

1.4.1 Freeze Drying

Freeze drying/Lyophilisation is a process where a solution/suspension of excipients is formed with a
suitable solvent and frozen. The solvent is then removed from the frozen formulation through the
drying process. For ODTs, the drug/excipients str usually dissolved/dispersed in the solvent and
poured into premanufactured blisters followed by freeze drying to produce the tablets. This results in
highly porous, but fragile tablets that disintegrate rapidly on the tongue, and during the freezing
process the drug may form into its amorphous state therefore enhancing dissolution rate (Fu et al.,
2004). The freeze drying process is a fairly expensive method of ODT production as it requires
specialised equipment, a complex manufacturing method and may not always be suitable for unstable
drugs, such as those sensitive to moisture. The freeze drying of ODTs also requires specialised

packaging which further fuels the cost of the manufacturing method (Yadav et al., 2012).

Zydis Technology (Catalent, NJ, USA) is the most common and widely used freeze drying technology
employed for ODTs. It has a range of marketed ODTs, including Maxalt Melts (Rizatriptan), Zofran Zydis
(Ondansetron) and Claritin Reditabs (Loratidine). The basic method consists of the drug trapped in a
matrix of saccharide and polymer, which is then dispensed into the blisters and frozen in a liquid
nitrogen tunnel. The solvent in its frozen state is then removed to form the highly porous tablets,
which are then sealed into the blisters with a foil packaging, as part of the specialised Zydis production
process. The resulting water content is very small, and so the tablets are considered to be self-
preserving. However the ODTs are sensitive to moisture and can dissolve between the fingers, or

degrade when exposed to moisture levels greater than 65% (Fu et al., 2004, McLaughlin et al., 2009).

1.4.2 Other Technologies/Manufacturing Methods

Flashdose (Bioavail, Mississauga, Canada) is an ODT production method that uses a sugar floss system.
This method involves producing crystalline fibres, similar to candy floss, from molten saccharides using

centrifugal force. The fibres are then formed into granules and subject to mixing with the APl and
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other tableting excipients and compressed to form the ODTs. This system requires complex
formulation steps, and saccharides which are highly soluble and crystalline, which in turn increases

production cost (Fu et al., 2004, McLaughlin et al., 2009).

Another process for ODT production is the manufacture of moulded tablets such as the WOWtab
(Astellas Pharma, Yamanouchi, Japan). The technology uses water soluble excipients (such as
saccharides) which allow the tablet to disintegrate rapidly. The powder blend is moistened with a
solvent and then moulded into tablets under low pressures, and air dried to form porous dosage
forms. The WOWtab method includes humidity conditioning, which increases robustness of the

dosage form (Fu et al., 2004, McLaughlin et al., 2009).

1.4.3 Direct Compression

Direct compression is a method whereby powder blends are compressed to form tablets without the
process of granulation (Thoorens et al., 2014). Manufacturing using direct compression is a cost
effective method to produce ODTs, which are less inclined to damage upon handling and more
mechanically robust, while still being able to disintegrate within the stipulated amount of time
(Harmon, 2007). The cost effectiveness of the manufacturing method comes from the fact that
traditional tabletting equipment can be used and no specialised processes are required for tablet

formation (Gohel, 2009).

However with the advantages of direct compression also comes some disadvantages. As there is no
pre-processing of the blend before compression, the blend is required to flow well, so that uniform
tablets are produced with the absence of any capping or lamination, and a uniform weight throughout.
Therefore the starting materials are required to have a similar particle size, and the bulk density of the
starting materials should not be too low, as this directly impacts the flow of the resulting powder blend
(McCormick, 2005). If poorly flowing APIs are used, this may also limit the proportion of API that can
be employed in the blend, as the excipients and the mixing method would be required to enhance

flow of the bulk powder. During mixing, static charges may also build up leading to aggregation and
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increases in the amounts of cohesive and adhesive forces present within the blend, therefore
ultimately worsening flow (livraj et al, 2000). The excipients toned to be highly
compressible/compactible to allow the resulting tablet to retain its structure, as the use of a high
proportion of fracturing or elastically deforming materials may lead to poor compression of the

powder resulting in poor quality tablets with low mechanical strength (McCormick, 2005).

ODT manufacture using this method requires the inclusion of superdisintegrants/effervescent agents
or high aqueous solubility ingredients to produce rapid disintegration. Direct compression of ODTs
also requires the use of taste masking platforms which increases the palatability of the resulting
dosage form, without compromising the resultant mechanical properties of the tablet. However the
magnitude of the compression force needs to be balanced with the disintegration time of the tablet,
and be low enough to allow the excipients to retain their integrity, particularly when taste masking
technologies are used (McLaughlin et al., 2009). Another key advantage of direct compression ODTs
over freeze drying is that there are usually no requirements for specialised packaging, which further
fuels the cost effectiveness of this method of manufacture (Pabari and Ramtoola, 2012). There are
several ODT direct compression platforms utilised in industry, which include Orasolv (CIMA Labs, PA,
USA), Durasolv (CIMA Labs, PA, USA), Flashtab (Ethypharma, Saint Cloud, France) and Advatab (Eurand

Pharmaceuticals, OH, USA). (McLaughlin et al., 2009).

1.5 Commonly used Materials in Directly Compressed ODTs

Commonly used excipients in ODTs fall under a few different categories. The three main excipient
categories for directly compressed ODTs include; filler/binder, disintegrant/superdisintegrant and
lubricant. Many excipients can fall under more than one category especially new co-processed

excipients which are multi-functional (AlHusban et al., 2010).

Microcrystalline cellulose (MCC) is a very common excipient used as a binder-filler within ODTs that

are directly compressed because it has very good binding properties when it is dry, and also acts as a
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Figure 1.1: Chemical structure of the tablet binder MCC, with
the chemical formula (C6H1005)n,

disintegrant and low lubricant requirement. Figure 1.1 shows its chemical structure. It also has a high
dilution potential which allows high quantity of APl to be incorporated within an ODT (Bolhuis and
Chowhan, 1996). An advantage of using MCC is that it plastically deforms which provides MCC with its
highly compactable nature. The plastic deformation increases the surface area of the excipient which
leads a higher rate of hydrogen bonding between hydroxyl groups on the adjacent cellulose particles
(Bietal., 1999), which in turn results in tablets of high mechanical hardness (Zhang et al., 2003). When
the particle is compressed it forms several slip planes, which in turn exposes a larger proportion of the
hydroxyl groups. The increasing proportion of exposed hydroxyl groups lead to a higher level of
hydrogen bonding resulting in highly robust dosage form production (Hittenrauch, 1971, Bolhuis and
Chowhan, 1996, Thoorens et al., 2014). It can act as a disintegrant due to its capillary action and
swelling ability, which in turn promotes disintegration of the ODT (Bi et al., 1999). However there are
some disadvantages to MCC as it does come at a high cost compared to other binder-fillers and has a
poor flowability, due to irregularly shaped particles which are fibrous and can interlock (Limwong et
al., 2004). Also contributing to its poorly flowing nature is its low bulk density, partially attributed to
the irregular shape of the particles within the powder (Bolhuis, 2011, Staniforth and Aulton, 2007).
Also MCC is insoluble in water which can result in a gritty rough texture when the tablet disintegrates

in the mouth (Bi et al., 1996).
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Mannitol is a very popular excipient used as a filler in the manufacture of ODTs. It is a polyol isomer
of sorbitol which is prepared by the catalytic reduction of different sugars (Bolhuis and Chowhan,
1996). Figure 1.2 shows the structure of D-mannitol, it is a sugar alcohol that has four chiral centres.
The D form of mannitol is the most commonly occurring and is regularly used within the food and
pharmaceutical industry (Kaminsky and Glazer, 1997). Mannitol is formed of crystalline needle shaped
particles which have a glass transition temperature (T;) below room temperature. It has three
crystalline forms; a-polymorph, B-polymorph and 6-polymorph. The B-polymorph is the most stable,
with & being the least stable/metastable and a is a stable intermediate between the two (Willart et
al., 2007). The advantages of using sugar based excipients like mannitol include pleasant mouth feel
and taste. Mannitol has a negative heat of solution which produces a cooling effect in the mouth as
the ODT disintegrates to form a gel, while also producing a sweet taste despite having a low sugar
content. However mannitol has low compressibility, therefore producing weaker tablets when directly
compressed. This is due to mannitol particles undergoing fragmentation under pressure which leads

to tablets which are friable upon handling (Al-Khattawi et al., 2012).

Starch is one of the most common excipients used in tableting and can be classed as a multifunctional
excipient in solid oral dosage forms, where it can act as a filler/binder as well as a disintegrant, in
quantities of 3-25%w/w (Rowe et al., 2012, Zamostny et al., 2012, Ingram and Lowenthal, 1968). Its

chemical structure is shown in Figure 1.3. It is made up of two molecules of glucose, amylopectin and

OH OH

OH OH

Figure 1.2: Chemical structure of the naturally occurring D-Mannitol, with the
chemical formula CeH1406 and molecular mass of 182

45



Introduction and Literature Review

HO HO

O O
OH OH

- 0 O+H
HO OH OH

= -n

Figure 1.3: Chemical structure of starch, with the chemical formula
(C5H1005)n.

amylose (Levina and Rajabi-Siahboomi, 2004). Although starch is a naturally sourced excipient it
exhibits poor compactability, partially due to small levels of elastic deformation (Hong et al., 2016).
This led to concerted efforts to produce processed starch excipients with improved properties and
functionalities. Partially pregelatinised maize starch (PPMS), which is marketed as Starch 1500 by
Colorcon Inc., is a relatively new excipient which increased the functionality of unprocessed starch,
giving Starch 1500 improved binding properties and improvements in flowability, allowing it to be
utilised in direct compression (Rowe et al., 2012). Rather than the elastic deforming properties of the
native starch, it had been shown that starch 1500 undergoes higher levels of plastic deformation,
giving it its improved compressibility profile (Colorcon, 2005). It also has the ability to act as a
sustained release excipient partially due to different levels of cross linking within the starch,
particularly with increased amylose branches, allowing it to swell in water and therefore retard drug
release (Zdmostny et al., 2012, Levina and Rajabi-Siahboomi, 2004). Starch 1500 is a model excipient
for ODTs due to its highly compressible nature, whilst retaining some of the disintegrating properties

of the native starch.

Lactose is a common diluent used in tablets, with the most common form being a-lactose
monohydrate. It has good flow properties and compresses by plastic deformation and fragmentation,
with fragmentation being more predominant (Bolhuis and Chowhan, 1996). However the

fragmentation of lactose has been shown to increase the mechanical strength of tablets, as the
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fracture of the particle into smaller parts increases the amount of bonding sites available, which in

turn allows a stronger compact to be formed (Lerk et al., 1983).

Cross-linked polypryrrolidone (Crospovidone) is an excipient that acts as a superdisintegrant in ODT
formulations. This is because crospovidone acts as a wicking agent and has a high swelling ability which
contributes to its highly disintegrating nature when employed within tablet dosage forms (Desai et al.,
2012). Crospovidone is a stable excipient that doesn’t interact with many API’s, however it does have
small particles which contribute to poor bulk powder flow properties (Mohamed et al., 2012). Cross
linked sodium carboxymethylcellulose (Ac-di-sol or crosscarmellose sodium) is another
superdisintegrant used in ODTs. It has a fibrous structure which allows wicking of water, and has a
high swelling ability allowing it to cause disintegration of tablet dosage forms quite rapidly (Bi et al.,

1999).

Magnesium Stearate is the most common lubricant used in ODT formulations to prevent friction
between the tablet and die wall during the ejection of the tablet in the direct compression process
and to prevent the tablet sticking to the punch face. It is non-toxic and doesn’t interact with many
API’s or excipients. However it does have a hydrophobic nature, which in the case of ODTs will cause
disintegration time to be prolonged, whilst a high concentration or lengthy mixing time can lead to
mechanically weak compacts being manufactured during direct compression (Carter, 2001). Sodium
stearyl fumarate however is a more hydrophilic lubricant used, although not as widely employed as
magnesium stearate due to its higher cost. It has been increasingly incorporated in ODTs as it shows
better disintegrating properties than magnesium stearate, and overall aids the disintegration of the

dosage form (Kuno et al., 2008).

Colloidal silicon dioxide (silica, fumed silica, SiO,) is the most common glidant utilised in tabletting,
with the powder possessing a high specific surface area due to nanosized particles. It is marketed as
Aerosil by Evonik Industries (Essen, Germany), with different grades based on the specific surface area.

This property is exploited during mixing to allow the highly charged silica particles to coat the main
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constituent particles within the powder, reducing cohesive forces and interparticle friction between
the bulk powder and therefore allowing an improvement in the flow of the particles (Rowe et al.,,
2012, Kojima and Elliott, 2013). This is essential for the direct compression tableting process as free
flowing powder results in uniform and consistent dosage forms being produced (Staniforth and
Aulton, 2007). It is insoluble in water, and thus high concentrations are avoided in ODTs as this can

result in a gritty sensation within the oral cavity.

1.6 Factors affecting compressibility of excipients during Direct Compression

Direct compression is a method of tableting whereby the dosage form is compressed directly from the
powder blend containing the APl and excipients (Gohel, 2009). Due to the very small number of steps
required in direct compression, the key requirements the powder blends are required to fulfil include

good flow, good blending properties and high compressibility.

Powder flow is essential for compressibility of an excipient that undergoes direct compression. An
excipient which exhibits good flow contributes to homogenous bulk powder flow, and allows uniform
filling of the die, which in turn results in a uniform dosage form (Bolhuis and Chowhan, 1996). There
are lots of factors which can affect the flow of an excipient powder which include; Particle size and
size distribution, particle shape, particle density and friction and adhesion profiles (McCormick, 2005).
Particle size is key for powder flow. Particles that are too small have poor flow properties compared
to particles of a bigger size, as the smaller particles tend to stick together due to cohesive forces,
meaning that the powder is unable to flow uniformly. A similar size distribution is also required for
good flow. Also powders which have particles that are more spherical tend to flow better than
irregularly shaped particles, as there is less chance of friction occurring between the spherical particles
themselves, whereas if the particles were more irregularly shaped there is an increased risk of
interlocking/cohesion between them (Limwong et al., 2004). Bulk density can also have an impact on
flow, as low bulk density particles occupy a large volume, which results in them flowing relatively

poorly compared to high bulk density particles which tend to flow a lot better, due to the improved
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volume to weight ratio. Also cohesion can depend on moisture content, so excipients which have a
high moisture content flow worse compared to excipients with low moisture content (Zhang et al.,

2003, Staniforth and Aulton, 2007).

The compressibility of an excipient is also key in direct compression. An excipient needs to be highly
compressible to allow it to form a suitable dosage form that remains intact after the compaction force
has been applied. This is referred to as plastic deformation. Plastic deformation is when an excipient
remains in its deformed/compacted state within the tablet after the compression force has been
applied and subsequently retracted. If the excipient particles exhibited elastic deformation, they
would rebound back to their original shape/form once the compression force is removed and exhibit
large amounts of relaxation, whereby the thickness of the tablet increases post-compression. Also a
material can be brittle and fragment under compression, where particles break and crack, but can still
remain formed as a tablet (Gupta et al., 2006). Excipients that fragment under compression produce
tablets with high porosity due to increased bonding within the fragments (Mattsson, 2000). An ideal
excipient for direct compression would therefore undergo plastic deformation with little or no elastic
deformation. In some cases, brittle materials can be used where the highly porous nature of the
compressed dosage form could be utilised, such as in ODT formulations. The different types of
compression behaviour are illustrated in Figure 1.4. Compressibility under pressure can also be
determined by surface energy (Zhang et al., 2003). This is because energy is consumed when the
pressure is applied resulting in loss of air between the particles, and allowing them to become
compact. This compaction is due to the formation of bonds which results in a loss of energy within the

system (Mattsson, 2000).
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Figure 1.4: A schematic diagram highlighting the three main compression methods
for excipients undergoing direct compression, with plastic deformation showing
particle shape retention, elastic deformation indicating particle shape rebound and
fragmentation deformation profile highlighting resulting in particle fracture and
production of pores within the dosage form.

1.7 Processing of Materials prior to Direct Compression

1.7.1 Ball Milling and its impact on Powder and Material Characteristics

The basic principle of ball milling is to reduce the size of particles which may have a variety of chemical,
physical and mechanical characteristics. Planetary ball mills operate with a rotating disk which spins
in the opposite direction to the vials, as illustrated in Figure 1.5, generating high levels of

energy/centrifugal force within the vial/balls, allowing grinding to take place. Ball mills reduce the size
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Figure 1.5: A diagram showing the motion of balls and powder through
a planetary ball mill. Centrifugal force is produced through the
opposite acceleration and velocity of the vial and supporting disk,
causing high levels of energy within the moving balls, which come into
contact with the powder, causing particle breakdown upon collision.

of particles through transfer of energy from the balls to the powder causing comminution, as well as
mixing/blending/dispersing the powder. Particle size can depend on various parameters, including 1)
Characteristics of the ball, including; mass, density, ball size distribution; 2) Characteristics of the
powder, including; mass, volume, density, hardness, size, distribution of charge; and 3) The speed and
time of rotation. The size reduction of particles also falls under three mechanisms; the first is abrasion
where very fine particles are broken off the main particle due to low intensity stress. The second
mechanism is cleavage where particles about 50-80% the size of the original are formed due to slow
high intensity stresses and the final mechanism is fracture where rapid high intensity stress causes

small size fragments to form with a high particle size distribution (Monov et al., 2012).

The particle size is reduced due to the breakage of bonds within the particle which alters the shape

(Castricum et al., 1997). Milling can also result in a loss of energy in the particles due to the weaker
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bonds, caused by repeated impact of the balls (Shabir et al., 2011). The breakage of bonds can also
uncover parts of the particles exposing them to free radicals, and also allowing the formation of new
chains and bonds, which could in some cases increase the molecular weight of the particles (Castricum

etal., 1997), disputing the general principle of particle size reduction and reduction of molecular mass.

The surface characteristics of materials that have undergone ball milling are also altered. There is a
larger surface area produced compared to the original powder as the particles are finer. Some studies
have shown that the particles display nanoporous surface caused by the impact of the balls that have
high energy, and the generation of heat due to friction between the particle and ball upon contact
(Shabir et al., 2011). In the study by Shabir et al. (2011) the surface charge and hydrophobicity of the
material had altered. The surface charge had become less negative due to a smaller particle size and
increased drug loading, as the drug was positively charged, and the decrease in hydrophobicity was
due to the increased surface area of the particles allowing more interaction with water. This increased
hydrophilicity was also shown in another study by Jones et al. (2011), which was attributed to the

increased surface area available to interact with water.

Ball milling can also alter the crystal form of certain powders, and change them to a more amorphous
material. The loss of crystal structure is caused by the reduction in particle size, as a result of fracturing
of the crystals along their slip planes. Milling can therefore result in a partial or total loss of crystal
form as more amorphous domains are formed. Crystals with a more needle like morphology are more
prone to loss of crystal structure than crystals with a plate like morphology (Ho et al., 2012). This loss
of crystal form can in turn lead to changes in the hydrophilicity of a material as well as affecting the

solubility and bioavailability of drugs (Jones et al., 2011).

1.7.1.1 Ball Milling in ODTs
Ball milling can be a method of modifying excipients to optimise them for use in ODTs. Excipients such
as mannitol can be individually ground to improve its compressibility/compactability, or excipients can

be co-ground to improve the characteristics of one or both the materials to optimise them for use in
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ODTs. The co-milling method has been used in several studies to improve ODT properties, mainly

employing a co-milled combination of mannitol with crospovidone.

A study by Katsuno et al. (2013) co-milled a mixture, of micronized crospovidone (m-cpvp) and
mannitol to improve the stability of the powder blend. An SEM study to assess particle size and shape
showed that the mannitol crystals within the co-ground mix had significantly reduced in size and
changed shape to a more block like structure, with no large mannitol crystals contained in the co-
ground mix. M-cpvp had a popcorn like shape with lots of cavities, which wasn’t significantly different
after milling. Post-compression, SEM also showed a significant difference between the surface of the
tablet between co-milled and a physical mixture of the excipients, with the co-milled tablet having a
surface that was a lot smoother than the tablet containing the physical mixture of the two. It was
suggested that co-milling promoted inter particle bonding and fusion during compression. The study
showed that a co-ground mix absorbed a lot less moisture than just the m-cpvp on its own and the
physical mix of the two excipients, which meant that co-milling had led to a reduction in hygroscopicity
of the m-cpvp. This was as a result of milling which had led to an aggregation between mannitol and
m-cpvp, which prevented water absorption into the m-cpvp as mannitol is a non-hygroscopic
excipient. This was confirmed by stability studies, which showed that a co-ground mix was much more
stable in accelerated conditions (40°C and 75% relative humidity) for 1 day/1 week, with strength
remaining at 1.5MPa and disintegration below 30s. Storage of the co-milled powder for one month
under accelerated conditions showed a slight decrease in strength, with disintegration remaining
below 30s. In comparison the physical mixture and individual excipients displayed a worsening in
tablet properties. Overall this study showed that co-milling was advantageous for preparing ODT
formulations as it produced stable, mechanically robust and suitably disintegrating tablets compared

to unmilled formulations.

A study by Shu et al. (2002) used a vibrational rod mill to produce a co-milled mix of regular

crospovidone with mannitol to prepare directly compressed ODTs. In this study the use of a co-ground
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mix showed an overall increase in hardness of the tablets as the amount of the co-ground mix within
the formulation increased up to 30%, with the disintegration time remaining at around 60s for all of
the formulations. Particle size reduction of crospovidone was evident in both co-grinding and
individual grinding, whilst mannitol particle size also reduced in both cases. However co-grinding was
found to decrease particle size more than individually ground material, which showed that
crospovidone could act as a grinding assistant for mannitol. This study also looked at different
excipients utilised in the co-ground mix, with the mannitol being substituted for other saccharides
(erythritol, xylitol, lactose, glucose), and crospovidone substituted for other disintegrants
(crosscarmellose sodium, L-HPC, sodium carboxymethyl starch, partially pre-gelatinzed starch). The
relevant tests conducted showed that mannitol couldn’t be substituted within the co-ground mix as
tablets took too long to disintegrate, however they all had good mechanical hardness. The substitution
of the crospovidone however produced tablets that were mechanically robust and disintegrated

relatively quickly, with all formulations disintegrating within 30-45s.

Other studies have used milling to asses other properties surrounding ODTs. A study by Jones et al.
(2011) looked at the impact of ball milling parameters on ODTs manufactured by freeze drying.
Mixtures of gelatin and mannitol were milled in the frozen state before freeze drying. The milling
parameters that were altered were milling time, rotation speed and ball to powder weight ratio (BPR).
It showed that post milled powders had increased wettability due to the increased surface area of

particles, and also porosity of the powders varied significantly depending on milling conditions.

From the above studies it can be deduced that milling can have a direct impact on the improvement
in ODT properties, particularly those manufactured through direct compression. The one study by
Jones et al. (2011) showed no improvement in ODT performance using freeze drying technology,
whereas the other studies using direct compression all showed an improvement in the properties of

ODTs. Of particular note was that studies generally found that milling time could be optimised at
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around 20mins to produce ODTs that had a fast disintegration time as well as a good mechanical

strength, and that co-milling of mannitol and crospovidone was a very popular combination.

1.7.2 Spray Drying

Spray drying is a process whereby a solution, usually containing API/excipients mixed with a suitable
solvent, is atomised into a spray and dried rapidly within a heated chamber in a one step process,
forming solid powder particles, which are spherical in shape (Wisniewski, 2015, Vehring, 2008). The
advantages of spray dried particles is that they have a controlled particle shape and size, the spherical
nature is obtained by the drying of the spherical droplets that are atomised into the chamber of the
spray drier, with the particle size adjusted by the pump rate of the solution and the inlet/outlet
temperatures of the equipment itself. This allows for a controlled manufacture of particles within the
desired range (Vehring, 2008). The narrow size distribution along with the spherical shape also allows
the powder to flow fairly well due to the reduction in segregation and mechanical interlocking
occurring between the powder particles, meaning spray dried particles are ideal for direct
compression (Staniforth and Aulton, 2007). However as with all processes there are some
disadvantages to spray drying, which include the expensive nature of the process, the reduced
capability to process heat/moisture sensitive materials and importantly the low yields that can be
attributed to a spray drying process, as powders are usually lost on chamber walls as well as very fine

powder particles being lost in the exhaust stream (Sosnik and Seremeta, 2015).

Spray drying has been utilised in previous research for the production of directly compressed ODTs,
due to the many advantages it holds for pre-processing powders prior to direct compression. Work by
Al-khattawi et al. (2015) showed that it was possible to engineer spray dried mannitol particles with a
certain degree of porosity, which in the case of ODTs was advantageous, as this promoted rapid
disintegration as well as a plastically deforming mannitol, due to the presence of a-mannitol within
the spray dried excipient. Spray drying can also be useful for the preparation of co-processed

excipients to reduce the individual disadvantages of the materials whilst trying to optimise and utilise
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the advantages. A study by Mishra et al. (2006) showed that co-spray drying several common ODT
excipients together, such as mannitol, MCC, aspartame and the superdisintegrant, prior to direct
compression produced robust tablets that disintegrated within 20s. This showed that spray drying was
a useful technique for producing rapidly disintegrating tablets whilst maintaining an acceptable

mechanical strength.

1.7.3 Dry Powder Coating

Microencapsulation entails the formation of new particles that have a certain material as the core,
with a surrounding coat composed of a distinctly different material. The core can be solid, liquid or
gas, with the coat usually formed of a solid (Singh et al., 2010). Dry particle coating / hybrid mixing is
an emerging process whereby fine guest particles are strongly adhered to the surface of a coarser host
particle, forming new functionalised particles in the solid state (Dahmash, 2016). This form of mixing
utilises the cohesive nature of the fine particles and attracts them to the surface of the host particle,
as long as the difference in size is at least a magnitude of two. The coating of the fine particles is due
to the cohesive forces that are present between the coarse particle and the fine particle, with surface
energies also playing a part, and the fine particles not weighing a substantial amount. The weight plays
a huge role in the adhesion of the fines as the coating only occurs if the weight of the fine particle is
lower than the forces of attraction present between the guest and the host. The low weight of the
guest causes the fine particle to be attracted and adhere to the surface of the coarse particle,
producing a mechanically strong coating, leading to newly formed functionalised particles. This is very
useful for fine particles, which usually would be difficult to process due to problems with
agglomeration/segregation, as during dry particle coating they would be evenly dispersed upon the
surface of the host particle, allowing a uniform blend to be produced. (Dahmash and Mohammed,
2015, Ishizaka et al., 1989, Honda et al., 1994, Alonso et al., 1990). During the dry particle coating
mixing process the agglomerates of the fine powder would be uniformly dispersed prior to coating,
therefore promoting attraction to the surface of the coarse particles and leading to production of
either a discrete coat on the coarse particle or if highly successful, a continuous coat, as illustrated in
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Figure 1.6. The level of coating would depend on the amounts of each excipient present within the
blend, the particle size and true density of both and the levels of attractive forces generated between
the two materials (Yang et al., 2005). Dry particle coating has several advantages over traditional
mixing methods especially for powders utilised in direct compression. This processing method
produces very flowable powders from excipients that are very fine and cohesive in nature, allowing
the powder to flow freely during the tableting process (Han et al., 2013, Yang et al., 2005, Dahmash,
2016). The utilisation of two excipients to produce new functionalised particles is also advantageous,
as the beneficial aspects of each of the excipients are maximised whilst reducing the negative aspects.
This can lead to production of particles with not only an increased flowability but also for example,
enhanced dissolution behaviour, a sustained release, an improved palatability or an increased
wettability (Han et al., 2013, Dahmash, 2016). Dry particle coating is also a one-step, solvent free
method of processing powders, which utilises widely available excipients to produce new
functionalised particles, thereby providing not only an environmentally friendly mixing method, but
also a very cost effective manufacturing process for new materials (Dahmash, 2016). As it is a relatively

Discrete Coating
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Figure 1.6: Figure showing the dry particle coating mixing process, whereby agglomerates of fine particles are
dispersed prior to attraction and coating on to a coarse particle, levels of coating can vary between a discrete

coat, where an element of the coarse particle surface is covered with the guest or a continuous coating where
the whole host particle is encapsulated with particles of the fine guest particle.
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new mixing concept, a multitude of dry coating devices have been developed over recent decades;
with devices utilising high shear forces in a mechanofusion dry coating method (Yokoyama et al.,
1987); devices utilising high shear in a hybridizer mixing method (Ishizaka et al., 1988); dry coating
devices that utilise magnetic assistance (Beach, 2011) and dry particle coating using a fluidised energy
mill (Han et al., 2013). With these methods particles may undergo some forms of chemical alteration
and will often suffer attrition and damage during processing, therefore leading to changes in particle
size and potential alterations in crystallinity and stability of the materials being processed. Also high
levels of friction are generated in these processes which leads to a heating effect, meaning that heat
sensitive materials may not be suitable for processing. With certain methods particles are required to
be of a certain size, otherwise they cannot be processed, which does limit the materials that can be

utilised for these particular dry coating methods.

A novel dry particle coating equipment developed by our research group was designed to overcome
the limitations associated with previous devices (Dahmash, 2016). This dry particle coater provides a
one-step, environmentally friendly process of producing functionalised particles, which utilises no
solvents or generates no heat, with the particles not suffering any form of attrition during the mixing
process. The device was able to produce materials with enhanced flowability, very high content
uniformities, and able to produce particles with new functionalities such as modified release APIs
(Dahmash, 2016), showing that the disadvantages associated with previous dry coating technologies
could be minimised whilst enhancing the advantages of the process. The manufactured device was
not only able to produce particles with new functionalities, but was able to enhance powder
properties, with content uniformity and powder flow of blends produced in the mixer being superior

to other mixing methods.
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1.8 Characterisation techniques for Directly Compressed ODTs

Once the ODT has been manufactured using direct compression there are various techniques used to
analyse its characteristics. The usual parameters that need to be investigated are; Uniformity of
weight, uniformity of size (diameter and thickness), drug content, hardness, friability, disintegration
time, dissolution studies, and in some cases wetting time and water absorption ratio (Srikar et al.,
2013). These are very standard tests for oral dosage forms and some of them have certain limits the

dosage form must meet for it to be suitably classed as an ODT.

Disintegration time of ODTs is one of the most crucial tests, as the tablet is required to disintegrate
within 30s, according to the US FDA (FDA, 2008) or 180s according to European regulations (Ph.Eur,
2013). Other tablet tests, like hardness, friability, uniformity of weight/size, dissolution and drug
content are relatively standard and the parameters are still the same and measured according to BP
requirements for directly compressed tablets. For example the percentage friability still needs to be
below 1%. Tablet porosity is another useful tablet property that can be assessed, as porosity of the
ODTs is usually related to the disintegration time/hardness of the tablet. To calculate porosity the bulk
density and true density of the ODT are required. The bulk density would be calculated using tablet
weight, thickness and diameter measurements, and the true density would be calculated using helium
pycnometry, and the values are put into an equation allowing the percentage porosity to be calculated

(Jonesetal., 2011).

1.9 Disintegration Testing for ODTs

Characterisation techniques used for testing orally disintegrating tablets are vital in ensuring that the
manufactured dosage form is fit for purpose. Among the tests, disintegration time is one of the most
essential testing methods to ensure that the ODT disintegrates within the recommended FDA time of

30 seconds (FDA, 2008) or European Pharmacopoeia time of 180 seconds (Ph.Eur, 2013).

The currently recommended test for ODT disintegration time from the US FDA is the standard

disintegration test for oral dosage forms shown in Figure 1.7 (FDA, 2008). The test is comprised of a
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basket rack attached to a rod which oscillates vertically, and a beaker filled with disintegration
medium, is kept at around 37°C and placed beneath the basket. The basket is immersed into the
disintegration medium at a frequency of between 29-32 cycles per minute through a distance of
around 53mm to allow tablet disintegration to take place. The basket is made up of 6 disintegration
vessels with a wire mesh at the bottom (with holes of between 1.8mm-2.2mm), and disintegration
time is measured once all fragments of the tablet have passed through the wire mesh. A disk can be

placed on top of the tablet, but for ODT testing this is not usually required (FDA, 2008).

However there are several limitations with this test for ODTs due to the vast differences between the
in vivo and in vitro conditions. In vivo, an ODT would be placed on to the tongue of the patient and
then subsequently dissolve/disintegrate through interaction with the saliva present within the oral
cavity. As the ODT is placed on the tongue, there would also be an increase in the salivary flow rate,

due to gustatory (taste) reflex in response to the taste of the ODT (Kerr, 1961). It has been shown

29-32
Cycles/min .
Disintegration eresnaffsal'(l:eauower
medium at Disintegration vessel i ;
disintegration vessel
37°C = 2°C l of diameter 20.7- -
23mm

Water bath at

37°C

Figure 1.7: A diagram illustrating a typical set up for the standard USP disintegration test for oral dosage forms
that is utilised for ODT disintegration testing. It shows how the basket would typically by placed within the
beaker/water bath, and how the dissolution vessels are arranged within the basket.
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that sour taste causes the highest increase in saliva flow rate, followed by salty, sweet and bitter taste
(Jensen et al., 1998, Kerr, 1961). As the tablet is placed in the mouth, and the mouth closed, there
would also be interactions between the ODT and upper palate, as well as a controlled temperature of
around 37°C (Moore et al., 1999), and relative humidity of around 90-95% (Mathias et al., 2010). These
conditions would also aid in the disintegration of the ODT, as the high humidity and temperature
would promote saliva uptake into the tablet whilst the pressing of the upper palate would help
manipulate and push the ODT towards the tongue as well as aiding in the breakdown of the tablet.
The process of taking an ODT requires no water to be consumed as the dosage form disintegrates
within the mouth allowing it to be swallowed easily. Having examined the in vivo conditions, it can be
seen that the current recommended USP disintegration test does not bare many similarities to in vivo
conditions. The standard test uses a large volume of disintegration medium, and the dosage form
disintegrates within the oscillating vessel, which would be similar/correlate more to the disintegration
of a conventional tablet, that is swallowed with water and disintegrates within the gastrointestinal
tract. The significant differences between the conditions encountered by the ODT and the currently
recommended USP disintegration test provide evidence that there is an opportunity to allow for
development of a more representative ODT disintegration test. The USP guidance for orally
disintegrating tablets stipulates that modified disintegration tests for ODTs can be developed (FDA,

2008).

Previous work has looked at improving the In Vivo in Vitro Correlation (IVIVC) for ODT disintegration
time, and improvised tests, as well as actual testers have been developed to try and establish a
comparable test. Table 1.2 contains information about a range of tests that have been reported after

a thorough search through previous literature.
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Table 1.2: Details of previous attempts in literature to produce disintegration tests for ODTs that give more comparable conditions to that encountered within the oral

cavity. Each test has the details of how it works alongside the advantages and disadvantages of each test. R and R? values represent the IVIVC if it is available

Tests

Mechanism

Advantages

Disadvantages

Tricorptester
(Yoshita et al.,
2013)
Manufactured

equipment

KYO Method
(Kakutani et al.,
2010)

Improvised Test

Uses two meshes — upper and lower, when
they come into contact disintegration time
(DT) ends

ODT place on lower mesh and time starts
when upper mesh touches ODT

Upper mesh puts pressure on ODT (like
upper palate)

Saliva kept at 37°C, and dripped from
height of 80mm at 6ml/min

R*=0.79
Water permeability test prior to
disintegration test (to decide whether
0.5ml/5ml of medium used)

Test tube contains predetermined volume
of medium at 37°C

ODT placed on filter paper at bottom of
tube

62

Saliva at 37°C
Automated measure of time
Force applied on ODT

Saliva flow can be varied

Uses a weight to compress
oDT

Filter paper as disintegration
bed

Small volumes of
disintegration medium (<5ml)
medium  at

Disintegration

37°C

Saliva dripped from above
Impact of water from 80mm
height

Lack of humidity

Stopwatch timer for
disintegration

Double weight placed on ODT
Lack of humidity

Volume of medium varies

according to pre-test
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Tests

Mechanism

Advantages

Disadvantages

ODT-101
(Harada et al.,
2006, Harada et
al., 2010b,
Narazaki et al.,
2004)
Manufactured

Equipment

Dissolution

Apparatus

Double weight placed on ODT (acts as
upper palate)

Time taken for weight to touch filter paper
measured as DT

R2=0.72

Weighted shaft places force on ODT and
rotates at predetermined RPM

ODT placed on porous steel plates

Water bath contains 450ml of water at
37°C — level adjusted to just below plate,
and level rises during test using a weight
immersed in the water

Time measured when rotating shaft
touches porous plate (shaft has conductive
sponge on the bottom)

Several studies conducted; R?=0.859,
0.610-0.701 and R=0.99

900ml of water at 37°C

Paddle rotated at 100rpm
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ODT placed on a porous plate
(allows it to disintegrate from
below)

Automated measure of time
Disintegration medium at
37°C

Pressure placed on ODT

Disintegration medium at
37°C

Water agitated using paddle

Weighted shaft on top of ODT
rotates

Uses a weight to raise water
level

Lack of humidity

Large volume of disintegration

medium (450ml)

High volume of water (900ml)
Uses a basket submerged

inside vessel
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Tests Mechanism Advantages Disadvantages
(Bi et al., 1996, Bi e Sinker placed at 8.5cm below water Doesn’t represent in vivo
surface conditions

etal., 1999)

Improvised Test

Texture Analyser °
(el-Arini and Clas,
2002, Abdelbary

et al., 2005, Dor

and Fix, 2000) y

Improvised Test

DT taken as when the tablet has passed

through the sinker screen

Flat faced probe with 1cm? surface area
Tablet attached to probe and probe moves
down until trigger force detected
Predetermined weight (50g) is applied for
a set amount of time (60s)

Artificial saliva used as disintegration
medium — 2ml at 37°C

Measures a distance against time plot,
where disintegration time can be
calculated

Modified version of this test uses a sprung
platform where ODT is placed instead of
stuck to probe.

Perforated grid allows fragments to pass

through during disintegration

64

Automated measure of time
(distance v time plot)
Constant load applied over
given time

ODT place on mesh (allows it
to disintegrate from below
medium  at

Disintegration

37°C

Not to dissimilar to current

<701> test

Varied volumes of
disintegration medium used
(often too high e.g. 18ml)
Distance/time plot can
complicate disintegration
process

Lack of humidity
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Tests Mechanism Advantages Disadvantages
e Uses 18ml artificial saliva at 37°C
e Different R?> values when parameters
altered for different ODTs
Simulated Wetting e Used as a measure of DT Die allows you to see when Stopwatch timer for
Test e Whatman filter paper disk placed in each whole tablet has disintegrated disintegration

(Park et al., 2008)

Improvised Test °

OD Mate °
(Haraguchi et al.,
2014, Uchida et

al., 2013) o

well of corning 12 well polystyrene
microplate

Given volumes of Sensient blue #1 0.1%
w/w dye added to each well based on ODT
size

ODT added to well carefully and time for
dye to diffuse through tablet and cover
surface measured

ODT placed on trapezoidal mesh in flat
bottomed test tube (acts as tongue)
Compressed by two weights (upper
palate), 30g inner and 100g outer
Measurement starts when tube touches

medium (20ml water at 37°C)
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Small volume of disintegration

medium (<1.75ml)

Adjustable mesh/weight type
Automated measure of time

ODT placed on a mesh (allows
it to disintegrate from below)
Uses a weight to compress

oDT

Not much similarity to in vivo

conditions
Uptake of dye doesn’t
necessarily indicate

disintegration

Uses two  weights as
compression force
Conditions are altered
according to disintegration
time of ODT

Lack of humidity
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Tests Mechanism Advantages Disadvantages
Manufactured e Time taken for weight to touch test tube e (Can adjust volume of test 20ml| water which can be
. represents DT media stirred
Equipment
e Two studies with R*=0.95 and 0.936
CCD Camera e Two sections — disintegration component e Can record disintegration Time method calculation

(Morita et al.,
2002)

Improvised Test

Electroforce °

(BOSE)

and measurement device

Measurement uses continuous pictures
taken by a CCD camera to record
disintegration — visualises tablet surface
Disintegration section has two
components, inner tank with a stirring bar,
steel grid and disintegration medium
(200ml water at 37°C), grid has hollow
areas for ODT placement. Outer tank is
water bath kept at 37°C

Uses low force on the ODT (10mN or 1g) at
0.1N/s

Tablet placed in lower platform and force
applied

5ml water at 37°C added when 10mN force

reached
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Disintegration medium at

37°C

Small volume of medium
(5ml) at 37°C

Very small force applied on
oDT

Constant load applied over

given time

doesn’t seem to work
Poor correlation with in vivo
data

Large volume of medium

Distance/time plot can
complicate disintegration
process

Water added after force has
been applied to ODT

Lack of humidity



Introduction and Literature Review

Tests

Mechanism

Advantages

Disadvantages

Manufactured °
Equipment used
for improvised test
Prototypical ODT °
disintegration
tester
(Kondo et al.,
2012)

Improvised Test

Test for Orally °
Disintegrating Mini
Tablets

(Hermes, 2012)

Disintegration plot drawn up as distance
against time, and max distance reached is

end of DT

Tablet placed on centre of mesh and
acrylic board acts as upper palate —rotates
via attached motor at 25rpm

Test medium added to tank beneath mesh
using a syringe until it makes contact with
tablet (at 37°C)

Water level maintained by sink of tablet
fragments into tank

CCD camera placed above tablet to record
disintegration process, and is played back
to calculate DT

Measures the electrical resistance of a gap
where the sample tablet is placed

Uses a plunger with an adjustable weight
to correspond the force to the force of the

tongue
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Camera replay system allows
multi views of the
disintegration process
meaning that disintegration
time can be calculated
repeatedly from one film
Disintegration medium at
37°C

Uses a weight to apply a load

to tablet

Uses very small amounts of
disintegration medium which
are similar to that within oral

cavity

Disintegration medium
volume will vary as a specific
amount isn’t always added,
and would be more than
present in the oral cavity

Lack of humidity

Rotation of board doesn’t

simulate oral conditions

Study states an absolute
disintegration could not be
achieved

Does not take into account

humidity
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Mechanism

Advantages

Disadvantages

Tests
Manufactured °
Equipment
Other Tests °

Disintegration medium is added to the
measuring cell — volume is small to allow
complete wetting of the sample (can be

<1ml)

100x10mm petri dish with 90mm filter
paper and 9-10ml disintegration medium —
solution of 10% w/w cobalt Il 6 hydrate, DT
taken as when tablet appears fully wet
(Segado, 2003)

ODT placed on No.10 wire cloth and water
dripped on to ODT at 4ml/min, DT taken as
when all of ODT has passed through the
wire (Ohtaetal., 2001)

ODT placed in measuring cylinder with

10mesh base along with 1ml water.
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Disintegration medium used
for testing was artificial saliva,
which disintegrated tablet
similar to in vivo conditions
Non-subjective measure of
disintegration time
Assessment of tongue force in
vivo to gather data for plunger
weights
Disintegration medium at
37°C

Simple to do easy tests

Only appears to apply to mini
tablets

Takes 40% loss in tablet
structure to be the end of

disintegration

Don’t really represent in vivo
condition

Lack of humidity

No automatic recording can

still be subjective
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Tests Mechanism Advantages Disadvantages

Cylinder placed in water bath and shaken
at 150rpm, and maintained at 37°C (Fu et
al., 2006).

69



Introduction and Literature Review

From the literature review it was seen that extensive work had gone into trying to develop an ODT
specific disintegration test, with some tests such as the Tricorptester, ODT-101 and OD Mate being

specifically developed with the purpose of measuring ODT disintegration time.

1.10 Research Aims and Objectives

Orally disintegrating tablets are a key dosage form for paediatric drug delivery. They possess many
advantages over traditional dosage forms, however the complex and expensive freeze drying process
can lead to dosage forms that are mechanically weak and costly to produce. Utilising the traditional
direct compression technique to manufacture ODTs vyields tablets with impressive mechanical
properties whilst maintaining low disintegration times and minimising manufacturing costs. However
for direct compression a more in depth understanding of the materials is needed, as

compression/compaction properties of excipients are key in providing a suitable dosage form.

The principal aim of this thesis is to produce materials that are highly compressible/compactable for
ODT/solid oral dosage forms, whilst keeping disintegration times low, as this is essential for producing
successful directly compressed ODTs. It is highly advantageous to produce compressible preblends
that are ‘ready to use’ powders alongside an APl and a suitable lubricant. This negates the needs for
lengthy formulation processes as the preblends are able to produce robust/fast disintegrating tablets

without the need for excessive alteration of the formulation.

The objectives of the work in this thesis include:

1. Evaluate the fragmentation behaviour of crystalline mannitol using a wide range of
characterisation techniques and relate this to the performance of mannitol as a filler/binder,
utilising particle size reduction through mechanical fracture

2. Investigate the possibility of milled mannitol as an alternative mannitol product for use in

directly compressed tablets, comparing it to commercially available grades
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3. Utilising a novel dry particle coating technique to produce several preblends for use in
ODT/solid oral dosage forms, using hydrophobic and non-compressible APls

4. Development of a novel disintegration method for testing ODTs due to the current limitations
with the USP recommended method. Key aspect is to gather IVIVC to assess the suitability of

the improvised test in its ability to obtain accurate and suitable disintegration times
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Chapter 2
A Holistic Multi Evidence Approach to Study
the Fragmentation Behaviour of Crystalline

Mannitol
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2.1 Introduction

The high patient compliance for orally disintegrating tablets (ODTs) among paediatric and geriatric
populations, as well as patients with dysphagia, has led to a surge in the popularity of these dosage
forms, as well as an increased number of licensed formulations becoming available on the market (Al-
khattawi and Mohammed, 2013, AlHusban et al., 2010, Seager, 1998). Owing to the disintegration of
the dosage form within the oral cavity, the formulation, and in particular the excipients used to
formulate the ODT, are key to manufacturing a palatable, robust and fast disintegrating tablet. For the
manufacture of ODTs, direct compression (DC) is an advantageous method as it utilises traditional
tableting equipment and is able to produce tablets that have high mechanical strength, whilst being
able to disintegrate within the recommended US FDA guidelines of 30 seconds (FDA, 2008), compared
to freeze drying technology where tablets are mechanically weak and friable (Parkash et al., 2011,

Harmon, 2007).

Mannitol, a polyol isomer of sorbitol, is one of the most widely used fillers/diluents in ODTs as it has
sweet taste and cooling effect within the mouth upon its disintegration, whilst also being non-
hygroscopic, minimising moisture uptake into the tablet during storage (Yoshinari et al., 2002).
Although it is widely employed within ODT formulations in high concentrations (Jung et al., 2012), its
primary disadvantage is that it fragments under compaction resulting in mechanically weak and friable
tablets (Carlson and Hancock, 2006, Westermarck et al., 1998). Mannitol has a needle shaped crystal
particle with very little or no amorphous regions (Campbell Roberts et al., 2002, Yu et al., 1998, Ho et
al., 2009). Kaminsky and Glazer (1997) identified that mannitol exhibited five crystal planes; (011),
(010), (120), (110) and (210). Similarly, a study by Ho. et al. (2012) identified that large recrystallised
mannitol needles tended to fracture at the (010) and (011) planes, as shown in Figure 2.1, with the
lowest attachment energy and shortest dimensions across all axis respectively. The particle shape of
mannitol contributes to its increased fracture behaviour and low plastic deformability, as the crystal
tends to break into smaller fragments. These smaller fragments then interact with the dies causing

high friction (Abdel-Hamid and Betz, 2011), subsequently inhibiting strong bond formation between
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(010)
(011) 77
Fracture at / \ Fracture at
(011) plane (010) plane
L
Needle length =
shortened
/
/

Figure 2.1: Diagram illustrating the fracture planes for mannitol crystals
along with the two most common fracture processes; cleavage at (011)
where needle length is shortened and cleavage at (010) where needle
width is reduced.

the particles (Carlin, 2008). It has been reported that fragmentation can be advantageous for certain
excipients, particularly lactose, as the increased number of particles leads to a larger number of
bonding sites during compression (Vromans et al., 1987). However with mannitol, the high die wall
friction, due to the interaction of the needle fragments with the dies, leads to poorly formed
compacts. Mannitol has three polymorphic forms; alpha (a), beta (B) and delta (8), with B being the
most stable, & being the least stable and a exhibiting intermediate stability between the two (Willart
et al., 2007). It has been shown that the B polymorph exhibits the highest die wall friction, which in
turn reduces compressibility, forming mechanically weak tablets (Burger et al., 2000), but is the widely

available form due to its highly stable nature.

The aim of this study was to assess the fracture behaviour of unmodified crystalline mannitol using
ball milling as a method of energy input into the particles. Particle size reduction during tableting
occurs between the punches as the upper and lower punches exert energy into the powder and cause
subsequent fracture of the mannitol crystals. Particle size reduction through high energy input was
used to assess the fracture behaviour of mannitol and to develop an understanding of the
fragmentation of the excipient during the tableting process. The morphology and powder
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characteristics of the milled powders were assessed using multiple techniques such as; scanning
electron microscopy; atomic force microscopy; dynamic vapour sorption and differential scanning
calorimetry, to determine the exposed plane after particle size reduction. It was hypothesised that X-
ray diffraction could be used as a novel method to predict energy input during milling, as the increased
number of particles alongside a loss in their crystallinity during the milling process presented an overall
reduction in the intensity of diffracted x-rays. In addition, compressibility was evaluated, with a view
to investigating a pragmatic strategy to overcome the limitation of particle breakdown and widen the

use of mannitol in various solid dosage forms.

2.2 Methods

2.2.1 Materials
D-Mannitol (298% purity) was obtained from Sigma-Aldrich (Dorset, UK) and magnesium stearate was

obtained from Fischer Scientific (Loughborough, UK). Both powders were used as received.

2.2.2 Preparation of Ball Milled Powders

Milled samples were prepared using a Fritsch Pulverisette 7 planetary ball mill (Idar-Oberstein,
Germany) according to parameters shown in Table 2.1. Powders were accurately weighed according
to the ball to powder weight ratio (BPR) stated for each powder. The weighed samples were
transferred into agate vials (45 cm? volume) along with 13 agate balls (diameter 10 mm). The vials
were sealed with a plastic ring to prevent atmospheric contamination. Non-milled mannitol (FO) was

used as a control.

2.2.3 Energy Involved in Ball Milling

The energy input into the powder during milling was calculated based on the hypothesis developed
by Burgio et al. (1991), Maurice and Courtney (1990), and Abdellaoui and Gaffet (Abdellaoui and
Gaffet, 1994, Abdellaoui and Gaffet, 1995). The calculated values were an estimation of the overall

energy input per unit mass, into the system as it was virtually impossible to view what was happening
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Table 2.1: The milling parameters used to prepare the different powders tested in this study, with varying milling

times, rotation speed and ball:powder weight ratio. Non-milled mannitol (FO) was used as a control

Powder Milling Time (min) Rotation Speed (RPM) BPR
F1 30 200 10
F2 30 200 5
F3 30 400 10
F4 30 400 5
F5 15 200 10
F6 15 200 5
F7 15 400 10
F8 15 400 5

inside the vials to enable an exact calculation of the energy input. However it was assumed milling

was conducted under ideal conditions, therefore the equations provided an estimation of the energy

input per unit mass into the powder bed upon altering the milling parameters. Figure 2.2 shows a

schematic diagram of some of the parameters of the ball mill system that were used as integral parts

of the energy calculation equations.

Disk Rotation

Vial Rotation

Figure 2.2: A schematic diagram of some of the mill parameters used in the
calculation for energy input. This includes angular velocity of the disk (W)
angular velocity of the vial (W), disk radius (Rp) and vial radius (Rv)
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The speed of the mill was firstly converted from RPM to radians to allow angular velocity to be

calculated with the equations:

Radians = (%) X 2m (Eq. 2.1)

Angular Velocity = Radians X R, or R, (Eq. 2.2)

With R, representing the radius of the disk (distance from centre of disk to centre of vial), and R,
representing the radius of the vial (distance from centre of vial to vial wall). This enabled the angular
velocity of the disk (W,) and vial (W,) to be calculated. The angular velocity of the vial was negative as

the vial movement was in the opposite direction to the movement of the disk.

Once angular velocities had been calculated the absolute velocity of one ball detaching from the vial

wall (V) was given by:
Vo= [ (W, Ry)* + WP (R, — dy,/2)* (1= 2W,/W,,) ]2 (Eq. 2.3)

With dp representing the diameter of the ball. The velocity of the ball after the collision with the

powder/inner wall (Vi) was given by:
Vs = [ (VVp Rp)z + sz (Rv - db/z)2 + ZmeRp (Rv - db/z) ]1/2 (Eq. 2.4)

Once the velocity of the ball was calculated, it enabled the kinetic energy of that ball to be worked

out. When the ball was launched from the vial wall the kinetic energy (E,) was given by:
Eb-(1/2) m,V2

With m, being the mass of one ball. During the collision of the ball with the powder/inner vial wall
only a small amount of the kinetic energy of the launched ball was released, which was the energy
imparted to cause particle fracture/deformation within the milling system. The residual energy of the

ball after the collision event (Es) was calculated with the equation:

E. = (1/2) m,y V5

This allowed the total energy released by that single ball to be calculated:

DBy = By~ o= —my, [W(Ry — dp/2) | Wy + WyWRy 1 (Ry— dy /2)  (EQ.2.5)

For the theoretical energy value to be a more accurate estimation, the degree of filling of the vial by
the balls had to be considered, as the balls inevitably collided and hampered each other’s movement.

The vial filling factor (¢») had two limiting factors, @,=1 for only one or very few balls in the vial or
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@p=0 for when the vial was completely full and no movement possible. In the experiment the amount
of free space within the vial was calculated using measurements of the empty and filled vial, and the

vial filling factor worked out as a percentage. The adjusted equation became:
AEy" = @uAE (Eq. 2.6)

With AE," representing the energy release of one ball within a system containing a certain number of

balls (Ny).

The value for total energy transfer per unit mass from the mill into the powder (E/m,) was calculated

using the equation:

E
= —p,N,mittw, —w, W2 (R, —d, /2)/W, +WW,R |R, —d, /2)/2m_  (Eq.2.7)
P
The equation included all variables that were altered during the milling process; time (t); the mill
speed/angular velocities of the disk and vial (W, and W, respectively); and the powder weight (m;).
Values such as vial filling factor (¢p), number of balls (Ny), the mass of a ball (my) and the ball diameter
(dp) were all kept constant. The radius of the vial (Ry) and disk (Rp) were also constant according to the

manufacturers design.

2.2.4 Scanning Electron Microscopy (SEM)

SEM micrographs were obtained using a Phillips XL-30 FEG ESEM (Eindhoven, Netherlands) to allow
an exploration of particle shape/size and fracture behaviour. Approximately 1mg of each sample was
adhered to a double-sided adhesive strip and placed on to an aluminium stub. The samples were
coated with a thin layer of gold using an Emscope SC500 sputter coater (Quorum Technologies, Lewes,
UK) at 20 mA for 1 minute. After gold coating each sample was examined using SEM, with the

acceleration voltage (kV) and magnification stated on each monograph.

2.2.5 Atomic Force Microscopy (AFM)

Acquisition of topographical data was performed using a NanoWizard Il AFM (JPK Instruments,

Cambridge, UK) operating in force scan mapping mode under ambient conditions (18 °C, 50 % relative
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humidity). This involved the use of a scanner with a maximum lateral range of 100x100 um and a
maximum vertical range of 15 um. Data acquisition was performed using rectangular Si cantilevers
(HQ:CSC17/noAl, MikroMasch, Sofia, Bulgaria) having pyramidal tips with 10nm nominal radii of
curvature. Cantilever spring constants were of the order 0.3 N/m, calibrated according to the method
reported by Bowen et al. (Bowen et al., 2010). Topography was assessed over a 2x2 um area using a
grid of 128x128 pixels. Data was acquired by driving the fixed end of the cantilever at a velocity of 50
um/s towards the sample surface, whilst monitoring the deflection of the free end of the cantilever
using a laser beam. Upon making contact with a surface feature, the height of the contact point was
recorded, representing one pixel in the image, which was converted into a map of surface topography.

A maximum compressive load of 10nN was applied to the surface during data acquisition.

2.2.6 X-ray Diffraction (XRD)

XRD was performed using a Bruker D2 Phaser (Massachusetts, USA) equipped with a Co-Ka tube
(1.78896 A). Approximately 1g of each powder was analysed across an angular range (26) of 10-50° in
steps of 0.02° every 0.25 s. A rectangular beam of size 0.6mm was used for measurement and the
sample spun at 15rpm to allow maximum surface analysis. XRD patterns were obtained in counts per
second (cps) and analysed using Eva 18.0 software. To quantify the polymorphic composition a
Rietveld refinement was performed using MAUD software 2.49 (Luca Luterotti, University of
California, USA) (Lutterotti, 2010). Calculated patterns for the mannitol polymorphs were obtained
from the Cambridge Crystallographic Data Centre and imported into MAUD. The XRD patterns were

then fitted to the calculated patterns and percentages of each polymorph generated using MAUD.

2.2.7 Particle Size analysis

Laser diffraction was employed to measure particle size using a Sympatec HELOS/BR equipped with a
RODOS dry dispersing system with VIBRI/I feeder (Clausthal-Zellerfeld, Germany). Around 1 g of

sample was placed on the VIBRI/I feeder and dispersed through the RODOS with 2 bars of pressure.
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The volume mean diameter (VMD) of each sample was detected on the HELOS/BR set at a measuring

range of 0-175 um. All powders were analysed in triplicate and presented as mean + SD.

2.2.8 Powder Flow analysis

A Sotax tap density tester USP Il apparatus (Allschwil, Switzerland) was used to measure the bulk (poui)
and tapped density (ptapped) Of each sample following the test parameters set out in the USP
monograph <616> (USP37, 2014a). A 50 mL cylinder was used for measurement as there was a limited

quantity of sample available. Powder flow was analysed using the Carr’s index/Hausner ratio

equations.
Carr's Index = Ztapeed " Poutk 15 (Eq. 2.8)
ptapped
. ptapped
Hausner Ratio =——— (Eq. 2.9)
Phoulk

2.2.9 Differential Scanning Calorimetry (DSC)

DSC was undertaken on a TA Instruments DSC Q200 (Delaware, USA) using nitrogen as purge gas to
analyse thermal properties of powders post-milling. DSC heat flow was calibrated using indium
(melting point 156 °C), and samples weighing 3+0.1mg were sealed inside Tzero pans. A sealed empty
Tzero pan was used as a reference, and each sample was ramp heated at 10 °C/min from 30 °C to 180
°C to detect for thermal differences. Analysis of the thermographs was performed using TA Universal

Analysis 2000 software v4.5A. Each powder was analysed in triplicate.

2.2.10 Dynamic Vapour Sorption (DVS)

Specific surface area (SSA) and surface energy measurements were performed using a Dynamic
Vapour Sorption instrument (DVS Advantage, Surface Measurement Systems, London, UK). Samples
of powder in the range 20-60 mg were dried for a minimum of 4 hours using oxygen-free nitrogen,

before being subjected stepwise to increasing partial pressures of octane (HPLC grade, Sigma-Aldrich,
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Dorset, UK) from 0-90 % in 5 % increments. The chamber temperature was kept constant at 25+0.1
°C. Samples were allowed to reach a near-equilibrium state (%dm/dt = 0.0005 % min) at each partial
pressure step before progressing to the next stage. Application of the Brunauer-Emmett-Teller (BET)
theory (Brunauer et al., 1938) was employed for calculation of the SSA, fitting data in the partial
pressure range 5-60 %. Surface energies were calculated using the Advanced Analysis Suite in the DVS

software.

2.2.11 Compressibility analysis using Heckel Profiling

To analyse compressibility differences between milled and non-milled powders, in-die/out-of-die
Heckel analysis were performed (Heckel, 1961a). A Hounsfield Test Equipment H10K (Tinius Olsen,
Pennsylvania, USA) equipped with 13 mm flat faced punches, a compression range of 0-40 MPa and
upper punch speed of 400 mm/min was used to compress the powders into ODTs for in-die Heckel
analysis. Dies and punches were externally lubricated using a 5 % magnesium stearate in acetone
solution before each measurement. An accurately weighed sample of 500 mg of each powder was
filled into the dies for each test run. A Heckel plot follows first order kinetics and is a model that

represents densification of solids under pressure.

Heckel Equation = In{ﬁ} =PxK+A (Eq. 2.10)

Where (In[1/1-D]) is plotted against compaction pressure (P), with K being the gradient from the linear
portion of the plot. K was obtained above 30 MPa i.e. the linear region with R?>0.98, with the
reciprocal of K representing the in-die yield pressure (Py). All powders were repeated for triplicate

measurements.

An out-of-die Heckel analysis was performed to supplement in-die Heckel data. 500 mg samples of
each powder were weighed and compressed using a Specac semi-automatic hydraulic press (Slough,
UK) equipped with 13mm flat faced dies at compression forces ranging from 75-300 MPa. Dies and
punches were externally lubricated with a 5 % magnesium stearate in acetone solution. Porosity of
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the tablets was assessed post ejection, true volume was obtained using a Quantachrome Helium
Multipycnometer (Florida, USA), and bulk volume taken using tablet diameter and thickness measured
with a digital calliper. The Heckel plot was drawn up as -In(porosity) against compaction pressure and

the reciprocal of the gradient taken as the out-of-die yield pressure (Py).

2.2.12 Tableting Studies

ODTs were prepared using a blend of 99.5 % mannitol and 0.5 % magnesium stearate mixed for one
minute. Tablets were compressed using a Specac semi-automatic hydraulic press (Slough, UK)
equipped with 13mm flat faced punches at compression forces of 75/225 MPa. ODTs were analysed

immediately after manufacture to reduce storage effects.

2.2.12.1 Hardness
Hardness of the tablets was measured using a Copley TBF 100 Hardness tester (Nottingham, UK).

Tensile strength (o) was then calculated using the equation:

2H
o= T (Eqg. 2.11)

Where H is the hardness, D is the diameter and T is the thickness of the tablet. All readings were taken

in triplicate and displayed as mean % SD.

2.2.12.2 Disintegration Time

The standard USP disintegration method was used to assess disintegration time of the tablets (USP37,
2014b). A Copley ZT41 disintegration apparatus (Nottingham, UK) was used, with a single tablet being
tested each time for accuracy. Each tablet was placed in the vessel (without a disk) and oscillated at
30 cycles per minute. A dissolution medium of 800ml distilled water was maintained at 37 °C, and
disintegration time measured when all of the fragments of tablet had passed through the mesh at the

bottom of the vessel. All readings were taken in triplicate and represented as mean + SD.
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2.2.12.3 Porosity

Porosity of the tablets was assessed using a Quantachrome Helium Multipycnometer (Florida, USA).
Diameter and thickness of the ODT’s was measured using a digital calliper, and the weight of individual
ODT'’s taken using an electronic balance. The bulk volume (Vs) and bulk density (psuk) of the tablets

were then calculated using the following equations:

RZ

Vg = LR (Eq. 2.12)
T
Tablet ight

Poull = ———— I (Eq. 2.13)

VB

The true volume (V:) of the tablet was calculated using the pycnometer, which applies the theory of
gas displacement allowing the porous nature of the tablet to be assessed. The true volume was

calculated using the equation:
Ve=V, — 1, (ﬂ - 1) (Eq. 2.14)

Where V¢ is the volume of the sample cell, V. is the volume of the reference cell, P1 and P2 are the
atmospheric pressure and pressure change during the measurement respectively. The true volume

was then used to calculate true density in the equation:

Tablet weight

ptrue=T (Eq 215)

The final step to calculate porosity (&) of the ODT used the following equation:

g=1 — Lbulk (Eq. 2.16)

Ptrue

All results were taken in triplicate and presented as mean + SD.

2.2.13 Stability Study

Stability testing of three of the milled mannitol powders was conducted. Powders F1, F2 and F8 were

chosen based on their favourable powder and ODT characteristics due to the optimum levels of energy
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input per unit mass into the powder during the milling process. Stability testing was conducted
according to ICH guidelines, (ICH, 2003). Powders were freshly milled and placed inside opaque plastic
containers and sealed with a twist lid. Each formulation was tested in ambient and accelerated
conditions, with humidity cabinets (Fraiolabo, Meyzieu, France) set at 25 °C with 60 % relative
humidity (RH) and 40 °C with 75 % RH. Powders were tested over a 6 month period, with testing
occurring at 2 weeks, 4 weeks, 2 months, 3 months, 4 months and at the 6 month end. Powders were
tested for melting point using DSC to establish crystal state, alongside XRD analysis, and degradation
and moisture content of the powders tested using thermogravimetric analysis (TGA). TGA analysis was
conducted on a Perkin ElImer Pyris 1 TGA (Massachusetts, USA). Approximately 5 mg of each sample
was carefully weighed into the sample pan and tested over a temperature range of 30-300 °C, with a
heat ramp of 10 °C/min. Moisture content was measured between the range of 70-130 °C, and

degradation temperature taken when the % loss of material started to rapidly decrease towards 0 %.

2.2.14 Flow Improvement Study

To assess the possibilities of mannitol being used in a commercial formulation a flowability study was
conducted to see if it was possible to tablet milled mannitol through an auto tablet press (Riva Ml
Minipress, Hampshire, UK). Materials assessed for flow improvements, alongside milled mannitol,
included varying concentrations of Starch 1500® (4-20 %) (Colorcon Inc, Pennsylvania, USA) and 0.5 %
fumed silica (Aerosil 200, Evonik Industries, Essan, Germany). To investigate flow two mixing methods
were assessed, standard cube mixing in an Erweka AR403s (Heusenstamm, Germany) with the cube
mixer attachment; and novel composite mixing using a novel blender developed in our laboratory.
Cube mixing was conducted for 10 mins at a speed of 250 rpm. Composite blending was conducted at
speeds from 1500-2000 rpm for 10-30 mins, with and without air pressure. Angle of repose was used
as the method of choice for assessing powder flow of the investigated blends. For angle of repose the
method outlined in the USP monograph <1174> (USP37, 2014c) was followed, and the height and

diameter of the pile measured. This was then added to the equation, tan(8) = height/0.5diameter,
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where © was the angle of repose. All powders were analysed in triplicate and results displayed as

mean = SD.

Tablets of approximately 500 mg weight and of 13 mm diameter were compressed on a Riva Mll
Minipress (Riva, Hampshire UK), at a compression force 10 KN. MCC (Avicel PH102, FMC Biopolymer,
Philadelphia, USA) was used as a comparison to Starch 1500° as it is a popular dry binder used in ODT
formulations. Magnesium stearate (Fischer Scientific, Loughborough, UK) 1 % was used as a lubricant.
A powder preblend of milled mannitol 87.5 %, Starch 1500®/MCC 12 % and silica 0.5 % was produced,
the preblend (99 %) was then mixed with magnesium stearate (1 %) to be tableted. Tablets were
assessed for hardness, disintegration time (as above) and friability using a Sotax F2 Friabilitor
(Allschwil, Switzerland). Ten tablets were brushed off and weighed altogether for the initial weight,
they were then inserted friabilitor. The test was conducted for a total time of 4 minutes at 25 rpm,
with 100 revolutions in total. The tablets were then brushed off and reweighed to get the final weight.

Percentage friability was calculated using the equation:

Initial weight—Final weight

% Friability =

. , x 100 (Eq. 2.17)
Intial weight

Uniformity of weight was conducted according to BP requirements (BP, 2015), with 20 tablets weighed

at random and the % deviation from the mean calculated.

2.2.15 Statistical Analysis

One way ANOVA followed by a Tukey’s multiple comparison post-hoc test / Two way ANOVA followed
by a Sidaks multiple comparison post hoc test were performed using GraphPad Prism 6 software
(California, USA). For statistical significance a p-value <0.05 was used, and all data was presented as

mean * standard deviation.
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2.3 Results and Discussion

2.3.1 Milling Energy Input and Crystal State

The first set of investigations were focused on evaluating the energy input on various processing

parameters such as ball-to-powder weight ratio (BPR), speed of rotation and duration of milling.

Theoretical energy calculations showed that mill speed was the most influential factor in increasing
the energy input during each milling cycle, with powders processed at 400 rpm experiencing an eight
fold increase in energy input compared to 200 rpm; whereas doubling the milling time and BPR
resulted in doubling of the theoretical energy input. Results, presented in Table 2.2, indicated that
powder F3 had the highest amount of energy input per unit mass, as expected, as it had all three of
the highest parameters, and that powder F6 had the lowest amount of energy input per unit mass due
to it having all of the lowest values for all the variables. However from the theoretical calculations it
was seen that there was an overlap for the calculated energy between powders F2/F5, and F4/F7. This
was because the theoretical calculations included limitations in that they were calculated based on
ideal conditions, where it had to be assumed that the heating of the vial was negligible; the powder
was only affected by energy transfer from the balls to the grinding media and that the majority of

energy input occurred during the collision of the balls against the powder along the wall of the vial.

In order to overcome the limitations presented with theoretical calculation of energy, it was
hypothesised that XRD patterns could be investigated as a novel tool for prediction of energy input,
on the premise that the increased number of particles combined with a loss in crystallinity of the
material would impact on peak intensity of the diffraction pattern, provided the polymorphic form of
the material remained unchanged. To evaluate our hypothesis, initial investigations were aimed at
studying peak intensity changes of the diffracted x-rays between non-milled and milled powders of
mannitol. The XRD patterns for FO and the subsequent milled powders represented strong fits for -
D-mannitol, as shown in Figure 2.3 (Hulse et al., 2009, Kim et al., 1998). XRD data showed that milling

had caused a reduction in peak intensities along the patterns obtained for all milled powders as
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Table 2.2: A table showing the theoretical energy inputs into the milled powders (F1-F8), along with the
reduction in peak intensities observed upon XRD analysis with a subsequent energy ranking according to XRD
data. Percentage of alpha mannitol within the powders is also included as obtained through Rietveld refinement.
Morphological and topographical characteristics of the mannitol particles are also included for all powders; Data
indicates particle size/surface area and flowability, alongside the surface roughness and surface energy of the
powders. Data marked with a single asterisk (*) indicates results that are significantly different from the control
(ANOVA p<0.05 when compared to F0). (**) indicates the rank order of energy input according to XRD peak
intensity reduction data.

Powder Theoretical % % Alpha  Particle BET Carr’'s Hausner AFM DVS
energy reduction  Mannitol Size Surface Index Ratio average Surface
input per in peak present VMD Area surface Energy
unit mass intensity in (um) (m2/g) area (mN/m)
(J/kg) comparison roughness
to FO** Ra (nm)
FO - - 0.00 36.54+ 0.261 3891 164t 20.39 73.37
0.28 + 0.04
1.38
F1 3.42 47.59° 0.70 10.46 2.183 39.89 1.67 51.59 67.45
2.51* + 0.03
1.03
F2 1.71 44,83 ° 0.26 11.76 + 1585 3885 1.64% 188.8 63.79
1.58* + 0.06
2.04
F3 27.37 68.971 0.54 20.00+ 3302 3333 150+ 90.28 65.27
1.61* + 0.05*
2.08*
F4 13.69 60.00 3 0.24 1451+ 3.173 34.03 1.52% 163.4 64.74
1.91* t 0.03*
1.20*
F5 1.71 33.037 0.38 11.14 + 1.633 39.12 1.64 + 110.8 66.75
0.38* + 0.03
1.06
F6 0.86 15.17 8 0.40 16.96+ 1.068 37.50 1.60% 131.0 63.96
0.18* + 0.05
1.79
F7 13.69 62.76 2 0.19 1438+ 3.486 3861 1.63% 115.5 64.07
1.81* + 0.04
1.36
F8 6.84 58.62 4 0.24 1146+ 2.826 41.83 1.72% 162.8 63.14
0.44* +1.78 0.05

illustrated in Figure 2.3. The process of milling had produced particles of reduced crystal size, leading
to increased numbers of particles under examination by the x-ray beam, this lead to differences in
orientation of the sample which therefore affected the intensity of the diffracted x-rays (Baerlocher

and McCusker, 1994). Additionally, a reduction in the crystallinity within the particles, from continued
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Figure 2.3: X-ray diffraction patterns showing that all powders tested represent a strong fit for B-D-Mannitol.
The patterns for milled mannitol (F1-F8 (FO line at bottom to F8 line at top)) also indicate the extent of peak
intensity reduction across all milled powders compared to unmilled mannitol (FO), with Table 1.2 showing the
corresponding percentage of peak intensity reduction.

collisions with the milling media, resulted in further lowering of peak intensity observed on XRD

data(Rao et al.,, 2011, Tan et al., 2012).

The extent of peak reduction on the XRD patterns correlated well with the theoretical energy
calculations, as shown in Table 2.2. For the peak intensity reduction calculations, the large right hand
side peak at a d-spacing of 3.82 was used as this was the most prominent peak in § mannitol, and is
almost 0 counts per second in a mannitol (Hulse et al., 2009, Kim et al., 1998). The results from the
XRD patterns showed that powder F3 exhibited the sharpest peak intensity reduction at around 69 %,
whereas F6 had the lowest peak intensity reduction at around 15 %. This was related to the increased
number of particles and their crystallinity, as the higher amount of energy input into the milling system
caused a larger number of collisions between the balls and powder. Therefore a greater level of strain
was placed upon crystal lattice, whilst milling also cleaved and refined the crystal to a higher extent,
reducing the peak intensities along the XRD plots (Rao et al., 2011, Tan et al., 2012). The XRD data

therefore provided a good model to define the exact order of energy input, as each separate powder
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had different degrees of peak reduction. This allowed an order to be distinguished between powders
F2/F5, and F4/F7; with F2 having a higher energy input than F5 and F7 having a higher energy input

than F4.

Equation 2.18 was developed according to the data obtained, and expresses peak intensity reduction
(1) as a function of energy input per unit mass (E/mp), where Imqy is the maximum peak reduction, a is
a constant and b is an exponent. Measured and calculated results were compared in Figure 2.4, and
the model suggested that as the energy input was increased the value of [1-(a/(E/m,)"] decreased,
which in turn resulted in a larger / value. However the peak intensity reduction plateaued as energy

input was increased towards the higher values.

a

Al=Al [1-| —=—
(E/m,)

(Eq. 2.18)

Previous work had suggested that milling mannitol resulted in a transformation from the B to the a-
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Figure 2.4: A graph comparing measured values of peak intensity reduction to the values calculated using
Equation 2.18, against energy input per unit mass, showing that this model represents a good fit and provides a
novel method of calculating energy input during milling.
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polymorph after a three hour cycle (Descamps et al., 2007). In the current study a Rietveld refinement
(Lutterotti, 2010) was conducted to quantify the polymorphs of mannitol present in all of the samples.
The refinement indicated a very small/negligible amount of o mannitol present in the milled powders,
as shown in Table 2.2, with the samples being composed of >99 % B mannitol. This very small
percentage of a mannitol may have been due to contamination, or polymorphic transformation as the
peak at a 206 of 27° reduced down towards zero, as would be observed on a typical plot for a mannitol.
Additionally, the milling time employed in this study was very short compared to the previous study
and as such it was likely that higher energy input was needed to witness a greater percentage of the
alpha polymorph within the milled samples. However DSC thermal profiling, as shown in Figure 2.5,
also suggested that there was little difference in the crystal state post-milling, as the thermal profiles
had remained very similar to FO. This suggested that there were no amorphous regions in the milled

samples and they were composed of the B polymorph.
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Figure 2.5: DSC scan of non-milled mannitol (FO) compared to milled powders (F1-F8) showing no difference in
melting point, enthalpy of fusion or onset of melting, indicating there was no alteration in crystal state or
structure.
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2.3.2 Powder Properties and Morphology

It was evident from SEM images, as seen in Figure 2.6 that milling had caused a drastic alteration in
the particle morphology of the mannitol crystals. It was observed that the control, FO, had the
characteristic needle shape of mannitol, with a varied particle size on the SEM images, some being as
large as 50 um, and other particles around 37um, as found during particle size analysis (Table 2.2). It
was also recorded that the particles were fairly smooth, and results from AFM surface roughness
analysis also confirmed that the non-milled mannitol had a roughness (Ra) of around 20.39 nm (Table
2.2). From the SEM it was observed that milling had modified most of the needle like structure of the
original crystal to more globular structures, with maximum particle size reduction down to a size of
around 10-11 um, as observed in powders F1, F2, F5 and F8. However, the powders with higher energy
input displayed an increased particle size VMD, with powder F3 having a VMD of 20 um and powders
F4 and F7 having a VMD of around 14 um. This wasn’t expected as it was anticipated that the highest
energy powders would have had the most particle size reduction. However due to the high level of
energy input, the particle size reduction of the mannitol crystals had reached its maximum and
subsequent agglomeration had started to occur. This was evident on the SEM images, as the white
arrows on powder F3 and F7 indicated the presence of large agglomerates (Balaz, 2008). As the
particles were reduced in size, they started to become more cohesive possibly due to the increased
surface area which subsequently, through larger van der Waals forces and electrostatic interactions
produced larger agglomerates. It was proposed that the small particles produced during the milling
process had aggregated due to the high levels of cohesion and large amounts of dispersion between
the particles. However as the levels of dispersion reached zero, where no further particle size
reduction was possible, the repeated impact of the balls upon the aggregates induced strong bond
formation between the aggregated particles, which consequently produced larger more spherical
shaped mannitol agglomerates (Balaz, 2008). Conversely powder F6 had a large particle size of around
17 um, but in this case there wasn’t enough energy input into the powder to allow a substantial

reduction in particle size; therefore particle sizing data indicated that an ideal energy input for
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Figure 2.6: SEM images showing the morphology of the mannitol powders; A - FO (control) showing needle like
morphology at x1200 magnification (all milled samples are at x5000 magnification); B - F1, with circle indicating
particle fracture at the (011) plane; C - F2, with circle indicating particle fracture at the (011) plane; D - F3, with
arrows indicating agglomeration of particles; E - F4, with circle indicating particle fracture at the (010) plane,
and arrow indicating agglomeration of particles; F - F5, with circle indicating particle fracture at (011) plane; G -
F6; H - F7, with arrows indicating agglomeration of particles and | - F8.
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maximum particle size reduction of mannitol was between 1.71-6.84 J/kg. BET surface area analysis,
also confirmed that milling had caused a big shift in the powder morphology and size with an increase
in the surface area from 0.2618 m?2/g up to 3.4865 m?/g (Table 2.2). This was due to the large decrease
in particle size of the powders, as was evidenced by SEM. AFM topographical analysis (Table 2.2) also
indicated that milling resulted in rougher particle surfaces which gave rise to a larger surface area, due
to the indentations on the milled particles. The high roughness was also an indicator that there would
have been increased amounts of adhesion between the particles (Flament et al., 2004). SEM images
also supported this theory as there was visible aggregation of the milled mannitol particles. Powder
flow analysis, shown in Table 2.2 using Carr’s index/Hausner ratio, indicated a very poor flow of all the
milled samples. Powder flowability is essential for pharmaceutical tableting, and it was seen that the
control, FO, also had very poor flow, largely due to the needle shape and the large particle size range,
which promoted interlocking and segregation of the particles. However with the milled samples a
more uniform shape was observed with a reduction in particle size. For most of the milled powders,
the flow remained in a similar category to the control, due to the high levels of adhesion between the
particles owing to increased roughness and small particle size, which also promoted interlocking and
segregation. An improved flow was observed in powders F3 and F4, where the largest amount of
agglomeration was produced. It can be hypothesised that the larger agglomerated particles lose the
needle shaped feature of non-milled mannitol and have reduced levels of segregation and cohesive
forces, due to the slightly enlarged agglomerated particles, which resulted in slightly improved powder

flow, although it remained very poor.

2.3.3 Fracture Properties of Milled Mannitol

From morphological analysis of the SEM images (Figure 2.6), it was seen that the predominant plane
of fracture for the crystalline mannitol was the (011) plane, as powder F2 showed a defined fracture
plane parallel to the direction of growth for the crystal, and shortened the length of the particle. This
was also evident in other powders, such as F1 and F5, as needle length was shorter than that observed
in the control powder FO, whilst the width of the particles tended to remain at around 10 um,
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indicating that predominant fracture occurred at the (011) plane. The SEM images also showed that
there was extensive particle size reduction, with particles visible within the nanometre range, which
indicated high levels of cleavage at the fracture planes of the mannitol crystals. Due to this high level
of particle size reduction there was likely to be some fracture at the (010) plane, where the width of
the crystal had reduced due to the low attachment energy of the (010) plane, as evident on SEM for
F4 in Figure 2.6. This was in agreement with work by Ho. et al/ (2012), who found that milling a large

recrystallised mannitol crystal caused fracture at the (010) and (011) plane.

DVS analysis was employed to measure surface energy using octane as an organic vapour probe. The
amount of adsorbed octane was calculated as a function of the partial pressure, which allowed the
spreading pressure of the octane to be obtained. The spreading pressure of the probe molecule was
then used in a combination of the Young’s equation/Fowke’s Theory to calculate the work of adhesion
and therefore dispersive surface energy, as the adhesion forces between the solid and liquid probe
were related to the surface energy of the mannitol powders. DVS analysis is able to measure all of the
exposed crystal planes within the powder sample, thereby identifying a change in the overall
dispersive surface energy. The surface energy results indicated that there was a reduction in the
overall dispersive surface energy of all the milled powders (Table 2.2), which indicated that it was the
low dispersive surface energy plane, (011), that was increasing in exposure. Work by Ho et al. (Ho et
al., 2010) suggested that the (011) plane had the lowest dispersive surface energy of 39.5 mJ/m?,
compared to the higher dispersive surface energy of the (010) plane, at 44.1 mJ/m?. If the (010) plane
was increasing in exposure there would have been expected to be an increase in the overall dispersive
surface energy of the powder, however due to the reduction in dispersive surface energy of all the
powders tested, compared to FO, it was concluded that (along with SEM analysis) the predominant
plane of fracture for the unmodified crystalline tableting grade of mannitol was the (011) plane, where

the needle length was shortened.
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To further evaluate the plane of fracture, disintegration times of ODT’s prepared from different milled
powders were evaluated and shown in Table 2.3 and Figure 2.7. The results indicated that at 75 MPa
compression force, disintegration times tended to increase alongside the improved hardness of the
tablets (Table 2.3); this was expected as the harder tablets resulted in less water being able to wick
into the dosage form. However at 225 MPa, where large improvements in hardness were also
observed, the disintegration time of the ODTs was generally lower than the control formulation, FO.
Significant improvements in disintegration was seen in all powders, except F3 and F7 which both
displayed significant improvements in hardness over the control. This indicated that the tablets had
an improved wetting time, which was likely to be a contribution between the small particle size of the
mannitol making up the ODT and the increased exposure of the (011) plane, which is the most

hydrophilic plane

Table 2.3: A table showing the compressibility of the powders as analysed through out-of-die and in-die Heckel
Analysis, with yield pressures giving an indication to the compression mechanism of the powder bed. Also
displayed are the hardness and disintegration time of ODTs manufactured from milled mannitol powders (F1-
F8) compared to the control (FO) at compression forces of 75 and 225 MPa. Data marked with a single asterisk
(*) indicates results that are significantly different from the control (ANOVA p<0.05 when compared to FO).

Powder Out-of-die In-Die Yield Disintegration Time (s) Hardness (N)
Yield Pressure Pressure 7 5MPa 225 MPa 75 MPa 225 MPa
(MPa) (MPa)
FO 3333.33 144.47 £ 8.02 35.67 £ 280.00 = 45,70 £ 120.47 +
2.08 8.54 5.61 6.59
F1 1250.00 156.19 + 52.33 ¢ 133.00 = 63.40 £ 161.80 +
17.35 4.16 6.08* 10.13 17.41
F2 714.29 280.88 + 3433+ 125.33 ¢ 52.03 ¢ 148.83 +
15.07* 2.08 7.51* 8.79 5.69
F3 833.33 380.37 = 283.00 = 281.67 + 113.00 £ 320.53 +
38.95* 8.00* 6.03 18.49* 45.76*
F4 1666.67 229.62 + 126.67 + 190.67 93.27 243.00 +
15.20* 37.90* 13.61* 10.17* 13.95%*
F5 1666.67 240.10 = 35.33 ¢ 119.00 + 51.13 + 155.93 +
31.98* 2.89 6.24* 2.32 11.16
F6 1250.00 32426 + 36.67 + 128.67 47.20 142,53 +
17.44% 2.08 3.51* 6.68 7.91
F7 1250.00 202.85 + 154.67 249.67 = 107.10 £ 238.10 =
43.75 10.07* 6.81 11.44%* 24.21%*
F8 1250.00 226.85 + 57.67 + 169.67 + 87.80+ 181.93 +
43.21% 4.73 23.59* 0.70* 44.00
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Figure 2.7: A graph showing the hardness and disintegration of the manufactured ODTs at a compression force
of 75 and 225 MPa. At 75 MPa hardness of the milled ODTs has improved indicating improved compressibility
of the milled mannitol. At 225 MPa disintegration time has improved for milled ODTs even with the increased
mechanical strength of the tablets, indicating improved wettability of the milled powders (p<0.05). Data
presented as mean * SD.

on the crystal (Ho et al., 2010). The improved disintegration time indicated that the ODTs had a higher
affinity for water, which was an additional evidence for increased fracture at the (011) plane, as

opposed to the hydrophobic (010) plane.

2.3.4 Compressibility

Compressibility of the powders was assessed using both in-die Heckel/out-of-die Heckel plots, as in-
die equipment was limited to a maximum compaction force of 40 MPa. Out-of-die Heckel data (Figure
2.8), showed a typical plot for a brittle fragmenting material for non-milled mannitol (FO), whereby
there was an initial sharp rise representing particle rearrangement, followed by a plateau region which
indicated that the material was densifying largely through fragmentation as compression force was
increased (Paronen and llka, 1996). However results for the milled mannitol showed a more linear
compression profile, indicating an improvement in compressibility of the powder bed, possibly due to

the lower degree of fragmentation under compression and a more plastic deformation profile. This
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may have been because the particles within the milled powders underwent fragmentation/cleavage
during the milling process therefore reducing the levels of fracture during tablet compression. The
more linear profiles displayed steeper gradients, giving much lower yield pressures in comparison to
powder FO, as seen in Table 2.3. This indicated that milling had reduced the levels of fragmentation
during compression, and the compacts were formed through increased plastic deformation. To further
support the out-of-die Heckel data, an in-die Heckel analysis was conducted over the initial

compaction force range.

In-die Heckel results (Figure 2.9), displayed a different pattern to that of the out-of-die results, as this
was a real time simulation of the compaction rather than an analysis of the ejected compacts. For non-
milled mannitol (FO) it was seen that there was the characteristic rearrangement stage followed by
densification, where the profile had become linear and the yield pressure was 145 MPa, similar to that
reported in previous literature (Gharaibeh and Aburub, 2013, Klevan et al., 2010). The milled powders

showed a clear difference in the compression profiles within the rearrangement stage, as the data
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Figure 2.8: An out-of-die Heckel plot of the milled powders (F1-F8) compared to non-milled mannitol (FO)
indicating a decreased yield pressure post-milling as seen through a steeper gradient.
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revealed that they underwent lower degrees of rearrangement within the dies, shown by the faster
onset of densification. This was due to the milled particles being smaller in size along with being very
cohesive, prompting the particles to fall into the smaller voids amongst the packed powder within the
dies, therefore leading to less rearrangement being required during the initial stage of compaction
(Roberts and Rowe, 1986). However the yield pressures obtained appeared to be larger for the milled
powders compared to the control (Table 2.3), which would have indicated that the milled powders
were densifying through brittle fragmentation to a larger extent. However, these results revealed that
there was less fragmentation occurring during compression, as when the particle size of a brittle
material was reduced through milling, the larger yield pressures obtained indicated that the material
was fragmenting to a lesser extent, and that the ductile behaviour of the milled powders had increased
due to the less brittle nature of the material (Bolhuis and Chowhan, 1996, Hersey et al., 1973, Roberts
and Rowe, 1985, Roberts and Rowe, 1986). This was because the particles had been previously
fractured during the milling process, which imparted stress and cracks upon the crystal. This therefore

increased the stress/force required to further fracture the particles during compression, which
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Figure 2.9: An in-die Heckel plot of the milled powders (F1-F8) compared to non-milled mannitol (FO) indicating
an increased yield pressure post-milling as shown by a smaller gradient.
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subsequently led to higher yield pressures being obtained on the in-die Heckel plot. This study
therefore agreed with previous findings where it was stated that the reduction of particle size of a
brittle fragmenting material had reduced fragmentation during compaction (Hersey et al., 1973,
Roberts and Rowe, 1985, Roberts and Rowe, 1986) and in the current study, mannitol being a material
that densifies largely through fragmentation also had enhanced compression behaviour after particle

size reduction.

As most of the fracture on the mannitol particle was occurring prior to the material being tableted,
the particles were less likely to fracture during the compaction process. This therefore led to less
fracture at the (011) plane between the dies, which in turn was likely to lower the amount of die wall
friction occurring during compression, as there would be an absence of newly fractured surfaces
interacting with the dies. This was shown by the production of more robust, mechanically stronger
ODTs manufactured from the milled samples, as shown in Figure 2.7 and Table 2.2. The fracture at the
(011) plane during milling and prior to tableting led to an improvement in compressibility, as the
reduction in die wall friction allowed the particles to interact and bond more tightly together. It can
also be concluded that a larger proportion of the compression energy applied into the material would
have been used to bond the particles together as opposed to causing the particles to break/fragment
(Coffin-Beach and Gary Hollenbeck, 1983), which was shown by the improvement in hardness of the

tablets at both compression forces.

2.3.5 Long Term Physical Stability Study

To establish the long term stability of milled mannitol three of the most favourable powders, with the
optimum powder and ODT characteristics, were taken forward. These formulations had the ideal
energy input during milling, with the energy input per unit mass being 1.71-6.84 J/kg. The selected
powders were F1, F2 and F8. Figure 2.10 and 2.11 indicate the DSC melting point and the % of B-
mannitol present in the powder respectively. It was seen that the melting point (Figure 2.10) remained

very close to the literature reported value and the value tested immediately post milling, of around
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Figure 2.10: DSC melting point of the three milled mannitol powders tested at ambient and accelerated storage
conditions over 6 months. Gives a clear indication that the melting point remained very consistent between
167-169°C, indicating a stable crystal form. Data presented as mean + SD.

167°C (Rowe et al., 2012). In Figure 2.11 it was seen that the percentage amount of B-Mannitol also
remained consistent throughout the testing period, with the amount in the powder constantly above
98 %, although a slight reduction from the first few weeks, and a plateau was observed. This gave an
indication that the milling process had very little effect on the stability of the mannitol crystal, and
that it remained crystalline material with little or no amorphous regions. The XRD patterns produced
very sharp peaks indicating high crystallinity, and the high percentage of B-mannitol indicated that no
polymorphic transformation was taking place, due to the high stability of the B-polymorph (Willart et
al., 2007). The negligible amount of a-mannitol (<1.5 %) observed upon Rietveld refinement may have
been due to impurities within the material or due to the reduction in peaks across the pattern, that
was characteristically observed after the milling process. With the accelerated study at a high
temperature and humidity, it was observed that the crystal properties of mannitol remained very
stable for long periods of time, and that storage did not result in a reduction in the crystallinity of the

material.
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Figure 2.11: A graph indicating the % B-mannitol, through Rietveld refinement of the XRD patterns, of the
milled powders stored at ambient and accelerated conditions over the 6 month stability testing period. In all
cases the amount of B-Mannitol remains >98 % indicating that the polymorphic form remains stable post
milling during storage in ambient and accelerated conditions.

Figures 2.12 and 2.13 indicate the degradation temperature and moisture content of the milled
mannitol that was stored at ambient and accelerated condition over the 6 month period respectively,
which was measured using TGA analysis. It was observed that over the 6 months, at both ambient and
accelerated conditions, the degradation temperature remained very similar, with degradation
occurring at around 235-245 °C, in one large mass loss, similar to what was observed in literature
(Tong et al., 2010). This consistent degradation temperature, with very similar patterns observed
throughout the stability study, indicated that the mannitol was remaining fairly stable, and there was
very little production of by-products occurring during the storage of the milled mannitol. Along with
DSC analysis, where no other transitions or melting points were observed, the data clearly showed
that milled mannitol was chemically stable, and that there were no reactions of the material that led
to the formation of by-products during storage. Also in Figure 2.13, it was seen that the moisture
content of the milled mannitol remained similar throughout the study, and more importantly during

accelerated storage conditions where RH is at 75 %, there was very little/no water uptake into
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Figure 2.12: A graph showing the TGA degradation temperature of the milled mannitol powders stored at
ambient and accelerated conditions over a 6 month period Degradation remains fairly constant at around 235-
240 °C, indicating very little/no formation of by products during storage, and that post milling, mannitol
remained stable. Data presented as mean + SD.

the milled mannitol. As was mentioned previously mannitol is a non-hygroscopic material, which gives
it one of its key advantages for employment in ODTs. In this study it was seen that milling exposed the
hydrophilic (011) crystal plane, and therefore it was necessary to test moisture uptake during storage
as the wettability of the powder had increased when it came into contact with water. However upon
storage at a high relative humidity it was seen that there was no increase in moisture within the milled
mannitol, with moisture levels remaining below 1 % at both ambient and accelerated conditions,

indicating that the milled mannitol still had the advantage of being a non-hygroscopic material.

From the stability study it was concluded that across the 6 month period, at both ambient and
accelerated conditions, very little change in any of the milled mannitol formulations (F1, F2 and F8)
was observed and the properties of the material remained consistent throughout. This indicated that
the material would be suitable as a long term alternative to regular mannitol, as the milling did not
affect the crystallinity, polymorphic form, melting point, degradation temperature or moisture

content during long term storage, and in fact the material remained very stable.
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Figure 2.13: A graph indicating the moisture content of the milled mannitol powders stored at ambient and
accelerated conditions over a 6 month period, measured using TGA analysis. The moisture content remained
very low (<1 %) in all cases, even when stored in accelerated conditions at 75%RH, indicating that the milled
mannitol did not become susceptible to moisture uptake during storage. Data presented as mean + SD.

2.3.6 Milled Mannitol Flow Improvement

From the above work it was concluded that milled mannitol provided a pragmatic strategy to
overcome the inherent poor compression properties it displays during direct compression, and was
advantageous for ODT production. However the unaided mannitol powder had an extremely poor
flow due to its highly cohesive nature, which was due to its very small particle size of around 10-11
pum. Good bulk flow characteristics are essential for large scale manufacture of tablets during direct
compression as this results in a uniformly weighted dosage form, with the absence of any capping or
lamination, as well as having a consistent drug content (Abe et al., 2009, Thoorens et al., 2014). With
the milled mannitol having a small particle size, it led to a high surface area to volume ratio, which
resulted in the cohesive Van der Waals forces increasing and therefore when the powders were
poured it was more inclined to resist bulk flow (Mullarney and Leyva, 2009). Also as a result of milling
the particle size distribution was wide which also contributed to the poor flow behaviour; segregation

would be prevalent as the smaller particles aggregated due to their highly cohesive nature, separating
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from the larger particles; there would also be high incidences of interlocking, as the smaller particles
were able to pack in between the voids between the large particles, and along with their highly
cohesive nature reduce the bulk flow behaviour. Powder F2 was taken forward for flow investigation
due to its advantageous ODT properties and because of its highly stable nature. It had an ideal energy
input per unit mass, being 1.71 J/kg, which would also be the least labour intensive if translated to

larger scale production.

2.3.6.1 Optimising Flowability with Starch 1500%/Silica in the Cube Mixer

Figure 2.14 indicates a graph comparing varying concentrations of Starch 1500® (4-20 %) against the
F2 mannitol control, with and without the use of silica as a flow aid, with all powders blended in the
cube mixer at 250 rpm for 10 mins. The angle of repose data showed that adding starch (Span —2.44
pum) to the milled mannitol tended to improve the flow of the milled mannitol, with statistical
significance seen at concentrations of 8 % and above, from an angle of repose of 48.75° (poor flow) to
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Figure 2.14: A graph showing the angle of repose of the milled powders, indicating that addition of Starch
1500° is advantageous in improving flow characteristics of the milled powders, with concentrations above 4 %
being statistically significant. However it was also shown that addition of silica significantly improved flow
compared to the control, similar to starch at high concentrations, with further improvement in flow seen at all
starch concentrations (only 4 % starch showed statistical significance. Data presented as mean + SD (n=3,
p<0.05).
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39.26° (Fair) when 20 % starch was incorporated. Starch 1500° had a larger particle size compared to
mannitol, around a VMD of 60 um according to laser diffraction data. These larger particles therefore
flowed better than the milled mannitol, and once added to the mannitol helped to aid the flow, as the
cohesive mannitol particles had been attracted to the larger starch particle, which resulted in lower
cohesion between the mannitol particles. However when silica was incorporated into the powder
blend the flow was further improved compared to adding the starch on its own (with statistical
significance seen with the F2 control and 4 % starch). This was because silica is designed as a flow aid,
so it was expected that the addition of silica would increase the flowability of the powder. The very
small silica particles were able to coat the milled mannitol particles, which consequently would have
reduced interparticle cohesion and friction between the mannitol, and improved flow (Kojima and
Elliott, 2013, Zimmermann et al., 2004, Zhou et al., 2010). This was shown by the F2 formulation which
displayed a significant decrease in angle of repose between the unaided mannitol and mannitol
containing 0.5 % silica. When the starch was added further improvements in flow were seen, and it
was observed that an optimum concentration of Starch 1500° was 12 %, as this displayed the best
angle of repose at 35.45° (Good). The angle of repose with 20% starch + 0.5 % silica was also low at
35.89°, however a worsening in angle was observed in the results for starch 16 % + 0.5 % silica, with
an angle of 37.07° (passable). This may have been attributed to the packing geometry of that particular
powder, as having the larger starch particles may have allowed the small milled mannitol to pack
within the voids of the starch particles, which subsequently inhibited the bulk flow of that powder,
and cause a reduction in flowability of the bulk powder blend. From these results the powder taken
forward to investigate for further flow improvement in the composite mixer was the 12 % starch

formulation, with 0.5 % silica, as it displayed the best flowability according to angle of repose.

2.3.6.2 Optimisation of composite blender parameters

Figure 2.15 shows the angle of repose of milled mannitol with 0.5 % silica mixed in the novel composite
mixer at speeds of 1500 rpm compared to 2000 rpm, with and without the use of 1 bar of air to help
disperse and mix the powder. From Figure 2.15 it was seen that the angle of repose tended to decrease
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as the speed of the mixer was increased, with the angle of repose with 1 bar air at 1500 rpm being
39.59° (Fair) compared to at 2000 rpm where the angle was 34.48° (Good). This was because at a
higher mixing speed the particles were able to disperse more readily through the powder blend as
higher shear forces were applied to the mannitol aggregates, which essentially broke them up (Le et
al., 2012, Kale et al., 2009, de Villiers, 1997). This allowed the silica flow aid to then coat the cohesive
mannitol particles more effectively, rather than coating the aggregated particles, and produced a
more uniform particle size distribution, with a lower range of large agglomerates. From Figure 2.15 it
was seen that there was statistical significance (ANOVA p<0.05) when the speed was increased from
1500 to 2000 rpm with 1bar of air, which also showed that increasing mixing speed allowed further
improvements in flow categories. From this it was concluded that using a 2000 rpm speed with the
composite mixer with 1 bar of air produced the most favourable flowing powder, and was therefore

used for further investigation of the composite blender.
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Figure 2.15: A graph showing the angle of repose of the milled mannitol + 0.5 % silica mixed in the novel
composite blender at different parameters. It shows that increased speed does help in improving the flow
behaviour of the powder, with a significant improvement seen between the powder tested at 1500 rpm and
2000 with 1 bar of air pressure. Data presented as mean + SD (n=3, p<0.05).
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2.3.6.3 Comparison of the Cube and Composite mixer

Figure 2.16 shows a graph of the angle of repose of milled mannitol mixed in different powder blends
containing 0.5 % silica, 12 % starch and a combination of both. It was seen that the formulation
containing 0.5 % silica mixed in the composite blender had the best flowability with an angle of repose
of 34.48° (Good), compared to the cube mixer with just 0.5 % silica which had an angle of 41.319°
(Passable), which was statistically significant (ANOVA p<0.05) . It was seen that in all cases adding 0.5
% silica did improve the flow, as it was utilised as a flow aid, and was able to reduce the cohesiveness
of mannitol, therefore allowing the particles to flow better due to the lower Van der Waals forces.
When 12 % starch was used, it was observed that there was very little difference in the angle of repose,
as both were around 35° (Good). It may have been that for milled mannitol it was difficult to improve
the flow further, as it appeared that, alongside the 0.5 % silica blend in the composite mixture, the
lowest angle achieved was 34-35°. This was as a result of the cohesive nature of the powder, as the
particles of mannitol were very small, and interparticle/electrostatic forces would have inhibited the

45
B Cube mixer B Composite mixer

40
3
3
2
2
1
1

0.5% Silica 12% Starch 12% Starch + 0.5% Silica
Powder

Angle of Repose (°)
o w o w o (]

vl

o

Figure 2.16: A graph showing the angle of repose of the various milled mannitol powders comparing cube
mixing and composite mixing for 10 minutes. It can be seen in general that composite mixing proves
advantageous in improving flow, with significant flow improvement observed with 0.5% silica. Data presented
as mean = SD (n=3, p<0.05).
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flow behaviour of the bulk powder, even with the presence of silica which was acting as a lubricant. It
was seen that including starch had little benefit in improving the flow properties of the powder, unless
it was included with silica. The angle of repose tended to be around 40°, which in the case of the cube
mixer was comparable to the silica blend. However in the composite mixer the flow of the starch blend
was much higher than the mannitol with the silica alone. This may have been because in the composite
mixer, which was able to dry coat smaller particles onto larger coarse particles, the mannitol may have
coated on to the surface of the starch. The blends tested for angle of repose were not sieved to remove
the finer particles, so in this particular batch there would have been a wide particle size distribution,
therefore leading to particle segregation, and a more closely packed particle geometry, which would
have therefore inhibited the flow further. Including starch with silica provided the best option for flow
improvement at a concentration of 12 % starch, with the angle being around 35°, as the cohesive
nature of the mannitol would have been reduced due to the presence of silica, whilst the good
flowability of the starch would have also contributed to the better flowing nature of the bulk powder.
It was shown here that the composite mixer presented a better option for flow improvement rather
than the standard cube mixer, as the presence of high shear forces during the mixing process would
help deagglomerate the cohesive milled mannitol particles, allowing it to coat the surface of larger
particles, therefore reducing overall cohesivity of the powder blend. The ability of silica to coat the
surfaces of mannitol was also increased as a larger surface area of mannitol was exposed due to the
deagglomeration of the particles, allowing a larger area for the silica to coat (Dahmash and
Mohammed, 2015). Work in the group had shown optimisation of the composite mixer parameters
were needed for peak powder performance. Therefore the composite mixer was taken forward for

further flow improvement assessment.
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2.3.6.4 Assessing the effect of mixing time during Composite blending on Milled Mannitol flow

Figure 2.17 shows the differences observed between composite and cube mixing over a 30 min time
period. It was seen that over the 30 min period the flow of the milled mannitol with silica was further
enhanced, with composite blending proving more advantageous than cube mixing. This was down to
the longer duration of powder mixing, which enabled the high shear forces within the composite mixer
to break down aggregates of both silica and mannitol, and therefore the small silica particles were
able to coat the milled mannitol more thoroughly. This would have led to lower cohesive forces being
present in the powder blend as the silica was effectively coating a larger proportion of the mannitol
and inhibiting the cohesive forces between adjacent mannitol particles. A statistically significant
difference was seen at the 10 min mixing time (ANOVA<0.05), but not at 20 or 30 mins, however it
was still seen that composite mixing gave a more flowable powder than cube mixing, with the lowest
angle of repose being 32.53° (good), which was mixed for 30 mins in the composite blender. The
corresponding cube mixed value was 34.56° (good), indicating a difference of approximately 2°, which
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Figure 2.17: A graph showing the angle of repose of milled mannitol + 0.5 % silica comparing cube and
composite blending over a 30 min period, highlighting that composite blending is advantageous over cube
mixing as flow improvements are evident, with mixing at 10 mins being statistically significant. Data presented
as mean = SD (n=3, p<0.05).
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was also similar for the 20 min time interval where the composite mixed powder had an angle 34.94°
(good) as opposed to the cube blended powder at 36.75° (fair). With flow the USP gives guidelines on
powder flow classification (USP37, 2014c), and in the case of the 20 min mixed powder, although
statistical significance wasn’t observed a flow category difference was observed, showing that the
composite powder would be more flowable and actually be classed as a lower risk powder. Therefore
in terms of the angle of repose it could be said that a 2° difference could be significant and therefore
composite blending represented a more advantageous method for flow improvement over cube
mixing, with a 30 min time giving the most flowable powder with a 2° improvement seen between the

composite mixed powders at 30 mins compared to 20 mins.

2.3.7 Scale Up Study

To assess the suitability of milled mannitol as a viable option to unmilled mannitol, a scale up study
was conducted, whereby a preblend of milled mannitol had undergone flow enhancement with an
ideal blend from the flow investigation above. It was established that flow improvements could be
seen when milled mannitol was dry coated on to a host particle, in the above case 12 % Starch 1500°,
and used in combination with the flow aid, fumed silica. MCC was used as an alternative to the Starch
1500®, with a slightly larger particle size of 100 um, to enable a different loading capacity of the guest
mannitol on to the host particle. The powder blends were mixed in the composite mixer and compared
to cube mixed blends. Table 2.4 shows results for the uniformity of weight test carried out according
to BP specification (BP, 2015). BP requirements indicate that no tablet should fall outside of the range
of 10 % from the mean of that batch, and no more than two should fall outside of 5 % from the mean.
The composite blended starch passed the uniformity of weight test as no tablets fell outside the 5 %
range, and provided a flowable powder that was easily tableted. The compositely blended MCC
powder also gave fairly good results with tablets only varying in the 5-10 % range, although this test
did fail with six falling within that range. Cube blended results however had tablets in both batches
falling outside the 10 % variation parameter (13 for starch and 2 for MCC), indicating poor flowability
and tableting capability of that powder. The results gave an indication that composite blending was

110



A Holistic Multi Evidence Approach to Study the Fragmentation Behaviour of Crystalline Mannitol

providing more uniformly weighted dosage forms, as the standard deviations observed were much
tighter than those of the cube blended tablets. Twenty tablets were tested, and as was seen with the
cube blending, massive variations in weight were seen, with SD being 79.59 and 33.16 mg, for starch
and MCC respectively, compared to the composite blended SD being 11.88 and 23.67 mg, for starch
and MCC respectively. The above results showed that the flow of the compositely blended powders
proved advantageous, however with the use of angle of repose as the primary measure of flow this

could been classed as subjective.

Table 2.4: A table showing the uniformity of weight of the four powder blends tested in the auto tablet press,
with the amount of tablets falling between 5-10 % and greater than 10 % of the mean highlighted as per BP
requirements (BP, 2015). Results show that composite blending provided more uniform dosage forms and in the
case of compositely blended starch passed the compendial test. Results are displayed as mean + SD (n=20)

Starch Cube MCC Cube Starch Composite MCC Composite
Mean Weight 467.65 498.89 + 536.31+ 503.02 +
(mg) 79.59 33.16 11.88 23.67
5-10 % 1 3 0 6
>10 % 13 2 0 0
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To provide evidence that the flowability of the composite blended powders was superior to the cube
blended the tableting study was essential to provide actual practical evidence that the composite
blended starch and MCC were giving powders that were able to flow down the hopper, into the dies
and produce uniform dosage forms successfully. Figure 2.18 shows images of the produced tablets.
Again this, alongside the uniformity of weight test showed that the composite blender provided far
superior tablets compared to traditional cube blending, as the cube blended tablets had evidence of
capping and lamination, due to the poor flowability of the powder, whereas the composite blended
tablets looked more uniform, with much less imperfections. With cube blending the starch/MCC and
silica were not being evenly dispersed throughout the milled mannitol, which was the largest

constituent of the blend. Whereas in the composite blender the milled mannitol would have started

Figure 2.18: A picture showing tablets produced from the auto tablet press for the 4 powder milled mannitol
blends test; 1 — Cube blended with starch, 2 — Cube blend with MCC, 3 — Composite blend with Starch and 4 —
Composite blend with MCC. Observed that tablets made from cube blended powder were prone to capping
and lamination, and the quality of the tablets were very poor compared to compositely blended powders
which provided uniform tablets with very little/no imperfections.
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to coat the surface of the large starch/MCC particles, whilst the silica would have been more likely to
coat the mannitol surface and reduce the cohesiveness. The flow of the cube blended powders would
have been inhibited due to the large particle size range, increasing the amounts of segregation in the
blend, whilst also being more cohesive due to the increased surface electrostatic forces. This led to
the powder flowing very poorly down into the dies during the automated process, which led to
trapped air during the compression cycle, whilst the segregation caused excess fine particles within
the powder which would have increased die wall friction, and therefore lead to dusty surfaces on the
tablet, as was clear in Figure 2.18 (Staniforth and Aulton, 2007). However in the composite blender,
the dry particle coating would have negated excess surface charges on the milled mannitol as the
mannitol was able to utilise its cohesive nature to coat on to the surface of the starch/MCC, whilst
also attracting larger quantities of silica, which helped improves it flow behaviour (Dahmash and
Mohammed, 2015). This also produced particles of a more uniform size as the levels of small milled
mannitol particles were reducing due to their coating on the larger particles. This therefore led to a
more uniformly dispersed powder and improved bulk flow into the dies during tableting allowing the

automated tablet process to produce tablets of a uniform weight and of good quality.

Tablet 2.5 shows the tablet test results of the tablets produced from the auto tablet press from the

four blends investigated. The results indicated that the mechanical strength of the composite blended

Table 2.5: A table showing the tablet test results for the ODTs produced using the auto tablet press for the four
different powder blends tested. Results indicated improved mechanical properties of the compositely blended
ODTs alongside improved disintegration times, with hardness of composite blended ODTs being significantly
better than the cube blended alternatives. Results are presented as mean * SD (n=3, p<0.05). Data marked with
an asterisk (*) indicates statistically significant results compared to the cube blended alternative.

Starch Cube MCC Cube Starch Composite MCC Composite
Disintegration 52.7+18.4 43.7 +19.0 34.0+17.3 41.0+7.9
time (s)
Hardness (N) 71.40+2.31 99.70 £ 14.90 136.17 £ 11.64* 146.70 £ 16.74*
Friability (%) 2.23 1.67 0.77 0.76
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powders was improved compared to the cube blended powders, with the improvement in hardness
being statistically significant (ANOVA p<0.05). The primary reason for this would have been due to the
poor quality of the cube blended dosage forms, as observed in Figure 2.18, with tablets displaying
capping and lamination, alongside a dusty exterior. During auto tablet manufacture the powder is only
within the dies for a matter of a few seconds at most, the reduced flow capability of the cube blended
powder would have resulted in an incomplete filling of the dies and therefore poor compression of
the powder, which resulted in weak dosage form production. This was reflected with the friability
results, as excess dust was lost during the test, and the weaker cube blended tablets were more
inclined to damage during the test. The hardness of the composite blended tablets was high, which

resulted in the friability being below the 1 % standard.

Interesting results were observed for disintegration time. Although statistical significance was not
evident, possibly due to a slightly high standard deviation, it was seen that the compositely blended
tablets had an improved disintegration time, even with the higher mechanical strength. During
disintegration testing it was seen that the cube blended tablets would disintegrate at a fast rate,
however large pieces were left to disintegrate over the longer duration, whereas with the composite
blended tablets a uniform disintegration of the tablet was observed. This again pointed to the poorly
flowing nature of the cube blended tablets, as segregation would have been more prevalent
(Staniforth and Aulton, 2007). This meant that during flow into the dies, and compression, the larger
starch/MCC particles were more closely packed and bonding together, rather than with the other
powder constituents, leading to the noticeable long disintegrating pieces observed during testing.
Whereas the more uniform distribution of the starch/MCC through the composite powder, as well as
the surface coating of mannitol, led to a tablet with a uniform composition of excipients throughout
and therefore complete disintegration in a faster time, with disintegration occurring almost within

USP ODT disintegration time standards even with the absence of any disintegrant.
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2.4 Conclusion

Ball milling resulted in an alteration in the powder morphology of mannitol, with little of the original
crystal structure remaining due to the high levels of energy input during the milling process. It was
observed that optimisation of energy input is essential to overcome particle agglomeration post-
milling, and that x-ray diffraction provides a useful model to predict energy input during milling.
Additionally, the crystal structure remained stable as there were no amorphous regions formed with
negligible polymorphic transformation. The main plane of fracture for mannitol during the milling
process was the (011) plane as visualised on the SEM images and subsequent evaluation of surface
energy analysis and disintegration time profiles. It can be concluded that inclusion of fractured
mannitol in tableting would result in an improvement in the compressibility of the excipient as more
of the compaction energy would be utilised in the bonding of the compact as opposed to
fragmentation of the excipient. ODT properties were also improved when milled mannitol was used,
with disintegration times being shorter at higher compaction forces, as the mannitol particles had
increased wettability due to the exposure of the (011) plane. The hardness of the ODTs also improved

due to the increased compressibility of the mannitol.

The scale up study provided evidence that the newly developed composite blender provided clear
advantages for producing a flowable powder that was capable of being compressed in an auto tablet
press. In fact without the composite blender, milled mannitol would not have been suitable for
tableting on a larger scale due to the poorly flowing nature of the powder that was produced. The
composite blender gave a powder that flowed well into the dies during auto-compression, and
provided uniformly weighted tablets of a high quality, that were mechanically sound and disintegrated

rapidly.

It can be concluded that particle size reduction is a pragmatic strategy to overcome the inherent poor

compression properties of mannitol, and dry particle coating can be utilised as a novel method to
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provide a scalable powder capable of providing tablets of a high mechanical strength as well as fast

disintegrating properties.
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An Investigation into the Powder and ODT Properties of Commercially available Grades of Mannitol in Comparison to Ball
Milled Mannitol

3.1 Introduction

The milled mannitol tested in the previous chapter provided interesting results in terms of ODT
characteristics. The ODT’s manufactured with the milled mannitol generally had very good mechanical
properties with relatively low disintegration times, which confirmed that milling the mannitol prior to
compression can improve ODT characteristics. However the main drawback of milling was the poor
flowability of the powder due to the very small particle size, which increased cohesiveness and
electrostatic forces between the individual particles. The wide particle size distribution also resulted
in segregation which in turn inhibited powder flow. This poor flowability will cause the powder
particles to not travel uniformly into the dies and can affect the uniformity of content and weight of
the final dosage form, whilst also causing sticking and capping during the tabletting process (Rasenack
and Mdller, 2002, Sandler et al., 2010, Staniforth and Aulton, 2007). This was addressed with the
flowability study whereby the milled mannitol was compositely blended in the dry particle coater
alongside the glidant, fumed silica, and a larger particle, either Starch 1500® or MCC. The promising
results achieved with dry coating of milled mannitol indicated that flow could be improved to
acceptable levels, resulting in a powder that could be successfully tableted on a large scale automated

tablet production process, giving tablets of an acceptable quality and rapid disintegration.

Mannitol is available commercially in two main modified forms, spray dried and granular powders.
These are designed to overcome the inherent poor flow properties of crystalline mannitol, which due
to its needle shape and small particle size, has high levels of cohesiveness and increased interlocking.
Granulation is a process which is designed to increase particle size by fusing the mannitol particles
together to form larger agglomerates/particles (Shanmugam, 2015), which in the case of mannitol will
reduce the levels of needle shaped particles within the powder. This increase in size and alteration of
particle shape leads to an improvement in powder flow by reducing the cohesiveness of the powder
and lowering the levels of interlocking (Summers and Aulton, 2007). Also the introduction of more
uniformly shaped particles reduces levels of segregation, and provides a more uniform bulk flow

(Shanmugam, 2015). Spray drying is a process by which a solid excipient, for example mannitol, is
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dissolved to form a solution. This solution is pumped into an atomiser on the spray dryer and sprayed
into the chamber whereby the hot air evaporates the solvent and causes rapid drying of the droplets.
The solid particles are then collected at the end of the process, with particle size of the solid powders
controlled by the pump rate, which affects the droplet size, and the drying temperature of the device
(Wisniewski, 2015). This forms particles which are spherical in shape, and have a uniform size
distribution, with the size often described by the diameter of the particle (Vehring, 2008), which in
turn increases powder flowability by reducing the interlocking and electrostatic forces between

mannitol particles (Aulton, 2007).

The aim of this study was to assess powder characteristics and ODT properties of commercially
available mannitol grades, and compare this to the milled mannitol that was prepared in the previous
study. Processing of mannitol through milling provides a much more cost effective alternative to spray
drying and granulation of crystalline mannitol. The powder doesn’t have to be modified into a solution
before production, as is the case with spray drying, and doesn’t have to undergo the granulation
process. Results for powder F2 were taken from the previous study and brought forward for
comparison as it provided the ideal ODT properties (energy input per unit mass being around 1.71
J/kg) and allowed a true comparison to the commercially available grades. This will highlight any
advantages and disadvantages that current commercial grades hold over the milled mannitol samples
prepared, whilst showing areas where milled mannitol may actually perform similarly to the

commercial grades.

3.2 Materials and Methods

3.2.1 Materials

Several different grades of D-Mannitol were investigated from two different suppliers. Mannogem
powder, Mannogem 2080, Mannogem Granular and Mannogem EZ SD were provided by SPI Pharma
(Wilmington, USA), and Pearlitol 50C, Pearlitol 500DC and Pearlitol 200SD were provided by Roquette

(Lestrem, France). Milled mannitol results from the previous chapter were used as a reference point
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for comparison in this study. Magnesium stearate was used as a tablet lubricant and was obtained

from Fischer Scientific (Loughborough, UK).

3.2.2 Methods

3.2.2.1 Scanning Electron Microscopy (SEM)

SEM monographs were obtained using a Zeiss Supra 55-VP (Oberkochen, Germany) scanning electron
microscope, allowing an analysis of the particle morphology of the graded mannitol products. A few
milligrams of each sample was adhered to a separate double sided strip and then fixed on to an
aluminium stub which was subsequently attached to the SEM holder. Each stub was then gold coated
using an Emscope SC500 Sputter Coater (Quorum Technologies, Lewes, UK) at a current of 20 mA and
acceleration voltage of 1.5 KV for 40 seconds. Each sample was the placed in the SEM and analysed
under vacuum conditions, the magnification and acceleration voltage are on each of the monographs

presented.

3.2.2.2 X-Ray Diffraction (XRD)

XRD was performed to detect the polymorphic form present in the samples of different grades of
mannitol. A Bruker D2 Phaser (Massachusetts, USA) equipped with a lynxeye detector comprising of
a Co-Ka tube, with a wavelength of 1.79026 A, was used for the analysis of mannitol across a 26 range
of 10-50 in steps of 0.02 every 0.25 seconds. A rectangular beam of size 0.6 mm was used for
measurement and the sample spun at 15 rpm to allow maximum surface analysis. Around 1 g of each
sample was poured into the centre of a grooved plastic disk and lightly flattened to obtain an even
surface for the analysis; the sample disk was then inserted into the diffractometer. Eva 18.0 software

was used for analysis of the obtained patterns.

To quantify the polymorphic phases within the commercially available grades a Rietveld Refinement
was conducted using Material Analysis by Diffraction (Maud) software v2.49 (Luca Luterotti, University
of California, USA) (Lutterotti, 2010). The obtained patterns for each of the grades was individually

imported into the programme, whilst a calculated ideal pattern for both the a and B polymorphs,
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obtained from the Cambridge Database, were imported as a .cif file into Maud. The software was then
able to fit the obtained pattern from XRD analysis to the calculated patterns, and the refinement

calculated as percentage quantity of each of the polymorphic forms.

3.2.2.3 Powder Flow

Powder flow was assessed using the Hausner ratio and Carr’s index equation.

ptapped ~ Phulk %100

Carr's Index = (Eq. 3.1)
ptapped
Hausner Ratio = Ztaeeed (Eq. 3.2)
Pbulk

With prapped being tapped density and puui being bulk density. These were calculated as follows:

pbulk=% (Eq. 3.3)

With M being mass of powder, and Vo being bulk volume.

M

Ptapped =V_f (Eq 34)

With Vs being tapped volume.

A known weight of sample was poured into a measuring cylinder to allow a bulk/true volume to be
taken. The measuring cylinder was tightly fastened in a Sotax TD2 tap density tester (Allschwil,
Switzerland), using a foam ring to get an extra tight seal, and tapped 1250 times. A reading for tapped
volume was taken at 10 taps, 500 taps and 1250 taps, and value for 1250 taps, i.e. with no further

volume reduction, taken as the tapped volume.
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3.2.2.4 Particle Size analysis

A Sympatec Helos detector equipped with a Rodos dry disperser and Vibri vibratory feeder (Clausthal-
Zellerfeld, Germany) was used to analyse particle size of Mannogem powder and Pearlitol 50C to
assess particle size in terms of contribution to powder flow. Other powders exceed the maximum
measuring range of 175 um, therefore particle size was observed on SEM images. All readings were

taken in triplicate, and volume mean diameter (VMD) obtained and presented as * SD.

3.2.2.5 Heckel Analysis

An in-die Heckel analysis was performed on all samples to assess the compressibility of the modified
forms of mannitol compared to the crystalline powder (Heckel, 1961a). ODT’s were manufactured
using 100 % mannitol, so only the compressibility of the sole excipient was tested; 500 mg of mannitol
was weighed out and poured into the punch containing the lower die. The tablet was compressed
using a Hounsfield Test Equipment H10K (Horsham, USA) equipped with 13 mm flat faced punches up
to a compression force of 5000 N, at a upper punch speed of 400 mm/min. This allowed a force over
distance plot to be formed, and this data was transformed to calculate true and bulk densities of the
tablet, which allowed a subsequent calculation of the porosity (g) of the tablet over the force range of
0-5000 N. A plot of —In(g) against compaction force was then plotted, and the reciprocal of the gradient
was taken as the yield pressure (Py). All readings were repeated in triplicate and P, displayed as mean

+ SD. Both dies were externally lubricated using 5 %w/v magnesium stearate in acetone solution.

3.2.2.6 Tabletting Studies

A powder blend containing 99.5 % of mannitol and 0.5 % magnesium stearate was mixed for 1 minute,
and individual 500 mg powder portions were weighed out. This was repeated for each of the mannitol
grades analysed. ODT’s were prepared by compressing 500 mg powder with a Specac semi-automatic
hydraulic press (Slough, UK) equipped with 13 mm flat faced punches at a compression force of 75
MPa and 225 MPa. Analysis of the ODT’s was conducted immediately after manufacture to reduce any

storage effects on the tablet properties.
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3.2.2.6.1 Hardness
Hardness of the tablets was established using a Copley TBF 100 Hardness tester (Nottingham, UK). The

hardness was then converted to tensile strength using the equation:

2H

g=—— Eqg. 3.5
T (Eg. 3.5)

Where H is the hardness, D is the diameter and T is the thickness of the tablet. All readings were taken

in triplicate and displayed as mean % SD.

3.2.2.6.2 Friability

ODT friability was measured using a Sotax F2 Friabilitor (AllSchwill, Switzerland). Six tablets were
dusted off using a small soft brush and an initial weight taken, the ODT’s were subsequently placed in
the friabilitor, which was rotated for 100 revolutions at 25 rpm for 4 minutes. The tablets were then

dusted off again and a final weight taken. The percentage friability was taken as:

Initial weight—Final weight

% Friability =

X 100 (Eq. 3.6)

Intial weight

3.2.2.6.3 Disintegration

The standard USP disintegration test was used to analyse the disintegration times of the manufactured
ODT’s. A single ODT was placed inside the vessel of a Copley ZT41 disintegration apparatus
(Nottingham, UK) without a disk and oscillated at 30 cycles per minute. A single tablet at a time was
analysed for accuracy of the timings. 800ml distilled water kept at 37 °C was used as the disintegration
medium, and disintegration time was recorded when all fragments of ODT had passed through the
mesh at the bottom of the vessel. Disintegration time was conducted in triplicate and displayed as

mean = SD.

3.2.2.6.4 Porosity
Porosity of the powders was assessed using a Quantachrome Helium Multipycnometer (Florida, USA).

All measurements were carried out in triplicate and displayed as mean £ SD. Diameter and thickness
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of the ODT’s was taken using a digital calliper, and the weight of individual ODT’s was measured using
an electronic balance. The bulk volume (Vs) and bulk density (p) of the tablets were then calculated

using the following equations:

V—nR2 Eq.3.7
B—T (Eq. 3.7)

Tablet weight

- Tablet weight Eq.3.8
Psulk Vs (Eq. 3.8)

The true volume (V:) of the tablet was calculated using the pycnometer, which applies the theory of
gas displacement allowing the porous nature of the tablet to be assessed. The true volume is

calculated using the equation:

Vo=V, — V. (% - 1) (Eq. 3.9)

Where Vc is the volume of the sample cell, V; is the volume of the reference cell, P1 and P2 are the
atmospheric pressure and pressure change during the measurement respectively. The true volume is

then used to calculate true density in the equation:

Tablet weight

e = ———————————— Eqg. 3.1
o v, (Eq. 3.10)

The final step to calculate porosity (&) of the ODT uses the following equation:

g=1 — Bhulk (Eq. 3.11)

Ptrue

3.2.2.7 Statistical Analysis
One way ANOVA was used to statistically analyse data from the different powders in all the tests that
they underwent, using GraphPad Prism 6. The F2 milled mannitol powder was used as a control to

compare the commercial powders to and a Tukey’s multiple comparison post hoc test was used to
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analyse the significant differences among powders. For statistical significant a p value <0.05 was used.

All data was presented as mean + SD.

3.3 Results and Discussion

3.3.1 Powder Morphology and Characteristics

Figure 3.1 displays SEM monographs for the Mannogem and Pearlitol grades compared to the F2
milled mannitol. From image (B) on Figure 3.1 it was evident that the Mannogem powder was not the
characteristic needle shape of mannitol, although it appeared as a crystalline material with a slight
longitudinal shape and grooves following the direction of growth for the crystal. With the Mannogem
on all SEM monographs (Figure 3.1 (B-E)) the usual long needle shape wasn’t observed, with most of
the particles tending to be quite short and wide. This was related to the particle size, as the particle
size was quite small (VMD - 37 um, span — 3.27 um), although the Sigma Aldrich brand tested in a
previous chapter also had a similar particle size, the characteristic needle shape was observed,
however the particles with the sigma brand tended to be a lot thinner and more needle like. The
Pearlitol 50C, seen in Figure 3.1 (F), represented the typical structure for crystalline mannitol, with a
long needle shape, and particles around 50 um in size. In comparison to the Mannogem powder the
Pearlitol crystalline powder had a similar particle size and was visibly similar to what was expected
from a mannitol crystal (Ho et al., 2012, Koner et al., 2015). Figure 3.2 shows the graph of flowability
of the graded mannitol powders tested; Mannogem powder and Pearlitol 50C clearly had the worst
flowability, with the Carr’s index above 40 and Hausner ratio above 1.6 which indicated a very, very
poor flow. This was expected from the crystalline powder as they had a relatively small particle size
which in turn promoted cohesiveness between the particles (Benedetti et al., 2007, Rowe et al., 2012).
The crystalline mannitol had a more needle like shape, as observed in the SEM images, which could
have promoted interlocking between particles and in turn may have contributed to a poorly flowing

material. Figures 3.3 and 3.4 show particle size graphs for the Mannogem powder and Pearlitol 50C
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Mag= 800X
WO= 12mm

Figure 3.1: SEM images showing the morphology of the graded mannitol products compared to milled mannitol
(F2); A — F2 Milled mannitol showing very small particle size at x2000 magnification; B — Mannogem powder
showing crystalline structure at 500x magnification; C — Mannogem 2080 and D — Mannogem Granular
highlighted granulated mannitol both at 800x magnification; E — Mannogem EZ illustrating a porous spray dried
mannitol at 800x magnification; F — Pearlitol 50C showing a crystalline mannitol powder with needle like
structure at 500x magnification; G — Pearlitol 500DC highlighting granular mannitol at 100x magnification and H

— Pearlitol 200SD showing a spray dried mannitol at 250x magnification
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Figure 3.2: A graph showing the flowability of the graded mannitol powders compared to the ideal milled
powder, F2, through Carr’s Index and Hausner Ratio. Results show that the crystalline mannitol forms have
very poor flow alongside the F2 control. All graded powders display an improved flow as expected due to the
physical modifications to the mannitol particle, leading to an enhanced particle size and more uniform shape.
respectively, it was observed that there was a wide range of particle sizes within the samples that lead
to increased segregation amongst the powder, further inhibiting powder flow, as the larger particles
tended to bunch together while the smaller fines started to aggregate due to increased Van Der Waals
forces present between the smaller particles of mannitol (Staniforth and Aulton, 2007). Interestingly
these results were very similar to those observed with the milled mannitol F2, which also had a very
poor flow due to the very small and cohesive particles, observed in Figure 3.1 (A), with particle size
data shown in Figure 3.5. However with cohesive powders, like the crystalline Mannogem and Pearlitol
grades, as well as the milled mannitol, tap density may not be the most accurate representation of
powder flow. This is because the cohesiveness of the powders could lead to entrapped air within the

sample and provide incorrect starting bulk volumes, which would in turn influence the final Carr’s

index and Hausner ratio.
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Figure 3.3: Particle sizing graph for the crystalline Mannogem powder indicating a wide particle size range
within the powder, with sizes varying from 0.6-100um, with VMD being 36.97 um and span 3.27 um (n=3).
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Figure 3.4: Particle sizing graph for the crystalline Pearlitol 50C powder indicating a slightly narrower particle
size range within the powder compared to Mannogem Powder, with sizes varying from 0.6-80um, with VMD
being 35.33 um and span 2.92 um (n=3), although SEM showed particles of around 50um (Figure 3.1 (F)).
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Figure 3.5: Particle sizing graph for the Milled mannitol powder (F2) with a very small particle size range with a
bimodal distribution, with a high proportion of particles within the 1-2 um size range and a high proportion in
between the 10-20 um size range, with the VMD being 11.76 pm and span 5.51 um (n=3).

Figures (C) and (D) on Figure 3.1 represent Mannogem 2080 and Mannogem granular respectively,
and are both granulated forms of crystalline mannitol. The foremost difference between the two in
terms of physical properties was the particle size, as the Mannogem granular had a much wider
particle size range of between 170-1190 um (SPI-Pharma, 2012), which was evident on the SEM
monographs as lots of different sized particles of different shapes were observed. The SEM
monographs of Mannogem 2080 displayed a more of a uniform particle size distribution as was
expected, as the particle size was between 300-590 um (SPI-Pharma, 2012). The granulated forms of
mannitol, as seen Figure 3.1 (C), showed the presence of needle shaped, crystalline grains within the
granule. It was also clear that these granules were made up of agglomerated particles of crystalline
mannitol, which were fused together through the granulation process. The Pearlitol 500DC (Figure 3.1
(G)) had animage at 100x magnification, as this was the only magnification whereby the whole particle
could be visualised. This confirmed the manufacturer stated particle size of around 500 um. In

comparison to the granulated Mannogem grades, the Pearlitol grade displayed much less graininess
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on the surface, and the presence of fine particles was reduced. Although it was expected that the
granulated Pearlitol was also made up agglomerated crystals of the regular crystalline mannitol, the
particle surface was much more smooth and regular. The particle size distribution in the Pearlitol
sample was also much more uniform compared to both the samples of Mannogem which may explain
better powder flowability results. From Figure 3.2 it was observed that the two Mannogem granulated
grades did have the worst flow out of the five modified forms; however both had a fair flow which
indicated that the powders would be suitable for tabletting. They didn’t have as good flowability as
the other grades, particularly the Pearlitol 500DC alternative, because of the wide particle size range
indicated by the manufacturer. This wide particle size range would therefore have inevitably led to
certain levels of segregation amongst the particles which in turn decreased the flowability of the
powder. However this was overcome with the large particle size of these granulated form, which
would have led to low levels of cohesiveness and promoted a homogenous bulk flow. The Pearlitol
500DC appeared to have the best flow properties of all the powders tested, with a Carr’s index of
13.21 and Hausner Ratio of 1.15, which both indicated a good flowing powder. This was because this
sample had a large particle size which negated any cohesive forces between the individual particles,
and also the particle size distribution was narrower than what was observed with the Mannogem

grades, which reduced the levels of segregation and promoted a better bulk flow of the powder.

Figure 3.1 (E) shows an image of Mannogem EZ, which is the spray dried grade of mannitol from SPI
Pharma. From this diagram it was observed that the particles had a very uniform spherical shape, and
had a narrow particle size range, which is a key advantage of spray drying (Hulse et al., 2009, Vehring,
2008). It was also evident from the SEM that there appeared to be pores present within the structure
of the spherical mannitol particle, which may hold a key advantage for use in ODT’s as it could help
promote disintegration by having a more porous tablet, which would allow a faster influx of
water/saliva into the tablet (Parkash et al., 2011). Pearlitol 200SD, Figure 3.1 (H), was the spray dried
mannitol grade from Roquette. Similar to the Mannogem it had uniform sized spherical particles,
however the key difference between the two brands was that the Pearlitol appeared to be much less
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porous compared to Mannogem. Pearlitol had a smooth all round surface, whereas the Mannogem
had large pores visible on the particle surface. Both spray dried forms of mannitol also had good
powder flow properties, as would be expected from a spray dried formulation. This was because the
spray drying process controlled particle size and shape, which in turn helped to improve powder flow
by producing spherical particles with a narrow size distribution (Hulse et al., 2009, Lee et al., 2011).
Both spray dried powders also had particle size of around 150-200 um, which would have reduced the
cohesiveness between the particles, thus helping to promote good bulk flow of the powder. Overall it
was seen that the Pearlitol brand did appear to have better flow properties than the Mannogem grade,
as there was a flow category difference between the granulated forms, possibly due to the wider

particle size distribution.

In comparison to the milled samples the modified grades were all larger in size, and tended to have a
more uniform particle size distribution. The milled powder was very small, on average around 11um,
and the shape varied on how the particles had interacted with the grinding media during the milling
process, as seen in Figure 3.1 (A). This in turn led to poor flowability of the milled samples, with the
modified grades of mannitol (excluding Mannogem powder and Pearlitol 50C, which are both regular
crystalline mannitol powders) displaying a much improved powder flow, as would be expected as they
had been manufactured with the main purpose of increasing powder flow (Rowe et al., 2012).
However the crystalline powder displayed a similar flow to the milled mannitol, as this was unmodified
and still had the small needle shaped particles, leading to poor flow. The difference with the milled
mannitol and crystalline form of Mannogem and Pearlitol was that there were high levels of
cohesiveness in the milled sample as the particle size was very small, around 11 um, but there would
have been lower levels of interlocking as the particle shape had been altered to become more uniform,
and the needle shape was less evident. However there was a large particle size distribution within all
the milled samples (as shown in Figure 3.5) which would have led to high levels of segregation and in
turn decreased the flow properties further. The particle shape of the milled powder appeared to be
more rounded / popcorn shape, as the particles had been fractured during milling, which was similar
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to the granulated and spray dried grades which also had more rounded shapes as opposed to the
needle shape of unmodified crystalline mannitol. With the milled powder that had undergone flow
improvement through dry coating, powder flowability was substantially improved to allow for its use

as a preblend in ODT development.

3.3.2 XRD and Polymorphic Form

Figures 3.6 and 3.7 represent the XRD patterns for the Mannogem and Pearlitol powders respectively.
The Mannogem powder displayed a typical B-polymorph pattern, with two large peaks in the middle
at 2-theta of 22 and 27, with the larger of the two peaks at 27. There were also two B-polymorph only
peaks at a 2-theta of 17 and 34, and the three peaks of the fork at a 2-theta of around 24. The XRD
peaks were slightly shifted to the right due to the utilisation of a cobalt x-ray source as opposed to a
copper x-ray source, however the pattern remained similar (Hulse et al., 2009, Kim et al., 1998). From
analysing the data, there were no significant differences between the Mannogem crystalline powder
and the granulated Mannogem grades. The peaks all followed the same pattern, as seen in Figure 3.6,
which indicated that the crystals within the granulated form were still predominantly of the B-
polymorph, although there was a slight reduction of the large right peak at 2-theta of 27, which could
have changed due to the agglomeration of the crystals within the granulated particles structure. Table
3.1 shows the results of the Rietveld refinement that quantified the phases present within the powder
mix, and it was observed that there were very small amounts of the a polymorph within the crystalline
and granulated forms, although this may possibly be attributed to the impurities within the powder.
However there were also slight reductions of the peak intensities across the whole pattern for both
Mannogem 2080 and Mannogem Granular, which may suggest the presence of the a-polymorph, but
it was more likely due to the change in shape and size of the particles, as the whole pattern
represented a strong fit for B-mannitol. The granulated forms on the SEM displayed a much more
uniform shape with the loss of the characteristic needle form of mannitol. This in turn would have
affected the way that the X-rays diffracted off the crystal due to the alteration of the particle shape
and surface, and the fact that the granulated particle was now made up of agglomerated needle
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Figure 3.6: XRD patterns for the different Mannogem grades tested in this study. The Mannogem powder and
the two granulated forms represented very crystalline powders with a strong fir for the  polymorph, however
the Mannogem EZ, the spray dried form, showed peaks that are clearly representative of the a polymorph as
well as for the B polymorph.

particles of mannitol (Scardi and Leoni, 2001). This was also evident with Pearlitol grade, as Pearlitol
50C and 500DC displayed a strong B-polymorph pattern, but Pearlitol 500DC had a reduction in
intensity of the peaks across the XRD plot due to the alteration of particle shape, and increase in
particle size. Again very small amounts of a-mannitol were detected on the refinement, however for
the granulated form it was insignificant, suggesting that this powder was composed of the B-
polymorph. The reduction of the peaks across the pattern may have been due to the enlarged particles
and the inability of the x-rays to penetrate to the different crystal planes, as may have been possible
with a single small mannitol crystal, which would have led to a higher intensity of diffracted x-rays.
The XRD pattern for the spray dried forms, Mannogem EZ and Pearlitol 200SD, suggested that a
polymorphic transformation had occurred during the spray drying process as both of the patterns
showed the strong presence of the a-polymorph, with some peaks also indicating the presence of the
B-polymorph. The appearance of a peak at 2-theta of 15.5, the alteration of the peaks within the fork

at 2-theta of 24, the reduction of the peak at a 2-theta of 27 and the change of the pattern after a
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Figure 3.7: XRD patterns for the different Pearlitol grades tested in this study. The Mannogem powder and the
granulated form represented very crystalline powders with a strong fir for the B polymorph, however the
Pearlitol 200SD, the spray dried form, showed peaks that were clearly representative of the a polymorph as
well as for the B polymorph.

2-theta of 40 all indicated that there was a strong presence of the a-polymorph within the samples.
The presence of other peaks at a 2-theta of 21, 24 and 27 also indicated the presence of B-mannitol,
with large parts of the plot between a 2-theta of 30-40 being typical of the B polymorph. This was
confirmed through the Rietveld refinement, which indicated that Mannogem EZ had around 57% of
the a polymorph present in the mixture, and Pearlitol 200SD had around 49% of a polymorph present.
This was similar to previous findings (Hulse et al., 2009, Lee et al., 2011, Littringer et al., 2011), who
all found that the spray drying induced a polymorphic change, although a quantification of the amount
of polymorph present wasn’t conducted, with process parameters in particular controlling the extent
of polymorphic transformation. This is because the spray drying process rapidly forms a solid mannitol
particle from a liquid solution, so the orientation of the atoms within the newly formed crystal would
determine the polymorph present within the spray dried sample, and the results indicated that spray

drying was likely to induce the formation of both a and B polymorphic crystals. The strong presence
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Table 3.1: A table showing the polymorphic composition of the commercially available mannitol grades, as well
as the milled mannitol tested in the previous chapter. The regular crystalline mannitol grades, alongside the
granulated grades and milled mannitol provide a clear B polymorphic composition with very little a mannitol
present, however spray dried forms give an almost 50:50 split for each of the B and a polymorph, indicating that
spray drying clearly has an effect on the polymorphic form of mannitol.

Powder % B-Mannitol % a-Mannitol
F2 99.81 0.19
Mannogem Powder 99.74 0.26
Mannogem 2080 99.83 0.17
Mannogem Granular 99.98 0.02
Mannogem EZ SD 43.45 56.55
Pearlitol 50C 99.46 0.54
Pearlitol 500DC 99.96 0.04
Pearlitol 200SD 51.01 48.99

of a-mannitol suggested that the spray dried mannitol would be highly compressible, as Burger et al.
(2000) showed that the o form was the most compressible/compactable polymorph of mannitol. The
milled mannitol represented a strong fit to the B mannitol polymorph, similar to the granulated and
crystalline grades, as shown in Table 3.1, indicating that it was composed of the most stable
polymorph of mannitol, however the spray dried grades represented a clearly different composition
which, in the case of the a polymorph, should give the spray dried powders a compressibility

advantage (Burger et al., 2000).

3.3.3 Compressibility

Figure 3.8 represents a Heckel plot of the branded mannitol tested in this study. A clear pattern could
be established between all powders, except Mannogem 2080 which followed a completely different
pattern, with no visible plateau seen on the plot. This compaction simulation was conducted over a
range of 0-5 KN, so a full range of compaction couldn’t be studied due to a limitation with the

equipment available.
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Figure 3.8: A graph showing the in die Heckel profile of the commercial mannitol grades tested in this study,
with all powders, with the exception of Mannogem 2080, compressing through brittle fragmentation, as
highlighted by obtained yield pressures shown in Table 3.2.

From these results it could be observed that all three Pearlitol powders, Mannogem powder,
Mannogem Granular and Mannogem EZ compressed through brittle fragmentation. This was seen by
the initial rearrangement stage where the line of the graph had an initial sharp rise and curved over
towards the linear region, whereby the line reached a plateau and the linear part of the line indicated
that further densification of the material was through fragmentation of the mannitol (Paronen and
Ilka, 1996). The fragmentation of mannitol had been seen in previous studies (Ho et al., 2012,
Gharaibeh and Aburub, 2013), where it had been described as a brittle material. Other studies (Klevan
et al., 2010), described mannitol as a plastic, ductile material, but in the same study had a high yield
pressure of around 132 MPa. This did however suggest that the material was compacting through
fragmentation, due to the high yield pressure (>100 MPa), with plastic ductile materials usually having
a yield pressure below 50 MPa (Gharaibeh and Aburub, 2013). Table 3.2 shows the graph of the
calculated yield pressures of the powders tested, alongside the milled mannitol (F2) from the previous

chapter, with six of the seven commercial grades having yield pressures above 100, indicating a brittle
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fragmenting material, which was in agreement with previous literature (Gharaibeh and Aburub, 2013,
Klevan et al., 2010). However, an interesting pattern emerged with Mannogem 2080, as it had a yield
pressure of 17.04 + 1.46 MPa, which indicated that this powder displayed plastic compression
behaviour. The standard deviation was very small, and this material was tested on several different
occasions to ensure that this was a true representation of this material, and each time a similar Heckel
plot was observed, with a low yield pressure of below 20 MPa. This wasn’t expected as mannitol is a
fragmenting material and as seen in the previous work (Koner et al., 2015), and with the other six
powders tested here, each different mannitol had fractured during applied pressure. The X-ray
diffraction didn’t indicate a high presence of the a-polymorph, which would increase plastic
behaviour, whilst other powder properties were not significantly different to the Mannogem granular
or Pearlitol 500DC. However in the tablet studies, ODT’s made with the Mannogem 2080 displayed
better hardness (Figure 3.9) than the other granulated mannitol powders tested, and friability was
also low, which also led to the suggestion that this mannitol grade promoted plastic deformation
rather than the fragmentation usually observed with mannitol. However because of the small
compaction range analysed due to the equipment’s limitation (0-5000 N), this may not have been high
enough to allow the fragmentation pattern of the granular mannitol to become apparent. In
comparison to the milled mannitol, which was established as a less brittle fragmenting material, likely
to promote plastic compression behaviour, the yield pressures of the commercial grades were lower.
However as particle size reduction of the original mannitol had occurred, the larger yield pressure
indicated that mannitol was fragmenting to a lower extent and had increased ductile behaviour (Koner
et al., 2015, Bolhuis and Chowhan, 1996, Hersey et al., 1973, Roberts and Rowe, 1986, Roberts and

Rowe, 1985), as opposed to the brittle fragmenting mannitol observed with the commercial grades.
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Table 3.2: A table showing the yield pressures of the commercial grades of mannitol obtained through in die

Heckel analysis, compared to the milled mannitol (F2), showing brittle fragmentation is prevalent in most grades.

Also displayed are friability/porosity results are displayed as an indicator of mechanical properties of the tablets,

showing that spray dried powders are advantageous in reducing friability, with milled mannitol having quite a

high friability. Data highlighted with an asterisk (*) indicates statistically significant data compared to F2 (p<0.05)

Powder Yield Pressure (MPa) Friability Porosity

75 MPa 225 MPa 75 MPa 225
MPa

F2 280.88 + 15.07 2.647 1.674 0.651+ 0.506 *
0.013 0.036

Mannogem Powder 156.79 £ 9.35 1.310 0.801 0.576 + 0.509 +
0.012* 0.012

Mannogem 2080 17.04 +1.46 1.702 1.345 0.602+ 0.530+
0.011* 0.019

Mannogem Granular 174.93 £+ 5.01 2.239 1.341 0.577+ 0.528 +
0.016* 0.007

Mannogem EZ 252.06 £6.29 1.275 0.676 0.579+ 0.512+
0.018* 0.002

Pearlitol 50C 124.38 £ 0.23 4.982 1.740 0.604+ 0.527
0.011* 0.013

Pearlitol 500DC 119.33+8.72 1.354 1.084 0.594+ 0.540+
0.014* 0.007

Pearlitol 200SD 175.60 + 13.80 0.865 0.675 0.616+ 0.544 +
0.018* 0.001
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Figure 3.9: A graph showing the hardness of the commercially available mannitol grades compared to milled
mannitol F2. Significant improvements in hardness were observed with the milled mannitol compared to the
Mannogem 2080 (only at 225 MPa), Mannogem Granular, Pearlitol 50C and Pearlitol 500DC. However both
spray dried grades (Mannogem EZ and Pearlitol 200SD) were significantly higher in mechanical strength
compared to the milled mannitol. Data presented as mean + SD (p<0.05, n=3).

An interesting pattern observed from these results was that the spray dried forms of mannitol,
Mannogem EZ and Pearlitol 200SD, produced significantly harder ODT’s compared to all other grades
as well as the milled mannitol (ANOVA p<0.05), indicating improved compressibility, as shown in
Figure 3.9. This was due to the presence of the a polymorph within these samples, as shown in the
XRD data (Table 3.1), which had a better compressibility than the § polymorph (Burger et al., 2000),
thus allowing a better, more robust tablet to be formed. The Heckel analysis showed that
fragmentation of the material was still occurring and that the high yield pressure was still indicative
of a fragmenting material, due to the presence of 50% of the B polymorph within the powder; however
the presence of the alpha polymorph in the mixture allowed an increased level of bonding within the
compact, which increased the strength of the ODT. This was similar to a-lactose monohydrate in a

previous study, which also showed high levels of fragmentation, but increased hardness due to the
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higher level of bonding sites becoming available through the brittle fracture of the material during

compression (Lerk et al., 1983, Vromans et al., 1985).

The crystalline powders displayed low hardness, with Pearlitol 50C showing significantly lower
hardness than the milled mannitol (ANOVA p<0.05). From the SEM of Pearlitol 50C it was observed
that this powder had more profound needle shaped particles than Mannogem. As can be seen with
the Heckel analysis, this powder also had high levels of fragmentation during compression, coupled
with the long needle shaped particles, possibly led to tablets of a lower mechanical strength. This was
because during compaction the needle may have fragmented along the (011) plane (Ho et al., 2012),
which increased the levels of die wall friction during the compression cycle. This high die wall friction
was then inhibiting the levels of bonding within the compact leading to a weak ODT being formed.
This was evident between Mannogem powder and Pearlitol 50C, which had significantly different
hardness, as the Mannogem powder had much smaller particles that were quite wide, which then

reduced the levels of die wall friction and allowed a stronger compact to be formed.

All the granulated grades didn’t show very good hardness at 75 MPa, with the hardness being below
50 N, although at 225 MPa the hardness did get to an acceptable level. The hardness of the Mannogem
granular forms were both reduced compared to the crystalline powder, although the Mannogem 2080
was not statistically significant at 75 MPa. This was unexpected as the yield pressure of the Mannogem
2080 was very low and even indicated a shift to a more plastic like behaviour during compression
which in turn should have led to a stronger compact. The Pearlitol 500DC however did display a
statistically significant improvement over the Pearlitol 50C as expected by a granular formulation, this
would have been due to the granular powders being made up of less needle shaped particles, and
instead having a more uniform particle shape which in turn led to lower die wall friction and a higher

binding energy allowing stronger compact formation.

In comparison to the milled powders the granular and powdered mannitol’s didn’t fare too well, as

the milled powders had a significantly higher hardness in all cases (except with Mannogem 2080 at 75
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MPa). The spray dried grades represented a much better comparison to the milled powder as they
had slightly improved hardness at both compaction forces compared to the F2 milled mannitol. This
indicated that (for mechanical strength) the milled powders represented a good step forward in
improving ODT robustness as they were high in strength, slightly lower than commercially available

spray dried powders, whilst displaying a superior hardness than the crystalline and granulated grades.

3.3.3.1 Friability

Table 3.2 also shows the friability of the various mannitol grades tested in this study alongside the
milled mannitol (F2). The results followed a very similar pattern to the hardness of the ODT’s as
described above. It was clear that the Pearlitol 50C had the worst friability at both compaction forces,
which correlated with the lowest hardness as shown in Figure 3.9. This was due to the needle shape
of the particle which inhibited strong compact formation and the high die wall friction during
compression which possibly led to a highly friable dosage form due to the weaker bonds. It was
observed that the spray dried grades also offered an advantage in terms of friability for ODT’s, as they
showed very low friability at both compaction forces, with Pearlitol 200SD showing below the
specified 1% friability at 75 and 225 MPa. This indicated that these two forms were very useful in
producing ODT’s with good mechanical properties. The Mannogem powder again displayed a fairly
low friability, even lower than the Mannogem granulated forms, which may have been due to the lack
of long needles within the powder which allowed a stronger tablet to be formed, due to the reduction
in die wall friction. The Pearlitol 500DC however displayed a massive improvement over the Pearlitol
50C, due to the granulated particles having no needle particles present within the powder blend, and

also having a uniform particle size and shape.

In comparison to the milled powders, the spray dried grades and granulated forms were advantageous
in reducing friability of the tablets. This was because the milled powders were made up of very small
particles which were more inclined to come apart from the surface of the main compact during the

friability test and therefore a higher weight loss would have been observed post friability test (Eiche
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and Kudehinbu, 2009, Santl et al., 2012). This meant that the friability did come out higher for the
milled powder, although at 225 MPa it was almost acceptable at 1.674%, which was similar to all of
the granulated grades tested, showing that milling could produce ODT’s with an acceptable friability
if slight changes in compaction force or formulation were undertaken, although the spray dried

mannitol appeared to be the best grade available for producing the least friable tablets.

3.3.4 ODT Disintegration

Figure 3.10 shows a graph of the mean disintegration times of three ODT’s tested for each grade of
mannitol, compared to milled mannitol (F2). From the results it was observed that the spray dried
grades, Mannogem EZ and Pearlitol 200SD, produced ODTs with fast disintegration time. Upon
statistical analysis it was also seen that the spray dried grades were significantly better disintegrating
than both the crystalline powders and granulated forms of mannitol tested. This was because the
spray dried powders had a fairly small particle size of between 150-200 um as well as pores on the
surface as seen in SEM images which may have helped increase the water uptake into the ODT, leading
to faster disintegration. At 75 MPa the crystalline powders also had relatively low disintegration times
of around 50 seconds, which wasn't statistically different from the spray dried grades, however there
was a big increase in disintegration time at 225 MPa compared to the spray dried grades. At 75 MPa
the ODTs composed of the crystalline powder disintegrated quite quickly as it had a relatively small
particle size which allowed wetting of the tablet, and as the hardness was fairly low, water was able
to penetrate the tablet structure more rapidly, allowing a fast disintegration of the ODT. At 225 MPa
there would have been significant fragmentation occurring in the crystalline powder tablet, and as
hardness was high, the subsequent disintegration time of the tablet was also high. However the

granulated forms showed high disintegration time at both 75 MPa and 225 MPa. At 75 MPa the
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Figure 3.10: A graph showing the disintegration times of the commercial mannitol grades compared to the

milled mannitol. The results clearly show that milled mannitol provides advantages for tablet disintegration
with the milled mannitol being significantly better than all grades at both compaction forces (except for the
Mannogem Powder and Pearlitol 50C at 75 MPa. Data is presented as mean + SD (n=3, p<0.05).

granulated forms had a significantly higher disintegration time than all the other commercial grades,
and at 225 MPa the disintegration time was only significantly higher when compared to the spray
dried forms, with the crystalline form having similar times at this compaction force. The high
disintegration time of the granulated powders may have been due to the large particle size of the
mannitol, the highest disintegration time observed was with the Pearlitol 500DC which had the largest
mean size of particle, which in turn led to a slower disintegration time as the large particles took longer
to break down within the disintegration medium (S Velmurugan and Vinushitha, 2010). This would
have been due to the agglomeration of the mannitol crystals into one large particle, which would have
resulted in large particles with the absence of pores, meaning it would have been more difficult for
water to penetrate the particle and allow subsequent disintegration. Both Mannogem grades also

displayed long disintegration times due to the very large particles present within the powder.
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The clear advantage of milled mannitol compared to the commercial grades was its improved
disintegration time. Statistical analysis showed that disintegration times with the milled mannitol was
significantly lower than all the commercial grades at the 225 MPa compaction force, and all
commercial grades at 75 MPa, except the crystalline powders (Mannogem powder and Pearlitol 50C).
The poor disintegrating qualities of the granulated grades was due to the very large sized
agglomerated particles, which led to significantly longer disintegration. Although the spray dried
grades presented advantages in terms of disintegration compared to the granules, possibly due to the
spherical smaller sized particles which contained pores, the milled mannitol was still clearly
advantageous. This was due to the very small particle size of the milled powders (approximately 11
um) and increased wettability of the mannitol crystal. This increased wettability of the powder
particles was due to a higher exposure of the (011) plane, established as the most hydrophilic plane
on the mannitol crystal, which led to an improved wetting of the ODT and therefore a faster

disintegration of the dosage form (Koner et al., 2015).

Table 3.2 shows the porosities of the ODT’s manufactured from the different grades of mannitol tested
in this study. Statistical analysis showed that at 75 MPa, the milled mannitol was more porous than
the commercial grades, which also gave further evidence for the faster disintegration of the ODTs. The
spray dried form was expected to be more porous than the granulated grades as there were visible
pores within the particles on the SEM monographs obtained, with significant pores visible on the
Mannogem EZ (Figure 3.1 (E)). It can be said that the porosity differences between the graded
mannitol was negligible, with all powders displaying a high porosity. The high porosity of the crystalline
powder was due to the fragmentation of the needle shaped particles which led to a more porous
structure, and it was seen that the Pearlitol 50C did have a slightly higher porosity than Mannogem
powder due to more profound needle shaped crystals present within the powder blend. The
granulated forms also formed highly porous ODT’s as the large particles were unable to fill in the voids
between the individual particles during packing resulting in more open pores within the tablet
(Mattsson, 2000).
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However the F2 milled powder tended to show a lower porosity at 225 MPa compared to all of the
grades of mannitol tested in this study. This was due to the fact that the milled powders contained
very small particles, which when poured into the die before compaction, and during rearrangement
within the dies, could fill any small spaces of air and allow a more solid compact to be formed with a
less porous structure. Compared to the 75 MPa ODTs, where the compaction force wasn’t high enough
to force the small voids to be filled, the 225 MPa tablets presented a less porous structure than the
commercial grades. However, for milled mannitol, disintegration of the ODTs at 225 MPa was
massively improved compared to the commercial grades, largely due to the increased hydrophilicity

and wettability of the dosage forms.

3.4 Conclusion

In conclusion it can be seen that the spray dried mannitol had the best mechanical properties for
utilisation as a binder within ODT tablets. This study indicated that it forms ODT’s that have very high
hardness and low friability, whilst also giving the lowest overall disintegration times of all the
commercial brands tested. This was due to the presence of the alpha polymorph within the powder,
which, as previously shown in literature, had the highest compressibility of all the mannitol
polymorphs. The granulated forms however didn’t display any significant improvements in tablet
properties. This was due to the lack of a-mannitol present within the powder. The granulated forms
did display a significant improvement in flow which is a key component for tabletting. If the excipient
flows well it will promote the uniform flow of the bulk powder blend into the dies before compression,
which is the key advantage of using granulated mannitol as opposed to the crystalline mannitol

powder.

The key advantage of the milled mannitol was its very low disintegration time due to the increased
wettability of the powder, providing ODTs that disintegrated rapidly, much faster than any of the
commercial grades. Although mechanical strength and the friability of the milled mannitol ODT’s was

slightly worse than the spray dried grades the vast improvement in disintegration time provided a key
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difference and upgrade compared to the commercial powders. The main disadvantage of the milled
powders was the flowability which was very, very poor. As mentioned above, good powder flow is key
in tableting to allow homogenous bulk powder movement into the dies, which produces a uniform
and reproducible tablet. The flowability of the milled mannitol, as seen in the previous chapter, was
capable of being enhanced to suitable levels, and therefore the milling of mannitol provided a suitable

alternative to the commercial grades for the production of ODTs.
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Utilisation in Orally Disintegrating Tablets
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4.1 Introduction

Throughout the first two chapters of this thesis the advantages of milled mannitol have been clearly
established, with the milling of commercially available crystalline mannitol producing a vastly superior
tableting excipient over the unmilled equivalent. The inherent poor compressibility properties of
crystalline mannitol were effectively reduced through the milling process, with the post milled
mannitol presenting a more plastically deforming material as opposed to the usual fragmentation
compression profile that mannitol undergoes (Koner et al., 2015). The hardness of the milled mannitol
was also found to be superior compared to the unmilled mannitol, largely down to its superior
compressibility, which upon Heckel analysis showed a reduction in the fragmentation behaviour. With
this increased mechanical strength it was expected that the disintegration properties of the resulting
tablets would worsen substantially, however the opposite pattern was attained. Due to the
predominant fracture of the crystal at the hydrophilic (011) plane, the milled mannitol displayed
increased wettability, producing tablets that were not only of superior mechanical strength, but
disintegrated rapidly even in the absence of any disintegrants, making milled mannitol an ideal

excipient for use in ODTs.

In comparison to the currently available commercial mannitol products, including the popular spray
dried and granulated grades, milled mannitol presented a viable alternative. In terms of the tablet
properties of the resulting ODTs, milled mannitol had many advantages over the granulated forms,
with hardness being higher and disintegration of the tablets being lower. The mechanical properties
of the tablets produced from the spray dried powders were impressive, whilst disintegration times
were also low. This was due to the highly porous nature of the particles, whilst the presence of the a-
polymorph gave spray dried mannitol an increased plastic deformability, resulting in the high
mechanical strength (Hulse et al., 2009, Lee et al., 2011, Littringer et al., 2011, Burger et al., 2000). Yet
milled mannitol gave very similar properties to the spray dried product, with mechanical strength
being similarly high, whilst disintegration times of the tablets were low. However, the very small sized

particles (<11um) resulted in poor powder flow. Particles of this size are highly cohesive due to the
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large degree of electrostatic/Van der Waals forces, leading to a poor homogenous bulk flow of the

powder (Staniforth and Aulton, 2007, Mullarney and Leyva, 2009).

Powder flow is a major factor in the industrial scale processing of tablets, as the flow can impact on
the tableting machines ability to produce a uniformly weighted tablet with a uniform dose, whilst the
quality of the tablet surface can also be affected (Staniforth and Aulton, 2007, Sun, 2010). Preliminary
flow optimisation studies were conducted in Chapter 2 whereby it was established that the flow of
the milled mannitol could be optimised using a standard tableting excipient alongside the flow aid,
colloidal silicon dioxide. The novel composite blender designed in the laboratory was the most
effective at producing a flowable powder, whilst the industry standard cube mixing method was not
able to replicate the same results. The powders were processed on a larger scale auto tablet press,
whereby the composite blender produced dosage forms of a higher quality, whilst the uniformity of
the cube blended tablets were poor. This gave a clear indication that milled mannitol could be used in

scale up processes, however further optimisation was required.

The aim of this study was to utilise the novel composite blender to produce an optimised powder
blend containing a large proportion of the milled mannitol. It was important that mannitol was the
largest proportion of the blend due to the advantages it possessed in producing fast disintegrating,
robust ODTs. The novel composite blender possesses unique qualities in its method of mixing
powders. The utilisation of high speed and air pressure in the mixing vessel allows the powders to
undergo a dry coating process (Dahmash, 2016). Due to the relatively small particle size of milled
mannitol, it presented an ideal candidate for dry coating as a guest particle. MCC was chosen as the
host particle for milled mannitol, as it is a commonly used excipient for direct compression (Thoorens
et al.,, 2014). The overall aim of this study was to develop an optimised ODT blend capable of
incorporating high payload of insoluble drug without compromising mechanical properties and

disintegration time of the resultant ODT.
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4.2 Materials and Methods

4.2.1 Materials

D-Mannitol (298% purity) was obtained from Sigma-Aldrich (Dorset, UK), MCC as Avicel PH102 and
PH101 were used for this study and was obtained from FMC Biopolymer (Philadelphia, USA) and
colloidal silicon dioxide (Aerosil 200) was obtained from Evonik Industries (Essan, Germany). For
tableting studies magnesium stearate was obtained from Fischer Scientific (Loughborough, UK) and
the API Ibuprofen was purchased from Shasun Chemicals (Tamil Nadu, India). Glyceryl Behenate
(Compritol 888 ATO) was obtained from Gattefossé (St-Priest, France) and Ethocel HP was obtained

from Colorcon Inc (Harleysville, USA) and were utilised as glidants.

4.2.2 Composite Blending

In total, 4 powder blends were manufactured as shown in Table 4.1. The blends were predominantly
composed of 87.5% D-mannitol, (unmilled or milled), (F2 formulation taken from a previous study
(Koner et al., 2015), as it was found to provide tablets with the most promising ODT characteristics)
along with the addition of other excipients. The energy input into this powder was 1.71 J/kg, with the
powder being milled for 30 mins at a speed of 200 rpm, with the ball to powder weight ratio (BPR) at
5. 12% w/w of MCC was added to the milled mannitol for preblend mixing, as this was the
concentration that gave the most beneficial flow results from Chapter 2. Colloidal silicon dioxide was
used as a flow aid. These powders were treated as premixes, as a powder blend which could be added
to varying concentrations of APl to manufacture an ODT. The composite blender is a lab scale device
built and manufactured in the laboratory and uses a novel one step dry coating process to adhere
small guest particles on to larger host particles to enable functionalised particles to be manufactured
(Dahmash, 2016). All powders were accurately weighed according to the specifications outlined in
Table 4.1, and added to the coater. The coater was then sealed and run for 30 mins at 2000 rpm with

1 bar of air pressure to aid the coating process.
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4.2.3 Cube mixing

To analyse effects of composite blending, cube mixing was also used as a control to mix the preblends
to allow assessment of any differences between the resulting powders from the two processes.
Powders were weighed and added to the standard cube mixer, part of the Erweka AR403s Multi-Lab

(Heusenstamm, Germany), and mixed for 30 mins at 250 rpm. Details are outlined in Table 4.1.

4.2.4 Investigation of Powder Flow

Angle of repose was used as the method of choice for assessing powder flow. For angle of repose the
method outlined in the USP monograph <1174> (USP37, 2014c) was followed, and the height and
diameter of the pile measured. This was then added to the equation, tan(8) = height/0.5diameter,
where © was the angle of repose. All values were analysed in triplicate and displayed as mean + SD.

This was conducted on the preblends only to allow the effects of processing methods to be assessed.

4.2.5 Blending with an API

Ibuprofen was used as a model low solubility, BCS class Il drug (Alvarez et al., 2011, Rinaki et al., 2004),
which is also poorly compressible at high doses (Nada et al., 2005, Patel and Bansal, 2011, More et al.,
2013). Ibuprofen was added in concentrations varying between 10-50% to the each of the premix
blends and mixed for 10 mins at 250 rpm in the cube mixer (Erweka Ar403s, Heusenstamm. Germany).

1% w/w magnesium stearate was added to lubricate the powder ready for tableting.

Table 4.1: A table outlining the powder compositions and blending process for each of the preblends
investigated in this study.

Powder Mannitol (87.5%) Excipient (12%) Mixing Method
1 Milled MCC Cube
2 Milled MCC Composite
3 Unmilled MCC Cube
4 Unmilled MCC Composite
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4.2.6 Tableting and tablet properties

Individual 500 mg portions of powder from each of the blends were weighed and compressed using a
Specac semi-automatic hydraulic press (Slough, UK) equipped with 13 mm flat faced punches. An
initial compression force of 150 MPa was chosen to manufacture robust tablets at 10% w/w ibuprofen

concentration and 75 MPa for tablets 230% w/w ibuprofen.

4.2.6.1 Hardness
Hardness of the all the tablets was measured using a Copley TBF 100 Hardness tester (Nottingham,

UK). Tensile strength (o) was then calculated using the equation:

O'_ZH Eq. 4.1
T nDT (Eq. 4.1)

Where H is the hardness, D is the diameter and T is the thickness of the tablet. All readings were taken

in triplicate and displayed as mean % SD.

4.2.6.2 Friability

The standard USP friability test was used for the assessment of the percentage friability of the
manufactured tablets (USP37, 2014d). Six tablets were brushed off and weighed altogether for the
initial weight, they were then inserted into a Sotax F2 Friabilitor (Allschwil, Switzerland). The test was
conducted for a total time of 4 minutes at 25 rpm, with 100 revolutions in total. The tablets were then
brushed off and reweighed to get the final weight. Percentage friability was calculated using the

equation:

Initial weight—Final weight

% Friability =

; ; x 100 (Eq. 4.2)
Intial weight

4.2.6.3 Disintegration Time
The standard USP disintegration method was used to assess disintegration time of the tablets (USP37,
2014b). A Copley ZT41 disintegration apparatus (Nottingham, UK) was used, with a single tablet being

tested each time for accuracy. Each tablet was placed in the vessel (without a disk) and oscillated at
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30 cycles per minute. A dissolution medium of 800 ml distilled water was maintained at 37 °C, and
disintegration time measured when all of the fragments of tablet had passed through the mesh at the

bottom of the vessel. All readings were taken in triplicate and represented as mean + SD.

4.2.6.4 Porosity

Porosity of the tablets was assessed using a Quantachrome Helium Multipycnometer (Florida, USA).
Diameter and thickness of the ODT’s was measured using a digital calliper, and the weight of individual
ODT'’s taken using an electronic balance. The bulk volume (Vs) and bulk density (psuk) of the tablets

were then calculated using the following equations:

V mR? Eq. 4.3

B= (Eq. 4.3)
Tablet weight

Pouk =" (Eq. 4.4)

VB

The true volume (V:) of the tablet was calculated using the pycnometer, which applies the theory of
gas displacement allowing the porous nature of the tablet to be assessed. The true volume was

calculated using the equation:
Vi=V, =V, (E — 1) (Eq. 4.5)

Where V¢ is the volume of the sample cell, V. is the volume of the reference cell, P1 and P2 are the
atmospheric pressure and pressure change during the measurement respectively. The true volume

was then used to calculate true density in the equation:

Tablet weight

e & ——————— Eq. 4.6
Pt T (Eq. 4.6)

The final step to calculate porosity (&) of the ODT used the following equation:

g=1 — Lbulk (Eq. 4.7)

Ptrue
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4.2.7 Optimisation of Silica Addition

Optimisation studies for silica included evaluation of concentration, time and stage of addition into
the preblend. For addition stage, the aliquots of milled mannitol and MCC were mixed for the first
30mins, silica at a concentration of 0.5% was then added to the powder and mixed for a further 5mins
and compared to when silica was added at the start of processing alongside both the mannitol and
MCC. To gather data for the optimal mixing time of silica, an initial mixture of milled mannitol and
MCC was compositely mixed for 30 mins, with 0.5% silica being added after this initial mixing step.
Portions of powder were removed at 10 mins, 20 mins and 30 mins and analysed for angle of repose.
The final stage of silica optimisation was the amount of silica added into the preblend. Several
concentrations including 0.5%, 1%, 1.5% and 2% w/w were investigated. The silica was added after
initial preblend mixing of 30 mins and blended for a further 20 mins. These blends were analysed for

powder flow according to the angle of repose.

4.2.8 Surface Coverage Optimisation of the Preblend

For dry particle coating, there is a critical concentration of guest particle which results in full surface
coverage of the host particle. This could be used to optimise the process of dry coating to allow one
or more layers of coated particles on the host if the guest particle is added in separate stages, with
the first stage involving the addition of the required amount of mannitol for full surface coverage, and
the second stage whereby a second quantity of mannitol is added according to blend requirements.
This percentage of mannitol was calculated using equations and methods developed by Yang et al.
(2005). The equation found that 36% w/w of mannitol was needed for full surface coverage, with 64%

MCC (Avicel PH102) as the carrier particle.

An additional investigation conducted was the effect of particle size of the host MCC. A comparison of
the initially studied Avicel PH102 and Avicel PH101 was undertaken, with particle sizes being 100 um
and 50 pum respectively (FMC-Biolpolymer, 2016). The use of a smaller sized host particle resulted in

the surface coverage calculations giving a 58% w/w of mannitol and 42% w/w of the MCC (Avicel
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PH101), showing that the smaller sized particles were capable of hosting more of the guest mannitol.

Blends were tested for flow followed by the addition of ibuprofen as outlined above.

4.2.9 Assessment of Alternative Glidants

An investigation into the type of glidant in the powder blends was undertaken to assess if there could
be a suitable alternative to colloidal silicon dioxide. Glyceryl Behenate (Compritol 888 ATO) and
Ethocel HP were investigated. The same concentration and mixing time/method as silica was used to
allow a direct comparison between the properties of these three excipients (1% added post
MCC/mannitol mixing and mix for 20mins). Blends were analysed for flow and Ibuprofen added at the
same concentrations as above. 500 mg tablets were manufactured at 75 MPa and tested for their

properties.

4.2.10 Statistical Analysis

One/Two-way ANOVA followed by a Tukey’s/Sidak’s multiple comparison post-hoc test were
performed using GraphPad Prism 6 software (California, USA). For statistical significance a p-value

<0.05 was used, and all data was presented as mean * standard deviation.

4.3 Results and Discussion

4.3.1 Milled vs Non Milled Mannitol

The first set of investigations focussed on assessing the difference between employing milled and non-
milled mannitol with the model API ibuprofen. In terms of powder flow, data from the previous
chapters showed that milled mannitol flowed very poorly due to its very small particle size, resulting
in cohesive powders when compared to unmilled mannitol. This was also evident with the angle of
repose results generated in this study (Figure 4.1). Unmilled mannitol was several flow categories
below that of milled mannitol for both cube and composite mixing indicating it was superior. This was

attributed to the larger particles, resulting in lower Van der Waals and electrostatic forces.
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Figure 4.1: A graph showing the powder flow of the MCC/mannitol preblends, comparing the difference
between milled and unmilled mannitol in the two different mixing processes, through the angle of repose.
Results indicated that unmilled mannitol had a superior flow (p<0.05), whilst composite blending was also
beneficial in reducing the angle of repose (p<0.05) for milled mannitol. Data is presented as mean + SD (n=3).

As highlighted in the previous chapter milled mannitol presented several advantages over its unmilled
counterpart, especially when employed in ODTs (Koner et al., 2015), with mechanical strength being
higher and disintegration times being lower regardless of the improved strength of the tablet. Figure
4.2 and 4.3 shows the comparison of milled and unmilled mannitol in terms of the disintegration time
and hardness respectively. From Figure 4.2 it was seen that the disintegration time with milled
mannitol, even when employed with the poorly soluble drug ibuprofen, remained low. Compared to
unmilled mannitol a significant improvement in disintegration time was observed at Ibuprofen
concentrations of 30 and 50% w/w (p<0.05). When unmilled mannitol was used at the 50% w/w
concentration the tablets could not be classed as an ODT, even within EU guidelines due to the tablets
disintegrating beyond 30 mins. However when the milled mannitol was used, disintegration time
remained below 80 s, highlighting the superiority of milled mannitol for ODT production, due to the
increased wettability of the excipient, attributed to the increased exposure of the hydrophilic (011)

crystal plane and small particle size (Koner et al., 2015, Ho et al., 2009).
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Figure 4.2: A graph showing the disintegration times of manufactured ODTs containing the model API
ibuprofen at concentrations varying from 10-50% comparing milled and unmilled mannitol. Only compositely
blended tablet data is shown on the graph. Results indicated that at concentrations of 30% ibuprofen and
above tablets containing milled mannitol had significantly lower disintegration times than tablets containing
unmilled mannitol. Data is presented as mean * SD (n=3, p<0.05 at all concentrations except 10% ibuprofen).

Including milled mannitol was key in keeping disintegration times low, even in the presence of a low-
soluble API at a high drug load. This study gave clear indication that milled mannitol was very beneficial
in improving the wettability and disintegration profile of the dosage form as a whole. The small sized
particles making up the milled powder would have been able to distribute themselves throughout the
ibuprofen powder more uniformly than the larger unmilled particles. This would have resulted in not
only the outer layer of the tablet having higher affinity for water, but the inner structure of the tablet
having a higher affinity for water, resulting in a quicker breakdown of the whole table structure and

resultant faster disintegration of the tablet.

However in terms of mechanical strength, shown in Figure 4.3, an opposite pattern was observed
from the previous study; here it appeared that although mechanical strength was within acceptable
levels for milled mannitol it was actually lower than the unmilled alternative. It was possible that the

inclusion of ibuprofen had actually affected the bonding mechanism of the milled mannitol, as in the
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Figure 4.3: A graph showing the hardness of manufactured ODTs containing the model APl ibuprofen at
concentrations varying from 10-50% comparing milled and unmilled mannitol. Only compositely blended tablet
data is shown on the graph. Data is presented as mean + SD (n=3, p<0.05 for all conditions except MCC/Ibu
10%).

previous study milled mannitol had improved mechanical strength compared to the unmilled control,
at a compression force of 225 MPa (Koner et al., 2015). This could have been due to the addition of
the silica during the initial 30 min mix of the preblends. The milled mannitol was far more cohesive
than the unmilled alternative due to its very small particle size. This could have led to the silica
particles that were added at the start of mixing being more inclined to coat on to the milled mannitol
as a result of the high interparticulate forces attracting the surrounding particles within the powder
blend. Due to the mixing time of 30 mins, it provided a sufficient time for the silica to largely coat the
surface of the milled mannitol. The coating of the silica on the milled mannitol would have therefore
reduced the ability of the mannitol to form strong bonds with adjacent mannitol particles during tablet
compression and therefore reduced the strength of the resulting compacts (Chowhan and Yang, 1983,
Ohta et al., 2003). The unmilled mannitol was far less cohesive and there were less surface attractive

forces present within the powder, therefore promoting a more even distribution of the silica

throughout the powder blend, resulting in less disruption between the bonding of the mannitol
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particles. Another key difference in this study compared to the previous study was that lower
compression forces were used. Therefore it was possible that in this study the compression force was
lower than that needed to induce levels of plastic deformation with the milled mannitol resulting in

tablets of a slightly lower mechanical strength.

In terms of the friability of the ODTSs, as shown in Figure 4.4, it was previously found that friability of
the milled ODTs was generally similar to the unmilled tablets. This was primarily due to the very small
mannitol particles making up the bulk of the tablet, which were more inclined to come apart from the
surface of the tablet during the friability test. In this study the reduced interparticulate binding
capability of the mannitol particles due to the lower compression force and presence of silica was
expected to slightly increase the friability of the tablets made of milled mannitol. It was observed that

the friability did vary between the powders, some indicating that milled mannitol had improved
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Figure 4.4: A graph showing the friability of manufactured ODTs containing the model API ibuprofen at
concentrations varying from 10-50% comparing milled and unmilled mannitol, showing a mixed pattern with
friability for both unmilled and milled mannitol being similar, ranging from 1.5-3.5%. Only compositely blended

tablet data is shown on the graph.
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friability and others indicating an increased friability. Overall it could be concluded that friability of the

tablets wasn’t distinctly different between the milled and unmilled mannitol.

4.3.2 Composite Mixing vs Cube Mixing

The next set of investigations were designed to assess the differences between the composite and
cube blending processes. The composite blender was utilised as a method for dry particle coating
whereby small guest particles adhere to a larger host particle to form new functionalised particles.
Whereas the cube mixer is an industry standard mixing process that uses much lower speeds in a
larger mixing volume. Figure 4.1 shows the flowability of the premix powder blends and allows a
comparison of the two mixing processes. From the angle of repose it was evident that the composite
blender was beneficial in providing a more flowable powder with both unmilled and milled mannitol,
with an approximate reduction of 4° and 8° for the powders respectively. The key advantage with
composite blending was evident with the milled mannitol, as a several category flow improvement
was observed, from a poor flowing powder to a fair flowing powder, where no flow aid was needed,
therefore being acceptable for use in an auto-tablet press (as highlighted in Chapter 2) (USP37, 2014c).
There was also an improvement in flow observed with the unmilled powder, although both the cube

and composite mixer provided powders that flowed well.

The improvement in flow with the composite blender was attributed to the dry coating process,
whereby the highly cohesive small mannitol particles were coated on to the surface of the larger MCC
particles as observed in the SEM images (Figure 4.5). It was observed that the milled mannitol
composite blend (Figure 4.5(C)) resulted in more surface coating of the MCC, as small mannitol
particles were clearly visibly adhered to large areas of the MCC surface. The surface layering was not

as evident with both the unmilled mannitol (Figure 4.5(B) and (D)) and to the cube mixed powder
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Figure 4.5: SEM images showing images of a typical MCC particle within the investigated preblends. A — Cube
mixed milled mannitol/MCC; B — Cube mixed unmilled mannitol/MCC; C — Compositely mixed milled
mannitol/MCC and D — Compositely mixed unmilled mannitol/MCC, with compositely mixing milled mannitol
resulting in higher levels of dry coating.

(Figure 4.5(A)). The milled mannitol was on average around 11 um, with particles observed in the
nanorange, which led to the particles being highly cohesive. The dry coating process was a high shear
procedure employing high speed and an air blade, through the introduction of 1 bar of air pressure.
This produced deagglomeration of the cohesive mannitol particles, followed by deposition on to the
surface of the much larger MCC particles. Compared to cube mixing, where the physical method of
deagglomeration was absent, the composite blender resulted in more mannitol particles being
available to adhere to the larger MCC particles. There would have been high levels of attractive forces
between the milled mannitol and the MCC due to the large difference in the particle size between the
leading to robust new particles being formed (Dahmash and Mohammed, 2015). The resulting powder

therefore had less free milled mannitol within the blend and therefore overall cohesivity of the

powder would have been reduced, allowing an improvement in powder flow compared to the cube
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mixed alternative. The cube mixer didn’t employ these high shear forces, and the process would have
provided an interactive mix, whereby no/low levels of coating would occur, as seen in Figure 4.5. Due
to the large particle size difference, leading to increased segregation, and high cohesivity, the powder

would have flowed very poorly, as indicated by the high angle of repose (He et al., 2013).

In terms of tableting properties, graphs comparing disintegration time, hardness and friability are
shown in Figures 4.6-4.8 respectively. The general consensus was that there wasn’t a vast variation
between the ODT properties in terms of the method required to produce the premix powder blend.
Most of the disintegration times for ODTs (Figure 4.6) were lower for the composite mixer, however
a significant difference was only observed with the MCC/Ibu 50% w/w blend. The advantage of using
the composite mixer for disintegration time was that it provided a more uniform/homogenous mix,
as the mannitol coated the larger MCC particles. This allowed water to be attracted to within the inner
structure of the tablet to a higher extent, as the mannitol was more uniformly distributed throughout

the tablet.
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Figure 4.6: A graph showing the disintegration time of manufactured ODTs containing the model API ibuprofen
at concentrations varying from 10-50%, comparing the cube and composite mixing methods, with statistically
significant results only observed at MCC/Ibu 50%. Only milled mannitol results are shown in the graph. Data is
presented as mean * SD (n=3, p<0.05).
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Figure 4.7: A graph showing the hardness of manufactured ODTs containing the model APl ibuprofen at
concentrations varying from 10-50% comparing the cube and composite mixers, with no statistically significant
results observed between the methods. Only milled mannitol data is shown on the graph. Data is presented as
mean + SD (n=3, p>0.05).

The mechanical strength and friability (Figure 4.7 and 4.8 respectively) of dosage forms was very
similar for both mixing methods and no statistical difference was observed in terms of hardness when
the two methods were compared. This could have been due to the preblends mixing process, where
silica was added during the beginning of the blending process. With composite mixing, this could have
led to the silica coating a vast amount of the other excipient particles in the powder blend, resulting
in lower levels of binding between these adjacent particles, in turn influencing the final mechanical
strength and friability of the tablets. This was further investigated below by taking the silica out of the
initial mixing process and adding it in at the end of the initial mixing stage. The results in this section
indicated the beneficial use of composite mixing for preblend production as it provided a superior
flowing powder, which for large scale processing would be key to allow tableting in auto-tableting
machine. The properties of the resulting tablets through the composite blending process were also
passable, with an acceptable robustness and disintegration times being improved when milled

mannitol was utilised.
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Figure 4.8: A graph showing the friability of manufactured ODTs containing the model API ibuprofen at
concentrations varying from 10-50% comparing the cube and composite mixer. Results indicated no clear
pattern in friability for the mixing methods, and friability was varied according to a particular blend. Only milled

mannitol data is shown on the graph.

4.3.3 Effect of Ibuprofen Concentration

From Figures 4.2 and 4.6 it was clearly seen that an increase in ibuprofen concentration provided ODTs
with worsening disintegration times, however the robustness of the dosage forms increased (Figure
4.3 and 4.7). The increased disintegration was expected as ibuprofen had low solubility and is also
hydrophobic (Alvarez et al., 2011, Rinaki et al., 2004, Lowe et al., 1999, Tang et al., 2007), which
resulted in ODTs that disintegrated more slowly. This was evident by the increased disintegration time
when the drug concentration was increased from 10-50% w/w. This was possibly due to the tablet
becoming more hydrophobic as the increasing levels of ibuprofen started to increase the overall
hydrophobic portion of the tablet. This therefore reduced the wettability of the tablet and caused
them to disintegrate more slowly. However as mentioned above, the utilisation of milled mannitol
with 50% ibuprofen still provided very low disintegration times, considering the high drug load and
absence of any superdisintegrant. It proved that milled mannitol was useful in providing tablets with

low disintegration times, regardless of the high drug load, with the unmilled mannitol tablets taking
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significantly longer to disintegrate (p<0.05), especially at a drug load of 30/50% w/w. However it
appeared that as the ibuprofen concentration increased, the hardness of the dosage forms also
increased along with a reduction in friability. This was unexpected as ibuprofen had been stated as
having a poor compressibility (Patel and Bansal, 2011, More et al., 2013, Nokhodchi et al., 2015), which
should have provided tablets with higher concentrations of ibuprofen giving weaker tablets. However
this wasn’t the case. The highly compressible nature of the preblends along with the high moisture
content and cohesivity of ibuprofen, led to the higher concentrations of ibuprofen providing robust
tablets. The MCC/milled mannitol was able to homogenously mix throughout the ibuprofen powder,
therefore allowing a robust tablet to be formed, due to the high plastic deformability of the preblend.
This would need to be investigated further to assess the compressibility of the premix blend as well

as the grade of ibuprofen used.

4.3.4 MCC Blend Optimisation

4.3.4.1 Optimisation of Silica Concentration

This first step of preblend optimisation involved the concentration and mixing time/stage of the silica.
In the previous investigation the silica was added alongside the milled mannitol and MCC in a one step
process, however silica may have disrupted the coating efficiency of the milled mannitol on to the
MCC host particles. To assess this affect, milled mannitol was mixed for 30 mins alongside MCC, and
in a second mixing step silica was added to act as a glidant and improve the flow of the resulting
powder. It was also a requirement to then optimise the concentration of silica to give the optimal
powder flow, whilst providing acceptable tablets. Powder flow results are shown in Figure 4.9, which
showed that adding silica at the end of mixing for 5 mins reduced powder flow and gave rise to a
higher angle of repose (40.97°) compared to when silica was mixed in the bulk powder, with statistical

analysis
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Figure 4.9: A graph showing the effect of silica concentration on the flow of the preblend powder through
angle of repose. Significant differences were observed at 0.5%/1.5% and 2% compared to the blend where all
of the excipients were mixed together (0.5% blended 30 mins). Was seen that after 1% of silica addition a flow
category improvement was seen, from fair to good. (n=3, p<0.05 for all powder except 1% 5 mins end).

suggesting that this was a significant worsening in flow (p<0.05). This was expected as the silica was
mixed for less time, meaning that it wasn’t able to sufficiently deagglomerate and evenly distribute
through the powder, whereas in the 30 min total mixed blend, it was able to coat a larger proportion
of MCC and milled mannitol surfaces due to the increased mixing time of the blend. Another key
observation was that as silica concentration was increased the flow of the powder improved, with the
angle of repose coming down to 32.55° with 2% w/w silica. Figure 4.10 shows SEM images of the
preblend particles (largely MCC and milled mannitol) coated with silica, with the three images
indicating an increased silica concentration from A-C respectively. It was evident from the images that
increasing the concentration of silica increased the coverage of the nano sized silica upon the
MCC/milled mannitol, with 2%w/w silica showing the largest surface coverage, followed by 1% w/w
and then 0.5% w/w. This resulted in an improved flow at 2% w/w silica compared to other
concentrations, however it was not significant when compared to 1% w/w, with the flow remaining in

the good category. It was visualised that an increased surface coating was present at 2% w/w, however
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Figure 4.10: SEM images showing particles of: A —0.5% silica blended for 30 mins alongside milled mannitol
and MCC; B — 1% silica mixed for 5 mins after 30 min blend of milled mannitol and MCC; C — 2% silica mixed for
5mins after 30 min blend of milled mannitol and MCC. Images clearly show that increasing the concentration
of silica increases the surface coverage of silica on the larger preblend particles, with 2% silica having the
highest levels of surface adhered silica.

visibly the difference compared to 1% w/w was insignificant. The reduced loading efficiency of the
silica within the 2% w/w blend meant that there was an increased amount of free silica present within
the bulk powder blend. Also when employed in ODTs it is disadvantageous to use silica in high
concentrations due to its insolubility in water, which results in a highly gritty texture in the mouth

upon disintegration, decreasing the palatability of the dosage form (Rowe et al., 2012).

To assess tablet properties of the preblends with different concentrations of silica, powders were
compacted with different amounts of the insoluble APl ibuprofen (10, 30, 50% w/w) and the resulting

compacts analysed for their disintegration time, porosity and mechanical strength. Hardness results
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Figure 4.11: A graph showing hardness of the tablets produced from the preblends mixed with differing
concentrations of ibuprofen. Results indicated that in general as the concentration of silica increased the
hardness of the dosage form also increased. Significant differences were observed between several tablets,
with 10% ibuprofen showing an improved hardness at 0.5% blended for 30 mins and 30%/50% ibuprofen
showing improved hardness at 2% (n=3, p<0.05).

are illustrated in Figure 4.11. A general pattern was observed whereby increasing the concentration
of silica tended to increase the mechanical strength of the tablets, with the 2% silica tending to have
the highest hardness at 30/50% ibuprofen concentrations. The results generally indicated that at each
increment of 0.5% w/w silica, a gradual increase in hardness was observed up to 2% w/w silica load.
Statistical analysis showed that the 0.5% 30 min blend, alongside the 1.5% silica blend, had the highest
hardness at 10% ibuprofen with 2% silica having significantly higher hardness at 30 and 50% ibuprofen
concentration (p<0.05). These results were unexpected as it was thought that using increasing
concentrations of silica to adhere to mannitol/MCC surfaces would result in reduced interparticle
bonding, and therefore would negatively impact tablet strength. However it was identified in
literature that when using mixtures of colloidal silicon dioxide with magnesium stearate in the
tableting blend, compact strength would increase, due to the colloidal silica coating larger areas of the

milled mannitol/MCC resulting in an improved tablet strength, with the lubricant sensitivity of MCC
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also reduced (Bolhuis and Holzer, 1996, van Veen et al., 2005, Zuurman et al., 1999). This also
explained the increased strength of the 30min premixed total blend over the 0.5% silica 5 min blend,
as the total blend had a higher amount of time for the silica to evenly disperse through the mix and
coat the larger host particles of MCC and milled mannitol. Therefore an increased level of stronger
bonds were able to form between the mannitol and MCC during compaction. The hardness of the
tablets appeared generally proportional to the disintegration time, with disintegration time results

shown in Figure 4.12.

The disintegration time results showed that increasing the concentration of silica caused an increase
in disintegration time, with very similar disintegration times seen between the two formulations

containing 0.5% w/w silica, and a step wise increase in disintegration time as the proportion of silica
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Figure 4.12: A graph showing the disintegration time of the tablets produced from the preblends mixed with
differing concentrations of ibuprofen. Results gave a clear indication that as silica concentration increased the
disintegration time of the tablet also increased, which was especially evident at 30 and 50% ibuprofen
concentration, with concentrations of 1% silica and above significantly different to the 0.5% total blend at 30%
ibuprofen concentration and concentrations of 1% silica and above being significantly longer disintegrating
than either of the 0.5% silica preblends at 50% ibuprofen concentration (n=3, p<0.05).
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increased up to 2% w/w silica. The disintegration time at 10% w/w ibuprofen was very low for all
formulations due to the low mechanical strength, therefore no statistical significance was observed.
At 30% w/w ibuprofen, the increase in disintegration time with the increase in silica concentration
became more obvious, with significant differences seen between the 0.5% w/w silica total blend and
the higher concentrations of silica mixed at the end, and a significant difference observed between
0.5% w/w silica added at the end and the 2% w/w silica blend (p<0.05). At 50% w/w ibuprofen
concentration statistical significance was observed between all formulations except the two 0.5% w/w
silica formulations, which all gave a clear indication that the higher levels of silica were increasing the
disintegration time. The increased disintegration time could have been due to two possible reasons,
one being the reduced energy of interparticle separation due to the higher levels of silica present
within the compact, and secondly the reduced porosity of the compacts with increased levels of silica

(shown in Figure 4.13). From Figure 4.13 it was seen that the increasing concentrations of silica caused
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Figure 4.13: A graph showing the porosity of the tablets produced from the preblend powders containing
different concentrations of silica at different ibuprofen drug loads. Results indicated that as the concentration
of silica increased the porosity of the tablets decreased; at 10% ibuprofen load statistical significance was
observed at all concentrations except when comparing the two 0.5% silica preblends and between 1.5% and 2%
silica; and at 30% and 50% ibuprofen load significant differences were observed at all concentrations of silica
except between the two 0.5% blends and between 1% and 2%/1.5% and 2% (n=3, p<0.05).
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a reduction in porosity across all three ibuprofen drug loads, with the two 0.5% silica preblends
showing no statistical significance at any of the ibuprofen loads. This was similar to previous findings
where it was found that increasing levels of colloidal silica within powder blends up to 3% w/w caused
a reduction in pore volume within the resulting compact (Gucluyildiz et al., 1977). The porosity of the
tablets was a key factor in their resulting disintegration, as the reduced pore volume of the higher
silica concentration tablets reduced water uptake into the tablet. Whereas, at the lower
concentrations of 0.5% w/w, where the pore volume of the compact was much higher, the tablet was
able to draw water into the pores more rapidly which allowed subsequent breakdown of the compact
(Pabari and Ramtoola, 2012, Seager, 1998). Due to the absence of disintegrant in the preblend it was
concluded that the disintegration of the tablets was primarily due to the porosity of the dosage form,
which allowed water to penetrate and breakdown the structure. However it was also observed that
the porosity of the tablets was inversely proportional to the pattern in hardness of the compacts. It
was seen in previous findings that a more porous tablet structure did lead to a lower mechanical
strength in the resulting compacts (Fukami et al., 2006), with similar results also seen in this study.
This was explainable by the bonding area of the MCC and milled mannitol. The lower porosity of the
compacts indicated that the MCC and milled mannitol formed a larger surface area of bonds during
the compression cycle. This led to a higher tablet hardness, as the energy required to break the bonds
was increased due to increased bonding surface area (Khomane and Bansal, 2013, Joiris et al., 1998).
The friability of the tablets is shown in Figure 4.14, and although it could be said that the friability
followed a similar pattern to the porosity, where friability decreased with increased silica
concentration, this was only observed up to 1.5% w/w, with 2% w/w silica giving a higher friability at
all three of the ibuprofen concentrations. It was interesting to see that the 0.5% w/w total blend had
a fairly low friability compared to the other tablets tested, which was comparable to the 1.5% w/w
silica 5 min mixed blend. This showed that mixing silica for a longer duration helped to lower the

friability of the tablets. However in all cases it was seen that friability was above the 1%w/w
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Figure 4.14: A graph showing the friability of the tablets made from preblends containing different
concentrations of silica, at three different ibuprofen drug loads. It was gathered that no clear observable
pattern was obtained, with the 30 min total blend having very good friability whereas 5 min mixed silica blends
had higher friability. Could also be said that a general reduction in friability was seen as the silica concentration
increased up to 1.5%.

acceptability threshold, but this was due to the low compression force used during tableting and the

utilisation of milled mannitol.

The final step in optimising the silica addition was to find the most appropriate time for mixing. Figure
4.15 showed how the flow of the powder changed over time, up to a mixing time of 30 mins, through
the angle of repose. A 1% w/w silica concentration was chosen as the flow was good with the 5 min
mixing time, and it also gave disintegration times that weren’t extremely high, as was seen with the
1.5 and 2% w/w blends, with the robustness of the dosage forms also being acceptable. Results
indicated that an increased mixing time gave an improved flow up to 20 min blending, with the graph
showing a clear plateau in the improvement of flow. Figure 4.15 showed that there was a huge
difference between the angle of repose of the powder between a 5 and 10 min mixing time, with the
angle dropping by around 8°, from the passable category to the good category (USP37, 2014c). A

further enhancement in flow was seen at the 20min mixing time, although the drop wasn’t as drastic,
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Figure 4.15: A graph showing the effect of silica mixing time on the flow of the preblend powder through angle
of repose. Significant improvements in flow were observed after a 10 min mixing time compared to the 5 min
silica mixed powder, with 20 and 30 min mixed powders also being significantly more flowable than powder
mixed for 10mins (n=3, p<0.05).

with the flow improvement plateauing at 30 mins. The improved flow was because the dry coating
device was able to deagglomerate a higher proportion of the silica particles, and allow them to coat
on to the larger milled mannitol and MCC. The interparticle friction between the larger particles,
especially the very small milled mannitol particles, was therefore reduced and the glidant effects of
the silica were more prominent. Any further mixing of the silica post 20 mins resulted in no further

enhancement in flow.

For further study the 1% silica concentration was chosen and mixed for 20 mins to form an optimally
flowing powder, as the angle of repose represented a ‘good’ flowing powder with acceptable tablet

characteristics.

4.3.4.2 Surface Coverage during Mixing
In this study the mannitol was added to the MCC and mixed in the dry coater in one step to produce

the dry coated particles. Previous work conducted by Yang et al. (2005) found that the theoretical
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concentration required for full surface coverage of the host particle could be calculated using the
particle size and true densities of the host and guest particles for a particular mixture. It was hoped
that if the milled mannitol and MCC coating was conducted in two or more steps, several layers of
mannitol may have been observed coating the larger MCC particle. To further assess the preblend
properties a smaller particle sized MCC was introduced as a comparison, with Avicel PH101 having
particles around 50 um compared to the 100 um of the Avicel PH102. It was hoped that the larger
surface area of the smaller sized particles would reduce the levels of free mannitol in the mixture and
result in further enhancements in coating. Using the surface coverage equations proposed by Yang et
al. (1997) it was found that the amount of milled mannitol required to theoretically coat the PH102
and PH101 MCC particles was 35.9% w/w and 57.8% w/w respectively. Therefore the first mixing step
entailed a mixture of the respective amount of mannitol and MCC mixed for 30 mins, and then the
remaining quantity of the milled mannitol required for the preblend was added in a second step for

further mixing, before 1% w/w silica was added in the final step for 20 mins.

Figure 4.16 shows SEM images of the one step addition and surface coverage powders for the PH102
and PH101 grades of MCC. From the images it was seen that the milled mannitol and the silica were
coating both grades of MCC to a large extent, with the surface appearing very rough due to the
adherence of the small sized milled mannitol particles on to the MCC surface. This represented a clear
difference between the dry coated blends and uncoated MCC, with the surface of uncoated MCC being
much smoother, with no visible particles attached to the surface (Figure 4.16(A) and (B)). It was also
seen that the nano-sized silica particles were coating on to the outside of the milled mannitol as well
as the MCC. It was clearly visible that the particles of the PH101 grade were much smaller in
comparison to the PH102 particles. For dry coating the order of magnitude of size difference between

the guest and host particle needs to be at least two, with the strength of attraction increasing as the
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Figure 4.16: SEM images of the calculated surface coverage blends compared to the all in one mixtures with A-
showing an uncoated particle of MCC PH102; B- showing an uncoated particle of MCC PH102; C - showing the
all in one powder blend of PH102; D —the PH102 blend with calculated surface coverage; E —the all in one
powder blend of PH101 and F — the PH101 blend with calculated surface coverage. Levels of coating appeared
to be slightly higher on the calculated surface coverage blends for both PH102 and PH101, although the
loading amount of the mannitol and silica was high in both cases.

size difference between the particles increases (Dahmash and Mohammed, 2015, Ishizaka et al., 1989,
Honda et al., 1994, Alonso et al., 1990). Therefore it was expected that the PH101 would have some
level of dry coating, as the size difference between the MCC and milled mannitol was around 5 orders

of magnitude. The PH102 was expected to have higher levels of coating as the difference between the

175



Development of Novel Dry Coated Mannitol/MCC composite Powder for Utilisation in Orally Disintegrating Tablets

host MCC and the guest milled mannitol was around 10 orders of magnitude, therefore the attraction
forces were expected to be higher. However it appeared as though the PH101 particles had higher
levels of surface coating than the PH102, as seen between Figure 4.21 (C) and (E), with higher levels
of mannitol and silica observed in (E). This could have been due to the larger surface area available to
coat with the 50 um MCC. However the two particles that were visualised when using the surface
coverage calculations (Figure 4.16(D) and (F)), the same difference was not seen, with surface

coverage for both particles being very high and very little difference in coverage observed.

The main point of comparison here was the difference between the total blend and the surface
coverage blend. The SEM images indicated that when surface coverage calculations were used, a
larger proportion of the MCC was covered with milled mannitol, as was observed with the PH102
blend (Figure 4.16(C) and (D)). The increased levels of loading of mannitol on to PH102 with the surface
coverage could have been explained by the increased coating upon the second addition of the
mannitol, leading to an increased number of layers. In the first step enough mannitol was added to
achieve a theoretical full surface coverage. This would have resulted in high levels of loading on to the
MCC surface, with little of the mannitol left free within the powder blend. With an extra addition of
the small sized mannitol after the first step, the extra mannitol was able to further coat on to the
previously coated MCC particle. This could have been explained by the large size difference between
the milled mannitol and the already coated MCC, which would have displayed a slightly enlarged
particle size due to the layer of mannitol already surrounding the MCC. Such distinct differences were
not seen with the PH101 total blend and surface coverage blend, with both blends displaying a very
high adherence of the mannitol on the MCC surface. This may have been due to the smaller particle
size of the PH101 grade, which after the first dry coating stage wasn’t able to attract further mannitol

as the electrostatic forces had been dampened by the mannitol already attached to the MCC.

Figure 4.17 shows a graph of the flow of the surface coverage blends compared to the blends where

the powder was added in all at once, through the angle of repose. The data showed that the surface
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Figure 4.17: A graph showing the flow of the surface coverage calculated blends compared to the all in mixed
blends for the two sizes of MCC investigated, through the angle of repose. The general pattern was that surface
coverage resulted in a slight worsening in flow, with a statistically significant difference seen with the PH101
blends (n=3, p<0.05).

coverage blends did slightly worsen the flow of the powder, with a significant worsening seen with

the PH101 blend, alongside a flow category worsening from good to fair. The PH102 blend remained

fairly consistent with only a slight increase in the angle of repose.

This slight worsening in flow may have been due to the several addition steps of mannitol; in the first
step most of the mannitol was coating the larger MCC particles leaving less space for further coating;
the second step where more of the mannitol was added led to a slight increase in the coating levels,
however the mannitol was in excess prior to the mixing step, therefore more of it would have
aggregated together to reduce the overall powder flow (Westerberg and Nystrom, 1993, Dahmash
and Mohammed, 2015). With the total addition blend, mannitol would have had more space to attract
to the MCC surface, and although still in excess there would have been less time for the mannitol to
form aggregates, as this blend was only mixed for 30 mins, as opposed to the two 30 min mixing times

for mannitol with the surface coverage blends. The flow wasn’t hugely different between the two
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methods as 1% silica was added as a final addition step and mixed for 20 mins, which acted to increase

the flow of the powder blend.

Figures 4.18-4.20 shows the mechanical properties and the disintegration time of tablets produced
from the surface coverage blends compared to the total addition blends. Figure 4.18 shows the
hardness of the tablets; the data indicated that the hardness between the two mixing methods didn’t
display a clear pattern, with the only difference observed at 50% ibuprofen where the surface
coverage blend was statistically significantly stronger than total addition blend (p<0.05). It appeared
as though at 10% and 30% the total blends were more mechanically strong, however no statistical
significance was observed, but at 50% the surface coverage blends came out significantly harder.
There was no clear pattern to the mechanical strength, and the friability also reflected this (Figure
4.19), with the friability of the surface coverage blends being higher at 50% ibuprofen and no clear

pattern observable at the other ibuprofen concentrations. The increased strength of the surface
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Figure 4.18: A graph showing the hardness of the surface coverage blends compared to the total addition of
powder blends at three difference concentrations of ibuprofen. No observable pattern was seen in the results,
however a significant increase in hardness was seen at 50% ibuprofen for both of the surface coverage blends
compared to their total addition counterpart (n=3, p<0.05).
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Figure 4.19: A graph showing the friability of the surface coverage blends compared to the total addition
powder blends at three difference concentrations of ibuprofen. No observable pattern was seen when
comparing the surface coverage blends to the total addition blends.

coverage blend at 50% ibuprofen was due to the increased levels of ibuprofen which lead to an overall
higher mechanical strength as the ibuprofen used was very compressible due to its high cohesivity and
moisture content. It could also be said that the agglomerates of mannitol were higher with the surface
coverage blend, therefore the close interactions between the mannitol agglomerates were forming
stronger bonds during the compression cycle. Disintegration time of the tablets was proportional to
the hardness, as the hardness of the tablets increased the disintegration time also increased, due to
the lower ability of water to penetrate and break up the compacts. Again with disintegration time no
clear pattern in how the mixing methods were affecting the disintegration capability of the tablets
was attainable. With the PH102 MCC, disintegration time of the surface coverage blends was lower
than the total addition blend, however with PH101 the disintegration time of the surface coverage
blend was higher (Figure 4.20). Disintegration time at 50% ibuprofen was high due to the increased
hardness of the compacts, because the ibuprofen was highly compactable. However disintegration
times at 10 and 30% w/w ibuprofen were acceptable for all the PH102 blends as opposed to the
PH101.
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Figure 4.20: A graph showing the disintegration time of the surface coverage blends compared to the total
addition of powder blends at three difference concentrations of ibuprofen. No observable pattern was seen in
the results, with PH102 MCC showing lower disintegration with surface coverage blending, whereas PH101
showed lower disintegration with the total addition of the powder. Statistical significance was seen between
50% ibu for both PH101 and PH102 (n=3, p<0.05).

This was because of the smaller sized particles of MCC present in PH101, which would have been

more compactable as they were able to fill smaller voids within the powder bed during compression.

Although flow was affected by the mixing method for the dry coated blend, with surface coverage
powders being slightly less flowable than the total addition blends. No fixed pattern was observable
with the tablet properties, as the mechanical strength and disintegration time varied depending on
the particle size of MCC analysed. Visually, small differences in the particle surface morphology were
seen, as surface coverage blends displayed a slightly increased loading of mannitol on the surface of
MCC, especially with the PH102, due to the increased mixing time and possible dual layering on to the

larger MCC particle.

4.3.4.3 Use of Glyceryl Behenate and Ethocel as an alternative to Silica
Colloidal silicon dioxide is the most common and well established glidant in the pharmaceutical

industry due to its very small particle size, enabling it to coat larger particles and reduce interparticle
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friction. However it has its disadvantages, whereby it causes lubricant sensitivity with certain
excipients, such as MCC (Zuurman et al., 1999, Hoag et al., 2008), it can increase disintegration times
of tablets as the concentration increases, as evidenced by results above, and due to its hydrophobic
non-dissolving nature, when employed in ODTs can delay disintegration time. Glyceryl Behenate was
chosen as a comparison as the manufacturer had stated that it can be employed as a lubricant in solid
oral dosage forms, and can help keep disintegration times low as well as improve compressibility of
the powder (Li and Wu, 2014, Jannin et al., 2003). It was therefore investigated as a flow improvement
aid in this study. A small particle size grade of Ethocel (Ethocel HP®) was also used in a low
concentration to see if the excipient had any use as a flow aid for dry powder formulations, and if it

presented any improvements in tablet properties.

Figure 4.21 shows the important flowability results for the two newly investigated flow aids against
silica. The results were very clear, showing that the silica flowed significantly better than both the

glyceryl Behenate and Ethocel. This was because of its nanosized particles which were able to evenly
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Figure 4.21: A graph showing the flow of glyceryl Behenate and Ethocel compared to Silica through angle of
repose. Results indicated that powders containing silica flowed significantly better than powders containing the
other two excipients. Ethocel flowed significantly better than glyceryl Behenate (n=3, p<0.05).
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disperse through the dry coated powder blend and coat the larger MCC and milled mannitol particles,
reducing the interparticle friction and allowing the powder to flow more homogenously. The particle
sizes of the glyceryl behenate and Ethocel were much larger than the silica, so were not able to
uniformly disperse throughout the blend. It was also evident that the Ethocel flowed better than the
glyceryl behenate, with statistical analysis also showing this (p<0.05). The glyceryl behenate had a
particle size of around 50 um, which explained its poor flow aid capabilities, as only 1% w/w of the
excipient was used. This would have meant that the powder was not able to uniformly disperse
through the blend, and therefore had very little effect on the flowability of the dry coated milled
mannitol powder. Ethocel however did have some improvement in the flow of the powder, down to
an angle of repose of 39° as opposed to the 42° of the glyceryl behenate. The Ethocel had an average
size of below 8 um, this meant that adding 1% w/w of the excipient to the dry coated blend allowed
some distribution and layering of the Ethocel on to the MCC and milled mannitol particles. This would
have helped to reduce interparticle attraction/friction forces, and slightly improve the flow of the
powder. Compared to the silica, the particle size of Ethocel was still fairly large, and therefore silica

had a higher coating efficiency on to the host particles, and proved to be the better flow aid.

Figures 4.22 and 4.23 show the hardness and disintegration time of the tablets manufactured using
the different flow aids at different ibuprofen concentrations. In terms of hardness no clear pattern
was observable between the three. Silica appeared to have the better hardness at 10% w/w ibuprofen
load, Ethocel had the better hardness at 30% w/w ibuprofen load and glyceryl behenate having a
better hardness at 50% w/w ibuprofen load. It was therefore concluded that the interchanging of the
flow aid wouldn’t have a significant effect on the mechanical strength of the manufactured tablets.
Ethocel did present an advantage over silica and the glyceryl behenate as it had high hardness at both
30 and 50% w/w ibuprofen loads. Ethylcellulose has been shown to increase the compressibility of
powder blends, and including this at a small load had in fact improved the compressibility above that

of silica at higher drug loads (Goswami et al., 2014). Glyceryl behenate in general provided tablets of
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Figure 4.22: A graph showing the hardness of the tablets manufactured from the powders containing the two
new investigated flow aids compared to silica, with different ibuprofen drug loads. The general pattern
observed was that glyceryl behenate had the lowest hardness at 10 and 30%, with silica being significantly
harder at 10% and Ethocel being significantly harder at 30% ibuprofen drug load. Glyceryl behenate was
significantly harder than silica at 50% ibuprofen load (n=3, p<0.05).

lower mechanical strength, with only tablets at the higher ibuprofen load showing strength
improvements. This was expected as literature had shown improvements in compressibility and
hardness of tablets was observed when a glyceryl behenate concentration of 20% was used (Muzikova
et al., 2015). Therefore due to the lower concentration of glyceryl behenate employed in this study, a

significant mechanical strength improvement wasn’t observed.

Figure 4.23 showed the disintegration times of the tablets produced from the powder blends
containing the three different flow aids. It was seen that there were no significant differences between
the flow aids, except at 50% w/w ibuprofen drug load where the Ethocel proved advantageous in
having significantly lower disintegration times (p<0.05). This was because Ethocel was able to increase
pore volume in the tablet, allowing a higher capillary action/water ingress into the dosage form,
causing a subsequent faster disintegration of the tablet structure. This led to an overall improvement
in the disintegration behaviour of the Ethocel containing powder blends.
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Figure 4.23: A graph showing the disintegration times of the tablets manufactured from the powders
containing the two new investigated flow aids compared to silica, with different ibuprofen drug loads. The
general pattern observed was that there was no clear difference in disintegration time at 10/30% ibuprofen
load, however at 50% the Ethocel was faster disintegrating compared to the silica and glyceryl behenate (n=3,
p<0.05).

Overall it was seen that the traditional flow aid silica was advantageous, especially for powder flow
improvement. Tablet properties weren’t hugely different between the three different flow aids tested.
Disintegration and mechanical strength of the Ethocel containing powder was improved compared to
the silica containing powder. Ethocel helped increase porosity within the tablet, which explained its
faster disintegration properties, whilst the hardness was also improved at higher drug loads. This
indicated the Ethocel could possibly be used as a flow aid in the pharmaceutical industry as it did give
some promising results, and with further optimisation could provide compressible and flowable

powders that disintegrate very quickly.

4.4 Conclusion
The aim of the study was to investigate a suitable mix of excipients that could be included in a preblend
to add straight to an APl and lubricant for ODT production. Milled mannitol was carried forward from

previous work as it was found to be advantageous in producing more robust and faster disintegrating
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tablets. When it was employed in the preblend and mixed with the model API ibuprofen, it was found
to produce tablets of similar robustness to the unmilled alternative, with vastly improved
disintegration times. This was a key advantage of the milled mannitol as it was more hydrophilic due
to the exposure of the more hydrophilic crystal plane on the particle increasing the wettability of the
ODT. Two mixing methods were also compared when producing the preblend. It was found that the
novel composite mixer was advantageous in producing a better flowing powder due to its dry coating

ability, particularly when milled mannitol was used in the preblend mix.

In terms of optimisation of the blend it was concluded that blending 1% silica for 20mins post mixing
of the milled mannitol and MCC, provided an ideally flowing powder that would not adhere to storage
containers and not hang up. Surface coverage calculations were undertaken, however this provided
no clear advantage for the powder or resultant tablets. It was observed that increased coating of the
host particle was achieved when surface coverage calculations were undertaken, however this did not
materialise in clear advantages in the powder flow or to tablet properties. The final investigation
involved comparing different excipients as flow aids, with Ethocel having potential in being used as a
flow aid. It had a very small particle size and also helped tablet properties, with disintegration times
being lower than silica and in some cases hardness also being improved. However it was concluded
that the silica still provided the best option as a flow aid, as the primary purpose of this excipient was

to increase the flowability of the powder, and silica was far better in lowering the angle of repose.

This chapter provided a comprehensive outline for the procedure of preblend production, alongside
the idea proportion of the flow aid/mixing time to be used to improve the inherent poorly flowing
nature of the milled mannitol. However further enhancement of the blends could be undertaken to

prepare them more for commercial formulation.
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Chapter 5

Utilisation of a Novel Dry Particle Coating
Method to Develop an MCC/Silica Hybrid
Powder to be employed in Directly

Compressible Orally Disintegrating Tablets
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5.1 Introduction

Microcrystalline cellulose (MCC) is an extensively used filler/binder within solid oral dosage forms,
including tablets and capsules, due to its largely plastic deformability, high dilution potential and
disintegrant properties (Rowe et al., 2012, Thoorens et al., 2014, Bhalekar et al., 2010, Bolhuis and
Chowhan, 1996). It is a partially depolymerised cellulose prepared from a-cellulose and appears as a
spray dried porous, white, tasteless, odourless crystalline powder, with some amorphous regions
(Thoorens et al., 2014, Rowe et al., 2012). Its possesses excellent binding properties due to its highly
plastic nature, low lubricant requirement and low die wall friction upon compression (Hwang and
Peck, 2001, Thoorens et al., 2014). Primarily it is the plastic deformability of MCC that gives it its
compaction behaviour, due to the large surface area available for interparticle bonding resulting from
the slip planes and dislocation occurring during applied pressure. This allows strong hydrogen bonds
to form between the closely interacting hydrogen groups on the cellulose particles, providing the
resultant compact with high mechanical strength (Hittenrauch, 1971, Bolhuis and Chowhan, 1996,
Thoorens et al., 2014). It is marketed as Avicel by FMC Biopolymer (Philadelphia, USA) with the two
most commonly used grades in solid oral dosage forms being Avicel PH101 and Avicel PH102, with
particle sizes of around 50 um and 100 um respectively (FMC-Biolpolymer, 2016). MCC tends to have
a low bulk density, with Avicel PH101 exhibiting poor flow due to the low bulk density, its
matchstick/needle like shape, which would lead to interlocking during the bulk flow of the powder,
and increased cohesion due to the small sized particles within the powder. Whereas the PH102 grade
exhibits increased flowability behaviour due to the more uniform spherical particle shape, and larger
particle size which results in lower friction and cohesive forces within the powder, however flow is
inhibited by the low bulk density (Bolhuis, 2011, Staniforth and Aulton, 2007). Another disadvantage
of MCC is its high lubricant sensitivity which results in weaker compacts, due to the inability of MCC
to form new slip planes that are free of the lubricant, leading to a reduction in the hydrogen bonding

between the adjacent cellulose particles (Zuurman et al., 1999, Hoag et al., 2008).

187



Utilisation of a Novel Dry Particle Coating Method to Develop an MCC/Silica Hybrid Powder to be employed in Directly
Compressible Orally Disintegrating Tablets

Due to these limitations a newly developed co-processed MCC was developed in combination with
colloidal silicon dioxide, whereby MCC was spray dried alongside silicon dioxide to form particles,
which , possessed an intimate association between the silicon dioxide and MCC (Sherwood et al.,
1996). This product was commercialised under the brand Prosolv SMCC (silicified Microcrystalline
Cellulose), and is currently marketed by JRS Pharma (Patterson, New York). Prosolv comes in two
different grades, with Prosolv P50, the silicified equivalent to Avicel PH101 with a particle size of 50
pum, and Prosolv P90 which is equivalent to Avicel PH102, having a particle size of 90 um. The SMCC
was shown to have greater compressibility, superior flow, more resistant to wet granulation and less
lubricant sensitivity over standard MCC, therefore the production of the more compressible MCC was
seen as breakthrough in the manufacture of directly compressible tablet excipients (Sherwood et al.,
1996, Edge et al.,, 1999, Edge et al., 2000, van Veen et al., 2005, Sherwood and Becker, 1998,
Luukkonen et al., 1999). Therefore it was expected that the silification process had in fact altered the
physical make-up of the excipient. However the mechanical and chemical nature of SMCC was
observed to be very similar to the standard unsilicified MCC, tests conducted included compaction
simulations, tensile strength tests, toughness tests, effective stiffness tests, with chemical
modifications assessed using Fourier-transform infrared spectroscopy (FTIR), gas adsorption, x-ray
diffraction, solid state NMR, Raman spectroscopy, and calorimetry (Buckton et al., 1996, Buckton et
al., 1999, Edge et al., 1999, Edge et al., 2000, Tobyn et al., 1998). A physical difference observed was
the presence of silicon dioxide, and the improvement in functionality of the excipient was related to
the location of the silicon dioxide. A study by Edge et al. (1999) identified that the spray drying
manufacturing method resulted in deagglomeration of the silicon particles, and therefore a uniform
distribution of the silica over the surface of the MCC, giving particles of a far rougher surface and much
larger surface area compared to unsilicified MCC (Luukkonen et al., 1999). It was highlighted that
during processing, the silicon dioxide particles were actually present within the structure of MCC, as
well as in the surface of the MCC (Luukkonen et al., 1999). The increase in compact strength compared

to unsilicified MCC was explained by differences in interfacial interactions due to the presence of
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silicon dioxide within the structure of MCC, where interfacial strength and interactions were higher
with the silicified MCC grade. The presence of the silicon dioxide in the surface of MCC also led to
improvements in the flow of SMCC, as silicon reduces friction and cohesive forces between adjacent

particles, and provided the SMCC with less lubricant sensitivity (Edge et al., 1999, Edge et al., 2000).

Dry particle coating is becoming more thoroughly investigated currently due to its advantageous
processing conditions compared to traditional manufacturing methods, whereby the powders are
exposed to less chemical and physical modifications, providing powders with new functionalities
(Dahmash and Mohammed, 2015). A patented composite blender developed in the laboratory has
been shown to provide functionalised particles through an environmentally friendly mixing method
whereby small guest particles are adhered to the surface of a larger host through cohesive forces,
giving novel modified particles that have undergone no chemical alteration during processing, and are
only physically attracted. The aim of this work was to assess if dry particle coating could provide a
suitable alternative to the silicified MCC grade, Prosolv, whereby compressibility enhancement of dry
coated powders was compared to the unmodified MCC, and disintegration times were compared to
Prosolv, which was known to disintegrate slowly compared to unmodified MCC. The premise was that
the environment experienced during the dry coating process was less harsh, with no pre-processing
of the material required before mixing, and that dry coated powders were produced in a one stop,

high yield manufacturing method, compared to spray drying of Prosolv.

5.2 Materials and Methods

5.2.1 Materials

MCC (Avicel PH101 and PH102) was obtained from FMC Biopolymer (Philadelphia, USA), Prosolv P50
and P90 were received from JRS Pharma (Patterson, USA) and colloidal silicon dioxide (Aerosil 200)
was obtained from Evonik Industries (Essan, Germany). For tableting studies the magnesium stearate

was obtained from Fischer Scientific (Loughborough, UK), D-mannitol was purchased from Sigma-
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Aldrich (Dorset, UK) and Metformin Hydrochloride was purchased from Discovery Fine Chemicals

(Dorset, UK). Powders were used as received.

Prosolv P50 and P90 were used as two powders under investigation and were the focal point of
comparison for the developed dry coated blends in this study. Prosolv P50 has an average particle size

of 50 um and Prosolv P90 have a particle size of 90 um.

5.2.2 Composite Blending

For the initial comparison, Avicel PH101 (particle size 50 pum) and Avicel PH102 (particle size 100 um)
were utilised as the host particles for silica. To establish the effect of silica loading on to the MCC
particles, different concentrations of silica were initially used, ranging from 0.25-2% w/w. The Avicel
PH101 dry coated powders were directly compared to Prosolv P50, with an uncoated PH101 powder
used as a control; Avicel PH102 dry coated powders were directly compared to Prosolv P90, with an

uncoated PH102 powder used as a control.

Dry coating was conducted in a novel composite blender that was developed within the laboratory.
The mixing was conducted over a 30 minute time period with each of the proportions of MCC and
silica. 1 bar of air pressure was introduced into the mixing chamber to aid the deagglomeration of the

silica particles and increase shear forces to enhance the mixing and dry coating process.

5.2.3 Scanning Electron Microscopy (SEM)

SEM micrographs were obtained using a Phillips XL-30 FEG ESEM (Eindhoven, Netherlands) to allow
an exploration of particle shape/size and evidence of dry coating upon the MCC particles.
Approximately 1 mg of each sample was adhered to a double-sided adhesive strip and placed on to an
aluminium stub. The samples were coated with a thin layer of platinum using an Emscope SC500
sputter coater (Quorum Technologies, Lewes, UK) at 20 mA for 1 minute. After platinum coating each
sample was examined using SEM, with the acceleration voltage (kV) and magnification stated on each

monograph.
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5.2.4 Raman Spectroscopy

Raman microscopy was conducted using a Horiba XploRA Plus Raman Microscope (Kyoto, Japan), to
allow molecular identification of the particles within the dry coated silica/MCC powder blends. This
allowed a qualitative analysis of the presence of silica upon the surface of the MCC. The powders were
investigated at 532 and 785 nm excitation, with 785 nm having a lower background noise. The 785 nm

was used for further study, with 100 mW laser power utilised.

5.2.5 Investigation of Powder Flow

Angle of repose was used as the method of choice for assessing powder flow of the investigated
powders. The method outlined in the USP monograph <1174> (USP37, 2014c) was followed, and the
height and diameter of the pile measured. This was then added to the equation, tan(©) =
height/0.5diameter, where © was the angle of repose. All values were analysed in triplicate and
displayed as mean * SD. This was conducted on all the powders to allow a comparison of the novel
dry coated MCC/Silica hybrid to the commercially available Prosolv® preblends as well as the Avicel®

control.

5.2.6 Thermogravimetric Analysis (TGA)

TGA was conducted to assess moisture content and loss on ignition of the powders evaluated in this
study. A Pyris 1 TGA (Waltham, MA, USA) was utilised with 3-5 mg of sample measured for each run,.
The method for the TGA was optimised using different end temperatures, heat ramps and hold times.
The final optimised method that was utilised was as follows: The sample was ran from 50 °C to 100 °C
at 10 °C/min and held for 5 mins; the sample was then heated from 100 °C to 150 °C at 10 °C/min and
then from 150 °C to 700 °C at 20 °C/min and held for another 5 mins, the sample was then allowed to
cool. The sample weight was measured throughout using the TGA balance. Moisture content was
measured as the percentage loss in weight between 70-130 °C, as this was the range for moisture loss.
For loss on ignition an initial MCC scan indicated that MCC degrades at around 350 °C, the sample was

heated well above this to remove almost all traces of MCC from the sample pan. A silica control was
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also ran and negligible amounts of silica degraded up to 700 °C therefore any residue left in the TGA

pan was likely to be silica.

Avicel PH101 and PH102 were run as controls and any residual weight left In the TGA pan was
subtracted from the Prosolv and dry coated blends to ascertain levels of silica present within the
powders. Dry coated powders with 0.5, 1 and 2% silica were tested to observe whether loss of MCC
indicated higher levels of silica present within each blend. The final percentage weight left in the pan
at the end of each run was taken as a qualitative indication to the amount of silica present within each
powder, and it allowed a comparison of silica levels within the blend. Each of the powders were

analysed in triplicate and results are presented as mean % SD.

5.2.7 Tableting and Tablet Properties

Tablets were prepared from each of the Prosolv powders and the dry coated MCC powders
manufactured in this study, with the Avicel tablets used as a control. 500 mg portions of each of the
powders were individually weighed out and compressed using a Specac semi-automatic hydraulic

press (Slough, UK) equipped with 13 mm flat faced punches. The tablets were compressed at 75 MPa.

5.2.7.1 Hardness
Hardness of the tablets was measured using a Copley TBF 100 Hardness tester (Nottingham, UK).

Tensile strength (o) was then calculated using the equation:

o= 2 (Eqg. 5.1)
T mDT 9.

Where H is the hardness, D is the diameter and T is the thickness of the tablet. All readings were taken

in triplicate and displayed as mean % SD.

5.2.7.2 Friability
The standard USP friability test was utilised for the assessment of the percentage friability of the
manufactured tablets (USP37, 2014d). Six tablets were brushed off and weighed altogether for the

initial weight, they were then inserted into a Sotax F2 Friabilitor (Allschwil, Switzerland). The test was
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conducted for a total time of 4 minutes at 25 rpm, with 100 revolutions in total. The tablets were then
de-dusted and reweighed to get the final weight. Percentage friability was calculated using the

equation:

Initial weight—Final weight

% Friability = x 100 (Eg.5.2)

Intial weight

5.2.7.3 Disintegration Time

The standard USP disintegration method was used to assess disintegration time of the tablets (USP37,
2014b). A Copley ZT41 disintegration apparatus (Nottingham, UK) was used, with a single tablet being
tested at a time for accuracy. Each tablet was placed in the vessel (without a disk) and oscillated at 30
cycles per minute. Dissolution medium of 800 ml distilled water was maintained at 37 °C, and
disintegration time measured when all of the fragments of tablet had passed through the mesh at the

bottom of the vessel. All readings were taken in triplicate and represented as mean + SD.

5.2.7.4 Porosity

Porosity of the tablets was assessed using a Quantachrome Helium Multipycnometer (Florida, USA).
Diameter and thickness of the tablets was measured using a digital calliper, and the weight of
individual tablets taken using an electronic balance. The bulk volume (Vs) and bulk density (ppuk) of

the tablets were then calculated using the following equations:

 R?
Ve = T (Eq. 5.3)
Tablet weight
Pouk =" (Eq. 5.4)

%:]

The true volume (V:) of the tablet was calculated using the pycnometer, which applies the theory of
gas displacement allowing the porous nature of the tablet to be assessed. The true volume was

calculated using the equation:
Ve=V, — 1, (E - 1) (Eq. 5.5)
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Where V¢ is the volume of the sample cell, V. is the volume of the reference cell, P1 and P2 are the
atmospheric pressure and pressure change during the measurement respectively. The true volume

was then used to calculate true density in the equation:

Tablet weight

o= ——————— Eq. 5.6
Pt v, (Eqg )

The final step to calculate porosity (€) of the tablet used the following equation:

g=1 — Lbulk (EQ. 5.7)

Ptrue

5.2.8 Powder Compression Profiling

To assess the compression profiles of the powder, three properties that affect the densification of the
powder bed were assessed. Individual 500 mg portions of powder were weighed out and compressed

at forces ranging from 75-150 MPa, and analysed for compressibility, compactability and tabletability.

5.2.8.1 Compressibility

Compressibility is a measure of the area of bonding occurring during the densification of the powder
bed, and is measured by plotting the porosity of the tablet against the compression force used to
compress it. Three tablets were prepared at each of the different compression forces and assessed
for porosity to allow a compressibility profile to be built. The mean of the porosities at each of the

compression forces was plotted.

5.2.8.2 Compactability

Compactability is a measure of the bonding strength of the bonds that form during powder
compaction. It is measured by plotting the tensile strength of the tablet against the porosity of that
tablet. Three tablets were prepared at each of the different compression forces and measured for
their porosity and the subsequent tensile strength, then plotted on a graph. The mean of the tensile

strength and porosity was plotted.
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5.2.8.3 Tabletability

Tabletability is a measure of tensile strength of a tablet against the compaction force that the tablet
was compressed at. It takes into account both compressibility and compactability of the tablet. Three
tablets were measured for tensile strength at each compression force, and the mean of the tensile

strength plotted to allow the tabletability profile to be generated.

5.2.9 Addition of a Non-Compressible API

To investigate the effects of utilising each of the blends in a typical dosage form, the non-compressible
APl metformin hydrochloride was used to assess how well the blends compacted alongside an API
with inherent poor compression properties. As MCC was a large constituent of the preblend a non-
compressible APl was chosen as this presented the worst case scenario in terms of compaction of the
powder. Two different ratios of preblend were investigated, with the compositions of the two types
shown in Table 5.1. Magnesium stearate was used as a lubricant, and a crystalline grade of mannitol
was added to blend 2 as an additional filler to assess the effect of the amount of preblend in the typical
formulation. The tablets were compacted at 75 MPa using a Specac semi-automatic hydraulic press
(Slough, UK), and assessed for the same tableting properties as the single preblend tablets above. Out
of the dry coated blends manufactured above only AvicelPH101/1% and Avicel PH102/1% were taken
forward to blend with the API, along with the two Prosolv grades and the two Avicel control powders.

The dry coated powders were chosen for their favourable flow and tablet properties, and

Table 5.1: A table able showing the composition of the two different blends used to manufacture API loaded
tablets allowing the effect of the proportion of preblend in the powder/tablet to be assessed alongside a non-
compressible API.

Blend 1 Blend 2
40% Metformin 40% Metformin
59.5% Preblend 30% Mannitol
0.5% Magnesium Stearate 29.5% Preblend

- 0.5% Magnesium Stearate
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increasing the concentration of silica beyond 1% lead to larger quantities of free silica being present

in the blend, as was observed post mixing.

5.2.10 Statistical Analysis

One way ANOVA followed by a Tukey’s multiple comparison post-hoc test, were performed using

GraphPad Prism 7 software (California, USA). For statistical significance a p-value <0.05 was used, and

all data was presented as mean * standard deviation.

5.3 Results and Discussion

5.3.1 Effects of Silica Concentration during Dry Coating compared to Prosolv

Raman spectroscopy was conducted to ascertain if the chemical composition of the dry coated blend
displayed any dual peaks from the constituent particles, or record absence/reduction of the MCC
peaks due to the partial covering of the MCC surface with the silica. Figure 5.1 and 5.2 highlight the
Raman Spectroscopy data for Avicel PH101 and PH102 respectively. Both the figures show a scan of
the uncoated MCC grade alongside the silica scan with the dry coated blend represented at the top.
The results indicated that uncoated MCC had large sharp peaks on the scan, with PH101 showing the
largest peak at an intensity of around 11000 counts, and PH102 showing the largest peak at
approximately 9000 counts. In terms of the silica scan the only characteristic peaks that were likely to
appear in a dry coated blend were at a Raman shift clustered around 1600 cm™, as all other peaks
were likely to be engulfed by MCC. The results showed that the dry coated powders with 2% silica
were very similar for both grades of MCC, with the overall peak heights of the MCC peaks being
reduced down to 8500 counts for PH101/2% and 4000 counts for PH102/2%, most likely due to the
presence of silica upon MCC surface, therefore reducing the exposure of MCC and downsizing the
intensity of the Raman peak. However the three small silica peaks around 1600 cm™ were not
detected, which indicated that the coating of silica was very thin, which was expected, as it was known
that silica particles were very small in size, down in the nanometre range, therefore detection of these

small particles using the Raman microscope would have been difficult in the dry coated blend.
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However the overall peak reduction of the MCC represented a positive indication that the exposure
of the MCC was reduced due to the presence of fine silica particles on the MCC surface, which was
further supported using the SEM images. Figure 5.3 visualises the particles of each of the powders
through SEM analysis, allowing the morphology of the particles to be observed. Dry coated powders
were manufactured with a silica concentration increasing from 0.25-2% w/w, with SEM images
highlighting the differences between the silica concentrations as shown in Figure 5.4. SEM images
indicated that during dry coating there was a clear deposition of the silica upon the surface of the
MCC, as observed in Figure 5.3 (E) and (F) and all of the SEM images in Figure 5.4, which correlated
with the Raman spectroscopy data to highlight that silica was present upon the surface of the MCC,
and partial coverage of MCC by silica was primarily responsible for the peak reduction observed on

the Raman data, due to the lower exposure of MCC.

For Prosolv P50 (Figure 5.5), it was observed that the uncoated PH101 had a much higher angle of

repose and therefore poorer flow compared to Prosolv, which was expected as previous findings
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Figure 5.1: Raman spectroscopy data showing the Raman signature for silica, uncoated Avicel PH101 and dry
coated Avicel PH101 with 2% silica loading. Raman signature shows MCC peak reduction post dry coating,
indicating a lower MCC signal due to lower exposure of the MCC surface due to the presence of fine silica
particles on the MCC surface.

197



Utilisation of a Novel Dry Particle Coating Method to Develop an MCC/Silica Hybrid Powder to be employed in Directly
Compressible Orally Disintegrating Tablets

14000 —Silica ——PH102 PH102 / 2% Silica

12000

10000

8000

6000

Intensity (counts)

4000

2000

0 /WMMMW\/MM/\/W

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-2000 Raman Shift (cm-1)

Figure 5.2: Raman spectroscopy data showing the Raman signature for silica, uncoated Avicel PH102 and dry
coated Avicel PH102 with 2% silica loading. Raman signature shows MCC peak reduction post dry coating,
indicating a lower MCC signal due to lower exposure of the MCC surface due to the presence of fine silica
particles on the MCC surface.

stated that an advantage of the Prosolv grade was that it had an increased bulk density compared to
unsilicified MCC, which resulted in the Prosolv having better flow properties. This increase in bulk
density was attributed to the inclusion of silica within the pre-processed particle (van Veen et al.,
2005). The Avicel PH101 also had a match stick like structure, as observed from Figure 5.3 (C), along
with the relatively low particle size, which contributed to its poorly flowing nature (Bolhuis and
Chowhan, 1996). Adding silica at a concentration of 0.25% improved the flow, and it was evident that
increasing the concentration up to 2% continued to lower the angle of repose and improve the powder
flow. It was seen that at higher concentrations, the angle of repose was starting to plateau, showing
that the silica was reaching maximum loading capacity and flow improvement did not increase as
expected. Also observed within the actual powder blend were higher levels of uncoated silica, as the
concentration of silica was increased. This was a further indication that the loading capacity of silica
upon MCC reached its maximum, and further increases in the levels of silica within the blend led to

no further flow improvements of the powder. This was further evidenced on the SEM (Figure 5.4) as
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Figure 5.3: SEM images of the different powders investigated in this study, with A, C and E at 1000x

maghnification and B, D, F at 500x magnification; A — Prosolv P50 showing a rough particle surface, B — Prosolv
P90 showing again a rough surface; C — Avicel PH101 showing a smoother particle surface compared to the
Prosolv; D — Avicel PH102 showing a smoother particle surface compared to the Prosolv; E — Avicel PH101/1%
silica dry coated blend, showing an MCC particle with a clear coating of silica upon the particle surface and F —
Avicel PH102/1% silica dry coated blend with clear evidence of silica dry coated upon the MCC particle surface.

the monographs showed that when concentration was increased from 0.5 to 1%, an increase in silica

loading upon the MCC was observed, with far more nano/micro sized silica coating the MCC.
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Figure 5.4: SEM images of the Avicel PH102 with different silica loading, with all images at 2000x
magnification; A —0.5% silica; B — 1% silica and C — 2% silica. Images indicate a large difference in silica loading
between 0.5 and 1%, however when the concentration is increased up to 2% a significant difference in silica
loading upon the MCC is not observed.

However when the concentration was doubled from 1 to 2% no significant increase in silica coating
on the MCC was observed. This gave further indication that, along with flow results (Figure 5.5),
increasing the silica concentration beyond 1% led to little enhancement in the loading efficiency of
the silica upon MCC particles. Overall it was seen that the smaller particle sized MCC loaded with >1%

silica had a very similar flow to Prosolv P50, which was a very well flowing excipient.

Loss on ignition was conducted to ascertain the level of silica within/dry coated on to the powders,
with results shown in Table 5.2. For Prosolv P50 and the PH101 powders, it was seen that 0.5% silica
loading had negligible levels of silica present within the blend, however upon increasing the
concentration up to 1 and 2%, increasing concentrations, similar to that in Prosolv, were seen. At 0.5%
silica load, flow results indicated an improvement, highlighting that silica was present in low

concentrations, which couldn’t be detected on the loss of ignition.
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Figure 5.5: A graph showing the powder flow, through angle of repose, of the Prosolv P50 compared to the dry
coated Avicel PH101 powders, with uncoated Avicel PH101 used as a control. No significant difference
observed between the Prosolv and the dry coated powders (n=3, p>0.05).

Table 5.2: A table showing the silica content of the Prosolv and dry coated blends obtained through loss on
ignition using TGA. For P50/PH101 there was an observable amount of silica present at 1 and 2% silica with 0.5%
significantly lower than the three other powders. However with PH102 the amount of silica was similar for 0.5
and 1%, however 2% silica showed a significantly higher amount of silica presence. No significant difference in
silica concentration between the dry coated powders and Prosolv were observed (except P50 and 101/0.5%
P<0.05). Moisture content was similar for all blend with no significant difference observed. (n=3, p>0.05).

Powder Silica Content (%) Moisture content (%)
PH101 - 2.95+0.20
P50 2.44 £0.19 2.66 £ 0.47
101/0.5% 0.00 £ 0.00* 3.31+0.21
101/1% 2.33+0.84 2.46 £0.77
101/2% 2.58+0.21 3.17+£0.36
PH102 - 3.17+£0.27
P90 4.37£0.47 3.23 £ 0.09
102/0.5% 3.66 £0.34 3.36+0.41
102/1% 3.67+0.11 2.74 £0.24
102/2% 5.33+0.51 2.80+0.34
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However when concentration was increased up to 1 and 2% silica levels were detectable, and a clear
coating of silica was present on the MCC, as observed on SEM, which correlated with the improvement
in flow compared to the uncoated MCC. There was no statistical difference in silica levels between
Prosolv P50 and PH101/1% and PH101/2%, indicating that silica levels were very similar between these
three powders (p>0.05) A difference in silica loading was seen with PH102, with levels appearing
higher than the PH101 powders. This was due to the dry coating phenomenon, where a larger
difference in particle size between the guest and host resulted in more distinct coating. The higher
levels of silica present on the PH102 powder was due to the particle size being 100 um as opposed to
the 50 um of PH101, which would have resulted in stronger cohesive forces between the silica and
MCC in PH102, and therefore a stronger and improved coating would have been produced. The
pattern with PH102 powders was slightly different, although it was observed that silica concentration
increased as the amount in the dry coated powder was increased, the difference between 0.5 and 1%
was negligible, at 3.66 and 3.67% respectively, however 102/2% had a significantly higher proportion
of silica at 5.33%. This therefore indicated that at 2% a higher level of silica was attaching itself to the
MCC, and that loading had increased, however it was not statistically different when compared to

Prosolv P90 (p>0.05).

Prosolv P90 was the larger particle size grade of Prosolv, and it had a clear flow improvement over
Prosolv P50 due to the larger particle size, which reduced interparticle cohesive, electrostatic and Van
der Waals forces (Liu et al., 2008, Staniforth and Aulton, 2007). It was observed again that the
uncoated PH102 had a worse flow behaviour compared to Prosolv, as expected, due to the absence
of silica within the particle itself, which resulted in a lower bulk density of the regular MCC (van Veen
et al., 2005). Upon dry coating of the silica on to the surface of the PH102 powders it could be seen
that a clear improvement in flow was observed (Figure 5.6) from 28.13° with Prosolv to 24.54° with
PH102/1% silica, with statistical significance observed amongst all dry coated formulations. The

excellent flow properties of the Prosolv (both grades) was attributed to the fact that the silica within
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Figure 5.6: A graph showing the powder flow, through angle of repose, of the Prosolv P90 compared to the dry
coated Avicel PH102 powders, with uncoated Avicel PH102 used as a control. Significant difference was
observed between the Prosolv and all of the dry coated powders, with dry coated powders providing a more
flowable powder (n=3, p<0.05).

the particles was mainly adhered at the surface of MCC, however some of the silica also formed part
of the internal structure due to the production process (Edge et al., 1999). However for the PH102 dry
coated powders, silica was completely at the surface of the particles. This meant that silica acted to
reduce interparticulate friction by coating the main constituent particles within the blend, and any
free silica within the dry coated powder also acted to further enhance the flow (Chattoraj et al., 2011).
Moisture content was also analysed, as shown in Table 5.2, to assess if moisture levels had an impact
on flow, as a previous study by Alyami et al. (2016b) found that dry particle coating could be utilised
for moisture optimisation within powders. However the results in the study indicated that no

statistical difference in moisture content was observed, and that moisture levels remained around 2-

3.5% w/w.

Results in this study showed that improvement in flow properties was dependent on the
concentration of silica. As with PH101, the PH102 powders beyond 1% tended to have some amount

of free silica within the blend that didn’t coat the MCC particles, which was also observed on the
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SEM images shown in Figure 5.4. Loss on ignition results clearly indicated an increased silica
presence with 102/2%, however even with the increased silica load no increase in powder flow was
obtained. This gave a clear indication that beyond a certain concentration of silica, levels of dry
coating were reaching their optimum level and no significant increase in silica loading on to MCC was
occurring and thus led to a higher proportion of free silica within the powder. Therefore in this study
the optimum concentration of silica was observed to be 1% w/w to achieve optimum dry coating

and flow improvement.

In terms of tablet properties, hardness and disintegration times of the Prosolv and the Avicel/Silica
dry coated powders are shown in Figures 5.7 and 5.8, with porosity and friability shown in Table 5.3.
From these results it was clear that the mechanical strength for Prosolv tablets for both the P50 and

P90 (Figure 5.7 and 5.8 respectively) was higher than all of the dry coated tablets, with statistical
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Figure 5.7: A graph showing the hardness and disintegration time of the tablets compressed at 75 MPa of the
Prosolv P50 and Avicel PH101 dry coated tablets/control, with different proportion of silica, with hardness
represented by the line and disintegration time by the bars. Results indicated that Prosolv displayed
advantageous mechanical strength compared to dry coated grades (n=3 p<0.05), however disintegration time
was significantly improved with the dry coated grades, even though mechanical strength was still very high
(n=3, p<0.05).
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Figure 5.8: A graph showing the hardness and disintegration time of the tablets compressed at 75 MPa of the
Prosolv P90 and Avicel PH102 dry coated tablets/control, with different proportion of silica, with hardness
represented by the line and disintegration time by the bars. Results indicated that Prosolv displayed
advantageous mechanical strength compared to dry coated grades (n=3 p<0.05), however disintegration time
was significantly improved with the dry coated grades, even though mechanical strength was still very high
(n=3, p<0.05).
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significance observed. It was seen that the uncoated Avicel also displayed similar hardness to the
Prosolv at both particle sizes, which indicated that the dry coating process was affecting the binding
efficiency of MCC, due to the addition of silica to the outer surface of the particle. The similarities
between Prosolv and uncoated Avicel were due to the silica being processed along with the MCC in
Prosolv. This allowed strong bonds to form between adjacent MCC particles, as silica was present
within the particle, whilst also being present to some extent at the particle surface. This resulted in
very little interruption to the hydrogen bonding mechanism, whereas the presence of silica on the
surface of MCCin the dry coated blends interrupted MCC-MCC bonding. However due to the presence
of silica at the particle surface the levels of interparticle bonding may have been reduced, leading to
a lower overall hardness of the tablets (van Veen et al., 2005). Due to the high mechanical strength,

the friability of all the tablets analysed in this study was very low and
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Table 5.3: A table showing the friability and porosity of the tablets manufactured from the different powders
tested in this study. Results indicated that in terms of friability all tablets (both the Prosolv P50/Avicel PH101
compared powders and Prosolv P90/Avicel PH102 compared powders) passed the test with friability being
below the designated 1% threshold and no clear pattern observed. Porosity results also displayed no significant
differences and no clear pattern, indicating friability and porosity of the dry coated tablets were very similar to
the Prosolv and the Avicel control (n=3, p>0.05).

Powder Friability (%) Porosity True Density
Prosolv P50 0.102 0.291 £ 0.019 1.656 £ 0.048
Avicel PH101 0.014 0.261 +£0.021 1.570 £ 0.049
Avicel PH101 / 0.25% 0.135 0.266 +0.015 1.569 + 0.029
Avicel PH101 / 0.5% 0.168 0.277 £0.014 1.586 + 0.030
Avicel PH101 / 0.75% 0.2 0.308 £ 0.019 1.595 + 0.042
Avicel PH101 / 1% 0.033 0.277 £ 0.005 1.545 +0.009
Avicel PH101 / 1.5% 0.033 0.278 £ 0.016 1.563 £ 0.038
Avicel PH101 / 2% 0.033 0.282 £ 0.022 1.564 £ 0.041
Prosolv P90 0.102 0.269 + 0.009 1.604 £ 0.019
Avicel PH102 0.216 0.255+0.014 1.572 £0.032
Avicel PH102 / 0.25% 0.066 0.244 +0.021 1.497 £ 0.038
Avicel PH102 / 0.5% 0.132 0.244 £ 0.010 1.480 £ 0.022
Avicel PH102 / 0.75% 0.099 0.264 +0.023 1.512 + 0.045
Avicel PH102 / 1% 0.099 0.243 +0.021 1.468 + 0.035
Avicel PH102 / 1.5% 0.066 0.242 +0.024 1.451 £ 0.041
Avicel PH102 2% 0.198 0.253+£0.024 1.467 £0.044

well within acceptable limits (friability below <0.2%) as shown in Table 5.3, with no impact from silica
concentration. However it was seen that disintegration time with the dry coated formulations was
significantly better than Prosolv. The reduction in disintegration time could be attributed to the
reduced mechanical strength of the dry coated formulations, but it could also be said that including
the silica during the production process of Prosolv was negatively affecting the disintegrating ability
of the MCC as the control uncoated version disintegrated rapidly even though it had comparable

hardness. Previous work had indicated that the silicified MCC grades (Prosolv) were more resistant to
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disintegration than unsilicified grades of MCC (Kachrimanis et al., 2003). It was hypothesised that the
co-processing of silica with MCC in Prosolv, whereby silica was present within the MCC structure and
at the surface (Edge et al., 1999), acted as a barrier to the wetting of the particles. The adsorbed
moisture acted to reduce the energies involved in interparticle separation and therefore led to
prolonged disintegration times (Kachrimanis et al., 2003). It was also observed by Luukkonen et al.
(1999) that Prosolv tended to adsorb more moisture within its structure leading to a lower liquid
saturation, whereas Avicel tended to have higher levels of liquid within the particle, which would have
led to a faster disintegration with Avicel based tablets as the increased water within the tablet would
aid breakdown and disintegration of the structure. Therefore the dry coated MCC presented a far
better option in terms of enhancing disintegration of the tablets as it retained properties similar to
the uncoated MCC, with powders retaining very similar disintegration times to the uncoated powder.
MCC has been shown to exhibit good disintegrating properties, as it forms swellable, porous tablets
which promote water uptake through capillary action (Bhalekar et al., 2010, Thoorens et al., 2014,
Bolhuis and Chowhan, 1996). Therefore the reduction in disintegration capability of the Prosolv
indicated that the inclusion of silica within the co-processed MCC reduced the disintegrating
properties of the SMCC, whereas dry coating the MCC with silica preserved MCC’s inherent fast
disintegrating properties. The reduced disintegration capability of the Prosolv couldn’t be attributed
to the porosity as it was seen that porosity across the small particle sized MCC and large particle sized
MCC, as shown in table 5.2, were very similar, ranging from 0.5 to 0.3. This was low due to the highly
plastic nature of MCC, meaning it had a very good compressibility leading to a less porous particle

being produced (Thoorens et al., 2014, Almaya and Aburub, 2008).

5.3.2 Compression Properties of the powder

Figures 5.9-5.11 and 5.12-5.14 show profiles for the compressibility, compactability and tabletability
comparisons for Prosolv P50 against the dry coated PH101 powders and Prosolv P90 against the dry
coated PH102 powders respectively. The tablets were compressed from a compaction force range of
between 75-150 MPa, as the mechanical strength beyond 150 MPa was not measurable by the tablet
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hardness tester. With both particle sizes of dry coated powders a very similar pattern emerged where
compressibility of the dry coated blends was very similar to the Prosolv and uncoated Avicel, however

compactability and tabletability was reduced.

The compressibility profiles indicated the materials ability to reduce in volume during the application
of a compaction pressure, and displayed the relative bonding area that had occurred during the
compaction of the material (Khomane and Bansal, 2013, Joiris et al., 1998). The results in this study,
as shown in Figure 5.9 and 5.12 for Prosolv P50/Avicel PH101 and Prosolv P90/Avicel PH102
respectively, indicated that dry coating did not affect the compressibility of the material, with the
bonding area during compaction remaining very similar. This meant that silica as an additional layer
on the outside of the MCC particles was not significantly affecting the proportion of bonds forming
between adjacent MCC particles, as MCC is a highly plastic material which forms a large number of
bonds during applied pressure. Very similar results were observed for both particle sizes tested with
no significant differences observed between the Prosolv and Avicel for either size, which indicated

that the dry coating did not affect the compressibility of the material irrespective of the particle size.

However it was observed that compactability and tabletability of the dry coated blends were reduced
compared to Prosolv and Avicel control. In terms of compactability (Figure 5.10/Figure 5.12 for Prosolv
P50/Avicel PH101 and Prosolv P90/Avicel PH102 respectively), which was a measure of the
interparticulate bonding strength, displayed as porosity against tensile strength; therefore a high
tensile strength at a higher porosity would indicate an increased bonding strength for that particular
material (Khomane and Bansal, 2013, Joiris et al., 1998). The results presented in the study revealed
that although the bonding area for the dry coated material remained the same, the strength of the

bonds was reduced, due to the reduction in tensile strength of the tablets at a given porosity.

208



Utilisation of a Novel Dry Particle Coating Method to Develop an MCC/Silica Hybrid Powder to be employed in Directly
Compressible Orally Disintegrating Tablets

0.30
°
e.
0.25
® P50
o ® 101/1%
0.20 &0 101/1.5%
. 101/2%
Avicel 101
=z
80.15
o
o
. ' :
0.10 e,
Y TS °
0.05
0.00
60 70 80 90 100 110 120 130 140 150 160

Compression Pressure (MPa)
Figure 5.9: A graph showing the compressibility profile of the Prosolv P50 and Avicel PH101 dry coated

powders, with results displaying a very similar compressibility profile between all powders, this indicated
bonding area was very similar amongst all powders.
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Figure 5.10: A graph showing the compactability profile of the Prosolv P50 and Avicel PH101 dry coated
powders, with results showing Prosolv and the Avicel control had superior compactability, and therefore bond
strength compared to dry coated powders.
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Figure 5.11: A graph showing the tabletability profile of the Prosolv P50 and Avicel PH101 dry coated powders,
with results showing Prosolv and the Avicel control had increased tabletability, due to the increased
compactability of the powders compared to the dry coated powder.
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Figure 5.12: A graph showing the compressibility profile of the Prosolv P90 and Avicel PH102 dry coated
powders, with results displaying a very similar compressibility profile between all powders, this indicated
bonding area was very similar amongst all powders.

210



Utilisation of a Novel Dry Particle Coating Method to Develop an MCC/Silica Hybrid Powder to be employed in Directly
Compressible Orally Disintegrating Tablets

10
9 °
. ® P
8 ® 102/1%
P . 102/1.5%
= , 102/2%
=3 Z Avicel 102
5 X,
s 6 & t
A @
D T e T e e e
2 T e T T
< 5 o [ J
'_
4
3
2
0.00 0.05 0.10 0.15 0.20 0.25 0.30
Porosity

Figure 5.13: A graph showing the compactability profile of the Prosolv P90 and Avicel PH102 dry coated
powders, with results showing Prosolv and the Avicel control had superior compactability, and therefore bond
strength compared to dry coated powders.
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Figure 5.14: A graph showing the tabletability profile of the Prosolv P90 and Avicel PH102 dry coated powders,
with results showing Prosolv and the Avicel control had increased tabletability, due to the increased
compactability of the powders compared to the dry coated powder.
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This indicated that the addition of silica to the surface of the MCC affected the materials ability to
form strong bonds. Although it has to be understood that the tensile strength of the dry coated tablets
was still very high for the given compaction pressure, with tablets compressed at 150 MPa having a
tensile strength of 7.189 and 7.548 MPa for PH101 and PH102 with 2% silica respectively. With Avicel
and Prosolv displaying very similar results for both particle sizes it indicated that adding the silica
alongside the MCC during the spray drying process resulted in the MCC being able to retain its ability
to form strong bonds. A previous study had also indicated that at slow compaction speeds, as used in
the single tablet press used in this study, compactability of the Prosolv had remained very similar to
the unsilicified MCC (Edge et al., 2000). The alteration of the surface characteristics of the MCC, due
to adsorbed silica to the MCC particle surface during dry coating, affected this ability and in fact
reduced the bonding strength of MCC. Silica possibly acted by reducing interparticle friction, therefore
this could have been a primary reason for the reduction in strength of the bonds, as this may have
reduced the ability of MCC to mechanically interlock, thus reducing the strength of bonds formed
between the adjacent particles (Al-khattawi et al., 2014). This may have been due to the increased
surface area of the silicified Prosolv grades, as shown in Figure 5.3, possessed a fairly rough surface,
which would have increased the levels of interlocking between adjacent particles, and promoted
strong bond formation (Al-khattawi et al., 2014). The concentration of silica didn’t affect the bonding
strength, as all three powders and both particle sizes indicated very similar compactabilities, which
resulted in the assumption that it was primarily the presence of silica reducing the bonding strength
of the material and was independent of concentration. It was observed in the above results that at a
concentration of 1%w/w silica loading on to the particle surface of MCC was optimal, whereby further
increasing the silica led to a higher proportion of free silica within the powder mix. Therefore these

results again supported that the MCC particles were coated with a large proportion of silica.

Tabletability was also reduced for both the PH101 and PH102 dry coated powders in a very similar
magnitude to that of the reduction observed in the compactability. Tabletability is the ability of the
powder to be manufactured into a tablet of certain strength with the application of a compaction
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pressure (Khomane and Bansal, 2013, Joiris et al., 1998), and is indicated by Figures 5.11 and 5.14 for
Prosolv P50/Avicel PH101 and Prosolv P90/Avicel PH102 respectively. The tabletability of a material is
dependent on its compressibility, compactability and true density (Khomane and Bansal, 2013). True
density of the Prosolv was always higher than the dry coated blends, which gave an indication that a
higher true density provided an improved tabletability with the investigated powders (Table 5.3). The
results indicated again that the dry coated powders had a lower tabletability than the Prosolv and the
Avicel controls used. As tabletability is a measure of both the compressibility and compactability of
the material, it was expected that the tabletability would have been reduced as a consequence of the
reduced bonding strength of the dry coated powders. As mentioned above, this reduction in bonding
strength wasn’t a major issue as the tablets that were being produced still had a mechanical strength
of a very high magnitude at low compaction forces for both particle sizes investigated. However it was
seen that the addition of the silica to the surface of the MCC did produce a notable reduction in the
tabletability of the dry coated powders, as the tensile strength of the compacts for both Prosolv and

the Avicel control were higher at each of the compaction pressures used.

5.3.3 Effect of the Addition of the non-compressible APl Metformin Hydrochloride

In this section the effect of the addition of 40% of the non-compressible APl metformin was assessed,
alongside two different loads of the MCC/silica preblends. The first preblend load of 59.5% w/w
(displayed as blue bars throughout the results below) assessed effect of the MCC/silica alone on tablet
properties of an API loaded tablet and the second preblend load of 29.5% w/w, alongside 30% w/w of
mannitol, allowed assessment of the preblend in a powder with not only a non-compressible API, but

also a brittle fragmenting excipient.

In terms of the flow of the APl loaded powders, it was observed that a similar pattern to the 100%
preblend formulations was obtained. The PH101 dry coated powder had a very similar flow to Prosolyv,
however the PH102 dry coated powder with the metformin produced a more flowable preblend (as

shown in Figure 5.15 and 5.16 respectively). Although the flow did worsen with the addition of AP, it
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Figure 5.15: A graph showing the powder flow through angle of repose of the APl loaded Prosolv P50 and
Avicel PH101 dry coated powders/control, with very little difference observed between the flow of the
powders at both preblend loads (n=3, p>0.05).
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Figure 5.16: A graph showing the powder flow through angle of repose of the APl loaded Prosolv P90 and
Avicel PH102 dry coated powders/control, dry coated Avicel PH102 showing an improvement in flow compared
to both the Prosolv P90 and Avicel control for both preblend loads (n=3, p<0.05).
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still remained within a very flowable range and would pass the flowability test for production on a
large scale. It was observed that the addition of mannitol to the powder blend worsened the flow in
all cases. This was expected as mannitol is a needle shaped particle that had a tendency to interlock
and segregate, which negatively impacted the flowing nature of the powder. However in all cases the

powder flowed well, and would have been acceptable to scale up in terms of its flowability.

Figures 5.17-5.18 display the hardness and disintegration time of tablets compressed at 75 MPa, with
Table 5.4 showing friability and porosity results from the drug loaded preblends investigated in this
study. Result patterns were again very similar to the unloaded preblends that were investigated, with
the hardness being significantly higher with Prosolv (both grades) especially at the 59.5% preblend

load, with little difference observed between the tablets manufactured with the 29.5% preblend,
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Figure 5.17: A graph showing the disintegration time and hardness of tablets compressed at 75 MPa produced
from the API loaded Prosolv P50/Avicel PH101 dry coated powders investigated in this study, with
disintegration time displayed on the bars and hardness on the line. Results indicated that hardness for Prosolv
was improved over the Avicel PH101 dry coated powder and control (n=3, p<0.05) at 59.5% preblend load, with
little difference observed at 29.5% preblend load (n=3, p>0.05). However disintegration time was markedly
improved for the dry coated powder over the Prosolv (n=3, p<0.05) at the 59.5% preblend load, again with little
difference seen at the 29.5% preblend load (n=3, p>0.05).
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load, with little difference observed between the tablets manufactured with the 29.5% preblend,
whereby the mechanical strength was quite low, due to the inclusion of mannitol which fragments
during compression, causing high die wall interactions and therefore weak bonding within the tablet
structure (Koner et al., 2015). The higher hardness of the Prosolv grades was partly attributed to its
higher bulk density leading to improved packing properties of the particles and therefore the ability
to form stronger bonds (Luukkonen et al., 1999, van Veen et al., 2005). Another key factor observed
here was that Prosolv was much harder than the Avicel uncoated grades, as well as the dry coated
grades. The difference for the dry coated blends was that the silica film around the particles possibly
reduced the levels of interparticle bonding, whereas for Prosolv the silica was embedded into the
surface, and therefore tablets of a lower hardness were manufactured. However in terms of the big

difference between the uncoated MCC and Prosolv, this was far more evident with APl than the tablets
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Figure 5.18: A graph showing the disintegration time and hardness of tablets compressed at 75 MPa produced
from the API loaded Prosolv P90/Avicel PH102 dry coated powders investigated in this study, with
disintegration time displayed on the bars and hardness on the line. Results indicated that hardness for Prosolv
was improved over the Avicel PH102 dry coated powder and control (n=3, p<0.05) at 59.5% preblend load, with
little difference observed at 29.5% preblend load (n=3, p>0.05). However disintegration time was markedly
improved for the dry coated powder over the Prosolv (n=3, p<0.05) at the 59.5% preblend load, again with little
difference seen at the 29.5% preblend load (n=3, p>0.05).
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Table 5.4: A table showing the friability and porosity results for the APl loaded powders of Prosolv and the
respective Avicel dry coated powders, with friability being similar with the Prosolv P50 and PH101 results at
59.5% preblend load, however PH102 dry coated tablets have higher friability compared to Prosolv P90 at 59.5%
preblend load. Friability is well above threshold for the 29.5% preblend loaded powders, due to low mechanical
strength of tablets. Porosity results indicated no significant differences between the Prosolv grades for either
particle size compared to the dry coated powders, however compared to the Avicel controls for each of the
powders the porosity of the dry coated powder tended to be higher. Data significantly different is marked with
an asterisk (*) (n=3, p<0.05).

Powder Friability (%) Porosity
59.5% 29.5% 59.5% 29.5%
Preblend Preblend Preblend Preblend
Prosolv P50 0.890 3.574 0.174 £0.014 0.178 £0.019
Avicel PH101 / 1% 0.788 4.803 0.183 £ 0.031 0.174 £ 0.017
Avicel PH101 1.465 4.808 0.150 £ 0.015 0.113 £0.015*
Prosolv P90 1.125 5.218 0.183 + 0.007 0.156 + 0.001
Avicel PH102 / 1% 2.280 3.248 0.157 £ 0.010 0.143 + 0.027
Avicel PH102 2.026 5.035 0.109 + 0.010* 0.109 + 0.010

without API. This was attributed to the fact that unsilicified MCC was known to be lubricant sensitive
(Zuurman et al., 1999). Also visualised on the SEM images (Figure 5.3) was the Prosolv grades having
a far rougher particle surface, which was also observed in previous studies where the Prosolv grades
had a specific surface area about 5 times greater than Avicel (Luukkonen et al., 1999). This surface
roughness was attributed to texturisation of the MCC by the silica, occurring during the pre-processing
of the excipient (Tobyn et al., 1998). This led to increased levels of mechanical interlocking between
adjacent Prosolv particles leading to strong interparticle attraction, which resulted in low levels of
tablet relaxation during compression and therefore tablets of a higher hardness being produced (Al-
khattawi et al., 2014, van der Voort Maarschalk et al., 1996). The study by van Veen et al. (2005) also
demonstrated that in the presence of magnesium stearate, the hardness of tablets containing
unsilicified MCC was much lower than the Prosolv grades, due to the increased relaxation time after

compression, which was the same pattern observed with the uncoated Avicel as well as the dry coated
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MCC. This resulted in an overall lower hardness of the tablets containing Avicel compared to Prosolv.
The reduction in strength of the uncoated Avicel compared to the Prosolv was advantageous for the
dry coated blend. It had been observed in previous work that uncoated MCC was lubricant sensitive
(Zuurman et al., 1999), highlighted by the massive reduction in hardness compared to Prosolv from
the blend manufactured with 100% preblend (Figures 5.7 and 5.8) compared to blends containing
magnesium stearate and the API (Figures 5.17 and 5.18). The dry coated MCC maintained a similar
difference to Prosolv, and at a preblend load of 59.5% had a higher hardness than the uncoated MCC
for both particle sizes. This showed that the dry coated powders had reduced in lubricant sensitivity,
and possessed this advantage over the uncoated MCC, as hardness of the compacts was not reduced

as significantly in the presence of lubricant.

Disintegration time was observed to be better with the dry coated preblend tablets, similar to the
results above for the blends without API. This was particularly evident with PH102 tablets, where the
disintegration time of the tablets at a 59.5% preblend load was as low as 20 s, indicating that the dry
coated powder provided clear benefits in terms of disintegration. At the low preblend load of 29.5%
across both grades, no statistically different disintegration data was observed (p>0.05). Interestingly
with the inclusion of API the porosity of the uncoated MCC dropped below that of the dry coated
powder with both PH101 and PH102 (shown in Table 5.4), which explained the improved
disintegration time of the tablets manufactured from the dry coated powder. The reduced
disintegration time of the tablets containing the unsilicifed MCC (Avicel) was due to the Prosolv having
slow disintegrating properties, due to the silica acting as a barrier to water uptake into the tablet, as

was seen with the blends with the absence of API (Kachrimanis et al., 2003).
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5.4 Conclusion

From the results in this study it can be concluded that dry coated composite particles of silicaand MCC
provided positive results giving a free flowing powder with high mechanical strength and faster
disintegration time. Although tablet hardness, both with and without APl was reduced compared to
Prosoly, it still remained very compressible even at very low compression forces. It was less lubricant
sensitive than the uncoated Avicel, and therefore provided powders that remained highly
compressible after mixing with magnesium stearate and API. A fairly high drug load of the non-
compressible APl metformin was used, and using a preblend concentration of 59.5% provided tablets
of a sufficient mechanical strength. However the key advantage of the dry coated particles was that it
retained the very good disintegrating properties of the uncoated MCC. Disintegration times were
significantly lower than the Prosolv grades at both sizes, showing that the tablets were disintegrating
more rapidly with dry coated powders compared to the pre-processed Prosolv. Flow was also
improved for the dry coated particles, particularly with the PH102 MCC compared to the Prosolv P90,
due to the surface coverage of the silica resulting in a higher reduction in the frictional forces between
particles, giving a better bulk flow of the powder. Compression profiles of the powder also indicated
that although bond strength did decrease when dry coating MCC, this wasn’t an issue as the resulting
hardness of the tablets was still very high. More importantly compressibility of the MCC was retained,
with compressibility remaining very similar between dry coated MCC and the Prosolv/Avicel control

for both particle sizes investigated.

Therefore it can be established that the dry coated powders provide an alternative advantage over
Prosolv. Disintegration of the dry coated powders was rapid, very similar to uncoated MCC, whilst
having an improved powder flow and reduced lubricant sensitivity compared to the Avicel control. Dry
coating provided a suitable alternative to Prosolv, whilst being produced in a one stop environmentally
friendly processing condition, whereby MCC and silica were not exposed to any chemicals or physical

alteration.
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Conceptualisation, Development and
Fabrication of a Novel Disintegration Tester

Designed Specifically for Orally Disintegrating

Tablets
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6.1 Introduction

To ensure an ODT is fit for purpose the undertaking of characterisation assessments is vital. Among
the assessments conducted, disintegration time is one of the most essential testing methods to ensure
that the ODT disintegrates within the recommended FDA time of 30 seconds (FDA, 2008) or European
Pharmacopoeia time of 3 minutes (Ph.Eur, 2013), with the dosage form designed to

disperse/disintegrate on the tongue.

The currently recommended ODT disintegration test is the US FDA standard disintegration test for
solid oral dosage forms, as shown in Figure 6.1. This test consists of a basket rack attached to a rod
which oscillates vertically and a beaker filled with disintegration medium, which is placed beneath the
basket assembly and kept at 37 °C. The basket is immersed into the disintegration medium at a
frequency of between 29-32 cycles per minute through a distance of around 53 mm to allow tablet
disintegration to take place. The basket is made up of 6 disintegration vessels with a wire mesh at the

bottom (with holes of between 1.8 mm-2.2 mm), and disintegration time is measured once all

29-32
Cycles/min .
Disintegration eresnaﬁfsaréeatoLower
medium at Disintegration vessel e ;
disintegration vessel
37°C £ 2°C | of diameter 20.7- J
23mm

N\ /\

Water bath at
37°C

Figure 6.1: A diagram illustrating a typical set up for the standard USP disintegration test for solid oral dosage
forms, that is utilised for ODT disintegration testing. It shows how the basket would typically by placed within
the beaker/water bath, and how the dissolution vessels are arranged within the basket.
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fragments of the oral dosage form have passed through the wire mesh. A disk can be placed on top of

the oral dosage form, but for ODT testing this is not usually utilised (USP, 2008).

However In Vivo, an ODT would be placed on to the tongue of the patient and then subsequently
disperse/disintegrate through interaction with the saliva present within the oral cavity. As the tablet
is placed in the mouth, and the mouth closed, there would be interactions between the ODT and the
upper palate, as well as a controlled temperature of around 37 °C (Moore et al., 1999), and relative
humidity of around 90-95% (Mathias et al., 2010). These conditions would aid in the disintegration of
the ODT, as the high humidity and temperature would promote further moisture uptake into the

tablet and the pressing of the upper palate would aid in the breakdown of the tablet.

The process of taking an ODT requires no water to be consumed as the dosage form disintegration
within the mouth allowing it to be swallowed easily. Having examined the In Vivo conditions, it can be
seen that the current recommended USP disintegration test does not bare resemblance to the In Vivo
conditions. The standard test uses a large volume of disintegration medium, and the dosage form
disintegrates within the oscillating vessel, which would be similar/correlate more to the disintegration
of a conventional tablet that is swallowed with water and disintegrates within the stomach. Also the
time taken for disintegration is measured when the last fragment of the tablet has passed through the
wire mesh at the bottom of the vessel, which does not necessarily relate to the time taken for the ODT

to disintegrate within the oral cavity, and is subsequently ready to swallow.

This highlights a significant gap in the market regarding a disintegration test specifically for ODT’s. The
USP guidance for “ODTs in industry” specifies that an improvised test can be developed and used for
measuring the disintegration time of the ODT providing results are equivalent to the USP method as
well as correlating with In Vivo conditions (FDA, 2008). Previous efforts have been made at conducting
an In Vivo relevant/correlating test, with methods ranging from the fabrication of tailored equipment
(Yoshita et al., 2013, Harada et al., 2006, Uchida et al., 2013, Hermes, 2012), to improvised methods

that are developed using currently available lab equipment (Kakutani et al., 2010, Bi et al., 1996, Dor
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and Fix, 2000, el-Arini and Clas, 2002, Abdelbary et al., 2005, Park et al., 2008, Morita et al., 2002,
Kondo et al., 2012) . However tests that have been developed use conditions that are still not entirely
representative of In Vivo conditions (refer to Table 1.2 in Chapter 1), with methods using varying
conditions to achieve ODT disintegration. The previous work, although successful in providing new
methods of ODT disintegration time data gathering, has limited data regarding In Vitro In Vivo
Correlation, and therefore further support is needed to assess the validity of the tests in representing

real ODT disintegration time.

This study was therefore designed to develop and conceptualise a new ODT disintegration test which
was not only representative of In Vivo conditions, but also correlated with /n Vivo results. Various
phases of development of the tester were conducted, and results from the final design were compared
to an In Vivo ODT disintegration time study to assess whether the proposed ODT disintegration test

was a valid and true in representation of real ODT disintegration times.

6.1.1 Proposed Design

The method for disintegration time was developed throughout three phases. Distance/time plots
were able to distinguish between different types of ODTs, as well as not allowing a standard release
tablet to disintegrate. The thorough literature review had highlighted key areas that were needed to

obtain a tester that gave conditions that were representative of the oral cavity. These were:

e Temperature of 37 °C

e Humidity of 90-95%

e Disintegration medium flow of up to 10 ml/min

e Minor manipulation of the tablet bed representing contact and manoeuvring of the tablet by
the upper palate

A proposed design for the disintegration tester was drawn up, as shown in Figure 6.2. The chamber
was designed to maintain a constant temperature and humidity according to the conditions above.
The silicon tubing was designed with perforations in the zone where the tablet would make contact,

this would allow the disintegration medium to flow from underneath and spread over the surface. The
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tablet probe would start outside the chamber and the tablet would be attached to the probe. The
probe would enter the chamber at a predetermined speed and come into contact with the silicon
tubing, where the predefined force would be applied on to the tablet and chamber would move
laterally, mimicking the action of the upper palate. The probe would be attached to software that
would draw the distance time plot required for defining the disintegration time. An area for collection
of the disintegrating fragments from the tablet could also be added, and assayed, possibly in line, to

assess the leakage of the drug in the oral cavity.

Probe entrance

@ on top of

enclosure
< oDT Silicon tube with holes
attached to for saliva flow. rate can
probe be altered with control
|
~— >
.. LA
. - L] L ]
" L] L]

N +—— Salivain

™~ Collection area for

Drug concentration out — disintegrated drug — comes
To HPLC or measuring — apart from tablet during
method disintegration

Figure 6.2: A schematic diagram showing the proposed design of the specific disintegration tester for ODTs,
comprising of conditions representative of the oral cavity, including temperature/humidity, disintegration
medium flow rate and applied pressure on the tablet. An area for collection of the disintegrating fragments
from the tablet could also be added to assess drug leakage/absorption in the mouth.
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6.2 Materials and Methods
This study was split into two different stages: 1 — Testing of the new disintegration tester, comparing
results from tablet properties to the standard USP test; 2 — An In Vivo study to gather a correlation of

In Vivo results to be compared against the newly developed tester and the standard USP test.

6.2.1 Materials
Nurofen Meltlets, from Reckitt Benckiser (Slough, UK) were utilised as a commercially available ODT
and standard release paracetamol, from Wockhardt (Wrexham, UK), was also used for disintegration

testing.

Materials for ODT preparation included D-mannitol (Sigma-Aldrich, Dorset, UK), MCC (Avicel PH102,
FMC Biopolymer, Philadelphia, USA), Starch 1500® (Colorcon Inc., Harleysville, USA), crospovidone
(Kollidon CL, BASF, Ludwigshafen, Germany), Pearlitol Flash® (Roquette, Lestrem France), sodium
stearyl fumarate (Alubra®, FMC Biopolymer, Philadelphia, USA) and magnesium stearate (Fischer
Scientific, Loughborough, UK). Additionally, HPMC (Methocel K100M, Colorcon Inc., Harleysville, USA)

was used for matrix tablet production.

6.2.2 Validation of Disintegration using Newly Developed Disintegration Tester

Several different tablets were tested in this stage. Two commercially available tablets were tested, an
ODT formulation, Nurofen Meltlet® and a standard release paracetamol were used as GMP tablets in
the tester. Five sets of tablets were manufactured in the laboratory to test time sensitivity within the
newly developed disintegration tester, four ODTs compacted at different compression forces and a

controlled release matrix tablet were manufactured.

6.2.2.1 Tablet Preparation

The lab based ODTs tested in this study were composed of 60% D-mannitol, 35% MCC, 4%
crospovidone as the main tablet excipients and 1% magnesium stearate as a lubricant. All excipients,
except magnesium stearate were manually blended for 10 mins to achieve a uniform powder blend,

and then magnesium stearate added and mixed for a further minute. Individual 500 mg portions of
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powder were weighed and compressed using a Specac semi-automatic hydraulic press (Slough, UK)
equipped with 13 mm flat faced punches. Four compression forces were chosen to allow the sensitivity

of the disintegration tester to be analysed, these ranged from 75 MPa to 300 MPa.

The controlled release matrix tablets were composed of 40% HPMC, 40% MCC, 19% d-mannitol and
1% magnesium stearate. All the excipients, except magnesium stearate, were manually blended for
10 mins to achieve a uniform powder blend, and then the magnesium stearate was added and mixed
for a further minute. The powders were individually weighed to 500 mg, and tableted using the Specac
semi-automatic hydraulic press (Slough, UK), with the same 13 mm flat faced punches as above. These

were compressed at a compression force of 225 MPa.

6.2.2.2 New Disintegration Test

A new disintegration test apparatus was developed in the laboratory, according to the proposed
drawing in Figure 6.2, which was designed to mimic conditions encountered in the oral cavity, and
intended to be a more representative measure of ODT disintegration time, shown in Figure 6.3.The
test housing is placed on top of a hot plate, which is set to an optimised temperature designed to
achieve a constant temperature of 3741 °C within the compartment, similar to In Vivo conditions

(Moore et al., 1999). The test housing contains a specific amount of potassium chloride (Sigma-Aldrich,

Texture
analyser probe

Tablet attached
to probe

Disintegration .Syrlnge f9r
disintegration
chamber .
medium flow

Disintegration
bed

Magnetic stirrer

Saturated
potassium
chloride solution

Hot plate set to
provide 37°Cin
the container

Figure 6.3: Diagram of the setup of the new disintegration tester, highlight all key components of the
equipment. The texture analyser probe comes through an entrance at the top of the container which has been
cut out and covered with silicon sheeting to allow humidity and temperature to be retained but still allow the
probe to enter without triggering the texture analyser probe.

226



Conceptualisation, Development and Fabrication of a Novel Disintegration Tester Designed Specifically for Orally
Disintegrating Tablets

Dorset, UK) which is used to form a saturated salt solution, and gives a relative humidity of
approximately 93+3% in the enclosed container, similar to those conditions encountered in the oral
cavity (Saraiva et al., 2015). The disintegration bed was a silicone pipe that had been slightly flattened,
with an area under where the tablet would disintegrate having small 4 mm holes embedded to allow
water/saliva to flow through. This flow of saliva would interact with the tablet and cause subsequent
disintegration alongside the simulated /n Vivo conditions. The chosen flow rate of saliva was 10
ml/min, as previous work had shown that this amount of liquid allowed a consistent disintegration of

the tablet.

The disintegration compartment was placed under the probe of a texture analyser (Brookfield
Engineering’s CT3 Texture Analyser, Harlow, UK), set at speed of 2 mm/s. The tablet was adhered to
the probe with double sided sticky tape. Once the tablet came into contact with the disintegration
bed, the probe was set to apply a fixed 50 g weight for a set amount of time, similar to texture analyser
methods described previously (Abdelbary et al., 2005, el-Arini and Clas, 2002). A distance against time
plot would be drawn up and allow disintegration time to be calculated based on the plot plateauing
when the tablet came into contact with the disintegration bed. All tablets in this stage were tested
eight times and analysed using Brookfield’s Texture Pro CT (Brookfield Engineering, Harlow, UK), and

data presented as mean + SD.

6.2.2.3 USP Disintegration Test

The standard USP disintegration method was also used to assess disintegration time of the tablets to
allow a comparison to the newly developed test (USP37, 2014b). A Copley ZT41 disintegration
apparatus (Nottingham, UK) was used, with a single tablet being tested each time for accuracy. Each
tablet was placed in the vessel (without a disk) and oscillated at 30 cycles per minute. A dissolution
medium of 800 ml distilled water was maintained at 37°C, and disintegration time measured when all
of the fragments of tablet had passed through the mesh at the bottom of the vessel. All readings were

taken in triplicate and represented as mean * SD.
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6.2.2.4 Hardness
Hardness of the all the tablets was measured using a Copley TBF 100 Hardness tester (Nottingham,

UK). Tensile strength (o) was then calculated using the equation:

2H

Where H is the hardness, D is the diameter and T is the thickness of the tablet. All readings were taken

in triplicate and displayed as mean  SD.

6.2.2.5 Porosity

Porosity of the tablets was assessed using a Quantachrome Helium Multipycnometer (Florida, USA).
Diameter and thickness of the ODT’s was measured using a digital calliper, and the weight of individual
ODT’s taken using an electronic balance. The bulk volume (V) and bulk density (pvux) of the tablets

were then calculated using the following equations:

L (Eq.6.2)
B= " q.6.
Tablet weight
Pouk =" (Eq.6.3)

VB

The true volume (V:) of the tablet was calculated using the pycnometer, which applies the theory of
gas displacement allowing the porous nature of the tablet to be assessed. The true volume was

calculated using the equation:

W=%—W(%—1) (Eq. 6.4)

Where Vc is the volume of the sample cell, V; is the volume of the reference cell, P1 and P2 are the
atmospheric pressure and pressure change during the measurement respectively. The true volume

was then used to calculate true density in the equation:
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Tablet weight

ptrue = Vt (Eq 65 )

The final step to calculate porosity (&) of the ODT used the following equation:

g=1 — Bbulk (Eq. 6.6)

Ptrue

6.2.3 In Vivo In Vitro Correlation

6.2.3.1 In Vivo Disintegration Time Assessment
In Vivo disintegration time was investigated using nine different types of tablets across 35 participants.

The study design is detailed below.

6.2.3.2 Study Design

The study was subject to Ethics approval from the Aston University Ethics Committee, and gained a
favourable opinion letter for commencement of the study based on the Research Protocol, Patient
Information Sheet and Patient Consent form. The lead investigator, Jasdip Koner, was also certified in

Good Clinical Practice through the NHS.

The study was designed as a single blind study whereby participants were not aware of what tablet
they were taking. Each participant was assigned a participant number according to their chosen seat
in the study room, which was used by the researchers to assign what tablets they were taking.
Participants were required to take a total of six tablets per scheduled study, this involved the
participant taking two different tablet formulations in triplicate, however the participant was not privy
to thisinformation. Participants followed a set of instructions set out by the research team. The tablets
were taken in the defined order set out by the researchers, and times recorded from when the tablet
entered the oral cavity to when the participant felt the tablet had disintegrated. Participants were
briefed on when end of disintegration should be/feel like. Prior to taking the first tablet participants
had to rinse the oral cavity, as well as rinsing at the end of each tablet disintegration and before the
start of each test. A wait time of 1-2 mins was advised to allow oral conditions to return to resting
state before moving on to the next tablet. Participants measured their own disintegration time using
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stop watches, and recorded the time next to which number tablet was taken. The study involved no
swallowing of the tablet, with participants informed that all residue was to be removed from the oral
cavity. Once all studies had been completed results were collated. No patient demographic data was
collected and there was also no patient identifiable data, as participants chose their own number/seat

at the study.

6.2.3.3 Participant Recruitment

A total of 35 participants were utilised for the In Vivo disintegration time study. Participants were
required to commit up to 60 mins for the study. Participants were recruited from Aston University
staff, and were subject to inclusion and exclusion criteria to determine eligibility for the study. The
volunteers were sent participant information sheets and consent forms prior to the study and allowed
to make their own informed decision on whether to take part. All completed consent forms were given
to the research team to provide the participants informed consent. Patients were under no obligation
to take part and were allowed to withdraw at any time, and also remove their results from the study

prior to collection by the research team.

6.2.3.4 Manufacture of Tablets

A total of five different formulations were manufactured, with four formulations compressed at two
different compression forces and the final formulation compressed at just one force, the tablet details
are highlighted in Table 6.1. Tablets were manufactured with GMP excipients as to ensure safety,
although the participants were informed to remove all residue from the mouth after each test. Tablets
were composed of Pearlitol Flash (Roquette, Lestrem, France), Starch 1500 (Colorcon Inc., Harleysville,
USA) and Magnesium stearate (Fischer Scientific, Loughborough, UK), with compositions also
highlighted in Table 6.1. Excipient concentration and compression force was varied to obtain tablets
of differing disintegration times, allowing a wide range of times to be compared between the In Vivo

disintegration times and the times obtained for the In Vitro methods.
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Table 6.1: Table highlighting tablet formulation details for the 9 batches of tablets utilised in the In Vivo
disintegration study. Each formulation, except formulation 5, was compressed at two different compression
forces to provide tablets of different disintegration times.

Formulation Batch Pearlitol Flash  Starch 1500 Magnesium Compression
(%) (%) Stearate (%) Force (KN)

Formulation 1 B1 99.5 - 0.5 4

B2 9.5
Formulation 2 B3 89 10 1 9.5

B4 22
Formulation 3 B5 79 20 1 20

B5 46
Formulation 4 B7 49.5 49.5 1 26

B8 57
Formulation 5 B9 24.5 74.5 1 32

Data Analysis

Each tablet batch was assessed 21 times, with seven participants taking a particular tablet batch in
triplicate. This was to gather not only inter-person variability but also intra-person variability, whilst
also providing a very robust mean value. The data was collated and analysed according to participant

means, with outliers highlighted and removed. Data was presented as mean + SD.

6.2.3.5 In Vitro Tablet Disintegration Time Assessment

The tablet formulations outlined in Table 6.1 were also tested In Vitro to allow a comparison to the In
Vivo disintegration times. The newly developed tester was set up as described above, with the
temperature maintained at 37 °C with around 95% humidity. The saliva flow was 10 ml/min and the
probe was set to maintain a 50 g load at a speed of 2 mm/s. The tablet was adhered to the probe with
double sided sticky tape. The distance against time plot was utilised for the disintegration time. The
USP test for disintegration was also conducted, with 800 ml of disintegration medium, maintained at
37 °C used. Each tablet was placed in the vessel (without a disk) and oscillated at 30 cycles per minute.
A dissolution medium of 800 ml distilled water was maintained at 37 °C, and disintegration time
measured when all of the fragments of tablet had passed through the mesh at the bottom of the

vessel. Each tablet batch was repeated in triplicate for each test and data presented as mean + SD.
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6.2.4 Statistical Analysis

One way and two way ANOVA followed by Tukey’s and Sidak’s multiple comparison post-hoc tests
were performed in this study, using GraphPad Prism 6 software (California, USA). For statistical

significance a p-value <0.05 was used, and all data was presented as mean + standard deviation.

6.3 Results and Discussion

6.3.1 Method Development

The fabrication of the final disintegration test set up was developed through several stages, with the

initial stages highlighted below.

6.3.1.1 Phase One

An initial design was drawn up and set up as shown in Figure 6.4. This design incorporates a texture
analyser (Brookfield CT3, Brookfield Engineering Laboratories, Massachusetts, USA) to apply a load up
to 50 g and hold for 60 s. The speed of the probe was set to 1mm/s. Distilled water was used as
disintegration medium, and was kept at a constant temperature of 37 + 2 °C using a hot plate. The
disintegration medium was pushed through a peristaltic pump at a flow rate of 2 ml/min to simulate
saliva flow. The tubes of the pump were attached to a plate, which contained bovine tongue as a
disintegration bed. The plate containing the tongue was placed on top of a heating block maintained
at 37 + 2 °C, and contained 10ml of distilled water to simulate saliva present in the mouth. For this
initial test, commercial ODTs, Nurofen Meltlets® (Reckitt Benckiser, Slough, UK), were used, as they
have been shown to have a disintegration time around 20 s In Vivo (Gryczke et al., 2011). The ODT was
placed on to the tongue and the texture analyser activated to allow the distance over time plot to be
drawn up. This test was repeated in triplicate to gather initial data to relate to literature values. From

the results obtained it was seen that there is a clear area where disintegration had occurred and
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Figure 6.4: An image of Phase One of the modified disintegration test being developed. It shows the texture

analyser probe using a large upper palate pressing down on to an ODT which is placed upon the bovine
tongue. The heating block maintains tongue temperature at 37 °C, and a hot plate placed behind the peristaltic
pump is used to keep saliva at 37 °C.

finished. However the time for disintegration from these results indicated that disintegration was
around 3 s, which does not relate to the actual disintegration time of the Nurofen Meltlets’. This
showed that the ODT was disintegrating too quickly before the texture analyser came into contact,
and in fact the disintegration of the tablet had already occurred before collecting the results. Also
another issue with this phase of the equipment was the tongue. When the ODT disintegrated on the
tongue, it left a large amount of residue on the surface, which had to be cleaned after each test, and

with ongoing tests the residue tended to build up and was more difficult to clean.

However this first test demonstrated that the texture analyser was capable of gathering disintegration

time results, and further optimisation was needed.
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6.3.1.2 Phase Two

From phase one there were two main developments for phase two of testing. The first change involved
the plate and tongue utilised as the disintegration bed; Instead a watch glass containing 10 ml of water
was used as the base of the mouth, with filter paper acting as the tongue in this test, as when the
paper came into contact with the water it proceeded to get moistened and as the texture analyser
pressed down, the water beneath the paper came through and interacted with the side of the tablet
which aided disintegration. The other development was regarding the placement of the ODT. Double
sided sticky tape was used to attach the tablet to the probe of the texture analyser, as this allowed a
start time for disintegration to be established as when the tablet came into contact with the
disintegration bed, it would allow full distance/time plot to be drawn up (Figure 6.5). Initial data

gathered using this set up ran into complications, as the software for this particular texture analyser

I_Sé-‘

Figure 6.5: An image of Phase Two of the modified disintegration test being developed. It shows the texture
analyser probe with an ODT attached by double sided sticky tape. The disintegration bed is a watch glass with
10 ml of water with a piece of filter paper placed on top to simulate the tongue. The heating block maintains
temperature at 37 °C, and a hot plate placed behind the peristaltic pump is used to keep saliva at 37 °C.
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used a target load value, and once that target was reached the hold time started and no further load
from the probe was applied, and no further distance data was able to be gathered. This meant that if
the ODT was slow disintegrating, a 50 g load was reached very quickly (as the tablet had not had
enough time to reach partial/full wetting), and the reading stopped. To overcome this, slower speeds
of the probe were used as this would have given the tablet enough time to wet and thus allowed a
suitable disintegration plot to be drawn up. An optimum speed of 0.2 mm/s was used in this phase of
the test. The Nurofen Meltlets® were again used in this test, as well as some fast disintegrating ODTs
manufactured in the laboratory (MCC 40%, Mannitol 55% Crospovidone 4% Magnesium Stearate 1%),
all results were taken in triplicate and presented as mean * SD. Figures 6.6 and 6.7 show the results
for these two tablets respectively. For the Nurofen Meltlets® a time of 12.53 £ 5.59 s was obtained

clearly showing large deviations. Although the readings for disintegration time became more accurate,
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Figure 6.6: A distance versus time plot of the disintegration time of Nurofen Meltlet® tablets obtained using
the Phase 2 modified disintegration test (n=3), the plateau represents the end of disintegration.
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Figure 6.7: A distance versus time plot of the disintegration time of the laboratory manufactured tablets
obtained using the Phase 2 modified disintegration test (n=3), the plateau represents the end of disintegration.

as they were closer to the results from the previous study by Gryczke (2011), the test however needed
further optimisation for slower disintegration tablets to reduce the deviation as well as provide more

accurate results.

6.3.1.3 Phase Three

Before the manufacture of the compartment and development of the design, initial results were
obtained using a mechanical tester, MicoTest 5848 (Instron, Buckinghamshire, UK), which was
operated using Bluehill 2 software. This work was undertaken to analyse how accurate the distance
against time plots were at assessing disintegration time on a very accurate and sensitive machine. This
test used a force of 1 N/ 100g, which was applied over a predetermined time, which depended on the
disintegration of ODT. In the preliminary results, three tablets were tested, a placebo ODT that was
rapidly disintegrating and developed in the lab (Pearlitol Flash® 95%, Crospovidone 3.5%, and Alubra’
1.5%), Nurofen® Meltlets and a standard paracetamol tablet. These tablets were chosen to assess the
sensitivity of the apparatus and to see how the disintegration times of the tablets affected the

resultant plots. The disintegration bed was taken from phase two, with a petri dish which had 10 ml
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of water placed in it, a filter paper was placed on top to act as the tongue/bed for disintegration; the
filter paper was damp after contact with the water. The results are shown in Figures 6.8-6.10. The
disintegration plot on this software had four distinct areas for ODTs. Part 1 of the line was where
disintegration started, here the tablet had made contact with the disintegration bed and the load
increased from 0 to 1 N. Also the ODT was still hard and had just begun wetting, so the line displayed
a reduction in extension as the probe applied constant load and the tablet was not soft enough for
the probe to push the distance further. Part 2 of the plot was where water began to ingress into the
tablet, so the tablet started to disintegrate and become softer, therefore applying the load of 1 N
caused the probe to extend towards the disintegration bed due to the structure of the tablet breaking
down and disintegrating. Part 3 of the plot was where the line plateaued, here disintegration of the
tablet ended as the probe could not extend past the disintegration bed, therefore the load of 1 N was

applied to the petri dish and there was no further movement with the probe. The end of disintegration
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Figure 6.8: Distance against time plot representing disintegration time of placebo ODTs manufactured in the
lab (n=3) measured from time 0 to when plot plateaus and starts reducing in extension. Areas 1-4 highlight the
different disintegration phases of ODT disintegration.
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Figure 6.9: Distance against time plot representing disintegration time of Nurofen® Meltlet ODTs (n=3)
measured from time 0 to when plot plateaus and starts reducing in extension.

was taken as the last point before the extension started to reduce again after the plateau region. Part
4 represented the region when the probe was at equilibrium and the extension was reduced due to
the probe not moving any further distance. These four areas are seen clearly when ODTs were used
(Figures 6.8 and 6.9), however when standard paracetamol was used (Figure 6.10) it could be seen
that only regions 1 and 2 were present. This indicated that the paracetamol tablet did not disintegrate
during this test, and this was also evident when the test had ended, as the tablet remained very hard
and only small parts of the tablet had disintegrated during the allotted 180 s. This showed that this
test was not be suitable for standard release tablets, but also gave confirmation that the plot
represented disintegration time for ODTs at the plateau region. This was because the ODTs had clearly
disintegrated visually, whereas the paracetamol tablet visually wasn’t close to disintegrating, as the
areas that were absent from the plot were regions 3 and 4. This shows that these areas were where

the end of disintegration had occurred.

A comparison of the three tablets showed how different the plots were for three types of tablets,

which had different disintegration times. It was seen that, as expected, the placebo tablets were much
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Figure 6.10: Distance against time plot representing disintegration time of standard Paracetamol tablets that
are not designed to disintegrate within the oral cavity (n=3) measured from time 0 to when plot plateaus and
starts reducing in extension.

faster disintegrating (9.00 + 0.66 s) than the Nurofen® Meltlet (18.57 + 16 s) and the standard
paracetamol (>180.00 s). The standard paracetamol didn’t have a defined disintegration time using
this test as this tablet was not designed to disintegrate within the oral cavity. The graphs showed that
the Nurofen Meltlet” is the intermediate disintegrating tablet, and the disintegration profile appeared
very similar to the placebo tablets, although it was elongated due to the slower disintegration. In
comparison to literature values the Nurofen® Meltlet was close to what was specified, as it has been
shown to disintegrate /In Vivo at around 20 s (Gryczke et al., 2011), and the value obtained in this study
was very similar, showing that this test method provided a valid model for disintegration testing of

ODTs.

6.3.2 Validation of Disintegration using Newly Developed Disintegration Tester

6.3.2.1 Disintegration times using the new tester
The disintegration tester was conceptualised on the basis that no validated test currently exists that

mimics oral In Vivo conditions encountered by an ODT during disintegration. Although several
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attempts have been made to design a test that is more specific to ODTs (Yoshita et al., 2013, Harada
etal., 2006, Harada et al., 2010a, Narazaki et al., 2004, Haraguchi et al., 2014, Uchida et al., 2013, Park
et al., 2008, Kakutani et al., 2010, Abdelbary et al., 2005, el-Arini and Clas, 2002, Bi et al., 1996, Bi et
al., 1999, Morita et al., 2002, Kondo et al., 2012, Segado, 2003, Ohta et al., 2001, Desai et al., 2013,
Szakonyi and Zelkd, 2013), no test has reached approval specifically for ODT disintegration testing.

Disintegration times for the seven formulations are shown in Table 6.2.

Figure 6.11 shows the disintegration times of the tablets from the new disintegration test method
singularly, and allows a comparison between each of the tablets tested. For the manufactured ODTs
a compression force range of 75-300 MPa was chosen to establish the sensitivity of the test to assess
disintegration times for tablets. Hardness and porosity values for each of the tablets are also shown

in Table 6.2. It was seen that as the compression force increased the disintegration time of the ODTs

Table 6.2: Table showing tableting results for all tablets tested in this study. All data is presented as mean + SD,
with data marked with an asterisk (*) showing the maximum time for the disintegration test, and therefore
shows this tablet had not disintegrated within the stated time and was still left as a solid dosage form.

Formulation Disintegration usp Hardness (N) Tensile Porosity
Time (s) Disintegration strength
Time (s) (N/mm?)
75MPa 22.51+3.2 13.83+0.25 58.67+295 0.899+0.076 0.399 +0.005
150MPa 28.11+25 14.47+1.42 121.37+7.60 2.120+0.133 0.320%0.010
225MPa 35.27 £+ 2.07 22.70+2.00 154.87+3.80 2.766+0.062 0.314+0.10
300MPa 42.15+2.07 28.60+1.31 177.33+6.12 3.267+0.109 0.292 +0.011
Nurofen Melt  38.77 £ 3.96 15.80+0.10 4437 +2.41 0.447 £0.024 0.368 + 0.004
Matrix Did not Did not 173.70 £ 3.290+0.575 0.300 £ 0.022
disintegrate disintegrate 20.87
Paracetamol Did not 97.60 £ 5.99 144.80 1.875+0.137 0.270+0.013
disintegrate 10.20
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as expected, and with each increase in 75 MPa there was around a 7 second increase in disintegration
time. As the compression force was increased the subsequent tablet hardness also increased. This
increased tablet hardness caused a higher disintegration time, as the harder tablet was less prone to
moisture and water uptake, and therefore reduced wicking into the tablet. This was due to the
particles in the compact interacting more closely and being bound tightly during the compression
cycle, due to the high content of MCC which is plastically deforming (Thoorens et al., 2014). The key
finding here was that the disintegration tester was able to distinguish between tablets of different
mechanical strength and also showed the expected pattern of increased disintegration time with the
harder tablets. The test also appeared sensitive enough to be able to detect small differences in time
(as here the difference was a little as 7 seconds). An important investigation in this study was to see
whether this test would be able to differentiate between an ODT and a standard release/controlled
release tablet that would not disintegrate within the oral cavity. Table 6.2 and Figure 6.11, show that

both the matrix tablet and standard release paracetamol had not disintegrated with the 180 s limit
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Figure 6.11: A graph showing the disintegration times of the various tablets tested in the new disintegration
testing equipment. Values for the matrix tablet and paracetamol tablet are at the maximum time of 180 s of
the disintegration tester and represent a tablet that did not disintegrate during the test. All data is presented as
mean  SD (n=8, p<0.0001).
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set for the test, and on visual analysis it was seen that the matrix tablet was almost fully intact with a
thin hydrated layer at the bottom of the tablet. Similarly the paracetamol tablet was also intact,
however a larger proportion of the tablet had disintegrated and broke off the main structure. Figure
6.12 illustrates the differences between the disintegration pathways of the ODTs tested and the matrix
controlled release system/the standard release paracetamol. It was deduced that all the ODTs follow
a similar pathway, there was an initial small flat region, where water and humidity started to ingress
into the tablet to break down the structure, as the tablet wasn’t fully wet and still retained some
mechanical strength, followed by a sharp increase in distance as the tablet was breaking down and
falling apart from the main structure and away from the disintegration bed. This caused the probe to
press further into the tablet, as there was very little resistance from the soft wet tablet. The final stage
was when the probe had pushed through the ODT and on to the surface of the disintegration bed,
whereby the plot came to a plateau as the probe exerted its maximum 50 g force. The plots also
showed that there was a difference between the disintegration times of the ODTs manufactured at

different compression forces (p<0.05). The lines for the tablets showed that there was a difference in
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Figure 6.12: Disintegration profiles (Distance vs time plots) of the seven formulations tested within this study,
showing marked differences between disintegration pathways for ODTs and standard/controlled release
formulations, with statistical significance observed (n=8, p<0.05).
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thickness of the tablets compressed at different forces, as the final distance for the tablets compressed
at higher forces was smaller than those compressed at smaller forces. This supported the theory that
the test was sensitive enough to pick up small differences in disintegration time due to differences in
compression force, mechanical strength and porosity. However for the controlled release matrix
tablet and the standard release paracetamol it was observed that the disintegration pathway was very
different, with neither tablet undergoing significant disintegration. Here the final distance moved by
the probe was very small, with the paracetamol disintegrating a little more than the matrix tablet.
Both of these tablets are designed to be swallowed whole and enter the Gl tract, whereby the tablet
would subsequently disintegrate in a large volume of fluid. The paracetamol tablet was an immediate
release dosage form so would disintegrate in the stomach in a fairly quick time, whereas the matrix
tablet was a controlled release system that would slowly swell and erode layer by layer to provide a
sustained release of a drug. The disintegration profile for both was similar at the start, where the
water from underneath the tablet had come into contact whilst the tablet also interacted with the
humidity in the chamber, providing a small increase in distance. However after this initial movement,
it was seen there was very little further distance moved by the probe. This was because the tablet
remained hard, as the small level of water flow and humidity weren’t able to ingress into the tablets
and cause a breakdown of the structure, resulting in the probe applying its maximum set weight of 50
g throughout most of the test. However the matrix tablet provided very little movement throughout
the test and remained very flat, as the tablet was designed to undergo controlled release in a large
volume of fluid. The comparison between ODTs and standard/controlled release tablets was essential
as the results would have indicated whether the tester was able to clearly distinguish between
different types of tablets, and more so allow an ODT to disintegrate but keep the other types of tablets
intact, as they were manufactured to disintegrate in larger volumes of fluid as opposed to within the

oral cavity.
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6.3.2.2 Comparison to the USP test

It was established that the newly developed disintegration test was able to successfully determine
different disintegration times and profiles between ODTs and standard release/matrix tablets, whilst
also being able to provide different disintegration time between ODTs manufactured at different
compression forces. The next important investigation was to analyse how the test compared to the
standard USP disintegration test, especially for those ODTs manufactured in the lab. Figure 6.13 shows
a comparison graph of the disintegration time for all the tablets tested between the new and the USP

test.

The values for the four lab manufactured ODTs and the Nurofen Meltlets® appeared to be lower when
tested in the USP test rather than the new test. This was expected as the conditions in the USP test,
submerging the tablet in 800 ml of disintegration medium and oscillating it through the medium,

would most probably cause rapid disintegration of the dosage form. This was due to the tablet being
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Figure 6.13: A graph comparing disintegration times for the new ODT specific disintegration test and the
standard USP test, showing that for ODTs the USP test provides much lower disintegration times than the new
test. Both values for the matrix tablet and the disintegration time for the paracetamol both reach the
maximum time of 180 s in the new test and 1800 s for matrix in the USP test, so values have been set at 180 s
to represent maximum. Data is presented as mean * SD (n=8 for new test and n=3 for the USP test, p<0.0001
between tests indicating results are significantly different between the two tests).
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completely surrounded by the disintegration medium, which led to a rapid ingress of water into the
ODT and subsequent swelling and breakdown of the structure. This, alongside the mechanical
agitation the tablet underwent during the oscillations, caused a rapid disintegration of the dosage
form, much faster than would be expected if the tablet was in the oral cavity (Abdelbary et al., 2005,
Bi et al., 1996, Szakonyi and Zelkd, 2013, Harada et al., 2006, Brniak et al., 2015). Whereas the new
test only provided a saliva flow underneath the tablet, the water would then be required to wick
through the dosage form to get access to the whole of the structure. However the utilisation of a
relative humidity was a novel addition to this test that previous tests did not attempt. The mouth has
a high relative high humidity and this is an important factor in helping the ODT disintegrate within the
oral cavity, as this also provides moisture to help the tablet disintegrate. The use of relative humidity
in this test helped attach small amounts of moisture to the outer surface of the tablet that wasn’t in
contact with the disintegration bed, so would therefore have aided in the disintegration of the tablets.
The moisture levels wouldn’t be significant enough to fully submerge the tablet, as in the USP test,
however would aid in wetting of the outer surfaces of the tablet, and therefore would be more

representative of In Vivo conditions rather than the USP test.

It was seen that the standard release paracetamol and matrix tablet experienced very little
disintegration during the new test, and the results represented as the maximum time of 180 s in Figure
6.13. The matrix tablet also experienced very little disintegration during the standard USP test, and at
30mins the dosage form was intact. However the standard release paracetamol clearly disintegrated
during the standard USP at around 97 s, which was almost half the maximum time set during for the
new disintegration test. This big difference showed that the standard release tablets didn’t experience
significant disintegration during the new test, however did disintegrate rapidly during the USP test,
which is similar to the conditions the standard release would experience during In Vivo disintegration.
Upon visual analysis, and the analysis of the disintegration profile (Figure 6.12) it was seen that the

paracetamol underwent very little disintegration during the new test due to the small volume of
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disintegration fluid in contact with the dosage form, and the humidity in the container having very

little effect upon the tablet.

Figures 6.14-6.17 show the correlations for hardness, tensile strength, porosity and compression force
against disintegration time respectively, for both the newly developed test and the USP test. For this
analysis only the four laboratory manufactured tablets were compared as these formulations were
kept constant with only the compression force changing, which would allow a correlation to be
observed between the various tablet properties. The standard release and matrix tablets were
excluded as the test was ODT specific and did not provide any disintegration times for these dosage
forms in the new tester. From all figures it was seen that the new tester provided higher correlations,
with the R?values for hardness, tensile strength, porosity and compression force being 0.92,0.93, 0.77
and 0.99 respectively, compared to the lower values of 0.78, 0.77, 0.56 and 0.92 respectively from the
USP test. This showed that the new tester provided consistent disintegration times that were based

more on the other tablet properties compared to the USP test. The correlations between hardness
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Figure 6.14: A graph comparing the correlation between hardness and disintegration time data for both the
new disintegration test and the standard USP test, with results indicating a better correlation with the newly
developed disintegration test.
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Figure 6.15: A graph comparing the correlation between tensile strength and disintegration time data for both
the new disintegration test and the standard USP test, with results indicating a better correlation with the
newly developed disintegration test.

and tensile strength (Figure 6.14 and 6.16 respectively) seem to be very high for the new tester, with
the USP tester correlation falling far below this. This showed that in terms of disintegration time,
mechanical strength played an important part, particularly in the case of the new tester, during the
formulation of ODTs to ensure that the tablet disintegrated rapidly in In Vivo conditions. In terms of
the porosity of the tablet (Figure 6.16), the new tester demonstrated a strong positive correlation,
with an R? of 0.77, showing that porosity also plays a key part in the disintegration time of ODTs.
Whereas the correlation for the USP test indicated a weaker correlation between the disintegration
time and porosity, suggesting that disintegration time is less dependent on porosity. The final
investigation compared the compression force used during tableting to the disintegration times,
shown in Figure 6.17. Here the correlation between the compression force and the disintegration time
in the new tester had an R? of 0.997, compared to the lower value for the USP test of 0.921, showing
again the disintegration time of the ODTs was strongly dependant on the compression force. The

correlations were analysed to see how the disintegration times achieved in each of the tests were

affected by other tablet and process parameters.
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Figure 6.16: A graph comparing the correlation between porosity and disintegration time data for both the new
disintegration test and the standard USP test, with results indicating a better correlation with the newly
developed disintegration test.

Overall the results gathered in this study showed that the new tester was a suitable tool for gathering
disintegration time data for ODTs, as it provided more representative conditions to those encountered
In Vivo, and also provided much stronger correlations than the standard USP test when comparing
tablet properties. This meant the data obtained for the tablet properties was more strongly related
and provided more of a rationale to differences in disintegration times, compared to the USP test. As
mentioned above, the USP test provided much lower disintegration times, due to the high volume of
liguid used in the test, and therefore the correlations achieved may have been skewed based on the
unnatural disintegration conditions encountered by the tablet that was designed to disintegrate in the

oral cavity.
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Figure 6.17: A graph comparing the correlation between compression force of the tablet press and
disintegration time data for both the new disintegration test and the standard USP test, with results indicating
a better correlation with the newly developed disintegration test.

6.3.3 In Vivo In Vitro Correlation

The In Vivo disintegration times for all batches were compared and correlated with results from the
newly developed disintegration tester, as well as with the USP tester, these results are shown in Figure
6.18. The collection of 21 individual results for the In Vivo study allowed a wide representation of
disintegration times and was key to obtaining an accurate reading for ODT disintegration. This was
because each individual is subjective as to when they perceive the end of disintegration to be, the
blinded nature of the study meant that participants were not aware that they were taking two sets of
tablets in triplicate. To supplement this, results from seven participants were taken to then calculate
the mean for that particular tablet. This therefore allowed an accurate representation of the
disintegration time for each batch of tablets tested in the study, by having both inter and intra person
variability. The tablets were manufactured so that the disintegration time would span a timeframe

from 10s to 150s; this allowed a wide range of times to be correlated and to see if there was any large
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Figure 6.18: A graph showing the IVIVC of the newly developed disintegration tester compared to the standard
USP disintegration test. Results show that the newly developed tester has a linear correlation for the In Vivo In
Vitro disintegration times whereas the USP tester appears to show a curved data set therefore indicating a
direct correlation is not observable with the USP tester.

differences between a correlation of results accepted by the EU regulations (180s) (Ph.Eur, 2013) or

the regulations recommended by the FDA (30s) (FDA, 2008).

Figure 6.18 shows the IVIVC for tablets spanning both the acceptable range for the EU and FDA
regulations, with the time going up to 180 s. Results indicated that the newly developed disintegration
tester had a very good linear correlation with the In Vivo results, with a correlation value of 0.98. Also
it was observed that the gradient of the line was almost 1, at 0.97, indicating that a direct correlation
was obtained, whereby if the disintegration time In Vivo was increasing by 1 second, then the
disintegration time observed on the newly developed tester was also increasing by 1 second. This
represented a very positive result, as it was indicating that the values obtained from the newly
developed disintegration tester were almost a direct representation of the In Vivo times. However, in
comparison the results obtained for the USP tester were not linear, with a curved dataset observed
and a strong R? value of 0.95 for the curve, indicating that the USP test did not provide a direct

representation of the disintegration time for ODTs In Vivo. The two IVIVC results therefore showed
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that the new disintegration test developed in this study was superior in generating accurate In Vitro
ODT disintegration times. This result was expected as the conditions encountered within the new
tester were far more representative of those encountered in the oral cavity, with the high humidity,
fixed temperature, flow rate and interaction of the tablet with the probe/upper palate. This therefore
allowed the tablets to disintegrate in a similar manner during In Vitro testing as well as In Vivo testing.
However the USP tester provided an environment that was not similar to that of the oral cavity and

therefore the disintegration times were far more varied, resulting in the curved dataset observed.

As the results in the validation indicated, ODTs have particular characteristics that allow them to
disintegrate rapidly but also correlate with the ODT disintegration time. The newly designed tester
proved that it can correlate not only the tablet characteristics to the disintegration time, but also has
a very strong correlation to In Vivo results, with USP test results lagging behind in both cases. The In
Vivo test took into account both inter and intra person variability, accounting for the subjective nature
as to when people perceive the end point of disintegration to be, which therefore provided an
accurate basis to allow a comparison to the In Vitro methods. The newly developed tester provided
more accurate results for ODT disintegration, with times being more representative compared to the
standard USP method. This was due to the tablet in the new tester undergoing a disintegration pattern
similar to what the tablet would experience in the oral cavity, whereby temperature and humidity
were controlled similar to In Vivo conditions, and applied pressures/manipulations were also
experienced by the tablet, similar to the conditions encountered during disintegration in the mouth.
The USP tester used a large volume of 800 ml, with the oscillating basket apparatus, and therefore
conditions were vastly different to the oral cavity environment, which led to different disintegration
pattern with the tablets, and therefore the correlation was lower and not representative of In Vivo

disintegration.
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6.4 Conclusion

The objective of this study was to assess whether the newly developed prototype disintegration tester
would be a suitable alternative for testing ODT disintegration time compared to the currently
recommended USP method. Disintegration data was compared to the standard USP test and

correlations between various tablet properties against disintegration time were also analysed.

It was concluded that the newly developed prototype was successful at distinguishing between ODTs
manufactured at different compression forces, showing sensitivity at picking up subtle changes in
disintegration time when compression force was changed by 75 MPa, with around a 7 s difference
observed between each step. Differences were clearly observed on the disintegration profiles drawn
up by the texture analyser software, where the probe with attached ODT travelling the full thickness
of the tablet to come into contact with the disintegration bed, whereas for the standard/controlled
release tablets the probe travelled a very small distance due to the tablet still being intact and
attached to the probe. The new tester was also able to achieve higher correlations when comparing
tablet properties to the disintegration times achieved, showing that times gathered in the new test
were more dependent on the properties of the tablet, possibly due to the ODTs undergoing a more

representative disintegration pathway rather than the different pattern achieved in the USP test.

The In Vivo study was crucial to demonstrating real applicability of the new tester as an IVIVC
comparison of the two tests highlighted whether the new test was actually providing an improvement
on the current USP test. IVIVC results indicated that the new tester provided a linear correlation for
disintegration times, with a very strong correlation of 0.97 observed. In comparison the USP test was
less accurate in predicting In Vivo disintegration times as the results showed a curved data set,
therefore showing the USP test was not representative of In Vivo ODT disintegration. This was a key
result which highlighted that the newly developed tester provided a suitable alternative to the current
USP test for ODT disintegration, and could therefore be used to gather more accurate In Vitro

disintegration times for all ODTs tested.
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General Discussion

Direct compression manufacture of ODTs is increasing in popularity due to its cost effectiveness and
ease of manufacture. However the mechanistic properties of the materials constituting the powder
blend become vital in ensuring the flowability of the powder is consistent, allowing the formation of
uniform dosage forms, whilst being compressible enough to form robust, mechanically strong tablets
that disintegrate within acceptable time limits. Mannitol is a key filler in ODT manufacture due to its
high palatability and non-hygroscopic nature, however its poor compression behaviour, due to its
fragmentation under pressure, results in mechanically weak tablets. The purpose of this thesis was to
study the fragmentation behaviour of mannitol, whilst establishing whether the utilisation of dry

coated powders could result in the formation of suitable ODTs.

Ball milling was utilised as a comminution method to study how high levels of energy fragmented the
individual mannitol crystals. The primary plane of fracture for the mannitol crystal during the milling
process was the (011) plane, as visualised on the SEM images and the subsequent evaluation of surface
energies and disintegration time profiles. This fragmenting method could therefore be related to the
fragmentation of the mannitol crystal during tableting, whereby the crystal would be expected to
primarily fracture at the (011) plane during applied pressure. It was observed that the inclusion of
fractured mannitol during tableting resulted in an improvement in the compressibility of the excipient,
as more of the compaction energy was utilised in bonding of the compact as opposed to fragmentation
of the excipient, whereby energy was expelled through high die wall interaction. ODT properties of
the milled mannitol compacts were also improved, with disintegration times being lower compared
to unmilled mannitol, as the mannitol particles had increased wettability due to the exposure of the
hydrophilic (011) plane. The hardness of the ODTs also improved due to the increased compressibility
of mannitol, with Heckel analysis showing a reduction in the fragmenting behaviour of mannitol, with

a higher plastic deformability observed.
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Milled mannitol was also successfully scaled up with dry particle coating, alongside MCC, producing a
flowable powder that was capable of being compressed in an auto tablet press. Compared to
conventional cube mixing, dry coating provided a far superior powder, as the poorly flowing nature of
the milled mannitol resulted in cube blending producing unacceptable, non-uniform tablets. However
dry coating produced uniform tablets that were mechanically sound and disintegrated rapidly, as the
powder flowed well into the dies during auto-compression, as the dry coating process utilised the

cohesive nature of the milled mannitol to produce a more homogenous powder blend.

To assess the viability of milled mannitol as a commercial entity, a comparison study was conducted
to evaluate the effectiveness of current commercial mannitol grades employed in ODTs. The study
found that spray dried mannitol had the most desirable properties for utilisation as a binder within
ODTs. Results indicated that it formed ODT’s with good mechanical properties, whilst also providing
the lowest overall disintegration times of all the commercial grades tested. This was due to the
presence of the alpha polymorph, which is the most compressible of all the mannitol polymorphs. The
granulated forms however didn’t display any significant improvements in tablet properties, due to the
lack of a-mannitol within the powder, however powder flowability was seen as a key advantage of the
granulated mannitol. In comparison, the key advantage of the milled mannitol was its very low
disintegration time, due to the increased wettability of the powder, providing ODTs that rapidly
disintegrated, much faster than any of the commercial grades. Although mechanical strength and the
friability of the milled mannitol ODT’s was lower than the spray dried grades, the vast improvement
in disintegration time provided a key advantage compared to the commercial powders, especially for
employment in ODTs. The poor flowability of the milled mannitol was its main disadvantage, however
as mentioned above, dry coating was capable of enhancing flow to suitable levels. Therefore the
milling of mannitol provided a suitable alternative to the commercial grades for the production of

ODTs.
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The next stage in the development of milled mannitol was to investigate a suitable mix of excipients
that could be included in a preblend for ODT production. The results indicated that employing milled
mannitol with the model poorly soluble API Ibuprofen, formed tablets of similar robustness to the
unmilled alternative at 150 MPa compaction force, with vastly improved disintegration times, even at
high drug loads of 50%, due to the more hydrophilic nature of the milled mannitol. A comparison of
dry coating and conventional cube mixing was also conducted for producing the preblend. Dry coating
was again advantageous in producing better flowing powder, particularly when milled mannitol was
used in the preblend. The optimisation of the powder blend found that mixing 1% silica for 20 mins
post mixing of the milled mannitol and MCC provided an ideally flowing powder, which produced ODTs
with desirable properties. The preblends were optimised to ensure that milled mannitol remained in
high quantities to utilise its key advantages in producing ODTs with rapid disintegration, without the
use of superdisintegrants in the powder blend. Silica also proved to be the ideal flow aid compared to
glyceryl behenate and Ethocel, whilst powders manufactured using multi-layering/surface coverage
calculations didn’t provide any major advantage. The optimised powders from the study indicated that
milled mannitol produced preblends with a high dilution potential, whereby high drug concentrations
could be included, and the key advantage was the potential for using high load drugs in ODTs, as ODTs
have a limited maximum weight of 500 mg. Furthermore the milled mannitol/MCC dry coated
preblends highlighted that dry particle coating could provide powders with enhanced functionalities

for use in ODTs.

Silicified MCC, manufactured using spray drying, provided enhanced MCC powders with the inclusion
of silica within the MCC particle, giving an enhanced flow and compressibility of the MCC. Dry coating
of silica with MCC was designed to assess whether dry particle coating could provide similar
enhancements in MCC properties for employment into ODTs. Results indicated that the dry coated
particles of silica and MCC provided a free flowing powder that once compacted gave tablets that
disintegrated, rapidly with a high mechanical strength. Although tablet hardness, both with and
without the non-compressible APl Metformin, was reduced compared to the silicified MCC Prosoly, it
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still remained very compressible even at very low compression forces. When the dry coated MCC/silica
was employed in typical ODT formulations, it was less lubricant sensitive than the uncoated Avicel
control, and therefore provided powders that remained highly compressible, even when high drug
loads of metformin were incorporated. However the key advantage of the dry coated particles was
that it retained the very good disintegrating properties of the uncoated MCC, with disintegration times
significantly lower than both of the Prosolv grades. Flow was also improved for the dry coated
particles, particularly with the PH102 MCC compared to the Prosolv P90, due to the surface coverage
of the silica resulting in reduction of the frictional forces between particles. Compression profiling also
indicated that although bond strength did decrease when dry coating MCC, this wasn’t an issue as the
resulting hardness of the tablets was still very high, whilst compressibility of the MCC was retained. It
was therefore established that, although the dry coated powders weren’t as compactible as the
Prosolv, they provided a key advantage over Prosolv for employment in ODTs. Disintegration of ODTs
manufactured using dry coated powders was rapid, whilst having an improved powder flow and
reduced lubricant sensitivity compared to the Avicel control. Consequently this study highlighted that
dry particle coating provided MCC powders with enhanced functionalities, particularly for enhancing

compression of poorly compressible APIs, whilst retaining an acceptable disintegration profile.

Throughout the study period several ODT tests were conducted to assess the properties of the tablets.
Disintegration time was a vital characteristic tested, with a target disintegration time of 30s. However
the testing conditions encountered by the ODT in the currently recommended USP test were not
entirely representative of the conditions the ODT would encounter in the oral cavity. It was highlighted
that there was an opportunity to develop a more relevant ODT disintegration test, as USP guidelines
indicated modified tests could be used, providing the method generated similar and representative
disintegration times. Literature had highlighted several tests that were developed to produce
modified ODT disintegration tests, however none had incorporated the vast majority of conditions
encountered in the mouth. Over the course of this work efforts were applied to developing a novel
disintegration test that provided conditions which were similar to those encountered in the oral cavity,
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and as a consequence assess whether the newly developed prototype disintegration tester would be
a suitable alternative for testing ODT disintegration time. A new modified disintegration tester was
designed, incorporating a housing where conditions were tightly controlled, similar to those in the
oral cavity, whilst a texture analyser was used introduce the tablet to the housing and to apply the
necessary force on the tablet. It was established that the newly developed prototype was sensitive at
picking up subtle changes in disintegration time, whilst being successful at distinguishing between
ODTs manufactured at different compression forces. The tester was able to successfully determine
which dosage forms were designed to disintegrate within the oral cavity and those that were not, with
standard/modified release tablets not exhibiting disintegration within the new tester. The texture
analyser was also able to draw up disintegration time profiles, as well as highlighting the end point of
disintegration. Correlations between the disintegration time of the ODTs and other tablet properties
were higher for the new disintegration tester compared to the USP tester, highlighting that the new
test was providing positive results because tablet properties such as hardness and porosity were highly
related to the disintegration time of that particular tablet. A key aspect in the development of the new
tester was the undertaking of an In Vivo study to provide a correlation to the In Vitro results in both
the new disintegration tester and the standard USP test. IVIVC provided crucial results that confirmed
the new tester delivered a higher correlation to In Vivo times compared to the USP tester, with a
massive improvement seen. The new tester was able to provide a strong linear correlation compared
to the curved nature of the results generated by the USP tester. The IVIVC results were vital and
highlighted that the newly developed tester provided a suitable and superior alternative to the current
USP test for ODT disintegration, and was therefore an acceptable test for gathering more

representative disintegration times.

Future Work and Direction
The establishment of milled mannitol as a suitable filler binder provides a platform for further work,
especially with regards to the employment of the excipient within ODTs. Results obtained in this thesis

showed that milled mannitol was able to produce mechanically robust tablets, through lower
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fragmentation on compression, with the clear advantage being its improvement in disintegration, due
to the increased wettability of the excipient. Scale up work also indicated that mannitol could be
tableted on a high throughput scale. Further work would need to be conducted to ascertain the
suitability of milled mannitol in conventional mixing methods, as this thesis primarily used dry particle
coating as the mixing method of choice, due to the superior processing allowing production of more
flowable powder. However this technique is very unique to our laboratory. During dry particle coating
adjuvant excipient levels of the MCC were kept as low as possible to produce viable ODTs with desired
high quantities of mannitol. Future work with milled mannitol could be conducted whereby adjuvant
excipient concentrations were optimised to levels that not only helped to improve the flow of
mannitol in conventional mixing, but also keep the integral low disintegration time. Compaction
pressure of the tablets could also be optimised, as Chapter 2 indicated that using higher compaction
forces resulted in the milled mannitol providing more robust dosage forms compared to the unmilled
mannitol. This could then allow the utilisation of milled mannitol in conventional solid dosage forms
as the high dilution potential of the milled mannitol, alongside the larger weight limits with
conventional tablets would allow the formation of compressible powders that contain high loads of

API, whilst also disintegrating within USP limits.

The successful development of the novel disintegration tester was a key outcome from this thesis.
This work highlighted that the new disintegration tester provided a superior correlation to /n Vivo ODT
disintegration times compared to the USP tester. The initial development work highlighted the ideal
set up of the housing, which maintained conditions similar to the oral cavity, whilst the texture
analyser applied the required pressure and drew the distance/time plot, allowing the end of
disintegration to be quantified. As per the original design, a section could be added underneath the
silicon pipe where the tablet disintegrates, which would collect the tablet residue over the
disintegration period. This could then be extracted and analysed through HPLC to ascertain what levels
of the API could be potentially absorbed in the mouth/oesophagus. Further work to the housing could
lead to the development of an improved mechanism to ascertain the end point of disintegration. A
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complete equipment could be designed whereby the housing would be taken forward and upgraded
to maintain the temperature and humidity of the oral cavity. The silicon pipe/disintegration bed
section could have a conductive sponge, so when the tablet probe makes contact, post disintegration
of the attached tablet, it would indicate the end of disintegration time on an automatic timer that
would start when the tablet makes contact with the disintegration bed. Additional features could also

be added whereby dosage forms like orally disintegrating films could be assessed.

This future directions section highlights the additional work that could be conducted to further the
two main findings of this thesis. The milled mannitol and disintegration tester work provided a strong
basis for potential commercialisation, with milled mannitol being a possible filler/binder for solid oral
dosage forms, and the novel disintegration test method being an alternative to the USP disintegration

test for ODTs.
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