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SUMMARY

Neuronal activity regulates the transcription and
translation of the immediate-early gene Arc/Arg3.1,
a key mediator of synaptic plasticity. Proteasome-
dependent degradation of Arc tightly limits its
temporal expression, yet the significance of this
regulation remains unknown. We disrupted the tem-
poral control of Arc degradation by creating an Arc
knockin mouse (ArcKR) where the predominant Arc
ubiquitination sites were mutated. ArcKR mice had
intact spatial learning but showed specific deficits
in selecting an optimal strategy during reversal
learning. This cognitive inflexibility was coupled to
changes in Arc mRNA and protein expression result-
ing in a reduced threshold to induce mGluR-LTD and
enhanced mGluR-LTD amplitude. These findings
show that the abnormal persistence of Arc protein
limits the dynamic range of Arc signaling pathways
specifically during reversal learning. Our work
illuminates how the precise temporal control of activ-
ity-dependentmolecules, such as Arc, regulates syn-
aptic plasticity and is crucial for cognition.

INTRODUCTION

The activity-regulated protein Arc/Arg3.1 (Arc) is essential for

spatial memory acquisition and consolidation (Bramham et al.,

2008; Guzowski et al., 1999; Lyford et al., 1995; Plath et al.,

2006). Arc is required for protein-synthesis-dependent synaptic

plasticity related to learning and memory, making it one of the

key molecular players in cognition (Park et al., 2008; Shepherd
Neuron 98, 1–
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and Bear, 2011; Waung et al., 2008). Arc protein expression is

highly dynamic: increasing and then rapidly declining following

increased network activity or exposure to a novel environment

(Guzowski et al., 1999; Ramı́rez-Amaya et al., 2005). Retrieval

of a memory also induces Arc expression which then rapidly de-

cays (Nakayama et al., 2015; Ramı́rez-Amaya et al., 2005). The

regulation of Arc protein induction occurs at the level of mRNA

transcription, mRNA trafficking, and protein translation (Korb

and Finkbeiner, 2011). Although the importance of Arc induction

is clear, the role of Arc protein degradation in synaptic plasticity

and learning-related behaviors is still unknown.

To determine the importance of Arc removal, we generated a

mutant mouse line (ArcKR) in which ubiquitin-dependent degra-

dation of Arc is disabled. We show that ArcKR mice display

impaired cognitive flexibility that is coupled with elevated levels

of Arc protein expression, a reduced threshold to inducemGluR-

LTD, and enhanced mGluR-LTD. We further show that behav-

ioral training alters Arc mRNA expression and modulates the

magnitude of mGluR-LTD.
RESULTS

Ubiquitin-Dependent Turnover of Arc Alters AMPA
Receptor Trafficking
Arc promotes AMPA receptor (AMPAR) endocytosis following

activation of group I mGluRs with the agonist DHPG (Waung

et al., 2008). This effect is reduced by overexpression of

Triad3A/RNF216, which targets Arc for degradation. Conversely,

Triad3A/RNF216 depletion increases Arc levels, thus enhancing

AMPAR endocytosis (Mabb et al., 2014a).We recordedmEPSCs

in neurons expressing short hairpin RNA (shRNA) directed

against Triad3A/RNF216 (Figure S1A). Depletion of Triad3A/

RNF216 significantly (p = 0.026, Figure S1A) enhanced DHPG-

dependent reduction in AMPAR-mediated mEPSC amplitude
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within 2–3 min compared to neurons expressing a scram-

bled shRNA.

Triad3A/RNF216 and Ube3A E3 ligases ubiquitinate Arc on

lysines 268 and 269, targeting Arc for proteasome-mediated

degradation (Greer et al., 2010; Mabb et al., 2014a). To confirm

that ubiquitination of Arc modulates surface AMPAR expression,

we transfected hippocampal neurons with either Arc-WT, Arc-

2KR (K268/269R), or Arc-5KR (K55/136/268/269/293R) and

then stained for the surface AMPAR subunit, GluA1 (Figure S1B).

Overexpression of the Arc-KR mutants (Arc-2KR or Arc-5KR)

had comparable effects, both producing a greater decrease in

surface GluA1 expression compared to Arc-WT. Thus, a reduc-

tion in Arc protein degradation enhances GluA1 internalization

(Figure S1C) and suggests that expression of a degradation-

resistant Arc protein would augment AMPAR endocytosis

in vivo.

Enhanced mGluR-LTD in the Hippocampus of
ArcKR Mice
We next created an Arc knockin mouse (ArcKR) where lysine 268

and 269 were mutated to arginine to prevent Arc ubiquitination

(Figures S2A and S2B). ArcKR mice were born with expected

Mendelian ratios, with no differences in mortality rate or in

weight of heterozygous or homozygous ArcKR/KR (ArcKR) mice

compared to Arc+/+ (WT) littermates. There were no significant

differences in the expression of various scaffold proteins,

NMDA receptors, or AMPAR subunits in synaptosomes (Figures

S2C and S2D). Expression levels of mGluR1/5 and Arc protein

were similar in WT and ArcKR mice as was Arc mRNA (Figures

S2C–S2F). To confirm that proteasome-mediated turnover of

Arc was impaired, we monitored Arc protein levels following

addition of DHPG (100 mM, 10 min), which induces Arc transla-

tion and ubiquitination (Klein et al., 2015; Waung et al., 2008).

In WT neurons, addition of DHPG increased Arc protein, peaking

at 120 min post-induction and decaying near baseline levels at

480 min (Figure 1A). Addition of DHPG to ArcKR hippocampal

neurons resulted in persistent Arc protein elevation (Figures 1A

and 1B). To measure Arc degradation, we applied the protein

synthesis inhibitor anisomycin after DHPG to halt Arc protein

synthesis. In WT neurons, Arc levels were reduced after aniso-

mycin treatment (Figure 1C), consistent with rapid Arc degrada-

tion. In contrast, this decline was significantly blunted in ArcKR

neurons (Figure 1D), demonstrating the importance of proteaso-

mal degradation in limiting the half-life of Arc protein. We have

demonstrated that Arc ubiquitination via K48 linkages could be

elicited by pilocarpine-induced seizures in vivo (Mabb et al.,

2014a). Pilocarpine-induced seizures in WT mice resulted in an

increase in K48-linked Arc ubiquitination, an effect that was

attenuated in ArcKR mice (Figure 1E).

Consistent with the reduced surface expression of GluA1, we

observed increased GluA1 endocytosis in ArcKR neurons

treated with DHPG using a high-content AMPA receptor traf-

ficking assay (Figures 1F and 1G). Intriguingly, we found a

significant increase in the surface expression of the GluA2

subunit in ArcKR neurons, at short time points, indicating a

potential receptor subunit replacement (Figures 1H and 1I).

These findings support our previous observation that over-

expression of ArcWT in hippocampal neurons increases the
2 Neuron 98, 1–9, June 27, 2018
rectification index of AMPAR-mediated miniature-EPSC ampli-

tude, indicating an increase in the proportion of AMPAR-

containing GluA2 subunits (DaSilva et al., 2016; Wall and

Corrêa, 2018).

Given the increase in GluA1-containing AMPAR endocytosis

rates, we speculated that mGluR-LTD would be enhanced, as

this form of plasticity requires Arc-dependent AMPAR internali-

zation (Park et al., 2008; Waung et al., 2008). Basal synaptic

transmission and synaptic plasticity were measured in hippo-

campal slices from ArcKR and WT littermates. ArcKR mice had

unaltered basal synaptic transmission: no significant (p > 0.05)

change in paired-pulse facilitation (Figure 2A), input-output rela-

tionship (Figure 2B), or ratio of fEPSP slope to volley amplitude

(Figure 2B, inset). Thus, under basal conditions, Arc ubiquitina-

tion has little effect on synaptic AMPAR expression consistent

with no changes in protein and mRNA expression (Figures

S2C, S2D, and S2F). To investigate the role of Arc degradation

in synaptic plasticity, we induced mGluR-LTD with DHPG

(100 mM, 10min) in hippocampal slices fromArcKR andWT litter-

mates. We observed no significant difference between geno-

types (p = 0.29) when DHPG was present. However, LTD was

significantly enhanced in ArcKR mice (55–60 min after DHPG

washout, Figures 2C and 2D). To test whether the threshold

to induce LTD is reduced in ArcKR slices, we applied a lower

concentration of DHPG (50 mM, 10 min). This lower concentra-

tion of DHPG was insufficient to induce LTD in WT mice but

was sufficient to induce LTD in slices from ArcKR mice (Figures

2E and 2F). Thus, reduction of Arc ubiquitination reduces the

threshold to induce LTD and enhances the magnitude of

mGluR-LTD.

ArcKR Mice Exhibit Cognitive Inflexibility and Reduced
Threshold to Induce mGluR-LTD
We considered whether ArcKR mice displayed behavioral defi-

cits. WT and ArcKR mice had no overt motor abnormalities,

similar anxiety levels (Figures S3A–S3F) and recognition memory

(Figures S3G–S3I).

We next explored the role of Arc ubiquitination in hippocam-

pal-dependent spatial learning by using a modified Barnes

maze (Eales et al., 2014). Mice were tested for 21 consecutive

days to test acquisition, consolidation, and expression phases

of learning (days 1–15). On day 16, the platform was rotated

180�, requiring the mice to learn a new location for the exit

hole (Figure S4A). No differences were observed in spatial acqui-

sition during days 1–15 (Figures 3A and 3B). Following 180� rota-
tion of the exit hole on day 16, there was no significant difference

in distance traveled (Figure 3A), but there was a significantly

higher number of errors (Figure 3B, reversal, p = 0.02) and selec-

tive perseverance bias (Figure 3C, p = 0.05) in ArcKRmice during

the reversal phase (days 16–21). However, there was no differ-

ence in quadrant bias ratios during the acquisition phase (Fig-

ure 3C). This suggests that ArcKRmice show impairments in per-

forming the task specifically during reversal learning. We next

examined the strategy used to search for themaze exit hole (Fig-

ure 3D; Figure S4B). Both WT and ArcKR mice showed a similar

shift from a combination of random and serial strategies to a

spatial search strategy (days 1–15; Figure 3D). However, when

the maze exit was rotated 180� (reversal learning), there were



Figure 1. ArcKR Mice Exhibit Defects in Ubiquitin-Mediated Turnover of Arc

(A and B) Blots showing increased Arc protein in ArcKR hippocampal cultures treated with DHPG (100 mMDHPG; 10min) and harvested 15, 30, 60, 120, 240, 360,

and 480 min after DHPG washout.

(C) Blots showing that Arc turnover is faster in WT neurons.

(D) Blots showing that Arc turnover is blunted in ArcKR neurons.

(E) Blot of K48-linked ubiquitin showing loss of Arc ubiquitination in ArcKR mice after pilocarpine induced class III seizure. Actin was used as a loading control.

(F and G) ArcKR neurons have increased GluA1 endocytosis. Odyssey CLx scans for surface and internalized AMPAR subunits in WT and ArcKR hippocampal

neurons at 5 and 15 min after DHPG washout (F). Graph represents surface fluorescence normalized to the total fluorescence intensity (G).

(H and I) The same experimental condition as in (G) showing that ArcKR neurons have increased surface levels of GluA2. Statistical comparisons were carried out

using one-way ANOVA, paired and unpaired Student’s t tests. *p % 0.05; **p % 0.005; n = 3 technical replicates from 3 independent experiments. Values

represent mean ± SEM.
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Figure 2. Defects in Arc Ubiquitination

Enhance mGluR-LTD

(A) Mean paired-pulse ratio against paired-pulse

interval forWT (n = 12 slices) and ArcKRmice (n = 10

slices). Inset: representative traces at an interval of

50 ms from WT and ArcKR littermates.

(B) Mean fEPSP slope against stimulus strength for

WT (n = 9 slices) and ArcKR mice (n = 10 slices) with

examples of superimposed averaged fEPSPs at

different stimulus strengths. Inset: ratio of fEPSP

slope versus volley amplitude at 40%of the stimulus

strength that gives the maximum fEPSP slope (n = 6

slices per genotype).

(C) Normalized mean fEPSP slope against time for

WT and ArcKR mice. After a 20 min baseline, DHPG

(100 mM) was applied for 10 min and then washed

out for 1 hr. Baseline fEPSP slope was analyzed at

15–20 min and LTD was analyzed at 55–60 min after

DHPG application (fEPSP slope was significantly

reduced following DHPG, ArcKR, p = 0.00016; WT,

p = 0.00013, fEPSPs were not normalized). LTD was

significantly enhanced in ArcKR slices versus WT

littermates (WT: 74.3%± 3%, n = 5 animals, 9 slices;

ArcKR: 49.5%± 4.3%, 5mice, 12 slices, p = 0.0004,

fEPSPs were normalized to baseline). fEPSP traces

(averages of 10 fEPSPs) were taken at the times

indicated by the numerals in the plot below.

(D) Mean percentage reduction in fEPSP slope (LTD)

between 55 to 60 min after DHPG application

(p = 0.015).

(E) Normalized mean fEPSP slope against time for

WT and ArcKR mice. Slices were treated as in (C).

In ArcKR slices, fEPSP slope was significantly

reduced after 55–60min of 50 mMDHPG application

(p = 0.0046) but was not significantly (p = 0.41)

reduced in WT slices (fEPSPs were not normalized).

fEPSP traces (averages of 10 fEPSPs) were taken at

the numerals in the lower plot.

(F) LTDwas not induced inWTmice by 50 mMDHPG

(reduction in slope 1.8% ± 7.7%, n = 3 mice, 5 sli-

ces) but was induced in ArcKR littermates (reduc-

tion 28% ± 11%, 3 mice, 5 slices, p = 0.04). Values

represent mean ± SEM. Statistical comparisons

were carried out with one-way ANOVA, paired and

unpaired Student’s t tests.
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clear differences in the search strategy employed by WT and

ArcKR mice. On the day of reversal, WT and ArcKR mice used

similar search strategies to the first day of training (day 1) (Fig-

ures 3D and 3E; Figure S4C). However, in subsequent days,

WTmice replaced random and serial for a spatial search strategy

(as observed for the training before reversal). In contrast, ArcKR

mice only employed a serial search strategy on days 17–19

(2–3 days following reversal), before utilizing a combination of

strategies on days 20 and 21 (Figures 3D and 3E; Figure S4C).

Taken together, ArcKR mice are unable to reuse strategic ap-

proaches previously acquired during task learning, suggesting

cognitive inflexibility.
4 Neuron 98, 1–9, June 27, 2018
Reversal Learning Training Impacts
on mGluR-LTD
To address whether training of a spatial-

dependent task (Barnes maze) had an
impact on Arc expression and subsequent hippocampal synap-

tic plasticity, we used hippocampi of trainedWT andArcKR litter-

mates to either measure Arc mRNA and protein expression or to

measure mGluR-LTD. Compared to WT, we observed a signifi-

cantly larger decrease in the fEPSP slope during DHPG applica-

tion in slices from trained ArcKR mice (p < 0.001, Figure 3F), and

the expression of LTDwas significantly increased in ArcKR slices

(Figures 3F). Consistent with the enhanced decrease in the

amplitude of fEPSPs during DHPG application, the levels of

Arc protein were also significantly increased in hippocampal ly-

sates obtained from ArcKR, but not from WT mice (Figure S4D).

Barnes maze training of WT and ArcKRmice for 15 days resulted



Figure 3. ArcKR Mice Have Impaired Cognitive Flexibility

(A) Distances traveled by WT and ArcKR mice during Barnes maze training.

(B) Number of errors in WT and ArcKR mice during learning (days 1–15) and reversal phase (days 16–21).

(C) Top: average quadrant bias. Bottom: perseverance ratio for WT and ArcKR mice during learning and reversal phase.

(D) Percentage time that WT and ArcKR mice used random (brown), serial (gray), and spatial (black) search strategies (n = 5 mice for WT and ArcKR).

(legend continued on next page)

Neuron 98, 1–9, June 27, 2018 5

Please cite this article in press as: Wall et al., The Temporal Dynamics of Arc Expression Regulate Cognitive Flexibility, Neuron (2018), https://doi.org/
10.1016/j.neuron.2018.05.012



Please cite this article in press as: Wall et al., The Temporal Dynamics of Arc Expression Regulate Cognitive Flexibility, Neuron (2018), https://doi.org/
10.1016/j.neuron.2018.05.012
in a significant reduction inArcmRNA (Figure 3G) with no change

in Grm5 mRNA levels (Figure 3H) compared to the first day of

training. This expression was not different between WT and

ArcKR mice, indicating that ArcmRNA dynamics are not altered

during spatial learning as has been observed in other Arc trans-

genic mouse models (Figure 3G) (Steward et al., 2018). Intrigu-

ingly, we found that reversal learning led to an increase in Arc

mRNA in ArcKR mice, suggesting delayed dynamics in Arc

mRNA induction that mirrored the learning deficits in ArcKR

mice during reversal learning (Figures 3D and 3G).

To determine the effect that Barnes maze training on basal

synaptic transmission and mGluR-LTD, we recorded interleaved

slices from trained andnaiveWTandArcKR littermates (Figure 4).

Training had no effect on basal synaptic transmission in either

WT or ArcKR mice (Figure 4A). However, training significantly

reduced mGluR-LTD in both trained genotypes (Figures 4B

and 4C). This reduction was not presynaptic (no change in

paired-pulse ratios prior to and after DHPG application in trained

versus naive mice, Figure 4). In ArcKR-trained slices, there was a

decrease in fEPSP amplitude during DHPG application, an

observation that was not seen in WT mice (Figure 4B and 4C).

These findings suggest that the temporal dynamics of Arc pro-

tein expression, induced by behavioral training, modulates sub-

sequent mGluR-LTD.

DISCUSSION

Arc protein expression is exquisitely regulated by neuronal activ-

ity. Here we have determined the functional consequences of

modifying the temporal profile of Arc expression. Using a novel

mouse (ArcKR) we showed: (1) mGluR1/5-dependent induction

of Arc protein enhances GluA1-containing AMPAR endocytosis;

(2) enhanced mGluR-LTD and a reduced threshold to induce

LTD; (3) deficits in selecting strategies to perform the reversal

of a spatial learned task that is coupled to the changes in LTD;

and (4) increased Arc mRNA expression is associated with

reversal learning.

Previous studies have linked alterations of mGluR-LTD to

changes in spatial learning and task reversal (Eales et al.,

2014; Mills et al., 2014; Xu et al., 2009). Since deficits in

mGluR-LTD are associated with impairment of the acquisition/

consolidation of spatial learning and poor performance with

task reversal (Eales et al., 2014; Ménard and Quirion, 2012; Xu

et al., 2009), it might be predicted that ArcKR mice, which

show enhanced mGluR-LTD, would exhibit improved spatial

learning. However, this was not the case, with ArcKR mice

showing specific defects in reversal learning strategies. Instead
(E) Average frequency of strategy used in (D). Two-way ANOVA, post hoc Fisher

(F) Normalizedmean fEPSP slope against time for Barnesmaze trainedWT and Ar

analyzed at 0–5 min after DHPG and LTD expression analyzed at 55–60 min af

78.8% ± 4.4%, n = 3, 5 slices; ArcKR: 58.1% ± 4.9%, n = 3, 7 slices, p = 0.000

representative fEPSP traces (averages of 10 fEPSPs) at the times indicated (1, 1

(G) Comparison of hippocampal Arc mRNA after 1, 15, or 21 days of training in th

(GAPDH and GPI) and Arc in the mouse with the highest expression after 1 day

measurements from an individual mouse. (WT 1day: n = 5; WT 15 days: n = 5; WT

*p = 0.07, **p = 0.025, ***p = 0.001.

(H) Grm5mRNA in WT and ArcKR mice after training. Values represent mean ± SE

unpaired Student’s t tests.
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of using a combination of random, serial, and spatial strategies,

as observed in WT, ArcKR mice relied primarily on a serial strat-

egy resulting in more errors during task reversal. These mice are

unable to engage multiple strategic approaches and thus lack

the cognitive flexibility required to efficiently complete the task.

How does the enhancement of LTD lead to specific cognitive

deficits? During reversal learning, memories of the previously

learned task are updated as new memories are acquired

(McKenzie and Eichenbaum, 2011). Neural representation of

such memory updating requires a precise balance between syn-

aptic depression and potentiation (Takeuchi et al., 2013). If the

amplitude of the depression is too high (i.e., enhanced LTD) or

occurs too early (due to a lower threshold), this might delay or

prevent the acquisition of new memories. Conversely, if LTD is

impaired, this could prevent the updating of memories acquired

during the acquisition phase, interfering with task reversal.

Intriguingly, defects in these forms of plasticity are observed

in neurological disease models, which are associated with

elevated levels of Arc, (e.g., Fragile X syndrome, Angelman syn-

drome, and Alzheimer’s disease) (Auerbach and Bear, 2010;

Greer et al., 2010; Megill et al., 2015; Pastuzyn and Shepherd,

2017; Wu et al., 2011). Thus, an optimal balance of protein trans-

lation, synthesis, and turnover is required for the correct expres-

sion of mGluR-LTD and learning behavior (Citri et al., 2009; Hou

et al., 2006; Klein et al., 2015).

The degree of inhibition produced by low concentrations of

DHPG (50 mM) was the same in both genotypes, suggesting

similar activation of mGluRs and downstream pathways, but

LTD was only produced in ArcKR slices. It seems likely that

Arc is degraded in WT mice and does not reach a sufficient con-

centration to induce LTD, whereas in ArcKR mice, Arc persists,

and thus induces LTD. The amplitude ofmGluR-LTD is enhanced

in ArcKR mice and has a postsynaptic origin, as there were no

changes in paired-pulse facilitation. This is further supported

by an increased internalization of the GluA1-containing AMPAR

subunit in ArcKR neurons after DHPG exposure (Figures 1F–

1I). Corroborating this hypothesis is the observation that there

is a significant reduction in the rectification index of AMPAR-

mediated mEPSC amplitude in neurons overexpressing Arc,

indicating a reduction in the number of GluA1-containing

AMPAR subunits at synapses (DaSilva et al., 2016; Wall and

Corrêa, 2018).

There were no changes in Arc protein or Arc mRNA levels be-

tween genotypes under basal conditions (Figures S2C, S2D, and

S2F), consistent with the lack of differences in basal synaptic

transmission (Figures 2A and 2B). Similar to previous reports

(Guzowski et al., 2001), we found that prolonged behavioral
’s LSD, *p % 0.05, **p % 0.005.

cKRmice. Baseline fEPSP slopewas analyzed at 15–20min, LTD inductionwas

ter DHPG application. Both LTD induction (**p < 0.001) and expression (WT:

3) were significantly enhanced in trained ArcKR compared to WT mice. Top:

5–20 min and 2, 75–80 min).

e Barnes maze. Arc mRNA was normalized to the geometric mean of 2 genes

of training was set to 1 for the WT mice. Each data point represents triplicate

21 days: n = 4; ArcKR 1 day: n = 6; ArcKR 15 days: n = 7; ArcKR 21 days: n = 5).

M. Statistical comparisons were carried out with one-way ANOVA, paired and



Figure 4. Reversal Learning Training Im-

pacts on mGluR-LTD

(A) Top panels: mean paired-pulse ratio (PPR)

plotted against paired pulse interval for WT (un-

trained n = 8 slices; trained n = 10 slices) and ArcKR

mice (untrained n = 8 slices; trained n = 10 slices).

Bottom panels: graphs plotting mean fEPSP slope

against stimulus strength for WT (untrained n = 6

slices; trained n = 7 slices) and ArcKR mice (un-

trained n = 6 slices; trained n = 8 slices).

(B and C) Normalized mean fEPSP slope against

time for WT (trained versus untrained) and ArcKR

(trained versus untrained) mice. In WT and ArcKR

mice, reversal learning significantly reduced

mGluR-LTD (WT, reduction in fEPSP slope: un-

trained mice 39% ± 3.6%, n = 3, 7 slices; trained

mice 21.3% ± 3.5%, n = 3, 6 slices, p = 0.0017;

ArcKR, reduction in fEPSP slope untrained 59.9%±

3.6%, n = 3, 7 slices; trained 47.3% ± 1.8%, n = 3,

6 slices, p = 3.9 3 10�13). Inset graphs: mean PPR

plotted against paired-pulse interval for WT (un-

trained n = 8 slices; trained n = 10 slices) and ArcKR

mice (untrained n = 8 slices; trained n = 10 slices)

following LTD. Inset: traces at an interval of 20 ms

from WT and ArcKR littermates. Values represent

mean ± SEM. Statistical comparisons were carried

out with a one-way ANOVA, paired and unpaired

Student’s t tests.
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training reduced Arc mRNA levels (Figure 3G), although there

were no changes in Arc protein expression (Figure S4E). This

may reflect a fall in transcription rate, a loss of mRNA, or the

slow degradation of protein. Following completion of the reversal

task, there was a significant increase in Arc mRNA and Arc pro-

tein in ArcKR mice (Figure 3G; Figure S4E). Interestingly, the

amplitude of LTD was reduced in both WT and ArcKR mice

following behavioral training when compared to naive littermates

(Figures 4B and 4C). This did not appear to be a consequence of

changes in Grm5 mRNA expression. The mechanism for this

reduction in LTD is unclear but is likely postsynaptic, as no
changes in paired pulse ratios were

observed (Figures 4B and 4C). A possible

explanation is that the increased ex-

pression of Arc, induced during the

reversal task, partially occludes subse-

quent depression through a feedback

mechanism that reduces induction of

Arc or altered signaling pathways down-

stream of Arc.

Although Arc ubiquitination was attenu-

ated in ArcKR mice (Figure 1E), there was

no accumulation of Arc protein in vivo

(Figure S4E). This suggests that this Arc

ubiquitination pathway is not utilized as

frequently during early stages of develop-

ment. Alternatively, additional pathways

might ubiquitinate Arc earlier in life and

during specific phases of learning. Indeed,

following stimulation of N-methyl-D-

aspartate receptors, another unknown
E3 ubiquitin ligase has been proposed to ubiquitinate Arc at an

alternative lysine site, K136, leading to Arc degradation by the

ubiquitin proteasome pathway (Gozdz et al., 2017; Mabb and

Ehlers, 2018). However, this does not appear to be involved in

AMPAR endocytosis as mutation of this site in addition to

K268 and K269 did not further alter AMPAR internalization (Fig-

ures S1B and S1C). An alternative interpretation is that the lyso-

some-dependent pathway regulates Arc degradation (Nixon and

Cataldo, 1995).

Recent findings suggest that Arc protein and mRNA undergo

self-intercellular transfer by assembling into virus-like capsids.
Neuron 98, 1–9, June 27, 2018 7
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This mechanism may require exosome secretion from one

neuron and endocytic uptake by another (Ashley et al., 2018;

Pastuzyn et al., 2018). A possible explanation for the moderate

accumulation of Arc protein in ArcKR mice is that Arc ubiquitina-

tion participates in this transfer process. Evidence to support this

hypothesis is highlighted by our recent findings demonstrating

that the E3 ubiquitin ligase for Arc, Triad3A/RNF216 is enriched

at clathrin-coated pits (CCPs), regions that participate in the

endocytosis of cargo molecules. Recently, a point mutation in

Arc (W197A) was shown to enhance binding to Triad3A but

decrease interactions with AP-2 and dynamin (DaSilva et al.,

2016). These findings suggest another functional role for Arc/

Triad3A interaction. Further evidence supporting these findings

is that expression of the ArcKRmutant stays longer at the plasma

membrane but rarely overlaps with CCPs, suggesting that

Triad3A-dependent ubiquitination might couple Arc to endocytic

regions (Mabb et al., 2014a).

Our results reveal that disruption in the degradation of a single

protein, Arc, is sufficient to enhance mGluR-LTD resulting in def-

icits in reversal learning strategy. Thus, manipulation of Arc

longevity may be a strategy to restore synaptic plasticity defects

in neurological disorders where Arc protein dynamics are

disrupted.
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Corrêa, S.A., M€uller, J., Collingridge, G.L., and Marrion, N.V. (2009). Rapid

endocytosis provides restricted somatic expression of a K+ channel in central

neurons. J. Cell Sci. 122, 4186–4194.

DaSilva, L.L., Wall, M.J., P de Almeida, L., Wauters, S.C., Januário, Y.C.,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-Arc/Arg3.1 Synaptic Systems Cat#156 003, RRID: AB_887694

Mouse monoclonal (6C5) anti-GAPDH Abcam Cat#ab8245, RRID: AB_2107448

Mouse monoclonal (MAB374) anti-GAPDH Millipore Cat#MAB374, RRID: AB_2107445

Mouse monoclonal (RH95) anti-GluA1 N-terminal EMD Millipore Cat#MAB2263MI, RRID: AB_11212678

Mouse monoclonal (6C4) anti-GluA2 ThermoFisher Scientific Cat#32-0300, RRID: AB_2533058

Rabbit polyclonal anti-mGluR1A Sigma Cat#G9665, RRID:AB_259995

Rabbit polyclonal anti-mGluR5 EMD Millipore Cat#AB5675, RRID:AB_2295173

Goat polyclonal anti-NR1 Santa Cruz Biotechnology Cat#sc-1467, RRID: AB_670215

Goat polyclonal anti-NR2B Santa Cruz Biotechnology Cat#sc-1469, RRID: AB_670229

Rabbit polyclonal anti-PSD95 Synaptic Systems Cat#124 002, RRID: AB_887760

Mouse monoclonal (GT5512) anti-b-Actin Genetex Cat#GTX629630, RRID: AB_2728646

Donkey anti-mouse Alexa Fluor 555 Thermo Fisher Scientific Cat#A31570, RRID AB_2536180

Donkey anti-rabbit Alexa Fluor 488 Jackson ImmunoResearch Cat#715-545-150, RRID: AB_2340846

IRDye 680RD Goat anti-Mouse IgG (H+L) Li-COR Biosciences Cat# 926-68070, RRID: AB_10956588

IRDye 800CW Goat anti-Rabbit IgG (H+L) Li-COR Biosciences Cat# 926-32211, RRID: AB_621843

IRDye 800CW Donkey anti-Mouse IgG (H+L) Li-COR Biosciences Cat# 926-32212, RRID: AB_621847

Goat anti-rabbit IgG HRP-linked antibody Cell Signaling Technology Cat#7074, RRID: AB_2099233

Goat anti-mouse IgG HRP-linked antibody Jackson Immuno- Research Cat#115-035-174, RRID: AB_2338512

Chemicals, Peptides, and Recombinant Proteins

Papain Worthington Biochemicals Cat#LS003126

Deoxyribonuclease I from bovine pancreas Sigma-Aldrich Cat# D4513

Poly-L-lysine Sigma-Aldrich Cat#P2636-100MG

cytosine b-D-arabinofuranoside Sigma-Aldrich Cat# C1768-100MG

Anisomycin Sigma-Aldrich Cat#A9789, CAS 22862-76-6

Fluoromount aqueous mounting medium Sigma-Aldrich Cat#F4680-25ML

cOmplete, Mini, EDTA-free Protease Inhibitor

Cocktail

Sigma-Aldrich Cat#11836170001

Phosphatase Inhibitor Cocktail 2 Sigma-Aldrich Cat#P5726

Picrotoxin Tocris Bio-Techne Cat#1128, CAS 124-87-8

L689,560 Tocris Bio-Techne Cat# 0742/10, CAS 139051-78-8

(RS)-3,5-DHPG Tocris Bio-Techne Cat#0342, CAS 19641-83-9

Tetrodotoxin citrate Tocris Bio-Techne Cat#1069, CAS 18660-81-6

RNAlater QIAGEN Cat#76104

QIAshredder QIAGEN Cat#79654

RNase-Free DNase Set QIAGEN Cat#79254

TRIzol ThermoFisher Scientific Cat#12044977

Normal donkey serum Jackson ImmunoResearch Cat#017-000-121

Odyssey Blocking Buffer (TBS) Li-COR Cat#927-50003

Saponin ACROS Organics Cat# 419231000, CAS 74499-23-3

Critical Commercial Assays

RNeasy Lipid Tissue Mini Kit QIAGEN Cat#74804

Transcriptor First Strand cDNA Synthesis Kit Roche Cat#04379012001

PowerUp SYBR Green Master Mix ThermoFisher Scientific Cat#15350929

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

ECL Supersignal West Pico ThermoFisher Scientific Cat#34080

BCA Protein Assay kit ThermoFisher Scientific Cat#23225

Lipofectamine 2000 Transfection Reagent ThermoFisher Scientific Cat#11668027

Oligonucleotides

ARC-KI-NDEL1: cttattggagtatgtgccatttctc This paper, genotyping N/A

ARC-KI-NDEL2: cattgaccctgtctccagattc This paper, genotyping N/A

Arc-L: tgttgaccgaagtgtccaag This paper, qPCR N/A

Arc-R: aagttgttctccagcttgcc This paper, qPCR N/A

mGluR5-L: cagtccgtgagcagtatgg This paper, qPCR N/A

mGluR5-R: gcccaatgactcccacta This paper, qPCR N/A

GAPDH-L: ggcaaattcaacggcacagt This paper, qPCR N/A

GAPDH-R: gggtctcgctcctggaagat This paper, qPCR N/A

mGPI-L: agctgcgcgaactttttgag This paper, qPCR N/A

mGPI-R: tatgcccatggttggtgttg This paper, qPCR N/A

Recombinant DNA

prK5-myc-Arc Mabb et al., 2014a N/A

prK5-myc-ArcKR Mabb et al., 2014a N/A

prK5-myc-Arc-5KR Mabb et al., 2014a N/A

pLentilox 3.7 LL-Scramble control shRNA Mabb et al., 2014a N/A

pLentilox 3.7 LL-Triad3/RNF216-shRNA #2 Mabb et al., 2014a N/A

Software and Algorithms

Primer3Plus Untergasser et al., 2007 http://www.bioinformatics.nl/cgi-bin/primer3plus/

primer3plus.cgi

StepOne Plus Applied Biosystems N/A

SPSS 22 IBM N/A

Any-MAZE Stoelting https://www.stoeltingco.com; RRID: SCR_014289

Origin Microcal https://www.originlab.com/; RRID: SCR_002815

Multiclamp 700B Molecular Devices N/A

Digidata 1440A Molecular Devices N/A

pClamp 10 Molecular Devices RRID: SCR_011323

MiniAnalysis Program SynaptoSoft http://www.synaptosoft.com/MiniAnalysis;

RRID: SCR_002184

Spike 2 Vs 7.08 Micro CED http://ced.co.uk/products/spkovin;

RRID: SCR_000903

ImageJ NIH https://imagej.nih.gov/ij/; RRID: SCR_003070

FIJI (Fiji is Just ImageJ) NIH http://fiji.sc/; RRID: SCR_002285
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CONTACT FOR REAGENT AND RESOURCE SHARING

As Lead Contact, Angela M. Mabb is responsible for all reagent and resource requests. Please contact Angela M. Mabb at amabb@

gsu.edu with requests and inquiries.

METHOD DETAILS

Animals
Mice were kept in standard housing with littermates, provided with food and water ad libitum and maintained on a 12:12 (light-dark)

cycle. All behavioral tests were conducted in accordance with the National Institutes of Health Guidelines for the Use of Animals. All

behavioral studies with the exception of the Barnes Maze test were conducted using approved protocols at the University of North

Carolina, Chapel Hill. The BarnesMaze test and the hippocampal slice experiments were performed at the University ofWarwick. The
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mice were treated in accordance with the Animal Welfare and Ethics Committee (AWERB) and experiments were performed under

the appropriated project licenses with local and national ethical approval. Samples sizes for behavioral and slice experiments were

calculated using variance from previous experiments to indicate power, which statistical analysis significance was set at 95%. Pri-

mary neuron culture, pilocarpine seizure experiments, and isolation of brain tissue for biochemical experiments were approved by the

Georgia State University Institutional Animal Care and Use Committee.

Generation of Arc knockin mice
Arc knockin mice were produced by the ingenious targeting laboratory (Ronkonkoma, NY). Gene targeting was performed in iTL IC1

(C57BL/6) ES cells to introduce 2 point mutations within Exon 1 of the Arc gene. When encoded, the introduction of these point mu-

tations leads to a substitution of Lysine to Arginine in positions 268 and 269, sites that were previously identified as being ubiquiti-

nated by Triad3A and Ube3a (Greer et al., 2010; Mabb et al., 2014a). ES cells were screened and positive clones were microinjected

into BALB/c blastocysts and transferred to pseudopregnant femalemice. Resulting chimeras with a high percentage black coat color

weremated to C57BL/6 FLPmice to remove the Neo cassette, and backcrossed five times to C57/BL6mice.Arc+/+ (WT) were distin-

guished from ArcKR/KR (ArcKR) homozygous mice by genotyping for the presence of the one remaining FRT site after Neo deletion

using the following primer sets: ARC-KI-NDEL1: 50-cttattggagtatgtgccatttctc-30 (Primer 1) and ARC-KI-NDEL2: 50-cattgaccctgtctc
cagattc-30 (Primer 2) where the wild-type band size is 291 base pairs and the knockin band size is 355 base pairs.

Primary neuron culture and cell treatment
Primary hippocampal neurons ofmixed sex were isolated fromP0-1mice as previously described (Corrêa et al., 2009). To assess Arc

levels following mGluR-LTD, DIV12 - 14 primary hippocampal neurons were pre-treated with 2 mM TTX (Tocris) for 4 hr. TTX was

washed out and 100 mm (S)-3,5-dihydroxyphenylglycine (DHPG, Tocris) was applied for a total of 10 min. Cells were harvested

45 min later following DHPG washout. To block protein synthesis of Arc, 20 mM anisomycin (Sigma) was added at the 45 min time

point and cells were harvested 30, 60, and 120 min later.

The primary cortical neuron culture protocol was based on (Shepherd et al., 2006). Cortices of mixed sex were dissected from E18

rat embryos. Cortices were dissociated in DNase (0.01%; Sigma-Aldrich) and papain (0.067%; Worthington Biochemicals), then trit-

urated with a fire-polished glass pipette to obtain a single-cell suspension. Cells were pelleted at 1000xg for 4 min, the supernatant

removed, and cells resuspended and counted with a TC-20 cell counter (Bio-Rad). Neurons were plated on glass coverslips (Carolina

Biological Supply, Burlington, NC) coated with poly-l-lysine (0.2 mg/mL; Sigma-Aldrich) in 12-well plates (Greiner Bio-One) at

100,000 cells/mL. Neurons were initially plated in Neurobasal media containing 5% horse serum, 2% GlutaMAX, 2% B-27, and

1% penicillin/streptomycin (Thermo Fisher Scientific) in a 37�C incubator with 5% CO2. On DIV4, neurons were fed via half media

exchange with Neurobasal media containing 1% horse serum, GlutaMAX, and penicillin/streptomycin, 2% B-27, and 5 mM cytosine

b-d-arabinofuranoside (AraC; Sigma-Aldrich). Neurons were fed every three days thereafter.

Neuron transfection

At DIV14, transfections were performed using Lipofectamine 2000 (Thermo Fisher Scientific) as described previously (Shepherd

et al., 2006). Immunostaining was performed 16 hr later.

Immunocytochemistry

At DIV15, transfected neurons were live-labeled for surface GluA1 receptors (Shepherd et al., 2006). Neurons were washed twice at

10�C with 4% sucrose/1X phosphate-buffered saline (PBS; 10X: 1.4 M NaCl, 26.8 mM KCl, 62 mM Na2HPO4, 35.3 mM KH2PO4,

pH 7.4), then incubated in anti-GluA1-NT diluted in MEM containing 2% GlutaMAX, 2% B-27, 15 mM HEPES (Thermo Fisher Scien-

tific), 1 mM sodium pyruvate (Thermo Fisher Scientific), and 33 mM glucose at 10�C for 20 min. Neurons were then fixed for 15 min

with 4% sucrose/4% paraformaldehyde (Thermo Fisher Scientific) in 1X PBS, then incubated in Alexa Fluor 555 (Thermo Fisher Sci-

entific) to label only surface GluA1. Following this, neurons were permeabilized for 10 min with 0.2% Triton X-100 (Amresco) in 1X

PBS, and blocked for 30 min in 5% normal donkey serum (Jackson ImmunoResearch) in 1X PBS. Neurons were then incubated

with rabbit anti-Arc antibody (Synaptic Systems), diluted in block for 1 hr at RT, washed 33 5 min in 1X PBS, and incubated in sec-

ondary antibody (Alexa Fluor 488; Jackson ImmunoResearch) diluted in block for 1 hr at RT. Neurons on coverslips were mounted on

glass slides in Fluoromount (Thermo Fisher Scientific) and dried overnight at RT.

Neuron imaging and analysis

A total of 15 transfected and untransfected neuronswere imaged at 60X on anOlympus FV1000 confocal microscope (Tokyo, Japan).

GluA1 immunostaining was analyzed using ImageJ software. The most intense immunostaining was used to set an arbitrary pixel

intensity threshold, which was applied to every image in the experiment. Integrated density of each puncta in two 25-mm dendrite

segments/neuron was measured and summed to obtain a total integrated density of the puncta on the dendritic segment.

High-content AMPA receptor trafficking assay

Primary hippocampal neurons were prepared as stated above and plated in 96-well microplates (Molecular Probes) at a density of

20,000 cells per well. Neurons were fed as previously described (Corrêa et al., 2009). At DIV 14, neurons were treated with 2 mM TTX

(Tocris) for 4 hr. Following treatment, neurons were cooled to room temperature and incubated with a 1:150 dilution of anti-GluA1

(Millipore, MAB2263MI) or anti-GluA2 (Invitrogen, Clone 6C4) antibody prepared in conditioned media. Neurons were incubated

for 20min at room temperature to allow antibody binding. Samples were washed 3 timeswith room temperature Neurobasal medium

(GIBCO) and then treated with vehicle or 100 mmDHPG for 10 min. After 10 min, DHPGwas washed out and neurons were fixed with
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4% paraformaldehyde/4% sucrose in PBS for 20 min at 4�C. Neurons were then washed with 1X DPBS (GIBCO) and blocked in

Odyssey Blocking Buffer (Li-COR) for 90 min at room temperature. To measure surface receptors, neurons were incubated for

1 hr in a 1:1,500 dilution of IRDye 680RD Goat anti-Mouse IgG (H+L) (Li-COR) secondary antibody. Neurons were then washed

with TBS (50 mM Tris-HCl, 150 mM NaCl, pH7.6) 5 times and then fixed with 4% paraformaldehyde/4% sucrose in PBS for

20 min at 4�C. Neurons were then washed with TBS 2 more times and permeabilized in TBS containing 0.2% saponin (ACROS

Organics) for 15 min at room temperature. Neurons were then blocked in Odyssey Blocking Buffer for 90 min at room temperature.

To label the internalized pool of receptors, neurons were incubated for 1 hr in a 1:1,500 dilution of IRDye 800CWDonkey anti-Mouse

IgG (H+L) (Li-COR) secondary antibody. Cells were then washed with TBS 5 times and imaged on the Odyssey Clx Imaging System

(LI-COR) with a resolution of 84 mm,medium quality and a 3 mm focus offset. Images were processed in FIJI where ROIs were drawn

on each well. The integrated density was measured on ROIs superimposed on the 680 (surface receptor pool) and 800 (internal re-

ceptor pool) channels individually. Experiments were run in triplicate and integrated density values for each channel in individual

experimental wells were subtracted to a secondary only control. To calculate changes in surface receptor expression, the following

calculation was used: RS/RT, where RS represents the integrated density of surface receptors and RT represents the integrated den-

sity of surface receptors + integrated density of internal receptors.

Synaptosome preparation
Synaptosomes were prepared as previously described (Mabb et al., 2014a). Briefly, hippocampi were dissected from male and fe-

male P21 WT and ArcKR mice. Hippocampi were lysed in 10 volumes of HEPES-buffered sucrose (0.32 M sucrose, 4 mM HEPES

pH7.4 containing protease and phosphatase inhibitors (Roche) and homogenized using a motor driven glass-teflon homogenizer

at �900 rpm (10-15 strokes). The homogenate was centrifuged at 800-1000 x g at 4�C to remove the pelleted nuclear fraction.

The resultant supernatant was spun at 10,000 x g for 15 min to yield the crude synaptosomal pellet. The pellet was resuspended

in 10 volumes of HEPES-buffered sucrose and then respun at 10,000 x g for another 15 min to yield the crude synaptosomal fraction.

The resulting pellet was lysed by hypoosmotic shock in 9 volumes ice cold H20 plus protease/phosphatase inhibitors (Roche) and

three strokes of a glass-teflon homogenizer and rapidly adjusted to 4 mM HEPES using 1 M HEPES, pH 7.4 stock solution. Samples

were mixed constantly at 4�C for 30 min to ensure complete lysis. The lysate was centrifuged at 25,000 x g for 20 min to yield a su-

pernatant (crude synaptic vesicle fraction) and a pellet (lysed synaptosomal membrane fraction). The pellet was resuspended in

HEPES-buffered sucrose and used for western analysis.

Western blotting
Hippocampal lysate obtained fromWTand ArcKRmicewas prepared as previously described (Eales et al., 2014).Western blots were

performed as previously described (Eales et al., 2014; Mabb et al., 2014b). Membranes were probed with the following antibodies:

rabbit anti-Arc (Synaptic Systems, 1:1,000), goat anti-NR1 (Santa Cruz Biotechnology, 1:1,000), goat anti-NR2B (Santa Cruz Biotech-

nology, 1:1,000), mouse anti-GluA1 (EMDMillipore, Clone RH95, 1:500), mouse anti-GluA2 (Invitrogen, Clone 6C4, 1:500), rabbit anti-

mGluR1A (Sigma, G9665, 1:500), rabbit anti-mGluR5 (EMDMillipore, AB5675, 1:500), rabbit anti-PSD-95 (Synaptic Systems,

1:1,000), mouse anti-b-Actin (Genetex, 1:5,000), mouse anti-GAPDH (Millipore, MAB374, 1:3,000 or Abcam, ab8245, 1:5,000).

The following secondary antibodies were used: IRDye 680RD Goat anti-Mouse IgG (H+L) (Li-COR, 1:20,000), IRDye 800CW Goat

anti-Rabbit IgG (H+L) (Li-COR, 1:15,000), IRDye 800CW Donkey anti-Goat IgG (H+L) (LI-COR, 1:15,000), Goat anti-Rabbit IgG-

HRP H+L (Cell Signaling, 1:10,000) and Goat anti-Mouse IgG HRP LC (Jackson ImmunoResearch, 1:20,000). Blots were imaged us-

ing the Odyssey Clx Imaging System (LI-COR) or the ChemiDoc MP Imaging System (Bio-Rad).

Pilocarpine-induced Arc ubiquitination assays
Pilocarpine seizures were induced in postnatal day 60–70 male and female WT and ArcKR mice as previously described (Peixoto

et al., 2012). Hippocampi from mice were harvested 30 min after the presence of Class III seizure onset. Arc protein ubiquitination

was measured as previously described (Mabb et al., 2014a).

Quantitative PCR
RNA extraction and cDNA synthesis

Hippocampi from trained and naive WT and ArcKR mice were collected, submerged in RNAlater, and stored at �20�C until pro-

cessed. The tissue was transferred into TRIzol reagent (Fisher Scientific), disrupted using sterile pestles and homogenized by pas-

sage through aQIAshredder column (QIAGEN). The homogenization was followed by chloroform phase separation and purification of

the total RNA using the RNeasy Lipid Tissue Mini Kit (QIAGEN). Purified RNA was subjected to on-column DNase treatment (Fisher

Scientific) and the concentration and purity of the RNA was assessed spectrophotometrically using the NanoDrop ND-1000

(NanoDrop). RNA used had an A260/A280 ratio of 1.9–2.25. First-strand cDNA synthesis was performed using the Transcriptor First

Strand cDNA Synthesis Kit (Roche) using an anchored oligo(dT)18 primer, according to the manufacturer’s protocol.

qPCR

Primers were designed with the help of Primer3Plus software (Untergasser et al., 2007). qPCR was performed using a StepOnePlus

Real-Time PCR System (Applied Biosystems, Life Technologies). Each reaction comprised of 2 mL of diluted cDNA, 5 mL PowerUp

SYBR Green Master Mix (ThermoFisher) and 500 nM primers in a final volume of 10 mL. The PCR cycling conditions were as
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follows: 50�C for 2 min, 95�C for 2 min, then 40 cycles of 95�C for 15 s and 60�C for 1 min. Cycling was followed by melt curve

recording between 60�C and 95�C. Primer standard curves were performed to estimate the PCR efficiencies for each primer pair.

Cycle threshold (Ct) values were determined by the StepOne Plus software and adjusted manually. All qPCR reactions were run

in duplicate (for analysis of P60 mice) or triplicate (for analysis of Barnes maze trained mice). A mean Ct value was calculated for

each primer pair and each experimental condition. Relative quantification of Arc and Grm5 mRNA was performed using the 2-DDCt

method (Livak and Schmittgen, 2001). Data were normalized to the geometric mean of GAPDH and/or GPI (Glucose-6-Phosphate

Isomerase) and presented as expression relative to a standard condition as indicated in the figure legends. Primer sequences are

as follows: Arc-L tgttgaccgaagtgtccaag; Arc-R aagttgttctccagcttgcc; mGluR5-L cagtccgtgagcagtatgg; mGluR5-R gcccaatgactc

ccacta; GAPDH-L ggcaaattcaacggcacagt; GAPDH-R gggtctcgctcctggaagat; mGPI-L agctgcgcgaactttttgag; mGPI-R tatgcccatgg

ttggtgttg.

Mouse behavior
Behavior cohort

For behavior experiments, 12WT and 12 ArcKRmice were used. Mice were sex balanced and housed separately by sex in groups of

4 (2 animals per genotype). No deaths occurred throughout the course of all behavioral studies. All behavioral tests were performed

with the experimenter blinded to genotype.

Rotarod

8-week-old mice were tested for motor coordination and learning on an accelerating rotarod (Ugo Basile, Stoelting). For the first test

session, mice were given three trials, with 45 s between each trial. Two additional trials were given 48 hr later. Rpm (revolutions per

min) was set at an initial value of 3, with a progressive increase to a maximum of 30 rpm across 5 min (the maximum trial length). The

latency to fall from the top of the rotating barrel was recorded.

Open field test

Exploratory activity in a novel environment was assessed in 8-week-old mice by a one-hour trial in an open field chamber (41 cm x

41 cm x 30 cm) crossed by a grid of photobeams (VersaMax system, AccuScan Instruments). Counts were taken of the number of

photobeams broken during the trial in five-min intervals, with separate measures for locomotion (total distance traveled) and rearing

movements. Time spent in the center region of the open field was measured as an index of anxiety-like behavior.

Elevated plus maze

The elevated plus maze was used to assess anxiety–like behavior, based on a natural tendency of mice to actively explore a new

environment, versus a fear of being in an open area. Mice (7-week-old) were given one five-min trial on the plus maze, which had

two walled arms (the closed arms, 20 cm in height) and two open arms. The maze was elevated 50 cm from the floor, and the

arms were 30 cm long. Mice were placed on the center section (8 cm x 8 cm) and allowed to freely explore the maze. Measures

were taken of time spent in, and number of entries into, the open and closed arms of the maze.

Marble-burying assay

To measure anxiety-like behaviors, 11-week-old mice were placed in a Plexiglas cage located in a sound-attenuating chamber with

ceiling light and fan. The cage contained 5 cm of corncob bedding, with 20 black glass marbles (14 mm diameter) arranged in an

equidistant 5 X 4 grid on top of the bedding. Subjects were given access to the marbles for 30 min. The number of marbles buried

(defined by two thirds of the marble being covered by the bedding) was measured.

Novel object recognition test

Mice (22-week-old) were habituated in a Plexiglas cage containing 2 cm of corncob bedding for 30 min. 24 hr later (Acquisition

phase), two of the same objects were placed in the same habituated cage containing 2 cm of corncob bedding. Mice were allowed

to explore both objects for a total of 30min. 24 hr later (Trial phase), one of the objects was replacedwith a novel object andmicewere

allowed to explore both the familiar and novel object for a total of 30 min. Measurements of time spent with each object were scored

duringmin 2 through 12 of the acquisition and trial phase. The Novel Object Recognition Indexwas calculated as the (Time spent with

novel object/(Time spent with novel object + Time spent with familiar object)). Object interactions were defined as active interaction

with the object where the mouse’s nose was at least 1 cm pointed toward the object, time spent interacting/touching, and active

sniffing of the object. Rearing on the objects was not scored. Exclusion criteria was set for <30 s interaction with both objects during

the acquisition phase. One WT and two ArcKR mice did not meet the criteria and were excluded from the analysis.

Barnes maze test

WT (24) and ArcKRmalemice (27) aged 21-25 dayswere tested. Out of these 5WT and 6ArcKRmicewere trained for 1 day, 5WT and

7 ArcKR mice were trained for 15 days and 19 WT and 14 ArcKR were trained for 20-21 days. Spatial learning was assessed using a

modified circular Barnesmaze thatmeasured 1m in diameter, was situated 1m from the floor, and contained 20 5-cmholes that were

evenly spaced (5 cm) around the perimeter. The maze was positioned centrally within the lab, with surrounding equipment and archi-

tectural features kept in fixed positions, to act as spatial cues for learning. The maze contained an ‘exit’ box positioned under one of

the holes and a ‘‘fake’’ box (incorporated tomimic light reflection from the exit box but with no depth) under another. The exit hole was

randomly assigned on the first day and maintained in this position for 15 days for the ‘‘exit’’ box prior to the 180� shift (see below) and

for the remaining 5-6 days of training. Each day, mice were randomly placed in the center of the maze, released, and allowed to
e5 Neuron 98, 1–9.e1–e7, June 27, 2018
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explore the maze. The task was completed when the mouse entered the exit box. All runs were recorded using a camera system

(Henelec Model 335 BWL SONY) attached to a computer for offline analysis (Any-MAZE v4.96, Stoelting). Total distance, speed,

and accuracy of task performance were measured. On days 1-5, the exit box contained flavored treats as a reward for task comple-

tion. On days 6-21, treats were awarded in the home cage on completion to prevent cued orientation of the exit box location via

olfactory stimulation. On days 16-21, the position of the exit box was rotated 180� to determine the spatial component of and coping

ability for the task. Data analysis was carried out in a blind fashion, independently from the experimenter. Error number wasmeasured

by calculating the number of incorrect holes visited before locating the correct ‘‘exit’’ hole. Mapping the progression of the animals

around the maze allowed determination of the search strategy. These were: random: no consistent pattern, >2 crossings of the open

field; serial: a hole-by-hole progression withR3 consecutive holes visited; and spatial: moving directly to the exit hole ± 2 holes and

no deviation outside of the quadrant.

Electrophysiology
AMPA receptor-mediated-miniature excitatory postsynaptic currents (mEPSCs) recorded in cultured neurons

Hippocampal neuronal cultures were prepared from postnatal day 0 pups from C57BL/6 wild-type mice as previously described

(Corrêa et al., 2009). Briefly, hippocampi were dissected from the brain, dissociated with trypsin, and approximately 105 cells

were plated onto 22-mm glass coverslips coated with poly-L-lysine in Neurobasal medium containing 1% L-glutamine, 1% peni-

cillin-streptomycin, 2% B27 supplement (Invitrogen) and 5% horse serum. 24 hr after plating the media was completely changed

and cells were grown in serum-freemedia. Cultures weremaintained at 37�C and 5%CO2 in a humidified incubator and transfections

of either scrambled or Triad3-shRNA (Mabb et al., 2014a) were performed using Lipofectamine 2000 (Invitrogen). Cells expressing

scrambled or Triad3-shRNA constructs were recorded at least 3-5 days after transfections. Coverslips were transferred to the

recording chamber and perfused at a constant flow rate of (2 mL/min) with recording solution composed of (mM): 127 NaCl,

1.9 KCl, 1 MgCl2, 2 CaCl2, 1.3 K H2PO4, 26 NaHCO3, 10 D-glucose, pH 7.4 (when bubbled with 95% O2 and 5% CO2,

300 mOsm) at 28-30�C. Tetrodotoxin (Tocris, 1 mM), picrotoxin (50 mM, Tocris), and L-689,560 (5 mM, Tocris) were present in the

recording solutions to isolate mEPSCs. To induce mGluR-dependent synaptic depression, (RS)-3,5-dihydroxyphenylglycine,

(DHPG, 100 mM, Tocris) was bath applied for 10 min. Neurons were visualized using IR-DIC optics with an Olympus BX51W1 micro-

scope and Hitachi CCD camera (Scientifica) at a total magnification of 400X. Whole-cell patch clamp recordings were made from

transfected (identified by fluorescence at 488 nm) pyramidal neurons using patch pipettes (5-8 MU) made from thick walled borosil-

icate glass (Harvard Apparatus) filled with (mM): 135 potassium gluconate, 7 NaCl, 10 HEPES, 0.5 EGTA, 10 phosphocreatine, 2

MgATP, 0.3 NaGTP, pH 7.2, 290 mOsm. Recordings of mEPSCs were obtained at a holding potential of �75 mV using an Axon

Multiclamp 700B amplifier (Molecular Devices), filtered at 3 kHz and digitized at 20 kHz (Digidata 1440A, Molecular Devices).

Data acquisition was performed using pClamp 10 (Molecular Devices). Analysis of mEPSCs was performed using MiniAnalysis soft-

ware (SynaptoSoft). Events were manually analyzed and were accepted if they had an amplitude >5 pA (events below this amplitude

were difficult to distinguish from baseline noise) and a faster rise than decay. Statistical significance was measured using a one-way

ANOVA with 0.05% taken as significant.

Hippocampal slice preparation
Hippocampal slices (400 mm) were obtained from 21 to 35 day-old WT and ArcKR littermates. For trained mice, slices were obtained

up to 1 hr after the last training session. Animals were sacrificed by cervical dislocation and decapitated in accordance with the UK

Animals (Scientific Procedures) Act (1986). The brain was rapidly removed and placed in ice-cold high Mg2+, low Ca2+ artificial CSF

(aCSF), consisting of the following (in mM): 127 NaCl, 1.9 KCl, 8 MgCl2, 0.5 CaCl2, 1.2 KH2PO4, 26 NaHCO3, 10 D-glucose (pH 7.4

when bubbled with 95%O2 and 5%CO2, 300 mOSM). Parasagittal brain slices were then prepared using a Microm HM 650Vmicro-

slicer in ice-cold aCSF (2-4�C). Slices were trimmed and the CA3 region was removed. Slices were allowed to recover at 34�C for

3-6 hr in aCSF (1 mM MgCl2, 2 mM CaCl2) before use.

Extracellular recording from hippocampal slices
Field excitatory postsynaptic potentials (fEPSPs) were recorded from interleaved slices fromWT and ArcKR littermates. An individual

slice was transferred to the recording chamber, submerged in aCSF (composition as above), maintained at 32�C, and perfused at a

rate of 6mL/min. The slice was placed on a grid allowing perfusion above and below the tissue and all tubing was gas tight (to prevent

loss of oxygen). To record fEPSPs, an aCSF filled microelectrode was placed on the surface of stratum radiatum in the CA1 region.

A bipolar concentric stimulating electrode (FHC) controlled by an isolated pulse stimulator, model 2100 (AM Systems, WA) was used

to evoke fEPSPs at the Schaffer collateral–commissural pathway. All recordings were made in the presence of 50 mM picrotoxin to

block GABAA receptors (Tocris) and the NMDA receptor antagonist L-689,560 (trans-2-carboxy-5,7-dichloro-4-phenylaminocarbo-

nylamino-1,2,3,4-tetrahydroquinoline; 5 mM; Tocris). Field EPSPs were evoked at 0.1 Hz (200 ms stimulus), with a 20-min baseline

recorded at a stimulus intensity that gave 40% of the maximal response. To induce mGluR-LTD, 50 or 100 mM of (RS)-3,5-DHPG

(3,5-dihydroxyphenylglycine, Tocris) was applied for 10 min and then washed off for at least one hour as previously described (Eales

et al., 2014). Recordings of fEPSPs weremade using a differential model 3000 amplifier (AM systems,WAUSA) with signals filtered at

3 kHz and digitized online (10 kHz) with a Micro CED (Mark 2) interface controlled by Spike software (Vs 7.08), Cambridge Electronic
Neuron 98, 1–9.e1–e7, June 27, 2018 e6
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Design, CambridgeUK). Field EPSPswere analyzed using Spike software and graphs prepared usingOrigin (Microcal), with the slope

of fEPSPs measured for a 1 ms linear region following the fiber volley.

Statistical Analysis
Statistical analyses applied were the post hoc Student’s t test or repeated-measures ANOVA with pairwise multiple comparisons.

Behavioral data were analyzed using two-way or repeated-measures Analysis of Variance (ANOVA). Fisher’s protected least-signif-

icant difference (PLSD) tests were used for comparing group means only when a significant F value was determined. For all compar-

isons, significance was set at p % 0.05. Data presented in figures and tables are means (±SEM).
e7 Neuron 98, 1–9.e1–e7, June 27, 2018



Neuron, Volume 98
Supplemental Information
The Temporal Dynamics

of Arc Expression

Regulate Cognitive Flexibility

Mark J. Wall, Dawn R. Collins, Samantha L. Chery, Zachary D. Allen, Elissa D.
Pastuzyn, Arlene J. George, Viktoriya D. Nikolova, Sheryl S. Moy, Benjamin D.
Philpot, Jason D. Shepherd, Jürgen Müller, Michael D. Ehlers, Angela M. Mabb, and Sonia
A.L. Corrêa



 1 

Figure S1  
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Figure S1. ArcKR expression enhances GluA1 internalization, Related to Figure 1  

(A) Graph plotting normalized mean AMPA receptor-dependent mEPSC amplitudes against time 

for hippocampal cultured neurons expressing either Triad3/Rnf216-shRNA (n = 5) or scrambled 

RNA (n = 4) from at least 2 different culture preparations. Treatment with DHPG (100 µM) 

significantly enhances DHPG-LTD in Triad3/Rnf216-shRNA compared to neurons expressing 

scrambled RNA (measured at 6-7 min in DHPG compared to baseline, p = 0.026). Top, 

representative averaged mEPSC waveforms recorded at baseline and during DHPG exposure at 

times indicated in the plot (1, 1-2 min and 2, 6-7 min). Averages were constructed from at least 

50 mEPSCs which were aligned on 50% of the rising phase. (B) Cultured cortical neurons (DIV 

15) were transfected with Arc-WT (upper panel), Arc-2KR (middle), or Arc-5KR (bottom) 

constructs. Neurons were stained for surface GluA1 and Arc 16 h after transfection. As expected, 

overexpression of Arc-WT reduced surface GluA1 puncta compared to untransfected neurons. 

Zoomed panels, dendrites from untransfected (white box) and transfected (yellow box) neurons. 

Scale bars = 10 µm. (C) Overexpression of the Arc-KR constructs resulted in significant 

reduction in surface GluA1 puncta compared to Arc-WT overexpression. n = 2 dendrites/neuron, 

15 dendrites/group. *p < 0.05; ***p < 0.001.  Values represent mean ± S.E.M. 
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Figure S2 
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Figure S2. Generation and characterization of the ArcKR mouse, Related to Figure 1 

(A) Schematic of targeting strategy used to generate Arc knock-in mice.  Primer positions 

represent sites used to distinguish wildtype (Arc+/+; WT), heterozygous (ArcKR/+; HET), and 

homozygous (ArcKR/KR; ArcKR) mice. (B) Genotyping results from WT, HET, and ArcKR mice. 

Wildtype band size is 291 base pairs and the knock-in band size is 355 base pairs. (C) ArcKR 

neurons do not exhibit synaptic abnormalities. Western blot of synaptosome fractions isolated 

from WT or ArcKR mice. Actin was used as a loading control. (D) Quantification of synaptic 

protein expression in WT and ArcKR mice. All proteins are normalized to Actin. (E) Western 

blot of hippocampi isolated from postnatal day 60 (P60) WT or ArcKR mice. GAPDH was used 

as a loading control. n = 3 independent experiments. (F) Quantitative pPCR demonstrating no 

change in Arc mRNA expression between WT and ArcKR mice at P60. Hippocampi from WT 

and ArcKR mice were collected and the total RNA was isolated. Arc mRNA was determined by 

quantitative PCR. Data were normalized to the geometric mean of GAPDH reference gene and 

Arc. Each data point represents duplicate measurements from an individual mouse from 12 WT 

and 9 ArcKR mice. Values represent mean ± S.E.M. 
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Figure S3 
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Figure S3. Behavioral characterization of ArcKR mice, Related to Figure 3 

(A) Motor coordination and learning are unaltered in ArcKR mice. Graph plotting the time until 

mice fall off an accelerating rotarod. Mice were given three trials on day 1 (1, 2, and 3). Mice 

were then given 2 additional trials 48 hours later (4 and 5). (B) Initial locomotor activity in a 

novel open field is enhanced in ArcKR mice. Distance traveled over a time course of 60 min 

after placement in a novel environment. (C) Initial rearing activity in a novel open field is 

enhanced in ArcKR mice. Number of rears were taken within 60 min after placement in a novel 

environment. (D) ArcKR mice spend similar time in the center as WT mice in a novel open field. 

Time spent in the center of a novel open field within 60 min after placement in a novel 

environment. (E) ArcKR mice exhibit normal anxiety-like behavior in an elevated plus maze. 

Percent time spent in open arm (left), percent entries (middle), and total number of entries (right) 

in WT and ArcKR mice. (F) ArcKR mice exhibit normal marble burying behavior. (G) ArcKR 

mice have normal long-term recognition memory. Experimental setup for the Novel Object 

Recognition Test. (H) Novel Object Recognition Index values of WT and ArcKR mice. WT = 11 

animals, ArcKR = 10 animals. (I) Total time mice spent with the Novel versus Familiar Object in 

the Trial phase of the NORT. Values represent mean ± S.E.M, p ≤ 0.05. WT=12 animals and 

ArcKR-12 animals   
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Figure S4 
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Figure S4. Arc knock-in mice exhibit deficits in cognitive flexibility, Related to Figure 3 

(A) Schematic drawing showing the Barnes Maze experimental setup. Mice were tested a single 

time daily for 15 days. On day 16, the maze was rotated 180 degrees, mice were tested a single 

time daily, as before. (B) The scoring parameters used to assess learning strategies for the Barnes 

Maze paradigm. (C) Representative activity traces in WT and ArcKR mice during days 1, 5, 15, 

16, 18, and 21. (D) Top, blot showing Arc protein levels obtained from hippocampal lysate of 

Barnes maze trained WT and ArcKR mice. Actin was used as a loading control. Bottom, Graph 

represents Arc levels normalized to Actin from D. N = 3, p ≤ 0.05. (E) Blots showing Arc protein 

obtained from hippocampal lysates of Barnes maze WT and ArcKR mice trained at 1, 15, and 21 

days (WT 1day: n=5; WT 15 days: n=5; WT 21 days: n = 4; ArcKR 1 day: n=6; ArcKR 15 days: 

n=7; ArcKR 21 days: n = 5). GAPDH was used as a loading control. Graphs represent Arc levels 

normalized to GAPDH. Values represent mean ± S.E.M. 
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