
 1 

THE PHYSIOLOGICAL DEMANDS OF YOUTH ARTISTIC GYMNASTICS; 1 

APPLICATIONS TO STRENGTH AND CONDITIONING   2 
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ABSTRACT 3 

The sport of artistic gymnastics involves a series of complex events that can expose young 4 

gymnasts to relatively high forces. The sport is recognized as attracting early specialization, in 5 

which young children are exposed to a high volume of sports-specific training. Leading world 6 

authorities advocate that young athletes should participate in strength and conditioning related 7 

activities in order to increase athlete robustness and reduce the relative risk of injury. The 8 

purpose of this commentary is to provide a needs analysis of artistic gymnastics, and to 9 

highlight key issues surrounding training that practitioners should consider when working with 10 

this unique population. 11 
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INTRODUCTION 18 

The sport of gymnastics possesses a range of sub-disciplines, including rhythmic, trampolining, 19 

tumbling and acrobatic, with an estimated 50 million participating world wide (29); however, 20 

artistic gymnastics is one of the most popular in terms of participation rates among children 21 

and adolescents (29, 36). Despite certain similarities, the demands of artistic gymnastics differ 22 

for males and females. Women’s artistic gymnastics consists of four events (vault, uneven bars, 23 

balance beam, and the floor exercise), while men’s artistic gymnastics comprizes six apparatus 24 

(floor, pommel horse, rings, vault, parallel bars, and high bar). The physical abilities necessary 25 

to perform successfully on each apparatus vary considerably in the required neuromuscular 26 

power, strength, flexibility, speed, co-ordination, balance, and energy system demands (47), 27 

and are summarised in figure 1. The development of these physical qualities in children and 28 

adolescents is non-linear due to interactions of growth, maturation, and training (112). 29 

Consequently, the development of physical components in young gymnasts can be complex 30 

(62) as the timing, tempo and magnitude of development will differ markedly between 31 

individuals of the same age (62). In addition to understanding the science behind the training 32 

process, practitioners working with young artistic gymnasts should also consider the key 33 

principles surrounding pediatric development to better understand the potential trainability and 34 

adaptability of gymnasts at different stages of development.  35 

 36 

***Insert figure 1 near here*** 37 

 38 

PHYSICAL FITNESS REQUIREMENTS FOR ARTISTIC GYMNASTICS  39 

Strength, power and speed  40 

Strength. The sport of artistic gymnastics requires high levels of strength and power in the 41 

upper and lower limbs to successfully, and safely perform a dynamic and diverse set of 42 
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movement skills in sequence (36). While these movements will invariably involve a 43 

combination of eccentric and concentric actions, the importance of isometric strength and body 44 

tonus should not be underestimated (18) as artistic gymnasts are judged by, and conditioned to, 45 

hold a sequence of technical shapes in both dynamic and static conditions (37). Thus, the ability 46 

to effectively recruit motor units in order to exert force at variable movement velocities appears 47 

to be an important determinant of performance for gymnasts from an early age. For example, 48 

during a routine on the floor, gymnasts are required to execute movement patterns that use 49 

various segments of the force-velocity curve and involve all types of muscular actions (74, 78).  50 

Take-off characteristics for a double back somersault on the floor have reported vertical 51 

velocity of the centre of mass was 4.2  0.46 m.s-1 for males, and 3.54  0.85 m.s-1 for females 52 

at take-off (33) while a planche requires high levels of isometric muscular force (51). 53 

Furthermore, kinetic analysis of take-off forces during a straight back somersault tumbling 54 

series, revealed mean maximal vertical forces and maximal rate of force development were 55 

6874  1204 N, and 6829  2651 N.s respectively (78). Specifically for boys, moving in and 56 

out of different positions with control is particularly important on apparatus that is upper body 57 

dominant (e.g. the rings, pommel horse) (18). Gymnasts also rely heavily on lower-limb 58 

eccentric strength, as they are frequently exposed to landing forces from varying heights, 59 

velocities and rotations (34). Researchers have shown that when simulating the impact 60 

velocities female gymnasts experience during dismounts from the balance beam and uneven 61 

bars (drop landings from 0.69 m 1.25 m and 1.82 m), the gymnasts were required to tolerate 62 

vertical peak forces that exceeded nine times their body weight (75). Those able to absorb such 63 

forces in an aesthetic manner obtain less deductions, which results in a higher overall score. 64 

Therefore, it is evident that gymnasts must manipulate the impulse-momentum relationship to 65 

maximize force production for skill execution and to safely tolerate landing forces to avoid 66 

injury.  67 
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 Power. Similarly, peak power is considered to be an essential component of successful 68 

gymnastics performance (47). Gymnasts with higher concentric and eccentric strength and 69 

power are able to produce more forceful muscle actions at higher velocities (32), enabling the 70 

execution of more challenging acrobatic skills. Researchers have shown that resistance training 71 

programs can improve relative power-to-mass ratios in gymnasts through increasing peak 72 

power outputs during both countermovement and squat jumps (46% and 43% improvement 73 

respectively), and reducing fat mass whilst increasing lean muscle mass. The authors stated 74 

that as a result of these adaptations, the gymnasts were able to jump higher, providing increased 75 

flight time in which to perform more advanced technical skills, thereby increasing their score 76 

potential (32). 77 

 The ability to produce high levels of muscular power is salient upon the type of 78 

muscular action involved and researchers have shown that when a muscle performs an eccentric 79 

action prior to a concentric action, greater power outputs are produced compared to a concentric 80 

action in isolation (55). This sequencing of an eccentric contraction followed immediately by 81 

a concentric contraction is referred to as the stretch-shortening cycle (SSC) (55). Research has 82 

shown that SSC utilization of both upper and lower limbs are key performance indicators for 83 

young gymnasts aged 8 to 15 years old (11, 12). For example, research has shown that young 84 

gymnasts with an explosive take-off from the board (short repulsive board contact time and 85 

high take-off velocity) had increased post-flight times, which resulted in fewer deductions and 86 

higher scores in vaulting performance (11). Evidence suggests that during the floor exercise, 87 

explosive tumbling involves take-offs with contact times between 115  10 to 125  11 ms 88 

(73), underlining the importance of fast-SSC actions (ground contact times < 250ms) for 89 

performance (12). However, recently researchers have found that young elite male gymnasts 90 

had unexpectedly poor fast-SSC actions when tested during a 30 cm drop jump protocol (107). 91 

The authors suggested that the gymnasts were not effective in their execution of the drop jump 92 
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due to an over-reliance of sprung surfaces and longer take-off foot contacts during training of 93 

tumbling and vaulting performance (107). The findings could also indicate that gymnasts are 94 

very proficient at gymnastics skills which require SSC actions, but have not experienced the 95 

use of drop jumps in their training on non-sprung surfaces (58).  96 

  Speed. The phase of running prior to the point at which an individual reaches their 97 

maximum velocity is referred to as the acceleration phase. The ability to accelerate effectively 98 

requires the application of high resultant ground reaction forces in a horizontal direction, 99 

relative to body weight (80). Maximal velocity usually occurs between 15-30 metres in young 100 

athletes (76), and refers to the point at which external forces are no longer changing the 101 

velocity. The approach to the vault in gymnastics requires rapid acceleration up to 25 m to 102 

facilitate an explosive take-off from the springboard (10). Achieving a high speed during the 103 

approach and subsequent power output for the aerial phase is directly associated with improved 104 

scores on the vault (12). Elite male gymnasts demonstrate speeds of up to 10.9 m.s-1 during 105 

competition (3). In young national standard female gymnasts, average speeds of over 18 m 106 

were 6.07m.s-1 (8-10 years old), 6.31m.s-1 (11-12 years old) and 6.20 m.s-1 (13-14 years old), 107 

respectively (12). Interestingly, the results indicate a reduction in sprint speed together with an 108 

increase in body mass and height of gymnasts aged from 11-12 to 13-14 years old. As the 109 

natural development of speed throughout childhood and adolescence is thought to follow a 110 

non-linear process (66), the results could reflect a period of ‘adolescent awkwardness’ whereby 111 

a temporary disruption in motor co-ordination occurs due to growth (8). Furthermore, a fast 112 

vault run-up speed and resultant take-off velocity from the spring board were found to be strong 113 

predictors (r2 >.64) of floor tumbling ability (12), demonstrating the importance of developing 114 

high running speeds for artistic gymnastics.  115 

 116 

Balance and stabilization 117 
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The aptitude to balance and stabilize the body is a complex process involving sensory 118 

information from the vestibular, visual and proprioceptive systems (31), to maintain the body’s 119 

centre of gravity over the base of support (44, 87). Gymnasts’ requires the ability to balance 120 

and maintain postural control via the upper and lower extremity, during both static and dynamic 121 

movements. Factors that affect young gymnasts’ ability to stabilize their bodies during such 122 

tasks include; the size of the base of support, centre of gravity height, and number of limbs in 123 

contact with the apparatus (40). Unique to the sport of artistic gymnastics, the equipment’s 124 

mechanical properties affect the stability of the apparatus which also influences the difficulty 125 

of the tasks (16). For example, the handstand is a fundamental skill for male and female 126 

gymnasts which has considerably different demands to maintain stability when performed on 127 

different apparatus such as the floor, beam, parallel bars, and rings (16, 40). A recent review 128 

concluded that when aiming to retain stability during a handstand, the ‘wrist strategy’ can be 129 

adopted to maintain the position, providing the gymnasts body remains in a vertical position 130 

(40). The ‘wrist strategy’ involves increasing the centre of pressure in the fingers or wrists 131 

depending on the movement direction of the centre of gravity (105). However, if the area of 132 

support is smaller for example on the uneven bars, the “shoulder strategy” may be required to 133 

maintain balance (40).  134 

Expectedly, researchers have shown that gymnasts have superior balance ability when 135 

compared with controls (2, 15), and various other sports (19, 44). Recent findings from a large 136 

data-set of children aged 5 to 14, found that scores from the balance error scoring system 137 

(BESS), significantly improved with increasing age (39). Given the effects of gymnastics-138 

specific training on balance (2, 15, 19, 44), and the natural improvements in balance that 139 

manifest during childhood (39), devoting large amounts of time to balance training during 140 

young gymnasts’ strength and conditioning provision may not be warranted. Instead, warm ups 141 

and injury prevention sessions would serve as the opportune time to incorporate exercises that 142 
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enhance postural/trunk control, stability, and that emphasize high quality (force absorption) 143 

landing tasks.  144 

 145 

Energy demands of gymnastics  146 

The duration of performance within artistic gymnastics varies amongst activities; the vault 147 

exercise can last approximately five seconds, while the beam and floor exercises can last up to 148 

90 seconds (47). Both the explosive nature of the sport and short duration of the disciplines 149 

dictate that the main supply of adenosine triphosphate (ATP) in gymnastics is via the ATP-PCr 150 

and anaerobic glycolytic energy systems. Researchers have shown peak blood lactate 151 

concentrations (Lmax) above 4 mmol/l for elite males and females on all apparatus, with the 152 

exception of the vault (2.4-2.6 mmol/l) (69). Owing to the variety in duration, intensity and 153 

tempo of artistic gymnastics activities and the variability of muscle contraction types during 154 

competitive routines, gymnasts never reach a “steady state” in performance (47). Therefore, 155 

estimating energy costs from the relationship between VO2 and HR is likely to be invalid when 156 

drawn from laboratory testing of the athletes (47).  157 

 According to longitudinal data regarding the aerobic capacity of gymnasts, typical 158 

maximal oxygen uptake (VO2max) values have remained around 50 ml/kg/min over the last five 159 

decades (49). It would appear that aerobic capacity is not a key determinant of performance for 160 

artistic gymnasts. This is perhaps unsurprising considering gymnasts are conditioned to 161 

perform short, explosive routines, relying predominantly on anaerobic metabolism. However, 162 

this is not to say that possessing some level of aerobic capacity is unnecessary (47), as it has 163 

been shown that adolescent female gymnasts attain VO2max profiles as high as 85% (relative to 164 

body mass) following competitive routines, such as the floor exercise (69). Additionally, heart 165 

rate data of elite gymnasts has been investigated during each apparatus for both males and 166 

females (49, 69). Maximal HRs were found to be approximately >180  11.33 beats per minute, 167 
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with the exception of the vault (and the rings as HR data was not included in the study) (49, 168 

69), demonstrating the high intensity nature of the sport. It would appear from the 169 

aforementioned data that during competitive routines, elite gymnasts work close to their 170 

metabolic thresholds (46), indicating the need for high-intensity based conditioning programs. 171 

Crucially, gymnasts that are able to recover more efficiently between a series of skills or 172 

different events, are more likely to sustain a higher level of performance, and reduce their 173 

relative risk of injury through fatigue. Therefore, while it may not be a primary training 174 

emphasis during the developmental years (62), strength and conditioning programs for youth 175 

gymnasts should not eliminate aerobic conditioning as a training stimuli, especially when 176 

trying to optimise recovery during repeated bouts of exercise. 177 

 178 

Childhood physiology: an increased ability to recover from high-intensity exercise 179 

Balancing fatigue during intense training sessions and technical competency of difficult skills 180 

is essential to optimize the safety of young gymnasts (47). Performing highly skillful routines 181 

in a fatigued state may increase the risk of injury (97). Thus, it is important that young gymnasts 182 

are able to facilitate a fast recovery from high-intensity exercise. Researchers have shown that 183 

children recover more quickly from high intensity exercise than adults (28). From a mechanical 184 

perspective, children are unable to generate relative power outputs to the same magnitude as 185 

adults (95), which is likely to result in less relative fatigue (28). Similarly, researchers have 186 

shown that children’s type II muscle fibres are similar or smaller in cross-sectional area than 187 

their type I fibres (113), which suggests an extensive underuse of type II motor units during 188 

the pre-pubertal years (21). Thus, children’s neuromuscular immaturity may impact on their 189 

ability to maximally recruit higher-order, type II motor units. This indicates a greater reliance 190 

on lower-order type I motor units that facilitates a faster resynthesis of energy substrates, 191 

resulting in a faster recovery (28). Additionally, faster PCr resynthesis has been attributed to 192 
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children’s greater reliance on oxidative metabolism and lower dependence on glycolytic 193 

metabolism (21). Children also produce lactate at a lower rate than adults during maximal 194 

exercise, resulting in reduced lactate accumulation, though their rate of lactate removal appears 195 

to be the same (21). Thus, when aiming to develop anaerobic capacity in young gymnasts, 196 

practitioners should consider the influence of growth and maturation on the trainability of this 197 

system. Furthermore, young gymnasts will require a certain degree of aerobic conditioning to 198 

recover from the high-intensity exercise that the sport demands. It is therefore important for 199 

coaches’ to encompass both anaerobic and aerobic conditioning stimuli in artistic gymnasts 200 

programming. 201 

 202 

Flexibility and mobility  203 

Unlike other sports which require optimal ranges of motion for skill acquisition and mechanical 204 

advantage (62), artistic gymnastics is an aesthetic sport which demands large ranges of motion 205 

to achieve certain positions and techniques for the purpose of scoring (37). For example, 206 

following appropriate preparation, male gymnasts perform dislocation elements on the high 207 

bar and rings (48), underlining the extreme ranges of motion required by the sport. 208 

Furthermore, in women’s gymnastics, the Code of Points penalises gymnasts that do not attain 209 

180 degrees of splits during leaps, jumps and acrobatic skills (37). It is essential to note that 210 

while the ability to achieve these limb positions relies heavily on extreme ranges of motion, 211 

these movements must be supplemented with appropriate levels of muscle strength throughout 212 

the range of motion (18, 48).  213 

 214 

TRAINING CONSIDERATIONS FOR YOUNG ARTISTIC GYMNASTS  215 

Growth, maturation and training  216 
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Intuitively, gymnastics coaches may favour the selection of late maturing individuals and those 217 

that are genetically predetermined to have shorter and slighter statures (particularly in women’s 218 

gymnastics). However, children develop biologically at different rates, particularly around 219 

puberty whereby they experience rapid fluctuations in growth (106). Chronological age is not 220 

a valid or reliable indication of maturational status (4). While technical competency will always 221 

be a key determinant of training prescription, it is imperative that consideration is given to 222 

biological maturation when training young gymnasts within the same competitive age group. 223 

Predicting somatic maturity may be a useful and practically viable marker for coaches to 224 

monitor gymnasts’ growth and maturation (63). For example, owing to the influence of stature 225 

on performance and the high representation of later maturing youth (108), practitioners could 226 

determine the percentage of predicted adult stature (53), which offers a practical and reasonably 227 

accurate measure of estimated maturity for youth populations (53). 228 

With a clear understanding of biological maturation, practitioners working with young 229 

gymnasts should be better placed to prescribe and coach developmentally appropriate training 230 

strategies that meet the specific needs and goals of the individual (7, 58, 60). For example, by 231 

collecting basic anthropometric data on a quarterly basis, practitioners can identify with 232 

reasonable accuracy when a gymnast is experiencing a growth spurt, and can tailor training 233 

accordingly. From a physical perspective, when working with youth who are undergoing rapid 234 

periods of growth, coaches should spend time addressing any decrements in range of movement 235 

(foam rolling soft tissue, unloaded stretches) and balance, due to the changes in the height of 236 

centre of gravity (static and dynamic balancing/stabilizing activities). Furthermore, coaches 237 

must individualize programmes to target deficits in strength resulting in muscle imbalances 238 

(89). There are numerious training strategies available to practitioners to develop the physical 239 

performance characteristics of young artistic gymnasts, which can be seen in figure 2. The 240 

challenge of working with youth who are experiencing a growth spurt is exacerbated when 241 
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sport-specific training loads are high, which are common in youth gymnastics (90). This 242 

scenario can lead to high amounts of accumulated fatigue at a time when young gymnasts’ are 243 

experiencing significant biomechanical alterations (e.g. increased limb length, reduced relative 244 

strength) as a result of growth. Data suggest that the growth spurt poses an increased risk of 245 

injury in young athletes as a result of musculoskeletal vulnerability (70), especially with respect 246 

to overuse (14), and acute traumatic (111) injuries. Due to the heightened injury risk during 247 

this stage of development, routine screening of basic anthropometric data, and some form of 248 

movement screening (e.g. the tuck jump assessment or drop jump testing for knee valgus during 249 

landings). Similarly, practitioners are also advised to make use of some form of health and 250 

well-being questionnaires to monitor sleep, fatigue, muscle soreness, mood, levels of social 251 

interaction, and any onset of pain that could be associated with musculoskeletal injuries (58). 252 

Furthermore, coaches must carefully monitor training loads (both volume and intensity) and 253 

closely monitor the total loads experienced by young gymnasts. This requires a quantification 254 

of training load during strength and conditioning training, sport-specific training, and 255 

competitions to reduce the risk of; overuse-type injuries, non-functional overreaching, 256 

overtraining syndrome, and burnout (20). Practitioners should adopt an integrated approach to 257 

quantigy training loads, using a combination of both internal and external load metrics to 258 

provide insight into the total stress placed on the athletes (9). 259 

 260 

***Insert figure 2 here*** 261 

 262 

A holistic approach to training 263 

Research from numerous reports in various sports have suggested that children 264 

specializing in a single sport prior to puberty may be disadvantaged at a later stage (45, 81, 83). 265 

Historically, gymnastics coaches prioritise the implementation of traditional gymnastics-266 
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specific conditioning programs from a very early age (6, 92), which often involves circuits of 267 

body weight exercises and repetitions of skills. However, while such training programs 268 

typically only involve the development of specific physical qualities and movement patterns 269 

for gymnastics, it is recognized that well-rounded athleticism should be developed in all youth 270 

(58). It is proposed that integrative neuromuscular training (INT), which uses a combination of 271 

general and specific strength and conditioning activities to enhance health and skill-related 272 

components of fitness (41) could be an advantantagous addition to gymnasts programs to 273 

enhance performance and reduce the relative risk of sport-related injury. Crucially, training 274 

provision for youth should be programmed in a holistic and integrated manner in order to 275 

provide a variety of training stimuli to develop multiple fitness components and overall 276 

athleticism (44).  277 

 Conventionally, gymnastics coaches' conditioning programs are largely skill driven 278 

owing to the specific demands of the sport (50). Training specificity cannot be underestimated 279 

in this sport and can be used to prepare gymnasts effectively, providing training is progressively 280 

load. However, the broader field of strength and conditioning may offer additional benefits to 281 

the physical preparation of gymnasts (32, 38, 68, 91). Indeed, the challenge for the strength 282 

and conditioning coach working with young gymnasts is to safely provide an effective training 283 

stimulus that is different to that which they experience during their sport-specific training, yet 284 

is still relevant to their athletic development. Young artistic gymnasts will likely be accustomed 285 

to experiencing high ground reaction forces during activities such as tumbling or vaulting (54, 286 

103). For example, pre-pubescent female gymnasts have been shown to endure vertical ground 287 

reaction forces of 2-4 times body weight at the wrist, and 3-8 times body weight at the ankle, 288 

on the floor apparatus (13). A major role of the strength and conditioning coach is to increase 289 

the robustness of the child to repeatedly tolerate these ground reaction forces safely and 290 

effectively, in both a fatigued and non-fatigued state. Frequent exposure to specific movement 291 
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patterns whereby the application of force is not varied may result in chronically overstressing 292 

the musculoskeletal system (5, 20). Strength and conditioning coaches working within early 293 

specialization sports should be particularly aware of the benefits that movement variability 294 

provide for motor skill development and reducing the risk of overuse injuries (5, 58). The 295 

strength and conditioning coach has a role to play in developing general levels of athleticism 296 

in the young child that will facilitate their lifelong participation in sports and activities outside 297 

of gymnastics. In the event that a young gymnast decides to disengage from the sport, it is 298 

important that they are physically prepared for the demands of other sports or physical activities 299 

(58), not just attempting to maximize specific abilities for gymnastics. Finally, coaches should 300 

be mindful that strength and conditioning provision with young gymnasts should be fun, 301 

challenging, and enjoyable, to optimise athlete buy-in and long-term adherence to programmes.  302 

 303 

Strength and power training 304 

Traditional fears that resistance training induces excessive muscle hypertrophy, resulting in 305 

increased body mass has anecdotally discouraged some gymnastics coaches from using this 306 

training modality, particularly with young females (32). However, the adaptations from 307 

resistance training in youth prior to the onset of puberty are likely to be neuromuscular in nature 308 

(35), meaning that large increases in muscle cross-sectional area are unlikely (62). 309 

Consequently, increases in strength during this stage of development - especially in the early 310 

stages of the training intervention - will be as a result of improved neuromuscular qualities 311 

(motor unit recruitment, synchronization & firing frequency) as opposed to hypertrophic 312 

adaptations (60).  Following the adolescent growth spurt, both neurological and morphological 313 

adaptations may also occur as a result of training (62). However, as the goal for most gymnasts 314 

would be to develop relative strength, appropriate training prescription (lower repetition 315 

ranges, higher intensities, and longer rest periods) should result in myofibrillar hypertrophy 316 
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and increased functional mass, as opposed to sarcoplasmic hypertrophy and increased non-317 

functional mass (102). Sex differences in the rate of muscular growth are apparent following 318 

the onset of puberty, with males displaying accelerated gains in strength (66) and females a 319 

reduction in strength and power production (88). Decrements in neuromuscular strength during 320 

this stage of development may increase females’ risk of certain injuries, especially those 321 

involving the anterior cruciate ligament (ACL) (30, 93), an injury which is highly prevalent 322 

during landings in gymnastics (43). Gymnasts are required to ‘stick’ landings following certain 323 

skills and dismounts to avoid large deductions and to optimize performance (37); therefore, the 324 

need to develop eccentric strength to assist in force disspaction strategies is necessary. 325 

Programs which specifically focus on the development of eccentric strength in highly trained 326 

athletes improve power, velocity and jump height characteristics, compared to controls that 327 

trained without an accentuated eccentric load (104). However, there remains a lack of literature 328 

that has specifically examined the effects of eccentric strength development in young athletes. 329 

Short term neuromuscular training interventions which focus on ‘soft’ landings with an 330 

emphasis on knee and hip flexion, significantly improved adolescent female athletes’ 331 

biomechanics during landings (82), which could be a beneficial strategy for gymnasts to adpopt 332 

for dismounts and ‘sticking’ landings. Given that gymnasts may develop greater activation in 333 

their knee extensor muscles due to a gymnastics-training induced adaptation prior to puberty 334 

(77), and females are predisposed to deficits in hamstring strength following the onset of 335 

puberty (42), integrated neuromuscular training programmes (84, 86) targeting hamstring 336 

strengthening should be incorporated into pre-pubertal and adolescent young gymnasts training 337 

programmes.  338 

Irrespective of the stage of development, resistance training for gymnasts with a low 339 

training age and low levels of technical competency should begin with exercises that are low 340 

to moderate in intensity (e.g. body weight) and technically simple (85). The primary focus 341 
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should centre on building a base level of muscular strength and developing a broad range of 342 

robust movement patterns (58). Over time, gymnasts will become proficient at body weight 343 

exercises and will ultimately require a new stimulus to overload the body for further adaptation 344 

(99). Intensity (or load) can be increased with minimal or no equipment, by altering the body’s 345 

position against gravity. Additional external load in the form of free weights, elastic resistance 346 

bands and medicine balls, has been shown to be a safe and effective means of enhancing young 347 

athletes’ strength within resistance training programs (58). Unfortunately, very few studies 348 

have investigated the effects of resistance training programs with artistic gymnasts. Recently, 349 

one study in elite pre-pubertal female gymnasts found that a 16-week training intervention, 350 

combing high impact plyometrics with heavy resistance training, was more effective in 351 

improving various parameters of drop jumps (e.g. fight time, contact time, flight-contact ratio, 352 

and estimated mechanical power) than habitual skill training (68). As a result, the authors 353 

recommended a reduction in time spent on technical routines and repeatedly performing 354 

gymnastics movements, and the inclusion of 2 to 3 intense strength and power workouts per 355 

week (68), prescription guidelines that are in line with existing youth resistance training 356 

guidelines (23, 60). Furthermore, a recent meta-analysis in well-trained young athletes has 357 

concluded that on the premise that technical competency has been suitably developed, the most 358 

effective dose-response relationship occurs with; conventional resistance training programmes 359 

of periods > 23 weeks, 5 sets per exercise, 6–8 repetitions per set, a training intensity of 80–360 

89% of 1 RM (56). This underlines the need for progressive overload even in youth, in order 361 

to ensure ongoing neuromuscular adaptation. 362 

It should also be stressed that when technical proficiency is evident, young gymnasts 363 

will likely require exposure to larger external loads, typically elicited through barbell related 364 

activities such as squatting, deadlifting, lunging, and weightlifting exercises (including their 365 

derivatives) to promote further adaptations. Resistance training should be implemented as 366 
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alternative training session to gymnastics training, and not merely as an addition. Regular 367 

resistance training should form part of young gymnasts’ training programs to develop/maintain 368 

levels of muscular strength, avoid detraining of neuromuscular qualities, and to prevent over-369 

use injuries associated with high volumes/intensities of sports-specific training (20, 23, 25, 26, 370 

60, 110). One to three resistance training sessions per week are recommended for young 371 

athletes, providing that adequate time for rest and recovery is integrated into the gymnasts’ 372 

periodized plan (60).     373 

 Gymnastic performance is characterized by powerful muscle actions, the type of 374 

training must acknowledge the principle of specificity for optimal adaptations, with high 375 

contractile velocities are appropriate training modalites (32). As training age and technical 376 

competency increases over time, resistance training exercises and weightlifting movements can 377 

be performed more explosively to promote appropriate neuromuscular adaptations (52). French 378 

et al. (32) utilised a power-specific resistance training programme in elite female gymnasts, 379 

which significantly enhanced whole body muscular power capacities. The training included 380 

exercises which focused on applying as much force as possible in the shortest period of time 381 

which is an important factor for performance in gymnastics (32). This resulted in an increased 382 

level of performance, as demonstrated in their competition scores (especially on the floor), due 383 

to improvements in leaping and tumbling (32). Furthermore, a recent study investigated the 384 

effects of a 6-week resistance training program on jumping performance in pre-pubertal 385 

rhythmic gymnasts using sport specific (three repetitions of ten dynamic exercises wearing a 386 

weighted belt that was 6% of body mass) and non-specific (a moderate load/high repetition 387 

resistance training program with dumbbells) interventions (91). While both strength training 388 

programs increased lower limb explosive strength by 6-7%, only the non-specific training 389 

intervention significantly improved flight time in the hopping test which assessed leg stiffness 390 

(91). Drop jumps are a highly complex task for young athletes to develop proficiency in (6), 391 
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however importantly, they are primarily used as a training tool to target fast or slow SSC 392 

function through progressive overload. Cueing shorter contact times during drop jumps 393 

typically encourages faster SSC activity, while cueing athletes to prioritise maximimum jump 394 

height may result in slower SSC actions (65). An increase in leg stiffness may result in reduced 395 

ground contact times, leading to a more efficient utilization of the SSC (1, 55). Shorter contact 396 

times with rapid amortization periods have been shown to result in greater reutilization of 397 

elastic energy (115). While gymnasts need increased leg stiffness for fast SSC actions, the 398 

optimal amount of leg stiffness is task specific (71). Certain skills in gymnasts will require a 399 

more compliant system involving longer contact times and slower SSC actions, resulting in 400 

greater jump heights (1). Plyometrics have been shown to enhance leg stiffness in young boys 401 

(59) as well as promote improvements in rebound jump height, vertical jump performance, 402 

running velocity, and rate of force development (61), all of which are highly relevant to 403 

gymnastics.  404 

However, as a large proportion of gymnastics training already involves plyometric 405 

exercise, prescribing an alternative training stimulus that focuses on different regions of the 406 

force-velocity curve may be more beneficial such as, strength training (high force), or 407 

weightlifting derivatives (high force-moderate velocities). Cumulatively, existing research 408 

would suggest that integrating resistance training with gymnastic-specific strength programs 409 

may indeed provide an additional training stimulus to enhance performance and reduce injury 410 

risk in young gymnasts. While studies have demonstrated the benefits of resistance training for 411 

adult gymnasts (32), the effects of a long-term resistance training intervention in pre-pubertal 412 

and adolescent gymnasts is yet to be explored.  413 

 414 

Speed Development  415 
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The natural development of speed throughout childhood and adolescence is thought to follow 416 

a non-linear process (66), with fluctuating improvements in sprint performance occurring in 417 

pre-adolescent and adolescent periods (112). Researchers have indicated that the trainability of 418 

sprint speed is optimal when the prescription matches the natural adaptive processes that occur 419 

during maturation, a phenomenon referred to as “synergistic adaptation” (64). For example, 420 

when aiming to increase sprint speed in pre-pubertal populations, utilizing plyometrics to elicit 421 

neurally-mediated adaptations during this stage of maturation is a favorable form of training 422 

(24, 64). For post-pubertal males experiencing other maturity-related changes, such as natural 423 

increases in muscle mass and changes in circulating androgens, (66, 109) combined resistance 424 

training and plyometrics may be the most optimal training stimulus to improve sprinting 425 

velocity (64). It is important to note that coaches should pre-screen athletes individually prior 426 

to implementing plyometrics to ensure good technical competency is present during landing 427 

tasks (57). This is particularly important for gymnasts if the exercises chosen are not performed 428 

on sprung surfaces that the gymnasts are accustomed to. However, as previously stated, 429 

gymnasts experience a large amount of plyometric based training within their sport and 430 

therefore, strength and conditioning coaches must carefully consider the prescription of such 431 

training. Controlling the volume (number of foot contacts) and intensity (via exercise choice) 432 

is critical for appropriate periodization of gymnasts’ training.  433 

 While integrated neuromuscular programs inclusive of resistance training and 434 

plyometrics increase speed (albeit indirectly at times) in young athletes (22, 36, 41, 61, 64, 94), 435 

specific speed training may provide additional adaptations in running speed for young 436 

gymnasts. The vault run-up approach in gymnastics is up to 25 m, thus technical coaching 437 

should focus primarily on developing relevant acceleration mechanics and horizontal force 438 

production, as opposed to those associated with maximal running velocity. A recent meta-439 

analysis concluded that prescription of speed training for youth should occur twice a week and 440 
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comprise of up to 16 sprints of approximately 20 m, with a work-to-rest ratio of 1:25 (79). 441 

Furthermore, the underlying ability to run fast towards the take-off board and vaulting table 442 

relies on both the gymnast's accelerative capacity and the ability to visually control and regulate 443 

the approach (10, 12). Gymnasts that achieve high speeds when running but slow down as they 444 

approach the vault will limit their performance (10, 12). Therefore, coaches should aim to 445 

develop running speed throughout the vaulting or tumbling sequence in young gymnasts to 446 

optimise the transfer of this ability to vaulting performance. To facilitate this transfer, 447 

researchers have recommended that coaches’ implement targeting activities early on with 448 

young gymnasts, such as practising simple vaults from different approach distances (10).  449 

 450 

Flexibility and mobility training strategies  451 

It is common practise for gymnastics coaches to utilize the proposed sensitive period prior to 452 

puberty (98) for developing optimal levels of flexibility in gymnasts. Following the onset of 453 

the pubescent growth spurt, researchers have shown that range of motion plateaus or declines, 454 

particularly in males (27). Thus, due to the scoring criteria involved in gymnastics which 455 

rewards extreme ranges of motion, coaches should emphasize flexibility training throughout 456 

childhood and adolensese to maximize whole body range of motion. However, as a caveat to 457 

this, it must be recognized that appropriate levels of muscular strength are required to safeguard 458 

the young gymnast when using potentially extreme ranges of motion. Thus, strength and 459 

conditioning provision of gymnasts should be directed towards balancing the development of 460 

large ranges of motion around joints with appropriate strength and neuromuscular stability to 461 

reduce injury risk and enhance skill acquisition potential.  462 

 Coaches should be aware that there are a number of training modalities available to 463 

develop optimal levels of flexibility and mobility in young artistic gymnasts. For static 464 

stretches, durations of 10 to 30 seconds, three times per exercise appear optimal, as longer 465 
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durations may result in greater gains but a potential weakening of connective tissue (67, 98). 466 

Gymnasts often stretch on a daily basis, as frequency is an important principle of training for 467 

maintaining and improving flexibility, and of importance, there are no studies in children that 468 

have shown adverse effects to this approach (98). For gymnasts with a greater training age, 469 

ballistic stretching can be an effective method to increase ranges of motion, providing they are 470 

performed under control (98). Proprioceptive neuromuscular facilitation (PNF) stretching can 471 

result in large improvements in range of motion in youth populations (96, 114). While many 472 

gymnastics coaches utilize this technique, caution is necessary so that stretching does not 473 

exceed the gymnasts’ limits and cause injury (98). This highlights the need for appropriate 474 

prescription and supervision when choosing methods to develop range of motion in young 475 

gymnasts.  476 

 Recently, vibration training has been shown to be very effective in enhancing flexibility 477 

and range of motion in young gymnasts (72, 100, 101), with acute improvements of up to 400% 478 

and chronic adaptations of up to 100% reported (101). Greater benefits from vibration-training 479 

may occur in the gymnast’s less flexible leg due to the greater potential for improvement in 480 

range of motion available (72). While the mechanisms underpinning these large improvements 481 

in flexibly from vibration-training are currently unknown, proposed theories include reduced 482 

pain (72, 100), inhibited activation of antagonist muscles (17) and increased blood flow 483 

resulting in increased tissue temperature (98). 484 

 485 

SUMMARY 486 

Strength and conditioning coaches working with young gymnasts must provide an effective 487 

training stimulus that is different from what they experience during their sport-specific 488 

gymnastics training. Due to the demands of the sport, strength, speed, power, 489 

flexibility/mobility, and anaerobic power appear to be the key determinants of artistic 490 
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gymnastics performance; all of which strength and conditioning can improve with appropriate 491 

training prescription. When looking to develop these physical capacities in young gymnasts a 492 

number of training strategies can be adopted; however, technical competency must be 493 

prioritised at all times. Importantly, when designing training programs, coaches should be 494 

aware of the influence of growth and maturation can have on the trainability of physical 495 

abilities.  496 

 497 

FIGURE LEGENDS 498 

Figure 1. The physical demands of artistic gymnastics 499 

Figure 2. Training strategies for the development of physical characteristic in young artistic 500 

gymnasts 501 



 23 

REFERENCES 

1. Arampatzis A, Bruggemann GP, and Klapsing GM. Leg stiffness and mechanical 

energetic processes during jumping on a sprung surface. Med Sci Sports Exerc 33: 

923-931, 2001. 

2. Asseman FB, Caron O, and Crémieux J. Are there specific conditions for which 

expertise in gymnastics could have an effect on postural control and performance? 

Gait Posture 27: 76-81, 2008. 
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