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Abstract. This paper discusses the problem of selecting model parameters in
time series forecasting using aggregation. It proposes a new algorithm that re-
lies on the paradigm of prediction with expert advice, where online and offline
autoregressive models are regarded as experts. The desired goal of the proposed
aggregation-based algorithm is to perform not worse than the best expert in the
hindsight. The theoretical analysis shows that the algorithm has a guarantee that
holds for any data sequence. Moreover, the empirical evaluation shows that the
algorithm outperforms other popular model selection criteria such as Akaike and
Bayesian information criteria on cyclic behaving time series.

Keywords: Model selection; Online learning; Aggregation Algorithm; Time se-
ries.

1 Introduction

Model selection is about choosing a model from a set of fitted models that performs
better on a given data. In statistics Akaike information criterion (AIC) [1] and Schwarz
criterion [17] are popular model selection techniques. These criteria are not competing
rules since they are useful for different scenarios. For instance, AIC achieves asymptotic
efficiency [18], while BIC originates from Bayesian hypothesis testing of the regular
exponential family using an asymptotic approximation to identify the correct model
when the sample size increases [14]. These criteria are developed by considering batch
learning, and sometimes they achieve a slower rate of convergence as shown in [5]
where the presented algorithm has a similar flavour to the fixed-share algorithm [7].

To fit a model one needs to input the coefficients and the parameters. In batch learn-
ing this can be done by for example using cross validation. In contrast, in online learning
due to the sequential arrival of the data methods like cross validation can’t be used. Over
the past, numerous attempts have been made to address the problem of online model
selection of time series. For instance, Noshad et al. [12] proposed a dynamic algorithm
that operates sequentially to select a suitable model. In [10] an adaptive algorithm is
used for automatically selecting the best model but is not applicable generally. It only
allows to reduce data communication in wireless sensor networks. The approach dis-
cussed by Prado and Lopes [13] addresses the issue of parameter selection in the state
space representation of time series. Sato [16] uses variational Bayes to provide complete
online model selection mechanism with a guarantee, by averaging over an ensemble of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/158971564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 W.Jamil and A.Bouchachia

models. Our work differs in the sense that guarantee is held for sure, not on average or
high probability as discussed in the past.

In this study, we investigate model selection in the context of online time series fore-
casting. There have been some recent but very scarce attempts to address the problem
of time series prediction using online learning. For instance, Anava et al. [2] proposed
an online version of Auto-Regressive-Moving-Average (ARMA), while Liu et al. [11]
investigated online Auto-Regressive-Integrated-Moving-Average (ARIMA). The fun-
damental idea behind the online version of ARMA and ARIMA models is that ARMA
is a subset of AR. The online ARIMA model is an extension of the online ARMA
model. These papers present a reasonable approach to handle the uni-variate time series
prediction problem.

This paper presents an approach that uses aggregation, similarly to the approach
presented by Romanenko [15], but focuses on mixing online ARMA models leading
to a novel utterly online framework. The proposed approach does not require the use
of any information criterion and has the guarantee of not being too far from the best
model. Furthermore, it has the possibility of beating the best model for time series
prediction. The bounds of the competitive online algorithms, such as the strong Aggre-
gation Algorithm (AA) by Vovk [21], are guaranteed to hold. That is, the error bounds
of competitive online statistics algorithms do not contain only with high probability or
on average as one can encounter with many forecast combination algorithms, but such
bounds do hold with certainty.

In our work we include a formal proof of the bound of the ARMA-OGD along with
derivations of AA’s substitution functions associated with square loss prediction games.
The novelty of our work lies in the modification of AA and ARMA Gradient Descent
(ARMA-OGD) algorithms. More precisely:

1. We plug ARMA-OGD into AA to perform online model selection.
2. We explicitly show that for our suggested approach, the following type of bound

holds regardless of the data generating mechanism:

LT ≤ L∗T +
1

η
log n

where LT is the cumulative loss incurred by of the learning algorithm up until
time T , L∗T is the cumulative loss of the best learning strategy in the hindsight.
The learning rate is denoted by η and n is a finite integer denoting the number of
experts.

Following is the organisation. In next two sections we provide context to our work
by briefly discussing the essential features of Aggregation Algorithm (AA) and ARMA-
OGD that we later are used to combine the two algorithms. In section 3 we provide an
explicit algorithm that combines AA and ARMA-OGD by modifying them. Section 4
illustrates the guarantee of AA+ARMA-OGD on two real world datasets. Section 5
concludes our work.
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2 Background

2.1 Aggregating Algorithm

Let Γ be the prediction space and Ω = [Y1, Y2] be the outcome space, such that
Y2 > Y1, the n number of experts θk for k = 1, 2, ..., n < ∞, makes predictions
γθkt ∈ Γ on each trial t ∈ Z; the learner makes a prediction by aggregating experts
predictions; nature chooses an outcome; each expert Lossexpert =

∑T
t=1 λ(γ

θk
t , ωt)

and learner loss Losslearner =
∑T
t=1 λ(γt, ωt) is calculated using square loss. It is not

assumed that there is a model generating the outcomes and the nature is considered as
an oblivious adversary. The initialisation of the experts weights is done uniformly (each
expert is assigned the same weight initially). AA [21, 22] works under the protocol of
Prediction With Experts Advice (PWEA), which is as follows:

Protocol 1 Prediction With Expert Advise
1: for t = 1, 2, ... do
2: Experts θk ∈ Θ predicts γθkt ∈ Γ, k = 1, 2, ..., n
3: Learner output γt ∈ Γ
4: Nature output ωt ∈ Ω
5: Learner suffers loss λ(γt, ωt)
6: Experts θ ∈ Θ suffers loss λ(γθkt , ωt)
7: end for

AA generalises the weighted majority algorithm providing an exponentially weighted
average that has bounds in the case of mixable game. For η > 0, a loss function is
called η−mixable if there exists a substitution function (more on it later) for it such that
[19, 21]:

λ(ω, γ) ≤ g(ω) = logβ

∫
β(ω−p)2P (dp) (1)

where ∀γ ∈ R, λ(Y1, γ) ≤ g(Y1) & λ(Y2, γ) ≤ g(Y2) such that β = e−η for η > 0,
and g represents the generalised prediction corresponding to the probability distribution
P ∈ R, such that ω, p ∈ [Y1, Y2] for Y2 > Y1.

The loss of AA cannot be much larger than that of the best expert, for a mixable
finite experts game by equally initialising the weights of the experts.

Loss(AA) ≤ Lossbest(θ) +
log n

η
(2)

where θ ∈ Θ, η is the learning rate, and n is the number of experts. This bound (eq. 2) is
shown in [20] to be optimal i.e. it cannot be improved by any other prediction algorithm.
It is for this reason, that we have chosen AA in this paper to apply for time series
prediction.

AA takes two parameters, the learning rate η > 0 and a prior probability which
indicates the initial weights of the experts. At every step t, we update the weights.
So intuitively, if an expert makes a mistake, we would reduce its weight. AA uses a
substitution function which maps the generalised prediction g(ω) into Γ ,
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Algorithm 1 Aggregation Algorithm
1: Initialise weights wθ0 , θ = 1, 2, ...n
2: for t = 1, 2, .. do
3: Notice experts prediction γθt
4: Normalise experts weight wθt =

wθt−1∑N
i=1 w

i
t−1

5: Use substitution function to obtain γt
6: Notice actual outcomes ωt
7: Update the experts weights wθt = wθt e

−ηλ(γθt ,ωt)

8: end for

Loss with ω = 1

Lo
ss

 w
ith

 ω
 =

 −
1

cut−off point
prediction
generalised prediction

Fig. 1. ((−1− γ)2, (1− γ)2) curve where γ ∈
[−1, 1].

The inf-sup of the ratio g(ω)
λ(ω,γ) is obtained

where the line ((0, 0), (g(1), g(−1)) inter-
sects with the losses curve. From Fig 1 the
intersection between losses (the line inter-
secting the red curve) and the between the
(red) curve is at ((γ − 1)2, (γ + 1)2) (cut-
of point in green see Fig 1), thus the inf-
sup of the ratio is (γ−1)2

(γ+1)2 = g(1)
g(−1) , which

is non-linear (difficult to use in practice),
so instead we use a different point (predic-
tion point in blue, see Fig 1) on the curve
(prediction and generalised prediction are
mapped by a square in Fig 1).

Next we explain line 5 of Algorithm
1 by focusing on work done in [21]. Con-
sider Ω = {−1, 1} and γ ∈ [−1, 1].
AA’s prediction without using the substi-
tution function is (g(−1), g(1)) (a point
on a plane), which does not lie on the
losses curve ((−1− γ)2, (1− γ)2). AA’s
prediction (g(−1), g(1)) is transformed
to the point (e−η(−1−γ)

2

, e−η(1−γ)
2

)
by the use of substitution function
and the set of permitted predictions
becomes (e−η(−1−γ)

2

, e−η(1−γ)
2

) (for
more details see [19]). To find the
learning rate η, for which the curve
(e−η(−1−γ)

2

, e−η(1−γ)
2

) is convex is
equivalent to the problem of finding the
values of second derivative for which
(e−η(−1−γ)

2

, e−η(1−γ)
2

) is less or equal
to 0 for all values of γ ∈ [−1, 1]. There-
fore:

(u, v) = (e−η(−1−γ)
2

, e−η(1−γ)
2

)

∂u

∂γ
= −2η(1 + γ)e−η(1+γ)

2

∂v

∂γ
= 2η(1− γ)e−η(1−γ)

2

Lemma 1. The restricted square loss
game is η-mixable if and only if η ≤ 1

2 .

Proof. Applying the chain rule we obtain:

∂v

∂u
=

2η(1− γ)e−η(1−γ)2

−2η(1 + γ)e−η(1+γ)2
= −1− γ

1 + γ
e4ηγ =

(γ − 1)e4ηγ

γ + 1
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To achieve the minimum or inflection point, the second derivative must be negative or
null, we proceed as follows:

∂2v

∂u2
=

∂v

∂u∂dγ

∂γ

∂u
=

e4ηγ

(1 + γ)2
(4η(1− γ)(1 + γ)− 2)2η(1 + γ)e−η(1+γ)

2

=
e4ηγ

(1 + γ)2

(
4η(1− γ2)− 2

2η(1 + γ)e−η(1+γ)2

)
(3)

The term in equation (3) will be negative or zero if and only if: 4η(1− γ2)− 2 ≤ 0
which implies η ≤ 0.5, since γ2 ∈ [0, 1].

Proposition 1. For a game of square loss with Ω = {−1, 1}, then γ = g(−1)−g(1)
4 is a

substitution function.

Proof. The curve ((γ − 1)2, (γ + 1)2) for γ ∈ [−1, 1] contains all possible values of
γ. The point (g(1), g(−1)) represents generalised prediction. The substitution function
maps generalised prediction to actual predictions, thus (γ+1)2− g(−1) = (γ− 1)2−
g(1). By doing simple algebraic manipulation, we get: γ = g(−1)−g(1)

4

Lemma 2. The square loss game Ω = [−Y, Y ] where Y ∈ R is η−mixable if and only
if η ≤ 1

2Y 2 .

Proof. We find the values of η for which the game is mixable by exponentiation of
the generalised prediction. We have e(−Y−γ)

2

and e(Y−γ)
2

where γ ∈ [−Y, Y ]. If we
instead use e

η̂

Y 2 (−Y−γ)2 and e
η̂

Y 2 (Y−γ)2 our game becomes restricted square loss game
for which as seen in Lemma 1 the game is mixable if and only if, η ≤ 0.5. By writing
η = η̂

Y 2 , we have ηY 2 ≤ 0.5 which implies that η ≤ 1
2Y 2 .

Proposition 2. For a square loss game with Ω = [−Y, Y ], where Y ∈ R then:

γ =
g(−Y )− g(Y )

4Y

is a substitution function.

Proof. By solving (γ + Y )2 − g(−Y ) = (γ − Y )2 − g(Y ), we obtain our desired
result.

Lemma 3. The square loss game Ω = [Y1, Y2] where Y1, Y2 ∈ R and Y1 < Y2 is
η−mixable if and only if η ≤ 2

(Y2−Y1)2
.

Proof. We need to prove for the curve (u, v) = (e−η(γ−Y1)
2

, e−η(γ−Y2)
2

) that:

∂2v

∂u2
=

∂2v
∂γ∂u

∂u
∂γ

≤ 0

By performing above differentiation for the curve, we get 1
Y1−γ + 2η(Y2 − γ) ≤ 0 ⇒

η ≤ 1
2(Y2−γ)(γ−Y1)

. We notice that maxγ∈[Y1,Y2](Y2 − γ)(γ − Y1) = 1
4 (Y2 − Y1)

2 and
the curve is concave ∀γ provided that η ≤ 2

(Y2−Y1)2
.
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Proposition 3. For a square loss game with Ω = [Y1, Y2], where Y1, Y2 ∈ R and
Y1 < Y2 then:

γ =
Y2 + Y1

2
− g(Y2)− g(Y1)

2(Y2 − Y1)
is a substitution function.

Proof. To find γ, consider (Y1 − γ)2 + g(Y1) = (Y2 − γ)2 + g(Y2). By using the fact
(Y 2

1 − Y 2
2 ) = (Y1 + Y2)(Y1 − Y2) and re-arranging, 2γ(Y2 − Y1) = g(Y2)− g(Y1)−

(Y1 + Y2)(Y1 − Y2), we get the substitution function.

2.2 ARMA-OGD

Algorithm 2 ARMA-OGD(p, q)
1: ARMA order p, q, Learning rate η, m =
q. log1−β

(
(TLMmax)

−1
)

2: for t = 1, 2, ...(T − 1) do
3: Predict X̂t(γt) =

∑m+k
i=1 γitXt−i

4: Observe Xt and suffer loss λm(γt, ωt)
5: Let Ot = Oλm(γt, ωt)

6: Set γt+1 ←
∏
K

(
γt − 1

η
Ot
)

7: end for

ARMA-OGD(p, q) was introduced
by Anava et al. [2]. The psudo-code of
the algorithm is presented in Algorithm
2. We proceed by defining some nota-
tion. The prediction set K contains m +
p−dimensional coefficient vectors and is
defined as K = {γ ∈ Rm+p, |γj | ≤
c, j = 1, ...,m}. We denote the diameter
ofK byD and boundD = 2c

√
(m+ p).

The upper bound of convex loss || 5
λ(γ, ω)|| for all t γ ∈ K on sequence
|Xt| ≤ Xmax, is denoted by G =

D(Xmax)
2. We say Mmax is the upper bound on |Wt| for all t = 1, 2, ..., T if we

assume that noise is adversarial and when noise are i.i.d then E(|βt|) < Mmax < ∞
and L denotes Lipshitz constant which is assumed to be greater than zero. The coeffi-
cients |αi| are less then some constant c ∈ R and

∑q
i=1 |θi| < 1 − β where β > 0.

We next present the proof of Theorem 5 mentioned in [2] but not shown due to the
similarity to Theorem 1 of their paper.

Theorem 1. For any data sequence {Xt}Tt=1 such that p, q ≥ 1, and set η = 1
X2
max

√
T

,
Algorithm 2 predicts using a convex loss function, with the following guarantee:

T∑
t=1

λ(γt, ωt)− minα,β
T∑
t=1

E[ft(α, β)] = O(4c(m+ p)X2
max

√
T )

Proof. Let (α∗, β∗) = argminα,β
∑T
t=1 E[ft(α, β)].We know for any convex loss func-

tion we have [23]:
T∑
t=1

λm(γt, ωt)−min
T∑
t=1

λm

(
Xt,

(
m+k∑
i=1

γitXt−i

))
= O(4c(m+ p)X2

max

√
T )

Now by using the fact that ARMA(p, q) can be represented by AR(∞) [6], by using
entire past, we can recursively write:

X∞t (α, β) =

p∑
i=1

αiXt−i +

q∑
i=1

βi(Xt−i −X∞t−i(α, β))
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plugging in initial condition X∞t = X1, we get the loss suffered as:

f∞t (α, β) = λ(Xt, X
∞
t (α, β))

which is not convex. The loss function here considers entire data. We need to replace
f∞t by ft, which can be done by considering some weight wi(α, β) function and write
our loss function as follows:

f∞t (α, β) = λ(Xt,

t∑
i=1

wi(α, β)Xt−i)

This allows the loss function to update prediction by using only the last outcome in
contrast to using the entire history. By setting m ∈ N, the prediction can be rewritten
as:

Xm
t (α, β) =

p∑
i=1

αiXt−i +

q∑
i=1

βi(Xt−i −Xm−i
t−i )

Plugging in the initial condition Xm
t (α, β) = Xt for all t,m ≤ 0, the loss suffered by

the prediction at time t becomes:

fmt (α, β) = λ(Xt, X
m
t (α, β))

By considering last (m + k) observations and since minγλm(γt, ωt) ≤ fmt (α∗β∗)
(Lemma 2 in [2]), we have:

T∑
t=1

λm(γt, ωt)−
T∑
t=1

fmt (α∗β∗) = O(4c2(m+ p)X2
max

√
T )

From Lemma 3 in [2] we know that the following holds:∣∣∣∣∣
T∑
t=1

E[f∞t (α, β)−
T∑
t=1

E[fmt (α, β)

∣∣∣∣∣ = O(1) =⇒

T∑
t=1

λq log1−ε((TLMmax)
−1))(γt, ωt)−

T∑
t=1

f
q log1−ε((TLMmax)

−1))
t (α∗, β∗)

=

T∑
t=1

λ(γt, ωt)−minα,β
T∑
t=1

E[ft(α, β)]

From Lemma 4 in [2] we know that the following holds:∣∣∣∣∣
T∑
t=1

E[f∞t (α, β)−
T∑
t=1

E[ft(α, β)

∣∣∣∣∣ = O(1) =⇒

T∑
t=1

λq log1−ε((TLMmax)
−1))(γt, ωt)−

T∑
t=1

ft(α
∗, β∗)

= O
(
4c
(
q log1−ε (TLMmax)

−1
+ p
)
X2
max

√
T
)

which was to be proven.
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3 AA+ARMA-OGD

In this section, we provide an explicit algorithm for AA+ARMA-OGD(p, q) (Algorithm
3). Each of our expert is an ARMA-OGD model with different values of parameters p, q.
To obtain a competitive guarantee we combine the ARMA-OGD models using AA.
Algorithms 2 uses Online Gradient Decent (OGD). The analysis done in [23] shows
that the OGD attains the following regret when the learning rate is defined to be 1√

t
:

LT − L∗T = O
(√

T
)

(4)

where LT denotes the cumulative loss of the algorithm and L∗T denotes the cummu-
lative loss of the best strategy in the hindsight. We now explain the details of Algorithm
2 projection step with the aid of Fig 2. In OGD we have some prediction γ which is
a point in a convex set. For a given convex loss function we move in the direction of
the first derivative (gradient) of the loss incurred at time λ(γt, ωt). By moving in the
direction of the gradient we might go outside the convex set as there is no restriction
that will stop us from going out the convex set (notice λ(γt, ωt) is slightly outside
the sphere in Fig 2). To keep the prediction inside the convex set, we do a projection
by finding the closest point in the convex set to the point we chose i.e. we predict
γt+1 =

∏
K

(
γt − 1

ηOλ(γt, ωt)
)

, where Oλ(γt, ωt) denotes the gradient of the current
loss and

∏
K represents Euclidean projection onto setK i.e.

∏
K(γ) = argmin||γ−x||2.

xt+1

γt+1

γt

Oλ(γt, ωt)

Fig. 2. Online Gradient Descent

Algorithm 3 has the following guarantee that holds for all T , regardless of the data
generating mechanism:

LossBest ARMA-OGD − LossAA+ARMA-OGD ≥ −
log n

η
(5)

where n denotes the number of experts and for the details of the learning rate please
see Lemma 3.
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Algorithm 3 AA+ARMA-OGD (p, q)

1: Input for each expert parameters pθ1,...,n ,qθ1,...,n , η > 0. Initialise experts weight wθk0 = 1
2: for k = 1, 2, ..., n do
3: for t = (max(pθk , qθk ) + 1), ... do
4: Read experts predictions γθkt = X̂

θk
t (γ̂

θk
t ) =

∑pθk

i=1 α
θk
t X

θk
t−i +

∑qθk

i=1 β
θk
t ε

θk
t−i

5: Normalise experts weights wθt =
wθt−1∑N
i=1 w

i
t−1

6: Predict γt = Y2+Y1
2

+ g(Y2)−g(Y1)
2(Y2−Y1)

# This is AA+ARMA-OGD prediction
using proposition 3

7: Notice actual outcomes ωt ∈ R
8: Calculate error εθkt = γ

θk
t − ωt # notice ωt is a value, so ωt is

subtracted from each experts (k = 1, 2, ...n) prediction γ
θk
t .

9: Average εθkt =
∑t
i ε
θk
i

t−max(pθk ,qθk )

10: Apply Gradient Decent on αθk and βθk

α
θk
OGD = −2εθkt

pθk∑
i=1

X
θk
t−i , β

θk
OGD = −2εθkt

qθk∑
i=1

ε
θk
t−i

11: Calculate αθk and βθk :

α
θk
t = α

θk
t−1 −

αθk√
t
α
θk
OGD , β

θk
t = β

θk
t−1 −

βθk√
t
β
θk
OGD

12: Project αθk and βθk to simplex:

α
θk
t =

α
θk
t−1

max

(
1,
∑t
i=1

√
(α
θk
t )2

) , β
θk
t =

β
θk
t−1

max

(
1,
∑t
i=1

√
(β
θk
t )2

)

13: Update the experts weights wθkt = w
θk
t e
−η(εθkt )2

14: end for
15: end for

4 Empirical evaluation

Fig 3 shows the behaviour of the two-time series, [4] and [3]. The two time-series
refers to 3650 days and exhibits cyclic (stationary) behaviour. Minimum temperature
time series lies in the range [−0.8, 26.3] and maximum temperature time series lies in
the range [7, 43.3]. By using Lemma 3, we calculate η ≈ 0.0027 and η ≈ 0.0015.

We set five ARMA-OGD(p, q), p = 1, 2, 3, 4, 5 and q = 0 as our experts. We call
the ARMA-OGD with the least loss as Best Online ARMA-OGD (BOARMA-OGD).
Notice in Fig 4 it is shown that the guarantee (5) given by Algorithm 3 holds. For
minimum and maximum temperature time series the the right side of the inequality (5)
is − log 5

η ≈ −591 and − log 5
η ≈ −1060 respectively.



10 W.Jamil and A.Bouchachia

Daily Min Temp time-series

Time

Te
m
p

0 1000 2000 3000

0
5
10

20

Daily Max Temp time-series

Time

Te
m
p

0 1000 2000 3000

10
20

30
40

Fig. 3. Minimum and maximum temperature time-series
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Fig. 4. Theoretical guarantee AA+ARMA-OGD. Plot A is zoomed plot C and both refer to the
minimum temperature time series. Similarly, B is zoomed D and refers to the maximum temper-
ature time series. The dotted red lines in plot A and B refer to AA+ARMA-OGD guarantee.

For the sake of comparison, we fit statistical ARMA model with fourier series [8]:

Yt =

K∑
m=1

[
αm sin

(
2πmt

L

)
+ βm cos

(
2πmt

L

)]
+Xt (6)

where Xt is stationary ARMA/ARIMA(p, q), α ∈ Rp, β ∈ Rq , and Yt is periodic
on interval [−L,L]. We choose parameters of (6) using AIC and call it the Best Batch
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ARMA (BBARMA) model. We then fit a set of ARMA models and perform aggre-
gation using AA (AA+BARMA) for the details on the set of batch ARMA models
used please see [9]. Table 1 reports the cumulative losses of all the fitted models.

Table 1. Cumulative losses.

Model Min temp Max temp

BBARMA 28097 105632

AA+BARMA 28049 102188

BOARMA-OGD 27768 86550

AA+ARMA-OGD 27634 86131

Our suggested Algorithm AA+ARMA-
OGD is the best performing model on
both time series, but this is not what the
model guarantees. The guarantee is that
in the worst case the model will be close
to BOARMA-OGD. We may say usually
AA+ARMA-OGD will outperform the best
performing model when there are several
models performing close to each other. The
prediction quality of AA+ARMA-OGD de-
pends on the quality of the underlying ex-
perts.

5 Conclusion

In this paper, we introduced a way to tackle the problem of model selection in online
learning for time series forecasting. Unlike statistical ARMA models our algorithm
AA+ARMA-OGD is not restricted to the stationary time-series.

It has a guarantee for experts and their aggregation− experimental evaluation show
how this guarantee holds.

In the future, we will investigate the spectral analysis of ARMA-OGD.
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