
	 1	

Self-induced	Faraday	instability	laser		
	

A. M. Perego1,*, S. V. Smirnov2,  K. Staliunas3,4, D. V. Churkin2, S. Wabnitz2,5 
 

1Aston	Institute	of	Photonics	Technologies,	Aston	University,	Aston	Express	Way	B4	7ET,	Birimingham,	United	Kingdom	
2Novosibirsk	State	University,	1	Pirogova	str.,	Novosibirsk,	Russia	

3	Departament	de	Fisica	i	Enginyeria	Nuclear,	Universitat	Politècnica	de	Catalunya,	E-08222,	Barcelona,	Spain	
4Institució	Catalana	de	Recerca	i	Estudis	Avançats,	Passeig	Lluis	Companys	23,	E-08010,	Barcelona,	Spain	

5Dipartimento	di	Ingegneria	dell’Informazione,	Università	di	Brescia,	and	INO-CNR,	Via	Branze	38,	Brescia	25123,	Italy	
	

*corresponding	author:	peregoa@aston.ac.uk	
	
	

Abstract	
	

We	predict	the	onset	of	self-induced	parametric	or	Faraday	instabilities	in	a	laser,	
spontaneously	induced	by	the	presence	of	pump	depletion	in	the	cavity,	which	leads	to	a	
periodic	gain	landscape	for	light	propagating	in	the	cavity.	As	a	result	of	the	instability,	

continuous	wave	oscillation	becomes	unstable	even	in	the	normal	dispersion	regime	of	the	
cavity,	and	a	periodic	train	of	pulses	with	ultrahigh	repetition	rate	is	generated.	Application	to	
the	case	of	Raman	fiber	lasers	is	described,	in	good	quantitative	agreement	between	our	

conceptual	analysis	and	numerical	modeling.	
	
	
Introduction	
	
Modulation	instability	(MI)	is	a	universal	mechanism	that	leads	to	the	break-up	of	continuous	
waves	(CWs)	into	modulated	patterns	in	weakly	dispersive	and	nonlinear	physical	systems.	
MI-activated	pattern	formation	has	been	observed	in	a	variety	of	different	systems,	from	
hydrodynamics	to	plasmas	and	optics	[1-3].	Transverse	pattern	formation	in	lasers,	which	has	
been	actively	studied	since	late	80-ies,	is	also	due	to	MI	initiating	the	instability	and	light	
patterns	in	the	transverse	direction	to	optical	axis	of	the	laser	[4-7].	In	the	case	of	single-
transverse,	multi	longitudinal	mode	lasers,	e.g.,	fiber	lasers,	MI	can	occur	along	the	laser	
cavity,	and	break	the	stability	of	CW	oscillation.	Hence	it	may	permit	the	generation	of	a	
continuous	train	of	pulses	with	ultrahigh	repetition	rates	[8],	which	is	of	great	interest	in	
many	applications,	from	optical	metrology	to	communications.		The	initial	proposal	to	achieve	
a	MI	laser	was	based	on	the	synchronous	and	coherent	injection	of	an	intense	laser	beam	into	
a	passive	optical	fiber	ring	cavity	[8-11].	In	this	way,	MI-induced	pulse	train	generation	in	a	
nonlinear	dispersive	cavity	results	in	the	formation	of	a	coherent	or	mode-locked	frequency	
comb.	Even	in	the	absence	of	an	external	pump	laser,	for	sufficiently	high-level	pumping	of	the	
active	medium	in	the	cavity,	MI	may	lead	to	the	spontaneous	transition	from	CW	to	pulsed	
operation,	leading	to	the	so-called	“self-induced	MI	laser”	[12-13].	Stabilization	of	the	laser	
repetition	rate	and	simultaneous	substantial	reduction	of	the	laser	threshold	can	be	achieved	
by	inserting	a	frequency-periodic	linear	filter	in	the	active	nonlinear	cavity	[14-15].	It	has	
been	observed	that	in	this	case	the	mechanism	leading	to	pulse	train	formation	can	be	more	
conveniently	described	in	terms	of	a	dissipative	four-wave	mixing	process,	which	leads	to	
self-induced	pulse	train	formation,	irrespective	of	the	sign	of	the	cavity	group	velocity	
dispersion	[16-18].	
	
In	this	Letter,	we	propose	and	theoretically	analyze	a	new	mechanism	for	pulse	train	and	
frequency	comb	generation	in	lasers,	based	on	parametric	(or	Faraday)	instability.	Parametric	
instabilities	(PIs)	are	a	well-known	universal	mechanism	for	pattern	formation	in	many	
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different	branches	of	physics	[19].	PIs	in	nonlinear	and	dispersive	wave	propagation	occur	
whenever	one	of	the	medium	parameters	is	periodically	modulated	along	the	longitudinal	
direction.	For	externally	periodically	forced	systems,	PI	is	also	commonly	known	as	Faraday	
instability,	following	the	initial	Faraday’s	observation	of	pattern	formation	induced	by	the	
modulation	of	the	vertical	position	of	an	open	fluid	tank	[20].	Besides	hydrodynamics,	
Faraday-like	patterns	are	observed	in	a	wide	range	of	physical	settings,	from	crystallization	
dynamics,	chemical	systems,	and	optics	[21-25].	In	the	context	of	fiber	lasers,	it	has	been	
proposed	that	Faraday	instability	can	lead	to	the	generation	of	pulse	trains	when	the	cavity	
dispersion	is	periodically	modulated	[26-30].		
In	addition	to	parametrically	forced	systems,	there	are	many	physical	systems	which	feature	
the	presence	of	collective	
oscillations,	and	thus	may	spontaneously	lead	to	parametric	or	Faraday	instabilities.	Consider	
for	example	Bose-Einstein	condensates,	where	PI	may	be	introduced	by	the	harmonic	
modulation	of	the	nonlinear	interaction	or	the	profile	of	the	trapping	potential	[31-33],	and	
nonlinear	graded	index	multimode	optical	fibers,	where	a	self-induced	intensity	grating	
results	from	beam	self-imaging	[34].	Here	we	point	out	that	a	laser	is	a	fundamental	physical	
system	where	a	periodic	modulation	of	the	gain	naturally	occurs	in	the	cavity	in	the	presence	
of	pump	depletion	(See	Fig.	1).	The	resulting	Faraday	instability	is	analogous	to	the	PI	that	has	
been	predicted	in	periodically	amplified	fiber	optic	communication	links	[35].	However,	in	a	
laser	the	wave	dynamics	is	much	more	complex,	as	it	requires	consideration	of	the	effects	of	
finite	gain	bandwidth	(or	temporal	diffusion)	and	nonlinear	gain	saturation,	as	it	can	be	
described	in	terms	of	the	Ginzburg-Landau	equation	[36].	Note	that	a	sideband	instability	also	
occurs	in	soliton	lasers,	but	in	that	case	the	generation	of	sidebands	is	of	a	different	nature,	
since	it	is	due	to	the	coupling	between	the	soliton	and	dispersive	waves	[37-39].		
	

	

	
FIGURE	1	Concept	of	self-induced	Faraday	instability	laser:	The	spatially	inhomogeneous	gain	profile	naturally	
arising	from	the	solutions	of	the	nonlinear	laser	equations	a	gives	rise	to	an	effective	periodic	gain	(and	
consequently	nonlinearity)	landscape	profile	b	seen	by	the	generated	photons	that	travel	back	and	forth	in	the	
linear	cavity.	Such	a	periodic	gain	and	nonlinearity	variations	result	in	a	parametric	forcing	leading	to	self-
pulsing	with	high	repetition	rate	c.	
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Self-induced	Faraday	instability	in	the	CGLE	
	
As	we	have	already	mentioned	in	the	introduction,	our	goal	is	to	characterize	the	self-induced	
Faraday	instability	where	a	parametric	modulation	arises	spontaneously	from	the	solutions	of	
a	nonlinear	system	–the	laser-	and	it	is	not	imposed	from	the	external	world.	However,	we	
first	illustrate	the	generic	features	of	the	dynamical	instability	and	of	the	associated	pattern	
formation	in	the	simplified	and	idealized	case	of	the	complex	Ginzburg-Landau	equation	
(CGLE),	while	in	the	second	part	of	the	article	we	will	provide	a	specific	example	based	on	
numerical	simulations	of	a	realistic	Raman	fiber	laser.	
We	have	considered	the	following	complex	CGLE	for	the	field	envelope	A(z,t),	defined	in	the	
local	time	reference	frame	t	and	evolving	along	the	spatial	coordinate	z:	
	
∂A
∂z

= µ(z)A+ (b− id)∂
2A
∂t2

+ (ic− s) A 2 A .																																																																																													Eq.	1	

	
The	nonlinearity	coefficients	describe	self-phase	modulation	c	and	gain	saturation	s,	
respectively,	while	d	and	b	describe	dispersion	and	finite	gain	bandwidth	(diffusion).	
Across	our	study,	we	have	taken	all	coefficients	with	positive	values,	(Benjamin-Feir	stable	
regime).	The	spatial	dependent	gain	coefficient	mimics	the	periodic	gain	profile	experienced	
by	the	electric	field	upon	propagation.	The	modulated	gain	coefficient	is	μ(z)=μav+δμcos(kmz)	
with	μav	equal	to	the	average	gain;	the	modulation	occurs	with	modulation	depth	δμ	and	with	
spatial	period	Lm	which	defines	the	modulation	wave	number	km=2π/	Lm.	
Since	we	are	dealing	with	a	periodic	system,	a	Floquet	analysis	allows	us	to	characterize	the	
instability	showing	which	modes	experience	amplification	due	to	periodic	forcing.	
The	procedure	for	the	Floquet	analysis	is	as	follows:	we	first	calculated	numerically	the	
stationary	solution	of	the	field	spatial	distribution	by	suppressing	any	temporal	modulation.	
For	each	mode	with	frequency	ω,	we	have	then	computed	a	4-by-4	stability	matrix	whose	
entries	are	given	as	follows:	the	first	and	second	row	entries	are	the	real	and	imaginary	parts	
of	the	modes	+ω	and	–ω	amplitudes	after	the	evolution	of	respectively	real	and	imaginary	
perturbations	to	mode	ω.	The	third	and	fourth	rows	of	the	stability	matrix	contain	the	real	
and	imaginary	parts	of	+ω	and	–ω	mode	amplitudes,	respectively,	after	the	evolution	of	real	
and	imaginary	perturbations	added	to	mode	–ω.	The	evolved	modes'	amplitudes	were	
normalized	to	the	initial	perturbation’s	absolute	value.	Diagonalizing	the	stability	matrix	gives	
4	eigenvalues	–Floquet	multipliers-	relative	to	modes	+ω	and	–ω.		
For	each	mode,	we	have	defined	the	instability	power	gain	as	G=2	ln(|λm|)/	Lm,	where	λm	is	the	
mode’s	Floquet	multiplier	with	the	largest	absolute	value.	Instability	takes	place	when	G>0.	
Since	the	Floquet	spectrum	is	symmetric	with	respect	to	frequency,	throughout	the	paper	we	
have	plotted	only	the	positive	frequency	side.	
For	large	enough	δμ,	we	have	observed	a	destabilization	of	the	CW	solution	with	net	growth	of	
modulation	modes.	A	dependence	of	the	instability	gain	on	relevant	parameters	of	the	system	
is	summarized	in	Fig.2	.		
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FIGURE	2	Periodic	variation	of	the	gain	induces	MI	when	the	modulation	depth	δμ	crosses	a	certain	threshold:	
MI	develops	with	synchronization	area	increasing	with	δμ.	In	a,	the	instability	gain	G	is	plotted	in	the	ω-δμ/μav	
plane.	The	instability	frequency	decreases	with	nonlinearity	c,	b,	hence	showing	that	we	are	in	presence	of	a	
Faraday	instability.	Pattern	formation:	in	c	the	stable	temporal	pattern,	i.e.,	pulses	on	the	finite	background,	is	
depicted.	Blue	and	red	lines	correspond	to	the	field	modulus	squared	plotted	at	even	(blue)	an	odd	(red)	
modulation	periods,	respectively.	Common	parameters	to	all	plots	are	c=5	s=0.1	d=1.18!10-4,	μav=0.4,	δμ=5μav,	
Lm=1.5,		b=0;	except	for	the	case	in	a,	where	δμ	varies	from	0	to	10μav.		
	
	
As	one	can	expect,	an	increase	in	the	forcing	strength	results	in	a	broader	synchronization	
region,	which	is	typical	for	parametric	resonances.	Furthermore,	together	with	the	
appearance	of	low	frequency	instability	tongues	which	dominate	the	dynamics,	we	observe	
the	presence	of	underdeveloped	instability	tongues	(G<0),	which	correspond	to	higher-order	
parametric	resonances.	
A	common	feature	of	parametric	instabilities	in	the	normal	dispersion/diffraction	regime	is	
the	inverse	scaling	of	the	instability	frequency	versus	nonlinearity.	This	trend	is	confirmed	in	
our	study	(see	Fig.	2b).	The	growth	of	modulation	unstable	modes	eventually	results	in	a	
stable	pattern	formation.	Here,	similarly	to	other	studies	on	parametric	instabilities	[29],	we	
observe	a	period-2	dynamics	of	the	pattern,	corresponding	to	even	and	odd	numbers	of	the	
modulation	period,	respectively	(Fig.	2c).	
It	is	indeed	not	surprising	to	recover	here,	at	least	qualitatively,	the	typical	features	of	
parametric	instabilities,	which	in	general	are	induced	by	the	periodic	modulation	of	
dispersion	and	nonlinearity.	In	fact,	the	gain	modulation	considered	automatically	affects	the	
nonlinearity,	which	leads	to	an	effective	spatially	periodic	modulation	of	the	self-phase	
modulation	coefficient	c.		
	
In	the	case	of	parametric	instabilities,	the	first	excited	temporal	mode	has	angular	frequency	
ωinst	given	by:	
	

ωinst ≈
π

Lm 2cdµav s
.																																																																																																																															Eq.	2	

	
The	resemblance	remains	here	however	on	a	qualitative	level,	and	Eq.	2	can	be	just	
considered	as	a	rule	of	thumbs,	since	the	more	involved	nature	of	the	dissipative	modulation	
does	not	allow	to	stretch	the	analogy	further.	
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Coexistence	of	spatiotemporal	chaos	and	Faraday	patterns	
	
Achieving	pulses	which	are	stable	and	robust	is	a	highly	required	feature	of	mode-locked	
lasers.	Hence,	understanding	the	impact	of	lasers’	parameters	on	the	pulses	stability	is	of	
paramount	importance.	In	this	respect,	we	have	preliminarily	investigated	the	impact	of	the	
diffusion	coefficient	b	(gain-bandwidth)	on	the	stability	of	the	self-induced	Faraday	pulses.	
It	is	a	widespread	belief	that	losses	play	a	stabilizing	role	in	pattern	formation	processes.	
Surprisingly	enough,	as	illustrated	in	Fig.3,	we	observe	that	this	is	not	the	case	for	the	
particular	situation	that	we	are	considering.	Indeed,	numerical	simulations	of	Eq.1	in	
presence	of	diffusion	show	that	parametric	forcing	destabilizes	the	homogeneous	solution,	
leading	to	the	onset	of	spatiotemporal	chaos.	First	of	all,	Faraday	patterns	are	excited,	
however	they	are	dynamically	unstable	(for	the	particular	choice	of	the	parameters	used	in	
Fig.	3a	an	3b).	As	a	consequence,	these	patterns	rapidly	break-up,	leading	to	a	well-known	
scenario,	which	is	typical	for	spatiotemporal	extended	chaotic	systems	[36,40-42].	
Nevertheless,	we	notice	the	interesting	presence	of	Faraday	pattern	“islands”	on	a	“sea”	of	
spatiotemporally	chaotic	turbulence	(See	Fig.	3a	and	3b).	If	diffusion	is	reduced	to	below	
b=10-6,	we	surprisingly	observe	that	the	laser	dynamics	is	dominated	by	stable	Faraday	
patterns	(Fig.	3c),	without	any	signature	of	turbulence.	These	considerations	may	have	a	
relevant	impact	towards	the	practical	design	of	Faraday	instability	lasers.	
	

						 	
FIGURE	3	In	a,	we	depict	a	typical	example	of	a	turbulent	temporal	intensity	dynamics	where	periodic	
oscillations	can	still	be	observed.	In	b,	the	spatiotemporal	evolution	of	|A|2	shows,	in	the	presence	of	diffusion	(b	
different	from	zero),	the	coexistence	of	spatiotemporal	chaos	and	parametric	patterns	(high	intensity	red	
stripes);	a	is	a	section	of	b.	In	c,	by	reducing	diffusion	we	obtain	a	stable	pulse	train.	Parameters	used	in	a	and	b	
are	c=5	s=0.2	d=1.18!10-4,	μav=0.8,	δμ=5μav,	Lm=1.5,		b=1.97!10-5.	c	is	obtained	with	the	same	parameters	as	a	but	
with	b=0.		
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Self-induced	Faraday	instability	in	a	fiber	Raman	laser	
	
As	a	proof	of	concept,	we	show	by	numerical	simulations	that	self-induced	Faraday	instability	
owing	to	periodic	gain	variation	can	indeed	be	observed	in	a	realistic	laser	system.	We	
consider	here	the	all-normal	dispersion	linear	cavity	Raman	fiber	laser.	
The	pump	field	is	injected	at	one	cavity	mirror,	while	the	Stokes	is	generated	spontaneously	
through	the	Raman	scattering	process	along	the	fiber.	Linear	fiber	attenuation	together	with	
pump	depletion	lead	to	a	longitudinally	dependent	pump	profile	along	the	fiber	(Fig.	4a).	The	
pump	“modulation	depth”	becomes	progressively	pronounced	with	increasing	values	of	its	
power.	The	pump	field	is	most	intense	near	one	cavity	mirror,	while	it	is	much	weaker	in	the	
vicinity	of	the	other	one.	Hence	the	Stokes	field,	while	travelling	back	and	forth	in	the	cavity,	
“experiences”	both	a	periodic	gain	and	a	periodic	nonlinearity	profile.	When	the	gain	variation	
is	sufficiently	large,	the	threshold	for	parametric	instability	is	crossed,	and	the	amplification	of	
spectral	sidebands	takes	place.	As	a	consequence,	the	CW	solution	of	the	cavity	loses	stability.	
Correspondingly,	a	pulse	train	is	generated,	with	a	repetition	rate	dictated	by	the	instability	
frequency.		
Light	evolution	in	the	laser	is	described	by	a	set	of	four	coupled	generalized	nonlinear	
Schrödinger	equations	for	the	forward	and	backward	propagating	fields	A±p,s,	respectively,	
where	suffixes	p	and	s	refer	to	pump	and	Stokes	fields	
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Here	γp,s	,	β2p,s,	αp,s	and		gp,s	denote	the	Kerr	nonlinearity	coefficient,	group	velocity	dispersion,	
attenuation,	and	Raman	gain	for	pump	and	Stokes	wavelengths,	respectively,	while	β1p	
describes	the	group	velocity	mismatch	and	the	bra-kets	temporal	average.		
The	stability	properties	of	the	homogeneous	solution	of	the	Raman	laser	can	be	characterized	
once	again	by	means	of	a	Floquet	linear	stability	analysis,	whose	results	are	depicted	in	Fig.	
4b.		In	order	to	perform	the	Floquet	analysis	of	the	Raman	laser	homogeneous	solution,	we	
first	computed	numerically	the	spatial	profiles	of	pump	and	signal	fields	in	the	stationary	
state,	by	suppressing	temporal	modulations.	After	that,	we	repeated	the	Floquet	sideband	
analysis	as	previously	described	integrating	numerically	Eqs.	3	over	one	full	cavity	round	trip.	
In	Fig.	4b,	the	Faraday	instability	spectrum	shows	the	presence	of	exponentially	growing	
modulation	sidebands.		Consistently	with	these	theoretical	predictions,	full	numerical	
simulations	of	Eqs.	3	reveal	that	temporal	Faraday	patterns,	consisting	in	a	train	of	pulses,	are	
indeed	generated,	owing	to	the	self-induced	Faraday	instability.	For	a	quantitative	
comparison	with	predictions	of	the	linearized	stability	analysis,	the	repetition	rate	of	the	
numerically	generated	pulse	trains	measured	from	the	power	spectrum	peak	is	indicated	by	
black	dots	in	Fig.	4b.	As	can	be	seen,	the	linear	stability	analysis	provides	a	good	estimation	of	
the	pulses	repetition	rate.	The	generated	pulses	are	in	general	regular	(see	Fig.	4d),	but	
sometimes	are	subject	to	transient	instabilities	and	collisions;	after	those	turbulent	events	the	
regular	pulsation	regime	regenerates	spontaneously	(Fig.	4e).	
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FIGURE	4		In	a,	the	total	pump	power	“experienced”	by	the	Stokes	field	in	the	stationary	state	is	plotted	versus	the	
longitudinal	coordinate,	for	a	length	corresponding	to	four	cavity	round	trips,	and	for	various	input	pump	power	values.	In	b,	
the	Faraday	instability	gain	G	is	plotted	versus	pump	power	and	frequency:	colored	areas	correspond	to	unstable	modes.	
(black	dots	denote	generated	pulses	repetition	rate).	In	c,	an	example	of	optical	spectrum	is	plotted	for	an	input	pump	power	
equal	to	1.3	W.	In	d	and	e,	examples	of	stable	and	metastable	pulses	for	input	pump	power	equal	to	1.3	W	are	depicted.	
Parameters	used	are		γp=3	(W	km)-1,		γs=2.57	(W	km)-1,	gp=1.51	(W	km)-1,		gs=1.3	(W	km)-1,	αs=0.8	km-1,	αp=0.5	km-1,	fiber	
length		L=0.37	km.	At	the	cavity	boundaries,	radiation	is	reflected	by	super	Gaussian	(order	3)	unchirped	fiber	Bragg-gratings	
having	1nm	FWHM.		
	
We	stress	that	periodic	forcing	in	this	case	is	not	due	to	any	action	performed	on	the	system	
from	the	external	world,	but	it	arises	spontaneously,	owing	to	the	particular	self-organization	
process	of	the	field	solutions,	hence	the	denomination:	self-induced	Faraday	instability.	This	
feature	distinguishes	our	laser	system	from	previous	and	recent	studies	of	dispersive	and	
dissipative	parametric	instabilities	[21,	23-26,	43],	where	the	forcing	is	produced	by	a	
suitably	designed	dispersion	landscape	or	by	cavity	boundary	conditions.	
	
Conclusions	
	
In	conclusion,	our	study	sheds	light	on	an	up	to	now	not	considered	case	of	self-induced	PI,	
and	on	the	associated	pattern	formation	process,	taking	place	in	laser	systems	described	by	
the	universal	CGLE,	and	its	more	complex	versions.	We	have	shown,	based	on	realistic	
examples,	that	lasers	with	a	suitable	inhomogeneous	spatial	distribution	of	gain	along	the	
resonator	can	be	the	ideal	platform	for	observing	the	predicted	self-induced	Faraday	
instability.	The	primary	interest	in	the	associated	temporal	pattern	formation	process	based	
on	Raman	gain	is	linked	to	the	possibility	of	exploiting	the	self-induced	Faraday	instability	to	
design	pulsed	fiber	laser	sources	operating	at	high	repetition	rates,	widely	tunable	across	the	
entire	transparency	window	of	optical	fibers.		
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