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Birhythmicity occurs in many natural and artificial systems. In this paper, we propose a self-

feedback scheme to control birhythmicity. To establish the efficacy and generality of the proposed

control scheme, we apply it on three birhythmic oscillators from diverse fields of natural science,

namely, an energy harvesting system, the p53-Mdm2 network for protein genesis (the OAK

model), and a glycolysis model (modified Decroly-Goldbeter model). Using the harmonic decom-

position technique and energy balance method, we derive the analytical conditions for the control

of birhythmicity. A detailed numerical bifurcation analysis in the parameter space establishes that

the control scheme is capable of eliminating birhythmicity and it can also induce transitions

between different forms of bistability. As the proposed control scheme is quite general, it can be

applied for control of several real systems, particularly in biochemical and engineering systems.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4985561]

Multistability appears in diverse forms, and their

study is an exciting topic of research in science and

engineering. A particular form of multistability is bist-

ability: it shows many variants, such as the coexistence

of two stable steady states (SSS), one stable steady

state and one stable limit cycle (LC), two stable limit

cycles, or two chaotic attractors. Birhythmicity is the

phenomenon of coexistence of two stable limit cycles

separated by an unstable limit cycle with different

amplitudes and frequencies. In many physical systems,

birhythmicity is undesirable as in energy harvesting

systems, but in most biological systems, e.g., enzymatic

oscillations, it is desirable. Therefore, control of bir-

hythmicity is of utmost importance. Although the con-

trol of multistability is a well studied topic, the control

of birhythmicity has not been explored to that extent.

In this paper, we propose a control scheme that can

effectively control and, whenever required, can elimi-

nate birhythmicity. We theoretically explore and

numerically establish the technique of control of bir-

hythmicity and transitions to any desired attractor. A

number of engineering and biological systems are

investigated with the proposed control scheme to estab-

lish the efficacy and generality of the scheme. The

main essence of this control scheme lies in the fact

that it is easily realizable and offers an efficient mean

to control birhythmicity.

I. INTRODUCTION

Birhythmicity is a variant of multistability,1 which arises

in many natural and artificial systems in the field of physics,2

biology,3–5 and chemistry.6 The coexistence of two stable

limit cycles of different amplitudes (and frequencies) sepa-

rated by an unstable limit cycle is the signature of birhyth-

micity. Birhythmicity may also appear in chaotic oscillators,

e.g., the coexistence of two chaotic attractors has been

reported in the literature7 and studied in detail in Ref. 8. The

appearance of birhythmicity plays a crucial role in living sys-

tems as it helps to maintain different modes of oscillations

that organize various biochemical processes in response to

variations in their environment.6 That is why most of the bio-

chemical oscillators are birhythmic. A few prominent exam-

ples are glycolytic oscillator and enzymatic reactions,3–5,9

intracellular Ca2þ oscillations,8 birhythmic oscillations due

to the complex regulatory properties of allosteric enzymes,

namely phosphofructokinase (PFK), which is activated

by Adenosine Diphosphate (ADP) and feedback due to this

ADP to Adenosine Tri-Phosphate (ATP),5 birhythmicity in

the p53-Mdm2 network,10,11 oscillatory generation of Cyclic

adenosine monophosphate (CAMP) during the aggregation

of slime mold Dictyostelium discoideum,12 or circadian

oscillation in Period (PER) and timeless (TIM) proteins in

Drosophila.13 Unlike in living systems, birhythmicity is

often undesirable in physical14 and engineering systems.2

For example, birhythmicity limits the efficiency of an energy

harvesting system:2 In an energy harvesting system, the

wind-induced vibration shows birhythmic oscillations; thus,

depending upon the initial vibrational energy of the wind,

the system may oscillate in a small amplitude limit cycle and

result in less mechanical deformation that, in turn, yields less

electrical energy. Therefore, for an energy harvesting
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system, the oscillation with a large amplitude limit cycle is

always desirable to have larger energy production. Clearly,

in some situations, birhythmicity is undesirable, while in

others, it is a necessity. This marks the importance of control

of birhythmicity.

A recent extensive review work on control of multi-

stability by Pisarchik and Feudel1 suggests that although sev-

eral control mechanisms have been reported for the control

of bistable systems containing oscillations and stable steady

state,15,16 the control of birhythmicity is a less explored

topic. Only a few works are reported on the control of bir-

hythmicity. Ghosh et al.17 showed that time delay feedback

control, which was originally proposed by Pyragas18 to con-

trol chaos, is able to control birhythmicity as well in a modi-

fied birhythmic van der Pol oscillator. However, owing to

the presence of time delay in their control scheme, a detailed

bifurcation analysis for the controlled system is a difficult

task. Also, the implementation of a delayed signal to be fed

is challenging. Sevilla-Escoboza et al.19 showed that applica-

tion of a harmonic modulation and the presence of a positive

feedback along with a proper choice of the parameters can

transform a multistable system with coexisting periodic and

chaotic attractors to a monostable one. Recently, in Ref. 20,

we have proposed a technique to control birhythmicity by

using a conjugate self-feedback method. This technique was

verified using a variant of the van der Pol oscillator with bir-

hythmic oscillations, and it was shown that the conjugate

self-feedback in that oscillator is capable of removing bir-

hythmicity by inducing monorhythmic oscillation. However,

in our scheme in Ref. 20, one requires the access of two vari-

ables: the variable of interest and its conjugate counterpart.

In this paper, we propose a more general and experimen-

tally feasible control technique that employs only one acces-

sible variable. We establish the effectiveness of this control

technique using three real systems from diverse field of

physics and biology, namely, (i) an energy harvesting sys-

tem,2 (ii) the p53-Mdm2 network popularly known as the

OAK model,10 and (iii) a variant of glycolytic oscillators.3,5

The control and taming of birhythmic oscillations in these

three oscillators of different origin also establish the general-

ity of our control scheme. To establish the efficacy of our

scheme, we carry out an extensive theoretical analysis using

the harmonic decomposition technique and the energy bal-

ance method. Also, we employ a rigorous numerical bifurca-

tion analysis to identify the parametric zone of occurrence of

bi- and mono-rhythmic oscillations and their exact genesis.

This paper is organized in the following manner:

Section II describes the details of control of birhythmicity in

an energy harvesting model. We carry out a detailed analysis

for the onset of birhythmicity. In Secs. III and IV, we con-

sider the control of birhythmicity in the p53-Mdm2 network

(OAK model) and glycolytic oscillator, respectively. Finally,

Sec. V concludes the outcomes of the study.

II. ENERGY HARVESTING SYSTEM

A. The model

At first, we describe the original model of an energy har-

vesting system. Energy harvesting systems generate

electrical energy from ambient energy arising from sources

like structural vibration, wind flow, physiological and chemi-

cal reactions, etc.21 Kwuimy and Nataraj2 considered an

energy harvesting model which is implemented with an

arrangement of a cantilever attached to piezoelectric patches

under the action of transverse wind flow. The physical model

consists of an electrical circuit with a load resistance and a

flexible beam of distributed piezoelectric patches. The dimen-

sionless form of the original model is given by the following

set of equations:

d2y

dt2
þ lF

dy

dt

� �
þ X2

0y ¼ g0v; (1a)

dv

dt
þ cv ¼ �g1

dy

dt
: (1b)

Here, y is the dimensionless transversal beam deflection

function and v is the dimensionless form of the voltage gen-

erated by the piezoelectric element. Also, l, X0, c, g0, and g1

are all positive parameters and the nonlinear function Fðdy
dtÞ

is given by

F
dy

dt

� �
¼ � dy

dt
þ 1

3

dy

dt

� �3

� a
5

dy

dt

� �5

þ b
7

dy

dt

� �7

: (2)

The system is birhythmic for the following parameters:2

l¼ 0:1; a¼ 0:144; b¼ 0:005; X0 ¼ 1; g0 ¼ 0:1; g1 ¼ 0:25,

and c¼ 0:2. It shows three distinct limit cycles (LCs) (two

stable and one unstable) depending upon two sets of initial

conditions (ICs), namely, I 1 � ðyð0Þ;dyð0Þ=dt; vð0ÞÞ 2
ð0:1;0;0:3Þ (small amplitude stable LC) and I 2 � ðyð0Þ;
dyð0Þ=dt; vð0ÞÞ 2 ð7;0;0:3Þ (large amplitude stable LC). The

unstable LC determines the basin boundary of these stable

LCs. The time series and phase plane plots for these sets of ini-

tial conditions are shown in Figs. 1(a) and 1(b), respectively.

From Fig. 1(b), we see that the system shows two limit cycles

separated by an unstable LC indicating birhythmicity.

B. The self-feedback control scheme

We consider a dynamical system modeled by the follow-

ing equation:

€x þ lFð _xÞ þ x ¼ Gðx; _x; tÞ; (3)

where x 2 R; Fð _xÞ is a nonlinear function, and l is a system

parameter that determines the intrinsic dynamics of the con-

sidered system. Here, Gðx; _x; tÞ is the control term. In our

present case, it is given by Gðx; _x; tÞ ¼ �d _x, where d con-

trols the strength of the self-feedback term. Note that to

implement the system one needs the access to a single (sca-

lar) variable. This type of self-feedback has been used and

implemented earlier in the Fabry-Perot laser diode system,22

biological system to control complex motor task,23 and

learning.24 Another variant of the self-feedback control is the

paradigmatic Pyragas control technique18 where an addi-

tional time-delayed version of the variable is used. In this

paper, our goal is to study the effect of the self-feedback

term on birhythmicity; we concentrate on the fact that how

the self-feedback parameter d affects the birhythmic

063110-2 Biswas, Banerjee, and Kurths Chaos 27, 063110 (2017)



oscillation. Since birhythmicity involves global bifurcations,

we use continuation based rigorous bifurcation analysis

along with theoretical analysis to track the complete system

behavior.

C. Control of the energy harvesting system with
self-feedback

Next, we apply the self-feedback control scheme to (1),

which now reads

d2y

dt2
þ lF

dy

dt

� �
þ X2

0y ¼ g0v� d
dy

dt
; (4a)

dv

dt
þ cv ¼ �g1

dy

dt
: (4b)

The term �d dy
dt in (4a) represents the self-feedback propor-

tional to the time rate of change of the transversal beam

deflection with d as the self-feedback strength. d also deter-

mines the nature of the self-feedback: d> 0 represents a pos-

itive feedback, d< 0 represents a negative one, and d¼ 0

implies no feedback.

In order to analyze the controlled system, we reduce Eq.

(4) to the following single equation:

€y þ lF _yð Þ þ X2
0yþ d _y þ g0

c
g1 _y þ _vð Þ ¼ 0: (5)

According to Refs. 2 and 25, the variable v does not affect

the dynamical property of the fixed point of the system, and

hence, they showed that one can write g0 ¼ g1 ¼ 0. Then,

Eq. (5) becomes

€y þ lFð _yÞ þ X2
0yþ d _y ¼ 0: (6)

Next, we will constitute the amplitude equation of Eq. (6) to

predict the kind of bifurcation structures associated with the

system. Generally, for this, the most common technique in

the literature is to apply the harmonic decomposition tech-

nique (see, for example, Refs. 17, 20, and 26). Although the

harmonic decomposition technique is not an asymptotic

method, it can predict the amplitude equation in a simple yet

effective way. In this context, one more technique, which is

a much more suitable technique for weakly nonlinear sys-

tems, is the Poincar�e-Lindstedt technique which is discussed

in Appendix; it is shown that both the analyses give equiva-

lent amplitude equations and match well with the numerical

results.

According to the harmonic decomposition technique, we

assume the approximate solution of Eq. (6) as

yðtÞ ¼ A cos ðxtÞ; (7)

where A is the amplitude and x is the frequency of the oscil-

lator with feedback. Substitution of this in Eq. (6) yields

�x2 þ X2
0

� �
A cos xtð Þ

¼ lx �1þ 1

4
x2A2 � a

8
x4A4 þ 5b

64
x6A6

� �
A sin xtð Þ

þ dxA sin xtð Þ

þ lx3 � 1

12
þ a

16
x2A2 � 3b

64
x4A4

� �
A3 sin 3xtð Þ

þ lx5 � a
80
þ b

64
x2A2

� �
A5 sin 5xtð Þ

� b
448

lx7A7 sin 7xtð Þ: (8)

According to Ref. 27, we can treat the higher harmonic

terms as forcing terms and ignore them. Thus, Eq. (8)

reduces to

�x2 þ X2
0

� �
A cos xtð Þ

¼ lx �1þ 1

4
x2A2 � a

8
x4A4 þ 5b

64
x6A6

� �
A sin xtð Þ

þ dxA sin xtð Þ þ H; (9)

whereH denotes the higher harmonic terms.

From Eq. (9), we get the following frequency and ampli-

tude equations:

x2 � X2
0 ¼ 0; (10)

and

l 1� 1

4
x2A2 þ a

8
x4A4 � 5b

64
x6A6

� �
� d ¼ 0: (11)

From Eq. (11), we infer that it is not a purely amplitude

equation as it contains the frequency x in it. So we substitute

the value of x from Eq. (10) in (11) and get

l 1� 1

4
X2

0A2 þ a
8

X4
0A4 � 5b

64
X6

0A6

� �
� d ¼ 0: (12)

It may be noted that for d¼ 0, Eq. (12) represents the ampli-

tude equation of the uncontrolled energy harvesting system.

FIG. 1. (a) Time series and (b) phase plane plot of the energy harvesting sys-

tem (1). The small amplitude LC is for ICs I1 and large amplitude LC is

that for I2 (see text). The trajectory in blue in the middle represents the

unstable LC. Other parameters are l ¼ 0:1; a ¼ 0:144; b ¼ 0:005; X0 ¼
1; g0 ¼ 0:1; g1 ¼ 0:25, and c ¼ 0:2.
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It is interesting to note that the amplitude of the system does

not depend on l unless d 6¼ 0. The frequency in the har-

monic limit becomes x¼ 1. Also the frequency equation,

viz., Eq. (10) states that the frequency of the system does not

depend on the feedback strength d (unlike Ref. 20), thus

leaving the original frequency of the system intact. The three

roots of Eq. (12) correspond to the amplitudes of the three

limit cycles (two stable and one unstable).

To test the stability of the system, we apply the energy

balance method as suggested in Ref. 17. For l ¼ 0 and

d¼ 0, the harmonic solution of Eq. (6) may be given as26

yðtÞ ¼ A cos ðtþ /Þ; (13)

where / is the initial phase and may be considered / ¼ 0 for

convenience. The phase plane of this is a circle with period

T ¼ 2p. In the presence of a self-feedback, we can

approximate

yðtÞ ’ A cos ðtÞ: (14)

Let us consider ð�lFð _yÞ � dð _yÞÞ as the external forcing term

to calculate the change in energy DE during one period, i.e.,

0 � t � T, with T ¼ 2p. The change in energy is given by

DE ¼ EðTÞ � Eð0Þ;

¼
ðT

0

ð�lFð _yÞ � dð _yÞÞ _ydt: (15)

DE ¼ 0 for a periodic solution (limit cycle). Hence, from the

above integral, we get using the condition of Eq. (14)

f A2ð Þ ¼ l 1� 1

4
A2 þ a

8
A4 � 5b

64
A6

� �
� d ¼ 0: (16)

Note that Eq. (16) is equivalent to Eq. (11) for x ¼ 1. The

number of limit cycles can be obtained by solving Eq. (16)

by normalizing the frequency to unity. The number of posi-

tive roots gives the number of LCs. The stability of the limit

cycle is determined by the slope of the curve of Eq. (16) at

the zero crossing point. The negativity of the slope deter-

mines the stability of the LC. The condition of the stable

limit cycle thus can be written as

d

dA
DE Að Þð Þjlimit cycle < 0: (17)

We solve the amplitude equation (16) [which is the same as

Eq. (12) for X0 ¼ 1] by the graphical method, i.e., we plot

the polynomial f ðA2Þ with A2. The zero crossing points of

f ðA2Þ are the solutions of the equation. Here, we consider the

following parameter values: l ¼ 0:1; a ¼ 0:144; b ¼ 0:005.

These are the values of the parameters for which the original

system (4) exhibits birhythmicity in the absence of self-

feedback. Now, we vary the control parameter d to get differ-

ent solutions. The number of solutions of Eq. (16) deter-

mines the number of limit cycles. The solutions for different

values of the control parameter d are shown in Fig. 2. We

vary d from a positive high value to a negative high value

(curves in Fig. 2 from lower to upper). From the figure, we

see that there is no zero crossing for d¼ 0.2 (yellow line

with hollow circles). Thus, there is no limit cycle for this

value of the control parameter. In other words at d¼ 0.2, the

system is in a stable steady state (SSS). A decrease in d
causes f ðA2Þ to shift upwards and eventually to cross the

zero line, thus giving rise to a stable limit cycle. This case is

shown for d¼ 0.05 in the figure (green line with solid

circles). At this value of the parameter, there is only one sta-

ble limit cycle with low amplitude. The negative slope of the

curve at the zero crossing indicates that the LC is stable.

Next, at d¼ 0 (solid line) there are three zero crossing points.

Two of them have negative slopes and one has positive slope

at the zero crossing points. Thus, there exists birhythmicity

with two stable LCs (with negative slopes) and one unstable

LC (with positive slopes) in between them. At d ¼ �0:2
(purple line with hollow squares), there is only one zero

crossing of f ðA2Þ with a negative slope at the zero crossing

exhibiting the presence of only one stable LC with larger

amplitude.

In the absence of control, the system undergoes only a

global bifurcation, namely, a saddle-node bifurcation of limit

cycle (SNLC) and a codimension-2 cusp bifurcation in the

a� b parameter space. However, the presence of the control

term causes the system to experience a local bifurcation,

namely, a Hopf bifurcation (HB). The eigenvalues of the

Jacobian of Eq. (6) around the stable points ðy; _yÞ ¼ ð0; 0Þ
are given by

k1;2 ¼
1

2
l� dð Þ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d � lð Þ2 � 4X0

q� �
; (18)

and the condition of Hopf bifurcation reads

dHB ¼ l; (19)

where dHB is the critical value of d for a Hopf bifurcation to

occur.

To investigate the detailed bifurcation scenario in the

system, we use the continuation package XPPAUT28 in the

FIG. 2. Plot of f ðA2Þ � A2 for the parameters l ¼ 0:1; a ¼ 0:144; b ¼
0:005; X0 ¼ 1 for different values of the control parameter d. The line with

hollow squares represents the case of a single LC with large amplitude for

d ¼ �0:2. The solid brown line shows the case of birhythmic oscillations

for d¼ 0. The line with solid circles gives the monorhythmic case with small

amplitude for d¼ 0.05 and the line with hollow circles (lower one) repre-

sents the case of stable steady states for d¼ 0.2.
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d � l parameter space. The two-parameter bifurcation dia-

gram in the d � l plane is shown in Fig. 3(a). The parameter

values are a ¼ 0:144; b ¼ 0:005; X0 ¼ 1; g0 ¼ 0:1; g1 ¼
0:25 and c ¼ 0:2: this set of parameter values confirms bir-

hythmic oscillations in the uncontrolled system. From Fig.

3(a), we observe that the d � l plane is divided by SNLC

curves and a HB curve. The birhythmic regime exists

between two SNLC curves [cyan (lighter gray) zone]. In this

zone, three LCs coexist, one with larger amplitude, another

with lower amplitude, and the third one is unstable. The

SNLC curves also govern the transition between the birhyth-

mic zone and the monorhythmic one. The monorhythmic

zones are shown by the yellow (light gray) region. The HB

line governs the transition between LC and the stable steady

state (SSS) [blue (dark) zone]. The HB line exactly matches

with the analytically obtained result of Eq. (19). It may be

noted that for d¼ 0 (i.e., the uncontrolled case), the system

is in a birhythmic regime for all values of l for the chosen

set of other parameter values.

Next, we take l ¼ 0:1 [horizontal broken line in Fig.

3(a)] and vary d. The resulting one-parameter bifurcation

diagram is shown in Fig. 3(b). The system is in the birhyth-

mic zone for d¼ 0. An increase in d brings the system to a

monorhythmic zone through an SNLC for d > dU. Here, the

limit cycle is a small-amplitude limit cycle. A further

increase in d causes the small amplitude LC to loose stability

through an inverse Hopf bifurcation and the system rests in a

stable steady state. Therefore, increasing the positive value

of the control parameter brings the birhythmic oscillator to a

monorhythmic one with small-amplitude oscillation and

eventually to a stable steady state. On the other hand,

decreasing value of d in the negative direction causes the

system to experience an SNLC at d ¼ �dL and monorhyth-

mic oscillation with larger amplitude emerges. To summa-

rize, the proper choice of the control parameter d may cause

the system to induce monorhythmicity either with a small

amplitude LC (for dU < d < dHB) or a large amplitude LC

(for d < �dL). It is to be noted that there is a hysteresis

around d¼ 0 with a width of Dd ¼ dU � dL, which is shown

by the cyan (lighter grey) zone in Fig. 3(b). In this zone, the

state of the system depends on the choice of the initial condi-

tions. It may be noted that the hysteresis zone increases with

increasing the value of l. We plot the hysteresis width Dd
with l in Fig. 4 for the aforementioned parameters, which

shows that the hysteresis width increases with an increase in

l. Therefore, to eliminate the birhythmicity, a higher feed-

back strength (d) is necessary for higher values of l.

To demonstrate the effectiveness of the control scheme,

we plot the time series and the phase plane diagrams for dif-

ferent values of the control parameter d (Fig. 5). Here, we

use two sets of initial conditions, namely, I1 ¼ ð0:1; 0; 0:3Þ,
which is around the origin, targeting to have the smaller

amplitude LC, and the other I 2 ¼ ð7; 0; 0:3Þ, away from ori-

gin, targeting the larger amplitude LC. The solid line indi-

cates the result for I 1 and the line with hollow circles that

for I 2. Figure 5(a) shows time series and Fig. 5(b) shows the

phase plane plot for d ¼ �0:2 (i.e., d < �dL). We observe

that irrespective of the initial conditions, the system always

shows a large amplitude LC. Figures 5(c) and 5(d) demon-

strate the scenario for d ¼ �0:01, i.e., �dL < d < dU , for

which the system is in the birhythmic region. The occurrence

of LCs with two different amplitudes confirms the presence

of birhythmicity in the system. For d > dU, there exists only

small amplitude LC. This is shown for d¼ 0.05 in Figs. 5(e)

and 5(f). Finally, the oscillation in the system ceases to a sta-

ble fixed point for d > dHB: This is demonstrated for d¼ 0.2

in Figs. 5(g)–5(h).

FIG. 3. (a) Two-parameter bifurcation diagram in d-l parameter space for

a ¼ 0:144; b ¼ 0:005 and (b) one parameter bifurcation diagram with d as

control parameter with l ¼ 0:1 [along the broken horizontal line in (a)]. The

width of the birhythmic zone is (dU � dL). FIG. 4. The hysteresis width ðDdÞ vs. l plot (for other parameters see text).
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III. THE P53-MDM2 NETWORK: OAK MODEL

The control of proliferation of abnormal cells by protein

in mammals is modeled through the p53-Mdm2 network,

which is called the OAK model originally proposed by

Abou-Jaoud�e et al.10 The OAK model describes the interac-

tion between p53, cytoplasmic Mdm2, and nuclear Mdm2.29

A detailed description of the model may be found in Refs. 10

and 30. Nuclear Mdm2 accelerates the degradation of p53 by

ubiquitination and by blocking its functional activity. p53

enhances the transcription of gene MDM2 and thus regulates

the cytoplasmic Mdm2 level. The translocation of Mdm2

from the cytoplasm to the nucleus is inhibited by p53.

Although the actual model consists of a 4-dimensional dif-

ferential equation, in Ref. 30 the model has been reduced to

a 3-dimensional one. We apply the self-feedback control

term �dMc and rewrite the equations as follows:

dP

dt
¼ kP

Kn
P

Kn
P þMnn

� dpP;

dMc

dt
¼ kMc þ k0Mc

Pn

Kn
Mc þ Pn

� kin � k0in
Pn

Kn
Mc þ Pn

� �
Mc

�dMcMc� dMc;

dMn

dt
¼ Vr kin � k0in

Pn

Kn
Mc þ Pn

� �
Mc� dMnMn; (20)

where P, Mc, and Mn represent the concentrations of p53,

cytoplasmic Mdm2, and nuclear Mdm2, respectively. Here,

the term dMc in the second equation is the proposed self-

feedback. The schematic of the control scheme is repre-

sented in Fig. 6. The self-feedback occurs in Mc: a portion of

Mc is fed to itself (red line). The negative d invokes the

positive interaction and is shown by the sharp arrowhead in

Fig. 6(I). The positive d represents the negative interaction,

i.e., suppression of Mc which is shown in Fig. 6(II).

For d¼ 0, we get the original system which shows bir-

hythmicity for the parameter set: kp¼ 5, Kp ¼ 0:2; dp ¼ 2:5,

kMc¼ 0.1, k0Mc ¼ 1:2, KMc¼ 0.4, kin¼ 0.45, k0in ¼ 0:4,

KMn¼ 0.1, dMc¼ 0.6, Vr¼ 10, dMn¼ 1.9, and n¼ 6. The

small amplitude LC arising from this system has the initial

condition I 1 � ðPð0Þ;Mcð0Þ;Mnð0ÞÞ 2 ð0:6; 0:3; 0:4Þ and

the large amplitude LC is a consequence of the initial condi-

tion I2 � ðPð0Þ;Mcð0Þ;Mnð0ÞÞ 2 ð3; 0:3; 0:2Þ. The time

series and phase plane plots for the original system [i.e.,

d¼ 0 in Eq. (20)] are shown in Figs. 7(a) and 7(b), respec-

tively. To control the birhythmicity, we have applied the

self-feedback scheme by using d 6¼ 0. We analyze the bifur-

cation scenario appearing in this system. The two-parameter

bifurcation diagram in the d � dMn parameter space is shown

in Fig. 8(a). The yellow (light gray) zone shows the mono-

rhythmic zone. The cyan (lighter gray) zone gives the bir-

hythmic zone and the blue (dark) zone is the zone of a stable

steady state (SSS). In this case, we also find that the space is

divided by SNLC bifurcations and a supercritical Hopf bifur-

cation. The global SNLC bifurcation distinguishes between

the birhythmic and monorhythmic states. The stable limit

cycle looses stability through an inverse Hopf bifurcation

and a stable steady state emerges.

To understand the scenario in more detail, we draw the

one parameter bifurcation diagram sweeping the control

parameter d by fixing dMn¼ 1.9 as shown in Fig. 8(b). The

variation of d is considered along the broken yellow horizon-

tal line in Fig. 8(a). For d¼ 0, the system is in the birhythmic

FIG. 5. Time series and phase plane plots. (a) and (b) Large-amplitude LC

for d ¼ �0:2, (c) and (d) Birhythmic oscillations for d ¼ �0:01, (e) and (f)

Small-amplitude oscillation for d¼ 0.05, and (g) and (h) stable steady state

for d¼ 0.2. The solid line is for initial conditions ðy0; _y0; v0Þ ¼ ð0:1; 0; 0:3Þ
and the broken line for ðy0; _y0; v0Þ ¼ ð7; 0; 0:3Þ. Other parameters are

l ¼ 0:1; a ¼ 0:144; b ¼ 0:005; X0 ¼ 1; g0 ¼ 0:1; g1 ¼ 0:25; c ¼ 0:2.

FIG. 6. Schematic representation of

the p53-Mdm2 network with self-

feedback. (I) condition for negative d
(positive interaction) and (II) condition

for positive d (negative interaction).
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zone for the preferred set of parameter values. An increase in

d brings the system to monorhythmic oscillations through a

global SNLC for d > dU. This monorhythmic oscillation is

of small amplitude. A further increase in d causes the stable

LC to loose its stability, and a stable steady state emerges

through a Hopf bifurcation at d ¼ dHB. A decrease in d
below zero causes the system to enter the monorhythmic

zone again but with large amplitude oscillation for d < �dL.

From the one-parameter bifurcation diagram, we see that

there is a hysteresis zone of width Dd ¼ ðdU � dLÞ, which is

governed by the SNLC curves.

Finally, we draw the time series and phase plane plots

of the system for different values of the control parameter d
in Fig. 9. The solid line shows the case of initial condition

I 1, and the line with hollow circles shows the same for I 2,

respectively. Figure 9(a) gives the time series and (b) shows

the phase plane plots for d ¼ �0:35. Both LCs are of the

same large amplitude irrespective of initial conditions indi-

cating monorhythmic oscillation. For d¼ 0.04, the system is

in the birhythmic zone shown in Figs. 9(c) and 9(d).

Increasing d brings the system to the monorhythmic zone

with small amplitude oscillation for d > dU . The situation

for d¼ 0.1 is shown in Figs. 9(e) and 9(f). Finally, the sys-

tem enters the stable steady state for d > DHB: Figures 9(g)

and 9(h) demonstrate the scenario for d¼ 0.35. Thus, it is

worth noting that the birhythmicity may be controlled and

eliminated with proper choice of the control parameter d.

IV. THE GLYCOLYSIS MODEL: MODIFIED
DECROLY-GOLDBETER MODEL

Enzymatic oscillations with periodicity (of several

minutes) have twofold interest in biology: first, in metabolic

FIG. 7. (a) Time series and (b) phase plane plot in P(t)-Mc(t)-Mn(t) space

for d¼ 0. The small-amplitude LC for IC I1 and the large-amplitude LC for

I2 (see text). The trajectory in blue in the middle represents the unstable

LC. Other parameters are kp¼ 5, Kp ¼ 0:2; dp ¼ 2:5, kMc¼ 0.1, k0Mc ¼ 1:2,

KMc¼ 0.4, kin¼ 0.45, k0in ¼ 0:4, KMn¼ 0.1, dMc¼ 0.6, Vr¼ 10, dMn¼ 1.9,

and n¼ 6.

FIG. 8. (a) Two-parameter bifurcation diagram in d � dMn parameter space.

(b) One parameter bifurcation diagram with d as the control parameter for

dMn¼ 0.19 [The broken horizontal line in (a)]. Other parameters are the

same as in Fig. 6.

FIG. 9. Time series and phase plane plots for different values of the control

parameter d. (a) (time series) and (b) (phase plane) show large amplitude oscil-

lation for d ¼ �0:35, (c) and (d) the birhythmic oscillations for d¼ 0.04, (e)

and (f) the small-amplitude oscillation for d¼ 0.1, and (g) and (h) the stable

steady state for d¼ 0.35. The diagram is drawn along the broken horizontal line

in Fig. 8(a). The solid line corresponds to initial conditions: ðPð0Þ;Mcð0Þ;
Mnð0Þ ¼ ð0:6; 0:3; 0:4Þ and the line with hollow circles corresponds to ðPð0Þ;
Mcð0Þ;Mnð0Þ ¼ ð3; 0:3; 0:2Þ. Other parameters are the same as in Fig. 8.
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pathways, and second, as general models for biological

rhythms. These examples include glycolytic oscillations in

yeast and muscle and the periodic synthesis of cAMP during

the aggregation of the slime mold Dictyostelium discoi-
deum.12,31 Kar and Ray5 consider a product-activated

enzyme model which is a modified version of the well

known Decroly-Goldbeter model.3 According to them, the

allosteric enzymes consist of multiple identical subunits.

These subunits undergo conformational transition between

more reactive (R) and less reactive (T) states. Here, the sub-

strate (S) injection rate � is constant. The product P results

from the bindings of S with R and T states of the enzyme.

Then, the product is removed with a rate proportional to its

concentration, which results in a positive feedback and acti-

vates the T to R transitions. When the product P gives a posi-

tive feedback to substrate S, birhythmicity results. The

system dynamics is described by the following equations

along with the self-feedback mechanism:

da
dt
¼ � � r/ a; cð Þ þ

ricn

Kn þ cn
;

dc
dt
¼ qr/ a; cð Þ � Ksc�

qricn

Kn þ cn
� dc; (21)

with

/ a; cð Þ ¼
a 1þ að Þ 1þ cð Þ2

Lþ 1þ að Þ2 1þ cð Þ2
: (22)

Here, a is the normalized substrate concentration and c is the

normalized product concentration. The self-feedback control

is provided by the �dc term in the second subequation of

(21). The schematic of the pathways is shown in Fig. 10;3,5

the self-feedback term is shown using red lines in Fig. 10.

According to Ref. 3, the reaction product (P) leaves the sys-

tem at a rate proportional to its concentration. Therefore, in

our case, a positive self-feedback represented by Fig. 10(I)

means an accumulation of the reaction product (P), whereas

a negative feedback represented by Fig. 10(II) means an

extraction of the reaction product (P). Here, we make use of

the kinetic assumption that for a step catalysed by a

Michaelian enzyme is not saturated by its substrate.3 Earlier,

theoretical3,5 and experimental observations32 of the glycolytic

oscillations were made by changing the substrate injection rate

�. However, in the present case, we keep � constant and study

the effect of the control on the reaction product (P).

For d¼ 0, the system is reduced to the original one and

is capable of showing birhythmicity for the following set of

parameters: � ¼ 0:255, q¼ 1.0, Ks ¼ 0:06; L ¼ 3:6� 106,

r ¼ 10, ri ¼ 1:3, n¼ 4, and K¼ 10.0. The system exhibits

large amplitude LC for the initial conditions I1 � ðað0Þ;
cð0ÞÞ 2 ð100; 5Þ and small amplitude LC for I2 � ðað0Þ;
cð0ÞÞ 2 ð80; 5Þ, respectively. The time series and phase

plane plots for the original system [i.e., d¼ 0 in Eq. (21)] are

shown in Figs. 11(a) and 11(b), respectively.

The control is active for d 6¼ 0. We investigate the possi-

ble bifurcation scenario appearing in the system. In Fig.

12(a), we present the two-parameter bifurcation diagram in

the d � ri parameter space. It is divided into birhythmic,

FIG. 10. Schematic representation of the glycolysis model with self-

feedback. (I) condition for negative d (positive interaction) and (II) condi-

tion for positive d (negative interaction). See Ref. 3 (Chap. 2) and Ref. 5 for

a detailed description of the pathways and the relevant thermodynamic and

kinetic parameters.

FIG. 11. (a) Time series and (b) phase plane plot in aðtÞ-cðtÞ space for d¼ 0.

The small-amplitude LC for IC I1 and the large-amplitude LC for I2 (see

text). The trajectory in blue in the middle represents unstable LC. Other

parameters are � ¼ 0:255, q¼ 1.0, Ks ¼ 0:06; L ¼ 3:6� 106, r ¼ 10,

ri ¼ 1:3, n¼ 4, and K¼ 10.0.
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monorhythmic, and stable steady state zones by SNLC bifur-

cation and Hopf bifurcation curves. The SNLC bifurcation

governs the transition between birhythmicity and mono-

rhythmicity, and the (inverse) Hopf bifurcation brings the

system to a stable steady state. The yellow (light gray) zone

in Fig. 12(a) shows the monorhythmic oscillatory zone. The

cyan (lighter gray) zone shows the birhythmic regime and

the blue (dark) zone the stable steady state. Here, another

interesting bistable state exists, namely, the coexistence of

one large amplitude LC and one stable steady state between

the Hopf and SNLC curves (the purple zone).

To have a better understanding of this, we further draw

the one-parameter bifurcation diagram with d as the parame-

ter [sweeping d along the broken horizontal line in Fig.

12(a)]. The diagram is shown in Fig. 12(b). The birhythmic

zone is presented by the shaded region in the figure. For

d < dHB, the system is in stable steady states. At d ¼ dHB, a

supercritical Hopf bifurcation occurs and oscillation of small

amplitude emerges. For dHB < d < dL, the system is in a

monorhythmic zone with small amplitude LC. The birhyth-

mic zone lies between dL < d < dU . For d > dU the system

shows monorhythmicity with large amplitude oscillation.

Note that the variation of d causes the system to undergo a

transition, which is inverse to the previous two models

discussed in earlier subsections (Secs. II and III). It is inter-

esting to note that there is a hysteresis governed by the

SNLC bifurcations (cyan zone) with the hysteresis width

Dd ¼ ðdU � dLÞ. The SNLC curves meet each other at

d¼ dC, indicating the presence of a codimension-2 cusp type

of bifurcation.

Finally, we demonstrate the time series of the system

for different values of the control parameter d with two dif-

ferent initial conditions, namely, I 1 and I 2 in Fig. 13. The

solid line in the figure indicates the result for I 1 and the

line with hollow circles indicates that for I 2. The two ini-

tial conditions are chosen in such a way that the system

shows small amplitude oscillation for I1 and large ampli-

tude oscillation for I 2 when d¼ 0 (cf. Fig. 11). Figures

13(a) and (b) show time series and phase plane plots,

respectively, for d ¼ �0:012 ðd < dHBÞ. The system rests

in a stable steady point. A supercritical Hopf bifurcation

occurs at d ¼ dHB and the system revives from its dormant

state and LC of small amplitude emerges. The situation for

d ¼ �0:001 is shown in Figs. 13(c) and 13(d). In the range

dL < d < dU, the system exhibits a birhythmic nature.

Figure 13(e) and 13(f) show the case for d¼ 0.001. Finally,

the system creates a large amplitude LC for d > dU. The

scenario for d¼ 0.012 is shown in Figs. 13(g) and 13(h).

Thus, we can conclude that, like the two previous models,

the control scheme can effectively eliminate the birhyth-

mic behavior and may lead to a preferred monorhythmic

state.

FIG. 12. (a) Two-parameter bifurcation diagram in d � ri parameter space.

(b) One parameter bifurcation diagram with d as the control parameter for

ri ¼ 1:3 [The broken horizontal line in (a)]. Other parameters are the same

as in Fig. 11.

FIG. 13. Time series and phase plane plots for different values of the control

parameter d. (a) (time series) and (b) (phase plane) show stable steady state

for d ¼ �0:012, (c) and (d) the small amplitude oscillation for d ¼ �0:001,

(e) and (f) the birhythmic oscillation for d¼ 0.001, and (g) and (h) the large

amplitude oscillation for d¼ 0.012. The diagram is drawn along the broken

horizontal line in Fig. 8(a). The solid line corresponds to initial conditions:

að0Þ ¼ 100; cð0Þ ¼ 5 and the line with hollow circles corresponds to

að0Þ ¼ 80; bð0Þ ¼ 5. Other parameters are the same as in Fig. 11.
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V. CONCLUSIONS

In conclusion, we have studied the effect of self-

feedback mechanism on birhythmic oscillations. We have

shown that the self-feedback through a proper variable is

able to eliminate birhythmic oscillations and select mono-

rhythmic oscillation of either large amplitude or small ampli-

tude, as desired. We have successfully applied the self-

feedback mechanism to three realistic models from different

branches of natural science, e.g., an energy harvesting sys-

tem and biochemical models such as the OAK model and

glycolysis model. A rigorous analysis using harmonic

decomposition and energy balance method have established

the efficacy of the self-feedback mechanism. Further, we

have explored the possible bifurcation scenarios to get a

deep understanding of the genesis of monorhythmic oscilla-

tion that comes out of birhythmic oscillation. In comparison

with our previously proposed control scheme in Ref. 20, the

proposed self-feedback control technique uses self-feedback

of only a single variable; hence, the physical implementation

of this control scheme is comparatively easy. We believe

that our proposed coupling scheme is general enough to be

applied effectively to control birhythmicity in several physi-

cal and biochemical processes.
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APPENDIX: STABILITY ANALYSIS USING POINCAR�E-
LINDSTEDT METHOD

As we discussed in the main text, the harmonic decom-

position technique is not an asymptotic method, and in this

context, the Poincar�e-Lindstedt technique is a much more

suitable technique for weakly nonlinear systems. Since we

are interested to find out the amplitude equation of Eq. (6),

in the following we show that both the techniques give simi-

lar amplitude equations.

Let us consider the system equation Eq. (6). With X0 ¼
1 it becomes

€y þ lFð _yÞ þ yþ d _y ¼ 0: (A1)

With Fð _yÞ given by Eq. (2). We consider the solution to be

of the form

yðsÞ ¼ y0ðsÞ þ ly1ðsÞ þ l2y2ðsÞ þ � � � ; (A2)

where s � xt and x is a known frequency and yiðsÞ
(i ¼ 1; 2;…) is the periodic function of periodic 2p. We also

write

x ¼ 1þ lx1 þ l2x2 þ � � � ; (A3)

where xi are unknown and needed to be determined. Further,

we decompose the control parameter d as

d ¼ ld1 þ l2d2 þ � � � : (A4)

Substituting Eqs. (A2)–(A4) into Eq. (A1) and equating the

coefficients of different powers of l, we get

Coeff. of l0

€y0 þ y0 ¼ 0: (A5)

Coeff. of l1

€y1 þ y1 ¼ �2x1€y0 � Fð _y0Þ � d1y0: (A6)

Coeff. of l2

€y2 þ y2 ¼ �2x1€y1 � d1y1 � ðx2
1 þ 2x2Þ€y0

� x1 _y3
0�bx1 _y7

0 � _y2
0 _y1

� b _y6
0 _y1þð1þ a _y4

0Þðx1 _y0 þ _y1Þ � d2y0:

(A7)

The solution of Eq. (A5) is given by

y0ðsÞ ¼ Aeis þ c; (A8)

where A is the complex amplitude to be determined.

Substitution of Eq. (A8) in Eq. (A7) invokes the solvability

condition as

2x1 þ ið1� A �A þ 2aA2 �A
2 � 5bA3 �A

3 � d1Þ ¼ 0: (A9)

Equating the real and imaginary parts of the above

equation

x1 ¼ 0; (A10)

and

1� jAj þ 2ajAj4 � 5bjAj6 � d1 ¼ 0: (A11)

Therefore, with A replaced by A
2
, the amplitude equation of

Eq. (A11) is similar to that obtained in Eq. (12) (using the

harmonic decomposition technique). Apart from the ampli-

tude equation, one can show x2 6¼ 0 (note that x1 ¼ 0) by

applying the similar steps carried above but for the coeffi-

cient of l2: However, this analysis does not affect our ampli-

tude equations.
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