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Abstract. Non-intrusive load monitoring (NILM) has been tradition-
ally approached from signal processing and electrical engineering per-
spectives. Recently, machine learning has started to play an important
role in NILM. While much work has focused on supervised algorithms,
unsupervised approaches can be more interesting and of more practical
use in real case scenarios. More specifically, they do not require labelled
training data to be collected from individual appliances and the algo-
rithm can be deployed to operate on the measured aggregate data di-
rectly. In this paper, we propose a fully unsupervised NILM framework
based on Deep Belief network (DBN) and online Latent Dirichlet Allo-
cation (LDA). Firstly, the raw signals of the house utilities are fed into
DBN to extract low-level generic features in an unsupervised fashion,
and then the hierarchical Bayesian model, LDA, learns high-level fea-
tures that capture the correlations between the low-level ones. Thus, the
proposed method (DBN-LDA) harnesses the DBN’s ability of learning
distributed hierarchies of features to extract sophisticated appliances-
specific features without the need of precise human-crafted input rep-
resentations. The clustering power of the hierarchical Bayesian models
helps further summarise the input data by extracting higher-level infor-
mation representing the residents’ energy consumption patterns. Using
Deep-Hierarchical models reduces the computational complexity since
LDA is not directly applied to the raw data. The computational effi-
ciency is crucial as our application involves massive data from different
types of utility usages. Moreover, we develop a novel online inference
algorithm to cope with this big data. Another novelty of this work is
that the data is a combination of different utilities (e.g, electricity, water
and gas) and some sensors measurements. Finally, we propose different
methods to evaluate the results and preliminary experiments show that
the DBN-LDA is promising to extract useful patterns.

Keywords: Unsupervised Non-Intrusive Load Monitoring, Pattern Recog-
nition, Online Latent Dirichlet Allocation, Deep Belief Network.

1 Introduction
The monitoring of human behaviour is highly relevant to many real-word do-
mains such as safety, security, health and energy management. Research on hu-
man activity recognition (HAR) has been the key ingredient to extract patterns
of human behaviour. There are three main types of HAR approaches, which are
sensor-based [1], vision-based [2] and radio-based [3]. A common feature of these
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methods is that they all require equipping the living environment with embed-
ded devices (sensors). On the other hand, non-intrusive load monitoring (NILM)
requires only single meter per house or building that measures aggregated elec-
trical signals at the entry point of the meter. Various techniques can then be
used to disaggregate per-load power consumption from this composite signal pro-
viding energy consumption data at an appliance level granularity. In this sense,
NILM’s focus is not on extracting general human behaviour patterns but rather
on identifying the appliances in use. This, however, can provide insight into the
energy consumption behaviour of the residents and therefore can express users
life style in their household. Traditional HAR methods introduce high costs of
using various sensors, which makes NILM an attractive approach to exploit in
general pattern recognition problems. On the other hand, taking the human be-
haviour into account can leverage the performance of NILM; thus, providing a
better understanding of the resident’s energy consumption behaviour. In this pa-
per, we do not make a distinction between patterns and appliances recognition.
The main goal of our approach (DBN-LDA) is to encode the regularities in a
massive amount of utilities data into a reduced dimensionality representation.
This is only possible if there are regular patterns in consumption behaviour of
the residents. Working on an extra large amount of real world data makes this
approach applicable to real-world scenario.

Since the earliest work on NILM [4], most NILM work has been based on
signal processing and engineering approaches [5, 6]. Although NILM can pro-
vide economical and effective tools for PR and HAR, it has not been widely
exploited. Most of the existing machine learning approaches applied to NILM
adopt supervised algorithms [4, 7–13]. One drawback of these approaches is that
they require individual appliance usage data to train the models. Hence, there
is a need to install one energy meter per appliance to record appliance-specific
energy consumption. This introduces extra costs and requires a complex instal-
lation of sensors on every device. In contrast, unsupervised algorithms can be
deployed to operate directly from the measured aggregate data with no need for
annotation. To the best of our knowledge, all existing unsupervised approaches
to NILM [14] focus on disaggregating the whole house signal into its appliances’
ones. In contrast, our approach, as mentioned earlier, does not focus on identi-
fying per-appliance signal. We instead propose a novel approach that seeks to
extract human behaviour patterns from home utility usage data. These patterns
could be exploited for HAR as well as energy efficiency applications.

The proposed approach is a two-module architecture composed of DBN and
a hierarchical Bayesian mixture model based on Latent Dirichlet Allocation
(LDA). Hence, we call it DBN-LDA. It draws inspiration from the work in [15]
where a hierarchical Dirichlet process (HDP) prior is plugged on top of a Deep
Boltzmann Machine (DBM) network which allows learning multiple layer of ab-
stractions. The low-level abstraction represents generic domain-specific features
that are hierarchically clustered and shared to yield high-level abstraction rep-
resenting patterns. Moreover, the success of LDA in text modelling domain is
also an inspiration for DBN-LDA.
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Recently, deep learning (DL) methods have achieved remarkable results in
computer vision, natural language processing, and speech recognition while it has
not been exploited in the field of NILM [16]. DL methods are good at extracting
multiple layers of distributed feature representations from high-dimensional data.
Each layer of the deep architecture performs a non-linear transformation on the
outputs of the previous layer. Thus, high-dimensional data is represented in a
structure of hierarchical feature representations, from low-level to high-level [17,
18]. Instead of relying on heuristic hand-crafted features, DL learns to extract
fruitful features. Relying on the big size of data and its high sampling rate
(205 KHZ) which results in a very high-dimensional data, to the best of our
knowledge, our study is the first to exploit unsupervised DL model in NILM. In
contrast to existing electrical engineering and signal processing approaches, our
method relies fully on the data to construct informative features. In this paper,
first we pre-train DBN [19] to learn generic features from unlabelled raw electrical
signal with 1 second granularity. The extracted features are then fed to the
online LDA with 30 minutes granularity. Although, the bag-of-words assumption
adopted here is a major simplification, it breaks down the unnecessary low-level
hard-to-model complexity leading to computationally efficient inference with no
much loss as shown in LDA [20].

In this work, we demonstrate that, similar to LDA in the domain of text
mining, this approach can capture significant statistical structures in a specified
window of data over a period of time. This structure provides understanding
of regular patterns in the human behaviour that can be harnessed to provide
various services including services to improve energy efficiency. For example,
understanding of the usage and energy consumption patterns could be used
to predict the power demand (load forecasting), to apply management policies
and to avoid overloading the energy network. Moreover, providing consumers
with information about their consumption behaviour and making them aware of
any abnormal consumption patterns can influence their behaviour to moderate
energy consumption [21].

In contrast to other studies, except [22–24], DBN-LDA is trained on a very
huge amount of data with a high sampling rate of around 205 kHz of the elec-
tricity signal. High sampling rate allows extraction of rich features while this is
not much possible with a low sampling rate. Online LDA helps deal with such
a big size of data. This can be done by defining particular distributions for the
exponential family in the class of models described in [25]. More details can be
found in Sec. 3. Our method not only works on a big data, but also it is the
only one including water and gas usage data, except [26, 27] whose sampling
rate is very low. Moreover, measurements provided by additional sensors are also
exploited to refine the performance of the pattern recognition algorithm. More
details on the data can be found in the Appendix 6. The diversity of the data
is another motivation for adopting a pattern recognition approach rather than
a traditional disaggregation approach.

The rest of the paper is organised as follows. Section 2 presents a summary of
the related work, while Section 3 explains the details of the proposed approach.
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Section 4 discusses the experimental results. Finally, Section 5 concludes the
paper and hints to future work.

2 Related Work
We divide the related work into two parts: (i) Machine learning approaches and
(ii) NILM datasets. There has been limited work on applying Machine learn-
ing in the area of NILM. Very few machine learning methods applied to NILM
and those proposed are supervised methods [4, 7–13]. These methods use la-
belled data involving an expensive and laborious task. In fact, the practicality
of NILM stems from the fact that it comes with almost no setup cost. Recently,
researchers have started exploring unsupervised machine learning algorithms to
NILM. These methods have mainly focused on performing energy disaggregation
to discern appliances from the aggregated load data directly without performing
any sort of event detection. The most prominent of these methods are based on
Dynamic Bayesian Network models, in particular different variants of Hidden
Markov Model (HMM) [28–30].

Authors in [28] exploits Factorial Hidden Markov Model (FHMM) and three
of its variants: Factorial Hidden Semi-Markov Model (FHSMM), Conditional
FHMM (CFHMM) and Conditional FHSMM (CFHSMM) to achieve energy dis-
aggregation. The main idea is that the dynamics of the state occupancy of each
appliance evolves independently and the observed aggregated signal is some joint
function of all the appliances states. The state occupancy duration is modelled
with a geometric distribution by FHMM. Authors propose to use FHSMM which
allows modelling the duration of the appliances states with gamma distribution.
Moreover, CFHMM is proposed to incorporate additional features, such as time
of day, other sensor measurements, and dependency between appliances. To har-
ness the advantages of FHSMM and CFHMM, authors use a combination of
the two models resulting in CFHSMM. In this work, the electricity signal was
sampled at low frequency unlike our work.

Similar approach was taken in [29] where Additive Factorial Hidden Markov
Model (AFHMM) was used to separate appliances from the aggregated load data.
The main motivation and contribution of this approach is that it addresses the
local optima problems that existing approximate inference techniques [28] are
highly susceptible to experience. The idea is to exploit the additive structure
of AFHMM to develop a convex formulation of approximate inference that is
more computationally efficient and has no issues of local optima. Although, this
approach was applied on relatively high frequency electricity data [24], the data
scale is not close to ours. In another study [30], Hierarchical Dirichlet Process
Hidden Semi-Markov Model (HDP-HSMM) is used to incorporate duration dis-
tributions (Semi Markov) and it allows to infer the number of states from the
data (Hierarchical Dirichlet Process). On the contrary, the AFHMM algorithm
in [29] requires the number of appliances (states) to be set a-priori.

The common characteristic of the approaches discussed so far is that the
considered data is electricity data. In contrast, our data involves different util-
ities namely electricity, water and gas as well some sensors measurements that
provide contextual features. To the best of our knowledge, the only data that
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considers water and gas usage is [26, 27]. However, the sampling rate of this data
is very low compared to that of our data. Authors in [31] exploit the correlation
between appliances and side information, in particular temperature, in a con-
vex optimisation problem for energy disaggregation. This algorithm is applied
on low sampling rate electricity data with contextual supervision in the form of
temperature information.

This work is a continuation of our previous work [32] where online Gaussian
Latent Dirichlet Allocation (GLDA) is proposed to extract global components
that summarise the energy signal. These components provide a representation
of the consumption patterns. The algorithm is applied on the same data-set
as in this paper. However, in contrast to [32], deep learning is employed in this
paper to construct features rather than engineering them using signal processing
techniques.

To wrap up this section, three traits distinguish our approach from existing
ones. It bridges the gap between pattern recognition and NILM making it ben-
eficial for a variety of different applications. Driven by massive amount of data,
our method is computationally efficient and scalable, unlike the state-of-the-
art probabilistic methods that posit detailed temporal relationships and involve
complex inference steps. The approach is fully data-driven where DL is used to
learn the features unlike existing feature engineering approaches. The available
data has a high sampling rate electricity data allowing learning more informa-
tive features. It includes data from other utility usage and additional sensors
measurements. Thus, our work also covers the research aspect of NILM con-
cerned with the acquisition of data, prepossessing steps and evaluation of NILM
algorithms.

3 The Proposed Method
Our proposed method has 2 main parts: (i) Features extraction and (ii) Pattern
mining. As stated earlier, to achieve the first step, we use DBN. Note that we
will not provide any background on the DL part of the model, which is the Deep
Belief Network (DBN). Details about DBN can be found in [19]. Next, we will
introduce stochastic variational inference for a family of graphical models [25]
and derive online LDA [33]. Online LDA is an instance of the family of graphical
models, operating online to accommodate high volume and speed data streams.

3.1 Stochastic Variational Inference

In the following, we describe the model family of LDA and review Stochastic
Variational Inference (SVI).

Model family. The family of models considered here consists of three ran-
dom variables: observations x = x1:D, local hidden variables z = z1:D, global
hidden variables β and fixed parameters α. The model assumes that the distribu-
tion of the D pairs of (xi, zi) is conditionally independent given β. Furthermore,
their distribution and the prior distribution of β belong to the exponential family
as shown in the following:

p(β,x, z|α) = p(β|α)

D∏
i=1

p(zi,xi|β) (1)
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p(zi,xi|β) = h(xi, zi) exp
(
βT t(xi, zi)− a(β)

)
(2)

p(β|α) = h(β) exp
(
αT t(β)− a(α)

)
(3)

Here, we overload the notation for the base measures h(.), sufficient statistics
t(.) and log normalizer a(.). While the soul of the proposed approach is generic,
for simplicity we assume a conjugacy relationship between (xi, zi) and β. That
is, the distribution p(β|x, z) is in the same family as the prior p(β|α).

Note that this innocent looking family of models includes (but not limited to)
Latent Dirichlet Allocation [20], Bayesian Gaussian Mixture, probabilistic matrix
factorization, hidden Markov models, hierarchical linear and probit regression,
and many Bayesian non-parametric models.

Mean-field variational inference. Variational inference (VI) approximates
intractable posterior p(β, z|x) by positing a family of simple distributions q(β, z)
and find the member of the family that is closest to the posterior (closeness is
measured with KL divergence). The resulting optimization problem is equivalent
maximizing the evidence lower bound (ELBO):

L(q) = Eq[log p(x, z,β)]− Eq[log p(z,β)] ≤ log p(x) (4)

Mean-field is the simplest family of distributions, where the distribution over
the hidden variables factorizes as follows:

q(β, z) = q(β|λ)

D∏
i=1

p(zi|φi) (5)

where φ and λ are the local and global variational parameters. Further, each
variational distribution is assumed to come from the same family of the true
one. Mean-field variational inference optimises ELBO with respect to the local
and global variational parameters φ and λ.

L(λ,φ) = Eq

[
log

p(β)

q(β)

]
+

D∑
i=1

Eq

[
log

p(xi, zi|β)

q(zi)

]
(6)

It iteratively updates each variational parameter holding the other parameters
fixed. With the assumptions taken so far, each update has a closed form solution.
The local parameters are a function of the global parameters.

φ(λj) = arg max
φ
L(λj ,φ) (7)

We are interested in the global parameters which summarise the whole dataset
(clusters in Bayesian Gaussian mixture, topics in LDA).

L(λ) = max
φ
L(λ,φ) (8)

To find the optimal value of λ given that φ is fixed, we compute the natural
gradient of L(λ) and set it to zero to obtain

λ∗ = α+

D∑
i=1

Eφi(λj)[t(xi, zi)] (9)
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Thus, the new optimal global parameters are λj+1 = λ∗. The algorithm works
by iterating between computing the optimal local parameters given the global
ones

(
Eq. 7

)
and computing the optimal global parameters given the local ones(

Eq. 9
)
.

Stochastic variational inference. Rather than analysing all the data to
compute λ∗ at each iteration, stochastic optimization can be used. Assuming
that the data samples are uniformly randomly selected from the dataset, an
unbiased noisy estimator of L(λ,φ) can be developed based on a single data
point.

Li(λ,φi) = Eq

[
log

p(β)

q(β)

]
+DEq

[
log

p(xi, zi|β)

q(zi)

]
(10)

The unbiased stochastic approximation of the ELBO as a function of λ can be
written as follows

Li(λ) = max
φi

Li(λ,φi) (11)

Following the same steps in the previous section, we end up with a noisy unbiased
estimate of Eq. 8

λ̂ = α+DEφi(λj)[t(xi, zi)] (12)

At each iteration, we move the global parameters a step-size ρj (learning rate)
in the direction of the noisy natural gradient.

λj+1 = (1− ρj)λj + ρjλ̂ (13)

With certain conditions on ρj , the algorithm converges (
∑∞

j=1 ρj =∞,
∑∞

j=1 ρ
2
j <

∞ )[34].

3.2 Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is an instance of the family of models described
in Section 3.1 where the global, local, observed variables and their distributions
are set as follows:

– the global variables {β}Kk=1 are the topics in LDA. A topic is a distribution
over the vocabulary, where the probability of a word w in topic k is denoted
by βk,w. Hence, the prior distribution of β is a Dirichlet distribution p(β) =∏

kDir(βk;η)
– the local variables are the topic proportions {θd}Dd=1 and the topic assign-

ments {{zd,w}Dd=1}Ww=1 which index the topic that generates the observations.
Each document is associated with a topic proportion which is a distribution
over topics, p(θ) =

∏
dDir(θd;α). The assignments {{zd,w}Dd=1}Ww=1 are in-

dices, generated by θd, that couple topics with words, p(zd|θ) =
∏

w θd,zd,w
– the observations xd are the words of the documents which are assumed to

be drawn from topics β selected by indices zd , p(xd|zd,β) =
∏

w βzd,w,xd,w

The basic idea of LDA is that documents are represented as random mix-
tures over latent topics, where each topic is characterized by a distribution over
words [20]. LDA assumes the following generative process:
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1 Draw topics βk ∼ Dir(η, ..., η) for k ∈ {1, ...,K}
2 Draw topic proportions θd ∼ Dir(α, ..., α) for d ∈ {1, ..., D}

2.1 Draw topic assignments zd,w ∼Mult(θd) for w ∈ {1, ...,W}
2.1.1 Draw word xd,w ∼Mult(βzd,w

)

According to Sec. 3.1, each variational distribution is assumed to come from the
same family of the true one. Hence, q(βk|λk) = Dir(λk), q(θd|γd) = Dir(γd)
and q(zd,w|φd,w) = Mult(φd,w). To compute the stochastic natural gradient
for LDA, we need to find the sufficient statistic t(.) presented in Eq. (2). By
writing the likelihood of LDA in the form of Eq. (2), we obtain t(xd, zd) =∑W

w=1 Izd,w,xd,w
, where Ii,j is equal to 1 for entry (i, j) and 0 for all the rest.

Hence, the stochastic natural gradient gi(λk) can be written as follows:

gi(λk) = η +D
W∑

w=1

φki,wIk,xi,w
− λk (14)

Details on how to compute the local variational parameters φ∗i (λ∗) can be found
in [25]. To explain the analogy between LDA and the proposed approach, in
Fig. 1, we show an example where three components have been extracted from
the utility usage data. Here, the components are equivalent to topics in LDA.
Because features extracted by DBN are in discrete space, the components repre-
sent categorical distributions over the input features like the LDA’s categorical
distributions over words. A pattern is a mixture of components generating the
input features over a fixed period of time. In LDA, patterns are associated with
documents that can be expressed by mixture of corpus-wide topics. One can
clearly notice that this bag-of-words assumption, where temporal dependency in
the data is neglected, is a major simplification. However, this simplification leads
to methods that are computationally efficient. Such computational efficiency is
essential in our case where massive amount of data (around 4 Tb) is used to
train the model.

4 Experimental Settings

First, the data is pre-processed in 3 steps: 1) synchronisation of same utility data,
2) alignment of data coming from different utilities and 3) features extraction.
Details about the pre-processing steps and data description are given in App. 6.
In this section, we focus on the experiments performed on the pre-processed
data.

In all experiments, we use the empirical Bayes method to online point es-
timate the hyper-parameters from the data. The idea is to maximise the log
likelihood of the data with respect to the hyper-parameters. Since the computa-
tion of the log likelihood of the data is not tractable, the approximation based
on the variational inference algorithm used in Sec. 3.2 is employed. The number
of components is fixed to K = 50. We evaluated a range of settings of the learn-
ing parameters: κ (learning factor), τ0 (learning delay) and batch size BS on a
testing set, where the parameters κ and τ0, defined in [33], control the learning
step-size ρj . We used the data collected during the last two weeks (see. Ap. 6)
for testing. All experiments are run 30 times.
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Fig. 1. Elements of the proposed approach

4.1 Evaluation and Analysis
In order to evaluate LDA, we use the perplexity measure which quantifies the fit
of the model to the data. It is defined as the reciprocal geometric mean of the
inverse marginal probability of the input in the held-out test set. Since perplexity
cannot be computed directly, a lower bound on it is derived in a similar way to
the one in [20]. This bound is used as a proxy for the perplexity.

Moreover, to investigate the quality of the results, we study the regularity
of the mined patterns by matching them across similar periods of time. For
instance, it is expected that similar patterns will emerge in specific hours like
breakfast in every morning, watching TV in the evening, etc. Hence, it is inter-
esting to understand how such patterns occur as regular events.

Finally, to provide a quantitative evaluation of the algorithm, we propose a
mapping method that reveals the specific energy consumed for each pattern. By
doing so, we can evaluate numerically the coherence of the extracted patterns
by fitting a regression model to the energy consumption over components:

Aw = b (15)

where w is a vector expressing energy consumption associated with components,
b is a vector representing per-pattern consumption and A is the matrix of the per-
pattern components proportions obtained by LDA. This technique will also allow
us to numerically check the predicted consumption against the real consumption.
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Table 1. Parameter settings

Batch size: BS 1 4 8

Learning factor: κ 0.7 0.5 0.5

Learning delay: τ0 256 64 64

Perplexity 334 333 350

A- Model Fitness: Although online LDA converges for any valid κ, τ0 and BS,
the quality and speed of the convergence may depend on how the learning param-
eters are set. We run online LDA on the training sets for κ ∈ {0.5, 0.6, 0.7, 0.8, 0.9},
τ0 ∈ {1, 64, 256, 1024} and BS ∈ {1, 4, 8}. Table 1 summarises the best settings
of each batch size along with the perplexity obtained on the test set.

The obtained results show that the perplexity for different parameters set-
tings are similar. However, the computation complexity increases with the size of
the batch. Hence, we set the batch size to 1, where the best learning parameters
are κ = 0.7 and τ = 256.

B- Pattern Regularity: Using the optimal parameters’ setting, we examine
in the following the regularity of the mined patterns. To do that, we use the
data from 11-05-2017 10:10:10 to 25-05-2017 10:10:10 for testing. To study the
regularity of the energy consumption behaviour of the residents, we compare
the mined patterns across different days of the testing period. These patterns
are represented by the proportions of the different components (topics) inferred
from the training data. The dissimilarity of the patterns across the two weeks
are computed as follows:

dissimilarity(day1, day2) =
1

K ∗ F

F∑
j=1

K∑
i=1

|γ(day1)j,i − γ(day2)j,i| (16)

where F = 48 is the number of patterns within the day, K is the number of
components, γ(day1)j,i depends on component i of pattern j (see Sec.3.2) of
a day from the first week. Table 2 shows the per-day dissimilarity. It can be
clearly seen from the table that there are regular patterns across the two weeks.
That is, similar energy consumption patterns appear across different days. This
similarity is a bit less (i.e., higher dissimilarity) for the weekend where more
random activities could take place. Computing the dissimilarity measure between
week and weekend days confirms this observation. For instance, the dissimilarity
between Monday and Sunday of the first week is equal to 15.25.

This regularity may be caused by regular user lifestyle leading to similar
energy consumption behaviour within and across the weeks. Such regularity is
violated in the weekend, as more irregular activities could take place. Having
shown that there is some regularity in the mined patterns, it is more likely that
specific energy consumption can be associated with each component. In the next
section, we apply a regression method to map the patterns (e.i., components
proportions) to energy consumption. Thus, the parameters of interest are the
energy consumption associated with the components. By attaching an energy
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Table 2. Patterns dissimilarity

Day Mon Tue Wed Thu Fri Sat Sun

Dissimilarity 8.31 9.17 9.61 7.97 10.43 12.64 12.14

(a) Computed energy consumption

(b) Estimated energy consumption

Fig. 2. Evolution of the energy consumption over time

consumption with each component, we can help validate the coherence of the
extracted patterns and do forecasting.

C- Energy Mapping: As shown in the previous section, LDA can express the
energy consumption patterns by mixing global components summarising data.
These global components can be thought of as a base in the space of patterns.
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Each component is a distribution over a high-dimensional feature space and
understanding what it represents is not easy. Hence, we propose to associate
consumption quantities to each component. Such association is motivated by
the fact that an energy consumption pattern is normally governed by the usage
of different appliances in the house. There should be a strong relation between
components and appliances usage. Hence, a relation between components and
energy consumption is plausible. Note that the best case scenario occurs if each
component is associated with the usage of a specific appliance. Apart from the
coherence study, associating energy consumption with each component can be
used to forecast the energy consumption. This can be done through pattern
forecasting which will be investigated in future work (see Sec. 5). We apply a
simple least-square regression method to map patterns to energy consumption,
expressed as follows:

min ||Aw − b||2 (17)

where w is the per-component energy consumption vector, b is the per-pattern
consumption vector and A is the matrix of the per-pattern components’ propor-
tions which is computed by LDA. We train the regression model on the week
from 18-05-2017 23:45:22 to 25-05-2017 23:45:22 and run the model on the next
one from 25-05-2017 23:45:22 to 01-06-2017 23:45:22 . Figure 2 shows the energy
consumption (in joules) along with the estimated consumption computed using
the learned per-component consumption parameters.

The similarity between the estimated and computed energy consumption
demonstrates that the LDA components express distinct usages of energy. Such
distinction can be the result of the usage of different appliances likely having dis-
tinct energy consumption signatures. Thus, DBN-LDA produces coherent and
regular patterns that reflect the energy consumption behaviour and human ac-
tivities. Note that it is possible that different patterns (or appliance usages)
may have the same energy consumption and that is why both estimated and
computed energy consumption in Fig. 2 are not fully the same.

5 Conclusion and Future Work
In this paper, we presented a novel approach to extract patterns of the users’
consumption behaviour from data involving different utilities (e.g, electricity,
water and gas) as well as some sensors measurements. DBN-LDA is fully un-
supervised and LDA works online which is suitable for dealing with big data.
To analyse the performance, we proposed a three-steps evaluation that covers:
model fitness, qualitative analysis and quantitative analysis. The experiments
show that DBN-LDA is capable of extracting regular and coherent patterns that
highlight energy consumption over time. In the future, we foresee three direc-
tions for research to improve the obtained results and provide more features: (i)
developing online dynamic latent Dirichlet allocation (DLDA) to consider the
temporal dependency in the data leading to better results and allowing forecast-
ing, (ii) develop more scalable LDA by applying asynchronous distributed LDA
which can be derived from [35] instead of SVI and (iii) involving active learning
strategy to query users about ambiguous or unknown activities in order to guide
the learning process when needed [36, 37].
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6 Appendix

In this section, we will first introduce the experimental data, LDA will be tested
on along with details about the data pre-processing stages.

6.1 Datasets

The real-world multi-source utility usage data used here is provided by ETI1.
The data includes electricity signals (voltage and current signals) sampled at
high sampling rate around 205 kHz, water and gas consumption sampled at
low sampling rate. The data also contains other sensors measurements collected
from the Home Energy Monitoring System (HEMS). In this study we will use
4Tb of utility usage data collected from one house over one month. This data
has been recorded into three different formats. Water data is stored in text files
with sampling rate of 10 seconds and is synchronised to Network Time Protocol
(NTP) approximately once per month. Electricity data is stored in wave files with
sampling rate of 4.88 s and is synchronised to NTP every 28min 28sec. HEMS
data is stored in a Mongo database with sampling rates differing according to
the type of the data and sensors generating it (see Tab. 3).

Data Pre-processing In order to exploit raw utility data by LDA, a number
of pre-processing steps are required. We read the data from the different sources,
synchronise its time-stamps to NTP time-stamps, extract features and align the
data samples to one time-stamp by measurement. For water data, the PC clock
time-stamps of samples within each month are synchronised to NTP time-stamp.
The synchronisation is done as follows:

timestampNTP (i) = timestampsclock(i) + i
Total T ime Shift

Number of Samples
(18)

In this equation, we assume that the total shift (between NTP and PC clock) can
be distributed over the samples in one month. Similarly, Electricity data samples’
time-stamps are synchronised to NTP time-stamps. The shift is distributed over
28 minutes and 28 seconds.

timestampNTP (i) = timestampsclock(i) + i
Total T ime Shift

Number of Samples
(19)

The time-stamps of HEMS data were collected using NTP and so no synchro-
nisation is required. Having all data samples synchronised to the same reference
(NTP), we align the samples to the same time-stamps. The alignment strategy
is shown in Fig. 3 where the union of all aligned data samples is stored in one
matrix. Each row of this matrix includes a time-stamp and the corresponding
values of the sensors. If for some sensors, there are no measurements taken at
the time-stamp, the values measured at the previous time stamp are taken. The

1 Energy Technologies Institute: http://www.eti.co.uk/
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Table 3. Characteristics of the data

Data Range Resolution Measurement Total
frequency duration

Mains Voltage -500V to +500V 62mV 4.88s 1 months

Mains Current -10A to +10A 1.2mA 4.88s 1 months

Water Flow Volume 0 to 100L per min 52.4 pulses 10s 1 months
per litre

Room Air Temperature 0 to 40 DegC 0.1 DegC Once every 1 months
minute

Room Relative Humidity 0 to 95% 0.1 % Once every 1 months
5 minutes

Hot Water DegC 0.1 DegC Once every 1 months
Feed Temperature 5 minutes

Boiler: Water 0 to 85 DegC 0.1 DegC Once every 1 months
Temperature (Input) 5 minutes

Boiler: Water DegC 0.1 DegC Once every 1 months
Temperature (Output) 5 minutes

Household: Mains Cold DegC 0.1 DegC Once every 1 months
Water Inlet Temperature 5 minutes

Gas Meter Reading Metric Meter 0.01m3 Once every 1 months
15 minutes

Radiator Temperature DegC 0.1 DegC Once every 1 months
5 minutes

Radiator Valve 0 to 100% 50% Once every 1 months
5 minutes

Boiler Firing Switch Boolean None Once every 1 months
5 minutes

Fig. 3. Alignment of the data

aligned data samples are the input of the feature extraction model (Deep Belief
Network). Pushed by the complexity of the mining task and motivated by the
informativeness and simplicity of the water and sensors data, at this stage, we
apply DBN only on the electricity data over time windows of 1 second.

The employed DBN 2 consists of three Restricted Boltzmann Machine layers
where the first layer reduces the input dimension from 204911 (1 second granu-
larity) to 700. The second and third layers’ outputs dimensions are 200 and 100
respectively. Note that the first layer’s inputs are from continuous space while
the rest is categorical data. The rest parameters are left to the default setting.
The last layer’s outputs are aligned and concatenated with the other utility and
sensors discretised data.

2 https://github.com/lmjohns3/py-rbm


