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Abstract: Graphs are effective tools for modeling complex data. Setting out from two basic substructures, 

random walks and trees, we propose a new family of context-dependent random walk graph kernels and a new 

family of tree pattern graph matching kernels. In our context-dependent graph kernels, context information is 

incorporated into primary random walk groups. A multiple kernel learning algorithm with a proposed 

l1,2-norm regularization is applied to combine context-dependent graph kernels of different orders. This 

improves the similarity measurement between graphs. In our tree-pattern graph matching kernel, a quadratic 

optimization with a sparse constraint is proposed to select the correctly matched tree-pattern groups. This 

augments the discriminative power of the tree-pattern graph matching. We apply the proposed kernels to 

human action recognition, where each action is represented by two graphs which record the spatiotemporal 

relations between local feature vectors. Experimental comparisons with state-of-the-art algorithms on several 

benchmark datasets demonstrate the effectiveness of the proposed kernels for recognizing human actions. It is 

shown that our kernel based on tree-pattern groups, which have more complex structures and exploit more 

local topologies of graphs than random walks, yields more accurate results but requires more runtime than the 

context-dependent walk graph kernel. 

Index terms: Visual action recognition, Graph kernel, Graph matching, Contexts, Tree patterns 

1. Introduction 

Human action recognition [58, 59] is one of the most challenging issues in computer vision. It has very 

wide applications in domains such as visual surveillance, video retrieval, human-computer interaction, and 

medical monitoring. Many methods for human action recognition represent each action as an ensemble of 

local spatiotemporal feature vectors [4, 11, 17, 22] corresponding to sparse interest points extracted from 

videos, and carry out human action recognition by analyzing these spatiotemporal feature vectors. 

Bag-of-visual words (BoW)-based [4, 22] methods and methods based on the vector of local aggregated 

descriptors (VLAD) [51] are popularly used to statistically represent an ensemble of local feature vectors as a 

single vector. These vectors are used to construct an action classifier. However, the BoW and VLAD-based 

methods do not make use of the spatiotemporal relations between local feature vectors. The subdivision of 

videos into grids [52] or statistical measures of the concurrency [53] of local feature vectors were used to 
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include information about spatiotemporal relations in the BoW or VLAD-based methods. However, the 

complex structure of the local feature vectors is still not fully exploited. 

Graphs are effective tools for structuring and modeling complex data [1, 7]. The vertices represent data 

themselves and the edges represent their relations. It is interesting to investigate human action recognition 

using graphs for modeling ensembles of local feature vectors. To this end, there are two nontrivial difficulties 

to be solved: how to construct graphs to model these local feature vectors and how to measure the similarity 

between the constructed graphs. In this paper, we focus on these two problems and propose new graph-based 

methods for human action recognition. 

1.1. Related work 

We briefly review graph-based action recognition and graph similarity measurement. 

1.1.1. Graph similarity measurement 

The traditional statistics-based classification methods cannot be directly used to classify actions 

represented by structured graphs. Graph similarity measurement bridges the gap between structured action 

representation and statistical classification. Graph kernels and graph matching are the main techniques for 

measuring similarities between graphs. 

Graph kernel-based measures of the similarity between two graphs usually compare all pairs of 

substructures of the graphs. According to the form of substructures, traditional graph kernels can be 

categorized as random walks-based [5, 20, 55], trees-based [26, 56], and limited-size sub-graphs- based [57]. 

Random walk-based graph kernels have received increasing attention recently. Gartner et al. [5] computed the 

graph kernel of two labeled graphs by counting the number of matched labeled random walks. The method 

was extended by Borgwardt et al. [1] by replacing the Dirac kernel with more complex kernels for continuous 

attributes. Vishwanathan et al. [20] proposed several techniques to speed up the computation of random walk 

graph kernels. Harchaoui and Bach [8] built a set of segmentation graph kernels on images and utilized a 

multiple kernel learning method to combine these kernels for classifying images. Trees-based graph kernels 

[26, 56] decompose graphs into trees as substructures. Mahe and Vert [26] measured the similarity between 

graphs by counting the number of tree substructures with the same labels in the graphs. Shervashidze et al. [56] 

defined an efficient kernel by comparing sub-tree-like patterns. Limited-size sub-graphs-based kernels [57] 

decompose the two graphs into a series of substructures with specific sizes. Shervashidze et al. [57] divided 

each graph into a number of graphlets and compared the numbers of the graphlets with the same structure in 

order to measure graph similarities. All of the above graph kernels are built by comparing the similarities 

between all pairs of substructures, such as walks, from the two graphs. The contexts of the substructures are 

not exploited. Moreover, they can all be viewed as summation kernels on substructures [34] that do not take 

into consideration the correspondences between substructures. 

Graph matching [28, 29, 30, 31] determines a mapping between vertices of two graphs such that the 

structure of the relations between vertices is preserved as much as possible. Leordeanu and Hebert [31] 

proposed a spectral method to solve the graph matching problem. Egozi et al. [30] presented a probabilistic 

interpretation for graph matching and derived a probabilistic graph matching algorithm. Cho et al. [28] 

proposed a max-pooling strategy for graph matching. However, these algorithms do not consider high order 

topological information which is useful for improving the performance of the matching 
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1.1.2. Graph-based action recognition 

Graphs have been applied to model ensembles of local feature vectors or patches for human action 

recognition. Borzeshi et al. [2] represented each frame as a graph whose vertices correspond to the spatial 

local feature vectors extracted from the frame. Raja et al. [14] described a person in a frame using a graphical 

model whose vertices encode the positions of human body parts and the action label. Gaur et al. [6] 

constructed a string of feature graphs for representing the spatiotemporal layout of local feature vectors, where 

each graph models the spatial configuration of local feature vectors in a small temporal segment. Ma et al. [40] 

proposed an excellent method for action recognition by finding a compact set of hierarchical space-time tree 

structures of human actions from videos. Ta et al. [18] constructed a hypergraph to model the extracted 

spatiotemporal local feature vectors in a video. A hypergraph matching algorithm was used for action 

recognition. The above methods construct graphs to model local feature vectors or body parts. They do not 

explicitly model the spatiotemporal relations between these local features or body parts. A number of 

researchers represent a video action using a graph, and then recognize human actions using graph comparison. 

Celiktutan et al. [3] found vertex correspondences between graphs through graph matching. Then, the 

similarity between two graphs was computed by summing the similarities between all the correctly matched 

vertices. However, the graph similarity measurement is based on only a quite small number of vertices, and it 

cannot completely characterize the graphs. Wang et al. [36] and Aoun et al [54] constructed graph kernels for 

similarity measurements between graphs for action recognition. However, these graph kernels are based on 

random walks and their contexts are not utilized. Moreover, the correspondences between the substructures 

were not considered. 

1.2. Our work 

With the aim of handling the limitations in previous graph-based action recognition methods as well as 

the limitations in previous graph similarity measurement methods, we propose a context-dependent random 

walk graph kernel [37] and a tree pattern matching kernel for human action recognition. 

We construct two directed attributed graphs, the concurrent graph and the causal graph, to describe the 

spatiotemporal layouts of the local feature vectors extracted from each action video. The vertex attributes in 

both graphs are the local feature vectors. The edge attributes in the concurrent and causal graphs describe the 

relations of the local feature vectors within a frame and between frames respectively. 

Setting out from two basic substructures, random walks and trees, we propose a context-dependent 

random walk graph kernel and a tree pattern matching kernel. While these two new kernels decompose graphs 

into primary random walk groups and tree-pattern groups respectively, they are constructed by combining the 

vertex kernels and edge kernels in a similar way. In the context-dependent random walk graph kernel, we 

propose to use a direct product for computing the context-dependent similarities between primary walk groups. 

We utilize a generalized multiple kernel learning algorithm with the l1,2-norm regularization to determine the 

weights for combining context-dependent graph kernels  of different orders. The proposed l1,2-norm 

regularization imposes the sparseness constraint on different orders’ context-dependent kernels from the same 

graphs (concurrent graphs or causal graphs), because these graph kernels may contain redundant information, 

in particular when the order is high. The regularization adds the smoothness constraint on kernels from the 

concurrent graphs and the causal graphs respectively, to ensure that both the concurrent graphs and the causal 
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graphs which preserve different relations between vertices are used to estimate the similarity between the 

videos. In our tree pattern graph matching kernel, the similarity between tree pattern groups is computed 

recursively in a dynamic programming formulation. We formulate the correspondences between tree pattern 

groups as a quadratic optimization problem with a sparse constraint. Only the correctly matched tree-pattern 

groups are incorporated into graph matching. We apply the context-dependent random walk graph kernel and 

the tree pattern graph matching kernel to measure the similarity between human actions for action recognition. 

A SVM-based classifier is learnt for action recognition. As trees have more complex structures than random 

walk, the tree pattern graph matching kernel yields more accurate results, but requires more runtime, than the 

context-dependent random walk graph kernel. 

The main novelties of our work are summarized as follows: 

 The proposed two graphs for representing human actions are complementary to each other. Compared 

with the popular BoW-based models [4, 22], they not only preserve the individual properties of local 

feature vectors but also capture the spatiotemporal relations among them, and hence effectively provide a 

more informative representation for actions. 

 Compared with traditional random walk kernels which use the same weight to combine all the pairs of 

primary walk groups [1, 5, 20], the proposed context-dependent random walk graph kernel weights the 

pairs of primary walk groups using their contexts and then improves the similarity measurement between 

graphs. The generalized multiple kernel learning algorithm effectively selects and combines informative 

context- dependent graph kernels. 

 The proposed tree-pattern groups preserve more local structural information in the graphs. The proposed 

tree pattern graph matching kernel suppresses errors caused by falsely matched tree-pattern groups and 

increases the discriminative power of the kernel. 

The rest of the paper is organized as follows: Section 2 proposes our context-dependent random walk 

graph kernel. Section 3 presents our tree pattern graph matching kernel. Section 4 describes the concurrent 

and causal graphs-based action recognition methods. Section 5 reports the experimental results. Section 6 

concludes the paper. 

2. Context-Dependent Random Walk Graph Kernel 

We first describe how to define context-dependent random walk graph kernels of different orders, then 

show how to compute these kernels using the direct product graph, and finally show how to learn the weights 

of these kernels using the generalized multiple kernel learning. 

2.1. Definition 

We define context-dependent random walk graph kernels on the basis of primary random walk groups 

and their contexts in directed attributed graphs. 

2.1.1. Primary walk groups on directed attributed graphs 

In a directed attributed graph ( , )G V E  with the set of N vertices 1{ }N

i iv   and the edge set E, a vertex 

iv  is a point with a coordinate vector in a Euclidean space and an attribute vector in the feature space. An 

ordered pair of vertices 
iv  and jv  defines an edge ( , )i jv v E . Each edge is associated with an attribute 

vector. 
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A random walk w with length n from graph G is defined as a sequence of vertices connected by n edges: 

0 1 1
( , , ,..., , )

n nw w w w ww v e v e v , where 
iwe (1 i n  ) is the edge connecting vertices 

1iwv


 and 
iwv . A primary 

walk group ( , )n

G i j  with length n in graph G is defined as the set of random walks with length n starting at 

vertex 
iv  and ending at jv . 

Let ( , )vk v v  be the basic kernel function measuring the similarity between vertices v and v  in graphs 

G and G  respectively. Let ( , )ek e e  be the basic kernel function measuring the similarity between edges e 

and e  in graphs G and G  respectively. These two basic functions are designed using the coordinate 

vectors and the attribute vectors of vertices and the attribute vectors of edges according to the task at hand 

(See Section 4.2). A kernel function ( , )wk w w  which measures the similarity between any two walks w and 

w  with the same length n is defined in the following way. If the length n is 0, then walks w and w  are 

vertices 
0wv  and 

wv 
  and the kernel ( , )wk w w  equals to the vertex kernel ( , )v w wk v v 

 . If length n is larger 

than 1, then ( , )wk w w  is defined as the product of the kernels of the vertices and the kernels of the edges 

along the two walks w and w  respectively: 

0 1

( , ) ( , ) ( , )
i i j j

n n

w v w w e w w

i j

k w w k v v k e e 

 

                                  (1) 

We define a kernel wgk  for measuring the similarity between any two primary walk groups ( , )n

G i j  and 

( , )n

G r s   with the same length n as a summation of kernels of all the pairs of walks from these two primary 

walk groups: 

( , ) ( , )

( ( , ), ( , )) ( , )
n n
G G

n n

wg G G w

w i j w r s

k i j r s k w w
 

 




 

   .                         (2) 

2.1.2. Contexts of primary walk groups 

We define the contexts of a primary walk group, based on the contexts of vertices. The context ( )c i  of 

vertex 
iv  is defined as the set of a fixed number of vertices which are nearest to 

iv  in the Euclidean 

coordinate space. Then, the context ( , )n

G i j  of a primary walk group ( , )n

G i j  consists of primary walk 

groups starting at the contexts of 
iv  and ending at the context of 

jv . 

We define the kernel for the contexts ( , )n

G i j  and ( , )n

G r s   of primary walk groups ( , )n

G i j  and 

( , )n

G r s   as the sum of the kernels between the primary walk groups in these two primary walk group 

contexts respectively: 

   
( ), ( ),
( ), ( )

( , ), ( ,s) ( , ), ( , )n n n n

wg G G wg G G

f c i g c j
o c r q c s

k i j r k f g o q    

 
 

  .                       (3) 

As similar primary walk groups usually have similar contexts, we weight the kernel for primary walk groups 

using the kernel for their contexts. The context-dependent kernel cwgk  for primary walk groups ( , )n

G i j  and 

( , )n

G r s   is defined as the sum of the kernel between  ( , )n

G i j  and ( , )n

G r s   and the kernel weighted by 

their contexts: 
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      ( , ), ( , ) ( , ), ( , ) 1 ( , ), ( , )n n n n n n

cwg G G wg G G wg G Gk i j r s k i j r s k i j r s                          (4) 

where the “1” is used to keep the similarity between the primary walk groups themselves and the parameter 

0   controls the degree of the effect of the context information to the context-dependent kernel. The more 

the context similarity, the more the context-dependent kernel is increased. The parameters κ is determined by 

cross-validation. Fig. 1 shows an example of the contexts of primary walk groups, the corresponding kernels, 

and the context dependent kernel. 

 
 

 

 

 

 

 

 

Fig. 1. An example of the contexts of primary walk groups and the corresponding kernels: The left and right columns show two 

graphs G and G , where the green vertices are the contexts of the red ones (The edges are not shown); The middle column 

shows the kernels on primary walk groups and the kernels on their contexts, both of which are used to define the 

context-dependent kernel on primary walk groups. A directed dashed curve denotes a random walk. 
 

2.1.3. Context-dependent random walk graph kernel 

The nth-order context dependent walk graph kernel is defined as the mean of the sum of the context 

dependent walk graph kernels with walk length n: 

 
( , )

( ,s)

1
( , ) ( , ), ( , )

 

 

 

 



 



  
n n
G G
n n
G G

n n n

g cwg G Gn n

i jG G

r

k G G k i j r s
N N

,                      (5) 

where n

GN  is the number of primary walk groups with length n in graph G, and n

G  is the set of all the 

walks with length n in graph G. The normalization by n n

G GN N   takes account of the fact that there are different 

numbers of local feature vectors in different graphs. 

We use a positive weight n  to emphasize the importance of the nth-order context dependent random 

walk graph kernel. Then, the final graph kernel is defined as: 

( , ) ( , )n n

g g

n

k G G k G G  .                                 (6) 

Our context-dependent random walk graph kernel is relevant to the traditional random walk graph kernel 

and the context-dependent kernel for attributed point sets [13]. The description of their relations is included in 

Appendix A, which is available online. 

2.2. Direct product graph-based computation 

In practice, a direct product graph [9] is used to efficiently compute the random walk kernel between two 

graphs. Correspondingly, we propose to utilize direct product graphs to compute context-dependent random 

walk graph kernels of different orders. 

2.2.1. Direct product graph 

The direct product graph ( , )d d dG V E  of two graphs ( , )G V E  and ( , )G V E    is a graph whose 

vertices are in the set of pairs of the vertices in G and G  respectively, as shown in Fig. 2. For a vertex 
iv  

...
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in G and a vertex 
rv  in  G , if the vertex kernel ( , )v i rk v v  between these two vertices is larger than 0, then 

the vertex pair ( , )i rv v  forms a vertex in 
dG . For an edge ( , )i jv v  connecting vertices 

iv  and jv  in G and 

an edge ( , ) 
r sv v  in G , if the edge kernel (( , ), ( , )) 

e i j r sk v v v v  between these two edges is larger than 0, then 

there is an edge connecting vertices ( , )i rv v  and ( , )j sv v  in 
dG . Each vertex ( , )i rv v  in 

dG  is assigned a 

weight 
irw  which equals ( , )v i rk v v . Each edge (( , ), ( , )) 

i r j sv v v v  in 
dG  is assigned a weight ,ir jsw  which 

equals (( , ), ( , )) 
e i j r sk v v v v . For each edge in 

dG , there exists a corresponding edge in G and a corresponding 

edge in G . For each random walk in 
dG , there exists a corresponding random walk in G and a 

corresponding random walk in G , both with the same length. 

 

 

 

 

 

 

 

 

(a)                         (b) 

Fig. 2. Direct product graph: (a) Two graphs G and G  with random walks with different lengths; (b) The corresponding direct 

product graph and random walks: the yellow, red, and green colors represent, respectively, a 0-order random walk, a 1-order 

random walk, and a 2-order random walk. 

 

For the direct product graph 
dG , we construct a diagonal matrix d d

d

V V

V


W , in which the ir-th 

diagonal element ( , )
dVW ir ir  is 

irw , to contain the vertex weights. We construct a matrix d d

d

V V

E


W , in 

which the element ( , )
dEW ir js  is 

,ir jsw , to contain the edge weights. The nth-order weight matrix n

dW  of 

dG  is defined as ( )
d d d

n n

d V E VW W W W . According to (1), 
d dE VW W  describes the changes in the kernels of 

random walks when the walks are extended one edge. Simple derivation yields 

( , ) ( ( , ), ( , ))n n n

d wg G GW ir js k i j r s    (For details, see Appendix B, which is available online). Therefore, each 

nonzero element in n

dW  is the similarity between the corresponding primary walk groups with length n in 

graphs G and G , respectively. 

2.2.2. Computation of context-dependent graph kernels of different orders 

To represent the context of each vertex in 
dG , we define the context matrix d dV V

d


C  whose 

elements ( , )dC ir js  are 1 if jv  is a context of 
iv  in G  and 

sv  is a context of rv  in G , otherwise are 0. 

Each row in 
dC  describes the context of one vertex. The nth-order context-dependent weight matrix n

cdW  of 

dG  is computed by ( )n n n n T

cd d d d d d W W W C W C , where  is the Hadamard product. 

According to (4), each nonzero element in n

cdW  corresponds to the context-dependent kernel between 

two primary walk groups with length n in graphs G and G  respectively, i.e., ( , ) ( ( , ), ( , ))n n n

cd cwg G GW ir js k i j r s   , 

where cwgk  is defined in (4) (For details, see Appendix B). According to (5), the nth-order context-dependent 
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walk graph kernel on graphs G and G  is rewritten as: 

,

1
( , ) ( , )



  n n

g cdn n
ir jsG G

k G G W ir js
N N

.                               (7) 

It is apparent that n n

G GN N 
 equals to the number of the nonzero entries in n

cdW . The computational complexity 

of the context-dependent walk graph kernel can be found in Appendix C. 

2.3. Generalized multiple kernel learning 

Substitution of (7) into (6) yields the final graph kernel between two graphs. The weights { }n  in (6) 

can be estimated using the labeled samples. We apply the generalized multiple kernel learning [19] to this 

estimation. The multiple kernel learning is an information fusion method. Each type of information 

corresponds to one kernel. We use the multi-kernel learning to combine the graph kernels of different orders. 

In real applications, each sample can be represented by a set of L graphs 1{ }L

l lG   which have the same 

vertex set, where different graphs represent different characteristics of these vertices (In our action recognition 

method, L equals 2, i.e., a concurrent graph and a causal graph are used to represent a sample, as described in 

Section 4.1). It is apparent that the L graphs share the same 0th order kernel 0

gk . Let 
lZ  be the maximal order 

of the context-dependent walk group kernels on graphs l. The kernel on any two samples S and S   is defined 

as: 

0 0

1 1

1 1

( , ) ( , ) ( , )
lZL

z z

g l g l l

l z

k S S k G G k G G 
 

    ,                            (8) 

where the 0{ ( , )} lZz

g l l zk G G 
  are computed by (7). 

It is assumed that a set of M training samples 1{ }M

m mS   is available with labels 1{ }M

m my  . We define a set 

of M×M kernel matrices 0

1 1{ ,{ } }lZz L

l z l K K  for the training samples, where 0 0

, ,( , ) ( , )
i ji j g l S l SK S S k G G  and 

, ,( , ) ( , )
i j

z z

l i j g l S l SK S S k G G . Corresponding to (8), we define the kernel matrix K for the training samples as 

follows: 

0 0

1 1

lZL
z z

l l

l z

 
 

 K K K ,                                    (9) 

where 0z

l   is the weight for z

lK . Let Λ be the weight vector whose elements are 1,..,0

1,...,{ ,{ } }lz Zz

l l L  


. Let Y 

be an M×M diagonal matrix with the numbers indicating the sample labels 1{ }M

m my   on the diagonal. Let 1 be 

an M-dimensional vector in which all the entries are 1. The dual problem of generalized multi-kernel learning 

[19] is represented as minimizing the objective function ( )D   which is defined as: 

 1

2

1

( ) max

Subject to 0, 0 ,

T T

T

m

D

C

 

  

α
1 α α YKYα

1 Yα


                                (10) 

where 1( )M

m m α  is the Lagrangian multiplier vector, C1 is a constant controlling the importance of the loss, 

and the weights { }  are included in K and Λ. 

We add a regularization on the weights { }n . On the one hand, context-dependent graph kernels of 

different orders on the same graphs (the lth graphs) may contain redundant information for classifying 
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samples. So, we add a sparseness constraint on the weights of those kernels. On the other hand, different 

graphs preserve different relations between vertices, and contain complementary information. So, we add a 

smoothness constraint on the weights of the kernels from different graphs (the L graphs for each sample), as 

well as the weight for the 0-th order context dependent walk graph kernel. Therefore, we propose a l1,2-norm 

regularization on the kernel weights Λ . It is defined as: 

1

2
0 1 1 1

1 11 1 11 2

1
( ) , ( ,..., ) ,.., ( ,..., ) ,..., ( ,..., ) .

2
l LZZ Z

l l L Lr       Λ                       (11) 

We add the l1,2-norm regularization to the generalized multiple kernel learning framework. The objective 

function ( )D Λ  is updated by: 

  1
22

( ) max ( )T TD C r  
α

Λ 1 α α YKYα Λ ,                           (12) 

where C2 is the constant controlling the regularization on kernel weights. 

We utilize the mini-max optimization algorithm [19] to calculate Λ. The details of the algorithm can be 

found in Appendix D. After the weights in Λ are obtained, the similarities between samples are computed 

using (8). These similarities are used to train a SVM-based classifier. SVMs are appropriate for graph 

kernel-based recognition, because SVMs only need to input similarities between samples. The extraction of 

feature vectors from samples is avoided. Furthermore, SVMs allow for parallel computation of the similarities 

between samples. Parallel computation is popularly used for action recognition. 

3. Tree-Pattern Graph Matching Kernel 

Considering that random walks in a graph have simple shapes with chain structures and cannot capture 

sufficient topological information in a graph, we propose a graph matching kernel based on decomposing 

graphs into tree patterns which have more complex structure than random walks. The kernel is computed by 

comparing the incoming and outgoing tree-pattern groups from two graphs. We describe first how to define 

the tree patterns, then how to recursively measure the kernels for tree-pattern groups, and finally how to 

construct the tree pattern graph matching kernel. 

3.1. Tree patterns 

For a directed attributed graph ( , )G V E , each vertex 
iv V  has a set of incoming neighbors 

( ) { | ( , ) }i j j iv v V v v E      and a set of outgoing neighbors ( ) { | ( , ) }i j i jv v V v v E     . We define the 

in-degree of vertex iv  as the number of its in-coming neighbors, and define its out-degree as the number of 

its out-going neighbors. 

A tree is a directed acyclic connected graph. It is denoted as ,( )t tt U F  where tU  is its vertex set and 

tF  is its edge set. The vertices with in-degree zero are called root vertices. The vertices with out-degree zero 

are called leaf vertices. Trees are naturally oriented by directed edges from root vertices to leaf vertices. The 

height ( )h t  of a tree t is defined as the maximum number of edges connecting a leaf vertex and a root vertex 

plus one. The branch ( )b t  of a tree is defined as the absolute value of difference between the number of root 

vertices and the number of leaf vertices. The height and the branch are used to describe the complexity of a 

tree. 

A tree pattern [26] is a derivative of a tree, which emphasizes the tree structure. A tree-pattern from a 
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graph is a sub-graph which has a tree structure. In a graph ( , )G V E , a tree-pattern which has the same 

structure as the tree
 

( , )t tt U F  is denoted as ( , )t t tp V E  with the vertex set 
1 2 | |

{ , ,..., }
Ut

t t t tV v v v  and the set
 

tE  of edges linking vertices in 
tV , where 

it
v V  and | |tU  is the number of vertices in tree t. There is a 

one-to-one mapping of vertices and edges between tree pattern 
tp  and tree t. 

Given two tree patterns ( , )t t tp V E  and ( , )t t tp V E    which have the same structure as the tree t, we 

measure their similarity using the similarities between the vertices and between the edges in the two tree 

patterns respectively. Let 
it tv V  and 

it tv V   correspond to the ith vertex of tree t. The tree-pattern kernel 

between 
tp  and 

tp  is defined as the weighted product of vertex kernels and edge kernels: 

| | | |

,

1 1

( , ) ( ) ( , ) ( , ) 
 

    
t t

i i j j

U F

t t t v t t e t t

i j

k p p t k v v k e e ,                        (13) 

where    
1

, ( )
th t bt     is a weighting function which measures the structure complexity of the tree t. The 

complexity of a tree increases when its height ( )h t  or its branch ( )b t  increases. By adjusting   and γ, the 

effect of the complexity of tree patterns on the similarity measurement can be increased or reduced. 

 

 

 

 

 

 

 

 

 

(a) Trees         (b) Incoming trees       (c) Outgoing trees 

 

Fig. 3. Examples of trees with different structures. 

 

We consider incoming trees and outgoing trees. In an incoming tree, the out-degree of all the vertices is 

one except for the leaf vertex. In an outgoing tree, the in-degree of all the vertices is one except for the root 

vertex. Fig. 3 shows some examples of incoming and outgoing trees. The tree-patterns extracted from graphs 

according to incoming trees and outgoing trees are called incoming tree-patterns and outgoing tree-patterns 

respectively. These two kinds of tree patterns exploit, respectively, the incoming and outgoing neighborhood 

information on vertices. Let /h h

in outT T  be the set of incoming/outgoing trees whose heights are less than h. Let 

( , )P t G  be the set of tree patterns structured by tree t and extracted from graph G. We define the tree 

pattern-based h-order graph kernel ( , )h

gk G G  between graphs G and G  as the summation of the 

similarities of all the pairs of the incoming and outgoing tree patterns whose heights are less than h: 

( , ) ( , )
( , ) ( , )

( , ) ( , ) ( , )
h h

t tin out

t t

h

g t t t t t t

p P t G p P t Gt T t T
p P t G p P t G

k G G k p p k p p
  
    

       .                      (14) 

This new kernel uses incoming and outgoing tree patterns to capture the different local neighborhood relations 

between vertices. In contrast with random walks, these two types of tree patterns have more complex 

structures and more effectively describe the local topological structure of graphs for measuring the similarities 

h(t)=3, b(t)=0    h(t)=3, b(t)=0 h(t)=2, b(t)=1        h(t)=3, b(t)=2 h(t)=2, b(t)=1        h(t)=3, b(t)=1

h(t)=4, b(t)=0       h(t)=3, b(t)=1 h(t)=3, b(t)=1         h(t)=3, b(t)=3 h(t)=3, b(t)=1        h(t)=3, b(t)=2
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between graphs. 

3.2. Similarities between tree-pattern groups 

By using each vertex as the root of outgoing trees or the leaf of incoming tress, the graph is decomposed 

into many tree patterns. It is an NP hard problem to extract all the tree patterns from a graph. Instead of 

extracting all the tree patterns, we recursively compute the similarities between graphs based on tree patterns. 

This computation depends on the definition of affinal incoming/outgoing tree-pattern groups and 

incoming/outgoing neighborhood matching sets. 

Definition 1: Affinal incoming tree-pattern group: Each vertex v’s h-order affinal incoming 

tree-pattern group ( )h

inH v  in a graph G is the set of incoming tree-patterns which have the same leaf vertex v 

and whose heights are no more than h. 

Definition 2: Affinal outgoing tree-pattern group: Each vertex v’s h-order affinal outgoing tree-pattern 

group ( )h

outH v  in a graph G is the set of outgoing tree-patterns which have same root vertex v and whose 

heights are no more than h. 

Fig. 4 shows some examples of affinal incoming/outgoing tree-pattern groups. The similarity between the 

affinal incoming tree-pattern groups ( )h

inH v  for vertex v in graph G and ( )h

inH v  for vertex v  in graph G  

is defined as the summation of similarities between all the pairs of incoming tree-patterns taken from ( )h

inH v  

and in ( )hH v , respectively. The corresponding kernel is: 

( ) ( )

( ( ), ( )) ( , )
h h
in in

h h

H in in t

p H v p H v

k H v H v k p p
  

    ,                          (15) 

where ()tk  is defined in (13) and the similarity between tree patterns with different tree structures is 0. 

Similarly, the kernel for affinal outgoing tree-pattern groups is defined as: 

( ) ( )

( ( ), ( )) ( , )
h h
out out

h h

H out out t

p H v p H v

k H v H v k p p
  

    .                        (16) 

 

 

 

 

 

 

 

 

 

 

 

 

                     (a)           (b)                 (c)                   (d) 

Fig. 4. Examples of affinal tree-patterns: (a) A directed graph G; (b) Incoming tree-patterns and outgoing tree-patterns; (c) 

Affinal incoming tree-pattern groups and affinal outgoing tree-pattern groups; (d) Affinal tree-pattern groups. 

 

We estimate the h-order affinal tree-pattern group kernel between two vertices using the h-1 order affinal 

tree-pattern group kernels of the neighbors of the two vertices. We introduce two definitions to exploit the 

incoming and outgoing neighborhood information in graphs. 
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ℎ (𝑣1) 

𝐻𝑖𝑛
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𝐻ℎ(𝑣2) 



12 
 

Definition 3: Incoming neighborhood matching set: The incoming neighborhood matching set 

( , )M v v   of two vertices v and v  in graphs G and G  respectively is a set of one-to-one matching pairs of 

the incoming neighbors of v and the incoming neighbors of v . An element R of ( , )M v v   consists of one or 

several pair(s) of vertices from incoming neighborhoods ( )v   and ( )v    of v and v  respectively. For 

pairs (a, b) and (c, d) in R, a is c if and only if b is d, i.e., there is the one-to-one matching between the 

incoming neighbors of v and v  in R. For each vertex pair (a, b) belonging to R, both the vertex kernel on the 

pair and the edge kernel on the pair of edges (a,v) and ( , )b v  have positive values, i.e., ( , ) 0vk a b   and 

(( , ),( , )) 0ek a v b v  . 

Definition 4: Outgoing neighborhood matching set: The outgoing neighborhood matching set 

( , )M v v   of two vertices v and v  in graphs G and G  respectively is defined by replacing the incoming 

neighborhood in ( , )M v v   with the outgoing neighborhood, i.e., ( , )M v v   is a set of one-to-one matching 

pairs of the outgoing neighbors of v and v . 

According to the definition of ( , )M v v  , by substituting (13) into (15), the affinal incoming tree-pattern 

group kernel ( ( ), ( ))n n

H in ink H v H v  is rewritten equivalently in a dynamic programming formulation [26] as: 

     1 1

( , )( , )

1
( ( ), ( )) , ' 1 ( , ), ( , ( ), ( ) ,h h h h

H in in v e H in in

u u RR M v v

k H v H v k v v k u v u v k H u H u 


 

 

 
      

 
 

 

     (17) 

where   and   are the two parameters defined in (13) (See [26] for the details of the mathematical 

derivation of (17)). Then, the affinal incoming tree-pattern group kernel can be computed recursively. The 

initialization for the iteration is 1 1( ( ), ( )) ( , )H in in vk H v H v k v v  . Correspondingly, the affinal outgoing 

tree-pattern group kernel ( ( ), ( ))n n

H out outk H v H v  in (16) is rewritten as: 

     1 1

( , )( , )

1
( ( ), ( )) , ' 1 ( , ), ( , ( ), ( ) ,h h h h

H out out v e H out out

u u RR M v v

k H v H v k v v k v u v u k H u H u 


 

 

 
      

 
          (18) 

where 1 1( ( ), ( )) ( , )H out out vk H v H v k v v  . In this way, the kernels for affinal tree-pattern groups can be computed 

efficiently, avoiding the exaction of all the tree patterns in graphs. Verifying whether the tree patterns of two 

graphs are from the same tree is carried out in the dynamic programming process. 

For a vertex v in graph G, the affinal incoming tree-pattern groups ( )h

inH v  and the affinal outgoing 

tree-pattern groups ( )h

outH v  are collectively referred to as affinal tree-pattern groups 

( ) ( ) ( )h h h

in outH v H v H v  , as shown in Fig. 4. The kernel ( ( ), ( ))h h

Hk H v H v  between two affinal tree-pattern 

groups ( )hH v  and ( )hH v  is defined as: 

( ( ), ( )) ( ( ), ( )) ( ( ), ( ))h h h h h h

H H in in H out outk H v H v k H v H v k H v H v    .                    (19) 

The kernels for affinal tree-pattern groups are used to compute the tree pattern graph kernel in (14). For 

two graphs, the summation of the similarities between all the incoming/outgoing tree patterns is equivalent to 

the summation of the similarities between all the affinal incoming/outgoing tree pattern sets. Then, (14) is 

rewritten as: 
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'

( , ) ( ( ), ( ))h h h

g H

v V v V

k G G k H v H v
 

  .                           (20) 

This kernel is called the tree-pattern graph kernel. Its computational complexity depends on populating 

( , )M v v   and ( , )M v v   in (17) and (18). Theoretically, its computational complexity is 2(| || | )BO V V hB , 

where B is an upper bound on the incoming degree and the outgoing degree. For applications to action 

recognition, the graphs are very sparse, resulting in a very small value of B. We design the vertex kernel ()vk  

and the edge kernel ()ek  such that the sizes of the incoming and outgoing neighborhood matching sets are 

kept small. These designs ensure that the tree-pattern graph kernel is computed efficiently. 

The limitation of the tree-pattern graph kernel is that all the similarities between affinal tree-pattern 

groups are summed up with the same weight. The more discriminative tree patterns are not emphasized. 

3.3. Tree-pattern graph matching 

To solve the above limitation in the tree pattern graph kernel, we construct a tree-pattern graph matching 

kernel by finding correctly matched affinal tree-pattern groups using labeled samples. 

We assign a weight ,v v   to each pair of affinal tree-pattern groups ( )hH v  and ( )hH v  from two 

graphs G and G . Then, we define the tree-pattern graph matching kernel ( , )h

mgk G G  for graphs G and G  

as follows: 

,( , ) ( ( ), ( ))h h

mg v v H

v V v V

k G G k H v H v 

  

  ,                            (21) 

where ,v v   indicates importance of the matching between ( )hH v  and ( )hH v . 

Besides the measurement ( ( ), ( ))h h

Hk H v H v  of the matching quality of a pair of affinal tree-pattern 

groups ( )hH v  and ( )hH v , we define a function ( ( ), ( ), ( ), ( ))h h h h

Hc H v H u H v H u   to measure the pair-wise 

agreement between pairs ( ( ), ( ))h hH v H v  and ( ( ), ( ))h hH u H u  of affinal tree-pattern groups for vertices v 

and u in G and vertices v  and u  in G : 

( ( ), ( ), ( ), ( )) ( ( ), ( )) ( ( ), ( )) ( , , , ),h h h h h h h h

H H Hc H v H u H v H u k H v H v k H u H u f v u v u               (22) 

where ( , , , )f v u v u   measures the geometric relations between pairs of affinal tree-pattern groups and is 

defined according to applications (see Section 4.2). Fig. 5 shows the relations between pairs of affinal 

tree-pattern groups. 

 

 

 

 

 

 

 

 

 

Fig. 5. The relation between two pairs of affinal tree pattern groups: The quality of a matching pair of affinal tree pattern groups 

( )hH v  and ( )hH v  is measured using ( ( ), ( ))h h

Hk H v H v , and ( ( ), ( ), ( ), ( ))h h h

Hc H v H u H v H u   measures the pairwise 

agreement between pairs ( ), ( )h hH v H v  and ( ), ( )hH u H u . 
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The correctly matched affinal tree-pattern groups have not only high matching degree, but also high 

pair-wise agreement. The matched affinal tree-pattern groups should be emphasized and the mismatched 

affinal tree-pattern groups should be suppressed. Given a pair of samples S and S  , graph sets 

1{ ( , )}L

l l l lG V E  , and 1{ ( , )}L

l l l lG V E 
    are extracted respectively. We design a quadratic objective function 

for S and S   as follows: 

    2

, , , ,
{ }

, , , ,

,

max ( ), ( ) ( ), ( ), ( ), ( ) ( )

. . , ,0 1,

h h h h h h

v v H l l v v u u H l l l l v v

l v v l v v u v u v l v v

l l v v

k H v H v c H v H u H v H u C

s t v V v V


   



   

     



   

     

    
 (23) 

where C is a constant for the l1,2-norm sparse constraint for selecting matched affinal tree-pattern groups from 

the same graphs (the lth graphs) and smoothing the weights of the affinal tree-pattern groups from different 

graphs (the L graphs for each sample). We determine the weights ,{ }v v   by solving the quadratic objective 

function in (23) for two samples efficiently using the trust region reflective algorithm [25]. The obtained 

weights { }  are substituted into (21) to compute the tree-pattern graph matching kernel between samples S 

and S  . The sparse regularization ensures that only the correctly matched affinal tree-pattern groups with 

high weights are dominant in the kernel construction. This augments the discriminative ability of the 

tree-pattern graph matching kernel. The kernel similarities between the training samples are used to train a 

SVM classifier. Given a test sample, we compute its kernels to the support vectors which are a small subset of 

the training samples that lie on the maximum margin hyper-planes in the feature space. These kernels are 

input to the classifier to determine the label of the test sample. The trust region reflective algorithm requires 

only a few iterations to obtain an effective local solution and a good classification result, even though the 

algorithm is halted before convergence. 

3.4. Relevance to existing kernels 

The proposed tree-pattern graph matching kernel has properties from graph kernels and from graph 

matching kernels. The corresponding analysis is as follows: 

The tree-pattern graph matching kernel extends several previous kernels. When all the weights ,{ }v v   

are set to 1, the tree-pattern graph matching kernel reduces to the tree-pattern graph kernel in (20). If we only 

consider outgoing tree-patterns and set 
vk  and 

ek  equal to Dirac kernel functions, then the tree-pattern 

graph matching kernel reduces to the tree graph kernel in [26]. If parameter   in (13) is very small, then 

tree-patterns with a high complexity are penalized, with the result that only tree-patterns consisting of linear 

chains of vertices have significant weights, i.e., the tree-pattern graph kernel approximates to a traditional 

random walk graph kernel [20]. If μ in (13) is set to 0, then tree-patterns degenerate into vertices and the 

tree-pattern graph matching kernel reduces to the summation kernel of vertices [27]. 

The objective function for determining the weights ,v v   in (23) is related to the graph matching kernel 

in [28, 29, 30, 31]. In both cases, a unary term and a pair-wise term exploit the local compatibilities and 

pair-wise geometric relations between substructures of graphs. In contrast with traditional graph matching 

kernels, our tree-pattern group matching kernel has the following properties: 

 The tree-pattern graph matching kernel uses affinal incoming and outgoing tree-pattern groups as 

substructures to effectively describe the local structure of graphs. 
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 We add a sparse constraint in (23) to keep well matched affinal tree-pattern sets, and remove noisy ones. 

3.5. Comparison with context-dependent random walk graph kernel 

We summarize the similarities and differences between the context-dependent random walk graph kernel 

and the tree-pattern graph matching kernel as follows. 

1) Similarities: Both these kernels are constructed by decomposing each graph into sub-graphs and then 

combining the kernels between the sub-graphs. The sub-graphs into which these two kernels decompose a 

graph are random walks and tree patterns respectively. These two kernels construct the sub-graph kernels in a 

similar way: The kernels between sub-graphs are products of the kernels for the vertices and the edges 

included in the sub-graphs and the graph kernels are sum of the kernels of the sub-graphs into which the 

graphs are decomposed. They both can be reduced to the traditional random walk graph kernel, as stated in 

Appendix A and Section 3.4. 

2) Differences: Random walks in a graph have simple shapes with chain structures. This limits the 

ability of random walk kernels to capture sufficient topological information in a graph. Tree patterns have 

more complex structure and obtain more information about the local topologies of graphs than random walks. 

A primary walk group is a set of random walks starting at a vertex and ending at another vertex. It describes 

the local structure as a function of depth, as measured by the edges over which the walk passes. The contexts 

of a primary walk group supplement the normalized local breadth structure information in the random walk 

graph kernel. An affinal tree-pattern group is a set of tree-patterns that have the same leaf vertex or the same 

root vertex. It describes the local structure as a function of both the depth and breadth without normalization. 

Affinal tree-pattern groups consisting of incoming and outgoing tree-pattern groups describe the local 

structure both along and against the directions of the edges. Therefore, the tree-pattern graph kernel captures 

more of the local topological properties of the graphs and more accurately measures similarities of graphs than 

the context-dependent walk graph kernel. As random walks are more regular, the context-dependent random 

walk graph kernel can be computed directly and conveniently using the direct product graph. The equation for 

computing the context-dependent random walk kernel is concise. However, tree-pattern graph matching 

kernel cannot be computed using the direct product graph. It is recursively computed in a dynamic 

programming formulation. The recursive solution is elegant. But it requires more runtime than the 

computation of the context-dependent random walk graph kernel. In addition, the context-dependent random 

walk graph kernel measures the similarity between two graphs by comparing the pairs of sub-graphs of the 

graphs, while the tree-pattern graph matching kernel keeps well matched sub-graphs. 

4. Action Recognition 

We follow the traditional action recognition framework based on points of interest. Given a video 

containing actions, Dollar’s separable linear filters [4] are utilized to detect the spatiotemporal interest points. 

The 3D SIFT descriptor [17] is used as the local spatiotemporal feature vector to describe each detected 

interest point. We construct a concurrent graph and a causal graph to model the relations between local feature 

vectors. Based on the constructed graphs, the similarities between actions are computed for action recognition. 

4.1. Graphs for representing actions 

The concurrent graph ( , )c c cG V E  is constructed to model the spatial relations of interest points in each 
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frame. Its vertex set 
cV  consists of the interest points. We employ the ε-graph method to construct the edge 

set 
cE . A sparse affinity matrix 

cA  is defined for 
cG . Let ( , , )i i ix y t  be the image and frame coordinates 

of the ith interest point. For two interest points i and j in the same frame (
i jt t ), if point j is up to point i in 

the image and their image distance is close enough, then the element ( , )cA i j  in 
cA  is 1. In any other case, 

( , )cA i j  is 0. If ( , ) 1cA i j  , ( , )i j cv v E . As shown in Fig. 6, 
cG  is a graph directed from bottom upwards 

and without loops
1
. The 3D SIFT descriptor of a vertex is used as its attributed feature vector for capturing 

local appearance information. Attributes are attached to edges according to the relative spatial positions of 

vertices. The relative spatial position of jv  with regard to 
iv  can be represented by ( , ) ( , )j i j ir i j x x y y   . 

Then, we describe the attribute associated with an edge ( , )i jv v  using ( , )r i j . 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Graphs for representing actions: (a) A video; (b) Local feature vectors; (c) Concurrent graph; (d) Causal graph. 

 

The causal graph ( , )s s sG V E  is constructed to model the spatial relations of local feature vectors 

between frames. Its vertices 
sV  as well as the associated attributed vectors are the same as in the concurrent 

graph. We define an affinity matrix 
sA  for 

sG . For two interest points i and j in neighboring frames, if they 

are close in the image coordinate space, then element ( , )sA i j  in 
sA  is 1. In any other case, ( , )sA i j  is 0. 

When ( , ) 1sA i j  , ( , )i j sv v E . As shown in Fig. 6, 
sG  is a graph directed from left to right. The attribute 

associated with edge ije  is also described by ( , )r i j . While the directed edge ije  describes a temporal 

causal relation between 
iv  and jv , the assigned edge attribute ( , )r i j  describes their relative spatial 

position. 

The concurrent graph and the causal graph describe different relations between local feature vectors. 

These two graphs are complementary to preserve the spatiotemporal features of actions. 

4.2. Action similarity measurement 

We apply the proposed context-dependent random walk graph kernel and tree pattern graph matching 

kernel to measure the similarity between human actions represented by the concurrent graph and the causal 

graph. This similarity measurement is based on two basic kernels: the vertex kernel and the edge kernel. 

In a concurrent graph, let d and d   be the 3D SIFT descriptors for vertices v and v , respectively. If the 

                                                             
1
 Any one of the following ways can be used to construct a directed concurrent graph: directed from bottom up, directed from 

top down, directed from left to right, or directed from right to left. If any two of the four ways are combined, then loops may 
exist in the graph, and loops may produce traceback in random walks. 
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distance between d and d   is close in the feature space, then the vertex kernel between them is: 

2

2

2
( , ) exp

2
v

d d
k v v



 
   
 
 

                                  (24) 

where σ is a scale parameter for the Gaussian function. Otherwise, ( , )vk v v  is 0. Given the attributes ( , )r i j  

of an edge ije  in a concurrent graph, the edge kernel depends on the spatial distance between vertices 
iv  

and jv  and the direction of ( , )r i j . The edge kernel ( , )e ij oqk e e  between edge ije  in graph G and edge 
oqe  

in graph G  is 1, if vectors ( , )r i j  and ( , )r o q  have similar lengths and directions where the direction 

similarity is evaluated by the cosine of the angle between ( , )r i j  and ( , )r o q : 

2 2

( , ) ( , )

( , ) ( , )

r i j r o q

r i j r o q


.                                   (25) 

Otherwise, ( , )e ij oqk e e  is 0. 

The vertex kernel for the causal graph is defined in the same way as in the concurrent graph. The edge 

kernel ( , )e ij oqk e e  between edge ije  in causal graph G and edge 
oqe  in causal graph G  is 1, if vectors 

( , )r i j  and ( , )r o q  have similar directions, otherwise the edge kernel is 0. 

The above definitions of vertex kernels and edge kernels make the two graphs quite sparse. This speeds 

up the computation process. There are no cycles in either graph. This suppresses the tottering, halting, and 

backtracking associated with computing the kernels based on random walks or trees. 

For the context-dependent random walk graph kernel, based on the defined vertex kernel and edge kernel, 

the kernels of different orders between the two videos are computed using (7). The l1,2-norm regularized 

generalized multiple kernel learning is used to estimate the weights for the kernels of different orders. Then 

the similarity between the two videos is computed using (8). 

For the tree pattern graph matching kernel, we substitute the defined vertex kernel and edge kernel into 

(17) and (18) to compute the kernels for the affinal incoming and outgoing tree-pattern groups. Subsequently, 

we define two variables ,ij oqd  and ,ij oq  to describe the relative spatial geometric relations between two 

vertex pairs ,i jv v V  and ,o qv v V   : 

, 2

,

2 2

( , ) ( , ) ,

( , ) ( , )
arccos .

( , ) ( , )

ij oq

ij oq

d r i j r o q

r i j r o q

r i j r o q


  








                             (26) 

If iv  and 
jv  are in the same frame in a video and ov  and 

qv  are in the same frame in another video, the 

geometrical coherence function f in (22) is defined as: 

2 2

, ,

2 2
( , , , ) exp

2 2

ij oq ij oq

i j o q

d

d
f v v v v
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where 
d  and   are scale parameters. Otherwise, f is 0. This definition of f ensures that the affinal 

tree-pattern group pairs ( ( ), ( ))h h

i oH v H v  and ( ( ), ( ))h h

j qH v H v  are used in measuring the pair-wise 

agreement only when iv  and jv  are in the same frame and 
ov  and qv  are in the same frame. By solving 
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(23), we obtain the weight for each pair of affinal tree-pattern groups. Then, the tree-pattern graph matching 

kernel in (21) is computed. 

The context-dependent walk graph kernel and the tree-pattern graph matching kernel form a bridge 

between graphs representing actions and statistic learning methods. Based on the obtained matrix of 

similarities between videos, the SVM classifier is trained to classify videos containing different actions. 

5. Experimental Results 

We tested the proposed context-dependent random walk graph kernel-based and tree-pattern graph 

matching kernel-based action recognition methods on the following benchmark datasets: the Weizman dataset, 

the KTH dataset [16], the UCF Sports dataset [15], the UCF Films dataset [15], and the Hollywood2 dataset: 

 The Weizmann dataset contains 90 videos with 10 actions. Each action was performed by 9 people. 

 The KTH dataset has 599 videos, containing six human actions (walking, jogging, running, boxing, hand 

waving, and hand clapping) which were performed by 25 subjects under four different scenarios. 

 The UCF sports dataset consists of 150 broadcast sports videos with ten actions, such as diving, lifting, 

and running. Videos were captured in realistic scenarios with natural, complex, and cluttered background. 

The videos exhibit large intra-class variations. 

 The UCF films dataset was collected from a range of films genres, such as classic old movies, comedies, 

and scientific movies. There are 92 samples of kissing and 112 samples of slapping. The actions were 

captured in a wide range of scenes under different viewpoints. 

 The Hollywood2 dataset consists of 12 actions, such as “answer phone” and “drive car”. There are 1707 

video samples in total, including 823 samples for training and 884 samples for testing. All the samples 

were collected from Hollywood movies. 

On the Weizman dataset and the KTH dataset, we carried out the leave-one-action-out cross validation to 

make the performance evaluation, i.e., in each run, the videos of one randomly selected action were used for 

testing and all the other videos were used for training. On the UCF Sports dataset and the UCF Films dataset, 

we carried out the leave-one-video-out cross validation. One video was used for testing and the remaining 

videos were used for training. On the Hollywood2 dataset, the training and test sets were used for training and 

testing respectively. On the first four datasets, accuracy was used as the evaluation criterion. On the last 

dataset, the average precision for each action was calculated and the mean average precision on all actions 

was used as the evaluation criterion. 

In the following, we first verify the effectiveness of the graph-based representation for actions. Then, the 

context-dependent walk graph kernel and the tree-pattern graph matching kernel are compared with their 

variants to show their effectiveness. Finally, we compare our methods with graph-based methods and 

state-of-the-art methods for action recognition. 

5.1. Effectiveness of graph representation 

To illustrate the effectiveness of the concurrent graph and the causal graph for representing actions, we 

compared our methods with the following variants using the context-dependent random walk graph kernel: 

 The BoW-based method: A BoW model was used to represent the ensemble of local feature vectors 

extracted from each video. The K-means algorithm was used to cluster the local feature vectors into 1200 
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visual words. A histogram of words was constructed for each video. A χ
2
-kernel was used to measure the 

similarities between the histograms. An SVM classifier was trained for action classification. The 

spatiotemporal relations of local features were not involved in this method. 

 The method based on the kernel for attributed point sets: As stated in Appendix A, the 0th-order 

context-dependent random walk graph kernel corresponds to the kernel for attributed point sets. This 

attributed point set kernel was used to measure the similarities between point sets. The obtained kernel 

matrix was input into an SVM classifier. Although videos were represented by the concurrent graphs and 

the causal graphs, the edge information in the graphs is not involved in the kernel. Action recognition 

only depends on the individual discriminative capability of local feature vectors. 

 The concurrent graph-based method: The ensemble of local feature vectors was modeled by the 

concurrent graph. The causal graph was omitted. We computed the context dependent graph kernels of 

different orders on the concurrent graphs and applied the generalized multiple kernel learning to combine 

these context dependent kernels for action recognition. In this method, the spatiotemporal relations 

between local feature vectors in the same frames were used. 

 The causal graph-based method: The ensemble of local feature vectors was modeled by the causal 

graph. The concurrent graph was omitted. This method uses spatiotemporal relations between local 

feature vectors in successive frames. 

Table 1. The recognition accuracies (%) of our context-dependent random walk graph kernel-based method and the four variants 

on the Weizmann, KTH, and UCF sports datasets 

Methods Weizamnn KTH UCF Sports 

BoW-based 92.4 95.0 86.0 

Point sets-based 91.4 94.7 85.3 

Concurrent graph-based 95.7 95.5 88.7 

Causal graph-based 94.6 96.3 89.3 

Our context-dependent method 96.9 97.0 90.8 

 

In the experiments, we defined the nearest 5 interest points in the 3D space as the context of a given 

interest point. We set the maximum order of graph kernels to 5 for both the concurrent graphs and the causal 

graphs. Table 1 shows the action recognition accuracies of our context-dependent random walk graph kernel 

method and the above four variants on the Weizmann, KTH, and UCF sport datasets. Due to space limitation, 

we illustrate the confusion matrices of our context dependent random walk-based method on these three 

datasets in Fig. A of Appendix E in the supplemental file, which is available online. On analyzing the results, 

the following points were observed: 

 The point sets-based method and the BoW-based method yield the lowest accuracies. This is because 

these methods only model individual local feature vectors, without considering the spatiotemporal 

relations between local feature vectors. 

 The concurrent graph-based method and the causal graph-based method, which model spatiotemporal 

relations of local features within a frame and between frames respectively, yield higher accuracies than 

the point sets-based method and the BoW-based method. This indicates that the spatiotemporal relations 

preserved in the concurrent graphs and in the causal graphs improve the accuracy of action recognition. 

 Our context-dependent walk graph kernel method outperforms both the concurrent graph-based method 

and the causal graph-based method. This indicates that the concurrent graph and the causal graph, which 
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capture different spatiotemporal relations, are complementary to each other, and the combination of these 

two graphs leads a more informative and discriminative representation for human actions. 

5.2. Effectiveness of context-dependent graph kernel 

To illustrate the effectiveness of the context-dependent walk graph kernel, we compared our method with 

the variants obtained by replacing the context-dependent walk kernel ( , )n

gk G G  in (7) with the traditional 

random walk graph kernel ( , )n

tgk G G  shown in Appendix A. In the traditional random walk-based method, 

the contexts of primary walk groups are not involved in the matching of the primary walk groups, when 

computing graph kernels. Fig. 7 shows the comparison results on the KTH dataset and the UCF sports dataset 

when the maximum order was set to 0, 1, 3, 5, and 7, respectively. It is seen that the context-dependent 

random walk method always yields a higher accuracy than the traditional walk kernel-based method. This is 

because the proposed context-dependent random walk graph kernel is superior to the traditional random walk 

kernel in measuring the similarity between graphs. The context information utilized in primary walk group 

matching improves the performance of action recognition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7. The results of the traditional random walk kernel and our context-dependent random walk kernel when the maximum 

order takes values from 0 to 7: the x-axis is the order and the y-axis is the accuracy. 

 

5.3. Effectiveness of tree-pattern graph matching 

We evaluated the effectiveness of our tree-pattern graph matching kernel by comparing it with the 

following variant graph kernels for action recognition: 

 Summation-based graph kernel: This kernel is defined as the summation [34] of the kernels of all the 

pairs of vertices from the two graphs. This kernel only considers the individual local features, without 

taking into account the information of edge attributes and the structures of the graphs. 

 Incoming tree pattern-based graph kernel: Only the incoming tree pattern-based graph kernel is used 

to measure the similarity between two graphs. The substructures described by affinal incoming tree- 

pattern groups were considered for representing the spatiotemporal relations between local feature 

vectors. 

 Outgoing tree pattern-based graph kernel: This kernel is computed only based on the affinal outgoing 

tree-pattern groups. Only outgoing neighborhood information on local feature vectors was considered for 

measuring their spatiotemporal relations. 



21 
 

 Tree pattern-based graph kernel: As shown in (20), this kernel combines the incoming and outgoing 

tree-pattern graph kernels. It considers both the incoming and outgoing neighborhood information, but all 

the pairs of tree patterns are assigned the same weight. 

Table 2 shows the action recognition accuracies of our tree pattern graph matching-based method and the 

above four variants on the Weizmann, KTH, and UCF sports datasets. We show the confusion matrices of our 

tree pattern graph matching-based method on these three datasets in Fig. B of Appendix E in the supplemental 

file, which is available online. These results illustrate the following interesting points: 

 The summation kernel-based method yields the lowest accuracy. This indicates that a simply comparison 

of the local feature vectors in any two videos is not a sufficient measure of the similarities between 

videos. 

 Both the incoming tree pattern graph kernel and the outgoing tree pattern graph kernel yield more 

accurate results than the summation graph kernel. This indicates that the local spatiotemporal relations 

among local feature vectors are of great significance in recognizing actions, and both the incoming and 

outgoing affinal tree pattern groups improve action recognition. 

 The tree pattern-based graph kernel yields higher accuracies than both the incoming tree pattern graph 

kernel and the outgoing tree pattern graph kernel. This indicates that the combination of incoming and 

outgoing affinal tree-pattern groups improves the recognition accuracy. 

 Our tree pattern graph matching kernel obtains the highest accuracies on these datasets. This indicates 

that our kernel which incorporates both incoming and outgoing tree-patterns effectively selects the most 

correctly matched affinal tree-pattern groups and avoids the mismatched ones. 

 The tree pattern graph matching kernel is much more accurate than the tree pattern-based graph kernel on 

the UCF sports dataset in contrast with the Weizmann dataset and the KTH dataset. This is because the 

UCF sports dataset is much more complex, with occlusions, dynamic backgrounds, and large intra-class 

variability. The tree pattern graph matching kernel is more suitable and robust for action recognition in 

complex scenes. 

Table 2. The recognition accuracies (%) of our tree pattern graph matching method and the four variant graph kernel-based 

methods on the Weizmann, KTH, and UCF sport datasets 

Methods Weizmann KTH UCF Sports 

Summation kernel-based 89.2 92.5 83.3 

Incoming tree pattern-based 94.6 95.7 88.6 

Outgoing tree pattern-based 92.7 96.1 90.0 

Tree pattern-based 95.7 96.3 91.3 

Our tree pattern matching-based 97.8 97.2 95.3 

 

We evaluated impact of the height h of the affinal tree-pattern groups on recognition accuracy on the 

KTH and UCF sports datasets. As shown in Fig. 8, on both the datasets the accuracy increases when h 

increases from 1 to 4. When h further increases, the accuracy decreases. This is because the affinal tree-pattern 

groups are appropriate for representing local structures. When the height increases, the leaf vertices of each 

affinal tree-pattern group spread beyond the local structures. Therefore, the height was set to 4. This is 

consistent with the viewpoint, in [50], that the spatiotemporal relations among a small number of frames are 

enough for action recognition. With respect to µ and γ in (13), when their values vary from 1 to 2 the accuracy 

does not change much. When they are larger or smaller, the accuracy is reduced. Empirically, they were both 
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set to 1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The accuracies for different values of the height (h) of affinal tree-pattern groups on the KTH and UCF sports datasets. 

 

5.4. Comparison with graph-based methods 

We compared our context-dependent random walk graph kernel-based method and our tree pattern graph 

matching kernel-based method with the previous methods [3, 18, 36, 38, 39, 40] based on graph kernels [36] 

and graph matching [3, 18]. These algorithms use graphs to represent human actions and apply different graph 

kernel and graph matching methods for graph comparison. The comparison results on the Weizmann dataset, 

the KTH dataset, and the UCF sports dataset are shown in Table 3. The following points are noted: 

 Overall our methods perform better than the competing graph-based methods [3, 18, 36]. Although our 

results are slightly lower than the result for the hyper-graph-based method in [18] on the Weizmann 

dataset, on the KTH dataset our results are much better than those in [18]. This indicates the 

effectiveness of our graph-based similarity measurements. 

 Compared with the random walk graph kernel-based method in [36], our context dependent random walk 

graph kernel-based method yields a much more accurate result. This partly indicates the effectiveness of 

our context-dependent random walk graph kernel. 

 Our tree pattern graph matching method increases the recognition accuracy on the UCF sports dataset 

much more than on the Weizmann dataset and the KTH dataset. This indicates the effectiveness of the 

tree pattern graph matching in adapting to complex scenes. 

 Even our tree pattern graph kernel-based method outperforms relatively complex methods such as in [36, 

38] on the UCF sports dataset. This demonstrates that the information in the edge attributes and in the 

tree-structure of graphs is useful for classification. 

Table 3. The results (%) of comparison between our methods and previous graph-based methods 

Methods Weizmann KTH UCF sports 

Ta et al. [18] 100 91.2 - 

Celiktutan et al. [3] - 90.6 - 

Wang et al. [36] - - 85.2 

Jones et al. [38] - - 89.1 

Guo et al. [39] - 94.7 - 

Ma et al. [40] - - 89.4* 

Our context-dependent-based 96.9 97.0 90.8 

Our tree pattern kernel-based 95.7 96.3 91.3 

Our tree pattern matching-based 97.8 97.2 95.3 

 

5.5. Comparison with state-of-the-arts 

We compared our context-dependent random walk graph kernel-based method and our tree pattern graph 
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matching-based method with several state-of-the-art methods on the Weizmann dataset, the KTH dataset, the 

UCF sports dataset, the UCF films dataset, and the Hollywood2 dataset. The experimental results are shown 

in Table 4. The following points are observed: 

 Our methods overall outperform the listed methods on the KTH dataset, the UCF sports dataset, and the 

UCF films dataset. In particular, a higher accuracy than the popular deep learning method [45] was 

obtained. On the UCF sports dataset, the results of our method are, 8.5%, 9.4% and 9.3% higher, 

respectively, than the latest methods in [41, 42, 44]. 

 On the Weizmann dataset, out results are less accurate than those obtained by Yeffet et al. [24], but on the 

KTH dataset, the UCF Sports dataset, and the UCF films dataset, our results are much better than those 

obtained by Yeffet et al. [24]. 

 On the Hollywood2 dataset, our methods yield results comparable to the most accurate result in the 

literature. On this dataset, the state-of-the-art methods are usually based on densely sampled local 

features, and require a long computational time. Our methods are based on sparse features, but still 

achieve a good performance. This demonstrates the effectiveness of our graph representation and 

similarity measurement models. 

Table 4. The results (%) of comparison of our methods with the state-of-the-art methods on the five benchmark datasets 

Methods, years 
Weiz- 

mann 
KTH 

UCF 

Sports 

UCF films Holly- 

wood2 Kiss Slap Average 

Yeffet et al. [24] 100 90.1 79.2 77.3 84.2 80.7 - 

Wang et al. [22] - 92.1 85.6 - - - 47.7 

Kovashka et al. [11] - 94.5 87.3 - - -  

Le et al. [12] - 93.9 86.5 - - - 53.3 

Junejo et al. [32] 95.3 - - - - - - 

Wang et al. [21] - 94.2 88.2 - - - - 

Wang et al. [33] -      58.5 

Jiang et al. [10] - 95.8 88.0 - - - - 

Wang et al. [23] - 93.3 - - - - - 

Celiktutan et al. [3] - 90.6 - - - - - 

Rodrigues et al. [15] - - - 66.4 67.2 66.8 - 

Wang et al. [35]  - - 86.3 89.6 87.9 - 

Zhang et al. [41] - 94.8 87.5 - - - 51.8 

Sun et al. [42] - 93.1 86.6 - - - 48.1 

Jones et al. [38] - - 89.1 - - - 59.9 

Veeriah et al. [43] - - 94.0 - - - - 

Wang et al. [44] - 94.5 86.7 - - - - 

Shi et al. [45] - 95.6 - - - - - 

Gaidon et al. [46] - - - - - - 54.4 

Kihl et al. [47] - - - - - - 60.3 

Pei et al. [48] - - - - - - 43.9 

Gotoh et al. [49] - - - - - - 48.6 

Li et al. [60] - - 93.4 - - - - 

Alfaro et al. [61] - 97.5 - - - - - 

Our context- dependent-based 96.9 97.0 90.8 97.6 94.4 96.0 58.0 

Our tree pattern kernel-based 95.7 96.3 91.3 97.8 94.6 96.2 59.5 

Our tree pattern matching-based 97.8 97.2 95.3 97.9 94.7 96.3 60.4 

 

5.6. Comparison between the proposed kernels 

The results of comparison between the context-dependent random walk graph kernel and the tree-pattern 

graph matching kernel on the five benchmark datasets are included in Table 4. The following points are noted: 

 On all the five datasets, the tree-pattern graph matching kernel yields more accurate results than the 

context-dependent random walk graph kernel. This indicates that incorporating both incoming and 
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outgoing tree-patterns and selecting correctly matched affinal tree-pattern groups is discriminative for 

action recognition. 

 In particular, on the UCF sports dataset, in which the videos show complex scenes, our tree pattern graph 

matching-based method increases the recognition accuracy by 4.5%, which is a significant improvement 

over the context-dependent random walk graph kernel. This indicates that the tree pattern graph matching 

kernel is more suitable for complex scenes. 

 On the Weizman dataset, the KTH dataset, the UCF Films dataset, and the Hollywood2 dataset, the 

improvement of the tree-pattern graph matching kernel over the context-dependent random walk graph 

kernel is not large. This is because the context-dependent random walk graph kernel already yields 

state-of-the-art results, which influences the tree-pattern graph matching kernel to yield large 

improvement over the context-dependent random walk graph kernel. This indicates that the 

context-dependent random walk kernel and the tree-pattern graph matching kernel are both effective. 

6. Conclusion 

In this paper, we have proposed a family of context-dependent random walk graph kernels and a family 

of tree pattern graph matching kernels for the similarity measurement between graphs. In the 

context-dependent random walk graph kernel, the performance of the primary walk group comparisons is 

improved by using contexts. The general multiple kernel learning method with the l1,2-norm regularization 

effectively combines context-dependent graph kernels of different orders. In our tree-pattern graph matching 

kernel, more topological structural information is exploited. We have recursively computed the similarity 

between affinal tree-pattern groups in a dynamic programming formulation and applied a sparse constraint to 

match the tree pattern groups. The errors caused by falsely matched affinal tree-pattern groups are suppressed 

and the discriminative power of the tree pattern graph matching is increased. We have applied the proposed 

kernels to recognize human actions by constructing the concurrent graph and the causal graph to capture the 

spatiotemporal relations among local feature vectors. Experimental results on several datasets have 

demonstrated that the two graphs for representing actions are complementary and the proposed 

context-dependent random walk graph kernel and tree-pattern graph matching kernel are effective at 

improving the performance of action recognition. Our tree pattern graph matching kernel yields more accurate 

results than our context-dependent random walk kernel. 

As kernel methods are inefficient, our work is limited to make the experiments on datasets with small 

numbers of samples. We will investigate to handle this problem in our future work. 
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