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Introduction or background: Type 2 diabetes, which accounts for ~90% of

all diabetes, is a heterogeneous and progressive disease with a variety of

causative and potentiating factors. The hyperglycaemia of type 2 diabetes

is often inadequately controlled, hence the need for a wider selection of

glucose-lowering treatments.

Sources of data: Medline, PubMed, Web of Science and Google Scholar.

Areas of agreement: Early, effective and sustained control of blood glucose

defers the onset and reduces the severity of microvascular and neuropathic

complications of type 2 diabetes and helps to reduce the risk of cardiovas-

cular (CV) complications.

Areas of controversy: Newer glucose-lowering agents require extensive

long-term studies to confirm CV safety. The positioning of newer agents

within therapeutic algorithms varies.

Growing points: In addition to their glucose-lowering efficacy, some new

glucose-lowering agents may act independently to reduce CV and renal

complications.

Areas timely for developing research: Studies of potential new glucose-

lowering agents offer the opportunity to safely improve glycaemic control

with prolonged efficacy and greater opportunity for therapeutic

individualisation.
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Introduction

Type 2 diabetes mellitus (T2DM) accounts for ~90%
of the 425 million people with diagnosed diabetes
worldwide, and is projected to increase to ~629 mil-
lion by 2045.1 All treatment guidelines emphasise the
benefits of early, effective and sustained control of
blood glucose in order to delay the onset and reduce
the severity of complications. Given the variable and
progressive nature of type 2 diabetes, most guidelines
favour an individualised approach to treatment
underpinned throughout with lifestyle measures, not-
ably diet, exercise, body weight control and healthy
living advice.2–5 When lifestyle measures alone are
unable to achieve or sustain the desired glycaemic
control, pharmacological therapies are introduced,
and two or more glucose-lowering agents (including
fixed-dose oral combinations and insulin) with differ-
ent modes of action may be required as the disease
progresses (Table 1).6 Despite the variety of available
glucose-lowering agents, many patients do not attain
or maintain adequate glycaemic control, emphasising
the need for further therapeutic options.4,7 This review
considers examples of preclinical studies that illustrate
potential new pharmacological approaches to glycaemic
control and agents advancing in clinical development
that utilise new modes of action or delivery.

Selecting pharmacological targets for

type 2 diabetes

The hyperglycaemia of type 2 diabetes typically
emerges when insulin sensitivity deteriorates (insulin
resistance) and pancreatic β-cells are unable to provide
sufficient insulin (Fig. 1). The glucotoxic effects of per-
sistent hyperglycaemia precipitate and accentuate the
characteristic microvascular complications of type 2
diabetes, notably a deterioration in renal function and
detrimental changes to the retina as well as develop-
ment of neuropathic problems. The combined effects
of gluco-lipotoxicity, insulin resistance and other
pathogenic factors such as hypertension, dyslipidae-
mia and hypercoagulation contribute to the increased
long-term cardiovascular (CV) risks associated with
type 2 diabetes. This mandates a management strategy

that addresses the hyperglycaemia alongside other
aspects of risk.5,8

Early intervention with stringent dietary measures
and certain bariatric procedures can achieve pro-
tracted remission of hyperglycaemia in some type 2
diabetes patients, usually associated with weight
reduction.9,10 However, the vast majority of patients
will eventually require pharmacological therapy that
is escalated as the disease advances.2–5 Insulin resist-
ance and insulin insufficiency are obvious pharmaco-
logical targets to address the hyperglycaemia, but
many other defects that contribute to the disease pro-
cess are also potential sites for intervention. The multi-
plicity of defects in type 2 diabetes requires future
agents to have new modes of action which permit
their use in a complementary manner with existing
agents to enhance efficacy.11

Practical considerations

Responsiveness of an individual to a given agent is
not readily predicted because efficacy requires cor-
rective adjustments across several tissues and organ
systems: thus, even with the emerging assistance of
pharmacogenomics, the matching of patient and
treatment retains a degree of uncertainty. Given
that a glucose-lowering agent may be required for
decades, long-term safety is paramount. The con-
venience of administration, tolerability and cost will
substantially influence accessibility and adherence.
Positioning of a new medicine within a treatment
algorithm is invariably problematic: initial caution
often defers use of a new medicine until established
agents have been exhausted, irrespective of the ideal
placement against disease pathophysiology.6,11

Avoiding hypoglycaemia is very important, and
the ability to prevent weight gain, assist weight loss
and offer additional advantages such as reduced CV
risk are valuable features, indicating why metformin
is widely preferred as initial pharmacological ther-
apy.6 Assessing durability of effectiveness of an
agent inevitably requires longer than pre-approval
trials, but will be apposite when finalising the position
of an agent within an algorithm. Agents with pharma-
cokinetic properties suited to use with co-morbidities

2 C.J. Bailey and C. Day, 2018
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Table 1 Blood glucose-lowering agents currently approved for use in the UK*

Class with examples Dose range, mg/day (unless

stated)

(a) Glucose-lowering efficacy†

(b) Hypo risk†

(c) Weight†

Mode of action Cautions, limitations and additional

benefits

Oral

Biguanide

Metformin

(IR, SR/XR formulations)

500–3000 (a) High efficacy

(b) Low hypo risk

(c) Weight neutral

Counter insulin resistance

↓ Hepatic glucose output

↑ Glucose uptake and cycling

Check renal function. Interrupt if using

contrast media. Avoid in renal or

liver impairment, or any hypoxaemic

state and history of lactic acidosis.

Rare risk of lactic acidosis.

Glucose-independent effects to reduce

CV risk.

Sulfonylureas

Glibenclamide

Gliclazide*

Gliclazide MR*

Glimepiride

Glipizide

Tolbutamide

2.5–20

40–320

30–100

1–6

2.5–20

500–3000

(a) High efficacy

(b) Moderate hypo risk

(c) Weight gain

Initiate and potentiate insulin secretion

(effect lasts 6–24 h depending on

agent and dose)

Initial efficacy may wear-off after 6–12

months in some patients. Avoid in

renal or liver impairment

depending on agent.

Note risk of hypoglycemia.

Meglitinides

Nateglinide

Repaglinide

60–540

0.5–16

(a) Intermediate efficacy

(b) Moderate hypo risk

(c) Weight gain

Initiate and potentiate insulin secretion

(rapid effect, typically lasts <6 h)

Avoid in liver impairment.

Take with main meals.

DPP-4 inhibitors

Alogliptin

Linagliptin

Saxagliptin

Sitagliptin

Vildagliptin

6.25–25

5

2.5–5

25–100

50–100

(a) Intermediate-high efficacy

(b) Low hypo risk

(c) Weight neutral

Prolong circulating half-lives of some

incretin hormones such as GLP-1

Discontinue if acute pancreatitis.

Dose adjustment in renal impairment

except linagliptin.

Thiazolidinedione

Pioglitazone 15–45 (a) High efficacy

(b) Low hypo risk

(c) Weight gain

↑ Insulin sensitivity mainly via

activation of PPARγ
Slow onset of action, risk of oedema.

Increased risk of heart failure and bone

fractures.

Check liver enzymes and CV risk.

SGLT2 inhibitors

Canagliflozin

Dapagliflozin

Empagliflozin

100–300

5–10

10–25

(a) Intermediate-high efficacy

(b) Low hypo risk

(c) Weight reduction

Inhibit renal SGLT2 to eliminate

glucose via the urine.

Check for adequate renal function and

hydration.

Glucosuric effect: risk of genital and

urinary infections.

Can reduce blood pressure: evidence of

reduced CV risk.

Continued
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Table 1 Continued

Class with examples Dose range, mg/day (unless

stated)

(a) Glucose-lowering efficacy†

(b) Hypo risk†

(c) Weight†

Mode of action Cautions, limitations and additional

benefits

Alpha-glucosidase inhibitors

Acarbose 50–600 (a) Intermediate efficacy

(b) Low hypo risk

(c) Weight neutral

Slow carbohydrate digestion by

competitive inhibition of intestinal

glucosidases

Avoid if gastrointestinal disorders.

Side effect of flatulence.

Subcutaneous injection

GLP-1 receptor agonists

Dulaglutide

Exenatide BD

Exenatide QW

Liraglutide

Lixisenatide

0.75–1.5 QW

5–10 μg BD

2 QW

0.6–1.8 OD

10–20 μg OD

(a) High efficacy

(b) Low hypo risk

(c) Weight reduction

Activate GLP-1 receptors to potentiate

prandial insulin secretion, ↓

prandial glucagon secretion, delay

gastric emptying and exert satiety

effect

Initial nausea, titrate as appropriate.

Avoid in severe renal impairment.

Discontinue if acute pancreatitis.

Can reduce blood pressure: evidence of

reduced CV risk.

Insulin

Ultra-rapid acting:

Fiasp

Rapid-acting:

Aspart, Glulisine, Lispro

Short-acting:

Actrapid, Humulin S, Insuman Rapid

Intermediate:

Insulatard, Humulin I

Long-acting:

Degludec, Detemir, Glargine

Biphasic (pre-mixed):

Humalog, Humulin M3, Novomix

For basal sc injections usually

start at 0.1 or 0.2 units/

kg body weight daily (i.e.

10 or 20 units per day

for a person weighing

100 kg).

Titrate up dose to achieve

target glycaemic control.

For MDI give ~30–50%

as basal, and remainder

divided between meals

(a) Very high efficacy

(b) High hypo risk

(c) Weight gain

↓ hepatic glucose output

↑ peripheral glucose uptake

↑ glucose metabolism

↓ lipolysis

↑ lipogenesis

↑ protein anabolism

Select regimen consistent with patient

lifestyle and needs.

Glucose monitoring required.

Appropriate lifestyle adjustments.

Note high risk of hypoglycemia.

BD, twice daily; DPP-4, dipeptidyl peptidase-4; GLP-1, glucagon-like peptide-1; MDI, multiple daily insulin injections; OD, once daily; PPARγ, peroxisome proliferator-activated receptor-gamma; QW, once weekly; SGLT, sodium–

glucose co-transporter; ↑ increase; ↓ decrease.

*Some agents are not available in all countries, e.g. gliclazide is not available in the USA. Some agents have different names and formulations in other countries, e.g. glibenclamide is available as micronized glyburide in the USA,

and formulations of glipizide may vary between countries. Additional agents have indications as glucose-lowering agents outside of Europe, e.g. colesevelam (bile sequestrant), bromocriptine (dopamine D2 receptor agonist) and

pramlintide (amylin analogue taken as subcutaneous injections before meals) have an indication for diabetes in the USA, and additional α-glucosidase inhibitors (miglitol and voglibose) and the GLP-1 receptor agonist albiglutide

are available in some countries outside of the UK. Rosiglitazone is available in some countries outside of Europe. Dosages may vary between countries, e.g. a maximum recommended dose of metformin is 3000mg/day in Europe

and 2550mg/day in the USA. Exclusions, precautions and monitoring may also vary (e.g. extent of renal impairment to contraindicate metformin varies between countries; TZDs are excluded for New York Heart Association

(NYHA) categories I–IV in Europe but III–IV in the USA). Fixed-dose combinations of several oral agents are widely available, e.g. single tablet combinations of metformin with a DPP-4 inhibitor or SGLT2 inhibitor, and fixed-

ratio combinations of a GLP-1 receptor agonist with insulin have recently been introduced. Pre-mixed insulins are identified with the proportion of the shorter-acting component first in Europe but second in the USA. Prescribers are

encouraged to check national and local formulary directives.
†Based on ADA/EASD position statement.2

This table is based on and updated from reference.11
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such as impaired kidney or liver function, cardio-
respiratory conditions or in the elderly or frail are
always helpful.

Developing a new agent may take more than a
decade and involve detailed preclinical assessment

of many compounds to select very few for Phase 1
clinical evaluation. Confirmation of efficacy and ini-
tial safety in Phase 2 clinical trials allow progression
into an extensive Phase 3 programme of clinical
trials. These should demonstrate therapeutic utility,

Insulin

resistance

HyperglycaemiaCompensatory

hyperinsulinaemia

Euglycaemia ββ-cell failure

Normal Prediabetes Progression of  T2DM

Insulin 

sensitivity

Normal

plasma

insulin

Microvascular and
macrovascular
complications

β-cell

dysfunction

Insulin

resistance

Environmental factors
eg dietary composition and

amount, sedentary lifestyle, co-
existent conditions and

medications 

Genetic factors
eg ethnicity, gender, somatotype,

expression of enzymes and
transporters controlling energy

metabolism
Prediabetes

Type 2

diabetes

Diagnosis

of T2DM

Fig. 1 Typical sequence of insulin resistance and pancreatic β-cell dysfunction during the

development and progression of hyperglycaemia in type 2 diabetes. Initiation of the dis-

ease process mostly involves interactions of environmental factors with genetic factors

to disrupt the control of nutrient homoeostasis. A family history of diabetes or prior ges-

tational diabetes indicates particular susceptibility, which may be compounded by obes-

ity, a sedentary lifestyle and conditions or medicines that disturb metabolic control such

as acromegaly or prolonged use of glucocorticoids. During the prodromal period insulin

sensitivity deteriorates (insulin resistance) and this is compensated by increased insulin

secretion (compensatory hyperinsulinaemia). ‘Stressed’ pancreatic β-cells lose their abil-

ity to respond promptly to a prandial rise in blood glucose: their normal secretory rhyth-

micity becomes disrupted and there is incomplete conversion of proinsulin to insulin,

resulting in the secretion of more proinsulin which is less biologically active than insulin.

If raised insulin concentrations become insufficient to compensate for the insulin resist-

ance, blood glucose concentrations rise, leading to a condition of ‘prediabetes’. This is

characterised by elevated postprandial glycaemia, often coupled with elevated basal gly-

caemia, but below the thresholds for a diagnosis of diabetes. Prediabetes can be defined

by impaired glucose tolerance (IGT) with or without impaired fasting glucose (IFG). The

detrimental effects of raised blood glucose concentrations are aggravated by accom-

panying disturbances of lipid metabolism, increased production of pro-inflammatory

cytokines from expanded adipose depots, alterations to the microbiome and adjust-

ments to the autonomic control of nutrient metabolism. A decline of insulin-secretory

function escalates the prediabetic hyperglycaemia into a state of type 2 diabetes, and the

hyperglycaemia becomes progressively worse with advancing β-cell failure. Throughout
this process, adverse changes to other gluco-regulatory factors become increasingly

apparent, notably impaired postprandial suppression of glucagon secretion and reduced

activity of incretin hormones such as glucagon-like peptide-1 (GLP-1).

5Type 2 diabetes: future treatments, 2018
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benefit-risk and marketability involving at least
2500 (typically many more) patients of whom at
least 1500 will be exposed to the agent for >1 year.
Development costs are difficult to determine as they
include compounds investigated and discarded
along the way, but the cost to completion of Phase
3 is expected to exceed US$ 1 billion, and an aver-
age cost was recently estimated at US$ 2.6 billion.6

Regulatory requirements for

cardiovascular safety

In view of the high CV risk of type 2 diabetes and
concerns over the CV safety of some glucose-lowering
therapies, notably rosiglitazone (no longer available in
Europe), the Food and Drug Administration in the
USA specified in 2008 that new glucose-lowering
agents needed to demonstrate specific margins of CV
safety to gain marketing approval, and provide con-
firmatory evidence with post-marketing outcome
trials if required.12 In 2012, the European Medicines
Agency also requested more extensive evidence to
demonstrate no increase in adverse CV events with
glucose-lowering agents.13 This has prompted a pro-
liferation of large clinical trials to monitor CV events
in type 2 diabetes patients receiving glucose-lowering
agents. To-date, these trials have reassuringly demon-
strated that recently approved glucose-lowering agents
do not increase the risk of a composite of major
adverse cardiac events (including CV death, non-fatal
MI and stroke) in patients at high risk of a CV event,
and some agents have shown significant CV bene-
fits.14 Several agents have reduced systolic blood pres-
sure and reduced progression of renal conditions
more than may be attributed to improved glycaemic
control. Other advantages such as weight reduction
have been confirmed and useful information on a
range of safety parameters has emerged. Overall, this
has generated an expectation for future glucose-
lowering agents to offer benefits beyond glucose-
lowering alone.

Insulin secretion enhancers

Dysfunction and declining numbers of pancreatic β-cells
underlie reduced insulin secretion in type 2 diabetes.

Currently available sulfonylureas and meglitinides
can ‘initiate’ insulin secretion—even at low glucose
concentrations—hence, the risk of hypoglycaemia. In
contrast, incretin-based therapies, namely dipeptidyl
peptidase-4 (DPP-4) inhibitors and glucagon-like pep-
tide-1 (GLP-1) receptor agonists ‘potentiate’ nutrient-
induced insulin secretion—hence, little or no effect at
low glucose concentrations and low risk of hypogly-
caemia.6 However, an important unmet need is to
address the declining number of β-cells in type 2 dia-
betes. GLP-1 receptor agonists, peroxisome proliferator-
activated receptor-γ (PPARγ) agonists and gastrin can
increase β-cell mass in vitro and when administered
during early development of non-insulin-dependent
diabetes in rodents. The durable efficacy of GLP-1
receptor agonists raises the possibility that these agents
might help to preserve β-cell mass in human type 2
diabetes, but current and imminent agents have not
been shown to regenerate β-cell mass after the β-cell
mass has already become depleted.15

Insulin release is enhanced by many compounds
that generate ATP, inhibit K+ATP channels, raise
cytosolic calcium, activate imidazoline receptors,
suppress α2-adrenergic receptors, increase cyclic
AMP or alter other intracellular regulators of insulin
exocytosis. However, most of these compounds have
not been suited to therapeutic development due to an
inability to target them specifically at the pancreatic
β-cells and exclude unwanted effects on other cell
types.16 Current interest is focussed on imeglimin, fatty
acid receptor agonists and glucokinase activators.

Imeglimin, now in Phase 3, is a tetrahydrotriazine
which closes mitochondrial permeability transition
pores, facilitating ATP synthesis, reducing oxidative
stress and decreasing hyperglycaemia-induced apop-
tosis. Pancreatic β-cells are particularly responsive to
this agent, and studies in type 2 diabetes patients have
noted partial restoration of glucose-induced insulin
secretion, especially the immediate (first) phase, together
with some improvement of insulin sensitivity and
reduced hepatic glucose production.17

Pancreatic β-cells express the G-protein-coupled fatty
acid receptors GPR40 (FFAR1) and GPR119: activa-
tion of these receptors by fatty acids increases insulin
secretion via phospholipase C and adenylate cyclase,
respectively. Small molecule agonists of these receptors

6 C.J. Bailey and C. Day, 2018
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have shown glucose-lowering efficacy in type 2 dia-
betes but their most studied member, the GPR40
agonist TAK-875, was discontinued due to hepatic
side effects.18 GPR40 and GPR119 are also expressed
by several entero-endocrine cells including L-cells
which produce GLP-1, peptide YY (PYY) and oxy-
ntomodulin. Thus, agonists for these receptors could
augment insulin secretion via an increased incretin
effect, a direct effect on the β-cells and a strong satiety
effect. Also, activation of GPR40 receptors on pancre-
atic α-cells can reduce glucagon secretion.18–20

Glucokinase activators can initiate and potentiate
insulin secretion at any glucose concentration, but
trials in type 2 diabetes indicate that efficacy soon
wains as β-cells adapt by reducing glucose sensitivity.
It has proved difficult to develop a mechanism that
‘switches off’ at low glucose to avoid hypoglycaemia.21

Glucokinase in liver is regulated differently to pancreatic
β-cells, but whilst increased hepatic glucokinase reduces
hyperglycaemia the resulting increase in hepatic glyco-
genesis and lipogenesis may be an encumbrance to
normal liver function.22

Glucagon-like peptide-1 receptor

agonists

GLP-1 receptor agonists potentiate nutrient-induced
insulin secretion and suppress glucagon secretion at
raised (but not low) glucose concentrations—hence,
minimal risk of hypoglycaemia. They also delay gas-
tric emptying and usually enable weight reduction via
a centrally-mediated satiety effect that can off-set the
weight gain associated with raised insulin concentra-
tions. GLP-1 receptor agonists may also reduce CV
risk and renal complications.23 Current GLP-1 recep-
tor agonists have modified molecular structures and
formulations to extend their half-life by protecting
against rapid inactivation by the enzyme DPP-4.
Initial nausea in some patients, cost and the need to
inject these agents remains a hindrance to their wider
adoption.

To avoid injections the GLP-1 receptor agonist,
semaglutide, which is advanced in development as a
once weekly subcutaneous injection, is now being for-
mulated into a tablet with the absorption enhancer
sodium hydroxybenzoylamino-caprylate (SNAC) to

facilitate absorption across the gastric epithelium.
SNAC appears to protect the peptide from proteolytic
degradation by raising the pH around the peptide and
assisting transcellular absorption. Oral semaglutide
should be taken in the morning on an empty stomach
and food should be avoided for ~90min to allow
adequate absorption of the drug. Clinical trials have
shown the oral and injectable formulations of sema-
glutide to be similarly effective in controlling blood
glucose and body weight.24

For the long-term, it is possible that orally active
non-peptide GLP-1 receptor agonists will be devel-
oped. Several such agonists have shown glucose-
lowering and weight-lowering efficacy in preclinical
studies.25 These agonists may act allosterically at a
separate location to the peptide-binding epitope. This
modifies the conformation and signalling activity of
the GLP-1 receptors, offering the potential to increase
receptor binding of endogenous GLP-1 or exogenous
peptide GLP-1 receptor agonists.26 Whether the profile
of metabolic and other effects generated in this way
will exactly replicate native GLP-1 remains to be seen.

Continuous release of the GLP-1 receptor agonist
exenatide from a subcutaneously implanted miniature
osmotic pump (ITCA 650) has provided therapeutic
concentrations of exenatide that maintain glucose-
lowering efficacy for up to 2 years.27,28 The matchstick-
sized device is implanted as a minor procedure, remains
intact and is removed or replaced as required. Storing
the peptide with retained biological integrity for 2
years at body temperature is a notable feature of this
technology. Continuous release of a GLP-1 receptor
agonist from an implanted depot should obviate issues
of non-adherence.

A different type of depot, with proof of concept
from preclinical studies, is a subcutaneously injected
co-formulation of a DPP-4 resistant GLP-1 analogue
linked with the soluble fusion protein elastin-like-
polypeptide (ELP). The ELP forms a gel at body tem-
perature which holds a reservoir of the GLP-1 analogue
that can be released by local proteases.29

Fixed-ratio injectable combinations

GLP-1 receptor agonists act particularly to reduce post-
prandial hyperglycaemia whereas basal insulin targets

7Type 2 diabetes: future treatments, 2018
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mainly basal hyperglycaemia: thus, the actions of these
two types of agents are complementary. Advances in
the formulation of peptide mixtures have facilitated
‘fixed-ratio’ combinations of a GLP-1 receptor agonist
with a basal insulin in the same subcutaneous injec-
tion. Such a combination of liraglutide with insulin
degludec (IDegLira) confers greater blood glucose-
lowering at a lower dose of insulin and with less
weight gain and no increased risk of hypoglycaemia
compared with degludec alone.30 A ‘fixed-ratio’ com-
bination of lixisenatide with insulin glargine offers
similar efficacy.31

Future complementary combinations of peptides
may be anticipated if additional therapeutic peptides
with glucose-lowering and/or weight-lowering proper-
ties become available. Several gastrointestinal hor-
mones provide templates for new therapeutic peptides
such as oxyntomodulin and PYY which exert satiety
effects. Glucagon can also increase satiety as well as
energy expenditure, but glucagon would need to be
paired with a peptide that is able to counter its hyper-
glycaemic effect. Glucose-dependent insulinotropic
peptide (GIP) (enhances insulin secretion), gastrin (can
improve β-cell mass), and ghrelin antagonists (reduce
hunger) are further examples of the many peptides
that can affect gluco-regulation and might be con-
sidered as therapeutic templates.32

Hybrid and chimeric peptides

The prospect of single injections containing mixtures
of two complementary peptides has prompted the
development of hybrid molecules in which two com-
plete peptide molecules, or their active amino acid
sequences, are linked together to form a single mol-
ecule.33 For example, GLP-1 has been linked with gas-
trin to improve glycaemic control, weight control and
β-cell mass: GLP-1 has also been linked with glucagon
to improve energy expenditure, satiety and weight
loss.34,35

An extension of this approach is the development
of chimeric molecules. An example of a dual-action
chimeric peptide is an intermixed sequence of GLP-1
and GIP, giving strong insulin releasing properties,
which improved glycaemic control during studies in
obese-diabetic rodent models, monkeys and type 2

diabetic patients.36 Triple-action chimeric peptides
have also been produced to interact with receptors for
GLP-1, GIP and glucagon, and these have improved
glycaemic control, suppressed food intake, reduced
body weight and increased energy expenditure in
rodent models.37 Thus, it is possible to create chimeric
peptides with bespoke properties to exert desired
effects via selected target receptors. However, signifi-
cant physico-chemical challenges as well as immuno-
genicity, acute reactions, antibody production and
adaptive responses of receptors must be considered
for this approach.32

Other entero-pancreatic mechanisms

DPP-4 inhibitors are well-established glucose-lowering
agents that act mainly by preventing the breakdown of
endogenous incretins.38 Until recently, these agents have
been available as once-daily tablets, but some long-
acting once-weekly versions (e.g. omarigliptin and tre-
lagliptin) are now available in some countries.39

Agonists of the TGR5 (GP-BAR1) bile acid
receptor have recently been considered as possible
stimulants of GLP-1 secretion. Interest was raised
by the bile acid sequestrant colesevelam, which has
an indication for glucose-lowering in type 2 dia-
betes in the USA. Preliminary evidence suggests that
bile acids carried distally along the intestinal tract
might activate TGR5 receptors (expressed by intes-
tinal L-cells) to stimulate GLP-1 secretion.40 However,
TGR5 receptors are mostly sited in the basolateral
membranes of L-cells, so activation from the luminal
side is likely to be limited.41

Glucagon secretion and action

Reducing hyperglucagonaemia can reduce hyper-
glycaemia in type 2 diabetes: for example, the
glucose-lowering efficacy of GLP-1 receptor agonists
is attributable in part to suppression of prandial glu-
cagon secretion. Small molecules that inhibit glucagon
secretion have proved difficult to target specifically
against pancreatic α-cells, and have interrupted the
glucagon response to low blood glucose (which is not
interrupted with GLP-1 receptor agonists).16 Many
studies have evaluated the inhibition of glucagon

8 C.J. Bailey and C. Day, 2018
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action with peptide and non-peptide glucagon recep-
tor antagonists and glucagon receptor antisense oligo-
nucleotides. However, impeding glucagon action
leads to increased plasma glucagon concentrations
with a rapid rebound hyperglycaemia if treatment is
stopped. Inhibiting glucagon action may also produce
unwanted effects on the liver, so this theoretic-
ally logical approach to the treatment of hypergly-
caemia remains problematic.42,43

Sodium–glucose co-transporter

inhibitors

SGLT2 in the renal proximal tubules is responsible
for reabsorption of most of the glucose filtered by the
kidney, and SGLT1 in the brush border of enterocytes
is responsible for the intestinal absorption of glucose.
Inhibitors of SGLT2 eliminate excess glucose via the
urine, reducing blood glucose and assisting weight
loss in an insulin independent manner. This glucosuric
mechanism creates an osmotic diuresis which, by ana-
logy with other forms of diuresis, contributes to a
lowering of blood pressure and reduced CV risk.44

Inhibition of SGLT2 may also increase delivery of
sodium around the loop of Henle to the macula densa
where it will promote tubulo-glomerular feedback to
constrict afferent glomerular vessels and reduce intra-
glomerular pressure. This should help to protect
against advancement of diabetic renal disease.

New SGLT2 inhibitors are advanced in develop-
ment as well as a dual SGLT1/2 inhibitor. The dual
inhibitor defers glucose absorption more distally
along the intestinal tract, but does not prevent com-
plete glucose absorption within the small intestine as
the dual inhibitor is absorbed and degraded during
transit along the gut.44,45 If the plasma concentration
of a dual inhibitor is sufficient to impede SGLT1 in
the kidney, this might increase the glucosuric effect.

Tissue selective and smart insulins

Many type 2 diabetes patients eventually require insu-
lin therapy, usually as basal insulin in conjunction
with metformin and other glucose-lowering agents.
Research continues apace into different methods of
insulin delivery such as buccal, oral, inhaled and

transdermal. Also, there is development of new insulin
analogues, reformulations of insulins to alter absorp-
tion rate and various pump technologies integrated
with glucose monitoring. These topics are too exten-
sive to review here, and are considered in detail else-
where46 but the targeting of insulin to particular
tissues and the development of non-cellular glucose-
responsive insulins are briefly considered here because
they offer interesting therapeutic concepts for the
long-term future.

A limitation of subcutaneously injected insulin is
that it does not mimic the physiological release of
insulin from the pancreas into the portal system,
which exposes the liver to higher insulin concentra-
tions than the periphery. To increase the proportion
of insulin in contact with liver cells, insulin analo-
gues have been linked to various carriers including
graded sizes of polyethylene glycol. This gives easier
access across the fenestrated sinusoidal endothelium
in the liver than tighter endothelia in the periph-
ery.47 Although one such preparation has not been
progressed after extensive development, the concept
of hepato-selective insulins remains therapeutically
enticing.

Considerable advances continue to be made with
closed-loop insulin delivery systems that link glucose
monitoring technologies to insulin pump devices that
automatically metre-out the required amount of insu-
lin. The same general principle has been applied to the
development of glucose-responsive ‘smart’ insulins
that are released from an implanted or circulating
depot by a direct chemical reaction with glucose. For
example, polymers that contain boronic acid deriva-
tives become deformed when two boronates are cross-
linked by glucose. Such polymers can be incorporated
into hydrogels containing insulin, so that the insulin is
‘squeezed out’ in proportion to the interactions with
glucose. Another approach is to link insulin to the
boronic acid derivatives and to displace the insulin
with glucose.48,49 Proof of principle has been demon-
strated in diabetic mice with insulin analogues linked
to boronic acid derivatives: these achieved more effect-
ive glycaemic control than unlinked analogues.50 Other
approaches at preliminary stages of development are
using implanted insulin depots or transcellular insulin
patches that contain glucose oxidase to monitor
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glucose levels. Products of the reaction between glu-
cose and glucose oxidase alter the structure of poly-
mers thereby determining the release of insulin from
the depot in a glucose-dependent manner.51–53

Insulin action enhancers

Insulin resistance is an early and enduring feature of
most presentations of type 2 diabetes, usually involv-
ing multiple signalling defects from the insulin recep-
tor through post-receptor pathways to biological
effectors of insulin action within the cell.54 The com-
plex manner in which insulin binds and activates its
receptor has proved difficult to mimic.55 Studies with
a monoclonal antibody have established that it is pos-
sible for interaction with the insulin receptor at differ-
ent sites to insulin and still create conformational
changes that will initiate some of the intracellular
effects of insulin.56 Also, the fungal metabolite chaeto-
chromin A has been shown to interact with an extra-
cellular region of the insulin receptor independently of
insulin binding. This initiates insulin action independ-
ently of insulin as well as potentiating the action of
insulin.57 These studies provide proof of concept that
a small orally-delivered molecule can at least partially
mimic and potentiate the glucose-lowering effects of
insulin.

Several small molecules such as the fungal metab-
olite, demethylasterriquinone, interact with the intra-
cellular region of the insulin receptor to activate
receptor signalling and lower blood glucose without
insulin binding.58 Other substances can potentiate
insulin action after insulin has bound to the receptor
(but do not initiate insulin action independently). These
include agents that inhibit tyrosine phosphatases
which prolong insulin-induced tyrosine phosphoryl-
ation and kinase activity of the intracellular region of
the insulin receptor.59,60 Vanadium compounds are
notably effective as glucose-lowering phosphatase
inhibitors but their therapeutic application is compro-
mised by ‘off-target’ effects.61

Various compounds improve insulin action and
lower blood glucose in diabetic animals through effects
on post-receptor insulin signalling intermediates, but
these have yet to generate viable therapeutic agent.16

Examples include inhibitors of intermediates that

exert negative feedbacks along the post-receptor sig-
nalling chain such as some isoforms of protein kinase
C. Further examples are supplements of substrates for
post-receptor intermediates such as methyl-chiroinositol
(pinitol) which increases signalling by phosphatidyli-
nositol 3-kinase.16,60

Adipokines

Adipose tissue is a source of many peptides and other
substances that influence gluco-regulation. These adi-
pokines provide potential therapeutic templates.32 For
example, leptin facilitates weight loss through satiety
and thermogenic effects whilst enhancing insulin
action and suppressing glucagon. Unfortunately, the
body quickly develops resistance to therapeutic con-
centrations of leptin and its analogues which has pre-
cluded long-term use.62 Another promising peptide is
adiponectin which can potentiate insulin action and
may improve vascular parameters and reduce inflam-
mation. Small molecule agonists of the adiponectin
receptors AdipoR1 and AdipoR2 have been reported
to improve insulin sensitivity and lower blood glucose
in preclinical studies.63 Other adipocyte peptides that
improve insulin action such as omentin and visfatin,
or peptides that impede insulin action such as resistin,
retinol-binding protein-4 and the pro-inflammatory
adipokines tumour necrosis factor alpha and interleukin-6
may provide therapeutic targets for type 2 diabetes.32

Fibroblast growth factor-21 (FGF21) is secreted
by adipose tissue, liver and muscle, and FGF21 ana-
logues can lower blood glucose and improve insulin
sensitivity in type 2 diabetes. However, it is unclear
whether patients become resistant to FGF21, or if
some of the effects of FGF21 are mediated via
increased adiponectin secretion.64,65

Vitamins and minerals

Deficiencies of several vitamins and minerals are com-
monplace in type 2 diabetes, and supplements that
reinstate normal levels (not large excesses) can often
benefit glycaemic control. Correcting deficiencies in
vitamins D (cholecalciferol), C (ascorbic acid), E (α-
tocopherol), β-carotene, B1 (thiamine) and H (biotin)
as well as the minerals magnesium, chromium and
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zinc have all been reported to assist glucose-lowering
in type 2 diabetes: the effects are generally modest but
worthwhile. The effects of lithium are variable as lith-
ium can improve insulin sensitivity but may also
decrease insulin secretion. The potential value of van-
adium to increase insulin action has been considered
above and there is evidence from preclinical studies
that selenium, molybdenum, tungsten, mercury and
cadmium can improve glucose metabolism, but attend-
ant dangers of toxicity are well recognised.16

Other putative glucose-lowering

therapies

Selective peroxisome proliferator-activated

receptor modulators

Various thiazolidinedione and non-thiazolidinedione
molecules have been designed to selectively modify the
activity of peroxisome proliferator-activated receptors
(PPARs).66,67 These include PPARγ agonists which
enhance insulin sensitivity and improve glycaemic con-
trol. However, molecules must be designed to minimise
unwanted side effects such as excess adiposity, bone
resorption, fluid retention and risk of heart failure.62

Studies have also been undertaken with dual agonists
that activate PPARγ and PPARα (known as glitazars)—
designed to accentuate lipid-lowering and anti-
inflammatory effects as well as PPARδ agonists and
selective triple PPARα/γ/δ agonists (pan PPARs)—
designed to assist energy expenditure and weight loss.68

Hydroxysteroid dehydrogenase-1 inhibitors

Inhibiting the enzyme 11β-hydroxysteroid dehydrogenase-
1 prevents conversion of cortisone back to active cor-
tisol in the liver and adipose tissue. Although this has
improved insulin sensitivity, glycaemic control and
weight control in type 2 diabetes patients, there has
been sufficient reduction of circulating cortisol to
cause a compensatory increase in ACTH.69

Adenosine monophosphate-activated

protein kinase activators

Adenosine monophosphate-activated protein kinase
(AMPK) is activated when energy levels are depleted:

this enhances the uptake and oxidation of glucose and
fatty acids to restore ATP production while decreasing
gluconeogenesis and lipogenesis. Several compounds,
notably analogues of AMP such as AICAR (5-amino-
imidazole-4-carboxamide-1-B-D-ribofuranoside) can
activate AMPK and lower blood glucose in animal
models and possibly also reduce tumour formation.
Metformin, PPARγ agonists and adiponectin receptor
agonists activate AMPK and several novel agents that
activate AMPK are under investigation as potential
glucose-lowering agents.70,71

Glucose production and metabolism

Among the agents reported to suppress hepatic
gluconeogenesis and/or glycogenolysis, studies with
inhibitors of glucose 6-phosphatase and fructose 1,6-
bisphosphatase have confirmed strong blood glucose-
lowering activity.60,72 However, the challenge here is
to ensure that counter-regulatory glucose output is not
compromised in times of hypoglycaemia. Many com-
pounds that directly stimulate peripheral glucose uptake
and metabolism can lower blood glucose, but limited
potency and adverse side effects have generally miti-
gated against therapeutic development.16

Sirtuins

Sirtuins are nicotinamide-adenine-dinucleotide-dependent
histone deacetylases and ADP-ribosyltransferases which
exert epigenetic effects to modify the transcription of
genes that increase mitochondrial biogenesis and energy
expenditure, and alter nutrient metabolism similarly
to caloric restriction.73 They have been shown to pro-
tect against weight gain and diabetes in animal models
and their suitability for therapeutic purposes is under
investigation.

Microbiome modulators

Although dietary fibre can reduce prandial glucose
excursions, unpalatability and gastrointestinal dis-
comfort have moderated enthusiasm for fibre sup-
plements such as guar gum, celluloses and brans.
However, prebiotic and probiotic supplements
which selectively alter the gut microbiome and
modify the formation of bio-active products such
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as short-chain fatty acids are being considered.74,75

Faecal transplants to achieve the same effects are also
being studied.

Conclusion

This review has evaluated the different modes of action
of potential new glucose-lowering agents in preclinical,
early clinical and advanced clinical stages of development
(Fig. 2). The broad range of agents under investigation
is warranted by the diversity of pathophysiological
disturbances in type 2 diabetes and the anticipated
benefits of addressing several targets simultaneously.
Attention is directed to orally active GLP-1 receptor
agonists, fixed-ratio injectable combinations of insulin
with other peptides, and the construction of hybrid
and chimeric peptides to interact with several target

receptors from a single administration. Future opportunities
for SGLT1/2 inhibitors and prospects for tissue select-
ive insulins, glucose-dependent (‘smart’) insulins, novel
insulin releasers and glucagon receptor antagonists
have also been assessed. Additional awareness is directed
to proof of principle studies with putative adipokine-
based therapies including adiponectin receptor
agonists, orally active insulin mimetics and agents to
directly alter cellular energy metabolism.

Not included within this review are the non-
pharmacological approaches such as adjustments to
dietary nutrient composition, insulin-secreting cell
implants, bariatric surgery and agents primarily designed
to suppress appetite and reduce adiposity. These will
all contribute to the future management of type 2 dia-
betes which will continue to recognise the combined
impact of pharmacological and non-pharmacological

Blood
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Glucagon

SGLT2 inhibitors
glucosuric effect

Thiazolidinediones
increase insulin sensitivity

Insulin 
increases glucose uptake, 
decreases glucose output, 
decreases lipolysis

α-glucosidaseinhibitors 
slow carbohydrate digestion 

Colesevelam* 
bile sequestrant

Pramlintide* 
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enhance incretin effect
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reduces glucose production  

SGLT1 and SGLT1/2 inhibitors, delay glucose absorption

Sulfonylureas
stimulate insulin secretion

Meglitinides
stimulate insulin secretion 

Insulinotropic agents, enhance insulin secretion, eg β-cell mitochondrial stimulants,

fatty acid receptor agonists, glucokinase activators.

Glucagon secretion inhibitors eg GLP-1 receptor agonists
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eg oral GLP-1 receptor agonists, hybrid and chimeric peptides

Direct inhibitors of hepatic glucose production and stimulants of  muscle

glucose uptake and metabolism, eg AMPK activators

Small molecule insulin mimetics, initiate/enhance insulin action

Glucagon receptor antagonists, reduce effects of glucagon
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11βHSD1 inhibitors, variously counter insulin resistance

Novel insulin delivery routes - oral, buccal, skin, enhance insulin action

Novel SGLT2 inhibitors, glucosuric effect

Present therapies Possible future therapies
Diet Prebiotic and probiotic food supplements, alter gut microbiome

Tissue selective and ‘smart’ insulins, controlled insulin availability
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Fig. 2 Summary of possible future therapies showing main sites and modes of action in comparison to present therapies.

11βHSD1, 11β-hydroxysteroid dehydrogenase-1; AMPK, adenosine monophosphate-activated protein kinase; DPP-4, dipeptidyl

peptidase-4; FGF21, fibroblast growth factor-21; GLP-1, glucagon-like peptide-1; PYY, peptide YY; SGLT, sodium–glucose co-

transporter; SPPARM, selective peroxisome proliferator-activated receptor modulator. *Not indicated for glucose-lowering in

the UK. Updated from reference.11
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interventions to safely achieve early and sustained
glycaemic control alongside further measures to min-
imise CV and other risks.
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