
1

Context-Dependent Random Walk Graph Kernels and Tree Pattern

Graph Matching Kernels with Applications to Action Recognition

Weiming Hu, Baoxin Wu, Pei Wang, and Chunfeng Yuan

(CAS Center for Excellence in Brain Science and Intelligence Technology, National Laboratory of Pattern Recognition, Institute

of Automation, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing 100190)

{wmhu, bxwu, pei.wang, cfyuan }@nlpr.ia.ac.cn

Yangxi Li

(National Computer network Emergency Response technical Team/Coordination Center of China, Beijing 100055)

liyangxi@outlook.com

Stephen Maybank

(Department of Computer Science and Information Systems, Birkbeck College, Malet Street, London WC1E 7HX)

sjmaybank@dcs.bbk.ac.uk

Abstract: Graphs are effective tools for modeling complex data. Setting out from two basic substructures,

random walks and trees, we propose a new family of context-dependent random walk graph kernels and a new

family of tree pattern graph matching kernels. In our context-dependent graph kernels, context information is

incorporated into primary random walk groups. A multiple kernel learning algorithm with a proposed

l1,2-norm regularization is applied to combine context-dependent graph kernels of different orders. This

improves the similarity measurement between graphs. In our tree-pattern graph matching kernel, a quadratic

optimization with a sparse constraint is proposed to select the correctly matched tree-pattern groups. This

augments the discriminative power of the tree-pattern graph matching. We apply the proposed kernels to

human action recognition, where each action is represented by two graphs which record the spatiotemporal

relations between local feature vectors. Experimental comparisons with state-of-the-art algorithms on several

benchmark datasets demonstrate the effectiveness of the proposed kernels for recognizing human actions. It is

shown that our kernel based on tree-pattern groups, which have more complex structures and exploit more

local topologies of graphs than random walks, yields more accurate results but requires more runtime than the

context-dependent walk graph kernel.

Index terms: Visual action recognition, Graph kernel, Graph matching, Contexts, Tree patterns

1. Introduction

Human action recognition [58, 59] is one of the most challenging issues in computer vision. It has very

wide applications in domains such as visual surveillance, video retrieval, human-computer interaction, and

medical monitoring. Many methods for human action recognition represent each action as an ensemble of

local spatiotemporal feature vectors [4, 11, 17, 22] corresponding to sparse interest points extracted from

videos, and carry out human action recognition by analyzing these spatiotemporal feature vectors.

Bag-of-visual words (BoW)-based [4, 22] methods and methods based on the vector of local aggregated

descriptors (VLAD) [51] are popularly used to statistically represent an ensemble of local feature vectors as a

single vector. These vectors are used to construct an action classifier. However, the BoW and VLAD-based

methods do not make use of the spatiotemporal relations between local feature vectors. The subdivision of

videos into grids [52] or statistical measures of the concurrency [53] of local feature vectors were used to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/158971618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

include information about spatiotemporal relations in the BoW or VLAD-based methods. However, the

complex structure of the local feature vectors is still not fully exploited.

Graphs are effective tools for structuring and modeling complex data [1, 7]. The vertices represent data

themselves and the edges represent their relations. It is interesting to investigate human action recognition

using graphs for modeling ensembles of local feature vectors. To this end, there are two nontrivial difficulties

to be solved: how to construct graphs to model these local feature vectors and how to measure the similarity

between the constructed graphs. In this paper, we focus on these two problems and propose new graph-based

methods for human action recognition.

1.1. Related work

We briefly review graph-based action recognition and graph similarity measurement.

1.1.1. Graph similarity measurement

The traditional statistics-based classification methods cannot be directly used to classify actions

represented by structured graphs. Graph similarity measurement bridges the gap between structured action

representation and statistical classification. Graph kernels and graph matching are the main techniques for

measuring similarities between graphs.

Graph kernel-based measures of the similarity between two graphs usually compare all pairs of

substructures of the graphs. According to the form of substructures, traditional graph kernels can be

categorized as random walks-based [5, 20, 55], trees-based [26, 56], and limited-size sub-graphs- based [57].

Random walk-based graph kernels have received increasing attention recently. Gartner et al. [5] computed the

graph kernel of two labeled graphs by counting the number of matched labeled random walks. The method

was extended by Borgwardt et al. [1] by replacing the Dirac kernel with more complex kernels for continuous

attributes. Vishwanathan et al. [20] proposed several techniques to speed up the computation of random walk

graph kernels. Harchaoui and Bach [8] built a set of segmentation graph kernels on images and utilized a

multiple kernel learning method to combine these kernels for classifying images. Trees-based graph kernels

[26, 56] decompose graphs into trees as substructures. Mahe and Vert [26] measured the similarity between

graphs by counting the number of tree substructures with the same labels in the graphs. Shervashidze et al. [56]

defined an efficient kernel by comparing sub-tree-like patterns. Limited-size sub-graphs-based kernels [57]

decompose the two graphs into a series of substructures with specific sizes. Shervashidze et al. [57] divided

each graph into a number of graphlets and compared the numbers of the graphlets with the same structure in

order to measure graph similarities. All of the above graph kernels are built by comparing the similarities

between all pairs of substructures, such as walks, from the two graphs. The contexts of the substructures are

not exploited. Moreover, they can all be viewed as summation kernels on substructures [34] that do not take

into consideration the correspondences between substructures.

Graph matching [28, 29, 30, 31] determines a mapping between vertices of two graphs such that the

structure of the relations between vertices is preserved as much as possible. Leordeanu and Hebert [31]

proposed a spectral method to solve the graph matching problem. Egozi et al. [30] presented a probabilistic

interpretation for graph matching and derived a probabilistic graph matching algorithm. Cho et al. [28]

proposed a max-pooling strategy for graph matching. However, these algorithms do not consider high order

topological information which is useful for improving the performance of the matching

3

1.1.2. Graph-based action recognition

Graphs have been applied to model ensembles of local feature vectors or patches for human action

recognition. Borzeshi et al. [2] represented each frame as a graph whose vertices correspond to the spatial

local feature vectors extracted from the frame. Raja et al. [14] described a person in a frame using a graphical

model whose vertices encode the positions of human body parts and the action label. Gaur et al. [6]

constructed a string of feature graphs for representing the spatiotemporal layout of local feature vectors, where

each graph models the spatial configuration of local feature vectors in a small temporal segment. Ma et al. [40]

proposed an excellent method for action recognition by finding a compact set of hierarchical space-time tree

structures of human actions from videos. Ta et al. [18] constructed a hypergraph to model the extracted

spatiotemporal local feature vectors in a video. A hypergraph matching algorithm was used for action

recognition. The above methods construct graphs to model local feature vectors or body parts. They do not

explicitly model the spatiotemporal relations between these local features or body parts. A number of

researchers represent a video action using a graph, and then recognize human actions using graph comparison.

Celiktutan et al. [3] found vertex correspondences between graphs through graph matching. Then, the

similarity between two graphs was computed by summing the similarities between all the correctly matched

vertices. However, the graph similarity measurement is based on only a quite small number of vertices, and it

cannot completely characterize the graphs. Wang et al. [36] and Aoun et al [54] constructed graph kernels for

similarity measurements between graphs for action recognition. However, these graph kernels are based on

random walks and their contexts are not utilized. Moreover, the correspondences between the substructures

were not considered.

1.2. Our work

With the aim of handling the limitations in previous graph-based action recognition methods as well as

the limitations in previous graph similarity measurement methods, we propose a context-dependent random

walk graph kernel [37] and a tree pattern matching kernel for human action recognition.

We construct two directed attributed graphs, the concurrent graph and the causal graph, to describe the

spatiotemporal layouts of the local feature vectors extracted from each action video. The vertex attributes in

both graphs are the local feature vectors. The edge attributes in the concurrent and causal graphs describe the

relations of the local feature vectors within a frame and between frames respectively.

Setting out from two basic substructures, random walks and trees, we propose a context-dependent

random walk graph kernel and a tree pattern matching kernel. While these two new kernels decompose graphs

into primary random walk groups and tree-pattern groups respectively, they are constructed by combining the

vertex kernels and edge kernels in a similar way. In the context-dependent random walk graph kernel, we

propose to use a direct product for computing the context-dependent similarities between primary walk groups.

We utilize a generalized multiple kernel learning algorithm with the l1,2-norm regularization to determine the

weights for combining context-dependent graph kernels of different orders. The proposed l1,2-norm

regularization imposes the sparseness constraint on different orders’ context-dependent kernels from the same

graphs (concurrent graphs or causal graphs), because these graph kernels may contain redundant information,

in particular when the order is high. The regularization adds the smoothness constraint on kernels from the

concurrent graphs and the causal graphs respectively, to ensure that both the concurrent graphs and the causal

4

graphs which preserve different relations between vertices are used to estimate the similarity between the

videos. In our tree pattern graph matching kernel, the similarity between tree pattern groups is computed

recursively in a dynamic programming formulation. We formulate the correspondences between tree pattern

groups as a quadratic optimization problem with a sparse constraint. Only the correctly matched tree-pattern

groups are incorporated into graph matching. We apply the context-dependent random walk graph kernel and

the tree pattern graph matching kernel to measure the similarity between human actions for action recognition.

A SVM-based classifier is learnt for action recognition. As trees have more complex structures than random

walk, the tree pattern graph matching kernel yields more accurate results, but requires more runtime, than the

context-dependent random walk graph kernel.

The main novelties of our work are summarized as follows:

 The proposed two graphs for representing human actions are complementary to each other. Compared

with the popular BoW-based models [4, 22], they not only preserve the individual properties of local

feature vectors but also capture the spatiotemporal relations among them, and hence effectively provide a

more informative representation for actions.

 Compared with traditional random walk kernels which use the same weight to combine all the pairs of

primary walk groups [1, 5, 20], the proposed context-dependent random walk graph kernel weights the

pairs of primary walk groups using their contexts and then improves the similarity measurement between

graphs. The generalized multiple kernel learning algorithm effectively selects and combines informative

context- dependent graph kernels.

 The proposed tree-pattern groups preserve more local structural information in the graphs. The proposed

tree pattern graph matching kernel suppresses errors caused by falsely matched tree-pattern groups and

increases the discriminative power of the kernel.

The rest of the paper is organized as follows: Section 2 proposes our context-dependent random walk

graph kernel. Section 3 presents our tree pattern graph matching kernel. Section 4 describes the concurrent

and causal graphs-based action recognition methods. Section 5 reports the experimental results. Section 6

concludes the paper.

2. Context-Dependent Random Walk Graph Kernel

We first describe how to define context-dependent random walk graph kernels of different orders, then

show how to compute these kernels using the direct product graph, and finally show how to learn the weights

of these kernels using the generalized multiple kernel learning.

2.1. Definition

We define context-dependent random walk graph kernels on the basis of primary random walk groups

and their contexts in directed attributed graphs.

2.1.1. Primary walk groups on directed attributed graphs

In a directed attributed graph (,)G V E with the set of N vertices 1{ }N

i iv and the edge set E, a vertex

iv is a point with a coordinate vector in a Euclidean space and an attribute vector in the feature space. An

ordered pair of vertices
iv and jv defines an edge (,)i jv v E . Each edge is associated with an attribute

vector.

5

A random walk w with length n from graph G is defined as a sequence of vertices connected by n edges:

0 1 1
(, , ,..., ,)

n nw w w w ww v e v e v , where
iwe (1 i n) is the edge connecting vertices

1iwv

 and
iwv . A primary

walk group (,)n

G i j with length n in graph G is defined as the set of random walks with length n starting at

vertex
iv and ending at jv .

Let (,)vk v v be the basic kernel function measuring the similarity between vertices v and v in graphs

G and G respectively. Let (,)ek e e be the basic kernel function measuring the similarity between edges e

and e in graphs G and G respectively. These two basic functions are designed using the coordinate

vectors and the attribute vectors of vertices and the attribute vectors of edges according to the task at hand

(See Section 4.2). A kernel function (,)wk w w which measures the similarity between any two walks w and

w with the same length n is defined in the following way. If the length n is 0, then walks w and w are

vertices
0wv and

wv
 and the kernel (,)wk w w equals to the vertex kernel (,)v w wk v v

 . If length n is larger

than 1, then (,)wk w w is defined as the product of the kernels of the vertices and the kernels of the edges

along the two walks w and w respectively:

0 1

(,) (,) (,)
i i j j

n n

w v w w e w w

i j

k w w k v v k e e

 (1)

We define a kernel wgk for measuring the similarity between any two primary walk groups (,)n

G i j and

(,)n

G r s with the same length n as a summation of kernels of all the pairs of walks from these two primary

walk groups:

(,) (,)

((,), (,)) (,)
n n
G G

n n

wg G G w

w i j w r s

k i j r s k w w

 . (2)

2.1.2. Contexts of primary walk groups

We define the contexts of a primary walk group, based on the contexts of vertices. The context ()c i of

vertex
iv is defined as the set of a fixed number of vertices which are nearest to

iv in the Euclidean

coordinate space. Then, the context (,)n

G i j of a primary walk group (,)n

G i j consists of primary walk

groups starting at the contexts of
iv and ending at the context of

jv .

We define the kernel for the contexts (,)n

G i j and (,)n

G r s of primary walk groups (,)n

G i j and

(,)n

G r s as the sum of the kernels between the primary walk groups in these two primary walk group

contexts respectively:

(), (),
(), ()

(,), (,s) (,), (,)n n n n

wg G G wg G G

f c i g c j
o c r q c s

k i j r k f g o q

 . (3)

As similar primary walk groups usually have similar contexts, we weight the kernel for primary walk groups

using the kernel for their contexts. The context-dependent kernel cwgk for primary walk groups (,)n

G i j and

(,)n

G r s is defined as the sum of the kernel between (,)n

G i j and (,)n

G r s and the kernel weighted by

their contexts:

6

 (,), (,) (,), (,) 1 (,), (,)n n n n n n

cwg G G wg G G wg G Gk i j r s k i j r s k i j r s (4)

where the “1” is used to keep the similarity between the primary walk groups themselves and the parameter

0 controls the degree of the effect of the context information to the context-dependent kernel. The more

the context similarity, the more the context-dependent kernel is increased. The parameters κ is determined by

cross-validation. Fig. 1 shows an example of the contexts of primary walk groups, the corresponding kernels,

and the context dependent kernel.

Fig. 1. An example of the contexts of primary walk groups and the corresponding kernels: The left and right columns show two

graphs G and G , where the green vertices are the contexts of the red ones (The edges are not shown); The middle column

shows the kernels on primary walk groups and the kernels on their contexts, both of which are used to define the

context-dependent kernel on primary walk groups. A directed dashed curve denotes a random walk.

2.1.3. Context-dependent random walk graph kernel

The nth-order context dependent walk graph kernel is defined as the mean of the sum of the context

dependent walk graph kernels with walk length n:

(,)

(,s)

1
(,) (,), (,)

n n
G G
n n
G G

n n n

g cwg G Gn n

i jG G

r

k G G k i j r s
N N

, (5)

where n

GN is the number of primary walk groups with length n in graph G, and n

G is the set of all the

walks with length n in graph G. The normalization by n n

G GN N takes account of the fact that there are different

numbers of local feature vectors in different graphs.

We use a positive weight n to emphasize the importance of the nth-order context dependent random

walk graph kernel. Then, the final graph kernel is defined as:

(,) (,)n n

g g

n

k G G k G G . (6)

Our context-dependent random walk graph kernel is relevant to the traditional random walk graph kernel

and the context-dependent kernel for attributed point sets [13]. The description of their relations is included in

Appendix A, which is available online.

2.2. Direct product graph-based computation

In practice, a direct product graph [9] is used to efficiently compute the random walk kernel between two

graphs. Correspondingly, we propose to utilize direct product graphs to compute context-dependent random

walk graph kernels of different orders.

2.2.1. Direct product graph

The direct product graph (,)d d dG V E of two graphs (,)G V E and (,)G V E is a graph whose

vertices are in the set of pairs of the vertices in G and G respectively, as shown in Fig. 2. For a vertex
iv

...

a

b c

d

e f

...

1

4

6

a d 1 4 𝜌𝐺’
𝑛 1,4

b

b

c

c

e

e

f

f

2

2 5

5

6

3

3 6

𝜌𝐺
𝑛 𝑎,𝑑

𝜂𝐺
𝑛 𝑎,𝑑 𝜂𝐺’

𝑛 (1,4)

𝑘𝑤𝑔 (𝜌𝐺
𝑛 𝑎,𝑑 ,𝜌𝐺’

𝑛 (1,4))

𝑘𝑤𝑔 (𝜂𝐺
𝑛 𝑎,𝑑 ,𝜂𝐺’

𝑛 (1,4))

𝑘𝑐𝑤𝑔 (𝜌𝐺
𝑛 𝑎,𝑑 ,𝜌𝐺’

𝑛 (1,4))

𝐺 𝐺 ′

2
3

5

7

in G and a vertex
rv in G , if the vertex kernel (,)v i rk v v between these two vertices is larger than 0, then

the vertex pair (,)i rv v forms a vertex in
dG . For an edge (,)i jv v connecting vertices

iv and jv in G and

an edge (,)
r sv v in G , if the edge kernel ((,), (,))

e i j r sk v v v v between these two edges is larger than 0, then

there is an edge connecting vertices (,)i rv v and (,)j sv v in
dG . Each vertex (,)i rv v in

dG is assigned a

weight
irw which equals (,)v i rk v v . Each edge ((,), (,))

i r j sv v v v in
dG is assigned a weight ,ir jsw which

equals ((,), (,))
e i j r sk v v v v . For each edge in

dG , there exists a corresponding edge in G and a corresponding

edge in G . For each random walk in
dG , there exists a corresponding random walk in G and a

corresponding random walk in G , both with the same length.

(a) (b)

Fig. 2. Direct product graph: (a) Two graphs G and G with random walks with different lengths; (b) The corresponding direct

product graph and random walks: the yellow, red, and green colors represent, respectively, a 0-order random walk, a 1-order

random walk, and a 2-order random walk.

For the direct product graph
dG , we construct a diagonal matrix d d

d

V V

V

W , in which the ir-th

diagonal element (,)
dVW ir ir is

irw , to contain the vertex weights. We construct a matrix d d

d

V V

E

W , in

which the element (,)
dEW ir js is

,ir jsw , to contain the edge weights. The nth-order weight matrix n

dW of

dG is defined as ()
d d d

n n

d V E VW W W W . According to (1),
d dE VW W describes the changes in the kernels of

random walks when the walks are extended one edge. Simple derivation yields

(,) ((,), (,))n n n

d wg G GW ir js k i j r s (For details, see Appendix B, which is available online). Therefore, each

nonzero element in n

dW is the similarity between the corresponding primary walk groups with length n in

graphs G and G , respectively.

2.2.2. Computation of context-dependent graph kernels of different orders

To represent the context of each vertex in
dG , we define the context matrix d dV V

d

C whose

elements (,)dC ir js are 1 if jv is a context of
iv in G and

sv is a context of rv in G , otherwise are 0.

Each row in
dC describes the context of one vertex. The nth-order context-dependent weight matrix n

cdW of

dG is computed by ()n n n n T

cd d d d d d W W W C W C , where is the Hadamard product.

According to (4), each nonzero element in n

cdW corresponds to the context-dependent kernel between

two primary walk groups with length n in graphs G and G respectively, i.e., (,) ((,), (,))n n n

cd cwg G GW ir js k i j r s ,

where cwgk is defined in (4) (For details, see Appendix B). According to (5), the nth-order context-dependent

𝑎

𝑏

𝑐

𝑑

a′

𝑏′

𝑐′

(𝑎, 𝑎′) (𝑎, 𝑏′)
(𝑎, 𝑐′)

(𝑏, 𝑎′)

(𝑏, 𝑏′)

(𝑐, 𝑏′)
(𝑏, 𝑐′)

(𝑐,𝑎′)
(𝑐, 𝑐′)

(d, a′)

(𝑑, 𝑏′)

(𝑑, 𝑐′)
𝑎

𝑏′

𝑏 𝑑

𝑏′ 𝑐′

𝑎 d 𝑐

𝑎′ 𝑏′ 𝑐′

𝐺

𝐺′ 𝐺𝑑

8

walk graph kernel on graphs G and G is rewritten as:

,

1
(,) (,)

 n n

g cdn n
ir jsG G

k G G W ir js
N N

. (7)

It is apparent that n n

G GN N
 equals to the number of the nonzero entries in n

cdW . The computational complexity

of the context-dependent walk graph kernel can be found in Appendix C.

2.3. Generalized multiple kernel learning

Substitution of (7) into (6) yields the final graph kernel between two graphs. The weights { }n in (6)

can be estimated using the labeled samples. We apply the generalized multiple kernel learning [19] to this

estimation. The multiple kernel learning is an information fusion method. Each type of information

corresponds to one kernel. We use the multi-kernel learning to combine the graph kernels of different orders.

In real applications, each sample can be represented by a set of L graphs 1{ }L

l lG which have the same

vertex set, where different graphs represent different characteristics of these vertices (In our action recognition

method, L equals 2, i.e., a concurrent graph and a causal graph are used to represent a sample, as described in

Section 4.1). It is apparent that the L graphs share the same 0th order kernel 0

gk . Let
lZ be the maximal order

of the context-dependent walk group kernels on graphs l. The kernel on any two samples S and S is defined

as:

0 0

1 1

1 1

(,) (,) (,)
lZL

z z

g l g l l

l z

k S S k G G k G G

 , (8)

where the 0{ (,)} lZz

g l l zk G G
 are computed by (7).

It is assumed that a set of M training samples 1{ }M

m mS is available with labels 1{ }M

m my . We define a set

of M×M kernel matrices 0

1 1{ ,{ } }lZz L

l z l K K for the training samples, where 0 0

, ,(,) (,)
i ji j g l S l SK S S k G G and

, ,(,) (,)
i j

z z

l i j g l S l SK S S k G G . Corresponding to (8), we define the kernel matrix K for the training samples as

follows:

0 0

1 1

lZL
z z

l l

l z

 K K K , (9)

where 0z

l is the weight for z

lK . Let Λ be the weight vector whose elements are 1,..,0

1,...,{ ,{ } }lz Zz

l l L

. Let Y

be an M×M diagonal matrix with the numbers indicating the sample labels 1{ }M

m my on the diagonal. Let 1 be

an M-dimensional vector in which all the entries are 1. The dual problem of generalized multi-kernel learning

[19] is represented as minimizing the objective function ()D which is defined as:

 1

2

1

() max

Subject to 0, 0 ,

T T

T

m

D

C

α
1 α α YKYα

1 Yα

 (10)

where 1()M

m m α is the Lagrangian multiplier vector, C1 is a constant controlling the importance of the loss,

and the weights { } are included in K and Λ.

We add a regularization on the weights { }n . On the one hand, context-dependent graph kernels of

different orders on the same graphs (the lth graphs) may contain redundant information for classifying

9

samples. So, we add a sparseness constraint on the weights of those kernels. On the other hand, different

graphs preserve different relations between vertices, and contain complementary information. So, we add a

smoothness constraint on the weights of the kernels from different graphs (the L graphs for each sample), as

well as the weight for the 0-th order context dependent walk graph kernel. Therefore, we propose a l1,2-norm

regularization on the kernel weights Λ . It is defined as:

1

2
0 1 1 1

1 11 1 11 2

1
() , (,...,) ,.., (,...,) ,..., (,...,) .

2
l LZZ Z

l l L Lr Λ (11)

We add the l1,2-norm regularization to the generalized multiple kernel learning framework. The objective

function ()D Λ is updated by:

 1
22

() max ()T TD C r
α

Λ 1 α α YKYα Λ , (12)

where C2 is the constant controlling the regularization on kernel weights.

We utilize the mini-max optimization algorithm [19] to calculate Λ. The details of the algorithm can be

found in Appendix D. After the weights in Λ are obtained, the similarities between samples are computed

using (8). These similarities are used to train a SVM-based classifier. SVMs are appropriate for graph

kernel-based recognition, because SVMs only need to input similarities between samples. The extraction of

feature vectors from samples is avoided. Furthermore, SVMs allow for parallel computation of the similarities

between samples. Parallel computation is popularly used for action recognition.

3. Tree-Pattern Graph Matching Kernel

Considering that random walks in a graph have simple shapes with chain structures and cannot capture

sufficient topological information in a graph, we propose a graph matching kernel based on decomposing

graphs into tree patterns which have more complex structure than random walks. The kernel is computed by

comparing the incoming and outgoing tree-pattern groups from two graphs. We describe first how to define

the tree patterns, then how to recursively measure the kernels for tree-pattern groups, and finally how to

construct the tree pattern graph matching kernel.

3.1. Tree patterns

For a directed attributed graph (,)G V E , each vertex
iv V has a set of incoming neighbors

() { | (,) }i j j iv v V v v E and a set of outgoing neighbors () { | (,) }i j i jv v V v v E . We define the

in-degree of vertex iv as the number of its in-coming neighbors, and define its out-degree as the number of

its out-going neighbors.

A tree is a directed acyclic connected graph. It is denoted as ,()t tt U F where tU is its vertex set and

tF is its edge set. The vertices with in-degree zero are called root vertices. The vertices with out-degree zero

are called leaf vertices. Trees are naturally oriented by directed edges from root vertices to leaf vertices. The

height ()h t of a tree t is defined as the maximum number of edges connecting a leaf vertex and a root vertex

plus one. The branch ()b t of a tree is defined as the absolute value of difference between the number of root

vertices and the number of leaf vertices. The height and the branch are used to describe the complexity of a

tree.

A tree pattern [26] is a derivative of a tree, which emphasizes the tree structure. A tree-pattern from a

10

graph is a sub-graph which has a tree structure. In a graph (,)G V E , a tree-pattern which has the same

structure as the tree

(,)t tt U F is denoted as (,)t t tp V E with the vertex set
1 2 | |

{ , ,..., }
Ut

t t t tV v v v and the set

tE of edges linking vertices in
tV , where

it
v V and | |tU is the number of vertices in tree t. There is a

one-to-one mapping of vertices and edges between tree pattern
tp and tree t.

Given two tree patterns (,)t t tp V E and (,)t t tp V E which have the same structure as the tree t, we

measure their similarity using the similarities between the vertices and between the edges in the two tree

patterns respectively. Let
it tv V and

it tv V correspond to the ith vertex of tree t. The tree-pattern kernel

between
tp and

tp is defined as the weighted product of vertex kernels and edge kernels:

| | | |

,

1 1

(,) () (,) (,)

t t

i i j j

U F

t t t v t t e t t

i j

k p p t k v v k e e , (13)

where
1

, ()
th t bt is a weighting function which measures the structure complexity of the tree t. The

complexity of a tree increases when its height ()h t or its branch ()b t increases. By adjusting and γ, the

effect of the complexity of tree patterns on the similarity measurement can be increased or reduced.

(a) Trees (b) Incoming trees (c) Outgoing trees

Fig. 3. Examples of trees with different structures.

We consider incoming trees and outgoing trees. In an incoming tree, the out-degree of all the vertices is

one except for the leaf vertex. In an outgoing tree, the in-degree of all the vertices is one except for the root

vertex. Fig. 3 shows some examples of incoming and outgoing trees. The tree-patterns extracted from graphs

according to incoming trees and outgoing trees are called incoming tree-patterns and outgoing tree-patterns

respectively. These two kinds of tree patterns exploit, respectively, the incoming and outgoing neighborhood

information on vertices. Let /h h

in outT T be the set of incoming/outgoing trees whose heights are less than h. Let

(,)P t G be the set of tree patterns structured by tree t and extracted from graph G. We define the tree

pattern-based h-order graph kernel (,)h

gk G G between graphs G and G as the summation of the

similarities of all the pairs of the incoming and outgoing tree patterns whose heights are less than h:

(,) (,)
(,) (,)

(,) (,) (,)
h h

t tin out

t t

h

g t t t t t t

p P t G p P t Gt T t T
p P t G p P t G

k G G k p p k p p

 . (14)

This new kernel uses incoming and outgoing tree patterns to capture the different local neighborhood relations

between vertices. In contrast with random walks, these two types of tree patterns have more complex

structures and more effectively describe the local topological structure of graphs for measuring the similarities

h(t)=3, b(t)=0 h(t)=3, b(t)=0 h(t)=2, b(t)=1 h(t)=3, b(t)=2 h(t)=2, b(t)=1 h(t)=3, b(t)=1

h(t)=4, b(t)=0 h(t)=3, b(t)=1 h(t)=3, b(t)=1 h(t)=3, b(t)=3 h(t)=3, b(t)=1 h(t)=3, b(t)=2

11

between graphs.

3.2. Similarities between tree-pattern groups

By using each vertex as the root of outgoing trees or the leaf of incoming tress, the graph is decomposed

into many tree patterns. It is an NP hard problem to extract all the tree patterns from a graph. Instead of

extracting all the tree patterns, we recursively compute the similarities between graphs based on tree patterns.

This computation depends on the definition of affinal incoming/outgoing tree-pattern groups and

incoming/outgoing neighborhood matching sets.

Definition 1: Affinal incoming tree-pattern group: Each vertex v’s h-order affinal incoming

tree-pattern group ()h

inH v in a graph G is the set of incoming tree-patterns which have the same leaf vertex v

and whose heights are no more than h.

Definition 2: Affinal outgoing tree-pattern group: Each vertex v’s h-order affinal outgoing tree-pattern

group ()h

outH v in a graph G is the set of outgoing tree-patterns which have same root vertex v and whose

heights are no more than h.

Fig. 4 shows some examples of affinal incoming/outgoing tree-pattern groups. The similarity between the

affinal incoming tree-pattern groups ()h

inH v for vertex v in graph G and ()h

inH v for vertex v in graph G

is defined as the summation of similarities between all the pairs of incoming tree-patterns taken from ()h

inH v

and in ()hH v , respectively. The corresponding kernel is:

() ()

((), ()) (,)
h h
in in

h h

H in in t

p H v p H v

k H v H v k p p

 , (15)

where ()tk is defined in (13) and the similarity between tree patterns with different tree structures is 0.

Similarly, the kernel for affinal outgoing tree-pattern groups is defined as:

() ()

((), ()) (,)
h h
out out

h h

H out out t

p H v p H v

k H v H v k p p

 . (16)

 (a) (b) (c) (d)

Fig. 4. Examples of affinal tree-patterns: (a) A directed graph G; (b) Incoming tree-patterns and outgoing tree-patterns; (c)

Affinal incoming tree-pattern groups and affinal outgoing tree-pattern groups; (d) Affinal tree-pattern groups.

We estimate the h-order affinal tree-pattern group kernel between two vertices using the h-1 order affinal

tree-pattern group kernels of the neighbors of the two vertices. We introduce two definitions to exploit the

incoming and outgoing neighborhood information in graphs.

𝑣1 𝑣2

...

...

...

...

...

...

Incoming tree patterns

Outgoing tree patterns

𝑣1 𝑣1
𝑣1

...

𝑣2 𝑣2 𝑣2 𝑣2
...

...Affinal outgoing tree

pattern groups

𝑣1
𝑣1

...

𝑣2 𝑣2
...

...

𝑣2

𝑣1

Affinal incoming tree

pattern groups

...

...

h=1

h=2

h=3

h=1

h=2

h=3

G

𝑣1

𝑣2

𝑣1 𝑣1 𝑣1
𝑣1 𝑣1

𝑣1 𝑣1
...

𝑣1 𝑣1

...

𝑣2 ...
𝑣2 𝑣2 𝑣2

𝑣2 𝑣2
...𝑣2

𝑣2

...

Affinal tree pattern groups

𝐻𝑜𝑢𝑡
ℎ (𝑣1)

𝐻𝑖𝑛
ℎ (𝑣1)

𝐻𝑖𝑛
ℎ (𝑣2)

𝐻𝑜𝑢𝑡
ℎ (𝑣2)

𝐻ℎ(𝑣2)

12

Definition 3: Incoming neighborhood matching set: The incoming neighborhood matching set

(,)M v v of two vertices v and v in graphs G and G respectively is a set of one-to-one matching pairs of

the incoming neighbors of v and the incoming neighbors of v . An element R of (,)M v v consists of one or

several pair(s) of vertices from incoming neighborhoods ()v and ()v of v and v respectively. For

pairs (a, b) and (c, d) in R, a is c if and only if b is d, i.e., there is the one-to-one matching between the

incoming neighbors of v and v in R. For each vertex pair (a, b) belonging to R, both the vertex kernel on the

pair and the edge kernel on the pair of edges (a,v) and (,)b v have positive values, i.e., (,) 0vk a b and

((,),(,)) 0ek a v b v .

Definition 4: Outgoing neighborhood matching set: The outgoing neighborhood matching set

(,)M v v of two vertices v and v in graphs G and G respectively is defined by replacing the incoming

neighborhood in (,)M v v with the outgoing neighborhood, i.e., (,)M v v is a set of one-to-one matching

pairs of the outgoing neighbors of v and v .

According to the definition of (,)M v v , by substituting (13) into (15), the affinal incoming tree-pattern

group kernel ((), ())n n

H in ink H v H v is rewritten equivalently in a dynamic programming formulation [26] as:

 1 1

(,)(,)

1
((), ()) , ' 1 (,), (, (), () ,h h h h

H in in v e H in in

u u RR M v v

k H v H v k v v k u v u v k H u H u

 (17)

where and are the two parameters defined in (13) (See [26] for the details of the mathematical

derivation of (17)). Then, the affinal incoming tree-pattern group kernel can be computed recursively. The

initialization for the iteration is 1 1((), ()) (,)H in in vk H v H v k v v . Correspondingly, the affinal outgoing

tree-pattern group kernel ((), ())n n

H out outk H v H v in (16) is rewritten as:

 1 1

(,)(,)

1
((), ()) , ' 1 (,), (, (), () ,h h h h

H out out v e H out out

u u RR M v v

k H v H v k v v k v u v u k H u H u

 (18)

where 1 1((), ()) (,)H out out vk H v H v k v v . In this way, the kernels for affinal tree-pattern groups can be computed

efficiently, avoiding the exaction of all the tree patterns in graphs. Verifying whether the tree patterns of two

graphs are from the same tree is carried out in the dynamic programming process.

For a vertex v in graph G, the affinal incoming tree-pattern groups ()h

inH v and the affinal outgoing

tree-pattern groups ()h

outH v are collectively referred to as affinal tree-pattern groups

() () ()h h h

in outH v H v H v , as shown in Fig. 4. The kernel ((), ())h h

Hk H v H v between two affinal tree-pattern

groups ()hH v and ()hH v is defined as:

((), ()) ((), ()) ((), ())h h h h h h

H H in in H out outk H v H v k H v H v k H v H v . (19)

The kernels for affinal tree-pattern groups are used to compute the tree pattern graph kernel in (14). For

two graphs, the summation of the similarities between all the incoming/outgoing tree patterns is equivalent to

the summation of the similarities between all the affinal incoming/outgoing tree pattern sets. Then, (14) is

rewritten as:

13

'

(,) ((), ())h h h

g H

v V v V

k G G k H v H v

 . (20)

This kernel is called the tree-pattern graph kernel. Its computational complexity depends on populating

(,)M v v and (,)M v v in (17) and (18). Theoretically, its computational complexity is 2(| || |)BO V V hB ,

where B is an upper bound on the incoming degree and the outgoing degree. For applications to action

recognition, the graphs are very sparse, resulting in a very small value of B. We design the vertex kernel ()vk

and the edge kernel ()ek such that the sizes of the incoming and outgoing neighborhood matching sets are

kept small. These designs ensure that the tree-pattern graph kernel is computed efficiently.

The limitation of the tree-pattern graph kernel is that all the similarities between affinal tree-pattern

groups are summed up with the same weight. The more discriminative tree patterns are not emphasized.

3.3. Tree-pattern graph matching

To solve the above limitation in the tree pattern graph kernel, we construct a tree-pattern graph matching

kernel by finding correctly matched affinal tree-pattern groups using labeled samples.

We assign a weight ,v v to each pair of affinal tree-pattern groups ()hH v and ()hH v from two

graphs G and G . Then, we define the tree-pattern graph matching kernel (,)h

mgk G G for graphs G and G

as follows:

,(,) ((), ())h h

mg v v H

v V v V

k G G k H v H v

 , (21)

where ,v v indicates importance of the matching between ()hH v and ()hH v .

Besides the measurement ((), ())h h

Hk H v H v of the matching quality of a pair of affinal tree-pattern

groups ()hH v and ()hH v , we define a function ((), (), (), ())h h h h

Hc H v H u H v H u to measure the pair-wise

agreement between pairs ((), ())h hH v H v and ((), ())h hH u H u of affinal tree-pattern groups for vertices v

and u in G and vertices v and u in G :

((), (), (), ()) ((), ()) ((), ()) (, , ,),h h h h h h h h

H H Hc H v H u H v H u k H v H v k H u H u f v u v u (22)

where (, , ,)f v u v u measures the geometric relations between pairs of affinal tree-pattern groups and is

defined according to applications (see Section 4.2). Fig. 5 shows the relations between pairs of affinal

tree-pattern groups.

Fig. 5. The relation between two pairs of affinal tree pattern groups: The quality of a matching pair of affinal tree pattern groups

()hH v and ()hH v is measured using ((), ())h h

Hk H v H v , and ((), (), (), ())h h h

Hc H v H u H v H u measures the pairwise

agreement between pairs (), ()h hH v H v and (), ()hH u H u .

𝑣 ...

𝑢 ...

𝑣′
...

𝑢′
...

𝐻ℎ(𝑣)

𝐻ℎ(𝑢)

𝐻ℎ(𝑣′)

𝐻ℎ(𝑢′)

𝑘𝐻(𝐻
ℎ 𝑣 ,𝐻ℎ 𝑢)

𝑘𝐻(𝐻
ℎ 𝑢 ,𝐻ℎ 𝑢′)

𝑐𝐻(𝐻
ℎ 𝑣 ,𝐻ℎ 𝑢 ,𝐻ℎ 𝑣′ ,𝐻ℎ 𝑢′)

14

The correctly matched affinal tree-pattern groups have not only high matching degree, but also high

pair-wise agreement. The matched affinal tree-pattern groups should be emphasized and the mismatched

affinal tree-pattern groups should be suppressed. Given a pair of samples S and S , graph sets

1{ (,)}L

l l l lG V E , and 1{ (,)}L

l l l lG V E
 are extracted respectively. We design a quadratic objective function

for S and S as follows:

 2

, , , ,
{ }

, , , ,

,

max (), () (), (), (), () ()

. . , ,0 1,

h h h h h h

v v H l l v v u u H l l l l v v

l v v l v v u v u v l v v

l l v v

k H v H v c H v H u H v H u C

s t v V v V

 (23)

where C is a constant for the l1,2-norm sparse constraint for selecting matched affinal tree-pattern groups from

the same graphs (the lth graphs) and smoothing the weights of the affinal tree-pattern groups from different

graphs (the L graphs for each sample). We determine the weights ,{ }v v by solving the quadratic objective

function in (23) for two samples efficiently using the trust region reflective algorithm [25]. The obtained

weights { } are substituted into (21) to compute the tree-pattern graph matching kernel between samples S

and S . The sparse regularization ensures that only the correctly matched affinal tree-pattern groups with

high weights are dominant in the kernel construction. This augments the discriminative ability of the

tree-pattern graph matching kernel. The kernel similarities between the training samples are used to train a

SVM classifier. Given a test sample, we compute its kernels to the support vectors which are a small subset of

the training samples that lie on the maximum margin hyper-planes in the feature space. These kernels are

input to the classifier to determine the label of the test sample. The trust region reflective algorithm requires

only a few iterations to obtain an effective local solution and a good classification result, even though the

algorithm is halted before convergence.

3.4. Relevance to existing kernels

The proposed tree-pattern graph matching kernel has properties from graph kernels and from graph

matching kernels. The corresponding analysis is as follows:

The tree-pattern graph matching kernel extends several previous kernels. When all the weights ,{ }v v

are set to 1, the tree-pattern graph matching kernel reduces to the tree-pattern graph kernel in (20). If we only

consider outgoing tree-patterns and set
vk and

ek equal to Dirac kernel functions, then the tree-pattern

graph matching kernel reduces to the tree graph kernel in [26]. If parameter in (13) is very small, then

tree-patterns with a high complexity are penalized, with the result that only tree-patterns consisting of linear

chains of vertices have significant weights, i.e., the tree-pattern graph kernel approximates to a traditional

random walk graph kernel [20]. If μ in (13) is set to 0, then tree-patterns degenerate into vertices and the

tree-pattern graph matching kernel reduces to the summation kernel of vertices [27].

The objective function for determining the weights ,v v in (23) is related to the graph matching kernel

in [28, 29, 30, 31]. In both cases, a unary term and a pair-wise term exploit the local compatibilities and

pair-wise geometric relations between substructures of graphs. In contrast with traditional graph matching

kernels, our tree-pattern group matching kernel has the following properties:

 The tree-pattern graph matching kernel uses affinal incoming and outgoing tree-pattern groups as

substructures to effectively describe the local structure of graphs.

15

 We add a sparse constraint in (23) to keep well matched affinal tree-pattern sets, and remove noisy ones.

3.5. Comparison with context-dependent random walk graph kernel

We summarize the similarities and differences between the context-dependent random walk graph kernel

and the tree-pattern graph matching kernel as follows.

1) Similarities: Both these kernels are constructed by decomposing each graph into sub-graphs and then

combining the kernels between the sub-graphs. The sub-graphs into which these two kernels decompose a

graph are random walks and tree patterns respectively. These two kernels construct the sub-graph kernels in a

similar way: The kernels between sub-graphs are products of the kernels for the vertices and the edges

included in the sub-graphs and the graph kernels are sum of the kernels of the sub-graphs into which the

graphs are decomposed. They both can be reduced to the traditional random walk graph kernel, as stated in

Appendix A and Section 3.4.

2) Differences: Random walks in a graph have simple shapes with chain structures. This limits the

ability of random walk kernels to capture sufficient topological information in a graph. Tree patterns have

more complex structure and obtain more information about the local topologies of graphs than random walks.

A primary walk group is a set of random walks starting at a vertex and ending at another vertex. It describes

the local structure as a function of depth, as measured by the edges over which the walk passes. The contexts

of a primary walk group supplement the normalized local breadth structure information in the random walk

graph kernel. An affinal tree-pattern group is a set of tree-patterns that have the same leaf vertex or the same

root vertex. It describes the local structure as a function of both the depth and breadth without normalization.

Affinal tree-pattern groups consisting of incoming and outgoing tree-pattern groups describe the local

structure both along and against the directions of the edges. Therefore, the tree-pattern graph kernel captures

more of the local topological properties of the graphs and more accurately measures similarities of graphs than

the context-dependent walk graph kernel. As random walks are more regular, the context-dependent random

walk graph kernel can be computed directly and conveniently using the direct product graph. The equation for

computing the context-dependent random walk kernel is concise. However, tree-pattern graph matching

kernel cannot be computed using the direct product graph. It is recursively computed in a dynamic

programming formulation. The recursive solution is elegant. But it requires more runtime than the

computation of the context-dependent random walk graph kernel. In addition, the context-dependent random

walk graph kernel measures the similarity between two graphs by comparing the pairs of sub-graphs of the

graphs, while the tree-pattern graph matching kernel keeps well matched sub-graphs.

4. Action Recognition

We follow the traditional action recognition framework based on points of interest. Given a video

containing actions, Dollar’s separable linear filters [4] are utilized to detect the spatiotemporal interest points.

The 3D SIFT descriptor [17] is used as the local spatiotemporal feature vector to describe each detected

interest point. We construct a concurrent graph and a causal graph to model the relations between local feature

vectors. Based on the constructed graphs, the similarities between actions are computed for action recognition.

4.1. Graphs for representing actions

The concurrent graph (,)c c cG V E is constructed to model the spatial relations of interest points in each

16

frame. Its vertex set
cV consists of the interest points. We employ the ε-graph method to construct the edge

set
cE . A sparse affinity matrix

cA is defined for
cG . Let (, ,)i i ix y t be the image and frame coordinates

of the ith interest point. For two interest points i and j in the same frame (
i jt t), if point j is up to point i in

the image and their image distance is close enough, then the element (,)cA i j in
cA is 1. In any other case,

(,)cA i j is 0. If (,) 1cA i j , (,)i j cv v E . As shown in Fig. 6,
cG is a graph directed from bottom upwards

and without loops
1
. The 3D SIFT descriptor of a vertex is used as its attributed feature vector for capturing

local appearance information. Attributes are attached to edges according to the relative spatial positions of

vertices. The relative spatial position of jv with regard to
iv can be represented by (,) (,)j i j ir i j x x y y .

Then, we describe the attribute associated with an edge (,)i jv v using (,)r i j .

Fig. 6. Graphs for representing actions: (a) A video; (b) Local feature vectors; (c) Concurrent graph; (d) Causal graph.

The causal graph (,)s s sG V E is constructed to model the spatial relations of local feature vectors

between frames. Its vertices
sV as well as the associated attributed vectors are the same as in the concurrent

graph. We define an affinity matrix
sA for

sG . For two interest points i and j in neighboring frames, if they

are close in the image coordinate space, then element (,)sA i j in
sA is 1. In any other case, (,)sA i j is 0.

When (,) 1sA i j , (,)i j sv v E . As shown in Fig. 6,
sG is a graph directed from left to right. The attribute

associated with edge ije is also described by (,)r i j . While the directed edge ije describes a temporal

causal relation between
iv and jv , the assigned edge attribute (,)r i j describes their relative spatial

position.

The concurrent graph and the causal graph describe different relations between local feature vectors.

These two graphs are complementary to preserve the spatiotemporal features of actions.

4.2. Action similarity measurement

We apply the proposed context-dependent random walk graph kernel and tree pattern graph matching

kernel to measure the similarity between human actions represented by the concurrent graph and the causal

graph. This similarity measurement is based on two basic kernels: the vertex kernel and the edge kernel.

In a concurrent graph, let d and d be the 3D SIFT descriptors for vertices v and v , respectively. If the

1
 Any one of the following ways can be used to construct a directed concurrent graph: directed from bottom up, directed from

top down, directed from left to right, or directed from right to left. If any two of the four ways are combined, then loops may
exist in the graph, and loops may produce traceback in random walks.

...

1t

1t

2t

2t

2t1t

3t

3t

3t

4t

4t

4t

t

t

...

(a)

(b)

(c)

(d)

17

distance between d and d is close in the feature space, then the vertex kernel between them is:

2

2

2
(,) exp

2
v

d d
k v v

 (24)

where σ is a scale parameter for the Gaussian function. Otherwise, (,)vk v v is 0. Given the attributes (,)r i j

of an edge ije in a concurrent graph, the edge kernel depends on the spatial distance between vertices
iv

and jv and the direction of (,)r i j . The edge kernel (,)e ij oqk e e between edge ije in graph G and edge
oqe

in graph G is 1, if vectors (,)r i j and (,)r o q have similar lengths and directions where the direction

similarity is evaluated by the cosine of the angle between (,)r i j and (,)r o q :

2 2

(,) (,)

(,) (,)

r i j r o q

r i j r o q

. (25)

Otherwise, (,)e ij oqk e e is 0.

The vertex kernel for the causal graph is defined in the same way as in the concurrent graph. The edge

kernel (,)e ij oqk e e between edge ije in causal graph G and edge
oqe in causal graph G is 1, if vectors

(,)r i j and (,)r o q have similar directions, otherwise the edge kernel is 0.

The above definitions of vertex kernels and edge kernels make the two graphs quite sparse. This speeds

up the computation process. There are no cycles in either graph. This suppresses the tottering, halting, and

backtracking associated with computing the kernels based on random walks or trees.

For the context-dependent random walk graph kernel, based on the defined vertex kernel and edge kernel,

the kernels of different orders between the two videos are computed using (7). The l1,2-norm regularized

generalized multiple kernel learning is used to estimate the weights for the kernels of different orders. Then

the similarity between the two videos is computed using (8).

For the tree pattern graph matching kernel, we substitute the defined vertex kernel and edge kernel into

(17) and (18) to compute the kernels for the affinal incoming and outgoing tree-pattern groups. Subsequently,

we define two variables ,ij oqd and ,ij oq to describe the relative spatial geometric relations between two

vertex pairs ,i jv v V and ,o qv v V :

, 2

,

2 2

(,) (,) ,

(,) (,)
arccos .

(,) (,)

ij oq

ij oq

d r i j r o q

r i j r o q

r i j r o q

 (26)

If iv and
jv are in the same frame in a video and ov and

qv are in the same frame in another video, the

geometrical coherence function f in (22) is defined as:

2 2

, ,

2 2
(, , ,) exp

2 2

ij oq ij oq

i j o q

d

d
f v v v v

, (27)

where
d and are scale parameters. Otherwise, f is 0. This definition of f ensures that the affinal

tree-pattern group pairs ((), ())h h

i oH v H v and ((), ())h h

j qH v H v are used in measuring the pair-wise

agreement only when iv and jv are in the same frame and
ov and qv are in the same frame. By solving

18

(23), we obtain the weight for each pair of affinal tree-pattern groups. Then, the tree-pattern graph matching

kernel in (21) is computed.

The context-dependent walk graph kernel and the tree-pattern graph matching kernel form a bridge

between graphs representing actions and statistic learning methods. Based on the obtained matrix of

similarities between videos, the SVM classifier is trained to classify videos containing different actions.

5. Experimental Results

We tested the proposed context-dependent random walk graph kernel-based and tree-pattern graph

matching kernel-based action recognition methods on the following benchmark datasets: the Weizman dataset,

the KTH dataset [16], the UCF Sports dataset [15], the UCF Films dataset [15], and the Hollywood2 dataset:

 The Weizmann dataset contains 90 videos with 10 actions. Each action was performed by 9 people.

 The KTH dataset has 599 videos, containing six human actions (walking, jogging, running, boxing, hand

waving, and hand clapping) which were performed by 25 subjects under four different scenarios.

 The UCF sports dataset consists of 150 broadcast sports videos with ten actions, such as diving, lifting,

and running. Videos were captured in realistic scenarios with natural, complex, and cluttered background.

The videos exhibit large intra-class variations.

 The UCF films dataset was collected from a range of films genres, such as classic old movies, comedies,

and scientific movies. There are 92 samples of kissing and 112 samples of slapping. The actions were

captured in a wide range of scenes under different viewpoints.

 The Hollywood2 dataset consists of 12 actions, such as “answer phone” and “drive car”. There are 1707

video samples in total, including 823 samples for training and 884 samples for testing. All the samples

were collected from Hollywood movies.

On the Weizman dataset and the KTH dataset, we carried out the leave-one-action-out cross validation to

make the performance evaluation, i.e., in each run, the videos of one randomly selected action were used for

testing and all the other videos were used for training. On the UCF Sports dataset and the UCF Films dataset,

we carried out the leave-one-video-out cross validation. One video was used for testing and the remaining

videos were used for training. On the Hollywood2 dataset, the training and test sets were used for training and

testing respectively. On the first four datasets, accuracy was used as the evaluation criterion. On the last

dataset, the average precision for each action was calculated and the mean average precision on all actions

was used as the evaluation criterion.

In the following, we first verify the effectiveness of the graph-based representation for actions. Then, the

context-dependent walk graph kernel and the tree-pattern graph matching kernel are compared with their

variants to show their effectiveness. Finally, we compare our methods with graph-based methods and

state-of-the-art methods for action recognition.

5.1. Effectiveness of graph representation

To illustrate the effectiveness of the concurrent graph and the causal graph for representing actions, we

compared our methods with the following variants using the context-dependent random walk graph kernel:

 The BoW-based method: A BoW model was used to represent the ensemble of local feature vectors

extracted from each video. The K-means algorithm was used to cluster the local feature vectors into 1200

19

visual words. A histogram of words was constructed for each video. A χ
2
-kernel was used to measure the

similarities between the histograms. An SVM classifier was trained for action classification. The

spatiotemporal relations of local features were not involved in this method.

 The method based on the kernel for attributed point sets: As stated in Appendix A, the 0th-order

context-dependent random walk graph kernel corresponds to the kernel for attributed point sets. This

attributed point set kernel was used to measure the similarities between point sets. The obtained kernel

matrix was input into an SVM classifier. Although videos were represented by the concurrent graphs and

the causal graphs, the edge information in the graphs is not involved in the kernel. Action recognition

only depends on the individual discriminative capability of local feature vectors.

 The concurrent graph-based method: The ensemble of local feature vectors was modeled by the

concurrent graph. The causal graph was omitted. We computed the context dependent graph kernels of

different orders on the concurrent graphs and applied the generalized multiple kernel learning to combine

these context dependent kernels for action recognition. In this method, the spatiotemporal relations

between local feature vectors in the same frames were used.

 The causal graph-based method: The ensemble of local feature vectors was modeled by the causal

graph. The concurrent graph was omitted. This method uses spatiotemporal relations between local

feature vectors in successive frames.

Table 1. The recognition accuracies (%) of our context-dependent random walk graph kernel-based method and the four variants

on the Weizmann, KTH, and UCF sports datasets

Methods Weizamnn KTH UCF Sports

BoW-based 92.4 95.0 86.0

Point sets-based 91.4 94.7 85.3

Concurrent graph-based 95.7 95.5 88.7

Causal graph-based 94.6 96.3 89.3

Our context-dependent method 96.9 97.0 90.8

In the experiments, we defined the nearest 5 interest points in the 3D space as the context of a given

interest point. We set the maximum order of graph kernels to 5 for both the concurrent graphs and the causal

graphs. Table 1 shows the action recognition accuracies of our context-dependent random walk graph kernel

method and the above four variants on the Weizmann, KTH, and UCF sport datasets. Due to space limitation,

we illustrate the confusion matrices of our context dependent random walk-based method on these three

datasets in Fig. A of Appendix E in the supplemental file, which is available online. On analyzing the results,

the following points were observed:

 The point sets-based method and the BoW-based method yield the lowest accuracies. This is because

these methods only model individual local feature vectors, without considering the spatiotemporal

relations between local feature vectors.

 The concurrent graph-based method and the causal graph-based method, which model spatiotemporal

relations of local features within a frame and between frames respectively, yield higher accuracies than

the point sets-based method and the BoW-based method. This indicates that the spatiotemporal relations

preserved in the concurrent graphs and in the causal graphs improve the accuracy of action recognition.

 Our context-dependent walk graph kernel method outperforms both the concurrent graph-based method

and the causal graph-based method. This indicates that the concurrent graph and the causal graph, which

20

capture different spatiotemporal relations, are complementary to each other, and the combination of these

two graphs leads a more informative and discriminative representation for human actions.

5.2. Effectiveness of context-dependent graph kernel

To illustrate the effectiveness of the context-dependent walk graph kernel, we compared our method with

the variants obtained by replacing the context-dependent walk kernel (,)n

gk G G in (7) with the traditional

random walk graph kernel (,)n

tgk G G shown in Appendix A. In the traditional random walk-based method,

the contexts of primary walk groups are not involved in the matching of the primary walk groups, when

computing graph kernels. Fig. 7 shows the comparison results on the KTH dataset and the UCF sports dataset

when the maximum order was set to 0, 1, 3, 5, and 7, respectively. It is seen that the context-dependent

random walk method always yields a higher accuracy than the traditional walk kernel-based method. This is

because the proposed context-dependent random walk graph kernel is superior to the traditional random walk

kernel in measuring the similarity between graphs. The context information utilized in primary walk group

matching improves the performance of action recognition.

Fig. 7. The results of the traditional random walk kernel and our context-dependent random walk kernel when the maximum

order takes values from 0 to 7: the x-axis is the order and the y-axis is the accuracy.

5.3. Effectiveness of tree-pattern graph matching

We evaluated the effectiveness of our tree-pattern graph matching kernel by comparing it with the

following variant graph kernels for action recognition:

 Summation-based graph kernel: This kernel is defined as the summation [34] of the kernels of all the

pairs of vertices from the two graphs. This kernel only considers the individual local features, without

taking into account the information of edge attributes and the structures of the graphs.

 Incoming tree pattern-based graph kernel: Only the incoming tree pattern-based graph kernel is used

to measure the similarity between two graphs. The substructures described by affinal incoming tree-

pattern groups were considered for representing the spatiotemporal relations between local feature

vectors.

 Outgoing tree pattern-based graph kernel: This kernel is computed only based on the affinal outgoing

tree-pattern groups. Only outgoing neighborhood information on local feature vectors was considered for

measuring their spatiotemporal relations.

21

 Tree pattern-based graph kernel: As shown in (20), this kernel combines the incoming and outgoing

tree-pattern graph kernels. It considers both the incoming and outgoing neighborhood information, but all

the pairs of tree patterns are assigned the same weight.

Table 2 shows the action recognition accuracies of our tree pattern graph matching-based method and the

above four variants on the Weizmann, KTH, and UCF sports datasets. We show the confusion matrices of our

tree pattern graph matching-based method on these three datasets in Fig. B of Appendix E in the supplemental

file, which is available online. These results illustrate the following interesting points:

 The summation kernel-based method yields the lowest accuracy. This indicates that a simply comparison

of the local feature vectors in any two videos is not a sufficient measure of the similarities between

videos.

 Both the incoming tree pattern graph kernel and the outgoing tree pattern graph kernel yield more

accurate results than the summation graph kernel. This indicates that the local spatiotemporal relations

among local feature vectors are of great significance in recognizing actions, and both the incoming and

outgoing affinal tree pattern groups improve action recognition.

 The tree pattern-based graph kernel yields higher accuracies than both the incoming tree pattern graph

kernel and the outgoing tree pattern graph kernel. This indicates that the combination of incoming and

outgoing affinal tree-pattern groups improves the recognition accuracy.

 Our tree pattern graph matching kernel obtains the highest accuracies on these datasets. This indicates

that our kernel which incorporates both incoming and outgoing tree-patterns effectively selects the most

correctly matched affinal tree-pattern groups and avoids the mismatched ones.

 The tree pattern graph matching kernel is much more accurate than the tree pattern-based graph kernel on

the UCF sports dataset in contrast with the Weizmann dataset and the KTH dataset. This is because the

UCF sports dataset is much more complex, with occlusions, dynamic backgrounds, and large intra-class

variability. The tree pattern graph matching kernel is more suitable and robust for action recognition in

complex scenes.

Table 2. The recognition accuracies (%) of our tree pattern graph matching method and the four variant graph kernel-based

methods on the Weizmann, KTH, and UCF sport datasets

Methods Weizmann KTH UCF Sports

Summation kernel-based 89.2 92.5 83.3

Incoming tree pattern-based 94.6 95.7 88.6

Outgoing tree pattern-based 92.7 96.1 90.0

Tree pattern-based 95.7 96.3 91.3

Our tree pattern matching-based 97.8 97.2 95.3

We evaluated impact of the height h of the affinal tree-pattern groups on recognition accuracy on the

KTH and UCF sports datasets. As shown in Fig. 8, on both the datasets the accuracy increases when h

increases from 1 to 4. When h further increases, the accuracy decreases. This is because the affinal tree-pattern

groups are appropriate for representing local structures. When the height increases, the leaf vertices of each

affinal tree-pattern group spread beyond the local structures. Therefore, the height was set to 4. This is

consistent with the viewpoint, in [50], that the spatiotemporal relations among a small number of frames are

enough for action recognition. With respect to µ and γ in (13), when their values vary from 1 to 2 the accuracy

does not change much. When they are larger or smaller, the accuracy is reduced. Empirically, they were both

22

set to 1.2.

Fig. 8. The accuracies for different values of the height (h) of affinal tree-pattern groups on the KTH and UCF sports datasets.

5.4. Comparison with graph-based methods

We compared our context-dependent random walk graph kernel-based method and our tree pattern graph

matching kernel-based method with the previous methods [3, 18, 36, 38, 39, 40] based on graph kernels [36]

and graph matching [3, 18]. These algorithms use graphs to represent human actions and apply different graph

kernel and graph matching methods for graph comparison. The comparison results on the Weizmann dataset,

the KTH dataset, and the UCF sports dataset are shown in Table 3. The following points are noted:

 Overall our methods perform better than the competing graph-based methods [3, 18, 36]. Although our

results are slightly lower than the result for the hyper-graph-based method in [18] on the Weizmann

dataset, on the KTH dataset our results are much better than those in [18]. This indicates the

effectiveness of our graph-based similarity measurements.

 Compared with the random walk graph kernel-based method in [36], our context dependent random walk

graph kernel-based method yields a much more accurate result. This partly indicates the effectiveness of

our context-dependent random walk graph kernel.

 Our tree pattern graph matching method increases the recognition accuracy on the UCF sports dataset

much more than on the Weizmann dataset and the KTH dataset. This indicates the effectiveness of the

tree pattern graph matching in adapting to complex scenes.

 Even our tree pattern graph kernel-based method outperforms relatively complex methods such as in [36,

38] on the UCF sports dataset. This demonstrates that the information in the edge attributes and in the

tree-structure of graphs is useful for classification.

Table 3. The results (%) of comparison between our methods and previous graph-based methods

Methods Weizmann KTH UCF sports

Ta et al. [18] 100 91.2 -

Celiktutan et al. [3] - 90.6 -

Wang et al. [36] - - 85.2

Jones et al. [38] - - 89.1

Guo et al. [39] - 94.7 -

Ma et al. [40] - - 89.4*

Our context-dependent-based 96.9 97.0 90.8

Our tree pattern kernel-based 95.7 96.3 91.3

Our tree pattern matching-based 97.8 97.2 95.3

5.5. Comparison with state-of-the-arts

We compared our context-dependent random walk graph kernel-based method and our tree pattern graph

23

matching-based method with several state-of-the-art methods on the Weizmann dataset, the KTH dataset, the

UCF sports dataset, the UCF films dataset, and the Hollywood2 dataset. The experimental results are shown

in Table 4. The following points are observed:

 Our methods overall outperform the listed methods on the KTH dataset, the UCF sports dataset, and the

UCF films dataset. In particular, a higher accuracy than the popular deep learning method [45] was

obtained. On the UCF sports dataset, the results of our method are, 8.5%, 9.4% and 9.3% higher,

respectively, than the latest methods in [41, 42, 44].

 On the Weizmann dataset, out results are less accurate than those obtained by Yeffet et al. [24], but on the

KTH dataset, the UCF Sports dataset, and the UCF films dataset, our results are much better than those

obtained by Yeffet et al. [24].

 On the Hollywood2 dataset, our methods yield results comparable to the most accurate result in the

literature. On this dataset, the state-of-the-art methods are usually based on densely sampled local

features, and require a long computational time. Our methods are based on sparse features, but still

achieve a good performance. This demonstrates the effectiveness of our graph representation and

similarity measurement models.

Table 4. The results (%) of comparison of our methods with the state-of-the-art methods on the five benchmark datasets

Methods, years
Weiz-

mann
KTH

UCF

Sports

UCF films Holly-

wood2 Kiss Slap Average

Yeffet et al. [24] 100 90.1 79.2 77.3 84.2 80.7 -

Wang et al. [22] - 92.1 85.6 - - - 47.7

Kovashka et al. [11] - 94.5 87.3 - - -

Le et al. [12] - 93.9 86.5 - - - 53.3

Junejo et al. [32] 95.3 - - - - - -

Wang et al. [21] - 94.2 88.2 - - - -

Wang et al. [33] - 58.5

Jiang et al. [10] - 95.8 88.0 - - - -

Wang et al. [23] - 93.3 - - - - -

Celiktutan et al. [3] - 90.6 - - - - -

Rodrigues et al. [15] - - - 66.4 67.2 66.8 -

Wang et al. [35] - - 86.3 89.6 87.9 -

Zhang et al. [41] - 94.8 87.5 - - - 51.8

Sun et al. [42] - 93.1 86.6 - - - 48.1

Jones et al. [38] - - 89.1 - - - 59.9

Veeriah et al. [43] - - 94.0 - - - -

Wang et al. [44] - 94.5 86.7 - - - -

Shi et al. [45] - 95.6 - - - - -

Gaidon et al. [46] - - - - - - 54.4

Kihl et al. [47] - - - - - - 60.3

Pei et al. [48] - - - - - - 43.9

Gotoh et al. [49] - - - - - - 48.6

Li et al. [60] - - 93.4 - - - -

Alfaro et al. [61] - 97.5 - - - - -

Our context- dependent-based 96.9 97.0 90.8 97.6 94.4 96.0 58.0

Our tree pattern kernel-based 95.7 96.3 91.3 97.8 94.6 96.2 59.5

Our tree pattern matching-based 97.8 97.2 95.3 97.9 94.7 96.3 60.4

5.6. Comparison between the proposed kernels

The results of comparison between the context-dependent random walk graph kernel and the tree-pattern

graph matching kernel on the five benchmark datasets are included in Table 4. The following points are noted:

 On all the five datasets, the tree-pattern graph matching kernel yields more accurate results than the

context-dependent random walk graph kernel. This indicates that incorporating both incoming and

24

outgoing tree-patterns and selecting correctly matched affinal tree-pattern groups is discriminative for

action recognition.

 In particular, on the UCF sports dataset, in which the videos show complex scenes, our tree pattern graph

matching-based method increases the recognition accuracy by 4.5%, which is a significant improvement

over the context-dependent random walk graph kernel. This indicates that the tree pattern graph matching

kernel is more suitable for complex scenes.

 On the Weizman dataset, the KTH dataset, the UCF Films dataset, and the Hollywood2 dataset, the

improvement of the tree-pattern graph matching kernel over the context-dependent random walk graph

kernel is not large. This is because the context-dependent random walk graph kernel already yields

state-of-the-art results, which influences the tree-pattern graph matching kernel to yield large

improvement over the context-dependent random walk graph kernel. This indicates that the

context-dependent random walk kernel and the tree-pattern graph matching kernel are both effective.

6. Conclusion

In this paper, we have proposed a family of context-dependent random walk graph kernels and a family

of tree pattern graph matching kernels for the similarity measurement between graphs. In the

context-dependent random walk graph kernel, the performance of the primary walk group comparisons is

improved by using contexts. The general multiple kernel learning method with the l1,2-norm regularization

effectively combines context-dependent graph kernels of different orders. In our tree-pattern graph matching

kernel, more topological structural information is exploited. We have recursively computed the similarity

between affinal tree-pattern groups in a dynamic programming formulation and applied a sparse constraint to

match the tree pattern groups. The errors caused by falsely matched affinal tree-pattern groups are suppressed

and the discriminative power of the tree pattern graph matching is increased. We have applied the proposed

kernels to recognize human actions by constructing the concurrent graph and the causal graph to capture the

spatiotemporal relations among local feature vectors. Experimental results on several datasets have

demonstrated that the two graphs for representing actions are complementary and the proposed

context-dependent random walk graph kernel and tree-pattern graph matching kernel are effective at

improving the performance of action recognition. Our tree pattern graph matching kernel yields more accurate

results than our context-dependent random walk kernel.

As kernel methods are inefficient, our work is limited to make the experiments on datasets with small

numbers of samples. We will investigate to handle this problem in our future work.

References

[1] K.M. Borgwardt, C.S. Ong, S. Schonauer, S. Vishwanathan, A.J. Smola, and H.-P. Kriegel, “Protein function prediction

via graph kernels,” Bioinformatics, vol. 21, pp. 47-56, 2005.

[2] E.Z. Borzeshi, M. Piccardi, and R. Xu, “A discriminative prototype selection approach for graph embedding in human

action recognition,” in Proc. of IEEE International Conference on Computer Vision, pp. 1295-1301, 2011.

[3] O. Celiktutan, C. Wolf, B. Sankur, and E. Lombardi, “Real-time exact graph matching with application in human action

recognition,” in Proc. of International Workshop on Human Behavior Understanding, pp. 17-28, 2012.

[4] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie, “Behavior recognition via sparse spatio-temporal features,” in Proc. of

IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp.

65-72, 2005.

[5] T. Gartner, P. Flach, and S. Wrobel, “On graph kernels: hardness results and efficient alternatives,” Learning Theory and

Kernel Machines, vol. 2777 of the series Lecture Notes in Computer Science, pp. 129-143, 2003.

25

[6] U. Gaur, Y. Zhu, B. Song, and A. Roy-Chowdhury, “A string of feature graphs model for recognition of complex activities

in natural videos,” in Proc. of IEEE International Conference on Computer Vision, pp. 2595-2602, 2011.

[7] B. Gauzere, L. Brun, D. Villemin, and M. Brun, “Graph kernels based on relevant patterns and cycle information for

chemoinformatics,” in Proc. of IEEE International Conference on Pattern Recognition, pp. 1775-1778, 2012.

[8] Z. Harchaoui and F. Bach, “Image classification with segmentation graph kernels,” in Proc. of IEEE Conference on

Computer Vision and Pattern Recognition, pp. 1-8, 2007.

[9] W. Imrich and S. Klavzar, “Product graphs: structure and recognition,” John Wiley & Sons, New York, 2000.

[10] Z. Jiang, Z. Lin, and L.S. Davis, “Recognizing human actions by learning and matching shape-motion prototype trees,”

IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 34, no. 3, pp. 533-547, 2012.

[11] A. Kovashka and K. Grauman, “Learning a hierarchy of discriminative space-time neighborhood features for human action

recognition,” in Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2046-2053, 2010.

[12] Q.V. Le, W.Y. Zou, S.Y. Yeung, and A.Y. Ng, “Learning hierarchical invariant spatio-temporal features for action

recognition with independent subspace analysis,” in Proc. of IEEE Conference on Computer Vision and Pattern

Recognition, pp. 3361-3368, 2011.

[13] M. Parsana, S. Bhattacharya, C. Bhattacharya, and K. Ramakrishnan, “Kernels on attributed pointsets with applications,”

in Proc. of Annual Conference on Neural Information Processing Systems, pp. 1129-1136, 2007.

[14] K. Raja, I. Laptev, P. Perez, and L. Oisel, “Joint pose estimation and action recognition in image graphs,” in Proc. of IEEE

International Conference on Image Processing, pp. 25-28, 2011.

[15] M.D. Rodriguez, J. Ahmed, and M. Shah, “Action MACH: a spatio-temporal maximum average correlation height filter

for action recognition,” in Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, 2008.

[16] C. Schuldt, I. Laptev, and B. Caputo, “Recognizing human actions: a local SVM approach,” in Proc. of IEEE International

Conference on Pattern Recognition, pp. 32-36, 2004.

[17] P. Scovanner, S. Ali, and M. Shah, “A 3-dimensional sift descriptor and its application to action recognition,” in Proc. of

IEEE International Conference on Microwave Magnetics, pp. 357-360, 2007.

[18] A.P. Ta, C. Wolf, G. Lavoue, and A. Baskurt, “Recognizing and localizing individual activities through graph matching,”

in Proc. of IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 196-203, 2010.

[19] M. Varma and B.R. Babu, “More generality in efficient multiple kernel learning,” in Proc. of IEEE International

Conference on Machine Learning, pp. 1065-1072, 2009.

[20] S. Vishwanathan, N.N. Schraudolph, R. Kondor, and K.M. Borgwardt, “Graph kernels,” Journal of Machine Learning

Research, vol. 11, no. 2, pp. 1201-1242, 2010.

[21] H. Wang, A. Klaser, C. Schmid, and C.-L. Liu, “Action recognition by dense trajectories,” in Proc. of IEEE Conference on

Computer Vision and Pattern Recognition, pp. 3169-3176, 2011.

[22] H. Wang, M. M. Ullah, A. Klaser, I. Laptev, and C. Schmid, “Evaluation of local spatio-temporal features for action

recognition,” in Proc. of British Machine Vision Conference, pp. 124.1-124.11, Sep. 2009.

[23] L. Wang, Y. Qiao, and X. Tang, “Motionlets: Mid-level 3D parts for human motion recognition,” in Proc. of IEEE

Conference on Computer Vision and Pattern Recognition, pp. 2674-268, 2013.

[24] L. Yeffet and L. Wolf, “Local trinary patterns for human action recognition,” in Proc. of IEEE International Conference

on Computer Vision, pp. 492-497, 2009.

[25] J. Nocdal and S. Wrihgt, “Numerical optimization”, In New York; Sringer Verlag, 2nd ed, 2006.

[26] P. Mahe and J.-P. Vert, “Graph kernels based on tree patterns for molecules,” Machine Learning, vol. 75, no. 1, pp. 3-35,

April 2009.

[27] S. Lyu, “Mercer kernels for object recognition with local features,” in Proc. of IEEE Conference on Computer Vision and

Pattern Recognition, vol. 2, pp. 223-229, 2005.

[28] M. Cho, J. Sun, O. Duchenne, and J. Ponce. “Finding matches in a haystack: a max-pooling strategy for graph matching in

the presence of outliers,” in Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2091-2098, 2014.

[29] T. Cour, P. Srinivasan, and J. Shi, “Balanced graph matching,” in Proc. of Annual Conference on Neural Information

Processing Systems, pp. 313-320, 2006.

[30] A. Egozi, Y. Keller, and G. Hugo, “A probabilistic approach to spectral graph matching,” IEEE Trans. on Patter Analysis

and Machine Intelligence, vol. 35, no. 1, pp. 8-27, 2013.

[31] M. Leordeanu and M. Hebert, “A spectral technique for correspondence problem using pairwise constraints,” in Proc. of

IEEE International Conference on Computer Vision, pp. 1482-1489, 2005.

[32] I.N. Junejo, E. Dexter, I. Laptev, and P. Perez, “View-independent action recognition from temporal self-similarities,”

IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 33, no. 1, pp. 172-185, 2011.

[33] H. Wang and C. Schmid, “Action recognition with improved trajectories,” in Proc. of IEEE International Conference on

Computer Vision, pp. 3551-3558, 2013.

[34] C. Wallraven and B. Caputo, “Recognition with local features: the kernel recipe,” in Proc. of IEEE International

Conference on Computer Vision, pp. 257-264, 2003.

26

[35] H. Wang, C. Yuan, G. Luo, W. Hu, and C. Sun, “Action recognition using linear dynamic systems,” Pattern Recognition,

vol. 46, no. 6, pp. 710-1718, 2013.

[36] L. Wang and H. Sahbi, “Directed acyclic graph kernels for action recognition,” in Proc. of IEEE International Conference

on Computer Vision, pp. 3168-3175, 2013.

[37] B. Wu, C. Yuan, and W. Hu. “Human action recognition based on context-dependent graph kernels,” in Proc. of IEEE

Conference on Computer Vision and Patten Recognition, pp. 2609-2616, 2014.

[38] S. Jones and L. Shao, “A multigraph representation for improved unsupervised/semi-supervised learning of human actions,”

in Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 820-826, 2014.

[39] W. Guo and G. Chen, “Human action recognition via multitask learning base on spatial-temporal feature,” Information

Sciences, vol. 320, no. 3, pp. 418-428, Nov. 2015.

[40] S. Ma, L. Sigal, and S. Sclaroff, “Space-time tree ensemble for action recognition,” in Proc. of IEEE Conference on

Computer Vision and Pattern Recognition, pp. 5024-5032, 2015.

[41] H. Zhang, W. Zhou, C. Reardon, and L.E. Parker, “Simplex-based 3D spatio-temporal feature description for action

recognition,” in Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2067-2074, 2014.

[42] L. Sun, K. Jia, T. Chan, Y. Fang, G. Wang, and S. Yan, “DL-SFA: Deeply-learned slow feature analysis for action

recognition,” in Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2625-2632, 2014.

[43] V. Veeriah, N. Zhuang, and G. Qi, “Differential recurrent neural networks for action recognition,” in Proc. of IEEE

International Conference on Computer Vision, pp. 4041-4049, 2015.

[44] D. Wang, Q. Shao, and X. Li, “A new unsupervised model of action recognition,” in Proc. of IEEE International

Conference on Image Processing, pp. 1160-1164, 2015.

[45] Y. Shi, W. Zeng, T. Huang, and Y. Wang, “Learning deep trajectory descriptor for action recognition in videos using deep

neural networks,” in Proc. of IEEE International Conference on Multimedia and Expo, pp. 1-6, 2015.

[46] A. Gaidon, Z. Harchaoui, and C. Schmid, “Activity representation with motion hierarchies,” International Journal of

Computer Vision, vol. 107, no. 3, pp. 219-238, May 2014.

[47] O. Kihl, D. Picard, and P-H. Gosselin, “A unified framework for local visual descriptors evaluation,” Pattern Recognition,

vol. 48, no. 4, pp. 1174-1184, April 2015.

[48] L. Pei, M. Ye, X. Zhao, Y. Dou, and J. Bao, “Action recognition by learning temporal slowness invariant features,” Visual

Computer, vol. 32, no. 11, pp. 1395-1404, Nov. 2016.

[49] N.A. Harbi and Y. Gotoh, “A unified spatio-temporal human body region tracking approach to action recognition,”

Neurocomputing, vol. 161, no. c, pp. 56-64, August 2015.

[50] K. Schindler and L.V. Gool, “Action snippets: how many frames does human action recognition require?” in Proc. of

IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, 2008.

[51] V. Kantorov and I. Laptev, “Efficient feature extraction, encoding and classification for action recognition,” in Proc. of

IEEE Conference on Computer Vision and Pattern Recognition, pp. 2593-2600, 2014.

[52] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, “Learning realistic human actions from movies,” in Proc. of IEEE

Conference on Computer Vision and Pattern Recognition, pp. 1-8, June 2008.

[53] M. Bregonzio, S. Gong, and T. Xiang, “Recognising action as clouds of space-time interest points,” in Proc. of IEEE

Conference on Computer Vision and Pattern Recognition, pp. 1948-1955, June 2009.

[54] N.B. Aoun, M. Mejdoub, and C.B. Amar, “Graph-based approach for human action recognition using spatio-temporal

features,” Journal of Visual Communication and Image Representation, vol. 25, no. 2, pp. 329-338, Feb. 2014.

[55] P. Mahe, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert, “Extensions of marginalized graph kernels,” in Proc. of

International Conference on Machine Learning, pp. 552-559, 2004.

[56] N. Shervashidze, P. Schweitzer, E.J. Leeuwen, K. Mehlhorn, and K.M. Borgwardt. “Weisfeiler-lehman graph kernels,”

Journal of Machine Learning Research, vol. 12, pp. 2539-2561, 2011.

[57] N. Shervashidze, S. Vishwanathan, and T.H. Petri, “Efficient graphlet kernels for large graph comparison,” Journal of

Machine Learning Research, vol. 5, pp. 488-495, 2009.

[58] Y. Kong, Z. Ding, J. Li, and Y. Fu, “Deeply learned view-invariant features for cross-view action recognition,” IEEE Trans.

on Image Processing, vol. 26, no.6, pp. 3028-3037, 2017.

[59] Y. Kong and Y. Fu, “Max-margin heterogeneous information machine for RGB-D action recognition,” International

Journal of Computer Vision, vol. 123, no.3, 350-371, 2017.

[60] Q. Li, H. Cheng, Y. Zhou, and G. Huo, “Human action recognition using improved salient dense trajectories,”

Computational Intelligence and Neuroscience, vol. 2016, Article ID: 6750459.

[61] A. Alfaro, D. Mery, and A. Soto, “Action recognition in video using sparse coding and relative features,” in Proc. of IEEE

Conference on Computer Vision and Pattern Recognition, pp. 2688-2697, 2016.

27

Weiming Hu received the Ph.D. degree from the department of computer science and engineering, Zhejiang

University in 1998. From April 1998 to March 2000, he was a postdoctoral research fellow with the Institute

of Computer Science and Technology, Peking University. Now he is a professor in the Institute of Automation,

Chinese Academy of Sciences. His research interests are in visual motion analysis, recognition of web

objectionable information, and network intrusion detection.

Baoxin Wu received the B.S. degree in automation from the Ocean University of China, QingDao, China in

2010, and the Ph.D. degree in Pattern Recognition and Intelligent System in Institute of Automation, Chinese

Academy of Sciences, Beijing, China, in 2015. He is currently a research assistant at Sogou, Beijing, China.

His current research interests mainly focus on computer vision.

Pei Wang received the B.E. degree in measurement control technology and instrument from the University of

Electronic Science and Technology of China, Chengdu, China, in 2014. He is currently a graduate student

pursuing the Master's degree with National Laboratory of Pattern Recognition, Institute of Automation,

Chinese Academy of Sciences, Beijing, China. His current research interests include computer vision and

machine learning.

Chunfeng Yuan received the doctoral degree from the Institute of Automation, Chinese Academy of Sciences

(CASIA), Beijing, China, in 2010. She is currently an associate professor at the CASIA.. Her research interests

and publications range from statistics to computer vision, including sparse representation, motion analysis,

action recognition, and event detection.

Yangxi Li is a senior engineer of National Computer network Emergency Response technical

Team/Coordination Center of China (CNCERT/CC). He received the Ph.D. degree from Peking University. His

research interests lie primarily in multimedia search, information retrieval and computer vision.

Stephen Maybank received a BA in Mathematics from King's college Cambridge in 1976 and a PhD in

computer science from Birkbeck college, University of London in 1988. Now he is a professor in the School

of Computer Science and Information Systems, Birkbeck College. His research interests include the geometry of

multiple images, camera calibration, visual surveillance etc.

